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Nanofluids are modern heat transfer fluids which can significantly increase the 

thermal performance of a thermal system. It enhances the thermal conductivity of 

working fluids due to adding solid nanoparticles to the base fluid. In order to use 

nanofluids widely in industrial applications knowing the thermophysical properties of 

these new heat transfer fluids are essential. In this research, the GA-PNN and FCM-

ANFIS methods are employed to present models for thermophysical properties of 

nanofluids. Furthermore, modified NSGA-II technique has been used to optimise the 

convective heat transfer of nanofluids in a turbulent flow regime. 

 

In recent years considerable correlations have been suggested by different 

researchers for thermophysical properties of nanofluids based on the experimental 

and theoretical works, which a large number of those correlations are failed to 

predict the thermophysical properties of nanofluids for a wide range of particle size, 

temperature and nanoparticle volume concentrations. In this thesis, experimental 

data available in literature have been used to propose models for thermophysical 

properties of nanofluids to overcome this problem by using artificial intelligence-

based techniques. Two models based on FCM-ANFIS and GA-PNN techniques have 

been proposed for the thermal conductivity and viscosity of nanofluids. To show the 
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accuracy of the proposed models, the predicted result has been compared with 

experimental data as well as well-cited correlations in literature. Furthermore, the 

convective heat transfer of nanofluids was studied and different models based on 

artificial intelligence techniques have been proposed to model the Nusselt number 

and pressure drop of nanofluids in a turbulent regime. Finally, a multi-objective 

optimisation technique was used to optimise the convective heat transfer 

characteristics and pressure drop of nanofluids to find the best design point base on 

the Pareto front of the results. The predictions of the models for all cases agreed with 

the experimental data much better than the available correlations.  
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CHAPTER 1: INTRODUCTION 

1.1. BACKGROUND 

One of the most important issues in order to make system, “energy-efficient” is to 

minimise the size of the system. On the other hand, due to rapid technological 

developments, a considerable amount of industrial equipment operates at a high 

temperature and/or speed for more power output. Therefore, cooling for sustaining 

desirable performance and durability of such devices in a minimum size could be one 

of the technological issues encountered by high-tech industries. One of the ways to 

sort out this matter is to find a heat transfer fluid with the potential of more heat 

capacity. Conventional heat transfer fluids generally have poor thermal conductivities 

in comparison with solids. Therefore, scattering solid particles into liquids could be a 

solution which is not a new idea, since it can be traced back to Maxwell‟s theoretical 

work in 1873. Consequently, fluids that contain mm- or µm-sized particles were used 

to increase the effective thermal conductivity of the fluid. However, the mm- or µm-

sized particles were large to traverse the channel smoothly. Other main problems were 

the rapid settling of the mm- or µm-sized particles in the base fluid and the 

consequent erosion of the particles. Currently, modern technology makes it possible 

to produce smaller particles on a nano scale which is called nanoparticles which can 

be dispersed easily without rapid settling in a base fluid. Therefore, a novel generation 

of coolants called nanofluids was invented to meet the required cooling rate from heat 

transfer equipment. 

 

This new and advanced heat transfer fluid can be described as the suspension of 

nanometre-sized (1-100nm) metallic, non-metallic, polymeric particles, oxides and 

nanotubes in a conventional heat transfer fluid (called base fluid) such as water, 

mineral oil, ethylene glycol, etc. These fluids have the capability to be used in many 

industrial processes such as power generation, chemical processes, heating and 

cooling processes, grinding processes, fuel cells and micro-electronics. For example, 
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their application in the automotive industry can minimise the size of radiators, which 

in turn reduce the overall weight of the vehicle. 

 

Nanofluids show better stability and rheological properties, higher thermal 

conductivity, and no increase in pressure drop when compared with suspended 

particles of millimetre-or-micrometre dimensions. However, nanofluids do not take its 

real place in the designed new heat transfer equipment through lack of hybrid accurate 

models for prediction of the effective thermal conductivity and effective viscosity 

which they needed for heat transfer calculations. 

 

Thermophysical properties of nanofluids are very important in thermal applications 

where heat transfer and fluid flow occur. For example, changes in nanofluid viscosity 

in industrial applications influence the pumping power required as well as the 

convective heat transfer coefficients. Therefore, accurate information on the 

thermophysical properties of nanofluids is essential. Although the heat capacity and 

density of nanofluids can be predicted accurately it is challenging to determine the 

thermal conductivity and viscosity of nanofluids with acceptable accuracy due to 

hydrodynamic interactions and particle-particle interactions of nanoparticles in 

dispersions. Modelling and optimising the thermophysical properties of nanofluids are 

therefore vital for heat transfer applications. 

1.2. AIM OF THE PRESENT RESEARCH  

The aim of this research is to propose accurate models for thermophysical properties 

of nanofluids by using GA-PNN
1
, FCM-ANFIS

2
 and input-output experimental data. 

The necessity of research on thermophysical properties of nanofluids to find accurate 

models is thus essential. Consequently, two methods of artificial intelligence methods 

have been implemented to model thermal conductivity and viscosity of nanofluids. 

A multi-objective optimisation technique (NSGA-II)
3
 has also been proposed and 

developed to optimise the convective heat transfer of nanofluids which have given 

                                                 
1
 Genetic Algorithm- Polynomial Neural Network 

2
 Fuzzy C-means Clustering- Adaptive Neuro-Fuzzy Inference System 

3
 modified Non-dominated Sorting Genetic Algorithm 
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better design points based on heat transfer characteristics and pressure drop of 

nanofluids. 

1.3. OBJECTIVE OF THE PRESENT RESEARCH  

The objective of this study is to model the thermal conductivity and viscosity of 

nanofluids by using artificial intelligent techniques as well as optimisation of 

convection heat transfer of nanofluids in such a way to achieve the maximum heat 

transfer performance and minimum pressure drop. 

1.4. SCOPE OF THE STUDY 

In this thesis, two artificial intelligence approaches are employed to model the 

effective thermal conductivity and viscosity of nanofluids based on the input-output 

experimental data set. Detailed information about modelling the thermal conductivity 

are provided in chapter 3, two models are proposed based on GA-PNN and FCM-

ANFIS techniques for thermal conductivity of Al2O3-water nanofluids for a wide 

range of particle sizes (11–150 nm), temperatures (20–71 
o
C) and volume 

concentrations (0.3–14.6 %).  

 

Four prediction models were suggested for viscosity of Al2O3, CuO, TiO2 and SiO2 

water-based nanofluids based on the effect of volume concentration, temperature and 

nanoparticles size as the input (design) parameters. The viscosities were also 

compared with several of the most cited correlations in literature.  

 

Furthermore, the Nusselt number and the pressure drop of TiO2-water nanofluid in a 

turbulent flow regime were simulated by using the GA-PNN hybrid system approach 

and experimental data sets. Subsequently, the objective functions were used to obtain 

polynomial models for the effects of volume concentration, average particle diameter, 

Reynolds and Prandtl numbers on both the Nusselt number and the pressure drop. 

Finally, the obtained polynomial models were used in a Pareto-based multi-objective 

optimisation approach for finding the best possible combinations of the Nusselt 

number and pressure drop, known as the Pareto front. 
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1.5. ORGANISATION OF THE THESIS 

This thesis consists of six chapters and each chapter is divided into sections and 

subsections. These provide a detailed description of the subject matter and make for 

easy reading and referencing. The chapters of the thesis are itemised below: 

 

 Chapter one introduces brief information about our research work and presents 

the motivation and background of the study. 

 

 Chapter two presents a review on possible mechanisms of thermal conduction 

enhancement in nanofluids as well as a brief review on theoretical models for 

thermal conductivity of nanofluids.  

 

 Chapter three deals with the subject of artificial intelligence techniques and 

focuses on the operation of the GA-PNN and FCM-ANFIS methods for 

modelling the thermal conductivity of nanofluids by using input-output 

experimental data sets obtained from literature review. Two models have 

therefore been proposed for effective thermal conductivity of Al2O3-water 

nanofluids with respect to temperature, nanoparticle size and concentration and 

compared with experimental data sets.  

 

 Chapter four provides a background on viscosity of nanofluids and theoretical 

models for viscosity of nanofluids and presents two models based on artificial 

intelligence modelling techniques for viscosity of nanofluids and the same as 

chapter three, the result compared to the experimental data as well as three 

statistic criteria. 

 

 Chapter five develops a multi-objective optimisation technique to optimise the 

convective heat transfer characteristics and pressure drop TiO2-water nanofluids 

to achieve the best results to maximise the Nusselt number and minimise the 

pressure drop. In this chapter, the Nusselt number and pressure drop of TiO2-

water nanofluids were modelled first by using GA-PNN method and 



 

Chapter 1: Introduction 

 

   5 

 

subsequently the NSGA-II multi-objective optimisation method has been 

implemented for multi-objective optimisation. 

 

 Chapter six provides a general summary of the findings of the study. It also 

presents the conclusions and contributions, as well as recommendations for 

future work.  



 2 
CHAPTER 2: THERMAL CONDUCTIVITY OF NANOFLUIDS

4
 

2.1.  INTRODUCTION 

Nanofluids are a new type of heat transfer fluids used in engineering applications, and 

they are simply a base fluid with nanoparticles suspended. Nanofluids show a 

significant enhancement in thermal conductivity and this enhancement is related to 

different parameters [1, 2]. 

 

The most important parameters which potentially influence the heat transfer 

enhancement of nanofluids are the Brownian motion of nanoparticles, nanoparticle 

size/distribution and formation of aggregates, nanolayering of the liquid at the 

fluid/particle interface, electric charge on the surface of nanoparticles, the 

thermophoretic effect and the nanofluids preparation methods as well as added 

surfactants [3] which are described in this chapter. 

 

Furthermore, this chapter has provided a review on different correlations proposed by 

researchers to calculate the thermal conductivity enhancement of base fluids in the 

presence of nanoparticles. Most of those theoretical models are focused on the 

influence of the Brownian motion of nanoparticles, nanolayering and clustering. In 

section 2.3.4, some hybrid models for modelling the thermal conductivity of 

nanofluids are also mentioned. Those hybrid models have taken into account the 

Brownian motion as well as the effect of nanolayering of the liquid at the 

fluid/particle interface. 

                                                 
4
 This chapter has been published in part: H.S. Aybar, M. Sharifpur, M.R. Azizian, M. Mehrabi and 

J.P. Meyer, “A Review of Thermal Conductivity Models for Nanofluids”, Heat Transfer Engineering, 

accepted on 25 April 2014 and scheduled for Vol. 36 (16), 2015. 
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2.2. POSSIBLE MECHANISMS OF THERMAL CONDUCTION 

ENHANCEMENT IN NANOFLUIDS  

In the following subsections, potential mechanisms which may describe the 

enhancement of the thermal conductivity of nanofluids have been summarised and 

described in detail [4-6]. 

2.2.1. Brownian motion of nanoparticles  

A wide variety of fine-scale particles displays an irregular motion on a random path 

when suspended in a base fluid, which is known as the Brownian motion. The 

Brownian motion was first observed by Robert Brown in 1828 [6] and was first 

described analytically by Einstein in 1905 as a part of his doctoral thesis to determine 

the size of molecules [7]. It has been shown in his work that adding solid particles 

into the base fluid generates an additional pressure called the osmotic pressure which 

can be expressed by an expression similar to the ideal gas law when the solute is 

dilute as 

        (2.1) 

where   is the particle concentration per unit volume,   is the temperature and    is 

the Boltzmann constant. 

When small particles move into a base fluid, a drag force exerts against the motion 

which can be expressed by the well-established Stokes law in fluid mechanics as 

          (2.2) 

where   is the dynamic viscosity,    is the particle diameter and   is the particle 

velocity. 

 

At steady-state, the pressure-driven force due to particle movement and the resistance 

on the particle due to the drag force as well as considering a control volume in x-

direction (Figure 2.1) give a balance equation as 

  [            ]               (2.3) 
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Figure 2.1: Schematics of Brownian motion process 
 

where    is the number of particles in the volume          By substituting Eq. 

(2.1) into Eq. (2.3) leads to  

      
 

     

  

  
  

   

     

  

  
 

(2.4) 

 

By considering Fick‟s laws of diffusion (           ⁄ ) the diffusivity determine 

by the following equation [8], 

   
   

     
 (2.5) 

 

In a conventional approach, the effect of the particle Brownian motion is neglected 

due to the large particle size. The contribution of Brownian motion of nanoparticles in 

order to enhance the thermal conduction could be effected in two different ways: first 

due to the movement of the nanoparticles which can transfer the heat and the second 
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way is the micro convection of the fluid around individual nanoparticles. Nanoparticle 

size, concentration, distribution and formation of aggregates  

Chon et al [9] measured the thermal conductivity of nanofluids containing three 

different sizes of alumina nanoparticles with diameters of 11, 47 and 150 nm. It has 

been indicated that the thermal conductivity of nanofluids increased as particle size 

decreased. Li and Peterson [10] observed up to 4% positive thermal conductivity 

enhancement for Al2O3-water nanofluids containing 36 nm Al2O3 particles compared 

with nanofluids containing 47 nm Al2O3 particles at 2% volume concentration. Patel 

et al [11] measured the thermal conductivity of nanofluids containing different sizes 

of Al2O3, CuO, and Cu in water, ethylene glycol and in transformer oil. They 

observed positive thermal conductivity enhancements for Al2O3-water with smaller 

nanoparticles. For Al2O3-water nanofluid at 2% volume concentration at 50
o
C, the 

thermal conductivity enhancement for the 11 nm sample (15.5%) was approximately 

double the enhancement for the 150 nm (7%) sample and about 1.5 times the 

enhancement for the 45 nm (10.5%) sample.  

 

Most of the nanofluids thermal conductivity data in the literature exhibited a linear 

relationship with the particle volume concentration. However, some exceptions have 

showed a non-linear relationship especially at low volume concentrations [12]. In 

these studies, the slope of the thermal conductivity versus volume concentration can 

be divided into two linear regimes. At low concentrations, the slope was greater than 

at high concentrations. Most thermal conductivity data in the literature for Al2O3-

water nanofluids showed that with increasing nanoparticle volume concentration, the 

thermal conductivity also increased [9- 18], however, the intensity of the increase 

decreased for the larger volume concentrations. 

Timofeeva et al [19] investigated the effect of different particle shapes of 

nanoparticles on thermophysical properties of Al2O3-EG/water nanofluids. Based on 

the experiments which were carried out at different shape and volume fractions of 
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nanoparticles and by keeping all the other parameters constant, a model was proposed 

to predict the thermal conductivity of Al2O3- EG/water nanofluids. 

 

The result showed that the overall thermal conductivity started to decrease below the 

sphericity of 0.6 for non-spherical alumina nanoparticles. 

 

A particle aggregation phenomenon in nanofluids is a two-step process. In the first 

step which is called the transport step, the nanoparticles approach and collide with 

each other and in the attachment step colliding particles stick to each other and form a 

chain structure. 

Nanoparticle aggregation can enhance the thermal conductivity of nanofluids due to a 

chain structure which allows more heat transport along the heat flux direction [20]. 

 

On the other hand, nanofluids must stabilise by electric repulsion or steric hindrance 

to prevent particles from sticking together and create large clusters which will result 

in settling down the particles. 

2.2.2. Nanolayering of the liquid at the liquid/particle interface 

Due to primary inter-atomic bonding at the solid particle interface, some of the base 

fluid molecules attach themselves on the nanoparticle and form a layer which has 

been shown schematically in Figure 2.2. 

This layer is called a nanolayer and has the properties of the solid phase of the base 

fluid. This molecular thin film at the solid/liquid interface plays a crucial role in the 

thermal conductivity of nanofluids enhancement [21]. 
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Figure 2.2: Schematics picture of the nanolayering concept 
 

Choi et al [22] measured the thermal conductivity of oil-based carbon nanotubes 

dilution. Since the existing theoretical models were unable to predict the thermal 

conductivity of nanofluids as well as the strange nonlinear relationship between 

nanotube loading and thermal conductivity enhancement, the nanolayering as a 

possible mechanism for enhancing the thermal conductivity of nanofluids was first 

proposed. 

 

Xue et al [23] have shown that the layering of the liquid atoms at the liquid-solid 

interface as a proposed mechanism for the observed enhancement in the thermal 

transport of nanofluids is not viable by using molecular dynamics simulation for the 

specific model system involving a simple (mono-atomic) liquid. However, it has been 

mentioned that more complex liquids, such as water or liquids of molecular chains, 

might behave differently. 

 

The width of this crystalline layer which is typically 1-5 atomic layers (     ) is the 

prime variable to explain the nanolayering mechanism. Tillman and Hill [24] 

proposed a revised procedure to determine the nanolayer thickness and the thermal 

conductivity profile inside a nanolayer. They explained that there was no known 



 

 

Chapter 2: Thermal conductivity of nanofluids 

 

   12 

 

procedure to properly calculate the nanolayer thickness and all previous investigators 

just chose the nanolayer thickness to match their results with the experimental data. 

They assumed that the thermal conductivity profile within the nanolayer is given as 

                (2.6) 

where   and   are parameters determined from the continuity of thermal conductivity 

at the interface, m is a power law exponent and   is a spherical coordinate radius. To 

calculate the temperature profile inside the nanolayer, they assumed the steady-state 

heat conduction in spherical coordinates with axial symmetry and realised that the 

temperature profile inside the nanolayer can be obtained by using the separation of 

variable method as 

                  [             ]      (2.7) 

where E and F are parameters that should be determined through the relevant 

boundary conditions for temperature, and       and       are the non-linear 

independent solutions of the second-order differential equation of 

   

   
 (

 

 
 

 

 

  

  
*
  

  
 

 

  
    

(2.8) 

 

They also calculated the critical nanolayer thickness by solving the following 

equation,  

 
  

[
      

  
]

 
  

[
      

  
]

 

 
  

[       ]

 
  

[       ]
 

(2.9) 

 

The calculated nanolayer thicknesses for alumina-in-EG and CuO-in-water nanofluids 

are approximately 19% and 22% of the corresponding nanoparticle radius 

respectively, which are consistent with data used in other studies. They also compared 

the results of their model with alumina-in-EG, CuO-in-EG, Cu-in-oil, CuO-in-water 

experiments and their results show good agreement with these experimental data. 

However, in their model, three functions for thermal conductivity of nanolayers were 

tested, but just one of them produced stable results. This means that their model needs 
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more validation for determining an accurate function of the nanolayer thermal 

conductivity. 

2.2.3. Electric charge on the surface of nanoparticles 

Wamkam et al [25] experimentally studied the influence of surface charge on the 

stability of ZrO2-water and TiO2-water nanofluids and observed a significant 

enhancement on thermal conductivity of nanofluids near the iso-electric point. The 

iso-electric point is the pH value that particle surface carries no net electrical charge 

and is sometimes abbreviated to IEP in literature.  

 

Furthermore, it has been observed that at the IEP, the repulsive forces among the 

nanoparticles are zero and nanoparticles stuck together and became rigid. Based on 

DLVO (Derjaguin, Landau, Verwey and Overbeek) theory, nanoparticles tend to 

aggregate to each other and form a cluster when the pH of the dilution is equal or 

close to the IEP value. Consequently, the bigger clusters trap more water molecules 

and therefore volume fraction of nanoparticles will increase due to well-packed water 

molecules inside the clusters. Furthermore, the shape of the clusters with trapped 

water is like chains which result in higher thermal transport due to a longer link and 

finally enhance the thermal conductivity of nanofluids. 

 

Lee et al [26] studied the influence of pH on the   potential, surface charge and 

stability of CuO-Water and SiO2-water nanofluids. In their experimental 

investigations, it has been observed that as the pH moves away from point of zero 

charge (PZC), the surface charge increases due to more frequent attacks on the surface 

hydroxyl groups. Furthermore, it has been shown that the pH of the colloidal liquid 

strongly affects the thermal conductivity of the nanofluids. They observed that the 

colloidal particles get more stable when the pH of the solution moves far from the IEP 

of particles and eventually alter the thermal conductivity. 
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2.2.4. Thermophoretic effect 

Mobile particles suspended in a liquid are subject to a force under the effect of a 

temperature gradient, directed in the opposite direction of the temperature gradient. 

This force, which is equivalent to Soret effect, is called thermophoretic force and is 

the result of differences in momentum and energy transferred to the particles by 

bombardment of higher energy molecules on the higher temperature side [5].  

 

The particles experiencing thermophoretic force are also subject to a drag force. 

Assuming steady-state in the Stokes regime, the balance of the thermophoretic and 

drag forces results in a particle migration velocity which is called thermophoretic 

velocity    and can be found as [27]: 

     
 

 
 
  

 
 

(2.10) 

 

The thermophoretic velocity depends on the physical properties of the base fluid at 

the fluid temperature in the vicinity of the particle. An expression for the 

proportionality factor   which usually is called thermophoretic diffusion coefficient is 

given by McNab and Meisen [28] as follows: 

      
   

       
 

(2.11) 

 

It has been mentioned in Buongiorno [29] that thermophoretic effect may become 

important as a slip mechanism when there are no turbulent eddies. Theoretical 

analysis by Koo and Kleinstreuer [30] and experimental work by Wang et al [5] 

showed that the impact of thermophoretic on thermal conductivity enhancement is not 

significant and can be neglected in comparison with Brownian motion effect.  
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2.2.5. Preparation and surfactants 

Nasiri et al [31] studied the effect of dispersion method on thermal conductivity of 

different CNT nanofluids in which functionalisation, SDS/ultrasonic probe and 

SDS/ultrasonic bath were chosen as preparation methods. It has been concluded that 

the preparation method has a significant effect on thermal conductivity of CNT 

nanofluids. Furthermore, they observed that the functionalised CNT structures have 

the best dispersion and least tendency for agglomeration due to having the smallest 

mean diameter of particles which had increased from functionalisation method to 

SDS/ultrasonic bath method. It has also been shown that thermal conductivity of all 

CNT nanofluids decrease over time, but the rate varies based on the dispersion 

methods. The functionalised nanofluids had soon begun to level off but the other two 

types of nanofluids had been continuing their downward trend. 

 

Hwang et al [32] measured the thermal conductivity of nanofluids by using a transient 

hot-wire system. Furthermore, the stability of nanofluids with sedimentation time has 

been estimated with UV-vis spectrum analysis. The effect of addition of a surfactant 

has been studied by adding SDS (sodium dodecyl sulphate) to the nanofluid and it has 

been indicated that it can improve the stability of nanoparticles in aqueous 

suspensions.  

 

Furthermore, it has been concluded that morphology, the chemical structure of the 

nanoparticle and base fluid and the addition of a surfactant can strongly affect the 

stability of nanofluids and consequently the thermo physical properties of nanofluids 

such as the thermal conductivity. 

 

Ghadimi et al [33] studied the effect of preparation methods as well as adding 

surfactant on stability and thermal conductivity of nanofluids. The single and two-step 

preparation methods have been studied and it has been shown that nanofluid 

preparation methods affect the stability of nanofluids since the two-step method needs 
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a higher nanoparticle concentration to achieve the same heat transfer enhancement by 

the single-step method. Consequently, a higher concentration caused more 

sedimentation, although in the most experimental works to date the two-step method 

is applied for nanofluid preparation since the single-step method is not yet 

industrialised. Another factor is the higher cost of this method in comparison with the 

two-step method. 

 

Adding a surfactant as one of the general methods to avoid sedimentation has been 

studied and it has been shown that addition of surfactant can improve the stability of 

nanofluids. However, care should be taken to choose the right surfactant as well as 

applying enough surfactant since choosing the wrong surfactant or applying 

inadequate surfactant will not encourage the stability of nanofluids.  

2.3. THEORETICAL MODELS FOR THERMAL CONDUCTIVITY 

OF NANOFLUIDS 

The different heat transfer mechanisms which potentially influence the heat transfer 

enhancement of nanofluids are mentioned in section 2.2. Until now most of the 

studies have been focused on the Brownian motion of the nanoparticles, molecular-

level layering of the liquid at the liquid/particle interface (nanolayer), nanoparticle 

clustering, and a combination of these factors together with other conditional 

parameters such as temperature, nanoparticles size and volume fraction. In the 

following subsections the theoretical models for modelling the thermal conductivity 

of nanofluids based on three important parameters; the Brownian motion, 

nanolayering and clustering have been described and in subsection 2.3.4 some hybrid 

models which are taking into account two parameters simultaneously have been 

presented. 

2.3.1. Theoretical models based on Brownian motion       

Das et al [13] explained that the main mechanism for thermal conductivity 

enhancement in nanofluids can be the stochastic motion of the nanoparticles. They 

indicated that the Brownian motion was not important in the conducting behaviour at 
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low temperatures. They also showed the possibility of a threshold temperature 

corresponding to each particle size in which the effective thermal conductivity of 

nanofluids commences to enhance through stochastic motion of the particles. They 

finally indicated that the stochastic motion of the particles will be greater for smaller 

particles. 

 

Xuan et al [34] offered a model that takes into account the effect of Brownian motion 

and the aggregation structure of nanoparticle clusters. Their simulation is unique from 

the point of view of including the fluid temperature and the structure of nanoparticle 

clusters in the thermal conductivity [1]. The resulting model expressed as: 

    

   
 

                  

                 
 

      

    
√

   

     
 

(2.12) 

 

In spite of the fact that their model is among pioneer models to include the Brownian 

motion effect, it cannot predict the linear increase of conductivity with temperature, as 

obtained by Das et al [13].  

 

Koo and Kleinstreuer [30, 35] indicated that the Brownian motion produces micro-

mixing and is, therefore, dominant in enhancing the thermal conductivity of 

nanofluids. They offered a new model for thermal conductivity of nanofluids by 

adding the effect of Brownian motion to the conventional conductivity model and 

taking into account factors such as temperature, particle size, volume concentration, 

and the properties. They combined the thermal conductivity of a static dilute 

suspension and conductivity due to Brownian motion as follows: 

                       (2.13) 

 

Wasp‟s model [36] was used for the static part of the model. A dynamic model of 

thermal conductivity due to Brownian motion of a large portion of surrounding liquid 

travelling with randomly moving nanoparticles was used for the second part. Finally, 

the model offered as  
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(2.14) 

where   represents the hydrodynamic interaction between particles and affected fluid 

and f considers the augmented temperature dependence due to particle interactions. It 

is difficult to obtain   as well as the function f theoretically and they should be 

determined from experimental data for different nanofluids. For Al2O3-water 

nanofluids (     ),                
        

       (              )                    and is valid for    

      and              . 

 

Prasher et al [37] compared the effect of translational Brownian motion and 

convection induced by Brownian motion. They investigated the existence of an 

interparticle mechanism. By making an order-of-magnitude analysis, they concluded 

that the local convection due to the Brownian motion of the nanoparticles is the only 

mechanism that could explain the anomalous enhancement of thermal conductivity of 

nanofluids. They also indicated that the thermal conductivity for large particle sizes 

should be explained based on the conventional effective medium theory such as the 

Maxwell-Garnett model. Therefore, they modified the Maxwell-Garnett model by 

including the Brownian-motion-induced convection from multiple nanoparticles. 

Their semi-empirical model was written as 

               
             0

                  

                 
1     

(2.15) 

where the Reynolds number is defined as    
 

 
√

     

     
 . Their suggested model has 

two empirical constants (     and     ) which have to be determined by 

experiments. They indicated that the Brownian motion model would be semi-

empirical in nature due to the complexities involved with the interaction of multiple 
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nanoparticles. They also suggested that a numerical simulation is needed to 

understand the exact origin of the empirical constants.  

 

Chon et al [9] have developed empirical correlations for the effective thermal 

conductivity of nanofluids. Based on the Buckingham-Pi theorem with a linear 

regression for the experimental results, the following empirical correlation proposed 

for the effective thermal conductivity  

    

   
               .

   

  
/

      

.
  

   
/

      

                 
(2.16) 

where     denotes the molecular diameter of base fluid. The Prandtl number and the 

Reynolds number are respectively defined as 

   
 

    
 (2.17) 

   
        

 
 

      

       
 

 

The temperature dependence of the base fluid viscosity   was expressed as  

      
           , where    ,    , and     are constants and equal to 2.414 10

−5
, 

247.8, and 140, for water.    is the Brownian velocity of nanoparticles based on the 

Einstein diffusion theory 

   
   

        
 

  

       
 

 

                 
 

(2.18) 

 

Bhattacharya et al [38] developed a semi-empirical Brownian model showing the 

localised convection caused by Brownian motion is the main reason for enhancement 

in the effective thermal conductivity of nanofluids. Their model is a combination of 

the Maxwell conduction model and the convection caused by the Brownian 

movement of the nanoparticles. The convective-conductive model which they offered 

accounts for the effects of particle size, base fluid properties, thermal interfacial 

resistance between the particles and liquid, and temperature. The model is called 
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multisphere Brownian model (MSBM) which is a modified version of the Prasher et 

al model [37]  

                            .
[             ]    [           ]

[             ]   [           ]
/     

(2.19) 

 

where    is the matrix conductivity and    
     

  
 is Biot number and    is thermal 

boundary resistance. They also showed that contrary to the Keblinski et al [3 4] 

model, the energy transport due to Brownian diffusion is smaller than the energy 

transport of conduction in liquid. However, they did not consider the energy transport 

due to convection caused by the Brownian movement of the particles. They simply 

analysed that the Brownian motion time scale is greater than the convection time 

scale. This means that the effects of convection are almost propagated instantaneously 

relative to the Brownian diffusion of the particles. They also indicated that bigger 

particles show better convection effects in the base fluids, regardless of the thermal 

conductivity of the nanoparticles. To validate the model, they compared their results 

with the experimental data of alumina-in-EG, Cu-in-EG, CuO-in-EG, alumina-in-oil 

and Cu-in-oil. However, in their model there are two constants which should be 

defined according to each experiment. Furthermore, they provided some research 

directions in order to remove the imperial constants.  

 

Xu et al [39] were the first group to develop a fractal convection model which takes 

into account the fractal size distribution of nanoparticle convection caused by 

Brownian motion. Their model takes into account the particle concentration, average 

size, fractal dimension and temperature. Engagingly, their model shows that the 

contribution of Brownian motion-induced convection reaches a maximum value at a 

critical concentration of 12.6 vol% which is in an acceptable agreement with 

experimental data for oxide nanofluids [1]. The model is as 
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(2.20) 

where    is the Nusselt number,    is the fractal dimension and can be found from 

     [               ⁄  ⁄ ]. d = 2 in two dimensions and      and      are 

respectively the minimum and maximum diameters of nanoparticles. 

 

Vladkov and Barrat [40] simulated the thermal properties of nanofluids by using the 

molecular dynamics simulations. Based on their simulation results, they conclude that 

the Brownian motion of the particle does not affect the cooling process. Furthermore, 

the Maxwell-Garnett model can predict the effective thermal conductivity of 

nanofluids. They also concluded that the essential parameter which influences the 

effective thermal conductivity is the ratio of the Kapitza length to the particle radius. 

Therefore, heat transfer enhancements observed in nanofluids comes from 

aggregation effects, such as particle clustering and percolation or cooperative heat 

transfer modes. Their final expression for the effective thermal conductivity is as 
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(2.21) 

where         ⁄  is the ratio between the Kapitza length (equivalent thermal 

thickness of the interface) and the particle radius. 

 

Li and Peterson [41] analysed the mixing effect of the base fluid directly adjacent to 

the nanoparticles due to the Brownian motion of nanoparticles by using CFX 5.5.1 

software in order to simulate the corresponding temperature, pressure and velocity 

fields. They investigated the effects of single, adjacent and multiple nanoparticles. 

Their results imply that Brownian motion-induced micro convection and the mixing 
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significantly enhances the macroscopic heat transfer in the nanofluids. Moreover, 

Brownian motion is one of the important factors for anomalous enhancement of the 

effective thermal conductivity of nanofluids. 

 

Sarkar and Selvam [42] developed the nanofluids system that consists of a base fluid 

of argon and copper particles with various nanoparticle concentrations. They used an 

equilibrium molecular dynamics simulation to model this nanofluid system. 

Therefore, by applying the Green-Kubo relation they calculated the thermal 

conductivity of the base fluid and nanofluids. They found out that the effective 

thermal conductivity of copper-argon nanofluids was much bigger than predicted by 

the Hamilton-Crosser model at both of low volume concentration (up to 0.4%) and 

high volume concentration (up to 8%). They also found that the liquid atoms motion 

in nanofluids increases considerably in comparison with the pure base fluid (1.41 

times for 1% nanofluid). The nanoparticle motion was also 28 times slower than that 

of the liquid phase for 1% nanofluids. This implies that the Brownian motion of the 

nanoparticles is too slow to transport the heat. On the other hand, localised fluid 

movement around nanoparticles is induced by much faster liquid atoms. They 

concluded that these phenomena are the main mechanisms for enhanced thermal 

conductivity of nanofluids. However, their simulation considered only single 

nanoparticles and excluded the effects of aggregation. 

 

Yu-Hua et al [43] analysed the mechanism of the thermal conductivity of a nanofluid 

including the Brownian motion effect, particle agglomeration and viscosity as well as 

the influence of the temperature. Their model combined the Maxwell model and the 

Brownian motion effect based on Xuan et al [34] findings. They considered while the 

particles are on a nanoscale, the surface area of the particles is larger and this could 

influence the performance of the particles. Therefore, they calculated the thermal 

conductivity of the nanoparticles as 
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(2.22) 

where              ⁄  
  and    is the thickness of the liquid layer which can be 

expressed as 
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(2.23) 

where     is the molecular weight of the liquid on the solid interface and    is 

Avogadro‟s constant. They also showed that the changes of viscosity and particle 

agglomeration with temperature are important issues. By increasing the temperature, 

the reduction of the particle surface energy would decrease the agglomeration of 

nanoparticles, and the reduction of viscosity would improve the Brownian motion. To 

validate their model, they compared the model with the experimental results of Cu-

water, which were in good agreement. The results indicated that the maximum error 

decreased from 7% to 3% when the temperature effects of agglomeration 

nanoparticles were taken into account.    

 

Shukla and Dhir [44] developed a microscopic model for predicting the thermal 

conductivity of nanofluids based on the Brownian motion of nanoparticles in the 

liquid. They divided the net heat flux due to Brownian motion into a kinetic and an 

interaction part. Their model is based on ensemble averaging technique assuming the 

existence of small departures from equilibrium and the presence of pair-wise additive 

interaction potential between various nanoparticles as 
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(2.24) 

Where    is the number density of ionic charge in the bulk liquid,    accounts for the 

contribution of charged nanoparticles through the number of counterions and      

stands for the non-dimensional inverse Debye length.     is defined as 
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*

 
 

 

(2.25) 

where the Bjerrum length    is              ⁄ . 

 

In the model, the kinetic contribution to the effective thermal conductivity was 

neglected. The specific form of the repulsive DLVO potential which accounts for the 

electrostatic repulsion between charged spherical nanoparticles was also selected to 

design the interparticle interaction between various nanoparticles. They analysed the 

interparticle potential effect on thermal conductivity through calculations involving 

DLVO interaction between the electric double layers on spherical nanoparticles. 

These calculations show the importance of long-range repulsive potentials for the 

enhancement of thermal conductivity of nanofluids.  

 

Yang [45] developed a thermal conductivity model based on the kinetic theory of 

particles in the fluids under relaxation time approximations. The model takes into 

account convective heat transfer due to the Brownian motion of nanoparticles. It is 



 

 

Chapter 2: Thermal conductivity of nanofluids 

 

   25 

 

also expressed as a combination of diffusive heat conduction and the particle 

Brownian motion as  

                     (2.26) 

where       is 

      (    

  
     

  

  
     

  
,    

(2.27) 

          
  (2.28) 

where   is the volume of the particle    is the particle radius and    is the thermal 

resistance per unit area of the particle/fluid interface. The second term of Eq. (2.26) is 

corresponded to the convection due to the Brownian motion of the nanoparticles. It is 

analytically derived from integration of the fluid velocity over the hydrodynamic 

boundary layer around the Brownian particle and expressed as 

                    
   (2.29) 

where    is the heat capacity per unit volume of the fluid,   is the particle relaxation 

time, and    is the Brownian velocity of the particle of which two former ones are 

expressed as 

  
  

       
 

(2.30) 
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(2.31) 

where    is the Boltzmann constant and    is the mass of the particle.  

 

Furthermore, he founded that the relaxation time of particle Brownian motion could 

be significantly affected by the long-time tail in Brownian motion.  

Nie et al [46] represented a new valuable mathematical model based on the Green-

Kubo linear theory. They used the exact expression for the heat flux vector of the base 

fluid with the nanoparticles to estimate the contribution of nanoparticle Brownian 

motion to the thermal conductivity of the nanofluid. They derived an equation for the 
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contribution of the enhancement of thermal conductivity due to the Brownian motion 

of a nanoparticle as 

        
  

    

   
  

    
 

(2.32) 

Their result represented that the thermal conductivity improvement is proportional to  

  ⁄  , where T is the temperature (K) and μ is viscosity (Pa.s). They also found that 

the Brownian motion contribution to the enhancement of thermal conductivity of 

nanoparticles is on the order of         ⁄  at temperature of 320 K. Therefore, the 

contribution of the Brownian motion is negligible in comparison with the value of 

thermal conductivity of base fluid (water). 

 

Vasu et al [47] have developed two correlations for the effective thermal conductivity 

of Al2O3-water and Cu-water nanofluids by using experimental data taken from 

literature. Their models consider the effects of temperature, volume fraction and 

nanoparticle size as  
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Equations (2.33) and (2.34) are applicable for Al2O3-water and Cu-water nanofluids 

respectively. Although their proposed correlations were able to predict the effective 

thermal conductivity of nanofluids effectively, the correlations are only valid for the 

nanofluids whose data were used to formulate the correlation in the range of the data.  

 

Jain et al [48] used the Brownian dynamic simulation technique coupled with the 

Green-Kubo model to calculate the effective thermal conductivity of nanofluids by 

considering the effect of various parameters. They consist of particles concentration 

ranging from 0.5 to 3 vol%, particle size ranging from 15 to 150 nm, and temperature 

ranging from 290 to 320 K. The effect of base fluid hydrodynamic interactions was 
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considered through a position-dependent interparticle friction tensor. It was also 

shown that the simulation based on N-coupled Langevin equations is able to involve 

the effects of different parameters such as particle size, particle concentration and 

temperature of the fluid on the effective thermal conductivity of nanofluids. A 

combined parallel model was used for the calculation of the effective thermal 

conductivity due to the assumption that thermal conduction caused by the motion of 

nanoparticles and the base fluid molecules occurs in parallel as Eq. (2.20), where    

is the thermal conductivity owing to the Brownian motion of the nanoparticles and 

calculated by using the Green-Kubo relation as 
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(2.35) 

where T is the temperature, V is the volume of the domain,   is the number of time 

steps used in the simulation and Δt is the time step. They also concluded that their 

model can predict the effective thermal conductivity of nanofluids properly where the 

Brownian motion of the particles is the key mechanism for the enhancement in the 

thermal conductivity of nanofluids. 

 

Jung and Yoo [49] developed a model to predict the thermal conductivity of 

nanofluids by using the kinetic theory in order to describe the contribution of the 

Brownian motion. They also considered the contribution of the interparticle 

interaction due to the existence of the electrical double layer (EDL). Their model is a 

modification of the Maxwell conventional conductivity model by adding Brownian 

motion and electrical double layer effects. Therefore, the model can account for 

various factors including temperature, particle size, volume fraction, the Brownian 

motion and interparticle interaction as follows  
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where           is the thermal conductivity due to the Brownian motion and      is 

the thermal conductivity due to the electrical double layer which were expressed, 

respectively as 

          
     

 
 

   

        
 

(2.37) 
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(2.38) 

where   is Coulomb constant (          ⁄ ) and      is electric charge (C). It 

was shown that the model is applied to Au-water nanofluids satisfactorily with respect 

to temperature, volume fraction and particle size. In the case of high concentration of 

Al2O3-water nanofluids, the effect of the interparticle interaction is more on 

enhancing the thermal conductivity due to EDL.  

 

Murshed et al [50] developed a combined static and dynamic mechanism-based 

model to predict the effective thermal conductivity of nanofluids. Their model can 

count most of the possible parameters such as particle size, nanolayer, particle 

movements, interactions and surface chemistry of nanoparticles. Furthermore, it was 

shown that dynamic mechanisms such as particle Brownian motion, particle 

interactions and surface chemistry are significant when there are smaller-sized 

nanoparticles as well as low volume fractions. However, the major contributions to 

the enhancement are from static mechanisms.  The model was considered to be the 

result of both static and dynamic mechanisms as follows: 
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The significant features of the proposed model were summarised as follows: 

 

 The model was developed by considering nanoparticles with a thin interfacial 

layer together with their static and dynamic mechanisms in the base fluid.  

 

 The second term on the right hand side of Eq. (2.39) stands for the interactions 

between pairs of spherical nanoparticles in a stationary suspension. 

 

 The third term on the right hand side of Eq. (2.39) represents the effect of 

particle Brownian motion, particle surface chemistry and inter-particle 

interactions for         . This part is not applicable when           

because at such a small volume fraction, the interparticle separation distance is 

too big to cause any interactions through the Brownian and potential forces of 

particles. 

 

 In case of no interaction between pairs of nanoparticles and the interfacial 

layer, the static part of the model reduces to the Maxwell model and when 

     the entire model reduces to      

      

Emami-Meibodi et al [51, 52] offered a simple new model in order to count the 

Brownian motion. The particle size did not matter in their model; therefore, they 

mentioned that their model could work for any suspension including microparticles 

and nanoparticles. However, this is approved that at the same volume fraction and 

condition, the effective thermal conductivity of a nanofluid with smaller particles will 

be more [53].         

 

Mehta et al [54] proposed a theoretical model to predict the thermal conductivity of 

nanofluids at low volume fraction of particles. The heat transfer contributions from 

liquid/solid conduction and micro-convection around particles were considered 
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separately using thermal resistance modelling. The diffusion velocities of particles 

due to Brownian motion were used for the modelling of micro-convection around the 

nanoparticles. In their proposed model, the particles were assumed to be spherical and 

mono-dispersed without agglomeration in the liquid.  The model was validated 

against a variety of experimental data available in the literature for alumina, copper, 

copper oxide and titanium oxide-based nanofluids for different concentrations of 

nanoparticles.  

 

Xiao et al [55] developed an analytical expression for effective thermal conductivity 

of nanofluids by considering the effect of heat convection between nanoparticles and 

liquids due to the Brownian motion of nanoparticles in fluids. The correlation of 

effective thermal conductivity of nanofluids was given by taking into account the 

fractal distribution of nanoparticles. The model was expressed as a function of the 

thermal conductivities of the base fluids and the nanoparticles, the average diameter 

of nanoparticles, the nanoparticle volume concentration, the fractal dimension of 

nanoparticles and physical properties of fluids. 

 

Babaei et al [56] developed equilibrium molecular dynamics simulations in order to 

investigate the role of micro-convection on the thermal conductivity of well-dispersed 

nanofluids. Their results were shown that while individual convective terms in the 

heat current expression are significant, they essentially cancel each other. 

Consequently, micro-convection does not contribute noticeably to the thermal 

conductivity and the predicted thermal conductivity enhancements are consistent with 

the effective medium theory. 

2.3.2. Theoretical models based on nanolayering      

Nanofluid structure consists of solid nanoparticles, solid-like liquid layers (known as 

nanolayers) and a base fluid. An interfacial thermal resistance is present at interfaces 

of different components of mixtures, which is known as the Kapitza resistance. It has 

long been known that liquid molecules close to a solid surface form a layered solid-
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like structure [57, 58], but little is known about the thermal properties of this 

nanolayer and the connection of this layer with the base fluid and the solid. According 

to Yu et al [58], the layered molecules are in an intermediate physical state between a 

solid and a base fluid. Therefore, the solid-like nanolayer of liquid molecules would 

be expected to lead to a higher thermal conductivity than that of the base fluid. This 

means that the solid-like nanolayer acts as a thermal bridge between a solid 

nanoparticle and a base fluid and is therefore the key to enhancing thermal 

conductivity [59]. 

 

Yu and Choi [59] modified the Maxwell equation to calculate the effective thermal 

conductivity of solid/liquid suspensions, including the effect of the nanolayer. They 

assumed that the nanolayer around each particle could be combined with the particle 

to form an equivalent particle and because of the particle volume concentration being 

so small; there is no overlap of those equivalent particles. According to Feng et al 

[60], this is not realistic, because the liquid molecules surrounding the particle surface 

form the interfacial layer and the concentration of these adsorbed molecules in the 

interfacial layer is lower than that of the solid particle. Therefore, the interfacial layer 

thermal conductivity should be lower than that of the solid particles but higher than 

that of the liquid. Consequently, they estimated an upper limit for the effect of the 

interfacial layer by replacing the thermal conductivity of the nanoparticle      with 

an equivalent one      , namely thermal nanoparticle thermal conductivity in the 

Maxwell model as: 
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The model includes the nanolayer which can predict the presence of a nanolayer with 

a thickness of less than 10 nm.  

 

A renovated Maxwell model, which was proposed by Yu and Choi [59] in 2003, was 

limited to suspensions with spherical particles. Yu and Choi [61], in 2004, extended 

the Hamilton-Crosser model suspensions of non-spherical particles to include the 

effect of the nanolayer as 
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where      is the empirical shape factor          ,   is an empirical parameter 

depending on the particle sphericity or eccentricity and the particle-to-liquid thermal 

conductivity ratio and   is the sphericity.  
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(2.43) 

    is the equivalent thermal conductivities along the axes of the complex ellipsoid in 

which               is along the semiaxis directions of the ellipsoid,     and     

are the thermal conductivities of the solid ellipsoid and its surrounding layer,    is the 

volumetric ratio and        is the depolarisation factor. 

 

   is the equivalent volume concentration of complex ellipsoids which is defined as  

       (2.44) 

where   is a volume concentration of the solid ellipsoids without the surrounding 

layer. This model can predict the thermal conductivity of nanofluids consisting of 

carbon nanotubes-in-oil. However, it fails to predict the non-linear behaviour of the 

effective thermal conductivity of general oxide- and metal-based nanofluids. In the 

new model, they assumed that the thermal conductivity of the nanolayer around each 

particle is similar to that of the nanoparticle, which is unrealistic. 
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Xue et al [62] used non-equilibrium molecular dynamic simulations in which a 

temperature gradient was imposed, and they determined the thermal resistance of 

liquid/solid interface. Their simulation indicates that the strength of the bonding 

between the liquid and the solid atoms plays a key role in determining the interfacial 

thermal resistance. They also found that the functional dependence of the thermal 

resistance on the strength of the liquid/solid interactions reveals two distinct regimes. 

These two regimes are exponential dependence for weak bonding and power law 

dependence for strong bonding. These two regimes of the Kapitza resistance have 

profound implications for understanding and designing the thermal properties of 

nanolayers. 

 

Xue [63] considered the effect of the nanolayer between the solid particle and the base 

fluid in nanofluids. A new model has been presented for the effective thermal 

conductivity for nanofluids based on the Maxwell model and average polarisation 

theory. However, in his model, it is not clear how to determine the depolarisation 

factor component for the different shapes of particles, and also the thermal 

conductivity of nanolayers cannot be determined. Another problem with his model is 

that the predicted thermal conductivity values are matched with experimental data by 

considering the larger nanolayer thickness, which is unrealistic. Later Yu and Choi 

[61] showed that Xue‟s model gave far higher values of thermal conductivity than 

those given in his work, because Xue used incorrect parameters when comparing his 

model with that of carbon nanotube-in-oil experimental data. Thus, the validity and 

accuracy of Xue‟s model are yet to be established. 

 

Xie et al [64] assumed that the interfacial structures formed by liquid molecule 

layering might play an important role. They investigated the impact of these 

nanolayers on the effective thermal conductivity of nanofluids and also developed an 

expression for calculating the enhanced thermal conductivity of nanofluids. They 

proposed a new formula for the effective thermal conductivity derived from the 

general solution of the heat conduction equation in spherical coordinates. Although by 
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that time, there was no available expression for calculating the thermal conductivity 

of nanolayers, they proposed a new model for the thermal conductivity of a nanolayer 

as well. For this purpose, they assumed that the thermal conductivity variation in a 

nanolayer is linear and derived the following equation for the thermal conductivity of 

a nanolayer: 
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(2.45) 

Therefore, the average thermal conductivity of a nanolayer depends on the thermal 

conductivity of the fluid, the reduced thermal conductivity of the nanoparticle and the 

ratio of the nanolayer thickness to the original particle radius. They also proposed a 

formula for the effective thermal conductivity of a nanofluid by applying Fourier‟s 

law of heat conduction based on the assumption that a nanofluid is statistically 

homogeneous and isotropic. It is obtained as 
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(2.47) 

 

This equation is the proposed model deduced for evaluating the effect of the 

nanolayer on the effective thermal conductivity of nanoparticle/fluid mixtures. In 

order to check the validity, they used experimental data of Cu-in-EG, CuO-in-EG, and 

alumina-in-water and the results show that the proposed model predicts these 

experimental data quite well. However, similar to the Yu and Choi [59, 61] and Xue 

[63] models, this empirical model has to be fitted with experimental data by adjusting 

two fitting parameters. They did not also consider any dynamic mechanism like the 

Brownian motion. 
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Leong et al [65] also proposed a new model for the effective thermal conductivity of a 

nanofluid according to the heat conduction in a nanofluid based on Fourier‟s law of 

considering the effect of the interfacial layer as 
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(2.48) 

where       0(  
   

  
*
 

  1   

 

They compared their model with some experimental data of alumina-in-DI water, 

alumina-in-EG, CuO-in-DI water and CuO-in-EG and concluded that the present 

model can predict the effective thermal conductivity of nanofluids better than 

previous models. The improved results come from the point where the temperature 

gradient at the boundary of the nanolayer is discontinuous. However, a limitation of 

their model is that they have to set the thermal conductivity and thickness of the 

nanolayer to predict the experimental data, and they also assumed that the particles 

are apart and that no interaction occurs between them. 

 

Li et al [66] investigated the molecular layer of liquid/solid interfaces of a nanofluid 

with an equilibrium molecular dynamic simulation method. They assumed that the 

nanoparticles are spherical and developed their model by tracking the positions of the 

nanoparticle and the liquid atoms around the nanoparticles. They estimated that the 

thickness of the nanolayer is approximately 0.5 nm and will move with the Brownian 

motion of the nanoparticle. Although this finding is very important to the 

understanding of the thermal property of a nanofluid, their investigation is, however, 

not complete. Their nanofluid consisted of 1.5% (volume fraction) of copper 

nanoparticles in an argon base fluid; therefore, it needs to be evaluated for different 

cases.  
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Zhou and Gao [67] investigated the effect of interfacial nanolayers and the mutual 

interaction of nearest-neighbouring inclusions on the effective thermal conductivity of 

nanofluids. Firstly, differential effective dipole approximation was generalised to 

obtain the equivalent thermal conductivity of the coated nanoparticles with graded 

nanolayers. The multiple image method was then employed to investigate the effect of 

mutual interaction between nanoparticles on the thermal conductivity of nanofluids. 

The dependence of effective thermal conductivity on volume fraction, radius of 

nanoparticles, thickness of the nanoshell and thermal conductivity of the constituents 

was shown by an analytical correlation as  
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(2.49) 

where   [ ̅(      )     ] [ ̅(      )      ]⁄  is a dipole factor and    is the 

total volume fraction of the coated particles which include both original nanoparticles 

and graded nanolayers, expressed as 
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(2.50) 

where      ⁄    
    is the original volume fraction of nanoparticles and    is the 

number of complicated particles per volume. 

 

Lin et al [68] conducted a molecular dynamics (MD) simulation for thermal 

conductivity of Cu- EG (ethylene glycol) by considering the role of the particle/fluid 

interface effect as the main mechanism of the thermal conductivity enhancement. The 

Layer-Maxwell model for effective thermal conductivity was developed by taking 

into account the distinct thermal conductivity in the nanolayers around nanoparticles 

obtained from MD simulations. 

 

Although the nanolayer effect and its mechanism play an important role in the thermal 

conductivity enhancement of nanofluids, the experiments and simulations [57, 58 and 

66] showed that the thickness of the nanolayer is only in the order of a few atomic 
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distances (0.5 to 1 nm). Thus, it does not seem to be the only factor for the 

enhancement [1].  

2.3.3. Theoretical models based on clustering      

There are two methods for producing nanofluids: the one-step direct evaporation 

method represents the direct formation of the nanoparticles inside the base fluids; and 

the two-step method represents the formation of nanoparticles and subsequent 

dispersion of the nanoparticles in the base fluid. In the two-step method, the 

nanoparticles are separately produced. Thereafter, when the nanoparticles are being 

dispersed into the base fluid it should be treated with various physical treatment 

techniques to ensure a homogeneous dispersion. Different types of physical treatment 

devices that are being used are the stirrer, the ultrasonic bath, the ultrasonic disruptor 

and the high-pressure homogeniser [69]. These methods were used for preventing the 

nanoparticles to get agglomerated at the first step of nanofluid production because the 

nanoparticles as powder get agglomerated to each other rapidly. When the nanofluid 

is treated by sonication (high frequency sound waves typically used to aid the 

dispersion of nanoparticles in a liquid) or other physical techniques, the cluster breaks 

into primary nanoparticles [70]. There have been some works on the effect of 

sonication time on the thermal conductivity of nanofluids [20]. 

 

Karthikeyan et al [70] experimentally studied the effect of clustering on the thermal 

conductivity of CuO nanoparticles dispersed into water. They had shown that the 

cluster size has a significant effect on the thermal conductivity of CuO-Water 

nanofluids and the thermal conductivity of nanofluid decrease with elapsed time due 

to the clustering of CuO nanoparticles. Furthermore, they indicated that the finer 

particle size and mono-dispersity of nanoparticles causes larger enhancement in 

thermal conductivity of nanofluids. They also noted that in general, clustering may 

exert a negative effect on heat transfer enhancement. The nanoclusters are likely to 

settle in the fluid due to their larger mass that results in a particle gradient in the fluid, 

particularly at low volume fractions, by settling small particles out of the liquid and 
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creating large regions of particle free-liquid with high thermal resistances. The 

particle-free zones have higher thermal resistances compared with the particle-rich 

zone. The suppression of clustering of the nanoparticles is also very important for 

designing effective heat transfer fluids. There are some reports on the formation of 

clusters and aggregates in the fluid, which enhances the thermal conductivity of the 

fluid; however, some others mention that the thermal conductivity decreases with 

elapsed time due to the clustering of nanoparticles.  

 

According to the report of Wang et al [71] in 2003, these cluster structures act like 

local percolation structures and therefore add to the effective thermal conductivity 

enhancement of nanofluids (this is contrary to the observation of Karthikeyan et al 

[70]). They proposed a method for modelling the effective thermal conductivity of 

nanofluids based on the effective medium approximation and the fractal theory for the 

description of nanoparticle clusters and its radial distributions. They modified the 

Maxwell model by taking into account the size effect and the surface adsorption of 

nanoparticles.  

 

Their model, however, requires the thermal conductivity of particle clusters and their 

radius distribution to be determined numerically [72]. Their fractal model predicts the 

trend for variation of the effective thermal conductivity with diluted suspensions of 

nanoparticles well and fits the experimental data for CuO-in-DI water successfully. In 

addition, this model has yet to be validated with experimental results. The other 

model was proposed by Prasher et al [73], and shows that the thermal conductivity of 

nanofluids based purely on conduction phenomenon can be significantly enhanced as 

a result of the aggregation of the nanoparticles. These two groups of researchers 

believe that the cluster effect can enhance the thermal conductivity of nanofluids 

because the heat transport can be much faster along the backbone of the clusters. The 

important thing is that the cluster sizes are critical to the thermal performance of 

nanofluids. When the cluster sizes increase, the nanoclusters are likely to settle in the 

fluids due to larger mass, which results in gradients in the particle concentrations. 



 

 

Chapter 2: Thermal conductivity of nanofluids 

 

   39 

 

Therefore, the cluster size should not be more than its critical size for this purpose. 

There are two major methods to make the attractive force between particles balanced, 

and hence to prevent particle aggregation. These two methods are electrostatic 

stabilisation and steric stabilisation.  

 

Feng et al [60] proposed a new model for the effective thermal conductivity of 

nanofluids by considering the nanolayer and nanoparticle aggregation. The model is 

expressed as a function of the thickness of the nanolayer, the nanoparticle size, the 

nanoparticle volume fraction and the thermal conductivities of the suspended 

nanoparticles and the base fluid.  For determining the effect of aggregation, they 

divided the aggregation into two parts: the first is the coherent fluid and the other is a 

quarter of the column. The column also includes two parts: the touching particles and 

the base fluid. They used the thermal-electrical analogy technique and the one-

dimensional heat conduction model for calculating. The theoretical predictions of the 

effective thermal conductivities of nanofluids are shown to be in good agreement with 

experimental data of CuO-in-water, alumina-in-water, CuO-in-EG, and alumina-in-

EG. 

 

Okeke et al [74] conducted a numerical investigation into thermal conductivity of 

water-based nanofluids of Al2O3, CuO and TiO2 considering the particle clustering 

and interfacial layer thickness as effective parameters. Regardless the type of 

nanofluid, it has been shown that the mode of aggregation plays a major rule in 

thermal enhancement by influencing the aggregation rate and compactness of the 

aggregates. In their study they showed the sensitiveness of thermal conductivity to 

particle aggregation as a possible mechanism for thermal enhancement and relations 

between aggregation mode, aggregate size and compactness of the aggregates and 

thermal enhancement of the surrounding nanofluid. 

 

Witharana et al [75], studied aggregation and the settling behaviour of nanofluids near 

their iso-electric points by using small angle X-ray scattering (SAXS) experiments 
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and optical microscopy for a rapidly settling poly-disperse spherical alumina (Al2O3) 

nanoparticles in the size range of 10–100 nm were dispersed in water at room 

temperature. Two settling regimes were observed regarding photographic studies and 

the corresponding settling curve; one showing the settling of very large (       ) 

objects and the second one showing a slower settling rate of relatively smaller 

(      ) objects. They also indicated that using the SAXS technique provided 

valuable information for this unstable suspension which was not possible to obtain 

from any existing mechanism. Optical microscopy images were also produced on 

drying and dried droplets extracted from the suspension at various times. Dried 

deposits showed the rapid decrease in the number of very large particles with time 

which qualitatively validates the SAXS prediction, and therefore its suitability as a 

tool to study unstable poly-disperse colloids. 

2.3.4. Hybrid models 

There is a lack of reported research on hybrid-combined models for the effective 

thermal conductivity that takes into consideration all major mechanisms plus other 

important recognised effects like particle settling down time [76–79], temperature 

[80], pH [81–83], dispersion [84] and the particle size effect on surface contact of 

liquid/particle interaction [46, 85–87]. However, the following models are valuable 

because they included some of these effects. 

 

Avsec [88] developed a combined model based on statistical nanomechanics. His 

model accounts for influences such as the formation of the nanolayer around 

nanoparticles and the Brownian motion. He modified the model of Yu and Choi [59] 

for the nanolayer part of his model by expressing the effective volume fraction as 
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/

 

 
(2.51) 

 

However, it has been assumed that the equivalent thermal conductivity of the 

equivalent particles had the same value as the thermal conductivity of the particle. He 
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also modified Prasher‟s equation [89] for influence of the Brownian motion and then 

offered the thermal conductivity for nanofluids as 
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(2.52) 

 

The model is compared with the experimental works from literature for copper 

nanoparticles (10 nm) in an ethylene-glycol base and also for aluminium oxide 

nanoparticles in a water base. Although he found good agreement with those two 

cases, working with the equation including fitting parameter is hard in general. 

 

Murshed et al [50] offered a combined model, which included the effects of particle 

size, nanolayer, Brownian motion, and particle surface chemistry and interaction 

potential which are the static and dynamic mechanisms responsible for the enhanced 

effective thermal conductivity of nanofluids. They divided the effective thermal 

conductivity into two parts consisting of the static-based and the dynamic part 

(particle Brownian motion, particle surface chemistry and interparticle interactions), 

i.e.                       , or 
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The third term on the right-hand side of Eq. (2.53) takes into account the effect of the 

dynamic part on effective thermal conductivity, which is applicable for nanoparticle 

volume fractions more than 0.5%. They compared their model with their experiments 

as well as with experiments in literature consisting of 2TiO (15 nm)/DIW-based, 

32OAl /DIW-based,
32OAl /water-based, CuO/water-based and 

43OFe /water-based 

nanofluids. They found a good agreement. They assumed that the nanolayer thermal 

conductivity (ω), can be between 1.1 and 2.5 without a sensible logic procedure, 

however, this model needs to be validated in the case of varying each parameter 

(particle size, nanolayer, Brownian motion, interaction and particle surface chemistry) 

when the others stay constant with proper experiments. However, this model could 

not take into consideration the effect of clustering or settling time.  

 

Li et al [90] investigated the mechanisms of thermal conductivity of nanofluids, 

including particle agglomeration, Brownian motion effects and viscosity as well as the 

effect of temperature. Their results showed that Brownian motion is not enough to 

describe the temperature dependence of the thermal conductivity of nanofluids. They 

indicated that the change of particle agglomeration and viscosity with temperature are 

also important factors. The reduction of the particle surface energy as a result of 

temperature increase would decrease the agglomeration of nanoparticles, and the 

reduction of viscosity would improve the Brownian motion. By taking into account 

the effects of the nano-scale, the effects of the interfacial interaction between 

nanoparticles and liquid as well as Brownian motion, the model was expressed as  
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(2.55) 

 

Nabi and Shirani [91] introduced a new theoretical model for thermal conductivity of 

nanofluids by taking into account the Brownian motion and resulted in micro mixing 

of nanoparticles and clusters, as well as aggregation kinetics of nanoparticles and 

clusters. The proposed model was expressed as a combination of static and dynamic 

parts diffusive as  
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                      (2.56) 

where Maxwell‟s was used for the static part         and          was evaluated as 
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(2.57) 

where    is the fractal dimension of backbones and    and    are semi-empirical 

parameters which represent the fraction of the liquid volume travelling respectively 

with a particle and a cluster. 

 

Li et al [92] modified the Li-Qu-Feng [90] model in order to calculate thermal 

conductivity of CNT nanofluids. They showed that the Li-Qu-Feng [90] model 

underestimates the experiment results and is unable to predict thermal conductivity of 

CNT nanofluids while no shape factor was included into the model for the special 

shape of CNTs. Their model takes into account the effect of liquid layering, particle 

clustering, particle shape factor, Brownian motion and viscosity of base fluid as  
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(2.58) 

where       and       are effective thermal conductivity of CNTs and effective 

volume fraction of nanoparticles respectively considering the nanolayer of 

nanoparticles.      is the empirical shape factor which considered      = 6 for CNTs. 

The predicted thermal conductivities of VFBN containing CNTs by the modified Li-

Qu-Feng model were compared with the experimental data as well as the Maxwell 

model [93], Hamilton-Crosser model [94], Jang-Choi model [95] and the Li-Qu-Feng 

model [90]. The results showed an excellent agreement with the measured data. The 

authors mentioned that their proposed model is more suitable for nanofluids with 

special shapes other than spherical nanoparticles. 
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Table 2-1 and Table 2-2 summarise the conventional and dynamic models for the 

thermal conductivity of nanofluids respectively and show the model equations and 

key parameters required for determining thermal conductivity and remarks. 
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 Table 2-1: Summary of the studies on the theoretical models for thermal conductivity of 

nanofluids – conventional models 

 
Models Formulation Remarks 
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Sastry et al [100] 
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Table 2-2: Summary of the studies on the theoretical models for thermal conductivity of 

nanofluids – dynamic models 

 
Models Formulation Remarks 

Xuan et al. [34] 
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Shukla and Dhir [44] 
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Jung and Yoo [49] 
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2.4. EXPERIMENTAL DATA FOR THERMAL CONDUCTIVITY OF 

Al2O3-WATER NANOFLUIDS  

Masuda et al [105] were the first researchers who used nanoparticles for the 

enhancement of heat transfer in a liquid. They used the transient hot wire technique to 

measure the thermal conductivity ratio of Al2O3-water nanofluids. Their experiments 

included three different temperatures consisted of 32, 47 and 67
o
C. Lee et al [15] 

experimentally investigated the thermal conductivity of Al2O3-water nanofluids 

prepared with 38.4 nm average diameter of alumina nanoparticle at 21
o
C temperature 

for four different volume concentrations (1, 2, 3 and 4%). Wang et al [16] measured 

the effective thermal conductivity of fluids and nanometre-size Al2O3 by using a 

steady-state parallel-plate technique. They dispersed Al2O3 powder (γ phase) with an 

average diameter of 28 into water with a vacuum pump fluid and measured the 

thermal conductivity ratio at 24
o
C in three different volume concentrations. Das et al 

[13] investigated the thermal conductivity ratio of Al2O3-water nanofluids with a 

thermal oscillation method. They studied the temperature effect of the thermal 

conductivity ratio of Al2O3 nanoparticles with an average diameter of 38.4 nm. Their 

experiments consisted of seven different temperatures (21, 26, 31, 36, 41, 46 and 

51
o
C) for four nanoparticle volume concentrations (1, 2, 3 and 4%). Putra et al [14] 

reported some experimental data for thermal conductivity ratio of Al2O3 (with an 

average diameter of 131.2 nm) in a water-based nanofluid over a temperature range 

from 21 to 51
o
C at volume concentrations of 1 and 4%. Chon et al [9] measured the 

thermal conductivity of Al2O3-water nanofluids in 11, 47 and 150 nm nanoparticle 

sizes over a wide range of temperatures (from 21 to 71
o
C) at 1 and 4% volume 

concentrations. Li and Peterson [10, 17] published their experimental investigation 
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into the effect of variations in temperature and volume concentration on steady-state 

effective thermal conductivity of Al2O3-water suspensions. Al2O3 nanoparticles with 

36 and 47 nm average diameters were blended with water at 0.5, 2, 4, 6 and 10% 

volume concentrations and the resulting suspensions were evaluated at temperatures 

ranging from 27.5 to 35.5
o
C. Kim et al [18] measured the thermal conductivity of 

alumina-water nanofluids by using the transient hot wire method. They used alumina 

nanoparticles with an average diameter of 38 nm for their work and reported the 

results for 0.3, 0.5, 0.8, 1.5, 2 and 3% of volume concentrations at 25
o
C. Timofeeva et 

al [106] investigated Al2O3-water nanofluids thermal conductivity for a series of 

nanofluids consisting of 11, 20 and 40 nm and volume concentrations of 2.5, 5, 7.5 

and 10% at 23
o
C. Zhang et al [107] used a short hot wire probe to measure the 

thermal conductivity ratio of Al2O3-water nanofluids for 10, 30 and 50
o
C. Ju et al 

[108] reported their measurements for thermal conductivity of Al2O3-water 

suspensions with nominal diameters of 20, 30 and 45 nm for volume concentrations 

up to 10%. Murshed et al [103] conducted an experimental investigation into the 

effective thermal conductivity of Al2O3 nanoparticles with average diameters of 80 

and 150 nm in a water-based suspension. In their work, the transient hot wire 

technique was used to measure the thermal conductivity ratio of nanofluids at 

different temperatures ranging from 21 to 60
o
C. Patel et al [11] measured thermal 

conductivity enhancement of Al2O3-water nanofluids in 11, 45 and 150 nm 

nanoparticle sizes for four different temperatures (20, 30, 40 and 50
o
C) at 0.5, 1, 2 and 

3% volume concentrations.  

 

 

2.5. SUMMARY 

In order to use nanofluids efficiently in industrial applications as well as 

understanding thermal conductivity enhancement of base fluid in the presence of 

nanoparticles, investigation into the heat transport mechanisms of nanofluids is 

essential.  
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Section 2.2 has provided a review on possible mechanisms which could potentially 

influence the thermal conductivity enhancement of nanofluids. The Brownian motion 

of nanoparticles, nano particle size, concentration, distribution and formation of 

aggregates, nanolayering of the liquid at the liquid/particle interface, electric charge 

on the surface of nanoparticle, thermophoretic effect, preparation and surfactants are 

different factors which have been introduced and explained. 

 

In section 2.3, theoretical models which have been proposed by different researchers 

for thermal conductivity of nanofluids are reviewed based on the influence of 

Brownian motion, nanolayering as well as clustering. Furthermore, some hybrid 

models that are taking into account the Brownian motion and nanolayering 

simultaneously are presented. 

 

In section 2.4, experimental investigations of different researchers on thermal 

conductivity of Al2O3-water nanofluids are reviewed. The experimental data as data 

points divided into two set of train and test data which they have used for modelling 

and benchmark in chapter three.  

 

The different factors that may influence the thermal conductivity of nanofluids are 

molecular-level layering of the liquid at the liquid/particle interface (nanolayer), 

Brownian motion of the nanoparticle, clustering, nanoparticle size, pH, temperature 

and the nature of heat transport in the nanoparticles. It seems that none of these 

factors could be merely responsible for the enhancement in thermal conductivity. In 

order to have more accurate models, the hybrid models which are considering more 

effective factors into account are the best options. 



 

 

3 
CHAPTER 3: THERMAL CONDUCTIVITY OF NANOFLUIDS 

BASED ON ARTIFICIAL INTELLIGENCE TECHNIQUES
5
 

3.1. INTRODUCTION 

 

In this chapter, the application of FCM-based Neuro-Fuzzy Inference System (FCM-

ANFIS) and Genetic Algorithm-Polynomial Neural Network (GA-PNN) methods is 

introduced for predicting the effective thermal conductivity of nanofluids as a 

function of nanoparticle volume concentration, temperature and nanoparticle size. In 

order to show the ability of proposed models to predict the thermal conductivity of 

nanofluids, the results have been compared with Al2O3-water nanofluids experimental 

data as well as Xuan et al [34] and Hamilton-Crosser [94] correlations. In section 3.2 

the FCM-ANFIS method has been introduced in detail as a method that uses neural 

network and fuzzy method approaches simultaneously to model engineering problems 

based on input-output experimental data. 

 

Detailed information about the GA-PNN hybrid system has been given in section 3.3. 

In this section after introducing the GMDH polynomial neural networks which is a 

polynomial neural network that uses the group method of data handling learning 

algorithm, the application of genetic algorithm to determine the GMDH polynomial 

neural network weights, hidden layers and bias coefficients has been described. 

 

Furthermore, after introducing some experimental data available in literature for 

thermal conductivity of Al2O3-water nanofluids, the proposed models based on FCM-

                                                 
5
 This chapter has been published in part: M. Mehrabi, M. Sharifpur and J.P. Meyer, “Application of 

the FCM-based neuro-fuzzy inference system and genetic algorithm-polynomial neural network 

approaches to modelling the thermal conductivity of alumina-water nanofluids”, International 

communications in heat and mass transfer, Vol. 39 (7), pp. 971–977, 2012 and M. Mehrabi, M. 

Sharifpur and J.P. Meyer, “Adaptive neuro-fuzzy modelling of the thermal conductivity of alumina-

water nanofluids”, Proc. ASME, 54778; ASME, 2012 Third International Conference on 

Micro/Nanoscale Heat and Mass Transfer, pp.155–161, March 03, 2012. 
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ANFIS and GA-PNN techniques have been compared against experimental data as 

well as Xuan et al [34] and Hamilton-Crosser [94] correlations. 

3.2. ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS)  

Artificial neural networks are among the systems which transfer the knowledge and 

rules existing beyond the empirical data into the network structure by their 

processing. Because artificial neural network does not consider any presupposition 

about statistical distribution and characteristics of the data, they are practically more 

efficient than common statistical methods. On the other hand, they use a non-linear 

approach to create a model, so when encountered with the complicated and non-linear 

data, these networks may express such data much more accurately as a defined model. 

High learning abilities of artificial neural network has converted the method into a 

superior choice when combined with fuzzy systems. The combination of artificial 

neural network with the fuzzy method can create an efficient approach for various 

modelling systems, so that each of these two methods may recover the weakness of 

another and increase the efficiency of the neuro-fuzzy system. A neuro-fuzzy system 

uses learning methods derived from artificial neural network in order to find the 

parameters of the fuzzy system which includes appropriate membership functions and 

fuzzy rules. One of the neuro-fuzzy systems in which learning algorithm is coincided 

with integrates learning approaches in the ANFIS system. In recent years, many 

investigations have been performed to apply the ANFIS system for modelling of the 

engineering processes [109-111].  

 

In general, artificial neural networks have no ability to develop a model during a 

logical time. In addition, fuzzy modelling needs an approach to learn from 

experiences (empirical data) in order to apply the integrated decisions resulted from 

different variables. Therefore, regarding the advantages and deficiencies existing in 

both methods, a successful combination of these approaches has created the neuro-

fuzzy modelling.                                                             
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3.2.1. Neuro-fuzzy networks 

Artificial neural network is a calculation tool which is used to test the data and to 

create a model by these data. When neural network applies the training data for 

learning latent patterns existing within the data, it may use them to access the outputs. 

Regarding the researcher‟s objectives, various kinds of artificial neural networks may 

be used. One of the most well-known artificial neural networks is the multilayer feed-

forward neural network which is a neural network instructed by the supervisor. This 

neural network is useful for solving the problems that include learning the relationship 

between definite input and output sets. In fact, this is a method of instruction by a 

supervisor to learn the relationships between data by training data sets. In the error-

back propagation algorithm, the network creates an output (or an output set) for the 

provided input criterion and compares the reaction with appropriate reaction of each 

neuron. Thereafter, the weights of the network are corrected to reduce the error and 

the next criterion is emerging. The weights will be corrected continuously until the 

total errors are less than the authorised error value. Since this algorithm has a 

descending gradient in the error function, the input correction gradually minimises the 

mean square error [112,113].  

 

While moving forward, the neuro-fuzzy networks normally calculate the nodes 

outputs up to the last layer in every period of instruction. Thus, the resulted 

parameters are calculated by the least square error method. After calculation of error 

in the returning backward route, the error ratios are distributed on condition that 

parameters and their values are corrected by the error descending gradient method. 

Various structures have been suggested to establish a fuzzy system by neural 

networks. One of the most powerful structures which has been developed by Jang 

[114] is known as adaptive neuro-fuzzy inference system (ANFIS). The main 

instruction approach in this structure is error-back propagation which scatters the 

error value towards inputs by algorithm of the steepest gradient descent and corrects 

the parameters [114]. 
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3.2.2. Architecture of ANFIS  

An ANFIS system uses two neural network and fuzzy logic approaches. When these 

two systems are combined, they may qualitatively and quantitatively achieve a proper 

result that will include either fuzzy intellect or calculative abilities of a neural 

network. As other fuzzy systems, the ANFIS structure is organised into two 

introductory and concluding parts which are linked together by a set of rules. Five 

distinct layers may be recognised in the structure of an ANFIS network which makes 

it a multi-layer network. A Sugeno type fuzzy system with two inputs and one output 

is showed in Figure 3.1. 

 
Figure 3.1: Architecture of ANFIS 

 

As shown in Figure 3.1, this system contains two inputs x and y and an output or f 

which is associated with the following rules: 

Rule 1: If (x is A1) and (y is B1) then f1=p1x+q1y+r1 

Rule 2: If (x is A2) and (y is B2) then f2=p2x+q2y+r2 

 

In this system, Ai, Bi and fi are fuzzy sets and systems output respectively. pi, qi and ri 

are design parameters which are produced during the learning process. If the output of 

each layer in the ANFIS network has been considered as   
 
 (ith node output in jth 
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layer) then the various layer functions of this network may have been explained as 

follows:  

 

 Layer 1: In this layer, each node is equal to a fuzzy set and the output of a node 

in the respective fuzzy set is equal to the input variable membership grade. The 

parameters of each node determine the membership function form. Because the 

Gaussian membership function is used in this study: 

          , 
 

 
 
    

  
  -                                             (3.1) 

the input value of the node is x and    and    are membership function 

parameters of this set which explain Gaussian membership function centre and 

Gaussian membership function width respectively. 

 

 Layer 2: In this layer input signal values into each node are multiplied by each 

other and a rule firing strength is calculated.  

  
                                 (3.2) 

in which     is the membership grade of x in Ai fuzzy set and      is the 

membership of y in fuzzy set of Bi. 

 

 Layer 3: This layer nodes calculate rules relative weight, in which   
  is the 

normalised firing strength of ith rule.  

  
    

  
  

     
               (3.3) 

 

 Layer 4: This layer is named the rules layer which is from multiplication of the 

normalised firing strength (has been resulted in the previous layer) by the first 

order Sugeno fuzzy rule. 

  
    

      
                             (3.4) 

 

 Layer 5: This layer is the last layer of the network and is composed of one node 

and adds up all inputs of the node. 

  
  ∑  

    
         
     

     

 

   

      

(3.5) 

 

Briefly, the first layer in the ANFIS structure performs fuzzy formation and the 

second layer performs fuzzy AND and fuzzy rules. The third layer performs 

normalisation of membership functions and the fourth layer is the conclusive part of 
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fuzzy rules. The last layer calculates network output. The first and fourth layers in the 

ANFIS structure are adaptive layers in which Ci and σi in layer 1 are known as 

premise parameters that relate to the membership function of the fuzzy input. In layer 

4, ri, qi and pi are adaptive parameters of the layer and called consequent parameters 

[115, 116]. 

3.2.3. Fuzzy C-means Clustering Based Neuro-Fuzzy Inference System 

(FCM-ANFIS) Modelling Technique 

Structure identification in fuzzy modelling involves selecting the input variables, 

input space partitioning, choosing the number and kinds of membership functions for 

inputs, creating fuzzy rules, premise and conclusion parts of fuzzy rules and selecting 

initial parameters for membership functions. For a given data set, different ANFIS 

models can be constructed using three different identification methods such as grid 

partitioning, subtractive clustering method and fuzzy C-means clustering [117]. In the 

present work, the fuzzy C-means clustering (FCM) method is used to identify the 

premise membership functions for the ANFIS model. 

 

Fuzzy C-means clustering as proposed by Bezdek [118] is a data clustering technique 

in which each data point belongs to two or more clusters. Fuzzy C-means is an 

iterative algorithm, which wants to find cluster centres based on minimisation of an 

objective function. The objective function is the sum of square distance between each 

data point and the cluster centres and is weighted by its membership. 

 

In the first step, the number of clusters   (     ) and weighting exponent 

(fuzziness index) m (     ) are randomly selected. Thereafter, the algorithm 

starts by initialising the cluster centres               to a random value at first 

time from the n data points {           }. In the next step, the membership matrix 

    [ ] is computed by using the following equation: 
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(3.6) 

where ‖ ‖ is any norm expressing the similarity between any measured data and the 

centre, so ‖     ‖ ‖     ‖are the Euclidean distance between the j-th and k-th 

cluster centres and the i-th data point. In the fourth step, the objective function J is 

computed according to Eq. (3.7) 

                   ∑∑   
 

 

   

 

   

 ‖     ‖
 
            

(3.7) 

 

In the final step, by using Eq. (3.8), the new fuzzy cluster centres               are 

computed [119-121]. 

   
∑    

    
 
   

∑    
  

   

 

 

(3.8) 

3.3. POLYNOMIAL NEURAL NETWORKS
6
   

The objective of inductive modelling is to extract a general model by instruction data 

set. The obtained model may be used to explain unseen data in the training phase. 

This model should have an appropriate complexity as well as useful structure; i.e. it 

should be exact enough to be able to estimate instruction data, but should also be 

wide-ranging to be able to test data. Inductive modelling can be categorised into two 

methods, parametric and non-parametric. In parametric methods, training data are 

only used to construct the model. In these methods, the model structure is known 

previously and model parameters are estimated by training data. In other words, in 

parametric methods training data are abstracted into the model parameters and when 

these parameters are determined, the data presence will not be necessary. The most 

                                                 
6
 This section has been published in part: M. Mehrabi, M. Sharifpur and J.P. Meyer, “Application of 

the FCM-based neuro-fuzzy inference system and genetic algorithm-polynomial neural network 

approaches to modelling the thermal conductivity of alumina-water nanofluids”, International 

Communications in Heat and Mass Transfer, Vol. 39 (7), pp. 971– 977, 2012. 
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well-known parametric modelling method is linear regression. In this method, 

polynomial terms or the structure of the model are determined and the objective of the 

modelling is to estimate the model parameters. Artificial neural networks are also 

among this group. In most known neural networks the structure of the model (number 

of neurons and layers) are considered constant and the model parameters are supposed 

as the network manes. Another group of neural networks named polynomial networks 

are formed from the combination of the linear regression method and artificial neural 

network. Each layer in this network is composed of a number of units (identical to 

neurons) which are considered as a polynomial. Polynomial networks have a pioneer 

structure and are formed by a number of layers. Each layer is composed of several 

units in which every unit is defined as a polynomial. Therefore, the parameters of this 

modelling method are considered as coefficients of units‟ polynomial [122]. 

3.3.1. Polynomial networks training algorithms 

Different algorithms have been suggested to train the polynomial neural networks. 

The most popular ones are GMDH
7
, PNTR

8
 and ASPN

9
. Among them GMDH, which 

is the most important one to use, has been chosen in this thesis. 

3.3.2. Training the polynomial networks by GMDH algorithm 

GMDH algorithm was first introduced by Ivakhnenko as a learning method for 

modelling the complex and non-linear systems. This algorithm considers many simple 

models to construct and instruct polynomial networks. Based on the reinstructing the 

most appropriate simple models it obtains a final model as a pioneer network from a 

mixture of new models. Every unit of network processor in the resultant network 

contains two inputs and one output. A typical processor unit is indicated in Figure 3.2.  

 

                                                 
7
 Group Method of Data Handling 

8
 Polynomial Network Training Routine 

9
 Algorithm for Synthesis of Polynomial Networks 
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Figure 3.2: A GMDH typical processor unit 

 

 

The model blocks (polynomial units) are usually in the second order as showed in the 

following relationship: 

215

2

24

2

132211021 ),( xxaxaxaxaxaaxxfz      
(3.9) 

in which x1 and x2 are the unit‟s input, ai is coefficient (weight) and Z is the output. 

The coefficients of Eq. (3.9) are obtained by solving the linear regression equation 

(Z=Y), in which Y is the vector for training data output. If the numbers of inputs are 

M0, all their 









2

0M
 states are analysed at first and their more appropriate M1s are 

considered as the first layer of units. This procedure continues with considering M1 

selected units as inputs in the second layer. In this manner, increasing the layers 

continues so much that the complexity of the model reaches an optimum level and 

error decreases to a minimum. Figure 3.3 illustrates how the output of the second 

layer can be determined from the input variables. Thus, the last layer and its joined 

units, which are formed as returning, will establish the final model. Figure 3.4 gives 

an illustration of how a GMDH model is structured. 

 
Figure 3.3: The second generation output y as a function of the input parameters xi, xj, 

xk, and xl 
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Figure 3.4: A complete GMDH model, showing the relationship between the input 

variables and the output  

 

GMDH training algorithm includes two steps: in the first step the network units are 

instructed, in the second step the best unit is selected. Identical to these two steps in 

the training data are also divided into two sets: firstly, the instruction of the models (to 

find the units parameters) by linear regression, whereas the second set is used to 

compare models and select the more appropriate ones. 

 

According to regularity criterion the models which will affect the second sets are 

retained and the remainders are abandoned. When the best unit of a layer (a unit with 

minimum error) is worse than the best unit of the previous layer, the addition of layers 

is stopped. The best unit of the previous layer is introduced as the final output of the 

model and all joints that do not lead to the output unit are eliminated [123, 124]. 

3.3.3. GMDH polynomial neural networks 

By using a GMDH learning algorithm to train a polynomial neural network, a new 

class of polynomial neural network, which is called a GMDH-type polynomial neural 

network, is introduced. In a GMDH-type polynomial neural network, all neurons 

contain an identical structure with two inputs and one output. Each neuron performs 
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processing with five weights and one bias between the input and output data. The 

relationship which is established between input and output variables by a GMDH-type 

polynomial neural network is a non-linear function as Eq. (3.10): 

     ∑    

 

   

 ∑∑        ∑∑∑        

 

   

 

   

 

   

 

   

 

   

     

(3.10) 

 

This is named a Volterra functions series. The GMDH algorithm is founded on the 

basis of Volterra functions series disintegration into second-rate two-variable 

polynomials. In fact, the algorithm objective is to find the unknown coefficients or 

weights of [    ] in the Volterra functions series. Volterra functions series with 

definite weights can be obtained from Lemke and Müller [125]. 

 

In this manner, unknown coefficients are distributed among disintegrated factors and 

regulated as second-rate polynomials (Eq. (3.11)) to specify weights and algebraic 

substitution of any returning factors:  

 (     )                   
      

         (3.11) 

 

Prior to instruction, the number of layers and neurons are not clear and regarding the 

problem, solution and answer are obtained during the instruction pace. In other words, 

GMDH is a self-organising network, which in the planning of second-rate polynomial 

coefficient neurons are obtained for all instruction couples by the linear fitting 

analysis method. Considering either the disability of neurons to comply with or to 

prevent the network divergence, a number of neurons are eliminated. Thus, the 

instruction process constructs the pioneer layer neurons with remaining neurons. This 

expansion process continues until a desirable answer is found. 
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3.3.4. Application of genetic algorithm in optimisation of GMDH-type 

polynomial neural networks design
10

  

In this research work a genetic algorithm was applied to determine the GMDH 

polynomial neural network weights, hidden layers and bias coefficients for 

minimising the training error and finding the optimal structure. The hidden layers and 

bias coefficients were different chromosomes that the genetic algorithm tried to find. 

Figure 3.5, shows the combination of GMDH polynomial neural network and genetic 

algorithm that were used to model the effective thermal conductivity. 

 

By using a group method of data handling learning algorithm to instruct the 

polynomial neural network, the GMDH polynomial neural network was introduced 

which created the neural network part. On the other hand, the genetic algorithm was 

used to find the GMDH polynomial neural network hidden layers and bias 

coefficients. These three different approaches built a genetic algorithm-GMDH type 

polynomial neural network hybrid system that is called GA-PNN. This hybrid system 

approach steps are described below: 

 

 Step 1: The number of chromosome strings was selected randomly and each of 

them was divided into several sections. Each chromosome string was 

represented as a set of the connection weights (hidden layer and bias 

coefficients) for the GMDH polynomial neural network. 

 

                                                 
10

 This section has been published in part: M. Mehrabi, S. Rezazadeh, M. Sharifpur and J.P. Meyer 

“Modelling of proton exchange membrane fuel cell (PEMFC) performance by using genetic algorithm-

polynomial neural network (GA-PNN) hybrid system”, Proc. ASME. 44823; ASME 2012 10th 

International Conference on Fuel Cell Science, Engineering and Technology Collocated with the 

ASME 2012 6th International Conference on Energy Sustainability, FUELCELL 2012, pp.447–452, 

July 23, 2012.  
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Figure 3.5: Combination of genetic algorithm and GMDH type polynomial neural 

network approaches in a hybrid system 

 

 Step 2: For each string that was established with the training data, fitness was 

measured. A string‟s probability of being selected for reproduction was 

proportional to its fitness value.  

 

 Step 3: The crossover, mutation and mating operators created the offspring that 

constituted the new generation. By decoding these new chromosomes, a new set 

of weights was gained which was submitted to the network. When the training 

error met the demand mentioned in the program this step stopped. 

 

 Step 4: In the last step, the chromosome string with the smallest error in the 

training procedure was selected to provide the final network structure. After 

each run, a new set of weights was obtained and replaced with the old ones. 

Finally, one could get a best set of weights (layer coefficients), and obtained a 

well-trained GMDH polynomial neural network [126, 127]. 
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3.4. APPLICATION OF THE NEURO-FUZZY INFERENCE SYSTEM 

(ANFIS) AND THE GENETIC ALGORITHM-POLYNOMIAL 

NEURAL NETWORK (GA-PNN) METHODS FOR MODELLING 

THE THERMAL CONDUCTIVITY OF Al2O3-WATER 

NANOFLUID
11

 

There are different effective parameters on enhancement of nanofluids thermal 

conductivity reported in literature, which can be used for modelling of the effective 

thermal conductivity. Among these parameters, three important and measurable ones 

namely particle size, volume concentration and temperature were chosen for the 

modelling of the thermal conductivity of nanofluids. 

Experimental data were addressed in section 2.4 have been used to model the thermal 

conductivity ratio (keff/kbf) of Al2O3-water nanofluids, employing the FCM-ANFIS 

and GA-PNN approaches.  

A total number of 232 input-output experimental data points obtained from literature 

[10, 11, 13-18, 103, 105-108] were used to establish a FCM-ANFIS and a GA-PNN 

prediction models for thermal conductivity of Al2O3-water nanofluids. For both 

models (GA-PNN model and FCM-ANFIS), Al2O3-water nanofluid experimental data 

were used to create models for predicting the effective thermal conductivity of Al2O3-

water nanofluids. The experimental data were divided into two subsets as 80% for 

training and 20% for testing (benchmark) purposes. 

 

8 different membership functions, namely: , “trimf”, “trapmf”, “gbellmf”, “gaussmf”, 

“gauss2mf”, “pimf”, “dsigmf” and “psigmf” have been used to model a case study.  

By using the experimental of Ju et al [108], 8 models with different membership 

functions have been proposed for thermal conductivity of nanofluids. The 

experimental data (volume concentrations between 1 and 5.6%, particle size of 30 nm 

and temperature of 23
o
C) and proposed models were compared and the Gaussian 

                                                 
11

 This section has been published in part: M. Mehrabi, M. Sharifpur and J.P. Meyer, “Application of 

the FCM-based neuro-fuzzy inference system and genetic algorithm-polynomial neural network 

approaches to modelling the thermal conductivity of alumina-water nanofluids”, International 

Communications in Heat and Mass Transfer, Vol. 39 (7), pp. 971–977, 2012. 
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curve membership function (“gaussmf”) has been chosen as the membership function 

due to least modelling error. 

Beside the membership function for FCM-clustering, identification method is 

necessary to define the number of clusters, the fuzziness exponent and the termination 

tolerance. In most of the cases the equal number of clusters with number of groups 

that actually exist in the data, gave an acceptable result and identified the input-output 

data correctly. Furthermore, the fuzziness exponent and the termination tolerance 

have been chosen 2 and 0.001, respectively.  

An unsupervised clustering algorithm called topology based fuzzy clustering has been 

used to determine the number of nodes, node positions and node conductivity of the 

ANFIS system. 

  

3.5. RESULTS AND DISCUSSION 

The performance of the FCM-ANFIS and the GA-PNN proposed models was tested 

with the sum of the squares due to the error or summed squares of residuals (SSE) and 

root mean square errors (RMSE). If Q1, Q2 , Q3 , …, Qn are n observed values, P1, P2 , 

P3 , …, Pn are n predicted values, then SSE and RMSE values are as follows: 

    ∑       
 

 

   

 
(3.12) 

     √
 

 
   ∑        

 

   

 

(3.13) 

Experimental data points obtained from literature were divided into two subsets as 

80% for training and 20% for testing purposes. In this thesis the data points that have 

been used for testing (benchmark) purpose have not been entered to the training 

(modelling) section at all. It means that at the beginning, the experimental data sets 

were divided to training and testing (benchmark) sets and the models have been 

trained with the training set. When the training process completed and the final model 
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is produced, the testing set (which not used for modelling) was applied for 

benchmark. 

 

The structure of the GA-PNN model is shown in Figure 3.6 corresponding to the 

genome representation of 2312332311231322 for thermal conductivity ratio (keff/kbf) 

in which 1, 2 and 3 stand for volume concentration ϕ (%), temperature T (
o
C) and 

nanoparticle diameter    (nm), respectively.  

 
Figure 3.6: Structure of GA-PNN-type neural network for thermal conductivity ratio 

(keff/kbf) modelling 

 

 

The corresponding polynomial representation of model for keff/kbf is as follows: 
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Two statistical criteria which were mentioned before were used to determine how well 

the FCM-ANFIS and GA-PNN models could predict the thermal conductivity ratio 

keff/kbf of Al2O3-water nanofluids corresponding to various values of inlet variables.  

 

Figure 3.7 to Figure 3.9 show plots comparing the experimental data, FCM-ANFIS 

and GA-PNN models. These diagrams demonstrate that the predicted values are close 

to the experimental data and as many of the modelled data points fall very close to the 

experimental value. 

 

Figure 3.7, shows the experimental results of Lee et al [15] compared with the FCM-

ANFIS and the GA-PNN models for a particle size of 38.4 nm, temperature of 21
o
C at 

four different volume concentrations as well as with Hamilton-Crosser [94] and Xuan 

et al [34] correlations. The FCM-ANFIS model shows a better agreement with 

experimental data in comparison with the GA-PNN model and is well matched with 

the experimental data (SSE =            and RMSE = 0.002). However, the GA-

PNN (SSE =            and RMSE = 0.0011) model is not as good as the FCM-

ANFIS model. Hamilton-Crosser [94] and Xuan et al [34] correlations are in a good 

agreement with the experimental data for volume concentrations less than 2% and 

when the volume concentration increases these correlations are unable to predict the 

thermal conductivity with a good accuracy. 
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Figure 3.7: Comparison between the experimental data of Lee et al [15] and the 

proposed models for dp= 38.4 nm and T= 21
 o
C and Hamilton-Crosser [94] and Xuan et 

al [34] correlations 

 

 
Figure 3.8: Comparison between the experimental data of Li and Peterson [10] and the 

proposed models for dp = 36 nm and T= 30.5
 o
C and Hamilton-Crosser [94] and Xuan et 

al [34] correlations 
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In Figure 3.8, the experimental results of Li and Peterson [10] compared with the 

FCM-ANFIS and the GA-PNN models for a particle size of 36 nm, temperature of 

30.5
o
C at four different volume concentrations as well as Hamilton-Crosser [94] and 

Xuan et al [34] correlations. The FCM-ANFIS model (SSE =            and 

RMSE =0.0004) is well-matched and the GA-PNN model (SSE =            and 

RMSE =0.0018) is also in good agreement with the experimental data better than 

Hamilton-Crosser [94] and Xuan et al [34] correlations. For the FCM-ANFIS model 

at ϕ= 2% and ϕ=6%, the model is approximately the same as the experimental data.  

 
Figure 3.9: Comparison between the experimental data of Kim et al [18] and the 

proposed models for dp = 38 nm and T= 25
 o

C and Hamilton-Crosser [94] and Xuan et al 

[34] correlations 

 

Figure 3.9 shows the experimental results of Kim et al [18] compared with the FCM-

ANFIS and the GA-PNN models for a particle size of 38 nm, temperature of 25 
o
C at 

five different volume concentrations and also with Hamilton-Crosser [94] and Xuan et 

al [34] correlations. The FCM-ANFIS model (SSE =           and RMSE 

=0.0046) and the GA-PNN model (SSE =            and RMSE =0.0029) are in 

good agreement with the experimental data. However, as the volume concentration 
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increases, the accuracy of the FCM-ANFIS is better than that of the GA-PNN model. 

In this case the FCM-ANFIS model delivers a better agreement with the experimental 

data set. 

 

3.6.  CONCLUSION AND RECOMMENDATIONS 

In the FCM-ANFIS method, which consists of a neural network combined with a 

fuzzy logic approach, the fuzzy C-means clustering is used as an identification 

method. The Adaptive Neuro-Fuzzy Inference System (ANFIS) uses neural network 

and fuzzy logic approaches at the same time to combine the advantages of each 

method to achieve a better performance. In the GA-PNN hybrid system, which 

consists of neural network and genetic algorithm parts, the genetic algorithm is used 

to find the best network weights for minimising the training error and finding the 

optimal structure for a GMDH-type polynomial neural network. In the neural network 

part of this hybrid system the Group Method of Data Handling (GMDH) learning 

approach is used to learn a second-rate polynomial neural network. 

 

232 input-output experimental data sets of Al2O3-water nanofluids from literature 

have been used for modelling and benchmarking proposes of the thermal conductivity 

ratio by using the FCM-ANFIS and GA-PNN approaches. The detailed information 

about the proposed models has been addressed in section 3.4 and 3.5. 

 

Based on the result of this chapter, the proposed models based on GA-PNN and FCM-

ANFIS techniques have shown a good agreement with experimental data for 

modelling the effective thermal conductivity of Al2O3-water nanofluids, so these 

methods show to be good candidates to model the effective thermal conductivity of 

other nanofluids.  



 

4 
CHAPTER 4: VISCOSITY OF NANOFLUIDS BASED ON AN 

ARTIFICIAL INTELLIGENCE MODEL
12

 

4.1. INTRODUCTION 

Viscosity of nanofluid is one of the most important thermophysical properties of 

nanofluids for practical applications due to its direct effects on the pressure drop in 

forced convection. Changes in viscosity properties in industrial applications influence 

the pumping power required as well as the convective heat transfer coefficients. 

Therefore, in order to being able to use nanofluids in practical applications, accurate 

information on the viscosity properties of nanofluids is essential [128, 129]. Due to 

hydrodynamic interactions and particle-particle interactions of nanoparticles in 

dispersions, it is challenging to determine the viscosity of nanofluids.  

 

In this chapter, by using an FCM-based adaptive neuro-fuzzy inference system (FCM-

ANFIS) and a set of experimental data, models were developed to predict the 

viscosity of nanofluids. The viscosity has been selected as the target parameter, and 

the volume concentration, temperature and size of the nanoparticles are considered as 

the input (design) parameters. To model the viscosity, experimental data from 

literature were divided into two sets: a train and a test data set. The model is 

instructed by the train data set and the results are compared against the experimental 

test data set. The predicted viscosities have been compared with experimental data for 

four nanofluids, which are Al2O3, CuO, TiO2 and SiO2 with water as base fluid. The 

proposed models outputs are also compared with several of the most cited correlations 

in literature. 
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 This chapter has been published in part: M. Mehrabi, M. Sharifpur and J.P Meyer, “Viscosity of 

nanofluids based on an artificial intelligence model”, International Communications in Heat and Mass 

Transfer, Vol. 43, pp. 16–21, 2013. 
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4.2. APPLICATION OF THE FUZZY C-MEANS CLUSTERING 

NEURO-FUZZY INFERENCE SYSTEM (FCM-ANFIS) FOR 

MODELLING THE VISCOSITY OF NANOFLUIDS 

There are several parameters that influence the viscosity of nanofluids; namely 

temperature, volume concentration and thickness of the nanolayer, as well as the 

nanoparticle geometrical properties such as nanoparticle size, shape, aspect ratio and 

interparticle spacing. Empirical investigations have been conducted on the effect of 

electromagnetic fields, electro-viscous, dispersion energy and settling time on the 

viscosity of nanofluids as well as the influence of base fluid properties such as density 

and polarity [130]. Among these parameters, the three important and measurable ones 

which were chosen for this study are particle size, volume concentration and 

temperature.  

 Effect of particle size 

Namburu et al [131] measured the viscosity of nanofluids containing three different 

sizes of silicon dioxide nanoparticles with diameters of 20, 50 and 100 nm over a 

temperature range from -35 to 50°C at volume concentrations of 2, 4, 6 and 10%. 

Their results showed that the viscosity decreased as the particle size increased. Lu and 

Fan [132] conducted an experimental and numerical investigation into the viscosity of 

Al2O3- nanoparticles with average diameters of 35, 45 and 90 nm in water and 

ethylene glycol- based suspensions. They observed the same results as Namburu et al 

[131], namely that the viscosity decreased as the particle sizes increased. Pastoriza-

Gallego et al [86] reported viscosity measurements of water containing CuO 

nanoparticles with average diameters of 33±13 and 11±3 nm, temperatures from 10 to 

50ºC, and volume concentrations from 0.16 to 1.17%. They also observed that for a 

constant volume concentration, the nanofluid samples with smaller average particle 

sizes had a larger viscosity.  
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 Effect of volume concentration 

Most of the viscosity data of nanofluids in the literature exhibited the trend that as the 

volume concentration of the particles increased, the effective viscosity also increased 

[14, 80 and 131–134]. Chevalier et al [135] measured the relative viscosity of 

nanofluids containing three different sizes of silicon dioxide nanoparticles with 

diameters of 35±3, 94±5 and 190±8 nm at different volume concentrations up to 7%. 

They also observed that the relative viscosity increased as the volume concentration 

increased. Duangthongsuk and Wongwises [79] reported viscosity measurements of 

water containing TiO2 nanoparticles with average particle diameters of 21 nm at three 

different temperatures, which were 15, 25 and 35
°
C. They conducted their 

experimental work with a parallel-plate rotational rheometer at five different volume 

concentrations ranging from 0.2 to 2%. They observed the same result as Chevalier et 

al [135], namely that the relative viscosity increased as the volume concentration 

increased.  

 Effect of temperature 

Chen et al [136] measured the viscosity of distilled water, ethylene glycol, glycerol 

and silicone oil suspensions with different multi-wall carbon nanotube volume 

fractions as a function of temperature by using a plate-and-cone viscometer. They 

studied the temperature effect on the viscosity at temperatures from 5 to 65ºC and 

they observed that the viscosity decreased as the temperature increased. Lee et al 

[137] reported viscosity measurements of distilled water containing silicon carbide 

nanoparticles at temperatures between 28 and 72ºC. They observed that the viscosity 

decreased as the temperature increased. The experimental results published by Prasher 

et al [138] and Chen et al [139 and 140] showed that the relative viscosity of Al2O3-

propylene glycol and TiO2-water nanofluids is independent of temperature at 

temperatures between 30 and 60 ºC and 20 and 60ºC, respectively. However, the 

observations of Prasher et al [138] and Chen et al [139, 140] do not correspond with 

the most experimental data available in literature. Furthermore, there is no discussion 
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on the effect of temperature on the effective viscosity of nanofluids which decreased 

as temperature increased. 

4.3. EXPERIMENTAL DATA USED FOR THE TRAINING AND 

TESTING PROCEDURE 

Nguyen et al [80] investigated the viscosity of Al2O3-water and CuO-water nanofluids 

with a piston-type viscometer. They studied the temperature and volume 

concentration effects of the viscosity of Al2O3-water nanofluids with average 

diameters of 36 and 47 nm as well as CuO-water nanofluids with an average diameter 

of 29 nm. Their experiments covered a wide range of temperatures from 21 to 70
°
C 

for four nanoparticle volume concentrations. 

 

Tavman et al [141] experimentally investigated the viscosity of SiO2-water and 

Al2O3-water nanofluids prepared with 12 and 30 nm average diameters of silicon 

dioxide and alumina nanoparticle, respectively. They conducted their experimental 

work at seven temperatures from 20 to 50
°
C for different volume concentrations. Lee 

et al [142] measured the viscosity of Al2O3-water nanofluid by using an oscillation-

type viscometer. They dispersed Al2O3-powder with an average diameter of 30 nm 

into water and measured the viscosity of Al2O3-water nanofluid sizes over a range of 

temperatures from 21 to 39
°
C at low volume concentrations. 

 

Duangthongsuk and Wongwises [79] reported some experimental data for viscosity of 

TiO2, with an average diameter of 21 nm, in a water-based nanofluid for three 

different temperatures of 15, 25 and 35
°
C, at volume concentrations of 0.2, 0.6, 1, 1.5 

and 2%. Turgut et al [143] reported their measurements for the viscosity of TiO2-

water suspensions with a nominal diameter of 21 nm for four different volume 

concentrations up to 3% over a temperature range from 13 to 55
°
C. 

 

Anoop et al [144] measured the viscosity of alumina-water nanofluids by using a 

cone-plate viscometer. They used alumina nanoparticles with an average diameter of 
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95 nm for their experiments and reported the results for volume concentrations of 1, 2, 

4 and 6% for the temperature range of 20 to 50
°
C. 

 

Pastoriza-Gallego et al [86 and 145] published their experimental investigation of the 

effect of temperature variation and volume concentration on viscosity of Al2O3-water 

suspensions. Al2O3-nanoparticles with 8 and 43 nm average diameters were mixed 

with water at seven different volume concentrations ranging from 0.13 to 2.9% and 

the resulting suspensions were evaluated at temperatures ranging from 10 to 60
°
C. 

Furthermore, they measured the viscosity of CuO-water nanofluids with 33 and 11 nm 

nanoparticle sizes for eight different temperatures (10, 15, 20, 25, 30, 40 and 50
°
C) at 

low volume concentrations ranging from 0.16 to 1.17%. 

 

Kwek et al [146] conducted an experimental investigation into the variation in 

temperature and volume concentration on the viscosity of Al2O3-water suspensions. 

Al2O3-nanoparticles with an average diameter of 25 nm were used at 2 and 3% 

volume concentrations and the results were given at five temperatures ranging from 

15 to 55
°
C.  

 

Fedele et al [147] experimentally measured the viscosity of titanium oxide 

nanoparticles with an average diameter of 76 nm in a water-based suspension. A 

cone-plate-type viscometer was used to measure the viscosity at different 

temperatures ranging from 10 to 70
°
C.   

 

In this section, all the above-mentioned experimental results were used to model the 

viscosity of nanofluids using the FCM-ANFIS approach. The design variables (input 

parameters) chosen for the nanoparticles were the average diameter, volume 

concentration and temperature. The results of the FCM-ANFIS models were 

compared against experimental data [86, 141 and 144-147] and the most cited 

correlations from literature that are shown in Table 4-1. 
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Table 4-1: The most cited correlations of nanofluids viscosity 

 

Model Correlation Remark 
Einstein [148] 

 

 

                    
 

Valid for very low 

volume concentrations 

(      ) and spherical 

particles  

Brinkman [149]  

          (
 

        
* 

 

 

Batchelor [150]  

                           
 

 

 

Abu-Nada et al. [151] 

 

 

      
                               

                        
     

 
  

 

             (
      

 
*          (

       

  *

                (
 

 
*  (

        

  *

                   .
  

 
/

        (
 

  * 

 

                                             

                            
 

The viscosity in these 

equations is expressed in 

centi poise (cP), the 

temperature in 
o
C.  

Abedian and Kachanov 

[152] 

 

          (
 

       
* 

 

Newtonian fluid with a 

single rigid spherical 

particle 

Masoud Hosseini et al. 

[153] 

 

             [   (
 

  
*        (

  

   
*] 

                           

              oC,        

For Al2O3-Water 

nanofluids (Based on 

Nguyen et al. [80] 

experimental data) 

 

Ward model [154]   
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  ]  
 

 

renewed Ward (RW) 

model [155] 
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4.4.  PREDICTION MODELS 

A total of 536 input-output experimental data points obtained from literature [80, 86, 

141–147] were used to establish four different prediction models (Model I to Model 

IV) for viscosity. For the first model (Model I), Al2O3-water nanofluid experimental 

data were used to create a model for predicting the viscosity of Al2O3-water 

nanofluids. The experimental data were divided into two subsets as 80% for training 

and 20% for testing purposes. The same procedure was used to establish the second 

and third models (Model II and Model III) for predicting the viscosity of CuO-water 

and TiO2-water nanofluids, respectively. For the fourth model (Model IV), the 

viscosity of SiO2-water nanofluid was determined, but without any experimental data 

in the training section. The model was established with the input-output experimental 

data points for the Al2O3-water, CuO-water and TiO2-water models. 

8 different membership functions indicated in subsection 3.4 have been applied to 

model a case study By using the experimental of Nguyen et al [80], 8 models with 

different membership functions have been proposed for viscosity of nanofluids. The 

experimental data (Temperature between 23 and 65
 o

C, particle size of 36 nm and 

volume concentration of 4.5%)) and proposed models were compared and the 

Gaussian curve membership function (“gaussmf”) has been chosen as the membership 

function due to least modelling error. 

 

Same as FCM-ANFIS model for thermal conductivity of nanofluids, topology based 

fuzzy clustering algorithm has been used to determine the number of nodes, node 

positions and node conductivity of the ANFIS system. The number of clusters is equal 

to number of input-output data sets and the fuzziness exponent and the termination 

tolerance have been chosen 2 and 0.001, respectively.  

 

Three different statistical criteria given in Table 4-2 were used to determine how well 

the FCM-ANFIS proposed models could predict the viscosity of nanofluids 

corresponding to various values of inlet variables. 
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Table 4-2: Statistical criteria used for the analysis of the results 

 

Statistical criterion Equation 

Mean absolute error 

1

1 n

p a

i

MAE X X
n 

   

Mean relative error 

1

100
(%)

n
p a

i a

X X
MRE

n X

 
 
 
 

  

Root mean square error 

 
2

1

1



 
n

p a

i

RMSE X X
n

 

 

 

4.5. RESULT AND DISCUSSION 

Figure 4.1, shows the experimental results of Kwek et al [146] compared with the 

FCM-ANFIS model (Model I) and correlations for an Al2O3-water nanofluid with a 

particle size of 25 nm, volume concentration of 2% at temperature ranging from 15 to 

55
 o

C. Model I is in good agreement with the experimental data (MAE = 0.10, MRE = 

10% and RMSE = 0.11). The proposed FCM-ANFIS model is well-matched with the 

experimental data in comparison with the correlations, especially in the low 

temperature range from 15 to 35
o
C. 
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Figure 4.1: Comparison between the experimental data of Kwek et al [146] with Model I 

and correlations from literature for an Al2O3-water nanofluid, with an average particle 

size of 25 nm at a volume concentration of 2% 

 

Figure 4.2, shows the experimental results of Anoop et al [144] compared with the 

FCM-ANFIS model (Model I) and the correlations from literature for a particle size 

of 95 nm and a volume concentration of 2% for an Al2O3-water nanofluid. The FCM-

ANFIS model is in very good agreement with the experimental data (MAE = 0.020, 

MRE = 2.2% and RMSE = 0.026) and predicts the viscosities better than any of the 

correlations. 

 

Figure 4.3, shows a comparison between the experimental results of Pastoriza-Gallego 

et al [155], the FCM-ANFIS model (Model I) and correlations for an Al2O3-water 

nanofluid with a particle size of 43 nm and a volume concentration of 1.4%. The 

FCM-ANFIS model (MAE = 0.023, MRE = 2.6% and RMSE = 0.025) corresponds 

very well with the experimental data although the correlations of Brinkman [149], 

Batchelor [150], Abedian and Kachanov [152], and Ward [154] also correspond well 

with the experimental measurements. 
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Figure 4.2: Comparison between the experimental data of Anoop et al [144] with Model 

I and correlations from literature for an Al2O3-water nanofluid, with an average particle 

size of 95 nm at a volume concentration of 2% 

 

 
Figure 4.3: Comparison between the experimental data of Pastoriza-Gallego et al [86] 

with Model I and correlations from literature for an Al2O3-water nanofluid, with an 

average particle size of 43 nm at a volume concentration of 1.4% 

 

In Figure 4.4, the experimental results of Tavman et al [141] are compared with those 

of the FCM-ANFIS model (Model I) and the correlations for an Al2O3-water 

nanofluid with a particle size of 30 nm, and a volume concentration of 0.5%. In 
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general, the FCM-ANFIS model matches the data (MAE = 0.095, MRE = 11% and 

RMSE = 0.097) better than any of the other correlations. 

 
Figure 4.4: Comparison between the experimental data of Tavman et al [141] with 

Model I and correlations from literature for an Al2O3-water nanofluid, with an average 

particle size of 30 nm at a volume concentration of 0.5% 

 

From Figure 4.2 to Figure 4.4 it can be concluded that for Al2O3-water nanofluids, in 

general, the FCM-ANFIS, Model I, predicts the viscosities better than those of the 

correlations in literature.  

 

In Figure 4.5, the experimental data of Pastoriza-Gallego et al [86] is compared with 

the predictions of the FCM-ANFIS model (Model II) and with correlations for a CuO-

water nanofluid with particle sizes of 11±3 nm and a volume concentration of 1.15%. 

The model predicts the viscosities the best when compared with the measurements 

(MAE = 0.018, MRE = 1.3% and RMSE = 0.022). All the models significantly under 

predict the experimental data.  

 

In Figure 4.6, the experimental data of Fedele et al [147] are compared with the 

modelled values of the FCM-ANFIS model (Model III) and correlations for a TiO2-

water nanofluid with a particle size of 76 nm and a volume concentration of 5.54%. 
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= 0.24) show a better agreement with the experimental data in comparison with other 

correlations. The renewed Ward correlation predicts better results than Model III. 

 
Figure 4.5: Comparison between the experimental data of Pastoriza-Gallego et al [86] 

with Model II and correlations from literature for a CuO-water nanofluid, with an 

average particle size of 11±3 nm at a volume concentration of 0.5% 

 

 
Figure 4.6: Comparison between the experimental data of Fedele et al [147] with Model 

III and correlations from literature for a TiO2-water nanofluid, with an average particle 

size of 76 nm at a volume concentration of 5.54% 
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Figure 4.7, compares the experimental measurements of Tavman et al [141] with 

those of the FCM-ANFIS model (Model IV) and the correlations for SiO2-water 

nanofluid with a particle size of 12 nm and a volume concentration of 1.85%. As was 

mentioned before, there were no experimental data for the viscosity of SiO2-water 

nanofluid in the FCM-ANFIS model-training procedure. The FCM-ANFIS model 

trend matches the experimental data the best, while all the correlations significantly 

under predicted the experimental data. 

 
Figure 4.7: Comparison between the experimental data of Tavman et al [141] with 

Model IV and correlations from literature for a SiO2-water nanofluid, with an average 

particle size of 12 nm at a volume concentration of 1.85% 
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approaches at the same time to combine the advantages of each method to achieve a 

better performance. 

A literature review of experimental data of the viscosity of nanofluids showed that 

particle size, volume concentration and temperature were the three most important 

variables that influence on the viscosity. Therefore, 536 experimental data points for 

Al2O3, CuO, TiO2 and SiO2 nanoparticles with water as base fluid were obtained from 

literature for benchmarking the proposed models for the viscosity of nanofluids by 

using the experimental data point. 

 

The results of the FCM-ANFIS method were compared with the experimental data as 

well as several well-cited correlations from literature. In almost all cases, the 

proposed FCM-ANFIS models were in very good agreement with the experimental 

data. This study showed the ability of FCM-ANFIS technique for modelling 

engineering problems containing nanofluids based on input-output experimental data. 

 

Since the proposed FCM-ANFIS models for modelling the viscosity of nanofluids has 

showed a great agreement with experimental data, this method is a very good 

candidate to model required sonication time and power. Since there is still a challenge 

to find the optimised sonication power and time to prepare the nanofluids in a two-

step procedure, therefore, it can recommend applying FCM-ANFIS technique to 

model required sonication power and time for nanofluids preparation to be able to use 

optimisation techniques (like NSGA-II) to find the optimum sonication power and 

time for the best nanofluid preparation.  

 

 



 

5 
CHAPTER 5: MULTI-OBJECTIVE OPTIMISATION OF THE 

CONVECTIVE HEAT TRANSFER CHARACTERISTICS AND 

PRESSURE DROP OF NANOFLUIDS
13

 

5.1. INTRODUCTION 

In this chapter, a GA-PNN hybrid system was used for modelling the convective heat 

transfer characteristics and pressure drop of TiO2-water nanofluids in a fully 

developed turbulent flow based on an experimentally obtained train and test data set. 

Models have been developed for the Nusselt number and the pressure drop of the 

nanofluids as function of Reynolds and Prandtl numbers, nanofluid volume 

concentration and average nanoparticle diameter. The results of the proposed models 

have been compared with experimental data as well as existing correlations. The 

validity of the proposed models benchmarked by using statistical criteria and after 

showing a fair agreement with experimental data, the modified non-dominated sorting 

genetic algorithm (NSGA-II) was used for multi-objective optimisation of the 

convective heat transfer. In the optimisation procedure, the Nusselt number and 

pressure drop have been considered as the objective functions. However, when the set 

of decision variables is selected based on the Pareto set, it ensures the best possible 

combination of objectives. The Pareto front of multi-objective optimisation of the 

Nusselt number and pressure drop proposed models has also been shown and 

discussed. 

5.2. GENETIC ALGORITHM-POLYNOMIAL NEURAL 

NETWORK HYBRID SYSTEM 

In this dissertation, a GA-PNN hybrid system was applied for the simulation of the 

Nusselt number and pressure drop of TiO2-water nanofluid in fully- developed 

turbulent flow. The GA-PNN hybrid system was created by a combination of genetic 

                                                 
13

 This chapter has been published in part: M. Mehrabi, M. Sharifpur and J.P. Meyer, “Modelling and 

multi-objective optimisation of the convective heat transfer characteristics and pressure drop of low 

concentration TiO2-water nanofluids in the turbulent flow regime”, International Journal of Heat and 

Mass Transfer, Vol. 67 (1), pp. 646–653, 2013. 
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algorithm and GMDH-type polynomial neural network approaches. In this hybrid 

system, a GMDH learning algorithm was used to instruct the polynomial neural 

network. The application of this learning algorithm to the polynomial neural network 

would introduce the GMDH-type polynomial neural network, which would be created 

for the neural network. On the other hand, the genetic algorithm was used to find the 

hidden layers and bias coefficients of the GMDH-type polynomial neural network for 

minimising the training error and finding the optimal structure of the network. 

Detailed information about the GMDH-type polynomial neural network structure and 

GA-PNN hybrid system is given in Pesteei and Mehrabi [122] and Mehrabi et al [156, 

157], respectively. 

5.3. CONVECTIVE HEAT TRANSFER OF TiO2-WATER 

NANOFLUID  

Most of the fluid flow regimes are turbulent in industrial applications. Due to the 

presence of unsteady vortexes, the turbulent flow has more potential to enhance heat 

transfer. Therefore, the investigations into turbulent heat transfer of nanofluids are 

crucial for practical applications. Subsequently, there are several studies in the 

literature on the convection heat transfer of TiO2-water nanofluids in fully-developed 

turbulent flow regime [158–162 and 167]. In the present work, a new model was 

obtained by using the GA-PNN hybrid system as a function of the Reynolds number, 

Prandtl number, volume concentration and average particle size, which gives better 

accuracy for predicting the heat transfer performance of the TiO2-water nanofluids. In 

the proposed model, the Nusselt number is related to the parameters as follows: 

                   (5.1) 

 

The results of the proposed model were compared against experimental data [158, 159 

and 162] as well as available correlations. The correlations, which were developed by 

Pak and Cho [163] (Eq. 5.2) and Maiga et al [168] (Eq. 5.3), can predict the Nusselt 

number for the nanofluids in a fully-developed turbulent flow.  
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                      (5.2) 

                        (5.3) 

 

The correlations determine the Nusselt numbers as a function of the Reynolds number 

and the Prandtl number. 

 

Sajadi and Kazemi [159] proposed a correlation for the Nusselt number of TiO2-water 

nanofluids in a fully developed turbulent regime as a function of the Reynolds number 

and the Prandtl number as: 

                                  (5.4) 

 

Duangthongsuk and Wongwises [158] and Abbasian Arani and Amani [167] offered 

correlations for the Nusselt number of TiO2-water nanofluids as a function of the 

Reynolds number, the Prandtl number and volume concentration respectively, as 

follows: 

                                (5.5) 

                                 (5.6) 

 

Unlike the present models for the Nusselt number, the dependence of the average 

particle diameter of the nanoparticles was not considered in these correlations. 

5.4. PRESSURE DROP OF TiO2-WATER NANOFLUIDS 

In this chapter, a new model was developed for the pressure drop of TiO2-water 

nanofluids in fully-developed turbulent flow by using a GA-PNN hybrid system as a 

function of Reynolds number, volume concentration and average particle size. In the 

model, the pressure drop is a function of Reynolds number, nanoparticle volume 

concentration and the diameter of nanoparticles, thus:  

                (5.7) 
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5.5. PREDICTIVE ABILITY OF THE PROPOSED MODELS 

A total of 168 input-output experimental data points obtained from literature [158, 

159 and 162] were used in order to predict the Nusselt number for a TiO2-water 

nanofluid. The experimental data were divided into two subsets as 75% (127 data 

points) for training and 25% (41 data points) for testing purposes. In order to model 

the pressure drop 151 experimental data points from [156, 157 and 160] were divided 

to subsets as 81% (124 data points) for training and 19% (29 data points) for testing 

purposes. The mean absolute error (MAE), mean relative error (MRE) and root mean 

square errors (RMSE) criteria were used. It shows the accuracy of the GA-PNN 

models in order to predict the Nusselt number and pressure drop of TiO2-water 

nanofluid for various values of inlet variables. 

5.5.1. Nusselt Number Prediction 

The structure of the GA-PNN model for predicting the Nusselt number of TiO2-water 

nanofluid is shown In Figure 5.1, corresponds to the genome representation of 

3312141411342222, in which 1, 2, 3 and 4 stand for volume concentration ϕ (%), 

average particle diameter dp (nm) , the Reynolds number Re and the Prandtl number 

Pr respectively.  
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Figure 5.1: Structure of the GA-PNN hybrid system for the Nusselt number of TiO2-

water nanofluids modelling 

 

The corresponding polynomial representation of the model for the Nusselt number of 

TiO2-water nanofluid is shown below: 
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5.5.2. Pressure Drop Prediction 

The structure of the GA-PNN model for predicting the pressure drop of  TiO2-water 

nanofluid is shown in Figure 5.2, corresponding to the genome representation of 
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1211221333122323, in which 1, 2 and 3 stand for volume concentration ϕ (%), 

average particle diameter dp (nm) and the Reynolds number Re, respectively. 

 
Figure 5.2: Structure of the GA-PNN hybrid system for pressure drop of TiO2-water 

nanofluid modelling 

 

The corresponding polynomial representation of the model for the pressure drop of 

TiO2-water nanofluid is shown below: 
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5.6. MULTI-OBJECTIVE OPTIMISATION BY USING NSGA-II 

In most real-engineering problems, a unique solution based on the single-objective 

optimisation techniques is unable to present an acceptable result for the other 

objective functions, especially when there is more than one objective function that 

may be in conflict with one another. Multi-objective optimisation is defined as a 

technique that gives a reasonable set of solutions for all objective functions by finding 

the vector of decision variables when the constraints are satisfied. This set of solutions 

satisfies the objective functions at an acceptable level without being dominated by 

other sets. This set of non-dominated solutions is called the Pareto optimal set. The 

corresponding objective function value for a given Pareto optimal set is referred to as 

the Pareto front. 

 

Various multi-objective algorithms have been applied for solving engineering 

problems in the last two decades [164, 165, 169–175], among them the modified non-

dominated sorting genetic algorithm II (NSGA-II), which was chosen for this 

investigation.  

 

There are different operators for the NSGA-II algorithm including initialisation, 

evaluation, fast non-dominated sorting, crowding distance assignment, selection, 

crossover and mutation. The procedure and flow diagram of this algorithm are shown 

below: 

NSGA II Algorithm 

Step 1: generate a parent population    of size N, randomly 

Step 2: set     

Step 3: create offspring population    of size N, by application of crossover and 

mutation to    

Step 4: if the stop criterion is satisfied, stop and return    

Step 5: set           

Step 6: set                 fast-non-dominated-sort      
Step 7: for       do the following sub-steps: 

 7.1: calculate the crowding-distance-assignment      

 7.2: set       as follows: 

     |    |  |  |      
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then ( |    |  |  |   ); 

            [     |    | ] 
Step 8: this step consists of the following two sub-steps: 

 8.1: select parent from      by using binary tournament selection on the 

crowding distance 

8.2: create offspring population      of size N, by application of crossover & 

mutation to      

Step 9: set       and go to the fourth step 

    

The NSGA-II uses a fast non-dominated sorting operator for fitness assignments. In 

the process of a fitness assignment, the solution set not dominated by any other 

solutions in the population is assigned as the first front and given the highest fitness 

value; the solution set dominated by solutions in the first front is assigned as the 

second front and given the second-highest fitness value. This procedure will iterate 

until all the solution sets are given a fitness value. The crowding distance is the 

normalised distance between a solution vector and its closest neighbouring solution 

vector in each of the fronts. 

 

The selection is achieved in binary tournament of two solution vectors. The solution 

vector with the lowest front number is selected if the two solution vectors are from 

different fronts. If both the solution vectors are on the same front, the solution with 

the highest crowding distance is selected. 

 

In the NSGA-II algorithm, simulated binary crossover (SBX) and highly disruptive 

polynomial mutation approaches are used for crossover and mutation operators. The 

SBX applies to two parent solutions and creates two offsprings. The difference 

between an offspring and parent depends on the crossover index, which is a non-

negative real number. A large value of the crossover index gives a higher probability 

for creating „near-parent‟ solutions and a small value of it allows distant solutions to 

be selected as an offspring. The application of highly disruptive polynomial mutation 

gives the system the possibility of doing larger jumps in the search space and avoiding 
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the local optimal points [176]. The detailed information about the NSGA-II 

Algorithm, fast non-dominated sorting operator, crowding-distance-assignment 

operator, selection method and simulated binary crossover (SBX) operator are fully 

described in Refs [166 and 176]. The conflicting objectives in this study are the 

Nusselt number and pressure drop that are optimised with respect to the volume 

concentration ϕ, average particle diameter dp, the Reynolds number Re and the Prandtl 

number Pr, which are called design variables. In this two-objective optimisation 

problem, the goal is finding the best design variable value in order to maximise the 

Nusselt number and minimise the pressure drop simultaneously. 

5.7 RESULT AND DISCUSSION  

Figure 5.3, shows the experimental results of Sajadi and Kazemi [159] compared with 

the GA-PNN model for the Nusselt number of TiO2-water nanofluid and also 

correlations with a particle size of 30 nm and volume concentration of 0.1% at various 

Reynolds numbers ranging from 6 000 to 30 000. The model for Nusselt number is in 

very good agreement with the experimental data (MAE = 3.7, MRE = 3.5% and RMSE 

= 4.4). The proposed GA-PNN model is well matched with the experimental data and 

predicts the Nusselt number better than all correlations [158, 163, 167 and 168]. 

 

Figure 5.4, shows the experimental results of Duangthongsuk and Wongwises [158] 

compared with the GA-PNN model. Also, the correlations from literature for a 

particle size of 21 nm and volume concentration of 1% for a TiO2-water nanofluid 

over a Reynolds number range from 4 500 to 14 500. The GA-PNN model is in good 

agreement with the experimental data (MAE = 3.4, MRE = 3.7% and RMSE = 3.6), 

and the GA-PNN proposed model and Sajadi and Kazemi [168] correlation predict the 

Nusselt number better than other correlations [163, 167 and 168]. 
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Figure 5.3: Comparison of the experimental data of Sajadi and Kazemi [159] with the 

GA-PNN proposed model for the Nusselt number and existing correlations (TiO2-water 

nanofluid, with an average particle size of 30 nm at a volume concentration of 0.1%) 

 

 
Figure 5.4: Comparison of the experimental data of Duangthongsuk and Wongwises 

[158] with the GA-PNN proposed model for the Nusselt number and existing 

correlations (TiO2 water nanofluid, with an average particle size of 21 nm at a volume 

concentration of 1%) 
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Figure 5.5: Comparison of the experimental data of Abbasian Arani and Amani [162] 

with the GA-PNN proposed model for the Nusselt number and existing correlations 

(TiO2-water nanofluid, with an average particle size of 50 nm at a volume concentration 

of 1%) 

 

Figure 5.5, shows the experimental results of Abbasian Arani and Amani [162] 

compared with the GA-PNN model. Also, the correlations from literature for a 

particle size of 50 nm and volume concentration of 1% for a TiO2-water nanofluid. 

The GA-PNN model is in great agreement with the experimental data (MAE = 5.9, 

MRE = 2.7% and RMSE = 6.9), and the GA-PNN proposed model and Maiga et al 

[168] correlation predict the Nusselt number better than other correlations. 

 

In Figure 5.6 and Figure 5.7, the experimental results of Abbasian Arani and Amani 

[162] are compared with those of the GA-PNN model and the correlations for the 

Nusselt number of TiO2-water nanofluid with particle sizes of 10 nm and 20 nm, and 

volume concentration of 1.5% and 2%, respectively.  

 

Based on the result of Figure 5.6 the GA-PNN model is well-matched with the 

experimental data in comparison with the correlations (MAE = 5.6, MRE = 4.8% and 
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RMSE = 8.1), especially in the high Reynolds number range from 20 000 to 44 000. 

Figure 5.7, shows that the GA-PNN model is in a good agreement with the 

experimental data (MAE = 20.3, MRE = 8.1% and RMSE = 21.3) and predicts the 

Nusselt number the best while the existing correlations significantly under-predicted 

the experimental data.  

 

Considering Figure 5.6 and Figure 5.7, it can be concluded that for TiO2-water 

nanofluids with an increase in Reynolds number as well as volume concentration the 

existing correlations are unable to predict the Nusselt number properly and the GA-

PNN model predicts the Nusselt number better than those of the correlations in 

literature in all cases.  

 

 
Figure 5.6: Comparison of the experimental data of Abbasian Arani and Amani [162] 

with the GA-PNN proposed model for the Nusselt number and existing correlations 

(TiO2-water nanofluid, with an average particle size of 10 nm at a volume concentration 

of 1.5%) 
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Figure 5.7: Comparison of the experimental data of Abbasian Arani and Amani [162] 

with the GA-PNN proposed model for the Nusselt number and existing correlations 

(TiO2-water nanofluid, with an average particle size of 20 nm at a volume concentration 

of 2%) 

 

Figure5.8a shows a comparison between the experimental results of Sajadi and 

Kazemi [159] and the GA-PNN model for the pressure drop of a TiO2-water 

nanofluid with a particle size of 30 nm, volume concentration of 0.15% and Reynolds 

number ranging from 6 000 to 30 000. The GA-PNN model (MAE = 0.47, MRE = 

5.0% and RMSE = 0.53) corresponds very well with the experimental data.  

 

In Figure5.8b, the experimental results of Duangthongsuk and Wongwises [158] are 

compared with those of the GA-PNN model and the correlations for the pressure drop 

of TiO2-water nanofluid with a particle size of 21 nm, and a volume concentration of 

1.5% and Reynolds number ranging from 4 500 to 14 500. The GA-PNN model 

predicts the pressure drop the best when compared with the measurements (MAE = 

0.12, MRE = 2.0% and RMSE = 0.21). 
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Figure 5.8: Comparison of the experimental data [158, 159 and 162] with the GA-PNN 

proposed model for pressure drop (a-TiO2-water nanofluid, with an average particle 

size of 30 nm at a volume concentration of 0.15% [159] b-TiO2-water nanofluid, with an 

average particle size of 21 nm at a volume concentration of 1.5% [158] c-TiO2-water 

nanofluid, with an average particle size of 30 nm at a volume concentration of 1% [160] 

d-TiO2-water nanofluid, with an average particle size of 50 nm at a volume 

concentration of 1.5% [162]) 
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Figure5.8c shows the experimental results of Abbasian Arani and Amani [162] 

compared with the GA-PNN model for a particle size of 30 nm and volume 

concentration of 1%. The GA-PNN model is not in such a good agreement with the 

experimental data and the (MAE = 3.9, MRE = 54.4% and RMSE = 3.9). 

 

Although the proposed model is not well-matched with the experimental data, the 

model trend is the same as experimental data and because the proposed model over-

predicted the experimental data, it might give us more conservative result points in the 

optimisation part. 

 

In Figure5.8d, the experimental result of Abbasian Arani and Amani [162] is 

compared with those of the GA-PNN model for a particle size of 50 nm and volume 

concentration of 1.5%. The GA-PNN model matches the data very well (MAE = 

0.835, MRE = 8.9% and RMSE = 1.01). 

 
Figure 5.9: Multi-objective Pareto front of the Nusselt number and pressure drop 
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Figure 5.9, shows the Pareto front of the Nusselt number and pressure drop. By 

choosing the appropriate value for one objective function may cause a poor value for 

the second objective function. In this Pareto front, all the points (Pareto sets) are 

optimum points based on the multi-objective optimisation concepts and the final 

design point should be chosen by the designer based on the importance of each 

objective function in the design procedure. In this Pareto front, the optimal design 

points are divided into three sections and the corresponding design variables (input 

variables) as well as objective functions for the six optimal points, which are shown in 

Table 5-1, (they are related to start and end points).  

In Section I, which is started at point A and ends at B, the Nusselt number increases 

by 45% (from 64.23 to 91.11) when the  pressure drop increases by 14% (from 2.42 to 

2.75). In Section II which starts at point C and ends at D, there is a direct relationship 

between the increase in the pressure drop and increase in Nusselt number. In this 

section, the pressure drop increases by 271% when the Nusselt number increases by 

179%. It is obvious that the design points in Section III should not be chosen as the 

best design points, because of the 19% increase in the pressure drop; while there is no 

significant increase in the Nusselt number from Point E to Point F. So, choosing the 

final design points from Section II is a better choice in comparison with the other 

sections.  

 

Table 5-1: The value of design variables (input variables) and objective functions  

of the start and end section points 

 

Points ϕ (%) dp (nm) Re Pr Nu    (kPa) 

A 1.93 50 6010 3.19 64.234 2.422 

B 1.68 40 8768 4.12 93.106 2.754 

C 1.52 35 10143 4.31 106.666 3.284 

D 1.31 20 30857 3.5 297.864 12.199 

E 1.28 20 32238 3.47 307.299 12.99 

F 1.15 20 35120 3.72 313.878 15.521 
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However, it is important to notice that all the points in this Pareto front are optimal 

points and the designer could choose any of these optimal points for the best design 

point. It is related to the importance of objective functions in the design procedure. 

5.8 CONCLUSION AND RECOMMENDATIONS 

In this chapter, the GA-PNN hybrid system was used for modelling the convective 

heat transfer characteristics and pressure drop of TiO2-water nanofluid in fully 

developed turbulent flow based on an input-output experimental data set as function 

of the Reynolds number, the Prandtl number, nanoparticle volume concentration and 

average nanoparticle diameter. In the GA-PNN hybrid system, consisting of a neural 

network and genetic algorithm part, the genetic algorithm was used to find the best 

network weights for minimising the training error and finding the optimal structure 

for a GMDH-type polynomial neural network. In the neural network part of this 

hybrid system, the group method of data handling (GMDH) learning approach was 

used to learn a second-rate polynomial neural network. The structure of the proposed 

models based on the genome representation for the Nusselt number as well as 

pressure drop with respect to effective (input) parameters has been developed. The 

results of the models were compared with the experimental data points and with 

existing correlations from literature. The statistical error analysis shows that the 

proposed models are in good agreement compared with experimental data and shows 

better accuracy with experimental data in comparison with the existing correlations. 

 

The proposed models for the Nusselt number and pressure drop were used in a multi-

objective optimisation problem based on the NSGA-II algorithm. The Pareto front of 

these two conflicting objective functions was shown and discussed. 

 

Application of the constructal theory and modified NSGA-II multi-objective 

optimisation method together can be a challenging subject for future work to find a 

model for prediction of the most optimised nanofluids composition. For this future 
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research work, the advantages of two different optimisation technique (modified 

NSGA-II multi-objective optimisation method and constructal theory) may be used to 

predict the most optimised nanofluids composition for energy efficiency propose.  



 

6 

CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 

6.1. SUMMARY 

Due to the advantages of application of nanofluids in comparison with conventional 

heat transfer fluids, nanofluids as a new generation of heat transfer fluids has received 

significant attention over the last two decades.  

 

However, there is still a problem for modelling and predicting the thermophysical 

properties of nanofluids. Since there are too many factors affecting the 

thermophysical properties of nanofluids including nanoparticle type, shape, size, 

temperature, volume concentration, and the nanofluids preparation method which 

most of the times are in conflict with each other for thermal improvement. So, the 

necessity of a research on thermophysical properties of nanofluids to find accurate 

models is essential. The aim of this dissertation is to try to overcome this problem by 

proposing accurate models for thermophysical properties of nanofluids by using GA-

PNN, FCM-ANFIS techniques and input-output experimental data. To do so, two 

methods of artificial intelligence methods (GA-PNN and FCM-ANFIS) have been 

implemented to model effective thermal conductivity and viscosity of nanofluids. The 

results of the proposed model were compared with the experimental data as well as 

well-cited correlations and in almost all case studies the proposed models have shown 

a good agreement with experimental data. 

 

Furthermore, the convective heat transfer characteristics and pressure drop of the 

nanofluids in a turbulent flow regime have been modelled by the GA-PNN hybrid 

system and consequently the resulting models have been used to optimise the Nusselt 

number versus pressure drop by NSGA-II which is a multi-objective optimisation 

technique. The optimisation result was shown in a Pareto front to show all the 

optimum design points. 
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6.2. CONCLUSIONS 

Chapter 2 has provided a review on possible mechanisms which could potentially 

influence the thermal conductivity enhancement of nanofluids. Brownian motion of 

nanoparticles, nanoparticle size, concentration, distribution and formation of 

aggregates, nanolayering of the liquid at the liquid/particle interface, electric charge 

on the surface of nanoparticle, thermophoretic effect, preparation and surfactants are 

different factors which have been introduced and explained. Furthermore, theoretical 

models which have been proposed by different researchers for thermal conductivity of 

nanofluids are reviewed based on the influence of Brownian motion, nanolayering as 

well as clustering and some hybrid models that are taken into account two parameters 

are presented in this chapter. 

 

Chapter 3 of this dissertation showed the high capability of artificial intelligent 

methods for modelling engineering problems containing nanofluids based on input-

output experimental data. The FCM-ANFIS and the GA-PNN approaches were 

developed for modelling the effective thermal conductivity of nanofluids as function 

of particle size, temperature and volume concentration. After a literature review of 

experimental works on the thermal conductivity of Al2O3-water nanofluids; particle 

size, temperature and volume concentration have been chosen as the most effective 

parameters on effective thermal conductivity. 232 input-output experimental data 

points obtained from literature have been used to model the effective thermal 

conductivity by using the FCM-ANFIS and GA-PNN approaches. The result shows 

that the proposed models are in good agreement compared with experimental data and 

the FCM-ANFIS approach shows better agreement with experimental data in 

comparison with the GA-PNN method. 

In chapter 4, the FCM-ANFIS approach was used for modelling the viscosity of 

nanofluids as a function of particle size, volume concentration and temperature. 536 

experimental data points for Al2O3, CuO, TiO2 and SiO2 nanoparticles with water as 

base fluid were obtained from literature to model the viscosity of nanofluids by using 

the input-output data points by using the FCM-ANFIS method. The results of the 
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FCM-ANFIS method were compared with the experimental data points and with 

several well-cited correlations from literature and in almost all cases, the proposed 

FCM-ANFIS models were in very good agreement with the experimental data.  

 

Finally, in chapter 5, the GA-PNN hybrid system was used for modelling the 

convective heat transfer characteristics and pressure drop of TiO2-water nanofluid in a 

fully developed turbulent flow based on an input-output experimental data set as 

function of the Reynolds number, the Prandtl number, nanoparticle volume 

concentration and average nanoparticle diameter. The results of the models were 

compared with the experimental data points and with existing correlations from 

literature. The statistical error analysis shows that the proposed models are in good 

agreement compared with experimental data and shows better accuracy with 

experimental data in comparison with the existing correlations. The proposed models 

for the Nusselt number and pressure drop were used in a multi-objective optimisation 

problem based on the NSGA-II algorithm. The Pareto front of these two conflicting 

objective functions was shown and discussed in section 5.7. 

6.3. RECOMMENDATIONS 

Since the proposed models based on GA-PNN and especially FCM-ANFIS 

approaches showed a fair agreement with experimental data for the thermal 

conductivity and viscosity of nanofluids, the FCM-ANFIS method is a very good 

candidate to model other thermophysical properties of nanofluids like thermal 

diffusivity or electrical conductivity based on the input-output data sets. Since there is 

still a challenge to find the optimised sonication power and time to prepare the 

nanofluids in the two-step procedure, it can therefore be recommended to apply 

artificial intelligence models to minimise required sonication power and time. 

 

The joint application of the constructal theory and modified NSGA-II multi-objective 

optimisation method to optimise the thermo-physical property of nanofluids can be a 
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challenging subject for future works as well. Therefore, these two methods may 

recover the weakness of one another and increase the efficiency of optimisation.  
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