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Abstract 
 

A market for a low-cost vibration protection device in the rotating machine industry has 

been identified that satisfies the needs of small firms unable to afford and sustain a 

condition monitoring operation. 

In this project, a system is developed that satisfies the need for a low-cost, conservative, 

configurable and intuitive device that can perform vibration measurements on a range 

of gearboxes and make an inference as to the level of vibrations coming from the 

bearings on the shafts. 

The inference made by the device, derived from the frequency content of the measured 

signal, may be used by the operator of the gearbox to make a judgment of whether to 

have the gearbox investigated by a competent authority.  In order to assist this 

investigation, a vibration history of the device is stored, both in time and frequency 

domain formats, as well as a full history of the relevant diagnostic information. 

To reach this point of maturity, the project evolved through three different hardware 

configurations.   The various iterations were tested within the scope for which they were 

designed and the lessons learned after each test was incorporated into the next 

iteration.  The final iteration incorporated all the refinements of the system up to that 

point as well as the anticipated scope of further development into the commercial 

realm. 

To verify the inference credibility of the device, the results of the final specification of 

the device was evaluated against data obtained from the condition monitoring 

department of SASOL in Secunda.  The results were analysed on two accounts.  Firstly 

the signal reproduction accuracy was evaluated, which established how accurately the 

signal was digitized and how the processing algorithms performed.  Secondly, the 

inference accuracy was gauged against the practices of SASOL.  On both accounts, the 

final device performed satisfactorily. 

The end result of this project is considered a ‘near-commercial ready’ prototype with all 

the hardware on-board for user interaction, signal processing, 3rd party viewing of the 

data and future expandability. 
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1. Introduction 

1.1  Background 
 

One of the most common classes of machines encountered in the industry today is rotating 

machines (Heng, et al., 2009).   This places the maintenance of rotating machinery at the forefront of 

plant expenses and indeed, plants in the United States spent more than $600 billion in 1981 to 

maintain their operationally critical equipment and that figure had doubled by 2001 (Mobley, 2004). 

One can reasonably expect that figure to rise even further, seeing that typical advanced and 

expensive machinery represents an investment for a company and therefore demands ever more 

sophisticated maintenance strategies.  The reasoning for this is purely economic:  A plant operating 

at maximum efficiency allows one to produce more and therefore sell more.  To this end, a properly 

implemented maintenance plan can significantly reduce maintenance costs by reducing the number 

of unnecessary maintenance operations. 

Against this background, it is clear that ‘Breakdown maintenance’ (running a machine until it breaks) 

and time based maintenance (servicing a machine, without prior knowledge of its state of repair) 

results in a haemorrhage of funds and that more efficient maintenance strategies are required to 

assist the situation that so many companies find themselves in (Jardine, et al., 2006). 

Many large companies have indeed recognised this need and are trying to address the issue.  It is not 

uncommon for a contemporary medium to large scale company to have a number of professionals 

working exclusively on monitoring the condition of the equipment operating on the plant.  This does, 

of course, require a significant investment for the start-up company and many smaller firms simply 

cannot afford to make the leap to a fully online condition monitoring strategy.  These firms are 

inevitably stuck in the time based maintenance strategy, or worse, the breakdown maintenance 

strategy due to the large capital investment required. 

Even though the current reality remains that an online condition monitoring scheme is a heavy 

investment to make for a start-up or small company, an argument can be made that a niche exists 

for a low-cost automated protection system. 

A clear definition of such a system can be formulated as follows (Ma & Jiang, 2011): 

“Contemporary plant information systems collect and archive plant-wide measurement data. Real-

time and historical data can be analysed for plant performance monitoring, an abnormal event can 

be swiftly delivered to pertinent plant personnel for subsequent actions” 

It is important to note the distinction between a protection system and a condition monitoring 

system.  A condition monitoring system is better thought of as a strategy which exhibits the 

following three elements (Heng, et al., 2009): 

 The measurement and storage of data 

 Processing of the measured data (i.e. signal conditioning and feature extraction) 

 Making a technically-oriented diagnosis based on the processed data 
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These elements may well be accomplished by different means removed from each other such as 

data loggers, computer software and engineers. 

This differs from a protection system in both philosophy and execution.  A protection system is 

considered, in this document, to mean a self-contained system capable of the following: 

 Collection and storage of data 

 Processing of the results and archiving 

 Making a recommendation on an administratively-oriented course of action based on the 

processed data (such as arranging for specialists to conduct a detailed investigation, assisted 

by the recorded data). 

What sets it apart is that it gives a small company the capability to obtain an inexpensive system that 

they can use to evaluate their machinery and provide a warning that specialists should be consulted 

if there is a likelihood that a problem might exist.  Importantly however, it does not deliver a 

diagnosis, but a course of action – i.e. contact specialists. 

By using the data collected by the ADC portion of the device and using rudimentary signal processing 

techniques, the device should be capable of making a conservative inference regarding the level of 

vibrations experienced by the gearbox – or specifically, the bearings in the gearbox. 

Typically, the inference may take the following forms, in order of increasing likelihood of damage: 

 Vibration normal 

 Vibration caution 

 Vibration warning 

When the system does warn the user that a problem might exist, external help (such as the OEM or 

other specialists) can be contacted.  The third party can then review the archived data and archived 

analysis results to spot a trend and make a diagnosis and prognosis – thereby completing the 

condition monitoring process of Data collection – Processing – Diagnosis, without the need for a 

dedicated department. 

Bearing the objective of a vibration protection system in mind, this project aimed to deliver a low 

cost, handheld, vibration protection system.  A device of this description would require: 

 A means to record vibration data 

 A measure of signal processing capability 

 Non-volatile storage 

 Portability 

 A user interface (UI) 

 A means to interact with the UI 

Technically, this implies: 

 An ADC microchip 

 A medium powered microprocessor, preferably a DSP 

 An SD card 
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 A rechargeable battery with recharging circuit 

 An LCD screen 

 Buttons 

From this intuitive specification, a device capable of successfully performing the vibration protection 

role, as outlined in this section, was developed.  Due to the low-cost nature of the protection 

system, an advanced CPU with a complex circuit layout was neither possible nor required.  To this 

end, a basic DSP type processor was used to process the data and perform the rudimentary 

algorithms.  However, to achieve practical levels of performance (in terms of time and results), the 

algorithms were optimised as much as possible. 

The system evolved through three prototypes gaining in complexity and maturity.  These prototypes 

were tested in the laboratory and the field.  The results of each test then influenced the next 

prototype, with the final prototype being near production ready. 

This document details the development lifecycle of the project.  It starts by exploring the present 

gearbox condition monitoring environment as background to factors taken into account during this 

project.  A study is then undertaken to obtain suitable solutions to address these challenges, both in 

hardware and software. 

1.2  Vibration monitoring fundamentals 

1.2.1 General gearbox condition monitoring 

 

In gearboxes, both gearing faults (local and distributed) and rolling element bearing faults (usually 

local) are usually encountered.  When these faults are investigated, it is usually the case that 

fluctuating external load is not considered (Bartelmus & Zimroz, 2009) (Stander & Heyns, 2002).  

Additionally, one would normally assume that only one anomaly exists in a gearbox at a time and 

that the change in the condition of the gearbox is as a result of the development of the anomaly. 

There are several reasons for anomalous gearbox vibrations which can be classified into four 

different categories (Bartelmus, 2008), namely:  Design, Production technology, Operation and 

Change of condition.  A chart detailing the different mechanisms for gearbox vibrations is given in 

Figure 1. 

From a vibration condition monitoring point of view, the following simplistic model for a gearbox can 

be used to get an understanding for the environment in which the gearbox will typically operate 

(Bartelmus, 2008): 

 System of elements 

o Prime mover (often electric motor) 

o Gears 

o Bearings 

o Shafts 

o Coupling 

o Driven machinery 
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 Factors influencing vibration 

o Design 

o Production 

o Operation 

o Condition change 

 

 

Figure 1:  Bearings are some of the most common component failures in rotating machinery (Bartelmus W., 2008) 

 

1.2.2 Speed measurements 

 

Determining of the instantaneous speed (IS) is crucial in the condition monitoring environment and 

is currently one of the most important tasks in many industrial applications (Combet & Zimroz, 2009) 

(Combet & Gelman, 2007) (Radoslaw, et al., 2011).  In automatic monitoring systems, this task is 

even more important as the automated algorithm will not work properly if the IS is computed 

incorrectly. That is because the IS is used to find the characteristic frequencies of components such 

as shafts, bearings, gears, etc. 

In practice, however, it is often very difficult to obtain this information, usually requiring additional 

hardware and associated wiring.  Compounding the problem, tachometers or shaft encoders may 

not be a viable solution due to the shafts (either input or output) being inaccessible.  When this is 

the case, obtaining the IS can often be obtained indirectly for vibration measurements on the 

gearbox casing. 

When vibration signals are used to estimate the IS, the fundamental frequency can often be tracked 

and thus the issue becomes one of tracking the IF (Instantaneous Frequency).  However, in the case 

of a change in speed or load during the measuring time, smearing can occur, thus reducing the 

accuracy. 

In the case of steady state operation (which is the focus of this project), the method of gauging the 

IS from the IF is considered to be accurate enough for the purposes of this project. 
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The reader is referred to Section 5.2.3 where this problem is addressed in the algorithm. 

1.2.3 Bearing faults 

 

By their very nature, bearings are one of the most common components in rotating machinery (Kiral 

& Karagülle, 2003) and therefore, one of the most often replaced.  Additionally, it has a finite 

lifespan and is often the subject of abuse (McInemy & Dai, 2003). 

Therefore, with the deliverable of this project being a prototype, it was decided to focus on bearing 

damage first.  In addition, due to the subtle nature of bearing damage, it was considered to be the 

most challenging.  

The type of damage typically seen on roller bearings are as follows (Ganeriwala, 2010): 

 Ball damage 

 Inner race defect 

 Outer race defect 

 Cage damage 

Each of these faults generates a distinct frequency which can be obtained when converting a time 

signal to the frequency domain.  These frequencies are dependent on the geometry of the bearing, 

the speeds of the inner and/or outer races and, under certain circumstances, the change in load 

applied to bearing (if a bearing is both radially and axially loaded, the contact angle and thus the 

frequency – see equation below – will be affected).  An example of one such an equation (for outer 

race defect) is given below and additional fault frequencies can be found in the same reference 

(Bloch & Geitner, 1999):  

 
     

  

 
(  

  

  
    )      [Eq. 1] 

 

Where Nb is the number of balls or rollers, Bd is the ball or roller diameter, Pd is the bearing pitch 

diameter and Θ is the contact angle.  A time and frequency domain representation of some of these 

faults can be represented as follows: 

 

 

 

 

 

 

 

Figure 3: Frequency domain response showing 
sidebands, inner race rotating and outer race 
stationary (Kardushin, 1991) 

Figure 2:  Time domain response of defective bearing, 
inner race rotating and outer race stationary 
(Kardushin, 1991) 
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In bearing frequency calculations the following assumptions generally hold (Ganeriwala, 2010): 

 Equal diameter balls 

 Pure rolling contact 

 No slippage between shaft and bearing 

In practice, pure rolling contact and no slippage will not always be maintained, however the error 

introduced in practice should not usually be sufficiently large to be of concern. 

1.2.4 Research trends 

 

There are historically several methods how potential bearings faults were detected starting with the 

most basic technique of the screwdriver to the ear (Bloch & Geitner, 1999).  This technique worked 

remarkably well when applied by a skilled artisan.  However, much more sophisticated techniques 

became available and research is still continuing.  A good starting point for a protection system will 

often be overall vibration measurements such as RMS, CF, etc. (Jardine, et al., 2006).  These 

techniques are however not considered reliable enough for the current application, as their 

reliability is compromised in the absence of significant impulsiveness, as found under certain 

circumstances of distributed bearing failures.  However, frequency domain techniques tend to be 

more sensitive and provide an earlier indication of possible.  Indeed, many modern techniques are 

frequency domain based. 

In the research domain, several advanced techniques are used to identify bearing damage.  The most 

common techniques are listed below (Ganeriwala, 2010): 

 Time waveform analysis 

 Frequency spectral analysis 

 High Frequency detection 

 Stress wave analyser or spike energy 

 PeakVue 

 Enveloping 

Of these, the time and frequency domain techniques are very well established and are used, in one 

form or another, throughout the industry (Karacay & Nizami, 2009).  However, many of these 

techniques work only within a certain set of circumstances, which can limit their application to more 

general problems. 

A proven technique that can work consistently (albeit sometimes with less accuracy) is the time and 

frequency domain analysis (Taylor & Kirkland, 2004).  Using this technique within a rule based 

diagnostic system, most machinery problems can be identified.  In fact, this technique can be 

especially useful for rolling element bearing fault detection as the fault frequencies need only be 

computed (from bearing and operating info) and comparing it to the frequency spectrum (Taylor & 

Kirkland, 2004).  Due to the fact that rolling element bearings in good condition only create a 

random noise when in operation (Tandon & Choudhury, 1999), the presence of a fault frequency in 

the frequency spectrum is a strong indicator of bearing damage (Taylor & Kirkland, 2004) (Kiral & 

Hira, 2003).  However, it has been noted that in some instances that damaged bearings exhibit a 

Gaussian probability distribution (Mathew & Alfredson, 1984).  
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Some of the very latest techniques being researched and used today include the following 

(Ganeriwala, 2010): 

 Adaptive Noise Cancellation 

 Self-Adaptive Noise cancellation 

 Spectral Kurtosis 

 Discrete random separation 

 Cyclostationary signal analysis 

 Hilbert-Huang Transform 

 Entropy 

One must also take cognisance of the High Frequency Resonance Technique (HFRT), which is very 

popular in bearing diagnostics (Nelwomondo, et al., 2006).  This technique is based on the high 

frequency resonances in the component structure as documented in one of the earliest papers on 

bearing diagnostics (Balderston, 1969) and has been very successfully applied (Randall & Antoni, 

2011). 

A common use for the enveloping technique is the identification of cracks in the outer race, inner 

race and rolling elements of anti-friction bearings (Konstantin-Hansen, 2003) and is excellent for 

diagnosing cracks and spalls.  It can be very effective in conjunction with other signal processing 

techniques as part of a complete maintenance program. 

These techniques represent some of the latest available research and can achieve a high degree of 

accuracy in discovering and diagnosing damage in bearings.   

However, considering the purpose of the project, to develop a low cost vibration protection device, 

these techniques are not within the current scope as this project does not seek to develop a system 

capable of delivering accurate diagnoses.  Rather a handheld system, likely to be carried by a 

technician or built into a gearbox, capable of conservative estimates on which to judge whether 

professional assistance is required.  Furthermore, although cognisance is taken of the latest modern 

techniques, the processing power available is not sufficient for practical use (typically MCU speeds of 

less than 100 Hz and a few kilobytes worth of RAM). 

It should be mentioned that it is obvious from many sources of bearing failure analysis that although 

methods proposed seems to work well enough, the tests are performed on single bearings alone 

(often in a plumber block like arrangement).  When these tests are performed in the industry while 

working in a machine many sources of noise are present, including: 

 Electric motors 

 Fluid or other couplings 

 Conveyor belts 

 Vibrating structures 

 Mills 

 Vibrating screens 

 Crushers 

 Vehicular noise 
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The de-noising techniques when performing bearing fault detection is fairly difficult with current 

computational resources.  The case of synchronous averaging is often used in gear and shaft 

condition monitoring (Hochmann & Sadok, 2004) to eliminate noise.  This technique requires a signal 

synchronous with the shaft speed, such as a tachometer signal.  Because the Gear Mesh Frequencies 

(GMFs) are integer multiples of the shaft rotation frequency, the GMF will also be synchronous with 

the shaft rotation frequency and therefore averaging the shaft rotations will average the GMFs as 

well.  However, the bearing fault frequencies are not synchronous with the shaft rotation 

frequencies (see Table 1 for details) and therefore averaging the shaft rotations will have the effect 

of averaging out the bearing frequencies. 

Table 1:  Selected gearbox frequencies (from a sample gearbox, as tested in the project) 

Shaft rotation frequency Gear Mesh Frequency Bearing frequencies 

24.67 Hz 493.33 Hz 12.12 Hz (FTF) 

  64.95 Hz (2 × BSF) 

  161.99 Hz (BPFO) 

  232.68 Hz (BPFI) 

 

As can be seen in Table 1, the GMF is exactly 

20 times the shaft rotation frequency (due to 

there being 20 teeth on the particular gear).  

However, none of the bearing frequencies 

are integer multiples of the shaft rotation 

frequency and therefore, synchronous 

averaging cannot be used to de-noise the 

signal. 

A number of other de-noising techniques 

exist, like non-synchronous averaging and 

spectral averaging (which is recognised to not being strictly noise reducing, but noise averaging).  

But these place a high premium on execution time in the embedded environment (with relatively 

little programming power and very little memory). 

Another common practice is that of trending a series of vibration signals (see Figure 4).  The premise 

of this practice is that a series of vibration measurements is made throughout the lifetime of the 

machine.  When viewing spectral plots of these measurements in sequence, as in Figure 4, one can 

see when machinery faults start to occur and monitor their evolution. 

This is a technique that is commonly used in the industry and , indeed, at the SASOL plant in Secunda 

where this technique is being applied to the monitoring of the gearboxes, fluid couplings and electric 

motors driving the conveyor belts as well as the bearings supporting the rollers of the conveyor 

belts. 

Even though the algorithms do not use trending to diagnose a fault, it will be seen later in this report 

that the final version of the hardware does save time and frequency domain data in order for a 

human analyst to make a judgement either on a routine basis or when the hardware gives a warning 

that a fault might exist. 

Figure 4:  Typical waterfall plot (Girdhar & Scheffer, 2004) 
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1.3   Electronic application considerations 

1.3.1 Synopsis 

 

In section 1.2.4 several advanced techniques are mentioned.  Some of which, such as HFRT, are used 

very successfully to locate and diagnose bearing damage at a very early stage. 

Due to the envisioned market positioning of the device, the objective of the device is not to locate 

bearing damage at a very early stage, but to alert an operator that there is a possibility that damage 

is already present on the  to the device and that expert assistance should be sought. 

The proposed market positioning therefore influenced the hardware specification of the system and 

dictated the use of fairly simple and electronic development platforms. 

1.3.2 Processor type 

 

Due to the convenient software package offered as well as the support availability it was decided to 

seriously consider the Microchip range of products.  Microchip has on offer a range of 3 main types 

of Programmable Interface Controller (PIC) microcontrollers (Microchip, 2010).  These are: 

1. 8-bit PIC Micro Controller Units (MCUs) 

2. 16-bit PIC MCUs and dsPIC Digital Signal Controllers (DSCs) 

3. 32-bit PIC MCUs 

The first device family listed above, the 8-bit PIC, represents the entry level microcontroller on offer 

by Microchip and represents the bottom range of functionality and performance.  In contrast to this, 

the 32-bit PIC microcontroller family is the flagship range of microcontrollers on offer by Microchip.  

These microcontrollers represent a fairly new type of microcontroller (released in 2007) and have 

many advanced features, fast operation and generally the most memory.  It was the midrange type 

of microcontrollers that seemed most attractive for this project.  Specifically the 16-bit dsPIC DSCs 

seemed the most applicable to this project due to their Digital Signal Processor (DSP) capabilities. 

The principal attraction for DSP is the fact that their hardware, software and instruction sets are 

optimised for numerical processing applications (Skolnick & Levine, 1997), crucial for rapidly 

processing digitised data as they have hardware multiplication capabilities, rapidly speeding up the 

execution of any algorithms requiring multiplication intensive routines. 

1.3.3 Software implementation 

1.3.3.1 Development rationale 

 

The algorithms were first coded and tested in the Matlab environment.  This was deemed an ideal 

environment for developing the routines due to its flexibility and ease of use.  The Dynamics Systems 

Group of the University of Pretoria has several licenses for this software package as well as several 

toolboxes.  This provided a number of advanced routines that proved valuable in the development 

of the algorithms. 
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However, this language is not readily supported by the chosen hardware architecture (see section 2) 

and therefore had to be translated to a more suitable language.  The chosen language was ANSI C.  

This is a very powerful language for imbedded programmers and a very brief survey will convince 

any reader that it is used widely throughout the industry. 

Therefore a license for MicroC Professional was obtained.  This is an ANSI C based programming 

language used to program the Microchip series of MCUs. 

1.3.3.2 Algorithm efficiency primer 

 

Due to limited processing power available (compared to a PC), a conscious effort was made to select 

the most efficient algorithms. 

In the context of this project, code efficiency is accepted to be execution time – which directly 

relates to the number of computations required for a routine to execute as well as the type of digital 

number used for the computation (such as floating point numbers, 8-bit integers, 16 bit integers, to 

name a few). 

The easiest way to increase efficiency was then to use integers as much as possible and this 

philosophy was applied at every opportunity.  Secondly, a conscious effort was made to select 

algorithm implementations with as few computation steps as possible.  The way this was quantified 

was with the well-known “big-oh” notation, as is often used in computer science (Avigad & Donnelly, 

2004). 

Big-oh notation forms part of the asymptotic analysis branch of mathematics and allows one to 

observe the behaviour of a mathematic function when it approaches 0, a constant, or infinity.  It 

does so by supressing lesser order terms which become inconsequential when the tending towards 

the given boundary. 

Formally, it is defined as (Graham, et al., 1994): 

  ( )   ( ( ))            

 

[Eq. 2] 

which implies that: 

  ( )   | ( )|            
 

[Eq. 3] 

In words this means that when n tends towards a set limit, the function f(n) is at most a constant 

times the absolute value of a related function g(n).  For example (Graham, et al., 1994): 

 
 ( )  

 

 
   

 

 
   

 

 
  

 

[Eq. 4] 

There exists the function: 

  ( )     
 

[Eq. 5] 

for which can be written: 

  ( )   | ( )|            [Eq. 6] 



11 
 

 
Because when n approaches infinity, the lesser order terms (the n2 and n terms in this case), 

becomes insignificant and one can find a (unspecified) number C which will satisfy the condition.  

Broadly speaking, in the example above, the function f(n) and g(n) will behave in a similar manner 

when approaching infinity. 

The manner in which this concept will be used in this project is to evaluate the efficiency of 

algorithms by comparing the number of computational steps in their execution.  In this context, the 

function f(n) represents the actual number of steps required to perform the algorithm and n 

represents the length of the vector which serves as the algorithm input.  Therefore, g(n) represents a 

simplified measure of the steps required the perform the algorithm when the vector length is large. 

A simple example of this is the sorting algorithm discussed below.  The heapsort algorithm is a 

O(nlog2n) algorithm, whereas the elementary bubblesort algorithm is a O(n2) type algorithm.  This 

then implies that as the vector size starts getting large, the number of computational steps 

approximately squares with vector size in the case of bubblesort, yet with the heapsort a logarithmic 

relationship exits.  This has a direct impact on execution time (which is even more pronounced when 

dealing with floating point numbers) and the heapsort algorithm would be the better choice. 

1.3.3.3 Sorting algorithm 

 

Sorting algorithms, such as the examples given above, are very commonly used in the programming 

industry (Press, et al., 1995) and has therefore received a significant amount of attention.  In the 

algorithms deployed in this project, the sorting function was used extensively.  It was mostly used to 

find a maximum and minimum value as well as the median value (along with the index) within a 

vector. 

The MikroC Pro software package offers both a max and min function in its library, but these 

functions come with the severe limitation that they only work on integer vectors.  This renders them 

useless for the specific application.  Therefore, a sorting algorithm was used to sort the array and 

then pick the last element in the rearranged array (the arrays are sorted in ascending order).  A 

separate vector containing the indexes was created and manipulated so as to reflect the sorting 

process. 

From the research it was obvious that two candidates were suitable:  Quicksort and heapsort.  

Although heapsort was on average slower that Quicksort, its worst case was only 20% slower than 

the average (Press, et al., 1995) and is a true nlog2n algorithm in addition, it is an in place sorting 

algorithm requiring no extra memory space (very attractive proposition for an embedded system 

with very limited storage space).  Whereas Quicksort’s worst execution time was orders of 

magnitude slower than its average and its implementation is much more involved.  On balance, it 

was therefore decided to implement the heapsort algorithm for its simplicity, in place properties and 

its consistency in execution time.  The specific algorithm employed is a somewhat modified version 

of the code given in Press, et al. (1995) 

 



12 
 

1.3.3.4 Fast Fourier Transform performance 

1.3.3.4.a Basic Fast Fourier transform 

 

Because the Discrete Fourier Transform (DFT) algorithm is, computationally speaking, very expensive 

(Lai, 2004) – it is a N2 type algorithm – the much more efficient FFT algorithm is normally used in 

computer applications. 

This algorithm, requiring only about Nlog2N operations (Grover & Vollmer, 2010), developed by 

Cooley and Tukey, basically decomposes a N-point DFT into two N/2-Point DFTs. These are then 

broken down into N/4-point DFTs and so on until a DFT of size 2 requires computing which is trivial 

(Grover & Vollmer, 2010).  These DFTs are combined in a recursive way to then form the N-point DFT 

of the original series.  This is a so-called Decimation In Time (DIT) implementation - as opposed to 

Decimation In Frequency (DIF) - and the results are in bit reversed ordering (MikroC, 2010). 

A key concept with this implementation is the so-called “Twiddle Factors” (Press, et al., 1995).  These 

are the coefficients used to recombine the decomposed DFTs.  The implication of this is computing a 

15-bit FFT would require 32 768 twiddle factors.  The standard MicroC library only goes up to a 9-bit 

FFT. 

It was therefore decided use one of the clearest derivations of the FFT (Press, et al., 1995) 

formulated by Danielson and Lanczos in 1942.  This derivation still uses the DIT FFT algorithm, but 

instead of the twiddle factors being pre-stored in non-volatile memory, they are calculated and used 

as part of the running routine.  The algorithm found in (Press, et al., 1995) was extensively modified 

for use in an embedded application. 

Lastly, the algorithm described can only be used on data samples having a size of any power of two.  

There are formulations, notably of the Winograd Fourier transform types (Press, et al., 1995), that 

are fast for any size of data samples, but these use a complex indexing system and is not a true in-

place algorithm which makes it unsuitable for an embedded system in which memory comes at a 

premium.  There also exist radix 3 algorithms which can often be 20 to 30% faster (Press, et al., 

1995) than the radix 2 implementation, but these can easily devolve into a N2 type of algorithm 

instead of the Nlog2N type algorithm (Press, et al., 1995).  The likely small increase in speed was 

therefore deemed not worthwhile when evaluated against the risk of a possible severe decrease in 

speed. 

1.3.3.4.b Fast Fourier Transform optimisation 

 

The source for this optimisation, implemented in the Beta prototype, comes from the same 

publication containing source code and the entire mathematical philosophy.  However its 

implementation is somewhat involved, especially as the code had to be adapted for embedded use, 

which is why it was not included in the Experimental Development Model (XDM) and Alpha 

prototype. 

The FFT function (as explained in section 1.3.3.4.a above) previously used in the XDM and Alpha 

prototype is valid for cases of purely real data, purely imaginary data or real and imaginary data.  

However, this leaves much room for optimisation if one is aware of the type of data to be used.  It 
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mostly happens that one will use only real input data (Smith, 1998), as the input signal such as from 

an accelerometer is a real analogue voltage signal, which is then digitised. 

In this section only the means by which it is accomplished will be explained, not the working itself – 

for an in depth study into the matter the referenced literature is recommended. 

Because the C language (used in the code of the hardware) does not have native imaginary number 

support (vital for frequency domain techniques), one is forced to make the convention that every 

second memory location will denote an imaginary component of the first real component.  Thus one 

element of an array (for example) will have two memory locations, one for the real part of the 

element and one for the imaginary part.  When one then starts off with purely real numbers, the 

implication is that every second memory location is set as zero.  As such, one is forced to utilise the 

full complex FFT algorithm.  This proves to be inefficient both in terms of storage and execution 

time. 

The potential for optimisation comes from two properties of the Fourier Transform:  The first 

property is that for purely real (or in fact imaginary) data certain symmetries exist, notably (Press, et 

al., 1995): 

If h(t) is the time domain data and H(f) its frequency domain transform, then 

For purely real h (t):  H(-f) = H(f)* 

This states that the complex value of a negative frequency component is equal to the complex 

conjugate of the positive frequency if the input data is purely real.  This implies that the magnitudes 

of the positive and negative frequencies are the same and forms a “mirror image”, therefore half the 

resulting spectrum is redundant.  As a matter of fact, symmetry exists for purely imaginary input 

data as well; this will be used later in the explanation (Press, et al., 1995): 

For purely imaginary h(t):  H(-f) = -H(f)* 

The second property that has been alluded to previously, is that for an in-place FFT implementation 

one has to leave space for the imaginary components that will result from the FFT computation, 

therefore in the input data string, every second memory location (representing imaginary data) has 

to be set to zero. 

With these two areas of optimisation a computational scheme can be formed in which one can fill all 

the memory locations with input data (instead of every second memory location).  This will yield 

twice the data with the same memory available (as every second location is not initially set to zero, 

but filled with meaningful data); however one would then usually end up with inadequate memory 

(two times too little) space as there is not enough space for the imaginary components of the result.  

This space is accounted for with the fact that the magnitude spectrum of a real function is double 

sided and thus redundant, thereby the other half of the memory space required is made up for.  A 

graphical illustration of this is given below: 
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Figure 5:  Visualisation of the difference between the optimised and non-optimised FFT algorithm 

 

In the figure above the cells represent memory locations.  Blue cells represent useful data points 

while the grey cells represent wasted data (and thus wasted memory) and is to be eliminated by 

optimization.  This wasted data is either in the form of zeros (in the time domain, because the real 

input has no imaginary components) or mirror imaged data (in the frequency domain, as real input 

data has a mirror imaged output as a result).  It is very important to note that this optimisation is 

valid only for purely real input data, as complex input data will not result in zero imaginary (time 

domain) input data and a mirror imaged output (frequency domain) data.  These two consequences 

of purely real input data is the key to make the real DFT algorithm work. 

The result of this optimisation is thus twofold.  1) The first benefit from using this optimisation is 

that one can use two times less memory or, more commonly, twice more data for a given memory 

size – very important for memory limited devices such as DSCs.  This results in a frequency resolution 

that is now twice as fine as without the optimisation.  2) The second benefit is that per useful data 

point, the algorithm operates twice as fast.  This results from the fact, that the FFT algorithm still 

only processes the same number of data points as before.  The only difference is that all the data 

points that are processed, are meaningful data points.  The inefficiency of the non-optimised 

algorithm was that it still processed the zero valued imaginary data points, even though they are not 

meaningful towards the output of the algorithm.  It must nevertheless be understood that both 

algorithms processes the same number of data points.  This can be understood better by looking at 

Figure 5.  As can be seen, the number of useful data points (blue cells) on Figure 5 is equal for the 

Real DFT (i.e. the optimised algorithm) and the Complex DFT (the non-optimised algorithm).  

However, the complex DFT contains just as much redundant data in the form of imaginary zero 

values.  Even though these values are completely redundant, they still have to be processed, 

resulting in an equally redundant double sided spectrum.  This is a property of unoptimised (for real 

data) algorithm.  Of course, for imaginary input data, the initial zeros in the time domain will be filled 

with meaningful data and the resultant spectrum will not be double sided. 

While the specific internal workings of the real DFT algorithm is beyond the scope of this literature, 

it is easy to see from this illustration that a 2× memory saving can be made if the real DFT is used 

instead of the complex DFT in the case of purely real input data. 

Magnitude 

Phase 
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For the sake of comprehensiveness, it should be mentioned that another optimisation exists, which 

works on a similar principle.  Instead of filling the data string in the memory entirely with single real 

input data, it is also possible to interweave the data string with two sets of data.  With this method, 

it is possible to perform the transform of both sets of data with one operation.  Therefore, instead of 

doing both sets of data separately (without the single-sided optimisation, thereby taking twice as 

much memory and time), one can do both at the same time with twice as little memory and twice as 

fast than would be required using the non-optimised algorithm.  

1.3.3.5 Window performance 

 

When experimentation was conducted, both in the laboratory and in the field, it was found that the 

frequency spectrum is fairly course with leakage still interfering between closely spaced frequencies.  

This interferes somewhat with the spectrum and the median computations used in the damage 

detection algorithms.  This is partly due to somewhat low resolution of the Alpha prototype 

(0.48Hz), but optimising the window was deemed an inexpensive way to get a better quality 

spectrum, specifically distinguishing between closely spaced frequencies. 

1.3.3.5.a Spectral resolution 

 

With the optimised real FFT algorithm in-place, it is possible to fully utilise the memory capacity 

available.  The algorithm (and its memory saving capabilities) will allow a 16-bit FFT to be performed 

on the data (yielding 32768 discrete frequencies).  A sampling frequency of 6.25 kHz will yield a 

Nyquist frequency of 3.125 kHz.  The spectral resolution will therefore be: 

 
    

        

           
              

 

[Eq. 7] 

This compares to the (best case) resolution SASOL uses in their condition monitoring department of 

0.25Hz.  The frequencies spaced closest together in typical data are about 1Hz.  Unfortunately this is 

not the complete picture, due to the phenomenon of Minimum Resolution Bandwidth, as explained 

below. 

1.3.3.5.b Minimum resolution bandwidth (MRB) 

 

This is a measure of the minimum separation required (in bins) between two adjacent frequency 

peaks (of equal magnitude) to fully distinguish them apart (Bores Signal Processing, 2009).  

According to the previously cited source, the rule of thumb for MRB is:  to distinguish two 

frequencies of equal magnitude, the spacing (in bins) between them is equal to the half power 

points (-3dB) of the window’s frequency response. 

However, this assumes incoherent addition of the frequency components, whilst the FFT output is 

the coherent addition of the frequency components (Bores Signal Processing, 2009).  Therefore, 

again by the previously cited source, the -6dB defines the MRB. 

This parameter is important when considering spectral resolution and should be taken into account. 
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1.3.3.5.c Coherent gain 

 

It is common during the computation of the frequency spectrum to take the coherent gain into 

account when using a window.   Coherent gain is introduced when using a window as the very act of 

multiplying the time domain signal with the window introduces a distortion effect that alters the 

amplitude of the signal (National Instruments, 2009).  It is computed simply: 

 
               ∑  ( )

 

   

 [Eq. 8] 

Where 

N  -  Number of discrete points in a window 

Simply stated, it is the sum of all the discrete amplitude points in the time domain window (Bores 

Signal Processing, 2009).  In order to get the correct amplitude in the frequency domain, one then 

divides the signal in the time domain by the coherent power gain (National Instruments, 2009). 

1.3.3.5.d Window comparison 

1.3.3.5.d.i Spectral comparison 

Highly influential parameters, in terms of leakage and signal-to-noise ratio (Bores Signal Processing, 

2009), were found to be highest side lobe level and worst-case processing loss.  The best performing 

windows in these cases were (Harris, 1978): 

 Blackman-Harris 

 Dolph-Chebyshev 

 Kaiser-Bessel 

The more common Tukey, Poisson, Hanning and Hamming windows were all found to be inferior.   

The frequency response of some various windows considered are given on the next page, along with 

a uniform window for reference.  This plot illustrates the leakage effect in terms of magnitude vs. 

affected bins. 

 

Figure 6:  Leakage comparison of considered window functions 
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In the figure, the -6dB boundary is demarcated with a solid black line; in addition the ADC amplitude 

bandwidth is illustrated by a dashed black line (the ADC has an amplitude bandwidth of about 90dB, 

below which it falls below the minimum resolvable value of the ADC).  The trade off in window 

performance is evident in the figure above:  Main lobe width versus side lobe height. 

Firstly, it is visible that the side lobes of the Kaiser-Bessel and Blackman-Harris fall below the ADC 

amplitude bandwidth giving them the best possible noise leakage limitation from further from the 

frequency peak.  One can also see the uniform window has the smallest side lobe width, but very 

high (and thus undesirable) side lobe height. 

The best window in this case would be the one that gives sufficient MRB and leakage suppression for 

the application while providing for the fastest computation time. 

The following figures illustrate the frequency response in practice.  It shows several plots of two 

frequencies of equal amplitude subjected to different windows in each plot (the time series was 

divided by the coherent gain of the windows so that the give the same spectral amplitude, as 

explained in the section 1.3.3.3.3). 

It is useful to compare the window effects this way, as it allows one to easily visualise the ultimate 

effect of the window functions when used in practice. 

Figure 7 and Figure 8 below show the frequency spectrum of two frequencies (conveniently chosen 

45 and 46 Hz) of equal amplitude separated by 1Hz, as is the minimum of frequency separation in 

the tested data.  The test shares the spectral resolution of the optimised hardware, namely 0.09Hz. 

 

Figure 7:  Sample spectrum of two closely spaced signals (frequency difference of 1Hz) 
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Figure 8:  Sample spectrum of two closely spaced signals (frequency difference of 1Hz, narrower band) 

 

Details of interest are the peak width and the noise level.  The top figure shows the general leakage 

level in the vicinity of the peaks.  For reference, one can immediately see that not using a window 

(Uniform) produces frightening leakage.  In terms of peak width, not using a window produces the 

sharpest peak, but at the expense of insufficient drop-off further from the peak – with the effect of 

imprecise peaks.  The Hanning does somewhat better with fair attenuation and drop-off, then the 

Blackman, Blackman-Harris and Kaiser-Bessel.  However, with a larger drop-off and attenuation 

comes an increase in peak width, which has an adverse effect on MRB.  Though at this frequency 

separation, both peaks are clearly distinguishable.  The question now becomes, how close can two 

frequencies get before they can be separated?  One can look to the MRBs of the windows to 

determine this, from Figure 6 and National Instruments (2009), both giving approximately the same 

results, we get: 

Table 2:  MRB of the various windows 

Window MRB (bins) 

Uniform 1.21 

Hanning 2.00 

Blackman 2.30 

Kaiser-Bessel 2.73 

Blackman-Harris 2.65 

 

The figures below illustrate how the different windows affect signals as they get closer together.  

From upper left to lower right, the separation between their frequencies are:  2 bins, 3 bins, 5 bins 

and 10 bins. 
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Figure 9:  Comparison of window effect when two closely spaced frequencies are considered 

 

It is obvious that not using a window, one gets the sharpest frequency peaks, and frequencies 

separated by just two bins are distinguishable.  However, it is also evident (especially from Figure 9) 

that the amount of leakage is completely unacceptable.  For three bin separation, the windows are 

about equal in their resolving ability.  With discrete peaks barely separable (this is because all of the 

windows have a MRB of less than 3).  For 5 bins, the Hanning window separates the peaks the best, 

followed by the Blackman, Blackman-Harris and Kaiser-Bessel.  At 10 bins the situation is reversed, 

the Kaiser-Bessel separates frequencies the best, followed by the Blackman-Harris, Blackman and 

Hanning. 

1.3.3.5.d.ii Computational comparison 

In an embedded system, where computational resources come at a premium – unlike a PC – it is 

important to consider the complexity of the algorithms due to the fact that a more complex 

algorithm might take significantly longer to execute.  Therefore, the running time of the windows 

will now be compared and weighed up against the spectral advantages.  

As a reference, the mathematical equations that describe the windows are given below.  In all the 

cases (Harris, 1978) (Ifeachor & Jervis, 1998): 

      

N is the number of discrete points that comprise the window. 

Hanning 
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[Eq. 9] 

Blackman 
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where, typically: 
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[Eq. 12] 

I0 is the modified Bessel function of the first kind, with the range of L defined as going from zero to 

infinity.  Typically though, bounding L between zero and 32 is sufficient and α typically 4 (Ifeachor & 

Jervis, 1998). 

Blackman-Harris 
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[Eq. 13] 

where, typically (Mathworks, n.d.): 

                                                                 

One can see by comparing the Hanning, Blackman and Blackman-Harris that all of them involve an 

increasing number of cosine terms:  with one for the Hanning, two for the Blackman and three for 

the Blackman-Harris.  This corresponds to the times of execution with Blackman and Blackman-

Harris being two and three times as long, respectively, as the Hanning window. 

The results for the time of execution are given below.  The window was applied to a vector 

containing only ones and applied to vectors of varying lengths.  The time taken to execute is given in 

the table below. 

Table 3:  Time to execute the various windows 

Window Time to execute (s) 

N = 512 N = 2048 N = 8096 N = 327678 N = 65 536 

Hanning 2.8 4.2 10.7 36.3 71.0 

Blackman 3.2 6.1 18.7 69.3 135.3 

Kaiser-Bessel >120 >120 >120 >120 >120 

Blackman-
Harris 

3.6 8.2 27.3 103.3 203.9 
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It should be mentioned that the tests above show the results based on the standard 10MHz speed of 

the processor, it can be completed much more rapidly (8×) by the Beta prototype that operates at 

80MHz. 

Firstly, it was realised during the very first test that the Kaiser-Bessel window would execute 

extremely slowly and clearly was not suitable to an embedded application.  When it was tested and 

did not finish after two minutes when merely computing 512 points, the test was aborted.  It was 

therefore decided from the outset that it was not a feasible window and not tested further. 

It can be seen that the Hanning window is the least computationally effective, followed by the 

Blackman, Blackman-Harris and the Kaiser-Bessel.  The Blackman-Harris is about 50% more 

computationally intensive than the exact Blackman, and looking at the equations, it is easy to see 

why:  it has one more multiplication term (keep in mind floating point multiplication uses the largest 

amount of resources) – totalling three, whereas the Blackman has only two. 

Seeing that the Blackman is still relatively fast (albeit approximately 2× slower than the Hanning) and 

has a somewhat better leakage attenuation, but about the same main-lobe width, it is considered 

superior.  The Blackman-Harris and definitely the Kaiser Bessel are considered too computationally 

expensive for the application, although these windows have very good leakage attenuation.  Their 

main-lobe widths however are inferior to both the Hanning and Blackman and further detracts from 

their attractiveness.  Thus, the Blackman window is the window of choice and was chosen for this 

project. 

1.3.3.6 Achieving higher ADC resolution using oversampling and decimation 

 

For the Beta prototype implementation, it was decided to use the on-board ADC of the MCU in 

conjunction with an oversampling decimation routine.  What follows is a summary about the theory 

of operation.  It is heavily based on the Microchip application note AN1152 (Microchip Technology 

Inc, 2008). 

The process of quantising an analogue signal into digital words introduces quantization noise, the 

smaller the word length, the greater the noise introduced. The signal-to-quantization noise ratio is 

defined as: 

                        (  )      

 

[Eq. 14] 

where N is the number of bits and LF is the loading factor, defined as the ratio of the RMS value of 

the input analogue voltage to the peak ADC voltage.  For a sine wave LF = 0.707 and the equation 

become: 

                      

 

[Eq. 15] 

From the above equation it can be seen that the SNRQ improves by 6.02 dB per bit and the higher 

the number of bits, the better the SNRQ becomes.  The SNRQ of a 12bit ADC is about 74.01 dB and 

that of a 16bit ADC is about 98.09 dB.  It will now be shown how the SNRQ can be improved without 

increasing the word length of the ADC. 

The Power Spectral Density (PSD) of the quantization noise with a flat spectrum is given by: 
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[Eq. 16] 

One can therefore see that to decrease the PSD of the quantization noise, it is necessary to either 

decrease the LSB value (which means increase the word length) or increasing the sampling 

frequency – which leads to oversampling.  The SNRQ improvement after oversampling is now given 

by: 

 
                     

   

  
 

 
[Eq. 17] 

where FOS represents the sampling frequency (when oversampling) and FN represents the Nyquist 

frequency.  Therefore, the overall SNR is: 

 
                           

   

  
 

 
[Eq. 18] 

Suppose we have a P-bit ADC and a Q-bit ADC with Q>P, the sampling factor is calculated as follows: 

    

  
        (   ) 

 
[Eq. 19] 

The following block diagram shows the stages of the data acquisition process: 

 

Figure 10:  Block diagram of signal acquisitioning and processing (Microchip Technology Inc, 2008) 

 

The analogue signal is oversampled and an anti-aliasing filter applied.  The remaining signal is then 

further subjected to a digital low-pass filter to suppress the higher frequency quantization noise and 

to negate the effect of aliasing that may arise after down sampling.  After filtering, the signal is then 

further passed through a decimator to downgrade the rate.  At this point the sampled points can be 

used in the DSP.  The signal that is obtained at the end of this process has the SNR of Q bit ADC even 

though a P bit ADC was used. 

It will now be calculated what the effective number of bits will be after the oversampling algorithm 

is employed. 

                                                                              [Eq. 20] 
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    (    )       
(       )

(     )
 

               

       N = 14 

As can be seen, for the resolution of the original system has been partly regained.  The benefits of 

this technique are now simpler and more efficient source code, using a simpler hardware layout and 

a system that is marginally less expensive.  In addition, the full operational capability of the DSP 

functionality in the MCU can now be used.  This opens up new avenues in future expandability of the 

algorithm. 

1.4   Scope of Research 
 

The progress of this project followed four developmental phases, as described below. 

1.4.1 Literature survey 

 

As a starting point, a literature survey was undertaken to explore the current trends in the industry 

and academic research. 

Firstly, this provided a clearer background of what is currently relevant and required in the industry 

as well as what the administrative, financial and technical challenges are in the industry.  Secondly, it 

also yielded information as to the capabilities of modern electronics, upon which a judgement could 

be made regarding suitability of various systems for the application.  Finally, this information had to 

be kept in mind when the algorithms considered for inclusion were chosen considering the 

processing power available from the chosen micro-electronics as well as bearing in mind the 

ultimate goal of the project, i.e. a protection system. 

1.4.2 Algorithm development 

 

The next phase involved the algorithm development.  It started out with a field measurement 

campaign at the SASOL plant Secunda, as described in section 5.2.  That initial measurement 

campaign yielded a large amount of data from a number of different gearboxes in various states of 

repair. 

With guidance from the literature study and using the data gathered from the measurement 

campaign, the algorithm was developed in the Matlab environment.  This platform is highly suited to 

rapid development and adaptation. 

Although the project started with this phase, it was an ongoing effort throughout the project and ran 

concurrently with the other phases. 
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1.4.3 Experimental hardware work 

 

When the choice of MCU architecture was made, an off-the-shelf development system was 

obtained.  This system served as an “electronic development laboratory” and allowed for general 

familiarisation of the environment and the porting of the algorithm from Matlab into C. 

It was clear from the outset that this system would not be sufficient to see the project through, due 

to its large and impractical dimensions and very limited features.  However, since it used the same 

compiler it served as a valuable test bed while the Alpha prototype was designed and manufactured. 

1.4.4 Alpha prototype 

 

The Alpha prototype was the first focussed design with this specific project in mind.  It incorporated 

numerous upgrades and features lacking from the experimental hardware.  Importantly, the Alpha 

prototype was capable of measuring and processing a significant amount of data and giving feedback 

to the user. 

This system was extensively tested in the laboratory as well as at the Sasol plant in Secunda.  It also 

served as a temporary test bed and underwent significant modification while the Beta prototype was 

being designed and built to test new functionality being built into that hardware. 

Due to it being the first system, several critical flaws were discovered which would require a system 

redesign to adequately address. Therefore, both in the laboratory and in the field, many operational 

and technical lessons were learned and incorporated into the design of the Beta prototype. 

The most important shortcomings were the dependence on a controlling PC, i.e. it was not 

independent.  It also did not have an on-board power supply for the ICP accelerometer, which 

necessitated the use of an external and unreliable power supply.  Lastly, due to limitations of the 

compiler, it had to operate at one eight of its designed speed, which meant it performed very slowly. 

Crucially, the benefit of this system was that the entire ecosystem of routines comprising the 

algorithm could be tested as a unit.  This differs from the experimental system, described in 

paragraph 1.4.2, in which the routines often had to separated and tested individually.  This is 

primarily due to the fact that Alpha prototype had significantly more memory and the capability to 

sample an external signal. 

Additionally, this system afforded the opportunity to write a number of device drivers, such as the 

memory and ADC drivers as well as implement the corresponding modifications to the algorithms.  

Due to the fact that the Beta prototype used the same components, the majority of the drivers could 

be reused with no or little modification. 

Finally, the system was highly modified during the manufacturing phase of the Beta prototype.  

Several delays were encountered during its manufacture and for the sake of driver programming of 

some of the newer facilities of the Beta prototype, the Alpha prototype were modified with a 

number of subsystems of the Beta prototype. 
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1.4.5 Beta prototype 

 

The specification for the Beta prototype was generated after the Alpha prototype finished with its 

field testing.  Several key areas of improvement were identified to address the shortcomings of the 

Alpha prototype.  The redesign of the circuit layout provided an opportunity to add several useful 

features. 

 

Areas which were improved upon on the Alpha prototype were: 

 On-board power ICP power supply 

 Corrected circuit design of LCD 

 Corrected circuit design of push buttons 

 Elimination of the external ADC and use of the on-board ADC on the MCU 

 Combined use of the LCD and push buttons allowed the use of the original design speed, 

enabling an eight times speed increase over the Alpha prototype 

 Combined use of the LCD and push buttons allowed the Beta prototype to be independent 

of a controlling PC 

New features on the Beta prototype are: 

 SD-Card reader 

 Serial port 

 Interfaces for future development 

 Lead-acid battery recharge circuit 

The result of these modifications produced a near commercial ready system capable of recording 

and storing external signals, processing and storing the results for later analysis, whilst operating 

independently of a PC. 

It was calibrated in the Sasol Laboratory for Structural Mechanics at the University of Pretoria and 

extensively tested at the Sasol plant in Secunda, where the data gathered correlated closely with the 

results measured by Sasol. 

The result is a system that performs the role of a ‘Vibration protection system’ and offers an analyst 

the tools to make a judgement if an alert is given. 

1.5   Summary of chapters 
 

What follows now is a brief guide of the chapters comprising this dissertation. 

Chapter two details the design evolution of the Alpha prototype and the Beta prototype as well as 

the role of the experimental development model.  It recounts the role each set of hardware played 

in the project, the weaknesses of the various hardware systems and they were corrected in the 

subsequent hardware. This account of the hardware development therefore provides a broad scope 

of the progression of the hardware. 

The development of the algorithm is explained in chapter three.  The work in this chapter draws 

heavily the experimental results of the initial data gathering campaign.  The rationale behind the 
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algorithm and certain decisions are explained in this chapter.  Finally a comparison is made as to 

how the algorithm performs.  The chapter is laid out in order of how the algorithm works and 

therefore provides a step by step walkthrough of the device operation. 

The fourth chapter explains the laboratory test work performed on the hardware iterations.  This 

work was completed before the field work started in order to verify the operation of the device, be it 

the Alpha or Beta prototype.  

Chapter five details the various field measurement expeditions.  The field work done during the 

initial data gathering exercise as well as the Alpha and Beta hardware is explained.  Specifically, this 

chapter explains the goals of the various field work exercises as well as the procedures followed.  

The chapter explains why and how field testing was performed without going into the results. 

Next, in chapter six, the results of the three different field expeditions explained in chapter five are 

presented and discussed.  This chapter provides an impression of how the algorithm developed from 

functioning within a computer separate from the data acquisitioning system to being eventually fully 

integrated into a compact system containing all the subsystems necessary to acquire, process, store 

and display a result. 

Finally chapter seven presents the conclusion in which the summary of findings are listed for each 

device tested.  A cost analysis is also presented along with recommendations and future work.  The 

chapter is presented in a commercial sense and should be read as a general guide to take the final 

beta prototype to a commercially viable product. 
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2. Design Philosophy 

2.1   Preliminaries 
 

Initial discussions with engineers in various industry sectors led to the investigation into the range of 

Microchip products and it was decided that the core of both the XDM and the Advanced 

Development Model (ADM) prototypes would be a Microchip 16-bit dsPIC as mentioned in section 

1.3.2. 

The dsPIC is a type of Programmable Interface Controller with DSP capabilities.  The instruction set 

and hardware design of these PICs are optimised for numerical processing and they contain a 

particularly good multiplication capability.  See section 1.3.2 for more details. 

A choice of three programming languages was considered:  Pascal, Basic and ANSI C.  The 

programming software was available in these three languages and it was ultimately decided to go 

for the C route as it is the most widely used and most flexible programming language of the three, 

particularly when it comes to program efficiency and memory usage (Kochan, 1988). 

The algorithms were developed in a Matlab environment as it is much more flexible for this kind of 

data processing.  However, the Matlab algorithms were subsequently transferred to C to work on 

the dsPICs. 

2.2   Experimental development model (XDM) 

2.2.1 Overview 

 

An experimental model on which most of the 

algorithms’ functioning could be verified was obtained 

in the form of the EasydsPIC4A development system 

available from Mikroelektronika.  Along with this 

system the appropriate software package, MicroC, was 

also purchased.  As the decision was made to use a 

specific manufacturer’s MCUs throughout the project, 

this software package was selected and could be used 

for all development stages in this project.  In addition, 

this package allows programming and in circuit 

debugging (although hardware dependent).  

This hardware features many of the characteristics of 

the final hardware like a LCD, a 16-bit DSP controller, and an in-circuit debugger. 

Apart from the different model Microcontroller (it is of the same family though), it does differ in 

several very important ways from the ADM prototypes: 

1. It cannot capture external analogue signals and therefore cannot record a signal. 

2. It only uses on-board RAM – and much less of it, 2kB as opposed to 32kB – rather than both 

on board and asynchronous RAM to store the data. 

Figure 11:  XDM development board 
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3. It has an on-board In Circuit Debugger (ICD) rather than an external one (relevant for 

development purposes) 

4. Uses a USB power supply, rather than a battery. 

An explanation of the layout of this board is provided in Appendix A. 

2.2.2 Limitations 

 

There were several limitations which prevented the XDM to be used as a fully functional test bed for 

the project and thus why it could only be used to verify the working of some algorithms, as will be 

elaborated on soon. 

2.2.2.1 ADC functionality 

 

A limitation preventing the XDM from being more useful were the ADC inputs of the board being 

directly connected to potentiometers (used for testing functionality and basic operation).  This 

severely limited the use of these channels because the potentiometers were not controllable 

enough to test any form of frequency based technique. 

Therefore no usable external data could be generated with the ADC for use in testing the algorithms, 

even though the ADC operation (from a software writing perspective) could be evaluated. 

2.2.2.2 Memory space 

 

The XDM had only the on-board 2kB of on-board RAM memory at its disposal.  This memory had to 

be shared between the data gathered with the ADC as well as program variables.  With less than 2kB 

to work with, the amount of data gathered would not have been sufficient for thorough testing, but 

it was useful in at least testing the algorithms with generated test data. 

2.3   Advanced development model – Alpha prototype 

2.3.1 Memory space required for vibration data 

 

A brief study of the general form of algorithms used to compute a FFT of a set of data reveals that it 

is very common to compute a FFT in-place.  That means that the time domain of the data, commonly 

in the form of a vector of floating point values, is overwritten with the frequency domain values as 

the algorithm proceeds.  However, frequency domain data in its raw form is complex data.   

The C compiler cannot directly handle complex data.  So it is necessary to leave some memory space 

for the complex data.  An example is given on how the input (real) data is arranged to facilitate the 

(complex) result of the FFT operation.  Elements in the illustration below represents a memory 

location containing a floating point number, but each adjacent pair jointly forms an imaginary 

number (blue and white fill), one memory location for the real part and another for the imaginary 

part.  Therefore, a real data string would look as follows: 

-0.3 0.0 0.1 0.0 -0.1 0.0 0.5 0.0 -0.3 0.0 0.1 0.0 -0.1 0.0 0.5 0.0 
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Represents the data string:  -0.3, 0.1, -0.1, 0.5, -0.3, 0.1, -0.1, 0.5.  Looked at differently, it represents 

the imaginary data string:  -0.3+0.0i, 0.1+0.0i, -0.1+0.0i, 0.5+0.0i, -0.3+0.0i, 0.1+0.0i, -0.1+0.0i, 

0.5+0.0i.  The Fourier transform of this data would then be calculated as: 

-0.4 0.0 0.0 0.0 -0.4 0.8 0.0 0.0 -2.0 0.0 0.0 -0.4 -0.8 0.0 0.0 0.0 

 

This would represent the data string: -0.4+0.0i, 0.0+0.0i, -0.4+0.8i, 0.0+0.0i, -2.0+0.0i, 0.0-4.0i, -

0.8+0.0i, 0.0+0.0i, which would be the Fourier transform of the previous data string.  As can be seen, 

the input data is stored only in every odd element of a memory location (albeit possibly in the form 

of a data vector). 

Consequently, storing 16 samples of data would require 32 memory locations to leave space for the 

imaginary components of the results.  One memory location for the actual data point and another 

“place holder” memory location reserved for the imaginary part of the eventual Fourier transform 

result. 

Using this information and the information in Table 4, one can calculate the number of samples that 

the hardware is capable of taking. 

Table 4:  Alpha prototype ADC parameters 

Parameter Value 

ADC Resolution 16-bit 

Sampling Frequency 15.625 kHz 

Sampling time 2 seconds 

Double precision floating point memory space 
required 

32 bits (4 bytes) 

Asynchronous memory capacity 4096 kB 

 

Keeping in mind the discussion of how complex values are treated (two storage locations for an 

imaginary number), in that a data point uses two memory locations, then a single data point would 

require 64 bits. 

Therefore, one would be able to store: 

 
         

             

                  
 [Eq. 21] 

 

 
       

    
 

                           

This would imply that at a sampling frequency of 15.625 kHz, one would have approximately 4 

seconds of data (sampling frequency in Hertz): 

 
     

                 

                  
 [Eq. 22] 
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As a matter of fact, 32 768 samples would eventually be used, as unfortunately a defective memory 

chip was being used which exhibited instability when writing significantly more data.  This does 

waste a considerable amount of memory and frequency resolution for this hardware, but it was 

replaced with a working unit in the Beta prototype of the ADM.  For the Alpha prototype however, a 

sampling time of 2.1 seconds was used. 

2.3.2 Spectrum characteristics 

2.3.2.1 Lowest frequency component measureable 

 

According to Rayleigh’s criterion, this would yield the lowest frequency measureable as: 

 
  

 

  
 [Eq. 23] 

 

  
 

     
    

         

This is well below the smallest frequency observed (7.4Hz; BSF on the output shaft of a type 4 

gearbox, running at 24.5Hz input shaft frequency). 

2.3.2.2 Frequency spectrum resolution 

 

A 15-bit FFT (32 768points) will yield 16 384 positive discrete frequency bins (due to the double 

sided nature of FFTs). 

 With a Nyquist frequency of 7.8125 kHz, the following frequency resolution will be obtained: 

 
           

      

     
            [Eq. 24] 

 

While investigating the characteristics of the gearboxes, it was found that the closest spacing of 

bearing frequencies at the operating speeds (input of roughly 1480RPM) was 1.2 Hz.  This was found 

in the output shaft of the type 6 gearbox. 

Therefore the frequency resolution of 0.48 Hz/bin was deemed to be admittedly very coarse, but 

sufficient (2.5 times finer than the smallest difference in frequencies) for the Alpha prototype 

hardware to capture enough detail. 

2.3.3 Architecture 

 

The basic layout of the ADM consists of a core MCU (the DSP variety was selected for this 

application).  This is connected to: 
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1. LCD screen 

2. Keypad 

3. Asynchronous memory 

4. External ADC (anti-aliasing filter) 

5. External programmer and ICD (for debugging purposes) 

Various software routines and drivers had to be written to control these components from within 

the MCU.  During the feasibility study, the LCD and keypad were not connected due to circuit board 

design problems, though these components are not necessary for evaluation purposes.  However, in 

the Beta prototype these design problems was rectified. 

2.3.3.1 MCU 

 

As mentioned in the implementation study of chapter one, a DSP type MCU was chosen because of 

it is optimised for numerical computations, particularly multiplication. 

Therefore, the dsPIC33FJ510MC710 was chosen.  It is a microchip product and thus seamlessly 

compatible with the compiler and programmer.  The specific variant was chosen due to its high pin 

count (100 in total, including:  IO pins, programmer ports, external device ports, power lines and 

oscillator pins etc). 

In addition, it is a low power device as well as offering very high code security. 

2.3.3.2 LCD and keypad 

 

The LCD is an 8 bit parallel unit of resolution 124 × 64 manufactured by Emerging Displays.  The 

drivers for this device were provided by Periseo (a Pretoria firm that was consulted during the 

project). 

The keypad is 4 × 4 push button unit and was purchased of the shelf from Mikroelektronika, the 

same company that supplied the programmer and compiler.  Therefore, it was chosen because the 

compiler had preinstalled software libraries to control its functions. 

2.3.3.3 Asynchronous memory 

 

The asynchronous memory, manufactured by Cypress, is a high performance CMOS Static RAM chip, 

organised as 512K words by 8 bits.  Due to it being parallel high speed memory, a specific design 

challenge was to ensure that all the address lines to this device were of approximate equal length.  

This would ensure that no glitches occurred and that the data was reliable. 

Being asynchronous memory, it was ideal because of its very high access time.  This is crucial, as the 

ADC operates at a fairly high output frequency and the memory would need to keep up with storing 

values obtained from it. 
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2.3.3.4 Analogue to digital converter 

 

The ADC, another Microchip product, was chosen for its high sampling frequency (up to a maximum 

of 64 kHz) and resolution (16 bits).  It is a dual channel, analogue front end delta-sigma type ADC and 

includes a Programmable Gain Amplifier (PGA) on each channel.  This is especially useful in utilising 

the full 16-bits of the data as the gain can be adjusted according to the signal strength. 

It uses a Serial Peripheral Interface (SPI) to communicate with the MCU for which the compiler has a 

comprehensive library. 

The tested response of the ADC after calibration is illustrated below: 

 

Figure 12:  ADC response 

 

The response of the ADC merely involved applying a DC voltage on the channel and noting the 

output.  

A calibration run was performed to see the average offset inherent in the circuit.  This value was 

then stored and subtracted from any following data runs. 

It should be noted, that the offset was stable from the very first sample.  Therefore, it was not 

necessary to generate a large number of samples in order to get an accurate offset representation.  

Nevertheless, for the sake of experimental safety, 20 samples were used and their average taken as 

the offset in the ADC.  The result of this is illustrated in the graph above. 

2.3.3.5 External Programmer and ICD 

 

The programmer is used for programming the device.  This variant included an ICD which saves a lot 

of debugging time as it allows one to step through your routine and read the MCU registers real 

time. 
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It connects to the circuit board via a 10 pin ribbon cable and to a USB port on a PC on the other end, 

thus facilitating communication. 

2.3.3.6 Anti-aliasing filter 

 

An analogue Butterworth filter, using the Sallen-Key implementation, was used as a low pass filter.  

It is a fairly low order filter; therefore the cut-off frequency was well below the Nyquist frequency.   

It has a cut-off frequency (-3dB) of 2.8 kHz, which is above the specified 2.4 kHz required.  This value 

was derived from the fourth harmonic of the highest frequency of interest, being GMF on the input 

shaft on the type 4 gearbox.  At the Nyquist frequency of 7.8125 kHz the attenuation is 

approximately -35dB. 

 

 

Figure 13:  Frequency response of the anti-aliasing filter 

 

This filter was tested by manually connecting a signal generator to the physical hardware input pins 

of the filter.  The output (measured at the physical hardware output pins) was compared the input 

with an oscilloscope (both the input and output was displayed).  This was therefore purely an 

analogue test of the passive filter circuitry and the active components (MCU, ADC, Memory, etc.) of 

the device was not tested. 

Figure 14 illustrates only the output when a sine sweep was connected to the input.  It can be 

observed that the output signal amplitude remains constant (in time and with frequency) until the 

increasing signal frequency reaches and surpasses the filter cut-off frequency, whereupon it is visibly 

attenuated. 



34 
 

Figure 15 illustrates a square of 1 kHz wave passed through the filter.  This implies that its harmonics 

will be attenuated, thereby shaping the signal more to the shape of a sine wave, as can be seen. 

Finally, Figure 16 illustrates a signal of 10 kHz, well above the cut-off frequency of the filter, being 

input and the result again measured after the filter.  It is clearly seen how the filter has attenuated 

the signal amplitude. 

 
Figure 14:  Sine sweep (5Hz to 20 kHz) 

 

 

Figure 15:  Square wave (overlaid on input) at 1 kHz 
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Figure 16:  Sine wave at 10 kHz (overlaid with input) 

2.3.4 Limitations 

2.3.4.1 Data retention 

 

Since the Alpha prototype contained only non-Volatile memory, the data was lost immediately after 

the device lost power.   Coupled to the fact of not being able to download the data to a computer, it 

was impossible to view the data acquired on a computer.  Although the MCU supports this 

functionality, the design of the circuit board did not allow this. 

This shortcoming was duly rectified in the Beta prototype, which was capable of storing the data to 

non-volatile memory (in the form of and SD-card) as well as transmitting the data via RS-232 

connection to a PC. 

2.3.4.2 System independence 

 

Unfortunately, due to mistakes made during the design of the circuit board, the Alpha prototype 

never had the capability to function in a stand-alone capacity.  The mistakes related to both the 

keypad and the LCD screen.  Without these components, the device had to be controlled with via a 

computer. 

2.3.4.3 Speed of operation 

 

It was found both during laboratory tests and field tests that the speed of operation was 

impractically slow – a full analysis of a single measurement would take approximately three minutes.  
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This implies a total time of twelve minutes for a three stage gearbox (having four shafts).  This 

analysis time includes measurement and the operation of the algorithm (the most taxing operations 

being detrending, windowing and the Fourier transform). 

2.3.4.4 Accelerometer power supply 

 

A hazard was noticed during the field testing regarding the external ICP power supply.  Since this 

power supply was independent of the circuit board power supply, it was found to be very easy to 

forget to switch it off – resulting in the swift depletion of the three 9V batteries of the unit.  

Although not a technical problem per se, it does have a fairly straight forward technical solution:  

designing an internal accelerometer power supply as part of the circuit board in the Beta prototype. 

2.4   Advanced development model - Beta prototype 
 

What follows is a discussion of the Beta prototype and 

how it differs from the initial Alpha prototype.  The 

changes were driven by the experien6ces with the Alpha 

prototype as well as from general optimisation of the 

design, based on recommendations from our electronics 

consultant. 

See appendix F for illustrations of the beta prototype. 

 

2.4.1 Clock speed increase 

 

It was found that the Alpha prototype was very slow in its execution speed as the MCU was driven 

by an external 10 MHz clock, which represents the maximum input for the specific clock type in use. 

However, the MCU does have functionality to multiply the clock speed by utilising an on-chip PLL 

(Phase-Locked Loop) and achieve significantly higher clock speeds (Microchip Technology Inc, 2009).  

This feature, although available for the Alpha prototype, was not used.  This was due to the way in 

which the Alpha prototype was used:  the device was constantly connected to a computer due to the 

lack of a user interface.  This required the system to operate in “Debug mode”.  Unfortunately, when 

using this mode the PLL cannot be activated with the specific compiler in use. 

However, as the capacity for the Beta prototype to function independently was added, it was not 

required anymore to run in “Debug Mode” and the PLL could be activated.  This increased the 

effective clock speed from 10 MHz to 80 MHz. 

2.4.2 Addition of external storage and serial communication with a PC 

 

It was found to be a handicap of the system that the gathered data could not directly be shared with 

a PC for additional computational purposes outside of the on-chip environment. 

For this reason, the functionality to send data via a serial RS232 port to a PC was added.  This was 

deemed, at the very least, a useful debugging feature to compare the gathered and computed data 

Figure 17:  Illustration of the Beta prototype with 
accelerometer and RS232 cable connected 
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on the chip, with commercial data acquisitioning systems, such as the eDAQ and Spider used during 

this project.  In addition, a serial port could serve as an expansion port for future developments such 

as GPRS transmission and many peripheral applications. 

Furthermore, the functionality to store data on an SD card was also added.  In this way, the data 

could be stored on the SD card and saved for later analysis as it is not always possible to have a PC 

nearby for uploading the data via the serial port.  The SD card also served as a “hard drive” as it 

housed parameter and index files related to the user interface and requirements of the envisaged 

customer. 

2.4.3 Signal acquisitioning and elimination of external ADC 

 

The external ADC was also removed and internal ADC on the MCU was commissioned for data 

acquisitioning.  The reason why an external ADC was used for the Alpha prototype was due to its 

high resolution: 16 bits.  The internal ADC uses only 12 bits, but this deficit was largely recovered by 

specific use of oversampling, (the theory behind which is explained in section 1.3.3.4.), LCD, push-

buttons and a rechargeable battery. 

It was mentioned previously that the Alpha prototype had an LCD and push-buttons as well.  

Unfortunately, the circuit board layout was done incorrectly and these units never functioned.  For 

its purpose, the Alpha prototype could suffice without them, but as the Beta prototype was intended 

to be near production ready, it was crucial to get these units working. 

This was duly accomplished with the Beta prototype, and together with the SD-card formed the user 

interface, as will be explained in the next section. 

As with the Alpha prototype, a battery was used as well.  

However, with the Beta-prototype, a recharging circuit was 

added.  This enabled the Beta prototype to be recharged 

from a 220V wall socket, whereas before the Alpha 

prototype had to be partially dissembled to remove the 

battery and connected to a pre-configured voltage supply.  

It was found that a full charge, from empty, takes about 12 

hours.  However, when used normally during the day, the 

battery would be fully charged by the next morning when 

connected overnight to a power outlet. 

2.4.4 File system 

 

The file system uses a computer-editable SD card and consists of two components: 

 The index file ( a simple .txt) 

 The gearbox folders in which the parameters files resides (also .txt files) 

Figure 18:  Battery socket and power cord of 
the Beta prototype 
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Figure 19:  Appropriate contents of the root directory of the SD card for proper functioning 

 

Figure 19 above shows an illustration of how the contents of the SD card look when mounted into a 

computer.  When the Beta prototype boots up, it reads the contents of the file INDEX.txt.  This file 

serves as a means for the device to know what gearboxes are present on the SD card. 

When using the device, the names of the gearboxes in this file are displayed on the screen and the 

user presses a button to cycle through them.  To select a gearbox, the user presses a different 

button on the device.  At that point, the device goes into the folder of the selected gearbox and 

open the file PARAM.txt.  This file contains all the necessary parameters of the gearbox.  Figure 21 is 

an illustration of this file when opened within Windows.  

The values within the file PARAM are now be loaded onto the device and starts gathering data and 

performs the analysis. 

 

 

Figure 20:  Contents of the INDEX.txt file 

 

Type 1 Type 2 Type 3 
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Figure 21:  Contents of an example param.txt file illustrating the layout of the file 

 

From then the parameters in the param.txt file are loaded into the working cache memory of the 

Beta prototype, the following steps occur: 

1. Sampling of the data 

2. The sampled data is saved to the SD card for later reference 

3. The detrending, windowing and FFT algorithms are applied to the data 

4. The fault finding algorithm executes 

5. The frequency spectrum of the data is saved to the SD card for later reference 

6. A log file detailing the findings as well as certain algorithmic parameters are saved, including: 

a. Input shaft frequency detected by the algorithm 

b. Gear mesh frequencies computed 

c. Bearing frequencies computed 

d. Diagnostic information (Figure 22) 

i. Detected bearing frequencies (i.e. as found by the algorithm after computed 

frequencies were used as a guideline as to where to look) 

ii. Median value of the surrounding noise in that frequency band 

iii. Peak value of the detected bearing frequency 
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iv. Diagnosis (No damage, Moderate damage, Severe damage) 

7. The process repeats for every shaft of the gearbox 

 

Figure 22:  Illustration of log file (partial window) 

 

The creation of a log file was deemed very valuable for field testing calibration purposes.  Using this, 

one can review the diagnostic information off site.  Valuable, because it is often difficult when one is 

on a noisy site with limited time to spend time judging what the device is trying to tell you.   In 

addition, when the device first enters production, it is anticipated that the first clientele may 

experience problems and the log file can be used in solving any problems arising as it provides all the 

diagnostically relevant information. 

Additionally, when the device is operational and it indicates a potential problem with the gearbox, 

the log file can be used by an off-site engineer or technician in conjunction with the time and 

frequency domain history as recorded by the device.  This, in accordance with the requirements for a 

protection system, allows the analyst to view the history of the device, the machine condition 

inference that it made, as well as the reasons why it made that inference.  

2.4.5 User interface 

 

The device is controlled by using the LCD screen and the pushbuttons.  Using these features, the 

backlight of the device can be toggled, the appropriate gearbox for analysis can be selected and the 

measurement can be initialised.  After each measurement and analysis of every shaft, a brief 
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summary of the state of the bearings present on that shaft is displayed.  This process is graphically 

illustrated in the following figures. 

The figure below illustrates the splash screen shown once the device has finished booting and is 

ready for analysis.  Pressing one button toggles the backlight and another moves the routine to the 

next screen.  

 

Figure 23:  Splash screen displayed after device boot 

 

 

Figure 24:  Gearbox selection screen 

 

When arriving at the screen displayed in Figure 24 (by pressing button 1 on the device), the user is 

prompted to choose the gearbox which is to be analysed.  Pressing button 1 will cycle to the next 

gearbox, while pressing button 2 selects the current gearbox and starts the analysis.  If the last 

gearbox is reached, the lists start over from the beginning. 

Once the choice has been made, the device will activate the ADC module and sampling on the first 

shaft will commence until the required amount of samples have been gathered.  Thereafter the ADC 

unit as well as the screen backlight is shut down in preparation for writing to the SD-Card (all of 

these units consume a fair amount of power and if not shut down, the device will reset on lower 

battery levels). 

Once sampling has been completed, the Beta prototype writes the time domain data to the SD-card.  

During this time, the following screen is displayed, which indicates this process.  Also displayed on 

the screen is the maximum time domain value measured. 
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Figure 25:  Progress screen, backlight off 

 

Once the above steps have been completed, the following screen is displayed, proving a summary of 

the analysis of the measured shaft as well as the maximum value in G of the signal. 

 

Figure 26:  Summary screen 

 

This screen displays the most severe analysis found on the shaft.  For example, if a there are two 

bearings on the shaft then six spectral components will be investigated (three for each bearing).  If 

one or more of these peaks is high enough to trigger a warning, it causes a message to be displayed.  

Currently, the following warnings are programmed: 

Table 5:  Screen states corresponding to damage 

Incident Display 

Peaks of interest sufficiently low (No damage) “Vibration Low” 

Highest peak >5× median and <10× median (Moderate 
damage) 

“Vibration Moderate” 

Highest peak >10× median (High damage) “Vibration High” 

 

This diagnosis serves as a warning to the operator if an excessively high spectral peak was found and 

the operator should seek technical assistance. 



43 
 

It is noted that the messages of the analysis in the examples above were very generic in nature, but 

the following are possibilities (on their own or combined): 

 Any message pertaining to the state of the bearings 

 Maximum value 

 RMS 

 Bearing frequencies and peak heights 

 Frequency spectrum (not recommended due to low screen resolution) 

 Any computed value 

When the appropriate button is now pressed, the Beta prototype starts sampling again and the 

process repeats itself until all the shafts are measured on the gearbox.  Of course, the Beta 

prototype knows how many shafts are present on the gearbox as this information was entered in the 

parameter file. 
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3. Algorithm development 

3.1   Algorithm premise 
 

As mentioned in section 1.1, it was decided to initially focus on screening the bearings and 

recommending a course of action based on the findings.  The algorithm therefore incorporates a 

routine that observes the behaviour of the bearings and assesses certain spectral parameters for 

tell-tale signs of possible damage. 

In this regard, it was found in section 1.2.4 that a defect free rolling element bearing does not 

appear at any of its usual fault frequencies (BPFI, BPFO, 2 × BSF) on a frequency spectrum (the 

Fundamental Train Frequency – FTF – was not included as it is not often seen in a frequency 

spectrum a the cage carries very little load, it is more often seen as a modulating signal (Ganeriwala, 

2010)), but only generates random noise.  The basic premise of the algorithm is therefore based on 

the fact that if there is a spectral peak at a fault frequency rising above background noise, there is a 

defect. 

The procedure below is explained in sequence as it is performed by the final version of the firmware.  

The explanation starts at the point where the data has already been captured and resides in the 

memory of the device, without any prior processing.  This explanation thus starts at the beginning of 

the procedure of data processing. 

3.2   Bearing assessment process 

3.2.1 Detrending and windowing 

 

The first operation performed on the data is detrending of the data samples.  This is done to remove 

any possible signal drift in the time domain.  The possible trend is assumed to be approximately 

linear. 

It is accomplished with a best straight line fit, with the use of the least squares method.  A Blackman 

window is applied to each of the data extracts in order to minimise the effect of leakage.  This type 

of window was chosen for its relatively small computation penalty, good leakage attenuation and 

good MRB (see section 1.3.3.3). 

3.2.2 FFT computation 

 

As previously mentioned, frequency domain techniques were decided upon for use in this project.  

In the literature, one finds the use of the Power Spectral Density fairly commonplace.  It was 

however deemed less suitable for the application than a normal FFT.  This being the case, as a PSD 

has a tendency to further shrink low amplitude and magnify large ones. 

This can be easily conceptualised when considering that a PSD is basically multiplying a Fourier 

transform with its complex conjugate. 

Therefore a standard Cooley-Tuckey algorithm was employed for the FFT computation and the 

magnitude spectrum used for damage diagnosis. 
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3.2.3 Input speed 

 

Due to the fact that no speed measurements are available, the algorithm needs to find the speed of 

the gearbox by using the frequency spectrum (the input speed of the gearbox creates a prominent 

spectral peak).  Bearing this in mind, it was necessary to obtain gearbox input speeds as accurate as 

possible, due to the compound effect the input speed has on all other frequencies.  Indeed, as the 

algorithm pre-calculates certain frequencies of interest (GMFs, bearing frequencies, shaft 

frequencies, etc.) based on the input speed, and then looks for spectral peaks at these calculated 

frequencies; a miscalculated input frequency will cause the algorithm to look for a spectral peak in 

the wrong place.  

In order to understand the methodology which is followed to find the actual shaft frequency, it is 

first necessary to describe the spectral characteristics created by the motor and gearbox in the 

vicinity of the fundamental gearbox input shaft frequency.  Bear in mind that these characteristics, 

which will now be summarised, were observed during the study of the gearboxes found at the SASOL 

plant, implying that the algorithm based on them relies on empirical data: 

Due to the fact that a fluid coupling is used to connect the electric motor to the gearbox, a speed 

differential is created between the motor shaft and gearbox input shaft.  This often manifested itself 

in the frequency domain as two spectral peaks, representing the motor speed and gearbox input 

speed (with the motor speed having the higher frequency of the two).  In most cases, the gearbox 

input speed was found to have the higher amplitude. 

However in a significant number of the observed samples, the motor spectral peaks exhibited a 

higher amplitude.  In the most extreme case observed, the gearbox input shaft peak magnitude was 

found to be just 13% of the motor peak magnitude.  Therefore, the algorithm needed to take this 

possibility into account when searching for the motor input speed.  Importantly, when attempting to 

identify a low-amplitude gearbox input speed as described, it is necessary to ensure that a stray 

noise peak is not misidentified as a gearbox input speed, as some noise peaks were observed to have 

an amplitude of more than 13% of the motor/gearbox shaft.  To this end, it was found that if such a 

low amplitude spectral peak does exist, it was typically at least 20% higher than the surrounding 

spectral noise.  This procedure is illustrated in the following flow-diagram: 
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Figure 27:  Gearbox input speed methodology work flow 
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This procedure can be elaborated on as follows: 

1.  A rough estimate is required of the input speed.  A nominal motor speed is sufficient.  In the 

case of the gearboxes under test at SASOL, this approximate speed was 1480 RPM. 

2. This converts to approximately 24.7Hz. 

3. The algorithm searches for the highest peak within a 4Hz range centred on this frequency 

range (i.e. between 22.7Hz and 26.7 Hz). The highest peak within this range is then initially 

taken as the gearbox input speed.   

4. In a few cases the shaft speed of the motor has a larger vibration amplitude than the input 

shaft of the gearbox and the algorithm may therefore wrongly identifies this as the input 

frequency (see Figure 28).  To ascertain this, the second highest peak (of lower frequency – 

because the motor rotates slightly faster than the gearbox) is identified.  If this peak has an 

amplitude of less than 13.5% (empirical value) of the highest peak, then the highest peak 

(initially identified) is taken as the gearbox input frequency (Figure 29). 

  

Figure 28:  Illustration of a motor frequency having a higher spectral peak than the gearbox input shaft 

 

Figure 29:  Illustration of the input shaft having a spectral peak more than 13.5% of the second highest peak 
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5. If the second highest peak has an amplitude of more than 13.5% of the highest peak, there is 

a probability that it is the input frequency of the gearbox (see Figure 30).    However, this 

peak may well be spectral noise.  To test for this, if this peak has a 20% (empirical value) 

higher value than any peak before it in the frequency range of interest, it – the second 

highest peak initially identified – is taken to be the gearbox input speed (see Figure 31). 

 

Figure 30:  Illustration of a small amplitude peak with a probability of being the gearbox input speed 

 

 

Figure 31:  Illustration of an input shaft having a spectral peak higher than 13.5% of the motor input frequency as well 
being higher than 20% of a peak preceding it 
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3.2.4 Identifying the relevant spectral peaks 

 

The frequencies of the relevant spectral peaks that can now be calculated are those of the gear 

mesh frequencies (and harmonics), the harmonics of the input speed and the bearing frequencies.  

These values are used in the diagnosis of the fault frequencies. 

The input speed was calculated in the previous step and its first four harmonics are now calculated 

and stored. 

The GMFs and their harmonics were calculated for each mating gear set.  This was done by using the 

input shaft speed previously calculated and the number of gear teeth on each gear (provided by the 

industrial partner).  By using the supplied gear teeth count on each gear and the input speed, the 

next shaft speed was calculated and the GMFs applicable to that gear set computed.  This process 

was repeated for each stage in the gearbox until every GMF of that gearbox was computed. 

After the bearing part numbers for each shaft on each gearbox were supplied by the manufacturer 

of the gearboxes, the SKF bearing calculator website (SKF, n.d.) was consulted and the estimated 

fault frequencies for each bearing were computed (note: only estimated frequencies are computed, 

the exact frequencies will be found shortly).  Importantly these calculations were based on the 

original estimated input shaft rotation speed (1480 RPM).  

To compute the exact frequencies however, one needs to take a look at how these frequencies are 

computed.  Looking at the equation below, it is clear that for a specific bearing design, these 

frequencies vary linearly with a change in input speed.  It is therefore easily possible to algebraically 

manipulate the SKF computed frequencies so that they reflect the actual frequency instead of the 

estimated frequencies.  This process is illustrated below with the example of the BPFI frequency: 

 
      

  

 
(  

  

  
    )      [Eq. 25] 

 

Because variables like the number of rollers, roller geometry and contact angle are generally 

assumed to be constants in a bearing application, the following can be stated: 

             [Eq. 26] 
 

Therefore, one can derive any new frequency of the same bearing at a new speed as follows: 

 
            (

    

    
) [Eq. 27] 

 

Using this principle, the actual bearing frequencies (and their harmonics) were computed by 

compensating for the approximation by dividing with the estimated input speed and multiplying by 

the actual input speed. 

3.2.5 Bearing state assessment 

 

Once the frequency spectrum has been generated, the shaft speed computed and the bearing 

frequencies are computed, and a survey on the state of the bearings can be attempted.  The bearing 
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is assessed by considering the amplitudes at its fault frequencies.  The algorithm operates on the 

premise that if a high enough spectral peak at one of these frequencies is present, then the bearing 

vibrations are assessed to be anomalous and the operator need to warned of potential damage.  The 

relative height of the spectral peak above the noise is used as the assessment parameter that 

dictates the type of alert that is communicated to the user of the device. 

To this end, the first procedure to be done is to find the index of the frequency.  At this point a 

problem arises again with the discrete nature of the frequency spectrum.  The computed frequency 

of the bearing anomalies usually lies between two discrete values of the frequency vector.  The 

value nearest the computed frequency is then used henceforth. 

Due to this frequency still being only an approximation (because any variation in contact angle, any 

slippage of either rings or an inexact shaft input speed may cause the computed bearing frequency 

to deviate from the actual bearing frequency) a search for a peak in the general vicinity of this 

frequency is undertaken (+/- 1 Hz in either direction of the computed frequency – see section 3.2.8 

for further information).  The highest peak within in this 2 Hz boundary (with the computed 

frequency as the centre frequency) is then taken to be the bearing fault frequency and the 

amplitude of the signal at that frequency is noted. 

The fault frequency’s amplitude now compared to the median of the surrounding frequency 

components (the median of all the frequency components 5Hz either side of the identified fault 

frequency).  When the amplitude of the fault frequency (as per the previous paragraph) is between 

or above certain boundary values (multiples of the median value – see section 3.2.6) an assessment 

is made, with a relevant message communicated to the user. 

3.2.6 Statistical parameter (median) search boundaries 

 

If a spectral peak is detected in the search boundaries, it is compared to the median of the 

surrounding frequencies, as explained in the previous section.  The reasoning being that if a peak 

stands out significantly above the 

surrounding median of the noise, it is likely 

a definite signal originating from the 

gearbox. 

As mentioned, the median of the 

surrounding noise is used instead of the 

mean.  This is simply because the median 

often gives a more accurate representation 

of the noise level because a stray peak of a 

nearby signal component would raise the 

mean to a level unrepresentative of the 

noise levels.  The median, being merely the 

middle value in a sample (with an equal 

number of samples being larger and lower than it), often gives a much more representative figure of 

the noise level and was not as badly affected by stray peaks. 

Figure 32:  The bell curve, illustrating the relationship between 
mean, median and mode (not applicable) in a Gaussian 
distribution (von Hippel, 2005) 
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In addition, the median and mean of Gaussian noise is exactly the same, so in the case of no stray 

peaks, the answer would be unaffected (von Hippel, 2005).  See Figure 32. 

For the purposes of this project, if a fundamental spectral peak of a bearing damage frequency was 

found having an amplitude of 5 times the median value of the surrounding noise, a ‘Vibration 

Caution’ message is communicated to the user.  An amplitude such as this was considered 

significantly high enough above the background noise to cause some concern as a bearing fault 

might be present.  This is due to the fact that a bearing in good condition is accepted to emit random 

noise, as found previously.  In this case, the user is advised to contact specialist help in the form of 

consultants, on site specialists or the OEM as a precautionary measure. 

In a more severe case, if a peak with an amplitude of more than 10 times the median was found, a 

‘Vibration Warning’ message is communicated to the user.  A peak, as distinguished from the 

background noise as this, increases the probability that a defect may exist to the point that a 

warning is given to the user.  In this case, the user should seek professional help from specialists or 

the OEM as a matter of urgency. 

Of course, when a peak value of less than 5 times the median value is detected, there is assumed to 

be a minimal risk of bearing damage.  In this case, a simple message of ‘Vibration normal’ is 

communicated to the user. 

The values of 5× and 10× are considered convenient ballpark figures based on known states of the 

measured gearboxes.  A larger measurement campaign using the Beta prototype to various other 

measurement venues (in several different industrial markets) will yield significantly more data to be 

used for calibration purposes to find more exact thresholds.  See the section 7.4.5. 

As the method used will however likely use spectral analysis, this method was considered sufficient 

for the purpose of this project, which is to build a working prototype of a system. 

3.2.7 Exclusion criteria 

 

If another frequency coincides with a bearing frequency, it is impossible to make a judgement using 

the current technique and a false assessment will result.  For that reason, the computed fault 

frequencies are checked against other known peaks (GMFs and their harmonics and input shaft 

speed and its harmonics) in the frequency spectrum before a diagnosis is made.  If another 

frequency coincides with a fault frequency, the user of the device would be notified that an 

interfering signal is present and notified what the source of the signal is. 

Although this currently prevents a diagnosis from being made, further work is intended to remedy 

this and several additional methods are being considered.  See the section 7.4.6 “Recommendations 

– Signal interference compensation”. 

3.2.8 Fault frequency search boundaries 

 

As stated, the search routine takes the computed frequency and finds an element in the frequency 

vector that is the nearest match for this frequency and from this value as the centre of the search 

boundaries, approximately 1 Hz either way is searched for the fault frequencies by looking for the 

highest peak in that part of the spectrum. 
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The boundaries will not be exactly ± 1Hz, though.  The reason for this is now explained.  Reviewing 

the coding rationale in the section 3.2.5, it can be seen that the search boundaries are defined by 

multiplying the upper and lower limits of the search boundaries (±1Hz, in this case) with a factor that 

converts this frequency boundaries into magnitude- and frequency vector element boundaries when 

working within the software.  This is done to tell the program to search only the elements of the 

vector that corresponds to the search boundaries.  However, after this multiplication, the answer is 

rarely an integer value representing a vector element and is usually a real number and has to be 

rounded. 

In order to slightly increase the search boundaries, the upper boundary is rounded up and the lower 

boundary is rounded down.  Therefore, the search boundaries are slightly more than 1Hz. 

To find an appropriate boundary width, a study was done to see what the general difference in 

frequency was between the original frequency (the centre frequency in the search range) and the 

found frequency within the search range.  Based on what the difference is, and taking some extreme 

values into account (there were practical limits to how large this range could be), the boundary 

values were decided upon. 

These practical limits were instances like bearing frequencies near each other on the same shaft and 

the same bearing with fault frequencies near each other.  This occurred in the cases summarised in 

Table 6. 

Table 6:  Close frequency spacing 

Gearbox Problem Comments Value 

Type 4 – shaft 3 Two bearings on the same shaft 
with fault frequencies close to 
each other 

BPFIs:  38.1 and 40.7 
BPFOs:  26.6 and 28.4 

Δf = 2.6 Hz 
Δf = 1.8 Hz 

Type 6 – shaft 3 Bearing fault frequencies near 
each other 

BPFI:  13.9127 
BPFO:  11.8737 
2 × BSF:  10.6744 

 
Δf = 2.039 
Δf = 1.1993 

 

This implies a maximum search boundary extreme value of roughly 1.2 Hz (identified in bold). 

The study of the search boundaries revealed that the average difference between the original value 

(centre frequency) and the final selected value was 0.64 Hz.  However, with a standard deviation of 

0.45 Hz, this value was not selected as the extreme values of the search boundaries as there was too 

much variation in the results.  Instead, the maximum difference was looked at.  This was found to be 

1.11 Hz (the extra 0.11Hz outside the search boundary being the result of the rounding, as explained 

above). 

Therefore, it would logically be possible to increase the search boundaries by an additional 0.1 Hz to 

a total value of 1.2 Hz.  However, to maintain a certain margin between frequencies and search 

boundaries, it was decided to leave the search boundary at ± 1Hz and allowing for an additional 

0.1Hz due to the rounding. 
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4. Laboratory testing 

4.1   Overview 
 

Both the Alpha and Beta prototypes were laboratory tested before they commenced field work.  

However, the nature of their tests differed substantially. 

The Alpha prototype underwent a test primarily to verify the interaction between the hardware and 

algorithm, as the combination had not been tested in its entirety up to that point.  It was therefore 

crucial to verify that all the components, especially the MCU, ADC and memory units integrated well 

and that the processed data were reliable. 

Seeing as the same basic hardware were used in the Beta prototype, verifying this functionality to 

the extent of the Alpha prototype was unnecessary and could be done with simple shaker tests.  This 

was accompanied by amplitude calibration. 

4.2   Alpha prototype laboratory testing 

4.2.1 Exploratory test 

4.2.1.1 Description 

 

Before the alpha prototype was field tested, it was deemed a good idea to do an exploratory test on 

the test setup with laboratory equipment.  Two test bearing outer races were used (an undamaged 

one and a damaged one) and the test was to confirm that the seeded damage was picked up 

correctly by the test equipment.  In addition, the tests certified that no other mechanical faults 

(misalignment, looseness, etc.) or damage would interfere with the test. 

The Alpha prototype then applied the algorithm (described in the entirety of section 3.2) to the test 

data in order to verify it is working on the test setup. 

4.2.1.2 Test setup 

 

The data acquisition equipment used during the test was the Spider data logger, an ICP 

accelerometer (with power supply) and speed sensor (for real time viewing only, not for logging).  

The Spider was connected to a computer and the measurements saved for post processing whilst 

the shaft speed was noted. 

The test hardware used consisted of the following (illustrated in Figure 33): 

Table 7:  List of test setup mechanicals 

Label Description Further details 

1 AC Electric motor 0.15 kW 

2 Motor speed control  

3 Shaft coupling Spider type, flexible coupling 

4 Gear mesh 1:1 ratio, 72 teeth per gear 

5 Support bearings Deep groove 
16006 

6 Test bearing Taper roller - 320/22X 
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Figure 34 key: 

Green:  ICP Power supply 

Red:  Spider 

Blue:  ICP Accelerometer 

 

Figure 33:  Hardware test setup 

 

 

Figure 34:  Figure highlighting the data acquisition equipment 

 

It consisted of an electric motor with speed control.  The 

power was delivered to the setup via a flexible, spider type, 

shaft coupling.  The primary shaft goes through three 

support bearings and the test bearing.  The shaft also has a 

gear attached to it that drives a secondary shaft.  In 

addition, a reflective strip was also attached to the shaft 

(visible on the figure, but not numbered). 

The secondary shaft is a by-product of the test bench’s previous usage as an unbalance apparatus.  

In that application unbalance weights were attached to the both shafts (which spun in opposite 

direction, facilitated by the 1:1 single gear set).  Due to this, the secondary shaft has no load on it 

(apart from the relatively feeble friction torque from its support bearings). 
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4.2.1.3 Test bearings 

 

Two taper roller (320/22X) test bearings were used and were grease lubricated.  One of the bearings 

were damaged and one remained undamaged (see Figure 35 and Figure 36).  In the case of the 

damaged bearing, a cut was made to the outer race of the bearing. 

 

Figure 35:  Damaged test bearing   Figure 36:  Undamaged test bearing 

 

Furthermore, the inner race was press fit onto a 

bushing assembly which had a 10mm “loose” 

interference fit drilled into it (diameter 

10.02mm) so that it fit snugly onto the 10mm 

shaft.  Not visible in Figure 37 is the part of the 

bushing onto which the bearing inner race is 

press fit onto.  The bushing consisted of two 

parts, both of which are visible.  The first is the 

outer part onto which the bearing is press fit, 

and the second is the inner part (just visible 

sticking out on the right) which locates it 

accurately on the shaft. 

An axial load was generated on the bearing 

under test by a tensioning nut (in conjunction 

with a locknut).  This mechanism required the 

use of a M16 stud and a 10mm hole drilled 

axially through it.  The hole was drilled on a lathe 

and was of a loose fitting interference fit (shaft 

diameter is 10mm and hole diameter is 10.02 

mm).  In addition, a radial hole of 3mm diameter 

was drilled into the tensioning bolt in order to 

accommodate two M3 grub screws (one from 

either side). 

Figure 37:  Test bearing inner race bushing assembly 

Figure 38:  Test bearing load mechanism 
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Figure 39:  Disassembled view of the load mechanism 

 

In the disassembled view of the load mechanism, one can see the following: 

1. Test bearing inner race and cage 

2. Load bushing 

3. Loading nut 

4. Locknut 

5. M3 grub screws (within rectangles) 

6. M16 stud, axially and radially drilled (M3 and ø10mm, respectively) 

The load mechanism worked simply by firstly tightening the grub screws mated to the stud (against 

indentations made on the shaft) and then tightening the locking nut as required and then locking it 

in place with the locknut. 

4.2.1.4 Diagrammatical illustration 

 

Figure 40 below shows a schematic of the test setup along with some relevant parameters pertinent 

to the test.  The test setup was assembled in the University of Pretoria’s SASOL Laboratory for 

Structural Mechanics.  In the figure the layout of the test setup becomes clear and one can 

understand how the different components work together. 
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Figure 40:  Synoptic diagram of test setup 

 

4.2.1.5 Results 

 

The signal processing parameters of note in these results are as follows: 

 16-bit ADC resolution 

 4.8kHz Sampling frequency 

o 2.4kHz Nyquist frequency 

o 2kHz Anti-aliasing filter 

 8500 samples 

 8192 point double sided FFT 

o 4096 point single sided FFT 

It will be noted that the above parameters give a somewhat course spectral resolution of about 

0.58Hz.  These parameters were chosen deliberately in order to simulate the results that one would 

expect from the developed hardware, which it can be seen gives a spectral resolution of 0.48Hz as 

can be seen in Section 2.3. 

4.2.1.5.a Comparison:  Damaged/Undamaged 

 

Firstly, to evaluate the success of the test setup, a spectral comparison was made between the 

damaged and undamaged bearings at various speeds; the table below lists the frequencies shaft and 

speeds that was investigated.  The frequencies highlighted in red marks those that were positively 

identified in the spectra. 

The GMFs were never properly distinguished, as there was no load on them and the gears were just 

freewheeling.   In addition, the motor used produced an unvarying 2×line frequency of very high 

magnitude at a constant 100Hz with a modulation frequency of the shaft speed. 
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It is also worth noting that as expected, the amplitude of the BPFO component in the spectra 

increased from about 0.0063g when running at 500 RPM to about 0.023g in the 1000RPM plot (this 

increasing trend is amplitude is visible throughout the speed range considered). 

Table 8:  Frequencies (Hz) at the corresponding shaft speed 

Input (RPM) 500 600 700 900 1000 

Shaft 8.21 9.96 11.72 15.24 16.41 

GMF 590.76 717.34 843.84 1083.60 1200.24 

Taper – BPFI 80.50 96.60 112.70 145.38 161.00 

Taper – BPFO 60.95 73.26 84.98 109.60 121.3 

Taper – 2×BSF 59.00 70.80 82.60 106.55 118.00 

D. Groove – BPFI 57.50 69.0 80.50 103.85 115.00 

D. Groove – 
BPFO 

42.55 51.06 59.57 76.85 85.10 

D. Groove – 
2×BSF 

54.50 65.40 76.30 98.43 109.00 

2×line frequency 100 100 100 100 100 

 

Two spectra at opposite ends of the speed scale (500RPM and 1000RPM) will be shown below in 

their damaged and undamaged states. 

 
Figure 41:  Frequency spectrum at 500RPM input shaft 

 

Several peaks are identified in the frequency spectrum of the data measured at 500 RPM.  Peaks 

identified are the BPFO of the taper roller bearing which is present in the damaged state, but not in 

the undamaged state.  The other strong peaks are sidebands of 2×motor line frequency at a 100Hz 

(sidebands spaced at motor speed – 8.2Hz in this case).   There is also a slightly weaker peak (in the 

undamaged case) at 50Hz, it was ascertained that this was the accelerometer power supply (at that 

stage the battery ran out of power and it was connected to the wall socket, at which point that peak 

appeared).  One can also see in the damaged spectrum a peak at about 33Hz corresponding to the 

4th harmonic of the input shaft. 
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Figure 42:  Frequency spectrum at 500RPM input shaft 

 

As with the 500 RPM data, the signal components visible in these spectra are the BPFO of the taper 

roller bearing as well as sidebands of the 2×line frequency of the electric motor (100Hz) with the 

sidebands spaced at motor input frequency (16.67Hz).  The BPFO is again only visible in the 

spectrum derived from the damaged bearing as expected. 

Further tests, not explicitly shown here, show a similar trend of taper roller bearing BPFO damage in 

the spectra derived from the damaged bearing, but not the undamaged bearing.  In the 800 RPM 

spectra, it is the case that the BPFO damage is concealed by the powerful 100Hz 2× line frequency 

and therefore is of no use and not included.  The frequency plot illustrating the 2×line frequency is 

given below: 

 
Figure 43:  Spectrum illustrating 2x line frequency of motor with modulation at shaft frequency 
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4.2.1.5.b Algorithm testing 

 

The algorithm, discussed in Section 3, was tested on the test gearbox data for calibration purposes 

as well as getting an idea of the frequency spectrum characteristics and tendencies.  Calibration 

changes that were made included the following: 

 Input frequency searching parameters 

 Gear ratios 

 Bearing frequencies 

A limitation of the test setup was found to be the distinction with which the test bearing defects 

were detected in the frequency spectrum – that is to say, peaks at the fault frequencies.  Compared 

to the gearbox tests at Secunda, where the peaks in the frequency spectrum of damaged bearings 

registered above 10× of the median of the noise around the peak, the damaged bearing of the test 

setup registered usually around 4 times the median.  This is likely due to the damage being seeded 

partially outside the loading zone for a tapered roller bearing in pure axial load (as can be seen in 

Figure 36) and therefore is not an accurate representation of the typical values one would see in 

practice. 

Therefore,  judging the bearing based on the previous parameters (spectral peak value of 10×median 

and 5×median of the surrounding noise) does not be an accurate representation of the test as the 

bearing is clearly damaged but registers mostly in the 4×median range.  So, based on the tests the 

following parameters could be ascertained regarding the undamaged and damaged cases. 

Table 9:  Peak/Median ratios at different speeds for the undamaged and damaged bearing 

Speed Undamaged Damaged 

RPM Ratio: Peak/median 

500 0.92 8.45 

600 1.31 3.22 

700 1.30 3.03 

900 1.61 4.99 

1000 1.72 5.03 

 

Comparing ratios between peak and median for the damaged and undamaged cases reveals that 

there is not a large enough difference to be able to distinguish between the cases of “Normal 

vibration”, “Vibration caution” and “Vibration warning”, as discussed in section 3.2.6.  Instead, one 

can only really distinguish between the cases of “Normal vibration” and “Vibration warning”.  The 

boundary for “Vibration warning” case will be set at twice the average of the undamaged ratios 

above.  The average being 1.37, therefore the boundary condition will be set as approximately twice 

that, namely 2.7 (actual twice value 2.74). 

As with the comparison between the damaged and undamaged bearing in the spectra above, the 

cases of 500RPM and 1000RPM serve as examples of the working of the algorithm as well.  Note that 

the diagnosis boundaries are illustrated as well and they are plotted across the range for which they 

are computed (±5Hz).  The identified frequency is plotted with a red dot.  It is worth comparing the 

spectra illustrating working of the algorithm below with the spectra illustrating the cases of the 

damaged and undamaged bearings in the previous section. 
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Figure 44:  500RPM undamaged bearing 

 

The first case above is for the undamaged bearing.  Looking at the spectrum above one can easily 

identify sidebands of the 2× motor line frequency at around 67Hz and 75Hz (identified in Figure 41) 

as well as the accelerometer power supply at 50Hz.  However, comparing the figure above to Figure 

41, one can see that the prominent peak at BPFO frequency is absent and also note the median and 

2.7×median boundaries plotted as well.  As a matter of fact, the peak identified (marked with a red 

dot) is slightly below the median value, having a ratio of 0.92.  Therefore, as there is no peak in the 

expected location, the finding is “Vibration Normal”. 

 

Figure 45:  500RPM damaged bearing 
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Observing the spectrum of the damaged bearing however, the BPFO peak is clearly identified at 

about 61Hz.  Comparing the spectrum above with Figure 41 and Figure 44, one can clearly see the 

peak of the BPFO and how it stands out above the median and 2.7×median boundaries.  In fact, the 

ratio of the peak to the median is a substantial 8.45, which is the largest seen in the test and not 

really typical, as with the current setup, peaks are somewhat lower, as will be demonstrated with 

the 1000 RPM spectrum.  Also visible is the 4th harmonic of the input speed at around 33Hz and 

again the now familiar sidebands at shaft frequency around the 100Hz 2× line frequency. 

The case for 1000 RPM will be illustrated below: 

 

Figure 46:  1000RPM undamaged bearing 

 

At first sight, the undamaged case of 1000RPM is a somewhat misleading, as it appears that a fairly 

broad and low amplitude peak was partially identified.  Yet comparing the spectrum above with 

Figure 47, one can see that the actual BPFO peak lies lower in the frequency spectrum than the 

shallow low peak seen in the figure above and that the activity between 116Hz and 130Hz is merely 

noise.  Incidentally, those peaks are the familiar shaft frequency spaced sidebands surrounding the 

100Hz 2× line frequency from the motor.  As the identified peak is only 1.72 times the value of the 

median and thus the finding is “Normal vibrations”.  Below the damaged case is discussed. 

 

Figure 47:  1000RPM damaged bearing 



62 
 

 

Compared to the undamaged case (Figure 46) and the overlay of the damaged and undamaged cases 

(Figure 42), one can clearly see the peak of the damaged bearing at the BPFO frequency of about 

121Hz in addition to the sidebands around 100Hz.  The amplitude of the peak is sufficient to trigger a 

“Vibration warning” finding as the amplitude of the peak is about 5 times that of the median and 

thus above the 2.7× boundary. 

4.2.1.5.c Exploratory test conclusion 

 

As can be seen in the results of the test in the SASOL lab, the test bench does not produce a 

significant peak even with the damaged bearing.  As stated, this is likely due to the fact that the 

seeded damage was not properly in the loading zone.  Nevertheless, it is still possible to make out 

the cases of the damaged and undamaged bearing. 

Because the amplitude peaks in the spectrum is not as clearly defined as it is with the tests done at 

the SASOL plant in Secunda, it was decided not to include an intermediate warning stage (previously 

defined as “Vibration caution”).  Instead only “Vibration warning” and “Normal vibration” states 

were evaluated for the purpose of this test bench as explained earlier.  These parameters are now 

substituted into the developed hardware.  

4.2.2 Developed hardware testing 

4.2.2.1 Setup 

 

In the figure below, one can see the test setup.  It comprised of the accelerometer, accelerometer 

power supply, developed hardware, ICD programmer and a laptop. 

Due to the LCD not being operational, all the parameters had to be read directly from the registers 

on the MCU, which required the Laptop.   

 

Figure 48:  Developed hardware test setup 
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A diagrammatical illustration of the test setup is given below.  Notice the difference to the tests 

setup of the spider tests.  In this case, the laptop is not used to perform any form of signal analysis, 

rather it is used purely to read what the MCU is doing (as the screen of the Alpha prototype was not 

operational).  All the signal processing was done by the MCU.  In addition, it uses battery power, 

rather than grid power.  The accelerometer still used an external power supply however, which is 

something that was addressed in the Beta prototype of the ADM. 

 

Figure 49:  Synoptic diagram of the test setup for the developed hardware 

 

4.2.2.2 Tests results 

 

Next, the developed hardware was tested back to back with the Spider in conjunction with computer 

software to see if the results correlated.  Ideally one would have liked to download the data from 

the hardware memory and compare the frequency plots, however this was not possible as the Alpha 

prototype hardware does not have this functionality. 

Figure 48 key: 

Green:  ICP Power supply 

Red:  Laptop 

Yellow:  Alpha prototype 

Brown:  ICD Debugger and programmer 

Blue:  Accelerometer 
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Therefore, the way this was done, was to compare in the damaged and undamaged cases at all the 

applicable speed settings and to see whether the ratios of peak/median correlated, as this was 

ultimately the deciding factor in the algorithm and these values would be a good indicator if the 

Alpha prototype was working correctly.  Absolute values were not compared because the data from 

the ADC on the Alpha prototype was not calibrated as this would have taken up unnecessary 

processing time and absolute values are not important in the fault finding algorithm, only relative 

values. 

In the tables below the results are summarised.  Firstly the undamaged cases for both the Spider and 

Alpha prototype, followed by a similar table for the damaged cases. 

Table 10:  Ratio results comparison over different speeds (undamaged) 

Speed Ratio:  
Spider 

Analysis Ratio:  
Hardware 

Analysis Difference 

500 0.92 Vibration normal 1.26 Vibration normal 0.34 

600 1.31 Vibration normal 1.32 Vibration normal 0.01 

700 1.30 Vibration normal 1.13 Vibration normal 0.17 

900 1.61 Vibration normal 1.71 Vibration normal 0.10 

1000 1.72 Vibration normal 2.04 Vibration normal 0.32 

 

In Table 10 above, one can see the ratios of the peaks to the median values.  Although the absolute 

values will be vastly different, it does not matter as only relative values are used.  These can be seen 

compare very favourably with the average difference being 0.19, the smallest difference being 0.01 

and the largest difference between the ratios being 0.34.  In addition, all these ratios of both the 

Spider and the hardware are smaller than the 2.7×median boundary and thus all the cases are 

analysed as “Vibration normal”. 

Table 11:  Ratio results comparison over different speeds (damaged) 

Speed Ratio:  Spider Analysis Ratio:  
Hardware 

Analysis Difference 

500 8.45 Vibration warning 8.06 Vibration warning 0.39 

600 3.22 Vibration warning 2.86 Vibration warning 0.36 

700 3.03 Vibration warning 2.84 Vibration warning 0.19 

900 4.99 Vibration warning 4.28 Vibration warning 0.71 

1000 5.03 Vibration warning 4.55 Vibration warning 0.48 

 

Table 11 shows the results for the damaged bearing for both the Spider and the hardware.  Once 

again, the results correlate well.  The variance in ratios are somewhat larger than with the 

undamaged bearing, still somewhat less than the actual ratios (typically about 10%, and at most 16% 

of the actual ratios), the largest being for the case of 900RPM for which the difference between the 

Spider data and the developed hardware is 0.71.  The larger variance may be attributed to more 

noise present when the damaged bearing was tested, thereby directly influencing the median value 

and the corresponding 2.7× damage boundary.  Nevertheless, all the values are above the 2.7 ratio 

and were all classified as “Vibration warning” both in the spider tests and in the developed 

hardware. 

Two cases with the developed hardware, 600 and 700RPM came fairly close to the boundary value 

as their ratios were about 2.8.  Similar behaviour was seen in the SASOL tests in Secunda where 
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some values were near the boundary of a damage case.  This is certainly a limitation of a damage 

diagnosis system where so few steps in the diagnosis are involved, in this case only 2 (“Vibration 

normal” and “Vibration warning”) and with the SASOL setup 3 (“Vibration normal”, “Vibration 

caution” and “Vibration warning”). 

4.2.3 Conclusion 

 

The premise for evaluating the working of the Alpha prototype in comparison with the Spider tests 

was simply to gain experience using an embedded system on an actual test setup and eliminate any 

firmware instabilities.  Seeing as the software routines on the Beta prototype are very similar, the 

tests were not repeated for the Beta prototype.  The only anomaly that could therefore occur was if 

the hardware was faulty, which would be detected during the normal ‘testing and debugging’ phase 

of any hardware development. 

Regarding the firmware, it was also useful to ascertain that the signal processing routines performed 

as expected.  An analysis was thus also attempted on a test bearing after confirming that the signal 

recorded by the Alpha prototype and the spider hardware are consistent (giving credibility to the 

results of the processed signal and its analysis). 

By that token, the hardware can be seen to work correctly and correctly detected the bearing as 

being damaged.  The test setup however proved not be ideal as the damage detection boundaries 

had to be modified somewhat.  This though is a function of the test setup and not the developed 

hardware, which functioned well nevertheless. 

4.3   ADM Beta prototype calibration 

4.3.1 Summary 

 

Although the current algorithm only uses relative measures in the frequency domain, it is 

anticipated that time domain techniques might be used at some point.  It may also be useful to 

display (on the LCD) or log time domain data and parameters, such RMS, CF etc.  In order to avoid 

confusion when a third party observes the recorded data, accurate calibration is a necessity. 

It is considered prudent to perform a manual calibration by means of a test (as opposed to an 

analytical derivation) for the current device as well as future production devices for the following 

reasons:   

 Variances in sensitivities of sensors  

 Variances in electronic components 

 Variances in cable lengths of sensors 

 Variances in internal circuitry of the devices 

For these reasons, it was decided to perform a manual calibration of the device.  This was done by 

measuring vibrations of known amplitude both with the Beta prototype as well as a reference 

instrument and comparing the results. 

The measured signal was created by shaking the sensor with a hydraulic actuator.  The following 

displacement signal was constructed and used as an input to the actuator: 
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Table 12:  Calibration signal 

Parameter Value 

Signal form Sinusoidal 

Amplitude 10 mm 

Frequency 9.54 Hz 

Duration 15 s 

ADC sampling rate 1 kHz 

 

The parameter considered first for this signal was the frequency.  It was primarily chosen so as to 

exactly fall on a frequency bin (in this case, the 100th). It also needed to fall within the overlap of the 

usable bandwidth of the accelerometer (between 2 Hz and 10 kHz) as well as what the actuator was 

capable of.  The amplitude that resulted was a function of dynamic response envelope of the 

actuator.  The resulting acceleration was verified beforehand to ensure no clipping of the data in 

case of excessive acceleration. 

4.3.2 Test setup 

 

The test setup used two controller cards:  the National Instruments (NI) PCI-6733 DAC card and the 

PCI-4474 ADC card.  As the name implies, these devices consist of PCI cards inserted into a PC from 

which it is controlled as well (via Matlab, in this case).  Each card has two channels. 

The signal, constructed using Matlab, was input to one of the DAC channels of the NI controller that 

controls the actuator. 

The resulting motion of the actuator was measured in three ways:  the internal LVDT of the actuator 

measured the displacement of the piston (using an ADC channel of the National Instruments ADC 

card), a reference accelerometer measured the acceleration at the tip of the rod (using the 

remaining ADC channel of the NI ADC controller), and the Beta prototype measured the acceleration 

at the tip of the rod as well. 

 

Figure 50:  Beta prototype calibration setup 
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4.3.3 Procedure 

 

The procedure involved sending the constructed displacement signal through the NI DAC card to the 

actuator.  The ADC card immediately started recording the LVDT and reference accelerometer 

signals.  The Beta prototype started sampling once the actuator started (initiated by hand). 

The sinusoidal signal was played for 15 seconds, during which the measurements, described above, 

were taken.  The signal from the Beta prototype was downloaded unto a PC from the SD card and 

compared with the measured signals from the NI ADC card. 

The acceleration signal from the Beta prototype could be directly compared to the reference 

acceleration signal.  As the LVDT measures the displacement of the piston, the double derivative of 

the signal could be compared to the acceleration signals of the reference accelerometer and the 

Beta prototype. 

4.3.4 Calibration Philosophy 

 

Several properties were considered for use as a calibration factor.  The maximum value was 

considered, it is however based on a single data point in each set being the largest in their respective 

sets.  This was not considered the best as the single data point may not be representative of an 

entire signal. 

The best parameter was thought to be RMS.  This parameter takes into account the entirety of the 

recorded signal and is less susceptible to instantaneous values. 

The RMS of the reference accelerometer was compared to the RMS of the Beta prototype.  The 

double differentiated LVDT signal was used for verification purposes, as it is not a direct 

measurement of the accelerometer mounting plate, but a displacement measurement of the 

actuator piston. 

The following calibration value was then used: 

 
    

      

           
 [Eq. 28] 

 

This is to say, the calibration value consisted of a single multiplier generated by dividing the RMS 

value from the reference accelerometer signal with the RMS value from the ADM beta prototype 

signal.  To calibrate the ADM Beta prototype now simply involved multiplying the time domain 

values measured by its ADC with the calibration factor. 

4.3.5 Results 

 

The results are shown below in Figure 51.  The blue plot is the double differentiated LVDT, the green 

plot is the reference accelerometer and the red line the ADM Beta prototype after calibration. 

It is noted that the double differentiated LVDT acceleration signal looks significantly noisier; the 

sources of this may include the following: 
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 Dithering noise on the hydraulic valves of the actuator 

 Numerical errors originating from the fact that the double derivation of the LVDT to obtain 

the acceleration signal 

 The LVDT only measures the displacement of the piston, whereas the accelerometers 

(reference and Beta prototype) measures acceleration at the rod end. 

 

 

Figure 51:  Comparison between LVDT (after double differentiation), the reference accelerometer and the Beta 
prototype (after calibration) 

 

A further check was done to ensure that the values are in the correct ballpark.  This merely involved 

hand calculating the amplitude of the double differentiation of a sine wave of the same magnitude 

and frequency as the input signal and checking that the result is similar to the magnitude of the 

reference accelerometer.   This is performed below. 

With: 
S 0.01 m 
f 9.54 Hz 
c 2π×f 
 

  ( )      (  ) [Eq. 29] 
 

 
 ( )  

 

  
  ( )        (  ) [Eq. 30] 

 

 
 ( )  

 

  
 ( )          (  ) [Eq. 31] 

 

The amplitude is therefore: 
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 |     | [Eq. 32] 
 

                           | (        )      | 

            

Converting this value of m/s2 to a G value yields the following: 

                   [Eq. 33] 
 

As can be seen in Figure 51, the acceleration signals correspond very well with this value, thereby 

adding confidence that the calibration was done correctly. 

The calibration ratio that resulted was: 

 
    

      

           
         [Eq. 34] 

 

This value would then include: 

 Analogue amplification of the signal in the signal conditioning circuitry 

 The quantization procedure (assigning a voltage on the pin of the ADC to a bin number) 

 Volt to G conversion (basically the specific sensitivity of the accelerometer) 

 Various electronic variances discussed in the beginning of this section 
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5. Field testing 

5.1   Measurement chronology and rationale 
 

The field measurements described in this section, were all performed at the Sasol plant in Secunda.  

The plant utilises various types of gearboxes and being driven by electrical motors of various power 

outputs.  It therefore provided an opportunity to gather a significant amount of data from various 

types of gearboxes. 

A shortcoming of the test site was however the fact that all the gearboxes operated in a single 

application – conveyor belt drives.  For this reason, it is considered vital that the system under 

development be exposed to different sites and different applications.  For this project however, the 

single site was deemed sufficient. 

The first set of field measurements, described in Section 5.2 below, was conducted before the 

hardware specification began.  A large number of gearboxes were measured to determine the type 

and nature of the gearbox faults – specifically the bearing faults.  From the results of these 

measurements, the algorithm set and hardware specification of the Alpha prototype was generated. 

The second field measurement campaign was executed after the Alpha prototype was manufactured 

and tested in the laboratory.  It was a verification exercise to observe the behaviour of both the 

hardware and software in the field.  The lessons gleaned from the laboratory testing and especially 

the field testing of the Alpha prototype were incorporated into the specification and design of the 

definitive hardware of this project – the Beta prototype. 

Finally, the Beta prototype was field tested.  It contained a considerable amount of revisions 

compared to the Alpha prototype and had to be thoroughly tested.  The tests were somewhat more 

extensive, due to the fact that laboratory tests were not as exhaustive as performed on the Alpha 

prototype.  As with the Alpha prototype, the tests were performed to test the hardware and 

software of the system.  Qualitative lessons regarding the practical use of such a system was also 

learned and discussed in the conclusion and further work section. 

5.2   Initial data gathering campaign 

5.2.1 Conveyor belt drive layout 

 

As mentioned previously in this document, the field tests took place at the SASOL plant in Secunda.  

The measurements were made on several gearboxes in the Coal Supply section of the plant.  These 

gearboxes formed an integral part of the drive line of the conveyor belts transporting coal to the 

production section of the plant. 

Typically such a drive system would consist of the following: 

 Electric motor 

 Fluid coupling 

 Gearbox 

 Conveyor drive roller 
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Figure 52:  Conveyor belt drive arrangement 

 

Figure 53:  Conveyor belt arrangement within plant 

 

Several (typically four) such arrangements would be present in a single drive house and several such 

drive houses would service a conveyor belt line, often spanning several kilometres. 

5.2.2 Test setup instrumentation 

 

The test setup used to develop the 

software package will now be 

described. 

This setup chiefly comprised of a 

commercial hardware data 

acquisition package, the capabilities 

of which far exceeded the final 

system’s capabilities.  This measure 

was deemed necessary to explore the 

boundaries of what was necessary for 

the final system 

The test setup is depicted in Figure 54.  The main part of the data acquisition system consisted of a 

Somat eDAQ lite.  To this were connected four ICP 100mV/g accelerometers.  The eDAQ was then 

connected to a laptop which contained the necessary control software, required for the data 

gathering operation of the eDAQ.  As the appropriate power supply was not available, both the 

eDAQ and the Laptop were powered by a portable power supply. 

The figures below show the actual setup of the equipment on a typical gearbox.  As can be seen, 

measurements were taken in both the axial and radial directions. The accelerometers were attached 

to the gearbox via an aluminium plate (this was done to improve high frequency vibration 

transmission, as this often suffers with the industry standard magnetic base).  This plate was glued 

to the gearbox casing and the accelerometers were, in turn, screwed onto the plate.  The 

accelerometers were placed on the casing so as to make the transmission path most direct to the 

Figure 54:  Test setup diagram 
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bearings.  This involved placing it directly on the housing when measuring in the radial direction and 

on a blank flange edge in the axial direction (see the figures below). 

 

Figure 55:  eDAQ unit with which data was recorded       Figure 56:  Laptop on which data was recorded 

 

 

 

 

 

 

 

 

 

 

 

 

Although it would have been desirable to get rotation speed measurements as well, this was not 
possible due to extremely restricted access to both the input or output shafts of the gearboxes (see 
Figure 59).  However, it was found that the input speed of the gearbox was clearly visible on the 
vibration spectrum as long as steady state operation was maintained. 

   

Figure 59:  A typical gearbox from our industrial partner, showing the output- and input shafts' protective shrouds 

Figure 57:  Accelerometers on gearbox Figure 58:  Detail showing accelerometer 
mounting 
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5.2.3 Signal flow 

 

In the signal flow diagram below, the signal of a single accelerometer is displayed.  As all the 

accelerometers’ signals follow same paths, it is unnecessary to show all. 

 

Figure 60:  Test setup signal flow 

 

The signal enters an accelerometer (100mV/g) where it is amplified and subjected to an anti-aliasing 

filter.  From there the data gets converted to digital format by the eDAQ data acquisition unit and is 

temporarily stored until it is downloaded onto a computer where it is post-processed. 

5.2.4 Test procedure 

Tests were performed on the following gearboxes: 

Table 13:  List of gearboxes which was tested 

Gearbox Stages Ratio 

Type 1 2 14:1 

Type 2 3 25:1 

Type 3 2 16:1 

Type 4 3 22.4:1 

Type 5 2 20:1 

Type 6 2 20:1 

 

Measurements were taken on each gearbox listed in the axial and radial directions as close as 

possible to the shaft and being mindful of the best transmission path.  This often resulted in the 

accelerometers being placed on the bolts securing the blank flanges at the shaft ends.  Consultation 

with the condition monitoring department of coal supply confirmed this as being suitable positions 

as they often use them for their own measurements as well. 

The measuring procedure started by cleaning the surfaces on which the accelerometers would be 

placed by industrial alcohol to remove any coal dust and oil as well as cleaning the intermediary 

mounting blocks. 

These small aluminium plates were used as a mounting surface between the accelerometers and the 

gearbox surface (the accelerometer was screwed to one side of the plate while the other side was 

glued to the gearbox surface) and were glued to the surface of the gearbox with superglue.  Before 

an aluminium plate was glued to a new gearbox surface, the residue of the previous use was cleaned 

off thoroughly. 

After all the aluminium plates were secured to the gearbox and the accelerometers attached to 

them, typically 2 measurements, one axial and one radial, were made on two shafts at a time until 
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the entire gearbox was measured.  Three complete measurement sets were made per gearbox, 

ensuring that at least 10 minutes had passed between each measurement to allow sufficient time 

for any change in operating conditions (speed variations, loads, shocks, etc.) to take effect.  In 

addition, only gearboxes that served loaded and running conveyor belts were measured. 

The A/D values that were used were: 

 15s sample length 

 16-bit resolution 

 15kHz sampling frequency (limited by accelerometer resonance) 

 Anti-aliasing filter at 7kHz cut-off frequency 

 

5.3   ADM Alpha prototype field testing 

5.3.1 Test description 

 

After the laboratory tests (explained at length in Section 4.2), the Alpha prototype was tested at the 

SASOL plant in Secunda to see how the system would perform in a real plant. Several key 

observations were made regarding its performance.  In addition, the commercial eDAQ was taken 

along as well for comparative tests. 

5.3.2 Test setup 

5.3.2.1 eDAQ system 

As the initial data gathering test used the eDAQ as well, the test setup with regard to the eDAQ was 

exactly the same as depicted in Figure 54.  Once again, four ICP 100mV/g accelerometers were used, 

while the eDAQ received power from a portable power pack.  The eDAQ was connected to, and 

controlled by, a laptop.  After each test, the test data was downloaded unto the laptop for 

investigation.  As before it was not possible to measure the gearbox speed at either the input or 

output shaft.  The analogue to digital conversion parameters of interest, with regard to the eDAQ 

system, was as follows: 

Table 14:  ADC parameters used by the eDAQ during the measurements at SASOL 

Parameter Value 

Resolution 16-bit 

Sampling frequency 10kHz 

Sampling time 8s 

Anti-aliasing filter cutoff frequency 3kHz 

Full scale ±2G 

 

The photos below illustrate the test setup.  
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In the figure to the left the electric motor and fluid coupling (underneath a protective shroud – 

indicated by the blue box) is shown.  This assembly stands on a large metal ladder-frame structure.  

 

 

 

 

 

 

 

 

 

5.3.2.2 ADM Alpha Prototype 

 

The testing of the Alpha prototype involved measuring the vibrations of the gearboxes one position 

at a time (the hardware only has one channel).  The exact same positions on the gearbox were 

measured with the Beta prototype as with the eDAQ.  This was done using the same pickup points 

(comprising aluminium plates glued to the gearbox into which the accelerometers were screwed).  

The prototype was controlled by the laptop, but all the data acquisitioning and processing was done 

by the prototype and the result passed back to the laptop afterwards.  The analogue to digital 

conversion parameters were as follows: 

 

Figure 61:  Test setup 

Figure 62:  Accelerometer placement 

Figure 63:  Typical fluid coupling in a gearbox drive system 

Figure 61 key: 

Green:  Laptop 

Red:  eDAQ 

Yellow:  Power pack 

Blue:  Accelerometers 

Figure 63 key: 

Blue:  Fluid coupling 
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Figure 64 key: 

Green:  Laptop 

Red:  Beta prototype 

Yellow:  Power pack 

Blue:  ICP Power supply 

Table 15:  ADC parameters of the Alpha prototype 

Parameter Value 

Resolution 16-bit 

Sampling frequency 15.625kHz 

Sampling time Approximately 2s 

Anti-aliasing filter cut-off frequency 2.8kHz 

Full scale ±10Gs  (±1V) 

 

In, the test setup of the developed prototype is illustrated.   

As with the eDAQ, the developed prototype was 

permanently connected to the laptop, as the required 

hardware to make it fully independent was not operational.  

However, only the results were relayed back to the laptop 

and all the data acquisitioning and computation was done on 

the hardware.  Figure 65 condenses this information into the 

signal flow of the Alpha prototype.  

 

 

Figure 64:  Test setup of Alpha prototype during test at SASOL 
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Figure 65:  Signal flow of the Alpha prototype 

 

5.4   ADM Beta prototype field testing 

5.4.1 Test description 

 

After the calibration laboratory tests, the Beta prototype and a reference instrument was taken to 

the SASOL plant in Secunda, as was done in the initial measurements and the Alpha prototype.  The 

reference instrument was once again the proven eDAQ system. 

During the test, the eDAQ as well as the Beta prototype was used to measure the vibrations of four 

different gearboxes.  Signal quality (a problematic facet of the Alpha prototype) as well as diagnostic 

accuracy were tested and is discussed in Section 6.3. 

5.4.2 Test setup 

5.4.2.1 eDAQ system 

 

As with the previous tests, the eDAQ system was used as a basis for comparison, as it is an industrial 

and well proven system.  The test setup was therefore very similar to previous measurements of the 

project.  Figure 66 and Figure 67on the next page details the test setup. 

The procedure for the test was similar to previous tests as well.  After the conditions were deemed 

to be steady state, the measurement run was initiated for 5 minutes (300 seconds).  After the 

measurements, the data was downloaded and saved to the laptop.  The following table lists the A/D 

parameters: 
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Figure 68 key: 

Green:  Accelerometer 

Red:  Beta prototype 

Figure 67:  eDAQ test setup (Cont.)  

 

 

 

 

 

 
Table 16:  ADC parameters as used by the eDAQ 

 

5.4.2.2 Prototype 

 

After the benchmark test was done on gearbox using the eDAQ 

system, the same measurement points (using the same exact 

same sensor per measurement point as well) were tested using 

the Beta prototype.  It was attempted to get as close as possible 

to the same state of the drive line, i.e. steady state running with 

as close as possible to the same amount of load on the conveyor 

belts.  The photographs below illustrate the test setup. 

 

 

 

Parameter Value 

Resolution 16-bit 

Sampling frequency 20 kHz 

Sampling time 300s 

Anti-aliasing filter cut-off frequency 7.9 kHz 

Full scale ±10G 

Figure 68:  Beta prototype hardware setup 

Figure 66 key: 

Green:  Laptop 

Red:  eDAQ 

Yellow:  Power pack 

Orange:  Accelerometers 

Figure 66:  eDAQ test setup 
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The ADC values of the Beta prototype were hard programmed into the firmware to be as follows: 

Table 17:  ADC parameters as used by the eDAQ 

Parameter Value 

Resolution 12-bit 

Sampling frequency 6.25 kHz 

Sampling time 10.5 s  

Anti-aliasing filter cutoff frequency 2.1 kHz 

Full scale ±16 G 

 

Figure 69:  Diagrammatical illustration of the Beta prototype test setup 

 

The signal flow of the Beta prototype is illustrated in the figure above.  As can be seen when 

comparing the signal flow diagrams of the eDAQ test setup (Figure 54) and the Alpha prototype test 

setup (Figure 65) the signal flow of the Beta prototype (Figure 69 above) is progressively simplified.  

This is due to the system becoming more self-contained as the project continued.  Due to the 

deliverable of the project being a hand held and highly portable device, this aspect was absolutely 

necessary.  Indeed, the Laptop in the diagram above does not need to be present when the device is 

in the field and its presence is only required when the data is downloaded.  Therefore, when in the 

field, only the device is required is the Beta prototype along with the attached accelerometer. 
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6. Field testing results and interpretation 

6.1   Chronological discussion 
 

This section discusses the data gathered during the field measurements of this project, as described 

in section 5.  The data processing was performed, where applicable, according to the algorithm as 

described in section 3. 

Each set of data had an effect on the hardware used to gather the next set.  In practice, this meant 

that the first data gathering campaign had an effect on the specification of the Alpha prototype and 

the results from the Alpha prototype had an effect on the specification of the Beta prototype. 

The experimental development model (XDM), as described in section 2.2, was never meant to be 

field tested and was a bridging hardware between the initial data gathering campaign and the Alpha 

prototype. 

6.2   Initial data gathering campaign 
 
During the test, six different types of gearboxes were tested as per the technique described in 

Section 5.2.  The data gathered was processed and the results analysed. The analyses performed 

involved a spectral analysis approach to bearing damage and formed the basis on which the eventual 

firmware was based.  Important factors were: 

1. Evaluation of bearing damage in the form of spectral peaks 

2. Detection of input speed and harmonics 

3. Detection of GMFs and harmonics 

4. Determining if there is any interfering factors (coincident frequencies, etc.). 

Below are a few noteworthy examples of the numerous samples are discussed and the relevant 

conclusions drawn. 

6.2.1 Vibration analysis definition 

 

Before the results are presented, it is necessary to define the analysis terminology in this text.  Three 

stages of bearing vibrations were selected for this project.  These stages are defined as follows: 

Table 17:  Definition of the stages of bearing damage 

Analysis outcome Definition 

Vibration normal 
The vibration emitted by the bearings on the shaft are judged to be of a 
low enough amplitude not be of concern 

Vibration caution 

The vibration emitted by the bearings on the shaft are judged to be of 
large enough amplitude to be cautious.  Close attention should be paid to 
subsequent measurements and professional help is prudent 

Vibration warning 
The vibration emitted by the bearings on the shaft are judged to be of 
large enough amplitude to be concerned and the data should be 
investigated immediately.  Professional help is strongly advised. 
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6.2.2 Time domain analysis 

 

Some of the historical time domain methods of detecting bearing damage were tested during the 

development of the algorithms, namely Crest factor and Kurtosis (Patil, et al., 2010).  Judged 

according to frequency domain techniques (which are deemed to be more accurate) and the 

historical feedback from SASOL, they were evaluated. 

Several signal samples were taken from bearings which were qualitatively judged to be undamaged, 

moderately damaged and severely damaged and their kurtosis and crest factor values compared.  

These measurements were made on 6 different types of gearboxes.  In both measurements 

directions (axial and radial) per measurement point were used to gather the data (the most 

dominant case is reported here).  The following is a table of the gearboxes measured as well as the 

time domain results. 

Table 18:  Time domain analysis results 

 Location* Run Direction Crest Factor Kurtosis 

No Damage      

Type 4 2nd shaft 1 Vertical 4.138 2.642 

   Horizontal 4.325 2.979 

  2 Vertical 3.710 2.719 

   Horizontal 4.156 2.725 

Type 2 3rd shaft 1 Vertical 4.329 2.828 

   Horizontal 5.038 2.959 

  2 Vertical 4.236 2.821 

   Horizontal 4.037 2.879 

Moderate Damage      

Type 5 3rd shaft 1 Vertical 4.137 3.145 

   Horizontal 4.822 2.894 

  2 Vertical 4.885 3.084 

   Horizontal 4.076 2.752 

Type 5 2nd shaft 1 Vertical 4.723 3.051 

   Horizontal 4.971 2.879 

  2 Vertical 5.879 3.207 

   Horizontal 4.048 2.730 

Severe Damage      

Type 6 1st shaft 1 Vertical 4.625 3.003 

   Horizontal 5.047 3.031 

  2 Vertical 4.635 3.059 

   Horizontal 4.762 3.039 

Type 3 2nd shaft 1 Vertical 4.428 2.922 

   Horizontal 4.760 2.976 

  2 Vertical 4.416 2.925 

   Horizontal 4.868 3.009 

      

   Maximum 4.544 2.927 

   Mean 3.710 2.642 

   Minimum 5.879 3.207 
*Referenced from the input shaft 
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Signals with a crest factor of more than 3.5 and a kurtosis of more than 4.0 would tend to allude to 

bearing damage (Norton & Karczub, 2003). 

Examining the signals above one can see that the minimum crest factor is in fact about 4.5 which 

would indicate bearing damage as it is larger than the accepted 3.5.  However, this is obviously false 

as the first eight of the bearing samples are of undamaged bearings.  Therefore crest factor can be 

ruled out as an indicator of bearing damage in this application 

In addition, the maximum kurtosis value in the sample range is 3.2 which would indicate no damage 

in any of the bearings as it is smaller than the minimum kurtosis of 4.0 for damaged bearings.  This 

again is false as the next eight samples are of data with moderately damaged bearings and the final 

eight samples are of data with severely damaged bearings.  This would also indicate that kurtosis is 

not a suitable indicator of bearing damage in this application as well. 

The unreliability of the crest factor value can be explained simply by the enormous array of signals 

composing each measurement.  Present in the signals are components from: 

1. The motor 

2. The fluid coupling 

3. Multiple shaft frequencies 

4. Multiple GMFs 

5. Potential bearing faults 

6. Any external noise emanating from the 

a. Conveyor belts 

b. Vibrating structures on which the motor and gearbox are mounted 

c. Vibrations from the coal chutes 

7. Harmonics of all the above 

All these signals combined creates a noisy environment in which signals with crest factors as high as 

those observed is created. 

The kurtosis value can be explained by its very nature.  Kurtosis, being the fourth statistical moment, 

provides information about the “peakedness” of the sample (Samual & Pines, 2005).  However, as 

the peaks in the signal sample becomes spread out and distributed, the kurtosis value will become 

lower.  The many spectral components present in the signal will likely create a diversified series of 

peaks within the time domain leading to the lowered kurtosis value. 

To summarise, the two most prominent time domain techniques commonly employed in the 

industry is ineffective at detecting bearing damage within the noisy environment created by the 

gearbox and its surroundings.  These techniques will likely be more effective for isolated bearings in 

plumber blocks (for example) in which the frequency content is less cluttered with external signals 

or at least where the hardware allows some scope for filtering.  This route is not possible in this 

project, because in embedded hardware using digital filtering for this purpose would be impractical 

as there would be too many frequencies to account for. 
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6.2.3 Frequency domain analysis 

6.2.3.1 Initial remarks 

 

Frequency domain analysis was always considered as the most promising analysis technique and it 

was developed as described in Section 3 “Algorithm Development”.  The algorithm was initially 

programmed in Matlab and then applied to the recorded data. 

The algorithm was applied to a measurement of every shaft of every gearbox.  These gearboxes had 

been diagnosed previously with the help of Johan Pretorius from SASOL using their Condition Based 

Maintenance (CBM) techniques.  As noted in the before, three stages of damage were defined, 

samples of which are given below.  These spectra were derived from data recorded using the eDAQ 

data logger. 

In this section, the gearboxes are described as having no damage, moderate damage and severe 

damage.  This assessment was made by the condition monitoring department at SASOL.  Therefore, 

during the development of the algorithm, the results of the tests were known and the algorithm 

adapted to best fit those results. 

This is contrary to the rest of this chapter, where definitive diagnoses are not explicitly provided, but 

a course of action is recommended.  The course of action is naturally based on the results of the 

algorithm developed in conjunction with known results.  This course of action was verified according 

to known states of the gearboxes provided by SASOL. 

6.2.3.2 No damage 

 

 

Figure 70:  FFT of undamaged gearbox bearing (Type 4, 2nd shaft) 

 



84 
 

The figure above provides an illustration of an undamaged gearbox.  Marked frequencies are 

Table 19:  Frequency components 

Origin Frequency (Hz) 

A separate, but  damaged, bearing on the same shaft 130.3 

A harmonic of the input shaft 145.9 

The third harmonic of the 3rd shaft’s GMF 214.1 

 

The frequencies of the bearing under investigation are not clearly found because no damage is 

present, as evidenced by the fact that the spectral peaks found are well below the boundary values, 

see the legend. 

Also visible on the figure (and legend) is the black “Mean” line.  This line, in conjunction with the 

“Median” line gives a visual idea of the relation between the Median and Mean.  This relationship, 

though not important in the algorithm, is interesting to note.  It lends credence to the fact that the 

median is a better indication of background noise than mean, due to the observation that the mean 

value is easily influenced by irrelevant stray peaks in the range. 

One can see how the algorithm adapts according to the noise levels within the search domain of the 

spectrum.  In the BPFO and 2x BSF regions, the noise is relatively insignificant.  However, in the BPFI 

region, the noise is a somewhat more and therefore the search boundaries go up accordingly with 

the increased amount of noise.   

Nevertheless, no damage is present on the bearing under investigation. 

6.2.3.3 Moderate Damage 

 

Figure 71:  FFT of moderately damaged gearbox bearing (Type 5, 2nd shaft) 
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The figure above is a typical illustration of a moderately damaged bearing on a gearbox shaft.  This 

particular sample was found on the second shaft of Type 5 gearbox and a ball was damaged 

generating a 2×BSF frequency.  Including this, the following frequencies are also present: 

Table 20:  Frequency components 

Origin Frequency (Hz) 

Sideband of input shaft speed, at 2nd shaft speed 31.58 

2×BSF bearing fault frequency 33.29 

2nd Harmonic of input shaft speed 49.8 

Unknown signal 52.5 

 

In this figure one can see the 2×BSF frequency peak above the 5×Median boundary indicating 

moderate damage to the rollers of the bearing.  Again one gets an idea of how the algorithm adapts 

to the noise levels within the vicinity of the signal component under investigation; increasing the 

bounds when the noise increases. 

In addition, there is an unknown signal component within the signal, appearing as a spectral peak at 

52.5 Hz.  The known signal components in the spectrum are: 

Table 21:  Known frequency components 

Origin Frequency (Hz) 

Motor input 25.0 

Shafts 
 Gearbox input 
 Intermediate shaft 
 Output shaft 

 

 24.80 

 6.28 

 1.23 

GMF 1 100.47 

GMF 2 496.05 

Bearing 1 
 BPFI 
 BPFO 
 2×BSF 

Bearing 2 
 No info 

 

 59.22 

 41.23 

 33.18 
 

 52.5 

 

It is very likely that this unknown component of the frequency spectrum originates from this 

unknown bearing.  In addition, there were many other sources of noise and external signals present 

in the vicinity of the test which may have an influence on the frequency spectrum including all 

signals from the conveyor belts, vibrating structures, etc.  It does not appear to be a harmonic of any 

other signal as there seems to be no integer correlation between it and the other signals and neither 

is any geometric pattern visible on the spectrum itself. 

6.2.3.4 Severe Damage 

 

Figure 72 illustrates the case of a gearbox with a severely damaged bearing (inner race damage in 

this case).  The measurement was taken in the axial direction on the 3rd and final shaft of the 

gearbox.  Clearly visible on this spectrum is the BPFI peak at around 14Hz and notice that it is 

somewhat above the 10× Median boundary. 
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For the sake of clarity, because the signals are so closely spaced at low rotation frequencies the 

frequency markers and the boundary conditions were highlighted for the bearing spectral 

component under investigation, namely the BPFI. 

In addition, another unknown spectral component is visible in this spectrum at 17.8Hz.  This signal 

does not correlate with any of the known frequencies (or their harmonics) in the signal and the only 

conclusion that can be made is that it originates from outside the gearbox, perhaps from the 

vibrating structure or from the conveyor belts. 

 

Figure 72:  FFT of severely damaged gearbox bearing (Type 6, 3rd shaft) 

6.2.4 Success rate 

 

During the process of testing the algorithm, all the shafts on all six gearboxes were tested both in the 

radial and axial directions (some faults appeared to show up somewhat better in the axial direction).  

Each of the diagnoses were then evaluated with the guidance of the CBM team at Secunda and their 

protocols. 

The success of the tests was measured according to how many diagnoses were deemed to be 

correct.  This is defined in the context of an operator using the hand held device:  if the operator 

measures a gearbox with a bearing that is considered – by the analysis presented in this section – as 

being damaged in some way, would the device convey the appropriate sentiment. 

This sentiment is given in this project a direct correlation to the perceived damage state of the 

bearing as follows: 
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 No damage    –   Vibration normal 

 Moderate damage   –   Vibration caution 

 Severe damage    –   Vibration warning 

This correlation was deduced from the philosophy employed by a number of institutions that a 

mechanical component still has a certain useful life span, even after initial damage is detected.  That 

is to say, a mechanical component is not discarded after the first sign of damage, but can often 

operate for a definite time frame as long as the behaviour of the component is scrutinised on a 

regular basis. 

By that token, a bearing whose vibration signature leads one to believe that it is moderately 

damaged can still function, as long as the user proceeds with caution – therefore a ‘Vibration 

caution’ message is given with the implicit recommendation that a specialist or OEM is involved in its 

observation over time. 

A bearing whose vibration signature leads one to believe that it is severely damaged, possibly after a 

time of being judged as moderately damaged, should be attended to as soon as possible.  A 

‘Vibration warning’ is therefore issued and the user is implored to seek professional help. 

Table 22:  Success statistics 

 Number Percentage 

Total number of cases 158  

Successes 127 80.4 

Failures 11 6.9 

Ambiguous 20 12.7 

 

In this review of algorithm accuracy, whether the assessment itself is “Vibration normal”, “Vibration 

caution” or “Vibration warning” was irrelevant, if it was the correct assessment (as described in the 

two paragraphs preceding Table 23) it was counted as a success. 

Table 23 summarises the results and shows an over 80% success ratio of the algorithm.  The cases 

marked “Ambiguous” were usually when other spectral components interfered with the assessment.  

This often occurred when harmonics of a different signal overlapped with the bearing frequency. 

These assessments were delivered on a first attempt basis, though the problem with the ambiguous 

signals could often be resolved by waiting a short period and taking a measurement again.  In the 

tests performed three measurements were taken on each shaft (approximately 30 minutes apart) of 

each gearbox and therefore alternative data was available. 

In the case of the failed assessments there are several reasons why they did not convey the 

appropriate sentiment.  The following table illustrates the number and cause of the failures: 

Table 23:  Failed diagnosis summary 

Number Cause of incorrect diagnosis 

6 Boundary case 

4 Interference 

1 Too much noise in vicinity of signal 

Total incorrect: 11 

Grand total:      158 (6.9%) 
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In the table above, one can see that 6 of the 11 incorrect assessments were simply because the 

signal peak was very near the edge of the diagnosis boundary (the 5 × median or 10 × median lines).  

Stated differently, the peak was just barely on the wrong side of the boundary to produce a false 

assessment.  In these cases, as with the ambiguous assessments, taking another measurement a few 

minutes later would usually produce a different assessment. 

The second reason for failed assessments were interference, often in the form of sidebands or 

harmonics of a different signal (in which case, the actual backup check for harmonic interference 

barely failed to detect this).  This happened four times and was as the result of the bearing 

frequency being the same as a harmonic or a sideband of either the gear train or the input frequency 

to the gearbox. 

Lastly, a case was encountered in which the bearing frequency was located within a haystack of 

signals originating from a loose shaft.  The many high peaks within the region therefore greatly 

amplified the median values within the region as well as the signal at the particular frequency so as 

to induce a “Vibration caution” assessment instead of a “Vibration warning” assessment. 

6.3   Field testing of the Alpha prototype at SASOL 

6.3.1 Results and analysis 

 

Figure 73:  Spectral comparison between the Alpha prototype and the eDAQ system 

 

The figure above is a typical example of what was found during the tests.  The blue spectrum is what 

was measured by the eDAQ and the green overlay was the selected sections of the spectrum as 

measured by the prototype.  These sections correspond to the 2×BSF, BPFO and BPFI of the test 

gearbox on its input shaft. 

As can be seen, the prototype correctly detected the major peaks at the right places, indicating the 

correct functioning of the ADC and FFT algorithm.  However, it is obvious that the finer details of the 

spectrum were lost during the process and only broader outline of the spectrum was captured 
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without sufficient details to observe fine nuances such as sidebands and other closely spaced peaks.  

The reasons for this are as follows: 

1. The somewhat low spectral resolution of 0.5Hz coupled with the minimum resolution 

bandwidth of the Hanning window smears the finer details of the spectrum. 

2. Although a window function decreases leakage, it does not eliminate it.  As leakage is a 

parameter that affects the amplitude accuracy of discrete bins within an FFT, the lower the 

spectral resolution the higher the interval of frequencies will be effected, as every bin that is 

affected by leakage covers a larger frequency interval. 

3. As all electronic components generate noise, there is some scope for improving the layout of 

the circuitry so that a minimum of this noise reaches the ADC portion of the circuit.  

Therefore, keeping that portion of the circuit away from the rest and generally following 

good circuit layout practices, the noise added to the signal can be reduced. 

With the quality of the results as they are illustrated in Figure 73, it was nearly impossible to 

distinguish nearby frequencies with any accuracy.  In addition, because the spectral leakage was so 

high, the median value in the vicinity of the frequency of interest rose as well to levels that 

desensitised the algorithm. 

The success rate of the algorithm could therefore not be ascertained any more accurately than 

during the laboratory tests and certainly could not be compared to the initial measurements from 

which the algorithm was developed (as explained in the Section 5.2).   

The test was therefore used rather as a means to gain operational experience with embedded 

hardware and the useful deliverables of the test were testing of system stability and identifying 

operational weaknesses, as explained in the next section. 

6.3.2 General comments about the performance of the hardware during the test 

 

The purpose of the Alpha prototype was to build a first iteration device capable of acquiring and 

processing a signal.  Once the signal was processed, an inference regarding the signal was made.  

During this time, several lessons were learned in preparation for the definitive Beta prototype. 

The first of which was the use of an external power supply for the accelerometer.  This proved to be 

somewhat troublesome as the units were not very reliable when in a constant on-off environment.  

Their batteries (three 9V units) also suffered to a large extent, needing regular replacement – 

especially when the power supplies were left on; and seeing how the power supply is separate from 

the Alpha prototype, it was an easy mistake to make. 

In addition, the unit takes a considerable amount of time to process the data and yield a result, up to 

5 minutes per measurement.  This is considered much too long in a practical environment. 

As the device did not have a dedicated means to export the data to a PC, interpreting the results was 

often challenging.  It was possible to read the data from the internal registers of the MCU, viewable 

from a debugging application in the programming software – as was done in Figure 73 – but this 

proved very cumbersome and impractical on a large scale. 
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However, the system is very robust and compact.  Although it was not ready to operate on its own (it 

was connected to a laptop throughout the tests), the functionality of a keyboard and display were 

emulated on the Laptop and it was very easy to use.  Indeed, it did not require the skill set of an 

engineer to use. 

All of these comments were taken into consideration for the next phase of the project, namely the 

Beta prototype.  This hardware system incorporated remedies to all of the vices mentioned and 

added additional functionality as well, as discussed in Section 2.4. 

The results from the field testing of that device are discussed in the next section. 
 

6.4   Field testing of the Beta prototype 
 

Due to being the definitive hardware and final deliverable of this project, the results from the field 

tests of the Beta prototype is discussed at length.  Due to the poor signal reproduction accuracy of 

the Alpha prototype, this aspect of the hardware was at a premium and is discussed separately from 

the algorithm results. 

The algorithm results are presented slightly differently than in Section 6.2.  In that section, the 

results were analysed in conjunction with known gearbox condition data from the condition 

monitoring department of SASOL, in order to formulate an algorithm.  The results in this section 

were not based on that of the condition monitoring department, but were verified against them. 

6.4.1 Signal reproduction accuracy 

 

The inferences made by the algorithm are based, at this time, completely on the shape of the 

spectra, hence why accurate correlation between the reference data (from the eDAQ) and the Beta 

prototype is of paramount importance.  Furthermore, it is entirely possible that as this system is 

developed, absolute values of the data may be important as well.  For that reason, the correct 

amplitude scaling was also considered important. 

 

Comparing the data, it is important to note that the Beta hardware has the signal post-processing 

programmed into it, so when the signals were downloaded onto a PC, it was ready for comparison.  

The eDAQ hardware output is only the raw signal, so a certain amount of signal processing had to be 

done before the signals could be compared.  The signal processing performed (be it on a PC 

afterward, in the case of the eDAQ or as part of the algorithm as in the case of the Beta prototype) 

was exactly the same and explained at length in Section 3 “Algorithm development”.  Frequency 

domain results are easier to compare than time domain results and a sample is illustrated below.  

The graph represents samples that were measured both with the Beta prototype and the eDAQ 

system under similar circumstances of the same gearbox. 

Comparing the spectra, one can see the different peaks correspond very well both in terms of peak 

amplitude and shape.  Importantly, one can easily distinguish individual closely spaced peaks, such 

as the peak and sidebands around 24 Hz.  Also visible in the figure below is that the relationship 

between the background noise level and the spectral peaks compares well in the two sets of data – 
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this is also a very important factor for the algorithm as the inference boundary values are based on 

this relationship. 

 

Figure 74:  Comparative spectrum of the Beta prototype and eDAQ 

 

It is now worthwhile to compare the spectrum in Figure 74 above to the spectrum of the Alpha 

prototype in Figure 73.  Comparing these figures, the effect of the measures taken in the Section 2.4 

“Advanced Development Model - Beta prototype” is taken and judged to be successful in 

significantly increasing signal quality. 

6.4.2 Comparison between the Beta prototype and SASOL data 

 

A comparison is now made between the results obtained by the Beta prototype and the commercial 

system used by the condition monitoring department of the Sasol Plant in Secunda.  Regarding the 

system in use by SASOL (CSI AM/RBM Suite), after gathering the vibration data using a logger, the 

data is processed to the frequency domain where relevant data peaks are highlighted for inspection.  

Time domain plots and techniques are also available.  Finally, the results of each gearbox are 

archived and can be arranged into a waterfall plot to observe the changes. 

As mentioned, the suite plots the data in either time or frequency domain and assists the observer in 

identifying relevant information by overlaying markers where events are expected (such as peaks on 

a frequency spectrum, or impulses spaced at a period in the time domain plot).  After a history of the 

machine in question is generated a judgment is then made based on changes in the data – be it time 

or frequency domain. 

Figure 75 illustrates an example plot that compares the data from the Beta prototype to the system 

in use by SASOL.  An important part of the spectrum is illustrated in which three prominent 

components are visible:  The second and third harmonics of one of the gear sets as well as a signal 

coming from a damaged outer race of a bearing. 
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Figure 75:  Overlaid broadband plot of the Beta prototype and SASOL data 

 

In the figure, one can clearly see how the spectral components correspond very well in terms of 

frequency and amplitude.  As the software package used by SASOL only has a somewhat coarser 

frequency resolution as produced by the Beta prototype, frequency components from the Beta 

prototype are significantly more distinguishable.  Spectral clarity is further aided by the optimized 

window used by the Beta prototype that results in less leakage into adjacent bins as explained in 

section 1.3.3. 

It is mentioned that as the results obtained from Sasol was scaled in RMS amplitude, the results 

from the Beta prototype had to be scaled to RMS as well in post processing.  Even though this is not 

the normal operation of the Beta prototype and the scaling had to be done in post processing, the 

results are still considered to be valuable as only the magnitude of the spectrum is changed and not 

the shape. 

6.4.3 Inference accuracy 

 

With the signal integrity of the Beta prototype verified by comparing it to a commercial system as 

well as the system in use by SASOL, the accuracy of the inference can now be verified.  During the 

Beta prototype test, four gearboxes were measured, totalling 26 different bearings of 8 different 

types.  Two of the gearboxes had bearing problems large enough for SASOL to schedule 

replacement.  The other two were not sufficiently damaged for SASOL to consider replacement. 

 

 

GMF × 3 

GMF × 2 

BPFO 
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6.4.3.1 Samples of damaged bearings 

 

The two gearbox samples below are both from the same type of gearbox.  A specific bearing on the 

input shaft of this type of gearbox was found to be susceptible to damage in this application.  Both 

these gearboxes were identified by SASOL as requiring a new bearing on the input shaft. 

The data presented here are the very spectra from the signals as measured by the Beta prototype 

and obtained from the saved data.  And as can be seen in the frequency spectra below, both these 

bearings produced pronounced peaks at the outer race fault frequency (159 Hz on CV2203–1 and 

161 Hz on CV3011; the slight difference is due to slightly different operating speeds). 

In fact, the bearing on CV 2203 produced a frequency peak at the inner race fault frequency as well 

(which was flagged by the Beta prototype).  It was found at a later stage that there was indeed a 

fault at the inner race even though at the time of measurement it was not known yet.  An 

encouraging indication was that the Beta prototype detected this fault without prior knowledge. 

 
Figure 76:  Frequency spectrum of input shaft of gearbox CV 3011 with damaged outer race 

 

The spectrum above is from the input shaft of gearbox CV 3011.  The three fault frequencies are 

included in this plot and are: 

Table 24:  Identified bearing frequency components of Figure 76 

Signal component Frequency [Hz] 

BPFI 232.1 Hz 

BPFO 161.9 Hz 

2× BSF 131.2 Hz 

 

A sharp peak is clearly distinguishable on the plot at 161.2 Hz, which was flagged by the Beta 

prototype as being possible outer race damage.  The 28 in the caption indicates the peak-median 
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ratio was 28, thus exceeding the 10× boundary and flagged as a ‘Vibration Warning’.  The other two 

bearing frequencies, BPFI and 2×BSF had ratios of less than 5 and were thus not flagged. 

Table 25:  Other frequencies identified in Figure 76 

Signal component Frequency [Hz] 

2× GMF2-3 156.3 Hz 

9× Shaft 1 222.5 Hz 

3× GMF2-3 234.5 Hz 

 

The bearing in question was removed not long 

after the tests and Figure 77 shows the pitting 

on the outer race as detected up by the Beta 

prototype and as well as SASOL. 

As mentioned, the gearbox under consideration 

is susceptible to damage of the input shaft 

bearings in this application.  The next sample is from the same type of gearbox and it suffered the 

same type of bearing damage.  

 
Figure 78:  Frequency spectrum of input shaft of gearbox CV 2203-1 with damaged outer and inner race 

 

Visible in the spectra of Figure 78, the same fault is present on the outer race as in the previous 

example and indicated by an arrow and BPFO caption.  A peak-to-median ratio was obtained of 50.2 

which far exceed the 10× threshold.  In addition, a fault is present on the inner race as well.  To the 

observer, this fault appears very close to the 3rd harmonic of the shaft 2-3 GMF. However, the Beta 

prototype successfully distinguished this peak from the GMF harmonic and flagged this fault as 

having severe damage as it had a peak-to-median ratio of 84. 

6.4.3.2 Samples of undamaged bearings 

 

A few samples will now be given of shafts with undamaged bearings (as confirmed by SASOL).  These 

samples may come from the same types of gearboxes discussed already, but which illustrates how 

Figure 77:  Inspected bearing with damage 
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the signals from undamaged bearings look in the frequency domain and how the Beta prototype 

interpreted the signals. 

The first sample under consideration is of gearbox CV 3301 – 2 at SASOL.  The spectrum shown 

below is a two stage gearbox, implying that three shafts are present.  The spectrum is of shaft 2 (the 

intermediate shaft).  This shaft has two types of bearings, giving 6 potential fault frequencies.  The 

spectrum was drawn over a range that covers all these frequencies, summarised in the table below 

(the numeral in the name differentiates the bearings) 

 

Figure 79:  Spectrum illustrating healthy bearings on an intermediate shaft 

 
Table 26:  Identified frequencies in Figure 79 

Signal component Frequency [Hz] 

BPFI 1 65.0 Hz 

BPFO 1 44.4 Hz 

2× BSF 1 39.0 Hz 

BPFI 2 52.3 Hz 

BPFO 2 36.5 Hz 

2× BSF 2 31.0 Hz 

 

As can be seen in the plot of Figure 79, none of these frequencies really created a distinct peak, 

apart from the BPFO 1 peak.  However, this peak was not large enough to trigger a flag, as the 

surrounding activity decreased the peak-to-median ratio. 

It is important to note, that the condition monitoring department at SASOL does not consider any of 

these bearings to be faulty, unlike the previous samples.  This corresponds to the fact that no 

spectral activity was found by the Beta prototype in at these frequencies. 

The next sample is of the output shaft of a SASOL gearbox.  On this shaft is two bearings of the same 

type, therefore if one was damaged it is possible that one would find a peak in the frequency 
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domain.  These frequencies are marked in the spectrum of Figure 80 below (along with other nearby 

peaks) and the frequency values given in the table below. 

Table 27:  Spectral components of interest in Figure 80 

Signal component Frequency [Hz] 

BPFI 15.4 Hz 

BPFO 10.8 Hz 

2× BSF 9.16 Hz 

 

As with the previous example, the spectrum gives no indication of there being a bearing problem as 

there are no distinct peaks at the frequencies one would expect to see them.  Once more, this is 

expected as SASOL reported no bearing faults on this shaft.  

 

Figure 80:  Spectrum illustrating healthy bearings on an output shaft 

 

6.4.3.3 Misdiagnoses 

 

On a number of occasions, it was found that the current methodology for evaluating the potential 

damage on bearings in a gearbox was conservative, i.e. flagging bearing damage when the bearing 

was not considered to be damaged by SASOL.  An illustration of this happening is given in the 

spectrum below.  
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Figure 81:  Spectrum of the first misdiagnosis example 

 

Figure 81 illustrates a range in the frequency spectrum of the intermediate shaft where the 

fundamental frequencies are located of the two types of bearing present on the shaft.  Using the 

arrows and captions, one can see that the Beta prototype flagged the 2×BSF and BPFI of the first 

bearing as ‘Vibration caution’, with a 5.68 and 5.46 peak-to-median ratio (exceeding the 5× limit for 

moderate damage). 

However, SASOL advised that their monitoring program did not indicate any damage in the bearing 

and they consider it completely healthy, even though some peaks were distinguishable at the 

predicted frequencies.  Therefore, in actuality no need for caution existed. 

The most severe case in which a misdiagnosis occurred is illustrated in Figure 82 below.  The first 

type of bearing on the shaft produced peaks on the outer race (BPFO) and inner race (BPFI) 

frequencies, in addition to the 2×BSF frequency coinciding with the shaft 2-3 GMF. 

The BPFO frequency had a peak-to-median ratio of almost 16 and the BPFI had a ratio of about 18, 

but as before, SASOL indicated that it did not consider the bearings to be particularly damaged nor 

did they intend to replace the bearings soon. 

It also has to be said that the 2×BSF frequency identified happens to be the third sideband 

(modulation by shaft 3; rotating at the 1.7Hz spacing frequency) of the shaft 2-3 GMF.  Even though 

it did not flag this peak as being even moderately damaged (the surrounding spectral activity 

increased the median value enough to decrease the peak-to-median ratio), the frequency was still 

wrongly identified, as the algorithm does not include sidebands as exclusion criteria.  
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Figure 82:  Spectrum of the second misdiagnosis example 

 

6.4.3.4 Discussion 

 

Based on the different bearings observed in the various gearboxes, it is concluded that the system is 

conservative, which is accordance with the projected behaviour of a ‘Protection system’.  Its 

behaviour is such that although it sometimes happens that the bearings are overly conservatively 

evaluated as having higher levels of vibration (implying higher risk of failure) than they actually have, 

it never declared a bearing as ‘Vibration normal’ when there was damage present.  Based on the 

four gearboxes sampled, and taking every bearing’s diagnoses as a sample, the following figures can 

be compiled regarding the inference accuracy: 

Table 28:  Inference accuracy figures 

Parameter Figure 

Number of correct inferences 40 

Number of incorrect inferences 8 

Total number of cases 48 

  

Success percentage 83.3% 

 

This is figure of 83.3% is very similar to the 80.4% quoted the Section 6.2.4 where the algorithm was 

tested on the measured data of the first measurement exercise.  This consistency is taken as a 

positive sign that translation of the algorithm from the Matlab environment, to the Alpha prototype 

and finally the Beta prototype was a success. 

From the project philosophy point of view, the 83.3% success ratio is considered adequate as the 

system was not designed to replace human judgement, but to supplement it.  As the system has 

proven to be conservative, this behaviour paves the way for the laymen wielding the finished 

product (the product being the commercial successor of the Beta prototype) to inspect his 
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consignment of gearboxes.  When the product flags a potential problem, he can hand over the data 

to an engineer or technician to make the judgement of whether to replace the bearing or to leave it 

for a while yet, safe in the knowledge that the system will not fail to catch a damaged bearing. 
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7. Conclusion 

7.1   Cost analysis 
 

The entire premise of the project was to develop a low cost condition monitoring device.  A target 

budget of R5000 was set and a summary of the costs involved are given below.  As is often the case, 

costs per part differ for the quantity of a part ordered.  The target was to get the total cost of 

manufacturing one unit below the target budget, with any savings for bulk an added bonus.  Where 

possible, the price for both 1 unit and 100 units are given, otherwise the price for 1 unit was used 

and the entry was underlined.  All prices in ZAR are inclusive of VAT. 

Table 29:  Prices of components and manufacturing 

Part/Task Supplier Price (1) Price (100) 

MCU RS Components 136.52 66.88 

Memory Avnet 21.06 19.27 

LCD Nu Vision 96.95 96.95 

Battery Communica 78.50 78.50 

Accelerometer (including cables) Anderson and Hurley 1334.94 1334.94 

Miscellaneous electronic components Farnell 360.25 310.69 

Casing Routertec 877.00 237.00 

PC Hardware (once off) Mikroelektronika 647.26 0 

High speed SD Card Orms 499.99 499.99 

Serial to USB converter Communica 112.00 112.00 

Circuit board printing Deman Manufacturing 800 (approx) 300 (approx.) 

Circuit board populating Deman Manufacturing 90 18 

Total 5054.47 3074.22 

 

The price column for 1 unit lists all of the materials and manufacturing costs in addition to auxiliary 

costs such as PC hardware (once off), casing design and die manufacturing (incorporated into the 

Casing category) and the initial programming and setup of the circuit board printing and populating 

machinery.  Therefore, it includes the initial investment required for production. 

 

Contrary to this, the price column for a 100 units assumes the necessary initial investments (as 

described) have been made, so these items are not included.  Furthermore, this price column 

includes all manufacturer and dealer discounts available to large orders. 

 

As the project budget is R5000, the additional funding available if production quantities are made 

(100 units or more), will be well spent on a higher quality accelerometer.  In addition, a better case 

design (such as an IP66 compliant case) may also be considered. 



101 
 

 

7.2   Project review 
 

The aim of this project was to develop a low cost vibration protection device.   

An initial data gathering campaign was therefore undertaken to characterise a variety of gearboxes 

in the industry.  During this excursion, several different types of gearboxes were measured in various 

states of health. 

Considering the information gleaned from the measured data, a literature study was undertaken 

during which typical signal processing techniques were investigated and considered.  A fairly simple 

frequency domain technique (developed in the robust Matlab environment) was chosen as the most 

promising avenue of work.  This is in line with the market positioning for a low-cost protection 

system, which does not give precise diagnoses, which require a powerful processor, but 

recommendations on a course of action.  The technique employed was based on the results from the 

initial data gather campaign and evaluated against it. 

In parallel with this, the XDM was acquired.  This allowed familiarisation with the embedded 

environment as well as serving as a vessel for translating and testing the developed algorithm from 

Matlab to ANSI C.  This was however the scope of usefulness for this system, as it was very large in 

dimensions, could not store a large amount of data and unable to gather analogue signals. 

This was corrected with the Alpha prototype of the ADM, this was a custom designed system 

capable of holding more data (in volatile memory) and measuring an analogue signal.  It was 

however still very slow and lost the data when switched off.  It was tested at the SASOL plant and 

found to be slow and it is data of poor quality.  It also had to be connected to a PC and was thus not 

an independent system. 

The definitive hardware specification was of the Beta prototype of the ADM.  This device is 

considered to be pre-production and incorporated many improvements to aid signal quality as well 

as incorporating an LCD, pushbuttons, a user interface, non-volatile memory, future expandability 

and increased speed. 

The algorithm proved to be fairly accurate and successfully made a large percentage of correct 

inferences.  However it made several misdiagnoses and is considered to be a priority improvement.  

The system also remains to be tested outside of SASOL. 

A requirement of the project was for the final device to cost R5 000 or less.  The final system cost 

depends on how many devices are manufactured.  For a single device, the cost is R 5054.47.  This is 

marginally more than the target budget, but includes a R1 287.26 once-off start-up cost.  For a 

hundred units, the cost is much less, at R3 074.22.  The surplus is recommended for a better 

accelerometer, faster SD Card or an IP66 case. 

The goals of this project is therefore deemed to be met as the device is small enough to be operated 

by hand or mounted onto a machine.  It is capable of performing the necessary procedures to fulfil 

the role of vibration protection device.  This includes: 
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 Acquiring and archiving data from various different gearboxes 

 Applying rudimentary techniques to obtain a conservative state of the bearings within the 

gearbox 

 Notifying the operator of the appropriate course of action based on the findings 

 Storing a history of the time and frequency domain of the various gearboxes as well as a full 

test log of every test for later evaluation by experts 

This is considered to fulfil the requirements for the current interpretation of the vibration protection 

device. 

7.3   Summary of findings 

7.3.1 Experimental development model 

 

The experimental development model was never intended for either field or laboratory testing.  Its 

sole purpose was to serve as a test bed having the same family of processor and using the same 

compiler. 

It was therefore mainly used to translate the developed algorithms from the Matlab programming 

language to the C programming language.  Further use was excluded due to limitations on its ADC 

module and very limited memory. 

It was used primarily in the time during which the Alpha prototype was being manufactured. 

7.3.2 Advanced development model – Alpha prototype 

 

The advanced development model was the first custom designed hardware for the project.  It 

contained many improvements to the hardware and addressed the ADC and memory limitations of 

the XDM.  It also incorporated an LCD screen, although it never worked.  Importantly, it used a 

higher specification of processor. 

It performed reasonably well in laboratory and field tests, but several limitations existed.  Data could 

not be downloaded onto a PC, the system had to be connected to a controlling PC at all times (due 

to the LCD not working), it was very slow in its operation and it had an un-ergonomic power supply 

that made it easy to forget on – thus depleting the battery. 

The measurement results indicated a severe lack of spectral resolution.  The root cause of this was 

found to be a sub-optimal window function, very high sampling rate (in conjunction with finite 

memory) and a problematic memory chip. 

The prototype found a second use during the time in which the Beta prototype was being used.  

During this time, some modifications made to the hardware allowed the development of drivers 

which was used in the Beta prototype. 

7.3.3 Advanced development model – Beta prototype 

 

The Beta prototype was the final specification hardware of this project and included a number of 

further improvements upon the Alpha prototype in addition to correcting its flaws. 
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The changes between the Alpha and Beta systems involved the use of the PLL (which multiplied the 

operating speed by 8), a working LCD screen, push-buttons (providing a user interface and 

independence from a PC), RS232 connectivity, the use of an SD card for non-volatile storage, on-

board accelerometer power supply and a rechargeable battery. 

In addition, many algorithmic improvements were made during the transition which included a 

much optimised FFT which better utilises the memory in order to provide twice the number of 

samples.  A study was conducted about window functions, and an optimised window function was 

chosen. 

Field tests confirmed a vastly improved frequency spectrum.  The results were compared to samples 

from SASOL in Secunda and the Beta prototype yielded better spectral resolution.  Regarding the 

inference accuracy, more 80% of the inferences were deemed to be correct.  This was deemed to be 

a success. 

7.4   Recommendations 
 
With the final deliverable of the project being a prototype, there are several aspects of the hardware 

that can be improved to make a better product.  These items are listed below. 

7.4.1 Input speed and calibration amplitude inclusion to the param.txt file 

 

Currently, the SD card only serves to house gearbox design data.  This includes number of gear teeth, 

number of stages and bearing frequency.  The inclusion of the input speed will make for a system 

that is more modular. 

The reason for its present omission is due to the fact that all the gearboxes measured in the industry 

operated at approximately the same input speed.  However in practice this will obviously not be the 

case and a more robust scheme to change this parameter will be required.  

It is noted that the firmware currently works with the input frequency.  This may be somewhat 

confusing to operators used to working with input speeds in units of RPM.  As there is a simple ratio 

between input frequency (in units of Hertz) and input speed (in units of Rotations per minute) it is 

logical to have the operator use the input speed and let the firmware do the conversion internally, 

as this would eliminate the possibility of an error. 

The calibration amplitude would serve the envisioned auto calibrate routine described below. 

7.4.2 Auto calibrate routine 

 

As has been mentioned in Section 4.3 where the calibration procedure is explained, there are several 

factors that can cause erroneous variances in the amplitude logged by the device.  For this reason, it 

is considered prudent to include an auto calibrate routine in the firmware to take care of this and 

reduce the amplitude error that may exists from machine to machine. 

This routine may comprise of a simple option that exists in the menu of the device that would 

initiate the auto calibrate routine in the device.  The routine would follow the same procedure as 

outlined in Section 4.3.  When this routine is initialised, the operator would have to measure a signal 
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of known amplitude (included in the param.txt file).  The routine would then compare the internal 

amplitude logged by the device with the known calibration amplitude and correct for it with a 

calibration factor. 

7.4.3 Gear and shaft fault finding 

 

Currently, the firmware on the Beta prototype only looks for possible bearing problems.  The scope 

of the project was intentionally limited to these components due to the fact that bearing problems 

are the most common on gearboxes found at SASOL.  Furthermore, being a prototype it was deemed 

sufficient to prove the validity of the system. 

However, bearing defects are of course not the only defect type that exists in a gearbox.  Shaft and 

gear defects are also found on gearboxes and can be found using vibration based techniques (Bloch 

& Geitner, 1999).  In the industry, these problems will arise from time to time and it would add 

immense value to the product if these defects can be detected, especially since the hardware 

infrastructure already exists for this. 

7.4.4 Spectral averaging, higher quality SD card and improved SD card routines 

 

This is another common vibration monitoring technique that would add value to the system as it 

would likely suppress stray peaks in the frequency spectrum and generally smooth the noise level (it 

is important to note however that the technique does not reduce spectral noise, but merely 

averages it). 

Currently the hardware itself is not capable of storing enough data to store more than one 

frequency spectrum, unless the bandwidth is reduced.  The SD card can however store this data, as 

when it saves the spectra for further analysis. 

However, this procedure is currently taking too long (in the order of a minute and even then it only 

saves up to 500 Hz).  However, it is readily admitted that the SD card routines have much potential 

for optimization. 

In addition, the SD card in use is not of the highest quality and at higher writing speeds becomes 

unstable.  The use of a higher quality, higher speed SD-card would sever to improve the writing 

speeds. 

Improving the SD card write speeds, through the use of optimized SD card routines and a higher 

quality SD card, will make spectral averaging feasible by temporarily storing successive spectra on 

the SD card and the averaging them.  This will likely improve the damage prediction performance 

and ease third party consultation on the data as the spectra will appear ‘cleaner’. 

7.4.5 Algorithm calibration 

 

Another important aspect task is calibration of the algorithm.  The current peak to median ratios of 

5× and 10× in the frequency spectrum was effective enough to prove the concept and be effective at 

SASOL, but further data will be needed to verify if these figures are appropriate for other sites and 

applications as well. 
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This can only be achieved by putting further models in the field and monitoring their performance.  

Fortunately, the coding infrastructure is already in place, in the form of the log file, to prepare for 

this exercise. 

7.4.6 Signal interference compensation 

 

It was mentioned in the Section 3.2.7 “Algorithm development – Exclusion criteria” that when there 

is interference (in the form of frequency coincidence) that the algorithm ignores this spectral 

component. 

This is creates a vulnerability in the system, as that component may well be damaged, even though 

this damage is masked by the interfering component.  Further research is necessary to minimise this 

problem, but a scheme in which the system looks to time domain parameters such as maximum 

value for a backup plan. 

It is realised that whatever scheme is put in place will likely be less sensitive to problems, but this is 

considered to be better than nothing.  In addition, the system fortunately incorporates the 

functionality to save data, which means third party consultants or our Industrial partner can offer 

assistance in interpreting the data. 



1 
 

References 
Avigad, J., & Donnelly, K. (2004). Formalizing O notation in Isabelle/HOL. Basin and Rusinowitch: 

Springer Verlag. 

Balderston, H. l. (1969). The detection of incipient failure in bearings. Material Evaluation(27), 121-

128. 

Bartelmus, W. (2008, April 4). Root cause and vibration signal analysis for gearbox condition 

monitoring. BINDT Insight Journal, 50(4). 

Bartelmus, W., & Zimroz, R. (2009). Gearbox condition degradation models. The sixth International 

Conference on Condition Monitoring and Machinery Failure Prevention Technologies, (pp. 1-

10). Dublin. 

Bloch, H., & Geitner, H. (1999). Machinery Failure Diagnosis and Troubleshooting (4th Edition ed.). 

Bores Signal Processing. (2009, 06 02). FFT window functions: Limits on FFT analysis. Retrieved 10 10, 

2010, from Bores signal processing: 

http://www.bores.com/courses/advanced/windows/files/windows.pdf 

Bores Signal Processing. (2009, 2 6). FFT windows: Coherent power gain. Retrieved 04 17, 2011, from 

Advanced DSP: http://www.bores.com/courses/advanced/windows/10_cpg.htm 

Combet, F., & Gelman, L. (2007). An automated methodology for performing time synchronous 

averaging of a gearbox signal without speed sensor. Mechanical systesms and signal 

processing, 21, 2590-2606. 

Combet, F., & Zimroz, R. (2009). A new method for the estimation of the instantanous speed relative 

fluctuation in a vibration signal based on the short time scale transform. Mechanical Systems 

and Signal Processing, 23, 1382-1397. 

DLIengineering. (2010). Review of Techniques for Bearings & Gearbox Diagnostics. Richmond, 

Virginia: SpectraQuest, Inc. Retrieved 03 21, 2010, from 

http://www.dliengineering.com/vibman/gloss_bearingtones1.htm 

Ganeriwala, S. (2010). Review of Techniques for Bearings and Gearbox Diagnosis. IMAC Conference, 

(pp. 1-37). Jacksonville FL. 

Girdhar, P., & Scheffer, C. (2004). Practical Machinery Vibration Analysis and Predictive Maintenance 

(1st ed.). Oxford: Elsevier. 

Graham, R. L., Knuth, D. E., & Patashnik, O. (1994). Concrete Mathematics: A foundation for 

computer science (2 ed.). Reading: Addison-Wesley Publishing Company. 

Grover, D., & Vollmer, M. (2010). Fast Fourier Transform (FFT) FAQ. Retrieved March 17, 2010, from 

http://www.dspguru.com/dsp/faqs/fft 

Harris, F. J. (1978). On the use of windows for harmonic analysis with the discrete fourier transform. 

Proceedings of the IEEE, 66(1), pp. 51-84. 



2 
 

Heng, A., Zhang, S., Tan, A. C., & Mathew, J. (2009). Rotating machinery prognostics: State of the art, 

challenges and opportunities. Mechanical Systems and Signal Processing(23), 724-739. 

Hochmann, D., & Sadok, M. (2004). Theory of Synchronous Averaging. IEEE Aerospace conference 

proceedings. Vergennes, USA: Aerospace Conference. 

Ifeachor, E. C., & Jervis, B. W. (1998). Digital Signal Processing: A practical approac. Harlow: Addison 

Wesley. 

Jardine, A. K., Lin, D., & Banjevic, D. (2006). A review on machinery diagnostics and prognostics 

implementing condition-based maintenance. Mechanical Systems and Signal Processing(20), 

1483-1510. 

Karacay, T., & Nizami, A. (2009). Experimental diagnostics of ball bearings using statistical and 

spectral methods. Tribology Internation(42), 836-843. 

Kardushin, D., 1991. 3rd International Machinery & Diagnostics Conference. Las Vegas, Union 

College. 

Kiral, Z., & Hira, K. (2003). Simulation and analysis of vibration signals generated by rolling element 

bearing with defects. Tribology International(36), 667-678. 

Kiral, Z., & Karagülle, H. (2003). Simulation and analysis of vibration signals generated by rolling 

element bearing with defects. Tribology International(36), 667 - 678. 

Kochan, S. G. (1988). Programming in ANSI C (1st ed.). Indianapolis: Hayden Books. 

Konstantin-Hansen, H. (2003). Application Note 7773: Envelope Analysis for Diagnostics of Local 

Faults in Rolling Element Bearings. Brüel & Kjær Application note, pp. 1-8. 

Lai, E. (2004). Practical Digital Signal Processing for Engineers and Technicians. Oxford: Newnes. 

Ma, J., & Jiang, J. (2011). Applications of fault detection and diagnosis methods in nuclear power 

plants: A review. Progress in Nuclear Energy(53), 255-266. 

Mathew, J., & Alfredson, R. J. (1984). The condition monitoring of rolling element bearings using 

vibration analysis. ASME Transactions - Journal of Vibration, Acoustics, Stress and Reliability 

in Design(106), 447-453. 

Mathworks. (n.d.). Minimum 4-term Blackman-Harris window - MATLAB. Retrieved 05 03, 2011, 

from Mathworks: http://www.mathworks.com/help/toolbox/signal/blackmanharris.html 

McInemy, S. A., & Dai, Y. (2003). Basic Vibration Signal Processing for Bearing Fault Detection. IEEE 

Transactions on Education, 46(1), 149 - 156. 

Microchip. (2010). Microchip PIC product page. Retrieved February 13, 2010, from 

http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=2551 

Microchip Technology Inc. (2008, January 22). AN1152: Achieving Higher ADC Resolution Using 

Oversampling. Retrieved from Microchip application notes: 



3 
 

http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1824&appno

te=en533730 

Microchip Technology Inc. (2009). dsPIC33FJXXXMCX06/X08/X10 Data Sheet. United States. 

MikroC. (2010). FFT Library help file. MikroC Pro for dsPIC30/33 and PIC24 Help. MikroC. 

Mobley, R. K. (2004). Maintenance Fundamentals (2nd ed.). Burlington: Elsevier. 

National Instruments. (2009, 06 08). he Fundamentals of FFT-Based Signal Analysis and 

Measurement in LabVIEW and LabWindows/CVI. Retrieved 04 17, 2011, from National 

Instruments Developer Zone: http://zone.ni.com/devzone/cda/tut/p/id/4278 

Nelwomondo, F. V., Marwala, T., & Mahola, U. (2006). Early classification of bearing faults using 

hidden Markov models, mel-frequency cepstral coefficients and fractals. International 

Journal of Innovative Computing, Information and Control, 2(6), 1281-1299. 

Norton, M., & Karczub, D. (2003). Fundamentals of noise and analysis for Engineers (2nd ed.). 

Cambridge: Cambridge university press. 

Patil, M. S., Mathew, J., Rajendrakumar, P. K., & Karade, S. (2010). Experimental studies using 

response surface methodology for condition monitoring of ball bearings. Journal of 

Tribology, 132, 44505-44511. 

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1995). Numerical Recipes in C: "The 

art of Scientific Computing". Cambridge: Press Syndicate of the University of Cambridge. 

Radoslaw, Z., Urbanek, J., Barszcz, T., Bartelmus, W., Millioz, F., & Martin, N. (2011). Measurement of 

instantaneous shaft speed by advanced vibrtation signal processing - application to wind 

turbine gearbox. Metrology and measurement systems, 505-722. 

Randall, R. B., & Antoni, J. (2011). Rolling elementbearingdiagnostics—A tutorial. Mechanical 

Systems and Signal Processing(25), 485–520. 

Samual, P. D., & Pines, D. J. (2005). A review of vibration-based techniques for helicopter 

transmission diagnostics. Journal of Sound and Vibration(282), 475–508. 

SKF. (n.d.). Bearing frequencies. Retrieved 6 6, 2009, from 

http://www.skf.com/skf/productcatalogue/calculationsFilter?lang=en&action=Calc6 

Skolnick, D., & Levine, N. (1997, December 1). Why Use DSP?: An introductory course in DSP system 

design. Retrieved January 17, 2010, from 

http://svconline.com/mag/avinstall_why_dsp_introductory_2/ 

Smith, S. W. (1998). The Scientist and Engineer's Guide to Digital Signal Processing. Retrieved 04 20, 

2011, from http://www.dspguide.com 

Stander, C. J., & Heyns, P. S. (2002). Using vibration monitoring for local fault detection on gears 

operating under fluctuating load conditions. Mechanical systems and signal processing, 

16(6), 1005-1024. 



4 
 

Tandon, N., & Choudhury, A. (1999). A review of vibration and acoustic measurement methods for 

the detection of defects in rolling element bearings. Tribology International(32), 469–480. 

Taylor, J. I., & Kirkland, D. W. (2004). The Bearing analysis handbook: A practical guide for solving 

vibration problems in bearings. Vibration Consultants Inc. 

von Hippel, P. T. (2005). Mean, Median, and Skew: Correcting a Textbook Rule. Journal of Statistics 

Education, 13(2). 

Wilmshurst, T. (2007). Designing Embedded Systems with PIC Microcontrollers: Principles and 

applications. Oxford: Newnes. 

 



5 
 

 APPENDIX A – XDM evaluation board 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A1:  Data sheet of XDM evaluation board 
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 APPENDIX B – ADM Beta prototype hardware specification 
Table B1:  Hardware specifications of ADM Beta prototype 

Parameter Value Parameter Value 

Sensitivity ( ± 20% ) 100 mV/g Storage 2 GB (exchangeable) 

Measurement range ± 16g Package SD Card 

Frequency range 0.95 Hz to 3250 Hz File type .txt 

Broadband resolution 8 mg Possible number of records > 16 million 

Non - linearity ±1% Stored records Time and Frequency 

Transverse sensitivity ≤ 7%   

  Expandability • RS 232 
• I2C 
• SPI Size 200 ×120×80  

Weight 510 g   

Battery 6 V (3200 mAh) LCD 128 × 64 

Battery runtime (typical use) 3 days Selection buttons 3 

Charge time ≈ 8 hours MCU speed 80 MHz 

Outlet type 220 V (AC) – kettle connector   

Temperature range -40°C to 150°C   
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 APPENDIX C – Electronic fundamentals and configuration 
The objective of this section is to provide a brief overview of key electronic principles required for 

the operation of the electronics in this project, followed by a data flow and explanation of how the 

system internally operates.  Finally in this section the physical electronic design is provided as well as 

the layout of the system on the Printed Circuit Board (PCB). 

C.1 Microcontroller I/O ports primer 
Microcontrollers (and indeed the related microprocessors) have a basic necessity that requires them 

to be useful in practical applications:  input and output (I/O) interfaces (Wilmshurst, 2007).  These so 

called I/O ports, provides the device with two way communications to the outside world – often, but 

not always, by means of integrated circuits (ICs) connected to these ports.  Examples of devices 

typically connected to the ports include: 

1. Buttons 

2. Rotary dials 

3. ADC units 

4. Displays (seven segment, LCD) 

5. Speakers 

6. GPRS units 

7. SD Card reader  

8. Communication ports (USB, RS232) 

As can be seen, some of these devices are for input into the system (the first three items listed), 

some are for output (items 4 and 5) and some are for two way communication (items 6 to 8).  The 

common denominators of these units are that they use the I/O ports MCU.  It is true that some of 

them use some intermediary circuitry, but in principle, all the signals from peripherals go through 

the I/O ports. 

These ports manifest themselves as a specific series of pins on the MCU device (note however that 

not all pins are for I/O purposes, and some have a dual purpose) that is connected to the data bus (a 

figuratively parallel series of data lines from one point to another) of the MCU.  Several pins are 

grouped together to form a port and can be used as a group or individually.  A typical MCU has 

several of these ports.  Figure C1 is an illustration of a basic MCU with the I/O ports highlighted. 

Information on the pins manifests themselves as voltages.  Typically, a voltage on a pin may be 3.3V 

– which will register as 1, or 0V (ground) which will register as a 0.  Depending on whether the pin is 

configured as an input to the MCU or output to the MCU will determine whether the MCU reads the 

voltage or sets the voltage.  If the pin is configured as an input, the peripheral (such as a button) will 

cause the pin to reflect a voltage, which is read by the MCU and used.  Conversely, if the pin is 

configured as an output, the MCU will set the voltage, which will be read by the peripheral (such as 

an SD Card reader). 
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Figure C1:  A basic MCU of the Mircrochip 16-bit family (Microchip Technology Inc, 2009) 

 

These ports are useful as peripheral interfaces often require a series of pins that make up, say, a 

byte.  Consider a hypothetical IC peripheral and the MCU below.  The 4 pins of the port are all 

configured as input, meaning that the MCU will read the information from the pins (in the form of a 

voltage set by the peripheral).   These pins are connected to four pins of the peripheral. 

 

Figure C2:  Data flow via pins 
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Table 31 illustrates how a number is passed in a parallel pin configuration from the peripheral to the 

MCU.  As the pins are configured to be inputs to the MCU, the peripheral has control to set the 

voltages. 

Table C1:  Example of how parallel pin voltages relate to information 

Pin number Voltage [V] Logic 

1 3.3 1 

2 3.3 1 

3 0 0 

4 3.3 1 

Binary value passed 13 

 

If the peripheral (say, an ADC) sets the voltages as follows, the 4 pins can be combined into a port to 

recreate a 4 bit binary number – in this case 13.  This number can now be read from port and used in 

the MCU for computation 

It is emphasised that the pins can still be used separately.  This does pose the restriction that only 

two values can be read or written – this is however a common requirement, such as with switches. 

C.2 Circuit flow diagram 

 

Figure C3:  ADM beta prototype information flow diagram 
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Figure C3 illustrates how information passes between the components of the ADM beta prototype.  

Blue boxes represent input components, red boxes represent output components and grey boxes 

represent internal components among which input data is passed for processing, before being sent 

to the output components.  Note the SD card and RS232 units act as both input and outputs, hence 

they are gradient shaded to reflect this.  In addition, the ADC unit is internal to the MCU, but 

operates separately unit from the main processing unit. 

To assist with the distinction between input, output and internal components; the arrows 

symbolising data flow are colour coded as well:  Blue for data going into the MCU, red for data 

flowing from the MCU and black for bi-directional data. 

As expected, input data flows from the buttons (as a means of UI) and the ADC unit (the raw 

measured data).  Additional input data is retrieved from the SD-card.  During processing, the 

information is passed between the MCU and the memory (via the cache memory – where active 

variables are stored).  After the data analysis is complete, outputs are passed to the LCD display, the 

SD card and potentially the RS232 unit (unimplemented in the final firmware release, but 

operational).  In addition, while the device is active, certain activities may trigger the LEDs, to 

provide the user with assurance of normal operation. 
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 APPENDIX D – MCU driver operation 
Although the focus of this project is how the bearing state assessment algorithm works in 

conjunction with the signal processing hardware, significant resources were spent on driver 

programming which allows the various electronic subsystems to communicate with each other 

through the central MCU. 

This section details some of the non-algorithmic routines (hardware drivers) which had to be 

manually coded in order to make the device function.  Each driver is discussed in terms of functional 

premise and philosophy rather than technical computing.  This approach is deemed sufficient 

considering the focus of this document. 

Appendix C provides a background to this section. 

D.1 ADC driver 
The most recent ADC driver of the beta prototype is now discussed.  This will differ from the driver 

used for the alpha prototype, as the two systems use different ICs for the purpose.  In fact, the alpha 

prototype used an external IC connected to the main MCU whereas the beta prototype uses the on-

board system of the MCU, as explained in section 2.4.3.  The premise and basic source code was 

obtained from Microchip but had to be heavily modified to work with the current design and 

compiler (Microchip Technology Inc, 2008). 

Operational premise: 

The framework of the driver, along with the oversampling technique (section 1.3.3.6) was obtained 

from Microchip.  Therefore, the entire driver was designed around this technique. 

The philosophy involved the use of ‘ping-pong’ buffers.  This involved the use of two buffers to 

which the ADC can write data.  The implementation then involved low-pass filtering and decimation 

on the buffer that was already full, while filling the other buffer with new data. 

A FIR filter was used for this driver, which of-course requires a history of previous samples to 

calculate the next, filtered, data point.  This implied that the buffers were intricately linked and care 

had to be taken to ensure that, during the first few data points in the new buffer, the required 

history in the old buffer was not yet overwritten (luckily, the MCU speeds are orders higher than the 

ADC sampling rate, so realistically this was never expected to be a problem).  This additionally 

required the MCU to both read and write to the same buffer at the same – a requirement that 

necessitated the use of the DMA (Direct Memory Access).  As the name implies, this allows that ADC 

module to bypass the MCU core and communicate directly with the appointed section of memory 

(specifically, the section that housed the ping-pong buffers), freeing the MCU core to process the 

data (filtering, decimation, etc.) without requiring it to administrate the ADC-memory data flow. 

Preliminary configurations:  Interrupt, timer and DMA 

During initialisation, the ADC driver was programmed to ready a number of parameters.  The most 

important of which are: 

 ADC resolution to 12 bit 
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 Points the ADC analogue input to the appropriate bit of a port (i.e. a specific pin on the chip) 

 Synchronises the ADC conversion period to a general purpose timer and sets the period of 

the timer to correspond to the desired sampling frequency 

 Allocate the addresses of the ping-pong buffers 

 Activates the DMA and links the ADC output buffer to the ping-pong buffer 

 Sets the necessary flags (such as interrupt flags, buffer select flags and buffer full flags). 

Main driver 

The procedure followed by the driver is best described by means of a flow diagram, as in figure D1.  

  

Figure D1:  ADC driver flow diagram 

 

The entire operation resides within a loop that repeats the number of times that the buffers require 

to fill the memory with the desired amount of processed data samples (for reference, each buffer 

was 512 bits long and 32 768 samples).  When the buffers had, in turn, filled the memory with the 

required amount of samples, the loop will exit and the ADC module switched off to save power (not 

pictured).  This counting process is illustrated in the blue box. 

Within the loop there also exists a function that monitors whether the one buffer had been 

completely filled with data from the ADC, after the other had been processed.  This is necessary as 

the MCU operates much faster than the ADC, implying that the MCU will finish processing the one 

buffer before the ADC can finish filling the other.  This function therefore allows the ADC the time 

Buffer A Buffer B 

Count number of times the 

buffers were filled and 

initiate loop exit, when 

required 

Wait for buffer full flag and 

buffer select flag 

DMA interrupt: 

automatically triggered 

when a buffer is full 

MCU operation: 

FIR, decimation, flag, UI, 

store to memory 

ADC operation: 

Fill buffer using the DMA 
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required to fill the current buffer it is working on and temporarily suspends the MCU.  After the ADC 

has finished filling its buffer, the function will allow the buffers to switch allowing the MCU to 

operate on the other buffer and allowing the ADC to refill the buffer that the MCU had been 

operating on. 

Had this function not been in place, a conflict would occur as the MCU would start processing the 

same buffer that the ADC is filling with data, after it (the MCU) finished with the other buffer.  This 

process is illustrated in the left most green box.  The function just explained is assisted by the DMA 

interrupt (see note at the end of this section for a brief explanation on interrupts) which is triggered 

when a buffer is full.  The interrupt – represented by the right most green box – lets the main 

function (the left most green box) know that the ADC had finished filling a buffer with data and that 

switch has taken place. 

In the meantime, while the one buffer is being filled with data, the other buffer is being processed 

according to the requirements of the oversampling algorithm.  During this time, the data in the 

buffer is filtered, decimated and stored in the SRAM memory.  The operations on the buffers are 

illustrated by the purple boxes.  The ADC will however still be occupied filling the other buffer.  Once 

it has finished doing so, a buffer full flag will be set. 

After this process is finished, the loop would start over again.  Therefore, a counter (in the first 

function – indicated by the blue box) would increase in value and that function will then decide if 

more samples are required. 

Note 

An interrupt is a function that automatically executes only when a certain condition is met and is not 

explicitly called.  Sources of interrupts include RS232 connections, timers, SPI interfaces, ADC units, 

etc. 

In this project, the interrupt function was configured to execute automatically when the ADC had 

finished filling a buffer with data.  The function relayed to the main driver that the ADC had finished 

filling a buffer and also which buffer, specifically. 

D.2 Memory driver 
Introduction 

The volatile SRAM of the alpha and beta prototypes (Static Random Access Memory) were used to 

store the data samples that is being used by the algorithm.  This was necessary as the internal cache 

memory of the MCU was not large enough to house all the data.  SRAM is an asynchronous type of 

memory, implying that its operation is not synchronised to a clock pulse and can be utilised anytime, 

as long as it is configured properly.  In addition, the memory has 512k addressable locations of 8-bits 

(one byte) each. 

The memory is connected to the MCU via several ports.   A control bus runs from one port on the 

MCU to the memory chip (for turning on the chip, write command, read command), an address bus 

for setting the address to write to or to be read from and the data bus, where the actual data 

transfer takes place.  The figure D2 illustrates the layout. 
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Figure D2:  Memory bus connections to the MCU 

 

Table D1:  Memory address layout 

Addr 0 Addr 1 Addr 2 Addr 3 Addr 4 Addr 5 Addr 6 
… 

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 

 

Digital number formats used 

As mentioned, the ADC outputs integer data of 16 bits.  Which implies that each sample had to be 

stored in two separate memory locations.  However, the algorithms work strictly with floating point 

values which are 32 bits in length.  Therefore, after all the data had been sampled by the ADC, every 

data sample was converted to a floating point number of the same value.  Thus, if the ADC yielded 

digitised values of 12, 23, 120, 97, 571... (bear in mind, these values did not reflect values in 

traditional ADC units, but digitized values based on the input pin from the ADC), they were 

converted after the sampling process to 12.0000000, 23.0000000, 120.0000000, 97.0000000, 

571.0000000…. 

Driver layout 

The driver consist of several functions:  Initialisation of the memory module, writing integer 

numbers, writing floating point numbers, reading integer numbers, reading floating point numbers 

and converting the integers existing in the memory to floating point numbers.   

Initialisation 

The initialisation routine is executed once during start-up of the device and configures the pins 

connecting the address bus as output (as the address is always sent to the memory module – 

whether one needs to read from the address or write to the address and, the command bus as 

output (commands are always sent to the memory module).  In addition, the memory module 

requires a series of initial commands that needs to be sent to the module before the first operation. 

Integer write 

The next function that forms part of the driver suite is the integer write function.  This function is 

typically used when the ADC values are written to the memory. 

When writing an integer value (of 16 bits), a control command is given to prepare the chip to receive 

data whilst the data port (connecting to the data bus) is configured as an output.  It then performs 

two write operations.  This is because the memory module is divided into 8 bit memory slots.  The 16 
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bit integer therefore had to be separated into a higher and lower byte and stored separately.  The 

operation of the integer write operation is illustrated in the figure below (note that when integers 

are written, only the first and second - of four - memory slots are used.  The third and fourth are 

reserved for a floating point conversion, as will be explained imminently). 
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Figure D3:  Diagram depicting the steps of integer storage to the SRAM module 

 

Therefore, if the number 14893 (binary number 0011101000101101) had to be stored in memory, 

the first 8-bit memory location would contain 00111010, and the second would contain 00101101. 

Floating point write 

As seen in Figure D3, where integer write is illustrated, only the first and second, of four, memory 

locations are used per write.  This was because the integers used are 16 bits long, while each 

memory location is only 8 bits longs.  The integer therefore had to be divided into two 8 bit halves 

and stored consecutively. 

The same principle applies to floating point numbers as well.  Only now, each floating point number 

is 32 bits long.  This implies that each number will be divided into four 8 bit quarters and stored 

consecutively. 

Incidentally, this is also the reason why only the first two of every four memory location are used by 

the integer write routine – to leave space for when that number is later converted into a floating 

point value. 

This will be required, as the algorithms work with floating point values, yet the ADC outputs integers.  

The table below illustrates how the transition to floating point numbers: 

Table D2:  Integer vs. floating point number layout in 8-bit memory 

Data entry number Memory location Integer bytes Floating point bytes 

1 0 Low byte Low byte 

 1 High byte Middle byte 1 

 2  Middle byte 2 

 3  High byte 

2 4 Low byte Low byte 

 5 High byte Middle byte 1 

 6  Middle byte 2 

 7  High byte 

3 8 Low byte Low byte 

 9 High byte Middle byte 1 

 10  Etc… 
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Integer read 

In many ways, reading integers from the memory is the reverse of writing them to memory.  Firstly, 

a command is sent via the control bus to the memory that data will be read from the chip.  After 

data port is then configured as an input, two read operations, from consecutive memory slots, are 

performed and the results combined into a 16 bit integer value.  A figure depicting driver operation 

is provided below. 
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Figure D4:  Diagram depicting the steps of integer storage to the SRAM module 

 

Floating point read 

The similarities that exist between integer write and floating point write, exist between integer read 

and floating point read.  Assuming the numbers in the SRAM was converted to floating point values, 

each value will be 32 bits (4 bytes) long – which implies that they will each be distributed across four 

consecutive 8-bit memory addresses. 

The floating point read routine would then follow a similar pattern to the integer read, except that 

four distinct read cycles would be repeated and the four byte appended to each other to form the 

number. 

Integer to floating point conversion 

This function was called after the sampling process was complete and the integer results from the 

ADC stored in the memory.  The function was fairly simple in that it consisted of reading each integer 

(spread across two memory locations), converting the number to a floating point value, and 

rewriting the number, overwriting the integer in the process. 

D.3 SD Card driver 
Introduction 

The SD card is utilised in the beta prototype to store parameters of several gearboxes on as well as 

analysis results. 

The SD card reader and circuit communicates with the MCU by means of a Serial Peripheral Interface 

(SPI).  As the name implies, it is a serial interface which implies that data is sent, bit for bit, along a 

data line.  This is opposed to the SRAM, which utilises parallel data lines (a data bus).  SPI connection 

between two devices requires also a shared clock pulse between connected devices. 

The complete SPI interface is illustrated below: 

 
 

 

 

 

 

 

MCU 

Port A (Control) 

Port B (Address) 

Port C (Data) 

The next integer is 

read four memory 

locations from the 

first byte of the 

previous integer 
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Figure D5 illustrates the connections required for a SPI connection.  The clock line synchronises the 

data transfer between the master (in this application, the MCU) and the slave (in this application the 

SD Card reader).  The master out/slave in line is where data is transmitted from the master to the 

slave device.  This occurs bit for bit on each clock pulse.  After 8 bits, the slave will typically recognise 

that a full data byte has been received, which can then be used.  Conversely, the master in/slave out 

line is where the data is similarly transferred to the MCU. 

The chip select line is unnecessary if only one peripheral is connected to the SPI port of the MCU.  It 

is however possible to connect several devices on the same port, in which case each device will have 

its own chip select port, but share the same clock, master in and master out lines.  Since only the SD 

card is connected to the SPI port, this line is redundant.  

Driver layout 

Write operations 

The compiler library includes a section that deals with SD card operations, including SPI connections.  

It was soon discovered however that these operations are performed using a 512 bit buffer, 

regardless of the length of the data that needs to be sent or received.  Therefore, if only 16 bits of 

data is written to the SD card by the user, a full 512 bits will be written with the final 504 bits being 

zero. 

This is not necessarily inefficient, but it does need to be harnessed, as the SPI cycle described above 

will be repeated 64 times (512 bit buffer, implying 64 eight bit serial writes to the SD card), with 

every write command. 

Therefore, the write function initially stored all the data in a global buffer (of 512 bits long) every 

time it was called, until the buffer was filled, upon which the entire buffer was written to the SD 

card.  The buffer would then be cleared and the process would start again.  The process is illustrated 

below: 

SPI device 

MCU 

Clock 

Chip select 

Master out 

Master in Slave out 

Slave in 

Chip select 

Clock 

10110101….10010100 

00001010….10100011

Figure D5:  SPI connections 
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Figure D6:  SD card write flow diagram 

 

Read operation 

Reading operations work in a different way to write operations, however.  Even though the chip still 

read a full 512 bit sector with each call of standard SD read library function, it does not really matter, 

because the algorithm requires very few reads per execution (<100 – it only reads the contents of 

the parameter file), while thousands of write operations are performed (saving the time and 

frequency domain outputs of the algorithm as well as the test log file). 

With so few reads, it was not considered worthwhile to buffer all the data required from the files on 

the SD card at once. 

However, a distinction was made between what type of data is required from the SD card:  integer 

data, floating point data, or alpha numeric data.  Bearing in mind, that from an end-user perspective, 

the data on the SD card would appear as an ASCII file.  A read would then be performed as illustrated 

in the figures D7 and D8. 

If is firstly necessary to briefly describe how an ASCII file is encoded:  An ASCII file consists of 

characters – some of which are printed and some of which are not.  The long string of numbers and 

symbols in figure D7 represent how the ASCII file in figure D8 is encoded (in actuality, it is more 

complex than illustrated, but for the purposes of understanding the driver, the illustration is 

sufficient).  As can be seen, all the characters in figure D8 are present (including the spaces, 

illustrated with double apostrophes).    However, two extra characters are present:  /r and /n.  These 

characters represent the carriage return and newline ‘characters’.  In essence, the /r character 

instructs the cursor to go the beginning of the current line and the /n character tells the cursor to go 

the next line.  In light of this, the string in figure D8 can be interpreted. 

 

SD Card write routine 

Main program requests a 

write to SD operation 

If 512 bit buffer full 

True False 

Erase buffer 

Write buffer to 

SD using SPI 

communication 

Write buffer to 

SD using SPI 

communication 
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With this in mind, the driver operation can be explained (the example of integer read will be 

explained):  The routine starts its first cycle with an empty buffer in which successive numerals will 

be stored.  Keeping this in mind, it commences reading the first character of the ASCII file, which is 

an ‘A’.  This value does not fall between the ASCII values of ‘0’ and ‘9’ and, since the buffer is still 

empty, reads the next character: ‘b’.  This character also does not fall between ‘0’ and ‘9’, the buffer 

is still empty, and the next character is therefore read. 

This process continues until a character is read that does fall between ‘0’ and ‘9’.  In the example 

above, this occurs at the 9th cycle of the code where the character ‘2’ is read.  This character replaces 

the first null (empty) bit in the buffer.  The cycle then continues.  Figure D7 depicts the following 

cycle, where the character ‘5’ is read and appended to the buffer. 

This will continue until another character is read which falls outside the ‘0’ to ‘9’ boundary (by the 

12th cycle, in this example).  This character would be the carriage return (/r) character.  As it falls 

outside the boundary, and the buffer is not empty anymore (it would contain the values of 256), the 

routine would exit.  A function would now read the buffer up to the first null character and convert 

the string to an integer, which can be used for computations. 

Int:        <9 or 

FP:      <9 or >0 or ‘.’ 

Char:            <A or 

>z 

True 

A b c /r /n d e ‘  ‘ 2 5 6 /r /n f ‘  ‘ 1 6 ‘  ‘ g 

Buffer empty? 

2 5 / / etc 

Exit 
routine 

Enter routine 

Move to next digit 

Buffer 

Figure D7 legend: 

/0 Empty bit - null 

/r Carriage return 

/n New line 
Figure D8:  An example ASCII file 

Figure D7:  SD read flow diagram (at 10
th

 cycle) 
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The algorithm works the same when searching for floating points.  Only then, the boundary would 

be ‘0’ to ‘9’ and the ‘.’ character would be tested for as well, and added to the buffer if found.  The 

results would again be passed to a function that reads the buffer up to the first null character.  The 

string would then be converted to a floating point number, which can be used. 

The alpha numeric search works in the same way. 

D.4 Button driver  

 

Figure D9:  Simplified button circuit 

 

Figure D9 illustrates a simplified button circuit.  The button is basically a spring loaded switch that 

completes an electronic pathway once pressed, allowing the VDD voltage to appear on the pin, to 

which the circuit is connected. 

The driver utilises this by firstly setting the pin in question to be an input, implying that the MCU 

reads the value on the pin.  When the button is pressed, this will have the effect of changing a bit in 

a standard port register, which is monitored by software when a button press is expected.  The flow 

diagram of driver operation is illustrated below: 

 

Figure D10:  Button driver flow diagram 
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Check bit value MCU idle 

1 0 

Perform operation 

required 
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D.5 LED driver 

 

Figure D11:  Simplified LED circuit 

 

Figure D11, illustrates a simplified LED circuit.  Driver operation is fairly straight forward, in that the 

pin on the port needs to be configured as an output.  When the pin is supplied with a voltage (via a 

bit in the specific ports register), a voltage difference will exist across the LED, which will cause it to 

illuminate. 

D.7 LCD and RS232 
There are two more peripherals that require mention:  the LCD and the RS232.  Of course, these 

devices required drivers as well.  They were not manually programmed however. 

The LCD driver was obtained from Periseo and the adaptation required for it to function was small 

enough not to warrant its own section. 

Likewise, the RS232 driver – although not used in the final release of the firmware – was mostly 

composed of a library function from the Mikroe compiler.  

MCU 
 

 

Pin on port 

Ground 

LED 
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APPENDIX E – Circuit design and layout 

E.1 Circuit design 
This section includes the design of the circuitry, i.e. the physical connections between the components (as opposed to their arrangement, as illustrated in 

section E.2). 

Note that this represents the circuit design as sent to that was manufactured.  After manufacturing, it was found that several slight mistakes were made, 

which were repaired after manufacturing and therefore is not included here. 

 

Figure E1:  Power supply circuit 
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Figure E2:  Anti-aliasing filter circuit 
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Figure E3:  Main circuit board design 
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E.2 Circuit layout 
The circuit board layout is illustrated here.  Note that the beta prototype used a four layer PCB.  This implies that four separate layers were sandwiched and 

printed.  The electronic components were placed on the top and bottom layers, which also housed the majority of the copper connection lines between 

components. 

A third and fourth layer exists between these outer layers.  One contained a common ground and another a common power level.  These layers are not 

pictured. 

 

Figure E4:  Top printed layer 
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Figure E5:  Top printed layer 
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APPENDIX F – ADM Beta prototype illustrations 

 

Figure F1:  ADM beta prototype photo (switched off) 

 

 

Figure F2:  ADM beta prototype photo (switched on) 
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Figure F3:  ADM prototype illustrating RS232 and BNC connector 

 

 

Figure F4:  ADM prototype illustrating RS232 and BNC connector with cables 
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Figure F5:  Photo illustrating LCD and LEDs 

 

 

Figure F6:  LCD writing 
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Figure F7:  SD card and buttons 

 

 

Figure F8:  Naked PC board 
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APPENDIX G – Equipment used 
Table G1:  Equipment used 

Item Make Model/Serial number Specification 

EDAQ MEASUREMENT EQUIPMENT 

eDAQ Somat 762049 N/A 

Field test accelerometer PCB M627A01 / SN11990 103 mV/g 

Field test accelerometer PCB M627A01 / SN11991 102 mV/g 

Field test accelerometer PCB M627A01 / SN1151 105 mV/g 

Field test accelerometer PCB M627A01 / SN4670 103 mV/g 

    

PROTOTYPE MEASUREMENT EQUIMENT 

Hardware accelerometer IMI 603C01 / SN178281 95   mV/g 

Calibration accelerometer PCB M627A01 / SN4670 103 mV/g 

LVDT Instron PL25N / 2109 10 mm/V 
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