

Development of a low-cost vibration protection device for industrial gearboxes

by

Rudolph Christoffel Kroch

Dissertation submitted in partial fulfilment of the requirements for the degree Master of Engineering

in the Faculty of Engineering, Built Environment and Information Technology, the University of

Pretoria

December 2014

i

Abstract

A market for a low-cost vibration protection device in the rotating machine industry has

been identified that satisfies the needs of small firms unable to afford and sustain a

condition monitoring operation.

In this project, a system is developed that satisfies the need for a low-cost, conservative,

configurable and intuitive device that can perform vibration measurements on a range

of gearboxes and make an inference as to the level of vibrations coming from the

bearings on the shafts.

The inference made by the device, derived from the frequency content of the measured

signal, may be used by the operator of the gearbox to make a judgment of whether to

have the gearbox investigated by a competent authority. In order to assist this

investigation, a vibration history of the device is stored, both in time and frequency

domain formats, as well as a full history of the relevant diagnostic information.

To reach this point of maturity, the project evolved through three different hardware

configurations. The various iterations were tested within the scope for which they were

designed and the lessons learned after each test was incorporated into the next

iteration. The final iteration incorporated all the refinements of the system up to that

point as well as the anticipated scope of further development into the commercial

realm.

To verify the inference credibility of the device, the results of the final specification of

the device was evaluated against data obtained from the condition monitoring

department of SASOL in Secunda. The results were analysed on two accounts. Firstly

the signal reproduction accuracy was evaluated, which established how accurately the

signal was digitized and how the processing algorithms performed. Secondly, the

inference accuracy was gauged against the practices of SASOL. On both accounts, the

final device performed satisfactorily.

The end result of this project is considered a ‘near-commercial ready’ prototype with all

the hardware on-board for user interaction, signal processing, 3rd party viewing of the

data and future expandability.

ii

Acknowledgements

I would like to thank the following people in the industry for their help in completing this project and

research:

 Prof. Stephan Heyns from the University of Pretoria

 Herman Booysen from University of Pretoria

 Johan Pretorius from SASOL

 Hannes Smit from Deman Manufacturers

 Willem Sullivan from our Industrial Partner

 Dumisani Mhlope from Periseo

 Kevin Schlorke from Periseo

In addition, I would like to extend my sincerest appreciations to the following people for their

continued love and support in my studies:

 My Creator

 My wife, Karin Kroch

 My Parents, Danie and Magriet Kroch

iii

Glossary

Acronyms
ADM : Advanced Development Model
BPFI : Ball Pass Frequency of the Outer race

BPFO : Ball Pass Frequency of the Inner race
BSF : Ball Spin Frequency

CBM : Condition Based Maintenance
DFT : Discrete Fourier Transform
DIF : Decimation in Frequency
DIT : Decimation in Time

DMA : Direct Memory Access
DSC : Digital Signal Controller
DSP : Digital Signal Processor
FIR : Finite Impulse Response (filter)
FTF : Fundamental Train Frequency

GMF : Gear Mesh Frequency
I/O : Input and Output

IC : Integrated Circuit
ICD : In Circuit Debugger

IF : Instantaneous Frequency
IS : Instantaneous Speed

MCU : Micro Controller Unit
NI : National Instruments (Brand)

PCB : Printed Circuit Board
PGA : Programmable Gain Amplifier
PIC : Programmable Interface Controller
PLL : Phase-Locked Loop

PSD : Power Spectral Density
RPM : Revolutions Per Minute

SD : Secure Digital (Card)
SPI : Serial Peripheral Interface

SRAM : Static Random Access Memory
UI : User Interface

ASCII : American Standard Code for Information Interchange
XDM : Experimental Development Model

Symbols
Bd : Ball or roller diameter of anti-friction bearing
Fs : Sampling Frequency

Nb : Number of balls or rollers in anti-friction
bearing

Pd : Bearing pitch diameter
Ts : Sampling Time
θ : Anti-friction bearing contact angle

i

Contents
Abstract .. i

Acknowledgements ... ii

Glossary .. iii

List of Figures .. v

List of Tables ... vii

1. Introduction .. 1

1.1 Background ... 1

1.2 Vibration monitoring fundamentals ... 3

1.2.1 General gearbox condition monitoring ... 3

1.2.2 Speed measurements ... 4

1.2.3 Bearing faults .. 5

1.2.4 Research trends .. 6

1.3 Electronic application considerations ... 9

1.3.1 Synopsis ... 9

1.3.2 Processor type ... 9

1.3.3 Software implementation ... 9

1.4 Scope of Research ... 23

1.4.1 Literature survey ... 23

1.4.2 Algorithm development .. 23

1.4.3 Experimental hardware work ... 24

1.4.4 Alpha prototype .. 24

1.4.5 Beta prototype .. 25

1.5 Summary of chapters .. 25

2. Design Philosophy ... 27

2.1 Preliminaries ... 27

2.2 Experimental development model (XDM) .. 27

2.2.1 Overview ... 27

2.2.2 Limitations ... 28

2.3 Advanced development model – Alpha prototype ... 28

2.3.1 Memory space required for vibration data .. 28

2.3.2 Spectrum characteristics ... 30

2.3.3 Architecture .. 30

ii

2.3.4 Limitations ... 35

2.4 Advanced development model - Beta prototype ... 36

2.4.1 Clock speed increase ... 36

2.4.2 Addition of external storage and serial communication with a PC 36

2.4.3 Signal acquisitioning and elimination of external ADC ... 37

2.4.4 File system ... 37

2.4.5 User interface .. 40

3. Algorithm development .. 44

3.1 Algorithm premise .. 44

3.2 Bearing assessment process ... 44

3.2.1 Detrending and windowing ... 44

3.2.2 FFT computation ... 44

3.2.3 Input speed ... 45

3.2.4 Identifying the relevant spectral peaks ... 48

3.2.5 Bearing state assessment.. 48

3.2.6 Statistical parameter (median) search boundaries ... 49

3.2.7 Exclusion criteria ... 50

3.2.8 Fault frequency search boundaries... 50

4. Laboratory testing ... 52

4.1 Overview ... 52

4.2 Alpha prototype laboratory testing .. 52

4.2.1 Exploratory test ... 52

4.2.2 Developed hardware testing ... 62

4.2.3 Conclusion ... 65

4.3 ADM Beta prototype calibration ... 65

4.3.1 Summary ... 65

4.3.2 Test setup .. 66

4.3.3 Procedure .. 67

4.3.4 Calibration Philosophy .. 67

4.3.5 Results ... 67

5. Field testing ... 70

5.1 Measurement chronology and rationale .. 70

5.2 Initial data gathering campaign .. 70

5.2.1 Conveyor belt drive layout .. 70

iii

5.2.2 Test setup instrumentation .. 71

5.2.3 Signal flow ... 73

5.2.4 Test procedure .. 73

5.3 ADM Alpha prototype field testing ... 74

5.3.1 Test description ... 74

5.3.2 Test setup .. 74

5.4 ADM Beta prototype field testing ... 77

5.4.1 Test description ... 77

5.4.2 Test setup .. 77

6. Field testing results and interpretation .. 80

6.1 Chronological discussion ... 80

6.2 Initial data gathering campaign .. 80

6.2.1 Vibration analysis definition ... 80

6.2.2 Time domain analysis .. 81

6.2.3 Frequency domain analysis ... 83

6.2.4 Success rate ... 86

6.3 Field testing of the Alpha prototype at SASOL.. 88

6.3.1 Results and analysis .. 88

6.3.2 General comments about the performance of the hardware during the test 89

6.4 Field testing of the Beta prototype ... 90

6.4.1 Signal reproduction accuracy .. 90

6.4.2 Comparison between the Beta prototype and SASOL data .. 91

6.4.3 Inference accuracy .. 92

7. Conclusion ... 100

7.1 Cost analysis .. 100

7.2 Project review ... 101

7.3 Summary of findings ... 102

7.3.1 Experimental development model ... 102

7.3.2 Advanced development model – Alpha prototype ... 102

7.3.3 Advanced development model – Beta prototype ... 102

7.4 Recommendations .. 103

7.4.1 Input speed and calibration amplitude inclusion to the param.txt file 103

7.4.2 Auto calibrate routine ... 103

7.4.3 Gear and shaft fault finding .. 104

iv

7.4.4 Spectral averaging, higher quality SD card and improved SD card routines 104

7.4.5 Algorithm calibration .. 104

7.4.6 Signal interference compensation .. 105

References .. 1

APPENDIX A – XDM evaluation board ... 5

APPENDIX B – ADM Beta prototype hardware specification .. 6

APPENDIX C – Electronic fundamentals and configuration .. 7

C.1 Microcontroller I/O ports primer .. 7

C.2 Circuit flow diagram .. 9

APPENDIX D – MCU driver operation ... 11

D.1 ADC driver ... 11

D.2 Memory driver .. 13

D.3 SD Card driver ... 18

D.4 Button driver .. 22

D.5 LED driver.. 23

D.7 LCD and RS232 .. 23

APPENDIX E – Circuit design and layout ... 24

E.1 Circuit design ... 24

E.2 Circuit layout ... 27

APPENDIX F – ADM Beta prototype illustrations .. 29

APPENDIX G – Equipment used .. 33

v

List of Figures
Figure 1: Bearings are some of the most common component failures in rotating machinery _____ 4

Figure 2: Time domain response of defective bearing, inner race rotating and outer race stationary 5

Figure 3: Frequency domain response of defective bearing ________________________________ 5

Figure 4: Typical waterfall plot ___ 8

Figure 5: Visualisation of the difference between the optimised and non-optimised FFT algorithm 14

Figure 6: Leakage comparison of considered window functions ____________________________ 16

Figure 7: Sample spectrum of two closely spaced signals (frequency difference of 1Hz) _________ 17

Figure 8: Sample spectrum of two closely spaced signals _________________________________ 18

Figure 9: Comparison of window effect when two closely spaced frequencies are considered ____ 19

Figure 10: Block diagram of signal acquisitioning and processing ___________________________ 22

Figure 11: XDM development board ___ 27

Figure 12: ADC response __ 32

Figure 13: Frequency response of the anti-aliasing filter _________________________________ 33

Figure 14: Sine sweep (5Hz to 20 kHz) __ 34

Figure 15: Square wave (overlaid on input) at 1 kHz _____________________________________ 34

Figure 16: Sine wave at 10 kHz (overlaid with input) ____________________________________ 35

Figure 17: Illustration of the Beta prototype with accelerometer and RS232 cable connected ____ 36

Figure 18: Battery socket and power cord of the Beta prototype ___________________________ 37

Figure 19: Appropriate contents of the root directory of the SD card for proper functioning _____ 38

Figure 20: Contents of the INDEX.txt file __ 38

Figure 21: Contents of an example param.txt file illustrating the layout of the file _____________ 39

Figure 22: Illustration of log file (partial window) _______________________________________ 40

Figure 23: Splash screen displayed after device boot ____________________________________ 41

Figure 24: Gearbox selection screen ___ 41

Figure 25: Progress screen, backlight off __ 42

Figure 26: Summary screen __ 42

Figure 27: Gearbox input speed methodology work flow _________________________________ 45

Figure 28: Illustration of a motor frequencyt __ 46

Figure 29: Illustration of the input shaft __ 46

Figure 30: Illustration of a small amplitude peak _______________________________________ 47

Figure 31: Illustration of an input shaft having a spectral peak higher than 13.5% _____________ 47

Figure 32: The bell curve __ 49

Figure 33: Hardware test setup ___ 53

Figure 34: Figure highlighting the data acquisition equipment _____________________________ 53

Figure 35: Damaged test bearing___54

Figure 36: Undamaged test bearing __ 54

Figure 37: Test bearing inner race bushing assembly ____________________________________ 54

Figure 38: Test bearing load mechanism __ 54

Figure 39: Disassembled view of the load mechanism ___________________________________ 55

Figure 40: Synoptic diagram of test setup ___ 56

Figure 41: Frequency spectrum at 500RPM input shaft __________________________________ 57

Figure 42: Frequency spectrum at 500RPM input shaft __________________________________ 58

Figure 43: Spectrum illustrating 2x line frequency of motor with modulation at shaft frequency __ 58

Figure 44: 500RPM undamaged bearing __ 60

file:///C:/Users/Home/Dropbox/Werk/MEng%20Hansen%20projek/Report/Verhandeling%20files/RudiKroch_Verhandeling_r8_2.docx%23_Toc399597255
file:///C:/Users/Home/Dropbox/Werk/MEng%20Hansen%20projek/Report/Verhandeling%20files/RudiKroch_Verhandeling_r8_2.docx%23_Toc399597256
file:///C:/Users/Home/Dropbox/Werk/MEng%20Hansen%20projek/Report/Verhandeling%20files/RudiKroch_Verhandeling_r8_2.docx%23_Toc399597257
file:///C:/Users/Home/Dropbox/Werk/MEng%20Hansen%20projek/Report/Verhandeling%20files/RudiKroch_Verhandeling_r8_2.docx%23_Toc399597264
file:///C:/Users/Home/Dropbox/Werk/MEng%20Hansen%20projek/Report/Verhandeling%20files/RudiKroch_Verhandeling_r8_2.docx%23_Toc399597270
file:///C:/Users/Home/Dropbox/Werk/MEng%20Hansen%20projek/Report/Verhandeling%20files/RudiKroch_Verhandeling_r8_2.docx%23_Toc399597271
file:///C:/Users/Home/Dropbox/Werk/MEng%20Hansen%20projek/Report/Verhandeling%20files/RudiKroch_Verhandeling_r8_2.docx%23_Toc399597280
file:///C:/Users/Home/Dropbox/Werk/MEng%20Hansen%20projek/Report/Verhandeling%20files/RudiKroch_Verhandeling_r8_2.docx%23_Toc399597285
file:///C:/Users/Home/Dropbox/Werk/MEng%20Hansen%20projek/Report/Verhandeling%20files/RudiKroch_Verhandeling_r8_2.docx%23_Toc399597289
file:///C:/Users/Home/Dropbox/Werk/MEng%20Hansen%20projek/Report/Verhandeling%20files/RudiKroch_Verhandeling_r8_2.docx%23_Toc399597290

vi

Figure 45: 500RPM damaged bearing __ 60

Figure 46: 1000RPM undamaged bearing ___ 61

Figure 47: 1000RPM damaged bearing ___ 61

Figure 48: Developed hardware test setup __ 62

Figure 49: Synoptic diagram of the test setup for the developed hardware___________________ 63

Figure 50: Beta prototype calibration setup ___ 66

Figure 51: Comparison between LVDT, the reference accelerometer and the Beta prototype ____ 68

Figure 52: Conveyor belt drive arrangement ___ 71

Figure 53: Conveyor belt arrangement within plant _____________________________________ 71

Figure 54: Test setup diagram __ 71

Figure 55: eDAQ unit with which data was recorded_____________________________________72

Figure 56: Laptop on which data was recorded__72

Figure 57: Accelerometers on gearbox ___ 72

Figure 58: Detail showing accelerometer mounting _____________________________________ 72

Figure 59: A typical gearbox from our industrial partner _________________________________ 72

Figure 60: Test setup signal flow __ 73

Figure 61: Test setup ___ 75

Figure 62: Accelerometer placement___ 75

Figure 63: Typical fluid coupling in a gearbox drive system _______________________________ 75

Figure 64: Test setup of Alpha prototype during test at SASOL ____________________________ 76

Figure 65: Signal flow of the Alpha prototype __ 77

Figure 66: eDAQ test setup __ 78

Figure 67: eDAQ test setup (Cont.) __ 78

Figure 68: Beta prototype hardware setup __ 78

Figure 69: Diagrammatical illustration of the Beta prototype test setup _____________________ 79

Figure 70: FFT of undamaged gearbox bearing (Type 4, 2nd shaft) _________________________ 83

Figure 71: FFT of moderately damaged gearbox bearing (Type 5, 2nd shaft) __________________ 84

Figure 72: FFT of severely damaged gearbox bearing (Type 6, 3rd shaft) _____________________ 86

Figure 73: Spectral comparison between the Alpha prototype and the eDAQ system ___________ 88

Figure 74: Comparative spectrum of the Beta prototype and eDAQ ________________________ 91

Figure 75: Overlaid broadband plot of the Beta prototype and SASOL data ___________________ 92

Figure 76: Frequency spectrum of input shaft of gearbox CV 3011 with damaged outer race ____ 93

Figure 77: Inspected bearing with damage __ 94

Figure 78: Frequency spectrum of input shaft of gearbox CV 2203-1 ________________________ 94

Figure 79: Spectrum illustrating healthy bearings on an intermediate shaft __________________ 95

Figure 80: Spectrum illustrating healthy bearings on an output shaft _______________________ 96

Figure 81: Spectrum of the first misdiagnosis example ___________________________________ 97

Figure 82: Spectrum of the second misdiagnosis example ________________________________ 98

file:///C:/Users/Home/Dropbox/Werk/MEng%20Hansen%20projek/Report/Verhandeling%20files/RudiKroch_Verhandeling_r8_2.docx%23_Toc399597306
file:///C:/Users/Home/Dropbox/Werk/MEng%20Hansen%20projek/Report/Verhandeling%20files/RudiKroch_Verhandeling_r8_2.docx%23_Toc399597308
file:///C:/Users/Home/Dropbox/Werk/MEng%20Hansen%20projek/Report/Verhandeling%20files/RudiKroch_Verhandeling_r8_2.docx%23_Toc399597309
file:///C:/Users/Home/Dropbox/Werk/MEng%20Hansen%20projek/Report/Verhandeling%20files/RudiKroch_Verhandeling_r8_2.docx%23_Toc399597312
file:///C:/Users/Home/Dropbox/Werk/MEng%20Hansen%20projek/Report/Verhandeling%20files/RudiKroch_Verhandeling_r8_2.docx%23_Toc399597313
file:///C:/Users/Home/Dropbox/Werk/MEng%20Hansen%20projek/Report/Verhandeling%20files/RudiKroch_Verhandeling_r8_2.docx%23_Toc399597314
file:///C:/Users/Home/Dropbox/Werk/MEng%20Hansen%20projek/Report/Verhandeling%20files/RudiKroch_Verhandeling_r8_2.docx%23_Toc399597317
file:///C:/Users/Home/Dropbox/Werk/MEng%20Hansen%20projek/Report/Verhandeling%20files/RudiKroch_Verhandeling_r8_2.docx%23_Toc399597318
file:///C:/Users/Home/Dropbox/Werk/MEng%20Hansen%20projek/Report/Verhandeling%20files/RudiKroch_Verhandeling_r8_2.docx%23_Toc399597319
file:///C:/Users/Home/Dropbox/Werk/MEng%20Hansen%20projek/Report/Verhandeling%20files/RudiKroch_Verhandeling_r8_2.docx%23_Toc399597328

vii

List of Tables
Table 1: Selected gearbox frequencies (from a sample gearbox, as tested in the project) 8

Table 2: MRB of the various windows.. 18

Table 3: Time to execute the various windows ... 20

Table 4: Alpha prototype ADC parameters .. 29

Table 5: Screen states corresponding to damage .. 42

Table 6: Close frequency spacing ... 51

Table 7: List of test setup mechanicals .. 52

Table 8: Frequencies (Hz) at the corresponding shaft speed .. 57

Table 9: Peak/Median ratios at different speeds for the undamaged and damaged bearing 59

Table 10: Ratio results comparison over different speeds (undamaged) .. 64

Table 11: Ratio results comparison over different speeds (damaged) .. 64

Table 12: Calibration signal .. 66

Table 13: List of gearboxes which was tested .. 73

Table 14: ADC parameters used by the eDAQ during the measurements at SASOL 74

Table 15: ADC parameters of the Alpha prototype ... 76

Table 16: ADC parameters as used by the eDAQ ... 78

Table 17: Definition of the stages of bearing damage ... 80

Table 18: Time domain analysis results ... 81

Table 19: Frequency components .. 84

Table 20: Frequency components .. 85

Table 21: Known frequency components .. 85

Table 22: Success statistics .. 87

Table 23: Failed diagnosis summary .. 87

Table 24: Identified bearing frequency components of Figure 76 .. 93

Table 25: Other frequencies identified in Figure 76 .. 94

Table 26: Identified frequencies in Figure 79 .. 95

Table 27: Spectral components of interest in Figure 80 .. 96

Table 28: Inference accuracy figures ... 98

Table 29: Prices of components and manufacturing ... 100

1

1. Introduction

1.1 Background

One of the most common classes of machines encountered in the industry today is rotating

machines (Heng, et al., 2009). This places the maintenance of rotating machinery at the forefront of

plant expenses and indeed, plants in the United States spent more than $600 billion in 1981 to

maintain their operationally critical equipment and that figure had doubled by 2001 (Mobley, 2004).

One can reasonably expect that figure to rise even further, seeing that typical advanced and

expensive machinery represents an investment for a company and therefore demands ever more

sophisticated maintenance strategies. The reasoning for this is purely economic: A plant operating

at maximum efficiency allows one to produce more and therefore sell more. To this end, a properly

implemented maintenance plan can significantly reduce maintenance costs by reducing the number

of unnecessary maintenance operations.

Against this background, it is clear that ‘Breakdown maintenance’ (running a machine until it breaks)

and time based maintenance (servicing a machine, without prior knowledge of its state of repair)

results in a haemorrhage of funds and that more efficient maintenance strategies are required to

assist the situation that so many companies find themselves in (Jardine, et al., 2006).

Many large companies have indeed recognised this need and are trying to address the issue. It is not

uncommon for a contemporary medium to large scale company to have a number of professionals

working exclusively on monitoring the condition of the equipment operating on the plant. This does,

of course, require a significant investment for the start-up company and many smaller firms simply

cannot afford to make the leap to a fully online condition monitoring strategy. These firms are

inevitably stuck in the time based maintenance strategy, or worse, the breakdown maintenance

strategy due to the large capital investment required.

Even though the current reality remains that an online condition monitoring scheme is a heavy

investment to make for a start-up or small company, an argument can be made that a niche exists

for a low-cost automated protection system.

A clear definition of such a system can be formulated as follows (Ma & Jiang, 2011):

“Contemporary plant information systems collect and archive plant-wide measurement data. Real-

time and historical data can be analysed for plant performance monitoring, an abnormal event can

be swiftly delivered to pertinent plant personnel for subsequent actions”

It is important to note the distinction between a protection system and a condition monitoring

system. A condition monitoring system is better thought of as a strategy which exhibits the

following three elements (Heng, et al., 2009):

 The measurement and storage of data

 Processing of the measured data (i.e. signal conditioning and feature extraction)

 Making a technically-oriented diagnosis based on the processed data

2

These elements may well be accomplished by different means removed from each other such as

data loggers, computer software and engineers.

This differs from a protection system in both philosophy and execution. A protection system is

considered, in this document, to mean a self-contained system capable of the following:

 Collection and storage of data

 Processing of the results and archiving

 Making a recommendation on an administratively-oriented course of action based on the

processed data (such as arranging for specialists to conduct a detailed investigation, assisted

by the recorded data).

What sets it apart is that it gives a small company the capability to obtain an inexpensive system that

they can use to evaluate their machinery and provide a warning that specialists should be consulted

if there is a likelihood that a problem might exist. Importantly however, it does not deliver a

diagnosis, but a course of action – i.e. contact specialists.

By using the data collected by the ADC portion of the device and using rudimentary signal processing

techniques, the device should be capable of making a conservative inference regarding the level of

vibrations experienced by the gearbox – or specifically, the bearings in the gearbox.

Typically, the inference may take the following forms, in order of increasing likelihood of damage:

 Vibration normal

 Vibration caution

 Vibration warning

When the system does warn the user that a problem might exist, external help (such as the OEM or

other specialists) can be contacted. The third party can then review the archived data and archived

analysis results to spot a trend and make a diagnosis and prognosis – thereby completing the

condition monitoring process of Data collection – Processing – Diagnosis, without the need for a

dedicated department.

Bearing the objective of a vibration protection system in mind, this project aimed to deliver a low

cost, handheld, vibration protection system. A device of this description would require:

 A means to record vibration data

 A measure of signal processing capability

 Non-volatile storage

 Portability

 A user interface (UI)

 A means to interact with the UI

Technically, this implies:

 An ADC microchip

 A medium powered microprocessor, preferably a DSP

 An SD card

3

 A rechargeable battery with recharging circuit

 An LCD screen

 Buttons

From this intuitive specification, a device capable of successfully performing the vibration protection

role, as outlined in this section, was developed. Due to the low-cost nature of the protection

system, an advanced CPU with a complex circuit layout was neither possible nor required. To this

end, a basic DSP type processor was used to process the data and perform the rudimentary

algorithms. However, to achieve practical levels of performance (in terms of time and results), the

algorithms were optimised as much as possible.

The system evolved through three prototypes gaining in complexity and maturity. These prototypes

were tested in the laboratory and the field. The results of each test then influenced the next

prototype, with the final prototype being near production ready.

This document details the development lifecycle of the project. It starts by exploring the present

gearbox condition monitoring environment as background to factors taken into account during this

project. A study is then undertaken to obtain suitable solutions to address these challenges, both in

hardware and software.

1.2 Vibration monitoring fundamentals

1.2.1 General gearbox condition monitoring

In gearboxes, both gearing faults (local and distributed) and rolling element bearing faults (usually

local) are usually encountered. When these faults are investigated, it is usually the case that

fluctuating external load is not considered (Bartelmus & Zimroz, 2009) (Stander & Heyns, 2002).

Additionally, one would normally assume that only one anomaly exists in a gearbox at a time and

that the change in the condition of the gearbox is as a result of the development of the anomaly.

There are several reasons for anomalous gearbox vibrations which can be classified into four

different categories (Bartelmus, 2008), namely: Design, Production technology, Operation and

Change of condition. A chart detailing the different mechanisms for gearbox vibrations is given in

Figure 1.

From a vibration condition monitoring point of view, the following simplistic model for a gearbox can

be used to get an understanding for the environment in which the gearbox will typically operate

(Bartelmus, 2008):

 System of elements

o Prime mover (often electric motor)

o Gears

o Bearings

o Shafts

o Coupling

o Driven machinery

4

 Factors influencing vibration

o Design

o Production

o Operation

o Condition change

Figure 1: Bearings are some of the most common component failures in rotating machinery (Bartelmus W., 2008)

1.2.2 Speed measurements

Determining of the instantaneous speed (IS) is crucial in the condition monitoring environment and

is currently one of the most important tasks in many industrial applications (Combet & Zimroz, 2009)

(Combet & Gelman, 2007) (Radoslaw, et al., 2011). In automatic monitoring systems, this task is

even more important as the automated algorithm will not work properly if the IS is computed

incorrectly. That is because the IS is used to find the characteristic frequencies of components such

as shafts, bearings, gears, etc.

In practice, however, it is often very difficult to obtain this information, usually requiring additional

hardware and associated wiring. Compounding the problem, tachometers or shaft encoders may

not be a viable solution due to the shafts (either input or output) being inaccessible. When this is

the case, obtaining the IS can often be obtained indirectly for vibration measurements on the

gearbox casing.

When vibration signals are used to estimate the IS, the fundamental frequency can often be tracked

and thus the issue becomes one of tracking the IF (Instantaneous Frequency). However, in the case

of a change in speed or load during the measuring time, smearing can occur, thus reducing the

accuracy.

In the case of steady state operation (which is the focus of this project), the method of gauging the

IS from the IF is considered to be accurate enough for the purposes of this project.

5

The reader is referred to Section 5.2.3 where this problem is addressed in the algorithm.

1.2.3 Bearing faults

By their very nature, bearings are one of the most common components in rotating machinery (Kiral

& Karagülle, 2003) and therefore, one of the most often replaced. Additionally, it has a finite

lifespan and is often the subject of abuse (McInemy & Dai, 2003).

Therefore, with the deliverable of this project being a prototype, it was decided to focus on bearing

damage first. In addition, due to the subtle nature of bearing damage, it was considered to be the

most challenging.

The type of damage typically seen on roller bearings are as follows (Ganeriwala, 2010):

 Ball damage

 Inner race defect

 Outer race defect

 Cage damage

Each of these faults generates a distinct frequency which can be obtained when converting a time

signal to the frequency domain. These frequencies are dependent on the geometry of the bearing,

the speeds of the inner and/or outer races and, under certain circumstances, the change in load

applied to bearing (if a bearing is both radially and axially loaded, the contact angle and thus the

frequency – see equation below – will be affected). An example of one such an equation (for outer

race defect) is given below and additional fault frequencies can be found in the same reference

(Bloch & Geitner, 1999):

(

) [Eq. 1]

Where Nb is the number of balls or rollers, Bd is the ball or roller diameter, Pd is the bearing pitch

diameter and Θ is the contact angle. A time and frequency domain representation of some of these

faults can be represented as follows:

Figure 3: Frequency domain response showing
sidebands, inner race rotating and outer race
stationary (Kardushin, 1991)

Figure 2: Time domain response of defective bearing,
inner race rotating and outer race stationary
(Kardushin, 1991)

6

In bearing frequency calculations the following assumptions generally hold (Ganeriwala, 2010):

 Equal diameter balls

 Pure rolling contact

 No slippage between shaft and bearing

In practice, pure rolling contact and no slippage will not always be maintained, however the error

introduced in practice should not usually be sufficiently large to be of concern.

1.2.4 Research trends

There are historically several methods how potential bearings faults were detected starting with the

most basic technique of the screwdriver to the ear (Bloch & Geitner, 1999). This technique worked

remarkably well when applied by a skilled artisan. However, much more sophisticated techniques

became available and research is still continuing. A good starting point for a protection system will

often be overall vibration measurements such as RMS, CF, etc. (Jardine, et al., 2006). These

techniques are however not considered reliable enough for the current application, as their

reliability is compromised in the absence of significant impulsiveness, as found under certain

circumstances of distributed bearing failures. However, frequency domain techniques tend to be

more sensitive and provide an earlier indication of possible. Indeed, many modern techniques are

frequency domain based.

In the research domain, several advanced techniques are used to identify bearing damage. The most

common techniques are listed below (Ganeriwala, 2010):

 Time waveform analysis

 Frequency spectral analysis

 High Frequency detection

 Stress wave analyser or spike energy

 PeakVue

 Enveloping

Of these, the time and frequency domain techniques are very well established and are used, in one

form or another, throughout the industry (Karacay & Nizami, 2009). However, many of these

techniques work only within a certain set of circumstances, which can limit their application to more

general problems.

A proven technique that can work consistently (albeit sometimes with less accuracy) is the time and

frequency domain analysis (Taylor & Kirkland, 2004). Using this technique within a rule based

diagnostic system, most machinery problems can be identified. In fact, this technique can be

especially useful for rolling element bearing fault detection as the fault frequencies need only be

computed (from bearing and operating info) and comparing it to the frequency spectrum (Taylor &

Kirkland, 2004). Due to the fact that rolling element bearings in good condition only create a

random noise when in operation (Tandon & Choudhury, 1999), the presence of a fault frequency in

the frequency spectrum is a strong indicator of bearing damage (Taylor & Kirkland, 2004) (Kiral &

Hira, 2003). However, it has been noted that in some instances that damaged bearings exhibit a

Gaussian probability distribution (Mathew & Alfredson, 1984).

7

Some of the very latest techniques being researched and used today include the following

(Ganeriwala, 2010):

 Adaptive Noise Cancellation

 Self-Adaptive Noise cancellation

 Spectral Kurtosis

 Discrete random separation

 Cyclostationary signal analysis

 Hilbert-Huang Transform

 Entropy

One must also take cognisance of the High Frequency Resonance Technique (HFRT), which is very

popular in bearing diagnostics (Nelwomondo, et al., 2006). This technique is based on the high

frequency resonances in the component structure as documented in one of the earliest papers on

bearing diagnostics (Balderston, 1969) and has been very successfully applied (Randall & Antoni,

2011).

A common use for the enveloping technique is the identification of cracks in the outer race, inner

race and rolling elements of anti-friction bearings (Konstantin-Hansen, 2003) and is excellent for

diagnosing cracks and spalls. It can be very effective in conjunction with other signal processing

techniques as part of a complete maintenance program.

These techniques represent some of the latest available research and can achieve a high degree of

accuracy in discovering and diagnosing damage in bearings.

However, considering the purpose of the project, to develop a low cost vibration protection device,

these techniques are not within the current scope as this project does not seek to develop a system

capable of delivering accurate diagnoses. Rather a handheld system, likely to be carried by a

technician or built into a gearbox, capable of conservative estimates on which to judge whether

professional assistance is required. Furthermore, although cognisance is taken of the latest modern

techniques, the processing power available is not sufficient for practical use (typically MCU speeds of

less than 100 Hz and a few kilobytes worth of RAM).

It should be mentioned that it is obvious from many sources of bearing failure analysis that although

methods proposed seems to work well enough, the tests are performed on single bearings alone

(often in a plumber block like arrangement). When these tests are performed in the industry while

working in a machine many sources of noise are present, including:

 Electric motors

 Fluid or other couplings

 Conveyor belts

 Vibrating structures

 Mills

 Vibrating screens

 Crushers

 Vehicular noise

8

The de-noising techniques when performing bearing fault detection is fairly difficult with current

computational resources. The case of synchronous averaging is often used in gear and shaft

condition monitoring (Hochmann & Sadok, 2004) to eliminate noise. This technique requires a signal

synchronous with the shaft speed, such as a tachometer signal. Because the Gear Mesh Frequencies

(GMFs) are integer multiples of the shaft rotation frequency, the GMF will also be synchronous with

the shaft rotation frequency and therefore averaging the shaft rotations will average the GMFs as

well. However, the bearing fault frequencies are not synchronous with the shaft rotation

frequencies (see Table 1 for details) and therefore averaging the shaft rotations will have the effect

of averaging out the bearing frequencies.

Table 1: Selected gearbox frequencies (from a sample gearbox, as tested in the project)

Shaft rotation frequency Gear Mesh Frequency Bearing frequencies

24.67 Hz 493.33 Hz 12.12 Hz (FTF)

 64.95 Hz (2 × BSF)

 161.99 Hz (BPFO)

 232.68 Hz (BPFI)

As can be seen in Table 1, the GMF is exactly

20 times the shaft rotation frequency (due to

there being 20 teeth on the particular gear).

However, none of the bearing frequencies

are integer multiples of the shaft rotation

frequency and therefore, synchronous

averaging cannot be used to de-noise the

signal.

A number of other de-noising techniques

exist, like non-synchronous averaging and

spectral averaging (which is recognised to not being strictly noise reducing, but noise averaging).

But these place a high premium on execution time in the embedded environment (with relatively

little programming power and very little memory).

Another common practice is that of trending a series of vibration signals (see Figure 4). The premise

of this practice is that a series of vibration measurements is made throughout the lifetime of the

machine. When viewing spectral plots of these measurements in sequence, as in Figure 4, one can

see when machinery faults start to occur and monitor their evolution.

This is a technique that is commonly used in the industry and , indeed, at the SASOL plant in Secunda

where this technique is being applied to the monitoring of the gearboxes, fluid couplings and electric

motors driving the conveyor belts as well as the bearings supporting the rollers of the conveyor

belts.

Even though the algorithms do not use trending to diagnose a fault, it will be seen later in this report

that the final version of the hardware does save time and frequency domain data in order for a

human analyst to make a judgement either on a routine basis or when the hardware gives a warning

that a fault might exist.

Figure 4: Typical waterfall plot (Girdhar & Scheffer, 2004)

9

1.3 Electronic application considerations

1.3.1 Synopsis

In section 1.2.4 several advanced techniques are mentioned. Some of which, such as HFRT, are used

very successfully to locate and diagnose bearing damage at a very early stage.

Due to the envisioned market positioning of the device, the objective of the device is not to locate

bearing damage at a very early stage, but to alert an operator that there is a possibility that damage

is already present on the to the device and that expert assistance should be sought.

The proposed market positioning therefore influenced the hardware specification of the system and

dictated the use of fairly simple and electronic development platforms.

1.3.2 Processor type

Due to the convenient software package offered as well as the support availability it was decided to

seriously consider the Microchip range of products. Microchip has on offer a range of 3 main types

of Programmable Interface Controller (PIC) microcontrollers (Microchip, 2010). These are:

1. 8-bit PIC Micro Controller Units (MCUs)

2. 16-bit PIC MCUs and dsPIC Digital Signal Controllers (DSCs)

3. 32-bit PIC MCUs

The first device family listed above, the 8-bit PIC, represents the entry level microcontroller on offer

by Microchip and represents the bottom range of functionality and performance. In contrast to this,

the 32-bit PIC microcontroller family is the flagship range of microcontrollers on offer by Microchip.

These microcontrollers represent a fairly new type of microcontroller (released in 2007) and have

many advanced features, fast operation and generally the most memory. It was the midrange type

of microcontrollers that seemed most attractive for this project. Specifically the 16-bit dsPIC DSCs

seemed the most applicable to this project due to their Digital Signal Processor (DSP) capabilities.

The principal attraction for DSP is the fact that their hardware, software and instruction sets are

optimised for numerical processing applications (Skolnick & Levine, 1997), crucial for rapidly

processing digitised data as they have hardware multiplication capabilities, rapidly speeding up the

execution of any algorithms requiring multiplication intensive routines.

1.3.3 Software implementation

1.3.3.1 Development rationale

The algorithms were first coded and tested in the Matlab environment. This was deemed an ideal

environment for developing the routines due to its flexibility and ease of use. The Dynamics Systems

Group of the University of Pretoria has several licenses for this software package as well as several

toolboxes. This provided a number of advanced routines that proved valuable in the development

of the algorithms.

10

However, this language is not readily supported by the chosen hardware architecture (see section 2)

and therefore had to be translated to a more suitable language. The chosen language was ANSI C.

This is a very powerful language for imbedded programmers and a very brief survey will convince

any reader that it is used widely throughout the industry.

Therefore a license for MicroC Professional was obtained. This is an ANSI C based programming

language used to program the Microchip series of MCUs.

1.3.3.2 Algorithm efficiency primer

Due to limited processing power available (compared to a PC), a conscious effort was made to select

the most efficient algorithms.

In the context of this project, code efficiency is accepted to be execution time – which directly

relates to the number of computations required for a routine to execute as well as the type of digital

number used for the computation (such as floating point numbers, 8-bit integers, 16 bit integers, to

name a few).

The easiest way to increase efficiency was then to use integers as much as possible and this

philosophy was applied at every opportunity. Secondly, a conscious effort was made to select

algorithm implementations with as few computation steps as possible. The way this was quantified

was with the well-known “big-oh” notation, as is often used in computer science (Avigad & Donnelly,

2004).

Big-oh notation forms part of the asymptotic analysis branch of mathematics and allows one to

observe the behaviour of a mathematic function when it approaches 0, a constant, or infinity. It

does so by supressing lesser order terms which become inconsequential when the tending towards

the given boundary.

Formally, it is defined as (Graham, et al., 1994):

 () (())

[Eq. 2]

which implies that:

 () | ()|

[Eq. 3]

In words this means that when n tends towards a set limit, the function f(n) is at most a constant

times the absolute value of a related function g(n). For example (Graham, et al., 1994):

 ()

[Eq. 4]

There exists the function:

 ()

[Eq. 5]

for which can be written:

 () | ()| [Eq. 6]

11

Because when n approaches infinity, the lesser order terms (the n2 and n terms in this case),

becomes insignificant and one can find a (unspecified) number C which will satisfy the condition.

Broadly speaking, in the example above, the function f(n) and g(n) will behave in a similar manner

when approaching infinity.

The manner in which this concept will be used in this project is to evaluate the efficiency of

algorithms by comparing the number of computational steps in their execution. In this context, the

function f(n) represents the actual number of steps required to perform the algorithm and n

represents the length of the vector which serves as the algorithm input. Therefore, g(n) represents a

simplified measure of the steps required the perform the algorithm when the vector length is large.

A simple example of this is the sorting algorithm discussed below. The heapsort algorithm is a

O(nlog2n) algorithm, whereas the elementary bubblesort algorithm is a O(n2) type algorithm. This

then implies that as the vector size starts getting large, the number of computational steps

approximately squares with vector size in the case of bubblesort, yet with the heapsort a logarithmic

relationship exits. This has a direct impact on execution time (which is even more pronounced when

dealing with floating point numbers) and the heapsort algorithm would be the better choice.

1.3.3.3 Sorting algorithm

Sorting algorithms, such as the examples given above, are very commonly used in the programming

industry (Press, et al., 1995) and has therefore received a significant amount of attention. In the

algorithms deployed in this project, the sorting function was used extensively. It was mostly used to

find a maximum and minimum value as well as the median value (along with the index) within a

vector.

The MikroC Pro software package offers both a max and min function in its library, but these

functions come with the severe limitation that they only work on integer vectors. This renders them

useless for the specific application. Therefore, a sorting algorithm was used to sort the array and

then pick the last element in the rearranged array (the arrays are sorted in ascending order). A

separate vector containing the indexes was created and manipulated so as to reflect the sorting

process.

From the research it was obvious that two candidates were suitable: Quicksort and heapsort.

Although heapsort was on average slower that Quicksort, its worst case was only 20% slower than

the average (Press, et al., 1995) and is a true nlog2n algorithm in addition, it is an in place sorting

algorithm requiring no extra memory space (very attractive proposition for an embedded system

with very limited storage space). Whereas Quicksort’s worst execution time was orders of

magnitude slower than its average and its implementation is much more involved. On balance, it

was therefore decided to implement the heapsort algorithm for its simplicity, in place properties and

its consistency in execution time. The specific algorithm employed is a somewhat modified version

of the code given in Press, et al. (1995)

12

1.3.3.4 Fast Fourier Transform performance

1.3.3.4.a Basic Fast Fourier transform

Because the Discrete Fourier Transform (DFT) algorithm is, computationally speaking, very expensive

(Lai, 2004) – it is a N2 type algorithm – the much more efficient FFT algorithm is normally used in

computer applications.

This algorithm, requiring only about Nlog2N operations (Grover & Vollmer, 2010), developed by

Cooley and Tukey, basically decomposes a N-point DFT into two N/2-Point DFTs. These are then

broken down into N/4-point DFTs and so on until a DFT of size 2 requires computing which is trivial

(Grover & Vollmer, 2010). These DFTs are combined in a recursive way to then form the N-point DFT

of the original series. This is a so-called Decimation In Time (DIT) implementation - as opposed to

Decimation In Frequency (DIF) - and the results are in bit reversed ordering (MikroC, 2010).

A key concept with this implementation is the so-called “Twiddle Factors” (Press, et al., 1995). These

are the coefficients used to recombine the decomposed DFTs. The implication of this is computing a

15-bit FFT would require 32 768 twiddle factors. The standard MicroC library only goes up to a 9-bit

FFT.

It was therefore decided use one of the clearest derivations of the FFT (Press, et al., 1995)

formulated by Danielson and Lanczos in 1942. This derivation still uses the DIT FFT algorithm, but

instead of the twiddle factors being pre-stored in non-volatile memory, they are calculated and used

as part of the running routine. The algorithm found in (Press, et al., 1995) was extensively modified

for use in an embedded application.

Lastly, the algorithm described can only be used on data samples having a size of any power of two.

There are formulations, notably of the Winograd Fourier transform types (Press, et al., 1995), that

are fast for any size of data samples, but these use a complex indexing system and is not a true in-

place algorithm which makes it unsuitable for an embedded system in which memory comes at a

premium. There also exist radix 3 algorithms which can often be 20 to 30% faster (Press, et al.,

1995) than the radix 2 implementation, but these can easily devolve into a N2 type of algorithm

instead of the Nlog2N type algorithm (Press, et al., 1995). The likely small increase in speed was

therefore deemed not worthwhile when evaluated against the risk of a possible severe decrease in

speed.

1.3.3.4.b Fast Fourier Transform optimisation

The source for this optimisation, implemented in the Beta prototype, comes from the same

publication containing source code and the entire mathematical philosophy. However its

implementation is somewhat involved, especially as the code had to be adapted for embedded use,

which is why it was not included in the Experimental Development Model (XDM) and Alpha

prototype.

The FFT function (as explained in section 1.3.3.4.a above) previously used in the XDM and Alpha

prototype is valid for cases of purely real data, purely imaginary data or real and imaginary data.

However, this leaves much room for optimisation if one is aware of the type of data to be used. It

13

mostly happens that one will use only real input data (Smith, 1998), as the input signal such as from

an accelerometer is a real analogue voltage signal, which is then digitised.

In this section only the means by which it is accomplished will be explained, not the working itself –

for an in depth study into the matter the referenced literature is recommended.

Because the C language (used in the code of the hardware) does not have native imaginary number

support (vital for frequency domain techniques), one is forced to make the convention that every

second memory location will denote an imaginary component of the first real component. Thus one

element of an array (for example) will have two memory locations, one for the real part of the

element and one for the imaginary part. When one then starts off with purely real numbers, the

implication is that every second memory location is set as zero. As such, one is forced to utilise the

full complex FFT algorithm. This proves to be inefficient both in terms of storage and execution

time.

The potential for optimisation comes from two properties of the Fourier Transform: The first

property is that for purely real (or in fact imaginary) data certain symmetries exist, notably (Press, et

al., 1995):

If h(t) is the time domain data and H(f) its frequency domain transform, then

For purely real h (t): H(-f) = H(f)*

This states that the complex value of a negative frequency component is equal to the complex

conjugate of the positive frequency if the input data is purely real. This implies that the magnitudes

of the positive and negative frequencies are the same and forms a “mirror image”, therefore half the

resulting spectrum is redundant. As a matter of fact, symmetry exists for purely imaginary input

data as well; this will be used later in the explanation (Press, et al., 1995):

For purely imaginary h(t): H(-f) = -H(f)*

The second property that has been alluded to previously, is that for an in-place FFT implementation

one has to leave space for the imaginary components that will result from the FFT computation,

therefore in the input data string, every second memory location (representing imaginary data) has

to be set to zero.

With these two areas of optimisation a computational scheme can be formed in which one can fill all

the memory locations with input data (instead of every second memory location). This will yield

twice the data with the same memory available (as every second location is not initially set to zero,

but filled with meaningful data); however one would then usually end up with inadequate memory

(two times too little) space as there is not enough space for the imaginary components of the result.

This space is accounted for with the fact that the magnitude spectrum of a real function is double

sided and thus redundant, thereby the other half of the memory space required is made up for. A

graphical illustration of this is given below:

14

REAL DFT

Time domain data vector Frequency domain data vectors

COMPLEX DFT

Time domain data vector Frequency domain data vectors

Imaginary data set to zero in time domain

 Double sided
frequency data

Figure 5: Visualisation of the difference between the optimised and non-optimised FFT algorithm

In the figure above the cells represent memory locations. Blue cells represent useful data points

while the grey cells represent wasted data (and thus wasted memory) and is to be eliminated by

optimization. This wasted data is either in the form of zeros (in the time domain, because the real

input has no imaginary components) or mirror imaged data (in the frequency domain, as real input

data has a mirror imaged output as a result). It is very important to note that this optimisation is

valid only for purely real input data, as complex input data will not result in zero imaginary (time

domain) input data and a mirror imaged output (frequency domain) data. These two consequences

of purely real input data is the key to make the real DFT algorithm work.

The result of this optimisation is thus twofold. 1) The first benefit from using this optimisation is

that one can use two times less memory or, more commonly, twice more data for a given memory

size – very important for memory limited devices such as DSCs. This results in a frequency resolution

that is now twice as fine as without the optimisation. 2) The second benefit is that per useful data

point, the algorithm operates twice as fast. This results from the fact, that the FFT algorithm still

only processes the same number of data points as before. The only difference is that all the data

points that are processed, are meaningful data points. The inefficiency of the non-optimised

algorithm was that it still processed the zero valued imaginary data points, even though they are not

meaningful towards the output of the algorithm. It must nevertheless be understood that both

algorithms processes the same number of data points. This can be understood better by looking at

Figure 5. As can be seen, the number of useful data points (blue cells) on Figure 5 is equal for the

Real DFT (i.e. the optimised algorithm) and the Complex DFT (the non-optimised algorithm).

However, the complex DFT contains just as much redundant data in the form of imaginary zero

values. Even though these values are completely redundant, they still have to be processed,

resulting in an equally redundant double sided spectrum. This is a property of unoptimised (for real

data) algorithm. Of course, for imaginary input data, the initial zeros in the time domain will be filled

with meaningful data and the resultant spectrum will not be double sided.

While the specific internal workings of the real DFT algorithm is beyond the scope of this literature,

it is easy to see from this illustration that a 2× memory saving can be made if the real DFT is used

instead of the complex DFT in the case of purely real input data.

Magnitude

Phase

15

For the sake of comprehensiveness, it should be mentioned that another optimisation exists, which

works on a similar principle. Instead of filling the data string in the memory entirely with single real

input data, it is also possible to interweave the data string with two sets of data. With this method,

it is possible to perform the transform of both sets of data with one operation. Therefore, instead of

doing both sets of data separately (without the single-sided optimisation, thereby taking twice as

much memory and time), one can do both at the same time with twice as little memory and twice as

fast than would be required using the non-optimised algorithm.

1.3.3.5 Window performance

When experimentation was conducted, both in the laboratory and in the field, it was found that the

frequency spectrum is fairly course with leakage still interfering between closely spaced frequencies.

This interferes somewhat with the spectrum and the median computations used in the damage

detection algorithms. This is partly due to somewhat low resolution of the Alpha prototype

(0.48Hz), but optimising the window was deemed an inexpensive way to get a better quality

spectrum, specifically distinguishing between closely spaced frequencies.

1.3.3.5.a Spectral resolution

With the optimised real FFT algorithm in-place, it is possible to fully utilise the memory capacity

available. The algorithm (and its memory saving capabilities) will allow a 16-bit FFT to be performed

on the data (yielding 32768 discrete frequencies). A sampling frequency of 6.25 kHz will yield a

Nyquist frequency of 3.125 kHz. The spectral resolution will therefore be:

[Eq. 7]

This compares to the (best case) resolution SASOL uses in their condition monitoring department of

0.25Hz. The frequencies spaced closest together in typical data are about 1Hz. Unfortunately this is

not the complete picture, due to the phenomenon of Minimum Resolution Bandwidth, as explained

below.

1.3.3.5.b Minimum resolution bandwidth (MRB)

This is a measure of the minimum separation required (in bins) between two adjacent frequency

peaks (of equal magnitude) to fully distinguish them apart (Bores Signal Processing, 2009).

According to the previously cited source, the rule of thumb for MRB is: to distinguish two

frequencies of equal magnitude, the spacing (in bins) between them is equal to the half power

points (-3dB) of the window’s frequency response.

However, this assumes incoherent addition of the frequency components, whilst the FFT output is

the coherent addition of the frequency components (Bores Signal Processing, 2009). Therefore,

again by the previously cited source, the -6dB defines the MRB.

This parameter is important when considering spectral resolution and should be taken into account.

16

1.3.3.5.c Coherent gain

It is common during the computation of the frequency spectrum to take the coherent gain into

account when using a window. Coherent gain is introduced when using a window as the very act of

multiplying the time domain signal with the window introduces a distortion effect that alters the

amplitude of the signal (National Instruments, 2009). It is computed simply:

 ∑ ()

 [Eq. 8]

Where

N - Number of discrete points in a window

Simply stated, it is the sum of all the discrete amplitude points in the time domain window (Bores

Signal Processing, 2009). In order to get the correct amplitude in the frequency domain, one then

divides the signal in the time domain by the coherent power gain (National Instruments, 2009).

1.3.3.5.d Window comparison

1.3.3.5.d.i Spectral comparison

Highly influential parameters, in terms of leakage and signal-to-noise ratio (Bores Signal Processing,

2009), were found to be highest side lobe level and worst-case processing loss. The best performing

windows in these cases were (Harris, 1978):

 Blackman-Harris

 Dolph-Chebyshev

 Kaiser-Bessel

The more common Tukey, Poisson, Hanning and Hamming windows were all found to be inferior.

The frequency response of some various windows considered are given on the next page, along with

a uniform window for reference. This plot illustrates the leakage effect in terms of magnitude vs.

affected bins.

Figure 6: Leakage comparison of considered window functions

17

In the figure, the -6dB boundary is demarcated with a solid black line; in addition the ADC amplitude

bandwidth is illustrated by a dashed black line (the ADC has an amplitude bandwidth of about 90dB,

below which it falls below the minimum resolvable value of the ADC). The trade off in window

performance is evident in the figure above: Main lobe width versus side lobe height.

Firstly, it is visible that the side lobes of the Kaiser-Bessel and Blackman-Harris fall below the ADC

amplitude bandwidth giving them the best possible noise leakage limitation from further from the

frequency peak. One can also see the uniform window has the smallest side lobe width, but very

high (and thus undesirable) side lobe height.

The best window in this case would be the one that gives sufficient MRB and leakage suppression for

the application while providing for the fastest computation time.

The following figures illustrate the frequency response in practice. It shows several plots of two

frequencies of equal amplitude subjected to different windows in each plot (the time series was

divided by the coherent gain of the windows so that the give the same spectral amplitude, as

explained in the section 1.3.3.3.3).

It is useful to compare the window effects this way, as it allows one to easily visualise the ultimate

effect of the window functions when used in practice.

Figure 7 and Figure 8 below show the frequency spectrum of two frequencies (conveniently chosen

45 and 46 Hz) of equal amplitude separated by 1Hz, as is the minimum of frequency separation in

the tested data. The test shares the spectral resolution of the optimised hardware, namely 0.09Hz.

Figure 7: Sample spectrum of two closely spaced signals (frequency difference of 1Hz)

18

Figure 8: Sample spectrum of two closely spaced signals (frequency difference of 1Hz, narrower band)

Details of interest are the peak width and the noise level. The top figure shows the general leakage

level in the vicinity of the peaks. For reference, one can immediately see that not using a window

(Uniform) produces frightening leakage. In terms of peak width, not using a window produces the

sharpest peak, but at the expense of insufficient drop-off further from the peak – with the effect of

imprecise peaks. The Hanning does somewhat better with fair attenuation and drop-off, then the

Blackman, Blackman-Harris and Kaiser-Bessel. However, with a larger drop-off and attenuation

comes an increase in peak width, which has an adverse effect on MRB. Though at this frequency

separation, both peaks are clearly distinguishable. The question now becomes, how close can two

frequencies get before they can be separated? One can look to the MRBs of the windows to

determine this, from Figure 6 and National Instruments (2009), both giving approximately the same

results, we get:

Table 2: MRB of the various windows

Window MRB (bins)

Uniform 1.21

Hanning 2.00

Blackman 2.30

Kaiser-Bessel 2.73

Blackman-Harris 2.65

The figures below illustrate how the different windows affect signals as they get closer together.

From upper left to lower right, the separation between their frequencies are: 2 bins, 3 bins, 5 bins

and 10 bins.

19

Figure 9: Comparison of window effect when two closely spaced frequencies are considered

It is obvious that not using a window, one gets the sharpest frequency peaks, and frequencies

separated by just two bins are distinguishable. However, it is also evident (especially from Figure 9)

that the amount of leakage is completely unacceptable. For three bin separation, the windows are

about equal in their resolving ability. With discrete peaks barely separable (this is because all of the

windows have a MRB of less than 3). For 5 bins, the Hanning window separates the peaks the best,

followed by the Blackman, Blackman-Harris and Kaiser-Bessel. At 10 bins the situation is reversed,

the Kaiser-Bessel separates frequencies the best, followed by the Blackman-Harris, Blackman and

Hanning.

1.3.3.5.d.ii Computational comparison

In an embedded system, where computational resources come at a premium – unlike a PC – it is

important to consider the complexity of the algorithms due to the fact that a more complex

algorithm might take significantly longer to execute. Therefore, the running time of the windows

will now be compared and weighed up against the spectral advantages.

As a reference, the mathematical equations that describe the windows are given below. In all the

cases (Harris, 1978) (Ifeachor & Jervis, 1998):

N is the number of discrete points that comprise the window.

Hanning

 () (

)

[Eq. 9]

Blackman

20

 ()

[Eq. 10]

where, typically:

Kaiser-Bessel

 ()

 (√ (
 ⁄

 ⁄
)

)

 ()

[Eq. 11]

where:

 ∑
(

)

()

[Eq. 12]

I0 is the modified Bessel function of the first kind, with the range of L defined as going from zero to

infinity. Typically though, bounding L between zero and 32 is sufficient and α typically 4 (Ifeachor &

Jervis, 1998).

Blackman-Harris

 ()

[Eq. 13]

where, typically (Mathworks, n.d.):

One can see by comparing the Hanning, Blackman and Blackman-Harris that all of them involve an

increasing number of cosine terms: with one for the Hanning, two for the Blackman and three for

the Blackman-Harris. This corresponds to the times of execution with Blackman and Blackman-

Harris being two and three times as long, respectively, as the Hanning window.

The results for the time of execution are given below. The window was applied to a vector

containing only ones and applied to vectors of varying lengths. The time taken to execute is given in

the table below.

Table 3: Time to execute the various windows

Window Time to execute (s)

N = 512 N = 2048 N = 8096 N = 327678 N = 65 536

Hanning 2.8 4.2 10.7 36.3 71.0

Blackman 3.2 6.1 18.7 69.3 135.3

Kaiser-Bessel >120 >120 >120 >120 >120

Blackman-
Harris

3.6 8.2 27.3 103.3 203.9

21

It should be mentioned that the tests above show the results based on the standard 10MHz speed of

the processor, it can be completed much more rapidly (8×) by the Beta prototype that operates at

80MHz.

Firstly, it was realised during the very first test that the Kaiser-Bessel window would execute

extremely slowly and clearly was not suitable to an embedded application. When it was tested and

did not finish after two minutes when merely computing 512 points, the test was aborted. It was

therefore decided from the outset that it was not a feasible window and not tested further.

It can be seen that the Hanning window is the least computationally effective, followed by the

Blackman, Blackman-Harris and the Kaiser-Bessel. The Blackman-Harris is about 50% more

computationally intensive than the exact Blackman, and looking at the equations, it is easy to see

why: it has one more multiplication term (keep in mind floating point multiplication uses the largest

amount of resources) – totalling three, whereas the Blackman has only two.

Seeing that the Blackman is still relatively fast (albeit approximately 2× slower than the Hanning) and

has a somewhat better leakage attenuation, but about the same main-lobe width, it is considered

superior. The Blackman-Harris and definitely the Kaiser Bessel are considered too computationally

expensive for the application, although these windows have very good leakage attenuation. Their

main-lobe widths however are inferior to both the Hanning and Blackman and further detracts from

their attractiveness. Thus, the Blackman window is the window of choice and was chosen for this

project.

1.3.3.6 Achieving higher ADC resolution using oversampling and decimation

For the Beta prototype implementation, it was decided to use the on-board ADC of the MCU in

conjunction with an oversampling decimation routine. What follows is a summary about the theory

of operation. It is heavily based on the Microchip application note AN1152 (Microchip Technology

Inc, 2008).

The process of quantising an analogue signal into digital words introduces quantization noise, the

smaller the word length, the greater the noise introduced. The signal-to-quantization noise ratio is

defined as:

 ()

[Eq. 14]

where N is the number of bits and LF is the loading factor, defined as the ratio of the RMS value of

the input analogue voltage to the peak ADC voltage. For a sine wave LF = 0.707 and the equation

become:

[Eq. 15]

From the above equation it can be seen that the SNRQ improves by 6.02 dB per bit and the higher

the number of bits, the better the SNRQ becomes. The SNRQ of a 12bit ADC is about 74.01 dB and

that of a 16bit ADC is about 98.09 dB. It will now be shown how the SNRQ can be improved without

increasing the word length of the ADC.

The Power Spectral Density (PSD) of the quantization noise with a flat spectrum is given by:

22

()

[Eq. 16]

One can therefore see that to decrease the PSD of the quantization noise, it is necessary to either

decrease the LSB value (which means increase the word length) or increasing the sampling

frequency – which leads to oversampling. The SNRQ improvement after oversampling is now given

by:

[Eq. 17]

where FOS represents the sampling frequency (when oversampling) and FN represents the Nyquist

frequency. Therefore, the overall SNR is:

[Eq. 18]

Suppose we have a P-bit ADC and a Q-bit ADC with Q>P, the sampling factor is calculated as follows:

 ()

[Eq. 19]

The following block diagram shows the stages of the data acquisition process:

Figure 10: Block diagram of signal acquisitioning and processing (Microchip Technology Inc, 2008)

The analogue signal is oversampled and an anti-aliasing filter applied. The remaining signal is then

further subjected to a digital low-pass filter to suppress the higher frequency quantization noise and

to negate the effect of aliasing that may arise after down sampling. After filtering, the signal is then

further passed through a decimator to downgrade the rate. At this point the sampled points can be

used in the DSP. The signal that is obtained at the end of this process has the SNR of Q bit ADC even

though a P bit ADC was used.

It will now be calculated what the effective number of bits will be after the oversampling algorithm

is employed.

 [Eq. 20]

 ()
()

()

23

 ()
()

()

 N = 14

As can be seen, for the resolution of the original system has been partly regained. The benefits of

this technique are now simpler and more efficient source code, using a simpler hardware layout and

a system that is marginally less expensive. In addition, the full operational capability of the DSP

functionality in the MCU can now be used. This opens up new avenues in future expandability of the

algorithm.

1.4 Scope of Research

The progress of this project followed four developmental phases, as described below.

1.4.1 Literature survey

As a starting point, a literature survey was undertaken to explore the current trends in the industry

and academic research.

Firstly, this provided a clearer background of what is currently relevant and required in the industry

as well as what the administrative, financial and technical challenges are in the industry. Secondly, it

also yielded information as to the capabilities of modern electronics, upon which a judgement could

be made regarding suitability of various systems for the application. Finally, this information had to

be kept in mind when the algorithms considered for inclusion were chosen considering the

processing power available from the chosen micro-electronics as well as bearing in mind the

ultimate goal of the project, i.e. a protection system.

1.4.2 Algorithm development

The next phase involved the algorithm development. It started out with a field measurement

campaign at the SASOL plant Secunda, as described in section 5.2. That initial measurement

campaign yielded a large amount of data from a number of different gearboxes in various states of

repair.

With guidance from the literature study and using the data gathered from the measurement

campaign, the algorithm was developed in the Matlab environment. This platform is highly suited to

rapid development and adaptation.

Although the project started with this phase, it was an ongoing effort throughout the project and ran

concurrently with the other phases.

24

1.4.3 Experimental hardware work

When the choice of MCU architecture was made, an off-the-shelf development system was

obtained. This system served as an “electronic development laboratory” and allowed for general

familiarisation of the environment and the porting of the algorithm from Matlab into C.

It was clear from the outset that this system would not be sufficient to see the project through, due

to its large and impractical dimensions and very limited features. However, since it used the same

compiler it served as a valuable test bed while the Alpha prototype was designed and manufactured.

1.4.4 Alpha prototype

The Alpha prototype was the first focussed design with this specific project in mind. It incorporated

numerous upgrades and features lacking from the experimental hardware. Importantly, the Alpha

prototype was capable of measuring and processing a significant amount of data and giving feedback

to the user.

This system was extensively tested in the laboratory as well as at the Sasol plant in Secunda. It also

served as a temporary test bed and underwent significant modification while the Beta prototype was

being designed and built to test new functionality being built into that hardware.

Due to it being the first system, several critical flaws were discovered which would require a system

redesign to adequately address. Therefore, both in the laboratory and in the field, many operational

and technical lessons were learned and incorporated into the design of the Beta prototype.

The most important shortcomings were the dependence on a controlling PC, i.e. it was not

independent. It also did not have an on-board power supply for the ICP accelerometer, which

necessitated the use of an external and unreliable power supply. Lastly, due to limitations of the

compiler, it had to operate at one eight of its designed speed, which meant it performed very slowly.

Crucially, the benefit of this system was that the entire ecosystem of routines comprising the

algorithm could be tested as a unit. This differs from the experimental system, described in

paragraph 1.4.2, in which the routines often had to separated and tested individually. This is

primarily due to the fact that Alpha prototype had significantly more memory and the capability to

sample an external signal.

Additionally, this system afforded the opportunity to write a number of device drivers, such as the

memory and ADC drivers as well as implement the corresponding modifications to the algorithms.

Due to the fact that the Beta prototype used the same components, the majority of the drivers could

be reused with no or little modification.

Finally, the system was highly modified during the manufacturing phase of the Beta prototype.

Several delays were encountered during its manufacture and for the sake of driver programming of

some of the newer facilities of the Beta prototype, the Alpha prototype were modified with a

number of subsystems of the Beta prototype.

25

1.4.5 Beta prototype

The specification for the Beta prototype was generated after the Alpha prototype finished with its

field testing. Several key areas of improvement were identified to address the shortcomings of the

Alpha prototype. The redesign of the circuit layout provided an opportunity to add several useful

features.

Areas which were improved upon on the Alpha prototype were:

 On-board power ICP power supply

 Corrected circuit design of LCD

 Corrected circuit design of push buttons

 Elimination of the external ADC and use of the on-board ADC on the MCU

 Combined use of the LCD and push buttons allowed the use of the original design speed,

enabling an eight times speed increase over the Alpha prototype

 Combined use of the LCD and push buttons allowed the Beta prototype to be independent

of a controlling PC

New features on the Beta prototype are:

 SD-Card reader

 Serial port

 Interfaces for future development

 Lead-acid battery recharge circuit

The result of these modifications produced a near commercial ready system capable of recording

and storing external signals, processing and storing the results for later analysis, whilst operating

independently of a PC.

It was calibrated in the Sasol Laboratory for Structural Mechanics at the University of Pretoria and

extensively tested at the Sasol plant in Secunda, where the data gathered correlated closely with the

results measured by Sasol.

The result is a system that performs the role of a ‘Vibration protection system’ and offers an analyst

the tools to make a judgement if an alert is given.

1.5 Summary of chapters

What follows now is a brief guide of the chapters comprising this dissertation.

Chapter two details the design evolution of the Alpha prototype and the Beta prototype as well as

the role of the experimental development model. It recounts the role each set of hardware played

in the project, the weaknesses of the various hardware systems and they were corrected in the

subsequent hardware. This account of the hardware development therefore provides a broad scope

of the progression of the hardware.

The development of the algorithm is explained in chapter three. The work in this chapter draws

heavily the experimental results of the initial data gathering campaign. The rationale behind the

26

algorithm and certain decisions are explained in this chapter. Finally a comparison is made as to

how the algorithm performs. The chapter is laid out in order of how the algorithm works and

therefore provides a step by step walkthrough of the device operation.

The fourth chapter explains the laboratory test work performed on the hardware iterations. This

work was completed before the field work started in order to verify the operation of the device, be it

the Alpha or Beta prototype.

Chapter five details the various field measurement expeditions. The field work done during the

initial data gathering exercise as well as the Alpha and Beta hardware is explained. Specifically, this

chapter explains the goals of the various field work exercises as well as the procedures followed.

The chapter explains why and how field testing was performed without going into the results.

Next, in chapter six, the results of the three different field expeditions explained in chapter five are

presented and discussed. This chapter provides an impression of how the algorithm developed from

functioning within a computer separate from the data acquisitioning system to being eventually fully

integrated into a compact system containing all the subsystems necessary to acquire, process, store

and display a result.

Finally chapter seven presents the conclusion in which the summary of findings are listed for each

device tested. A cost analysis is also presented along with recommendations and future work. The

chapter is presented in a commercial sense and should be read as a general guide to take the final

beta prototype to a commercially viable product.

27

2. Design Philosophy

2.1 Preliminaries

Initial discussions with engineers in various industry sectors led to the investigation into the range of

Microchip products and it was decided that the core of both the XDM and the Advanced

Development Model (ADM) prototypes would be a Microchip 16-bit dsPIC as mentioned in section

1.3.2.

The dsPIC is a type of Programmable Interface Controller with DSP capabilities. The instruction set

and hardware design of these PICs are optimised for numerical processing and they contain a

particularly good multiplication capability. See section 1.3.2 for more details.

A choice of three programming languages was considered: Pascal, Basic and ANSI C. The

programming software was available in these three languages and it was ultimately decided to go

for the C route as it is the most widely used and most flexible programming language of the three,

particularly when it comes to program efficiency and memory usage (Kochan, 1988).

The algorithms were developed in a Matlab environment as it is much more flexible for this kind of

data processing. However, the Matlab algorithms were subsequently transferred to C to work on

the dsPICs.

2.2 Experimental development model (XDM)

2.2.1 Overview

An experimental model on which most of the

algorithms’ functioning could be verified was obtained

in the form of the EasydsPIC4A development system

available from Mikroelektronika. Along with this

system the appropriate software package, MicroC, was

also purchased. As the decision was made to use a

specific manufacturer’s MCUs throughout the project,

this software package was selected and could be used

for all development stages in this project. In addition,

this package allows programming and in circuit

debugging (although hardware dependent).

This hardware features many of the characteristics of

the final hardware like a LCD, a 16-bit DSP controller, and an in-circuit debugger.

Apart from the different model Microcontroller (it is of the same family though), it does differ in

several very important ways from the ADM prototypes:

1. It cannot capture external analogue signals and therefore cannot record a signal.

2. It only uses on-board RAM – and much less of it, 2kB as opposed to 32kB – rather than both

on board and asynchronous RAM to store the data.

Figure 11: XDM development board

28

3. It has an on-board In Circuit Debugger (ICD) rather than an external one (relevant for

development purposes)

4. Uses a USB power supply, rather than a battery.

An explanation of the layout of this board is provided in Appendix A.

2.2.2 Limitations

There were several limitations which prevented the XDM to be used as a fully functional test bed for

the project and thus why it could only be used to verify the working of some algorithms, as will be

elaborated on soon.

2.2.2.1 ADC functionality

A limitation preventing the XDM from being more useful were the ADC inputs of the board being

directly connected to potentiometers (used for testing functionality and basic operation). This

severely limited the use of these channels because the potentiometers were not controllable

enough to test any form of frequency based technique.

Therefore no usable external data could be generated with the ADC for use in testing the algorithms,

even though the ADC operation (from a software writing perspective) could be evaluated.

2.2.2.2 Memory space

The XDM had only the on-board 2kB of on-board RAM memory at its disposal. This memory had to

be shared between the data gathered with the ADC as well as program variables. With less than 2kB

to work with, the amount of data gathered would not have been sufficient for thorough testing, but

it was useful in at least testing the algorithms with generated test data.

2.3 Advanced development model – Alpha prototype

2.3.1 Memory space required for vibration data

A brief study of the general form of algorithms used to compute a FFT of a set of data reveals that it

is very common to compute a FFT in-place. That means that the time domain of the data, commonly

in the form of a vector of floating point values, is overwritten with the frequency domain values as

the algorithm proceeds. However, frequency domain data in its raw form is complex data.

The C compiler cannot directly handle complex data. So it is necessary to leave some memory space

for the complex data. An example is given on how the input (real) data is arranged to facilitate the

(complex) result of the FFT operation. Elements in the illustration below represents a memory

location containing a floating point number, but each adjacent pair jointly forms an imaginary

number (blue and white fill), one memory location for the real part and another for the imaginary

part. Therefore, a real data string would look as follows:

-0.3 0.0 0.1 0.0 -0.1 0.0 0.5 0.0 -0.3 0.0 0.1 0.0 -0.1 0.0 0.5 0.0

29

Represents the data string: -0.3, 0.1, -0.1, 0.5, -0.3, 0.1, -0.1, 0.5. Looked at differently, it represents

the imaginary data string: -0.3+0.0i, 0.1+0.0i, -0.1+0.0i, 0.5+0.0i, -0.3+0.0i, 0.1+0.0i, -0.1+0.0i,

0.5+0.0i. The Fourier transform of this data would then be calculated as:

-0.4 0.0 0.0 0.0 -0.4 0.8 0.0 0.0 -2.0 0.0 0.0 -0.4 -0.8 0.0 0.0 0.0

This would represent the data string: -0.4+0.0i, 0.0+0.0i, -0.4+0.8i, 0.0+0.0i, -2.0+0.0i, 0.0-4.0i, -

0.8+0.0i, 0.0+0.0i, which would be the Fourier transform of the previous data string. As can be seen,

the input data is stored only in every odd element of a memory location (albeit possibly in the form

of a data vector).

Consequently, storing 16 samples of data would require 32 memory locations to leave space for the

imaginary components of the results. One memory location for the actual data point and another

“place holder” memory location reserved for the imaginary part of the eventual Fourier transform

result.

Using this information and the information in Table 4, one can calculate the number of samples that

the hardware is capable of taking.

Table 4: Alpha prototype ADC parameters

Parameter Value

ADC Resolution 16-bit

Sampling Frequency 15.625 kHz

Sampling time 2 seconds

Double precision floating point memory space
required

32 bits (4 bytes)

Asynchronous memory capacity 4096 kB

Keeping in mind the discussion of how complex values are treated (two storage locations for an

imaginary number), in that a data point uses two memory locations, then a single data point would

require 64 bits.

Therefore, one would be able to store:

 [Eq. 21]

This would imply that at a sampling frequency of 15.625 kHz, one would have approximately 4

seconds of data (sampling frequency in Hertz):

 [Eq. 22]

30

As a matter of fact, 32 768 samples would eventually be used, as unfortunately a defective memory

chip was being used which exhibited instability when writing significantly more data. This does

waste a considerable amount of memory and frequency resolution for this hardware, but it was

replaced with a working unit in the Beta prototype of the ADM. For the Alpha prototype however, a

sampling time of 2.1 seconds was used.

2.3.2 Spectrum characteristics

2.3.2.1 Lowest frequency component measureable

According to Rayleigh’s criterion, this would yield the lowest frequency measureable as:

 [Eq. 23]

This is well below the smallest frequency observed (7.4Hz; BSF on the output shaft of a type 4

gearbox, running at 24.5Hz input shaft frequency).

2.3.2.2 Frequency spectrum resolution

A 15-bit FFT (32 768points) will yield 16 384 positive discrete frequency bins (due to the double

sided nature of FFTs).

 With a Nyquist frequency of 7.8125 kHz, the following frequency resolution will be obtained:

 [Eq. 24]

While investigating the characteristics of the gearboxes, it was found that the closest spacing of

bearing frequencies at the operating speeds (input of roughly 1480RPM) was 1.2 Hz. This was found

in the output shaft of the type 6 gearbox.

Therefore the frequency resolution of 0.48 Hz/bin was deemed to be admittedly very coarse, but

sufficient (2.5 times finer than the smallest difference in frequencies) for the Alpha prototype

hardware to capture enough detail.

2.3.3 Architecture

The basic layout of the ADM consists of a core MCU (the DSP variety was selected for this

application). This is connected to:

31

1. LCD screen

2. Keypad

3. Asynchronous memory

4. External ADC (anti-aliasing filter)

5. External programmer and ICD (for debugging purposes)

Various software routines and drivers had to be written to control these components from within

the MCU. During the feasibility study, the LCD and keypad were not connected due to circuit board

design problems, though these components are not necessary for evaluation purposes. However, in

the Beta prototype these design problems was rectified.

2.3.3.1 MCU

As mentioned in the implementation study of chapter one, a DSP type MCU was chosen because of

it is optimised for numerical computations, particularly multiplication.

Therefore, the dsPIC33FJ510MC710 was chosen. It is a microchip product and thus seamlessly

compatible with the compiler and programmer. The specific variant was chosen due to its high pin

count (100 in total, including: IO pins, programmer ports, external device ports, power lines and

oscillator pins etc).

In addition, it is a low power device as well as offering very high code security.

2.3.3.2 LCD and keypad

The LCD is an 8 bit parallel unit of resolution 124 × 64 manufactured by Emerging Displays. The

drivers for this device were provided by Periseo (a Pretoria firm that was consulted during the

project).

The keypad is 4 × 4 push button unit and was purchased of the shelf from Mikroelektronika, the

same company that supplied the programmer and compiler. Therefore, it was chosen because the

compiler had preinstalled software libraries to control its functions.

2.3.3.3 Asynchronous memory

The asynchronous memory, manufactured by Cypress, is a high performance CMOS Static RAM chip,

organised as 512K words by 8 bits. Due to it being parallel high speed memory, a specific design

challenge was to ensure that all the address lines to this device were of approximate equal length.

This would ensure that no glitches occurred and that the data was reliable.

Being asynchronous memory, it was ideal because of its very high access time. This is crucial, as the

ADC operates at a fairly high output frequency and the memory would need to keep up with storing

values obtained from it.

32

2.3.3.4 Analogue to digital converter

The ADC, another Microchip product, was chosen for its high sampling frequency (up to a maximum

of 64 kHz) and resolution (16 bits). It is a dual channel, analogue front end delta-sigma type ADC and

includes a Programmable Gain Amplifier (PGA) on each channel. This is especially useful in utilising

the full 16-bits of the data as the gain can be adjusted according to the signal strength.

It uses a Serial Peripheral Interface (SPI) to communicate with the MCU for which the compiler has a

comprehensive library.

The tested response of the ADC after calibration is illustrated below:

Figure 12: ADC response

The response of the ADC merely involved applying a DC voltage on the channel and noting the

output.

A calibration run was performed to see the average offset inherent in the circuit. This value was

then stored and subtracted from any following data runs.

It should be noted, that the offset was stable from the very first sample. Therefore, it was not

necessary to generate a large number of samples in order to get an accurate offset representation.

Nevertheless, for the sake of experimental safety, 20 samples were used and their average taken as

the offset in the ADC. The result of this is illustrated in the graph above.

2.3.3.5 External Programmer and ICD

The programmer is used for programming the device. This variant included an ICD which saves a lot

of debugging time as it allows one to step through your routine and read the MCU registers real

time.

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

O
u

tp
u

t
V

o
lt

ag
e

Input voltage

ADC response

All

Operational

33

It connects to the circuit board via a 10 pin ribbon cable and to a USB port on a PC on the other end,

thus facilitating communication.

2.3.3.6 Anti-aliasing filter

An analogue Butterworth filter, using the Sallen-Key implementation, was used as a low pass filter.

It is a fairly low order filter; therefore the cut-off frequency was well below the Nyquist frequency.

It has a cut-off frequency (-3dB) of 2.8 kHz, which is above the specified 2.4 kHz required. This value

was derived from the fourth harmonic of the highest frequency of interest, being GMF on the input

shaft on the type 4 gearbox. At the Nyquist frequency of 7.8125 kHz the attenuation is

approximately -35dB.

Figure 13: Frequency response of the anti-aliasing filter

This filter was tested by manually connecting a signal generator to the physical hardware input pins

of the filter. The output (measured at the physical hardware output pins) was compared the input

with an oscilloscope (both the input and output was displayed). This was therefore purely an

analogue test of the passive filter circuitry and the active components (MCU, ADC, Memory, etc.) of

the device was not tested.

Figure 14 illustrates only the output when a sine sweep was connected to the input. It can be

observed that the output signal amplitude remains constant (in time and with frequency) until the

increasing signal frequency reaches and surpasses the filter cut-off frequency, whereupon it is visibly

attenuated.

34

Figure 15 illustrates a square of 1 kHz wave passed through the filter. This implies that its harmonics

will be attenuated, thereby shaping the signal more to the shape of a sine wave, as can be seen.

Finally, Figure 16 illustrates a signal of 10 kHz, well above the cut-off frequency of the filter, being

input and the result again measured after the filter. It is clearly seen how the filter has attenuated

the signal amplitude.

Figure 14: Sine sweep (5Hz to 20 kHz)

Figure 15: Square wave (overlaid on input) at 1 kHz

35

Figure 16: Sine wave at 10 kHz (overlaid with input)

2.3.4 Limitations

2.3.4.1 Data retention

Since the Alpha prototype contained only non-Volatile memory, the data was lost immediately after

the device lost power. Coupled to the fact of not being able to download the data to a computer, it

was impossible to view the data acquired on a computer. Although the MCU supports this

functionality, the design of the circuit board did not allow this.

This shortcoming was duly rectified in the Beta prototype, which was capable of storing the data to

non-volatile memory (in the form of and SD-card) as well as transmitting the data via RS-232

connection to a PC.

2.3.4.2 System independence

Unfortunately, due to mistakes made during the design of the circuit board, the Alpha prototype

never had the capability to function in a stand-alone capacity. The mistakes related to both the

keypad and the LCD screen. Without these components, the device had to be controlled with via a

computer.

2.3.4.3 Speed of operation

It was found both during laboratory tests and field tests that the speed of operation was

impractically slow – a full analysis of a single measurement would take approximately three minutes.

36

This implies a total time of twelve minutes for a three stage gearbox (having four shafts). This

analysis time includes measurement and the operation of the algorithm (the most taxing operations

being detrending, windowing and the Fourier transform).

2.3.4.4 Accelerometer power supply

A hazard was noticed during the field testing regarding the external ICP power supply. Since this

power supply was independent of the circuit board power supply, it was found to be very easy to

forget to switch it off – resulting in the swift depletion of the three 9V batteries of the unit.

Although not a technical problem per se, it does have a fairly straight forward technical solution:

designing an internal accelerometer power supply as part of the circuit board in the Beta prototype.

2.4 Advanced development model - Beta prototype

What follows is a discussion of the Beta prototype and

how it differs from the initial Alpha prototype. The

changes were driven by the experien6ces with the Alpha

prototype as well as from general optimisation of the

design, based on recommendations from our electronics

consultant.

See appendix F for illustrations of the beta prototype.

2.4.1 Clock speed increase

It was found that the Alpha prototype was very slow in its execution speed as the MCU was driven

by an external 10 MHz clock, which represents the maximum input for the specific clock type in use.

However, the MCU does have functionality to multiply the clock speed by utilising an on-chip PLL

(Phase-Locked Loop) and achieve significantly higher clock speeds (Microchip Technology Inc, 2009).

This feature, although available for the Alpha prototype, was not used. This was due to the way in

which the Alpha prototype was used: the device was constantly connected to a computer due to the

lack of a user interface. This required the system to operate in “Debug mode”. Unfortunately, when

using this mode the PLL cannot be activated with the specific compiler in use.

However, as the capacity for the Beta prototype to function independently was added, it was not

required anymore to run in “Debug Mode” and the PLL could be activated. This increased the

effective clock speed from 10 MHz to 80 MHz.

2.4.2 Addition of external storage and serial communication with a PC

It was found to be a handicap of the system that the gathered data could not directly be shared with

a PC for additional computational purposes outside of the on-chip environment.

For this reason, the functionality to send data via a serial RS232 port to a PC was added. This was

deemed, at the very least, a useful debugging feature to compare the gathered and computed data

Figure 17: Illustration of the Beta prototype with
accelerometer and RS232 cable connected

37

on the chip, with commercial data acquisitioning systems, such as the eDAQ and Spider used during

this project. In addition, a serial port could serve as an expansion port for future developments such

as GPRS transmission and many peripheral applications.

Furthermore, the functionality to store data on an SD card was also added. In this way, the data

could be stored on the SD card and saved for later analysis as it is not always possible to have a PC

nearby for uploading the data via the serial port. The SD card also served as a “hard drive” as it

housed parameter and index files related to the user interface and requirements of the envisaged

customer.

2.4.3 Signal acquisitioning and elimination of external ADC

The external ADC was also removed and internal ADC on the MCU was commissioned for data

acquisitioning. The reason why an external ADC was used for the Alpha prototype was due to its

high resolution: 16 bits. The internal ADC uses only 12 bits, but this deficit was largely recovered by

specific use of oversampling, (the theory behind which is explained in section 1.3.3.4.), LCD, push-

buttons and a rechargeable battery.

It was mentioned previously that the Alpha prototype had an LCD and push-buttons as well.

Unfortunately, the circuit board layout was done incorrectly and these units never functioned. For

its purpose, the Alpha prototype could suffice without them, but as the Beta prototype was intended

to be near production ready, it was crucial to get these units working.

This was duly accomplished with the Beta prototype, and together with the SD-card formed the user

interface, as will be explained in the next section.

As with the Alpha prototype, a battery was used as well.

However, with the Beta-prototype, a recharging circuit was

added. This enabled the Beta prototype to be recharged

from a 220V wall socket, whereas before the Alpha

prototype had to be partially dissembled to remove the

battery and connected to a pre-configured voltage supply.

It was found that a full charge, from empty, takes about 12

hours. However, when used normally during the day, the

battery would be fully charged by the next morning when

connected overnight to a power outlet.

2.4.4 File system

The file system uses a computer-editable SD card and consists of two components:

 The index file (a simple .txt)

 The gearbox folders in which the parameters files resides (also .txt files)

Figure 18: Battery socket and power cord of
the Beta prototype

38

Figure 19: Appropriate contents of the root directory of the SD card for proper functioning

Figure 19 above shows an illustration of how the contents of the SD card look when mounted into a

computer. When the Beta prototype boots up, it reads the contents of the file INDEX.txt. This file

serves as a means for the device to know what gearboxes are present on the SD card.

When using the device, the names of the gearboxes in this file are displayed on the screen and the

user presses a button to cycle through them. To select a gearbox, the user presses a different

button on the device. At that point, the device goes into the folder of the selected gearbox and

open the file PARAM.txt. This file contains all the necessary parameters of the gearbox. Figure 21 is

an illustration of this file when opened within Windows.

The values within the file PARAM are now be loaded onto the device and starts gathering data and

performs the analysis.

Figure 20: Contents of the INDEX.txt file

Type 1 Type 2 Type 3

39

Figure 21: Contents of an example param.txt file illustrating the layout of the file

From then the parameters in the param.txt file are loaded into the working cache memory of the

Beta prototype, the following steps occur:

1. Sampling of the data

2. The sampled data is saved to the SD card for later reference

3. The detrending, windowing and FFT algorithms are applied to the data

4. The fault finding algorithm executes

5. The frequency spectrum of the data is saved to the SD card for later reference

6. A log file detailing the findings as well as certain algorithmic parameters are saved, including:

a. Input shaft frequency detected by the algorithm

b. Gear mesh frequencies computed

c. Bearing frequencies computed

d. Diagnostic information (Figure 22)

i. Detected bearing frequencies (i.e. as found by the algorithm after computed

frequencies were used as a guideline as to where to look)

ii. Median value of the surrounding noise in that frequency band

iii. Peak value of the detected bearing frequency

40

iv. Diagnosis (No damage, Moderate damage, Severe damage)

7. The process repeats for every shaft of the gearbox

Figure 22: Illustration of log file (partial window)

The creation of a log file was deemed very valuable for field testing calibration purposes. Using this,

one can review the diagnostic information off site. Valuable, because it is often difficult when one is

on a noisy site with limited time to spend time judging what the device is trying to tell you. In

addition, when the device first enters production, it is anticipated that the first clientele may

experience problems and the log file can be used in solving any problems arising as it provides all the

diagnostically relevant information.

Additionally, when the device is operational and it indicates a potential problem with the gearbox,

the log file can be used by an off-site engineer or technician in conjunction with the time and

frequency domain history as recorded by the device. This, in accordance with the requirements for a

protection system, allows the analyst to view the history of the device, the machine condition

inference that it made, as well as the reasons why it made that inference.

2.4.5 User interface

The device is controlled by using the LCD screen and the pushbuttons. Using these features, the

backlight of the device can be toggled, the appropriate gearbox for analysis can be selected and the

measurement can be initialised. After each measurement and analysis of every shaft, a brief

41

summary of the state of the bearings present on that shaft is displayed. This process is graphically

illustrated in the following figures.

The figure below illustrates the splash screen shown once the device has finished booting and is

ready for analysis. Pressing one button toggles the backlight and another moves the routine to the

next screen.

Figure 23: Splash screen displayed after device boot

Figure 24: Gearbox selection screen

When arriving at the screen displayed in Figure 24 (by pressing button 1 on the device), the user is

prompted to choose the gearbox which is to be analysed. Pressing button 1 will cycle to the next

gearbox, while pressing button 2 selects the current gearbox and starts the analysis. If the last

gearbox is reached, the lists start over from the beginning.

Once the choice has been made, the device will activate the ADC module and sampling on the first

shaft will commence until the required amount of samples have been gathered. Thereafter the ADC

unit as well as the screen backlight is shut down in preparation for writing to the SD-Card (all of

these units consume a fair amount of power and if not shut down, the device will reset on lower

battery levels).

Once sampling has been completed, the Beta prototype writes the time domain data to the SD-card.

During this time, the following screen is displayed, which indicates this process. Also displayed on

the screen is the maximum time domain value measured.

42

Figure 25: Progress screen, backlight off

Once the above steps have been completed, the following screen is displayed, proving a summary of

the analysis of the measured shaft as well as the maximum value in G of the signal.

Figure 26: Summary screen

This screen displays the most severe analysis found on the shaft. For example, if a there are two

bearings on the shaft then six spectral components will be investigated (three for each bearing). If

one or more of these peaks is high enough to trigger a warning, it causes a message to be displayed.

Currently, the following warnings are programmed:

Table 5: Screen states corresponding to damage

Incident Display

Peaks of interest sufficiently low (No damage) “Vibration Low”

Highest peak >5× median and <10× median (Moderate
damage)

“Vibration Moderate”

Highest peak >10× median (High damage) “Vibration High”

This diagnosis serves as a warning to the operator if an excessively high spectral peak was found and

the operator should seek technical assistance.

43

It is noted that the messages of the analysis in the examples above were very generic in nature, but

the following are possibilities (on their own or combined):

 Any message pertaining to the state of the bearings

 Maximum value

 RMS

 Bearing frequencies and peak heights

 Frequency spectrum (not recommended due to low screen resolution)

 Any computed value

When the appropriate button is now pressed, the Beta prototype starts sampling again and the

process repeats itself until all the shafts are measured on the gearbox. Of course, the Beta

prototype knows how many shafts are present on the gearbox as this information was entered in the

parameter file.

44

3. Algorithm development

3.1 Algorithm premise

As mentioned in section 1.1, it was decided to initially focus on screening the bearings and

recommending a course of action based on the findings. The algorithm therefore incorporates a

routine that observes the behaviour of the bearings and assesses certain spectral parameters for

tell-tale signs of possible damage.

In this regard, it was found in section 1.2.4 that a defect free rolling element bearing does not

appear at any of its usual fault frequencies (BPFI, BPFO, 2 × BSF) on a frequency spectrum (the

Fundamental Train Frequency – FTF – was not included as it is not often seen in a frequency

spectrum a the cage carries very little load, it is more often seen as a modulating signal (Ganeriwala,

2010)), but only generates random noise. The basic premise of the algorithm is therefore based on

the fact that if there is a spectral peak at a fault frequency rising above background noise, there is a

defect.

The procedure below is explained in sequence as it is performed by the final version of the firmware.

The explanation starts at the point where the data has already been captured and resides in the

memory of the device, without any prior processing. This explanation thus starts at the beginning of

the procedure of data processing.

3.2 Bearing assessment process

3.2.1 Detrending and windowing

The first operation performed on the data is detrending of the data samples. This is done to remove

any possible signal drift in the time domain. The possible trend is assumed to be approximately

linear.

It is accomplished with a best straight line fit, with the use of the least squares method. A Blackman

window is applied to each of the data extracts in order to minimise the effect of leakage. This type

of window was chosen for its relatively small computation penalty, good leakage attenuation and

good MRB (see section 1.3.3.3).

3.2.2 FFT computation

As previously mentioned, frequency domain techniques were decided upon for use in this project.

In the literature, one finds the use of the Power Spectral Density fairly commonplace. It was

however deemed less suitable for the application than a normal FFT. This being the case, as a PSD

has a tendency to further shrink low amplitude and magnify large ones.

This can be easily conceptualised when considering that a PSD is basically multiplying a Fourier

transform with its complex conjugate.

Therefore a standard Cooley-Tuckey algorithm was employed for the FFT computation and the

magnitude spectrum used for damage diagnosis.

45

3.2.3 Input speed

Due to the fact that no speed measurements are available, the algorithm needs to find the speed of

the gearbox by using the frequency spectrum (the input speed of the gearbox creates a prominent

spectral peak). Bearing this in mind, it was necessary to obtain gearbox input speeds as accurate as

possible, due to the compound effect the input speed has on all other frequencies. Indeed, as the

algorithm pre-calculates certain frequencies of interest (GMFs, bearing frequencies, shaft

frequencies, etc.) based on the input speed, and then looks for spectral peaks at these calculated

frequencies; a miscalculated input frequency will cause the algorithm to look for a spectral peak in

the wrong place.

In order to understand the methodology which is followed to find the actual shaft frequency, it is

first necessary to describe the spectral characteristics created by the motor and gearbox in the

vicinity of the fundamental gearbox input shaft frequency. Bear in mind that these characteristics,

which will now be summarised, were observed during the study of the gearboxes found at the SASOL

plant, implying that the algorithm based on them relies on empirical data:

Due to the fact that a fluid coupling is used to connect the electric motor to the gearbox, a speed

differential is created between the motor shaft and gearbox input shaft. This often manifested itself

in the frequency domain as two spectral peaks, representing the motor speed and gearbox input

speed (with the motor speed having the higher frequency of the two). In most cases, the gearbox

input speed was found to have the higher amplitude.

However in a significant number of the observed samples, the motor spectral peaks exhibited a

higher amplitude. In the most extreme case observed, the gearbox input shaft peak magnitude was

found to be just 13% of the motor peak magnitude. Therefore, the algorithm needed to take this

possibility into account when searching for the motor input speed. Importantly, when attempting to

identify a low-amplitude gearbox input speed as described, it is necessary to ensure that a stray

noise peak is not misidentified as a gearbox input speed, as some noise peaks were observed to have

an amplitude of more than 13% of the motor/gearbox shaft. To this end, it was found that if such a

low amplitude spectral peak does exist, it was typically at least 20% higher than the surrounding

spectral noise. This procedure is illustrated in the following flow-diagram:

Input speed

estimate

Highest identified

peak is shaft

input frequency

Yes

No

Second highest

identified peak

is shaft input

frequency

Convert

RPM to

Hz

Identify

highest peak

in 4Hz range

centred on

shaft freq.

Is second highest

peak (and lower in

frequency than the

highest) less than

13% of the highest

peak’s amplitude?

Is the second

highest peak

amplitude more

than 20% any

peak before it?

No

Yes

Figure 27: Gearbox input speed methodology work flow

46

This procedure can be elaborated on as follows:

1. A rough estimate is required of the input speed. A nominal motor speed is sufficient. In the

case of the gearboxes under test at SASOL, this approximate speed was 1480 RPM.

2. This converts to approximately 24.7Hz.

3. The algorithm searches for the highest peak within a 4Hz range centred on this frequency

range (i.e. between 22.7Hz and 26.7 Hz). The highest peak within this range is then initially

taken as the gearbox input speed.

4. In a few cases the shaft speed of the motor has a larger vibration amplitude than the input

shaft of the gearbox and the algorithm may therefore wrongly identifies this as the input

frequency (see Figure 28). To ascertain this, the second highest peak (of lower frequency –

because the motor rotates slightly faster than the gearbox) is identified. If this peak has an

amplitude of less than 13.5% (empirical value) of the highest peak, then the highest peak

(initially identified) is taken as the gearbox input frequency (Figure 29).

Figure 28: Illustration of a motor frequency having a higher spectral peak than the gearbox input shaft

Figure 29: Illustration of the input shaft having a spectral peak more than 13.5% of the second highest peak

47

5. If the second highest peak has an amplitude of more than 13.5% of the highest peak, there is

a probability that it is the input frequency of the gearbox (see Figure 30). However, this

peak may well be spectral noise. To test for this, if this peak has a 20% (empirical value)

higher value than any peak before it in the frequency range of interest, it – the second

highest peak initially identified – is taken to be the gearbox input speed (see Figure 31).

Figure 30: Illustration of a small amplitude peak with a probability of being the gearbox input speed

Figure 31: Illustration of an input shaft having a spectral peak higher than 13.5% of the motor input frequency as well
being higher than 20% of a peak preceding it

48

3.2.4 Identifying the relevant spectral peaks

The frequencies of the relevant spectral peaks that can now be calculated are those of the gear

mesh frequencies (and harmonics), the harmonics of the input speed and the bearing frequencies.

These values are used in the diagnosis of the fault frequencies.

The input speed was calculated in the previous step and its first four harmonics are now calculated

and stored.

The GMFs and their harmonics were calculated for each mating gear set. This was done by using the

input shaft speed previously calculated and the number of gear teeth on each gear (provided by the

industrial partner). By using the supplied gear teeth count on each gear and the input speed, the

next shaft speed was calculated and the GMFs applicable to that gear set computed. This process

was repeated for each stage in the gearbox until every GMF of that gearbox was computed.

After the bearing part numbers for each shaft on each gearbox were supplied by the manufacturer

of the gearboxes, the SKF bearing calculator website (SKF, n.d.) was consulted and the estimated

fault frequencies for each bearing were computed (note: only estimated frequencies are computed,

the exact frequencies will be found shortly). Importantly these calculations were based on the

original estimated input shaft rotation speed (1480 RPM).

To compute the exact frequencies however, one needs to take a look at how these frequencies are

computed. Looking at the equation below, it is clear that for a specific bearing design, these

frequencies vary linearly with a change in input speed. It is therefore easily possible to algebraically

manipulate the SKF computed frequencies so that they reflect the actual frequency instead of the

estimated frequencies. This process is illustrated below with the example of the BPFI frequency:

(

) [Eq. 25]

Because variables like the number of rollers, roller geometry and contact angle are generally

assumed to be constants in a bearing application, the following can be stated:

 [Eq. 26]

Therefore, one can derive any new frequency of the same bearing at a new speed as follows:

 (

) [Eq. 27]

Using this principle, the actual bearing frequencies (and their harmonics) were computed by

compensating for the approximation by dividing with the estimated input speed and multiplying by

the actual input speed.

3.2.5 Bearing state assessment

Once the frequency spectrum has been generated, the shaft speed computed and the bearing

frequencies are computed, and a survey on the state of the bearings can be attempted. The bearing

49

is assessed by considering the amplitudes at its fault frequencies. The algorithm operates on the

premise that if a high enough spectral peak at one of these frequencies is present, then the bearing

vibrations are assessed to be anomalous and the operator need to warned of potential damage. The

relative height of the spectral peak above the noise is used as the assessment parameter that

dictates the type of alert that is communicated to the user of the device.

To this end, the first procedure to be done is to find the index of the frequency. At this point a

problem arises again with the discrete nature of the frequency spectrum. The computed frequency

of the bearing anomalies usually lies between two discrete values of the frequency vector. The

value nearest the computed frequency is then used henceforth.

Due to this frequency still being only an approximation (because any variation in contact angle, any

slippage of either rings or an inexact shaft input speed may cause the computed bearing frequency

to deviate from the actual bearing frequency) a search for a peak in the general vicinity of this

frequency is undertaken (+/- 1 Hz in either direction of the computed frequency – see section 3.2.8

for further information). The highest peak within in this 2 Hz boundary (with the computed

frequency as the centre frequency) is then taken to be the bearing fault frequency and the

amplitude of the signal at that frequency is noted.

The fault frequency’s amplitude now compared to the median of the surrounding frequency

components (the median of all the frequency components 5Hz either side of the identified fault

frequency). When the amplitude of the fault frequency (as per the previous paragraph) is between

or above certain boundary values (multiples of the median value – see section 3.2.6) an assessment

is made, with a relevant message communicated to the user.

3.2.6 Statistical parameter (median) search boundaries

If a spectral peak is detected in the search boundaries, it is compared to the median of the

surrounding frequencies, as explained in the previous section. The reasoning being that if a peak

stands out significantly above the

surrounding median of the noise, it is likely

a definite signal originating from the

gearbox.

As mentioned, the median of the

surrounding noise is used instead of the

mean. This is simply because the median

often gives a more accurate representation

of the noise level because a stray peak of a

nearby signal component would raise the

mean to a level unrepresentative of the

noise levels. The median, being merely the

middle value in a sample (with an equal

number of samples being larger and lower than it), often gives a much more representative figure of

the noise level and was not as badly affected by stray peaks.

Figure 32: The bell curve, illustrating the relationship between
mean, median and mode (not applicable) in a Gaussian
distribution (von Hippel, 2005)

50

In addition, the median and mean of Gaussian noise is exactly the same, so in the case of no stray

peaks, the answer would be unaffected (von Hippel, 2005). See Figure 32.

For the purposes of this project, if a fundamental spectral peak of a bearing damage frequency was

found having an amplitude of 5 times the median value of the surrounding noise, a ‘Vibration

Caution’ message is communicated to the user. An amplitude such as this was considered

significantly high enough above the background noise to cause some concern as a bearing fault

might be present. This is due to the fact that a bearing in good condition is accepted to emit random

noise, as found previously. In this case, the user is advised to contact specialist help in the form of

consultants, on site specialists or the OEM as a precautionary measure.

In a more severe case, if a peak with an amplitude of more than 10 times the median was found, a

‘Vibration Warning’ message is communicated to the user. A peak, as distinguished from the

background noise as this, increases the probability that a defect may exist to the point that a

warning is given to the user. In this case, the user should seek professional help from specialists or

the OEM as a matter of urgency.

Of course, when a peak value of less than 5 times the median value is detected, there is assumed to

be a minimal risk of bearing damage. In this case, a simple message of ‘Vibration normal’ is

communicated to the user.

The values of 5× and 10× are considered convenient ballpark figures based on known states of the

measured gearboxes. A larger measurement campaign using the Beta prototype to various other

measurement venues (in several different industrial markets) will yield significantly more data to be

used for calibration purposes to find more exact thresholds. See the section 7.4.5.

As the method used will however likely use spectral analysis, this method was considered sufficient

for the purpose of this project, which is to build a working prototype of a system.

3.2.7 Exclusion criteria

If another frequency coincides with a bearing frequency, it is impossible to make a judgement using

the current technique and a false assessment will result. For that reason, the computed fault

frequencies are checked against other known peaks (GMFs and their harmonics and input shaft

speed and its harmonics) in the frequency spectrum before a diagnosis is made. If another

frequency coincides with a fault frequency, the user of the device would be notified that an

interfering signal is present and notified what the source of the signal is.

Although this currently prevents a diagnosis from being made, further work is intended to remedy

this and several additional methods are being considered. See the section 7.4.6 “Recommendations

– Signal interference compensation”.

3.2.8 Fault frequency search boundaries

As stated, the search routine takes the computed frequency and finds an element in the frequency

vector that is the nearest match for this frequency and from this value as the centre of the search

boundaries, approximately 1 Hz either way is searched for the fault frequencies by looking for the

highest peak in that part of the spectrum.

51

The boundaries will not be exactly ± 1Hz, though. The reason for this is now explained. Reviewing

the coding rationale in the section 3.2.5, it can be seen that the search boundaries are defined by

multiplying the upper and lower limits of the search boundaries (±1Hz, in this case) with a factor that

converts this frequency boundaries into magnitude- and frequency vector element boundaries when

working within the software. This is done to tell the program to search only the elements of the

vector that corresponds to the search boundaries. However, after this multiplication, the answer is

rarely an integer value representing a vector element and is usually a real number and has to be

rounded.

In order to slightly increase the search boundaries, the upper boundary is rounded up and the lower

boundary is rounded down. Therefore, the search boundaries are slightly more than 1Hz.

To find an appropriate boundary width, a study was done to see what the general difference in

frequency was between the original frequency (the centre frequency in the search range) and the

found frequency within the search range. Based on what the difference is, and taking some extreme

values into account (there were practical limits to how large this range could be), the boundary

values were decided upon.

These practical limits were instances like bearing frequencies near each other on the same shaft and

the same bearing with fault frequencies near each other. This occurred in the cases summarised in

Table 6.

Table 6: Close frequency spacing

Gearbox Problem Comments Value

Type 4 – shaft 3 Two bearings on the same shaft
with fault frequencies close to
each other

BPFIs: 38.1 and 40.7
BPFOs: 26.6 and 28.4

Δf = 2.6 Hz
Δf = 1.8 Hz

Type 6 – shaft 3 Bearing fault frequencies near
each other

BPFI: 13.9127
BPFO: 11.8737
2 × BSF: 10.6744

Δf = 2.039
Δf = 1.1993

This implies a maximum search boundary extreme value of roughly 1.2 Hz (identified in bold).

The study of the search boundaries revealed that the average difference between the original value

(centre frequency) and the final selected value was 0.64 Hz. However, with a standard deviation of

0.45 Hz, this value was not selected as the extreme values of the search boundaries as there was too

much variation in the results. Instead, the maximum difference was looked at. This was found to be

1.11 Hz (the extra 0.11Hz outside the search boundary being the result of the rounding, as explained

above).

Therefore, it would logically be possible to increase the search boundaries by an additional 0.1 Hz to

a total value of 1.2 Hz. However, to maintain a certain margin between frequencies and search

boundaries, it was decided to leave the search boundary at ± 1Hz and allowing for an additional

0.1Hz due to the rounding.

52

4. Laboratory testing

4.1 Overview

Both the Alpha and Beta prototypes were laboratory tested before they commenced field work.

However, the nature of their tests differed substantially.

The Alpha prototype underwent a test primarily to verify the interaction between the hardware and

algorithm, as the combination had not been tested in its entirety up to that point. It was therefore

crucial to verify that all the components, especially the MCU, ADC and memory units integrated well

and that the processed data were reliable.

Seeing as the same basic hardware were used in the Beta prototype, verifying this functionality to

the extent of the Alpha prototype was unnecessary and could be done with simple shaker tests. This

was accompanied by amplitude calibration.

4.2 Alpha prototype laboratory testing

4.2.1 Exploratory test

4.2.1.1 Description

Before the alpha prototype was field tested, it was deemed a good idea to do an exploratory test on

the test setup with laboratory equipment. Two test bearing outer races were used (an undamaged

one and a damaged one) and the test was to confirm that the seeded damage was picked up

correctly by the test equipment. In addition, the tests certified that no other mechanical faults

(misalignment, looseness, etc.) or damage would interfere with the test.

The Alpha prototype then applied the algorithm (described in the entirety of section 3.2) to the test

data in order to verify it is working on the test setup.

4.2.1.2 Test setup

The data acquisition equipment used during the test was the Spider data logger, an ICP

accelerometer (with power supply) and speed sensor (for real time viewing only, not for logging).

The Spider was connected to a computer and the measurements saved for post processing whilst

the shaft speed was noted.

The test hardware used consisted of the following (illustrated in Figure 33):

Table 7: List of test setup mechanicals

Label Description Further details

1 AC Electric motor 0.15 kW

2 Motor speed control

3 Shaft coupling Spider type, flexible coupling

4 Gear mesh 1:1 ratio, 72 teeth per gear

5 Support bearings Deep groove
16006

6 Test bearing Taper roller - 320/22X

53

Figure 34 key:

Green: ICP Power supply

Red: Spider

Blue: ICP Accelerometer

Figure 33: Hardware test setup

Figure 34: Figure highlighting the data acquisition equipment

It consisted of an electric motor with speed control. The

power was delivered to the setup via a flexible, spider type,

shaft coupling. The primary shaft goes through three

support bearings and the test bearing. The shaft also has a

gear attached to it that drives a secondary shaft. In

addition, a reflective strip was also attached to the shaft

(visible on the figure, but not numbered).

The secondary shaft is a by-product of the test bench’s previous usage as an unbalance apparatus.

In that application unbalance weights were attached to the both shafts (which spun in opposite

direction, facilitated by the 1:1 single gear set). Due to this, the secondary shaft has no load on it

(apart from the relatively feeble friction torque from its support bearings).

54

4.2.1.3 Test bearings

Two taper roller (320/22X) test bearings were used and were grease lubricated. One of the bearings

were damaged and one remained undamaged (see Figure 35 and Figure 36). In the case of the

damaged bearing, a cut was made to the outer race of the bearing.

Figure 35: Damaged test bearing Figure 36: Undamaged test bearing

Furthermore, the inner race was press fit onto a

bushing assembly which had a 10mm “loose”

interference fit drilled into it (diameter

10.02mm) so that it fit snugly onto the 10mm

shaft. Not visible in Figure 37 is the part of the

bushing onto which the bearing inner race is

press fit onto. The bushing consisted of two

parts, both of which are visible. The first is the

outer part onto which the bearing is press fit,

and the second is the inner part (just visible

sticking out on the right) which locates it

accurately on the shaft.

An axial load was generated on the bearing

under test by a tensioning nut (in conjunction

with a locknut). This mechanism required the

use of a M16 stud and a 10mm hole drilled

axially through it. The hole was drilled on a lathe

and was of a loose fitting interference fit (shaft

diameter is 10mm and hole diameter is 10.02

mm). In addition, a radial hole of 3mm diameter

was drilled into the tensioning bolt in order to

accommodate two M3 grub screws (one from

either side).

Figure 37: Test bearing inner race bushing assembly

Figure 38: Test bearing load mechanism

55

Figure 39: Disassembled view of the load mechanism

In the disassembled view of the load mechanism, one can see the following:

1. Test bearing inner race and cage

2. Load bushing

3. Loading nut

4. Locknut

5. M3 grub screws (within rectangles)

6. M16 stud, axially and radially drilled (M3 and ø10mm, respectively)

The load mechanism worked simply by firstly tightening the grub screws mated to the stud (against

indentations made on the shaft) and then tightening the locking nut as required and then locking it

in place with the locknut.

4.2.1.4 Diagrammatical illustration

Figure 40 below shows a schematic of the test setup along with some relevant parameters pertinent

to the test. The test setup was assembled in the University of Pretoria’s SASOL Laboratory for

Structural Mechanics. In the figure the layout of the test setup becomes clear and one can

understand how the different components work together.

56

Figure 40: Synoptic diagram of test setup

4.2.1.5 Results

The signal processing parameters of note in these results are as follows:

 16-bit ADC resolution

 4.8kHz Sampling frequency

o 2.4kHz Nyquist frequency

o 2kHz Anti-aliasing filter

 8500 samples

 8192 point double sided FFT

o 4096 point single sided FFT

It will be noted that the above parameters give a somewhat course spectral resolution of about

0.58Hz. These parameters were chosen deliberately in order to simulate the results that one would

expect from the developed hardware, which it can be seen gives a spectral resolution of 0.48Hz as

can be seen in Section 2.3.

4.2.1.5.a Comparison: Damaged/Undamaged

Firstly, to evaluate the success of the test setup, a spectral comparison was made between the

damaged and undamaged bearings at various speeds; the table below lists the frequencies shaft and

speeds that was investigated. The frequencies highlighted in red marks those that were positively

identified in the spectra.

The GMFs were never properly distinguished, as there was no load on them and the gears were just

freewheeling. In addition, the motor used produced an unvarying 2×line frequency of very high

magnitude at a constant 100Hz with a modulation frequency of the shaft speed.

57

It is also worth noting that as expected, the amplitude of the BPFO component in the spectra

increased from about 0.0063g when running at 500 RPM to about 0.023g in the 1000RPM plot (this

increasing trend is amplitude is visible throughout the speed range considered).

Table 8: Frequencies (Hz) at the corresponding shaft speed

Input (RPM) 500 600 700 900 1000

Shaft 8.21 9.96 11.72 15.24 16.41

GMF 590.76 717.34 843.84 1083.60 1200.24

Taper – BPFI 80.50 96.60 112.70 145.38 161.00

Taper – BPFO 60.95 73.26 84.98 109.60 121.3

Taper – 2×BSF 59.00 70.80 82.60 106.55 118.00

D. Groove – BPFI 57.50 69.0 80.50 103.85 115.00

D. Groove –
BPFO

42.55 51.06 59.57 76.85 85.10

D. Groove –
2×BSF

54.50 65.40 76.30 98.43 109.00

2×line frequency 100 100 100 100 100

Two spectra at opposite ends of the speed scale (500RPM and 1000RPM) will be shown below in

their damaged and undamaged states.

Figure 41: Frequency spectrum at 500RPM input shaft

Several peaks are identified in the frequency spectrum of the data measured at 500 RPM. Peaks

identified are the BPFO of the taper roller bearing which is present in the damaged state, but not in

the undamaged state. The other strong peaks are sidebands of 2×motor line frequency at a 100Hz

(sidebands spaced at motor speed – 8.2Hz in this case). There is also a slightly weaker peak (in the

undamaged case) at 50Hz, it was ascertained that this was the accelerometer power supply (at that

stage the battery ran out of power and it was connected to the wall socket, at which point that peak

appeared). One can also see in the damaged spectrum a peak at about 33Hz corresponding to the

4th harmonic of the input shaft.

58

Figure 42: Frequency spectrum at 500RPM input shaft

As with the 500 RPM data, the signal components visible in these spectra are the BPFO of the taper

roller bearing as well as sidebands of the 2×line frequency of the electric motor (100Hz) with the

sidebands spaced at motor input frequency (16.67Hz). The BPFO is again only visible in the

spectrum derived from the damaged bearing as expected.

Further tests, not explicitly shown here, show a similar trend of taper roller bearing BPFO damage in

the spectra derived from the damaged bearing, but not the undamaged bearing. In the 800 RPM

spectra, it is the case that the BPFO damage is concealed by the powerful 100Hz 2× line frequency

and therefore is of no use and not included. The frequency plot illustrating the 2×line frequency is

given below:

Figure 43: Spectrum illustrating 2x line frequency of motor with modulation at shaft frequency

59

4.2.1.5.b Algorithm testing

The algorithm, discussed in Section 3, was tested on the test gearbox data for calibration purposes

as well as getting an idea of the frequency spectrum characteristics and tendencies. Calibration

changes that were made included the following:

 Input frequency searching parameters

 Gear ratios

 Bearing frequencies

A limitation of the test setup was found to be the distinction with which the test bearing defects

were detected in the frequency spectrum – that is to say, peaks at the fault frequencies. Compared

to the gearbox tests at Secunda, where the peaks in the frequency spectrum of damaged bearings

registered above 10× of the median of the noise around the peak, the damaged bearing of the test

setup registered usually around 4 times the median. This is likely due to the damage being seeded

partially outside the loading zone for a tapered roller bearing in pure axial load (as can be seen in

Figure 36) and therefore is not an accurate representation of the typical values one would see in

practice.

Therefore, judging the bearing based on the previous parameters (spectral peak value of 10×median

and 5×median of the surrounding noise) does not be an accurate representation of the test as the

bearing is clearly damaged but registers mostly in the 4×median range. So, based on the tests the

following parameters could be ascertained regarding the undamaged and damaged cases.

Table 9: Peak/Median ratios at different speeds for the undamaged and damaged bearing

Speed Undamaged Damaged

RPM Ratio: Peak/median

500 0.92 8.45

600 1.31 3.22

700 1.30 3.03

900 1.61 4.99

1000 1.72 5.03

Comparing ratios between peak and median for the damaged and undamaged cases reveals that

there is not a large enough difference to be able to distinguish between the cases of “Normal

vibration”, “Vibration caution” and “Vibration warning”, as discussed in section 3.2.6. Instead, one

can only really distinguish between the cases of “Normal vibration” and “Vibration warning”. The

boundary for “Vibration warning” case will be set at twice the average of the undamaged ratios

above. The average being 1.37, therefore the boundary condition will be set as approximately twice

that, namely 2.7 (actual twice value 2.74).

As with the comparison between the damaged and undamaged bearing in the spectra above, the

cases of 500RPM and 1000RPM serve as examples of the working of the algorithm as well. Note that

the diagnosis boundaries are illustrated as well and they are plotted across the range for which they

are computed (±5Hz). The identified frequency is plotted with a red dot. It is worth comparing the

spectra illustrating working of the algorithm below with the spectra illustrating the cases of the

damaged and undamaged bearings in the previous section.

60

Figure 44: 500RPM undamaged bearing

The first case above is for the undamaged bearing. Looking at the spectrum above one can easily

identify sidebands of the 2× motor line frequency at around 67Hz and 75Hz (identified in Figure 41)

as well as the accelerometer power supply at 50Hz. However, comparing the figure above to Figure

41, one can see that the prominent peak at BPFO frequency is absent and also note the median and

2.7×median boundaries plotted as well. As a matter of fact, the peak identified (marked with a red

dot) is slightly below the median value, having a ratio of 0.92. Therefore, as there is no peak in the

expected location, the finding is “Vibration Normal”.

Figure 45: 500RPM damaged bearing

61

Observing the spectrum of the damaged bearing however, the BPFO peak is clearly identified at

about 61Hz. Comparing the spectrum above with Figure 41 and Figure 44, one can clearly see the

peak of the BPFO and how it stands out above the median and 2.7×median boundaries. In fact, the

ratio of the peak to the median is a substantial 8.45, which is the largest seen in the test and not

really typical, as with the current setup, peaks are somewhat lower, as will be demonstrated with

the 1000 RPM spectrum. Also visible is the 4th harmonic of the input speed at around 33Hz and

again the now familiar sidebands at shaft frequency around the 100Hz 2× line frequency.

The case for 1000 RPM will be illustrated below:

Figure 46: 1000RPM undamaged bearing

At first sight, the undamaged case of 1000RPM is a somewhat misleading, as it appears that a fairly

broad and low amplitude peak was partially identified. Yet comparing the spectrum above with

Figure 47, one can see that the actual BPFO peak lies lower in the frequency spectrum than the

shallow low peak seen in the figure above and that the activity between 116Hz and 130Hz is merely

noise. Incidentally, those peaks are the familiar shaft frequency spaced sidebands surrounding the

100Hz 2× line frequency from the motor. As the identified peak is only 1.72 times the value of the

median and thus the finding is “Normal vibrations”. Below the damaged case is discussed.

Figure 47: 1000RPM damaged bearing

62

Compared to the undamaged case (Figure 46) and the overlay of the damaged and undamaged cases

(Figure 42), one can clearly see the peak of the damaged bearing at the BPFO frequency of about

121Hz in addition to the sidebands around 100Hz. The amplitude of the peak is sufficient to trigger a

“Vibration warning” finding as the amplitude of the peak is about 5 times that of the median and

thus above the 2.7× boundary.

4.2.1.5.c Exploratory test conclusion

As can be seen in the results of the test in the SASOL lab, the test bench does not produce a

significant peak even with the damaged bearing. As stated, this is likely due to the fact that the

seeded damage was not properly in the loading zone. Nevertheless, it is still possible to make out

the cases of the damaged and undamaged bearing.

Because the amplitude peaks in the spectrum is not as clearly defined as it is with the tests done at

the SASOL plant in Secunda, it was decided not to include an intermediate warning stage (previously

defined as “Vibration caution”). Instead only “Vibration warning” and “Normal vibration” states

were evaluated for the purpose of this test bench as explained earlier. These parameters are now

substituted into the developed hardware.

4.2.2 Developed hardware testing

4.2.2.1 Setup

In the figure below, one can see the test setup. It comprised of the accelerometer, accelerometer

power supply, developed hardware, ICD programmer and a laptop.

Due to the LCD not being operational, all the parameters had to be read directly from the registers

on the MCU, which required the Laptop.

Figure 48: Developed hardware test setup

63

A diagrammatical illustration of the test setup is given below. Notice the difference to the tests

setup of the spider tests. In this case, the laptop is not used to perform any form of signal analysis,

rather it is used purely to read what the MCU is doing (as the screen of the Alpha prototype was not

operational). All the signal processing was done by the MCU. In addition, it uses battery power,

rather than grid power. The accelerometer still used an external power supply however, which is

something that was addressed in the Beta prototype of the ADM.

Figure 49: Synoptic diagram of the test setup for the developed hardware

4.2.2.2 Tests results

Next, the developed hardware was tested back to back with the Spider in conjunction with computer

software to see if the results correlated. Ideally one would have liked to download the data from

the hardware memory and compare the frequency plots, however this was not possible as the Alpha

prototype hardware does not have this functionality.

Figure 48 key:

Green: ICP Power supply

Red: Laptop

Yellow: Alpha prototype

Brown: ICD Debugger and programmer

Blue: Accelerometer

64

Therefore, the way this was done, was to compare in the damaged and undamaged cases at all the

applicable speed settings and to see whether the ratios of peak/median correlated, as this was

ultimately the deciding factor in the algorithm and these values would be a good indicator if the

Alpha prototype was working correctly. Absolute values were not compared because the data from

the ADC on the Alpha prototype was not calibrated as this would have taken up unnecessary

processing time and absolute values are not important in the fault finding algorithm, only relative

values.

In the tables below the results are summarised. Firstly the undamaged cases for both the Spider and

Alpha prototype, followed by a similar table for the damaged cases.

Table 10: Ratio results comparison over different speeds (undamaged)

Speed Ratio:
Spider

Analysis Ratio:
Hardware

Analysis Difference

500 0.92 Vibration normal 1.26 Vibration normal 0.34

600 1.31 Vibration normal 1.32 Vibration normal 0.01

700 1.30 Vibration normal 1.13 Vibration normal 0.17

900 1.61 Vibration normal 1.71 Vibration normal 0.10

1000 1.72 Vibration normal 2.04 Vibration normal 0.32

In Table 10 above, one can see the ratios of the peaks to the median values. Although the absolute

values will be vastly different, it does not matter as only relative values are used. These can be seen

compare very favourably with the average difference being 0.19, the smallest difference being 0.01

and the largest difference between the ratios being 0.34. In addition, all these ratios of both the

Spider and the hardware are smaller than the 2.7×median boundary and thus all the cases are

analysed as “Vibration normal”.

Table 11: Ratio results comparison over different speeds (damaged)

Speed Ratio: Spider Analysis Ratio:
Hardware

Analysis Difference

500 8.45 Vibration warning 8.06 Vibration warning 0.39

600 3.22 Vibration warning 2.86 Vibration warning 0.36

700 3.03 Vibration warning 2.84 Vibration warning 0.19

900 4.99 Vibration warning 4.28 Vibration warning 0.71

1000 5.03 Vibration warning 4.55 Vibration warning 0.48

Table 11 shows the results for the damaged bearing for both the Spider and the hardware. Once

again, the results correlate well. The variance in ratios are somewhat larger than with the

undamaged bearing, still somewhat less than the actual ratios (typically about 10%, and at most 16%

of the actual ratios), the largest being for the case of 900RPM for which the difference between the

Spider data and the developed hardware is 0.71. The larger variance may be attributed to more

noise present when the damaged bearing was tested, thereby directly influencing the median value

and the corresponding 2.7× damage boundary. Nevertheless, all the values are above the 2.7 ratio

and were all classified as “Vibration warning” both in the spider tests and in the developed

hardware.

Two cases with the developed hardware, 600 and 700RPM came fairly close to the boundary value

as their ratios were about 2.8. Similar behaviour was seen in the SASOL tests in Secunda where

65

some values were near the boundary of a damage case. This is certainly a limitation of a damage

diagnosis system where so few steps in the diagnosis are involved, in this case only 2 (“Vibration

normal” and “Vibration warning”) and with the SASOL setup 3 (“Vibration normal”, “Vibration

caution” and “Vibration warning”).

4.2.3 Conclusion

The premise for evaluating the working of the Alpha prototype in comparison with the Spider tests

was simply to gain experience using an embedded system on an actual test setup and eliminate any

firmware instabilities. Seeing as the software routines on the Beta prototype are very similar, the

tests were not repeated for the Beta prototype. The only anomaly that could therefore occur was if

the hardware was faulty, which would be detected during the normal ‘testing and debugging’ phase

of any hardware development.

Regarding the firmware, it was also useful to ascertain that the signal processing routines performed

as expected. An analysis was thus also attempted on a test bearing after confirming that the signal

recorded by the Alpha prototype and the spider hardware are consistent (giving credibility to the

results of the processed signal and its analysis).

By that token, the hardware can be seen to work correctly and correctly detected the bearing as

being damaged. The test setup however proved not be ideal as the damage detection boundaries

had to be modified somewhat. This though is a function of the test setup and not the developed

hardware, which functioned well nevertheless.

4.3 ADM Beta prototype calibration

4.3.1 Summary

Although the current algorithm only uses relative measures in the frequency domain, it is

anticipated that time domain techniques might be used at some point. It may also be useful to

display (on the LCD) or log time domain data and parameters, such RMS, CF etc. In order to avoid

confusion when a third party observes the recorded data, accurate calibration is a necessity.

It is considered prudent to perform a manual calibration by means of a test (as opposed to an

analytical derivation) for the current device as well as future production devices for the following

reasons:

 Variances in sensitivities of sensors

 Variances in electronic components

 Variances in cable lengths of sensors

 Variances in internal circuitry of the devices

For these reasons, it was decided to perform a manual calibration of the device. This was done by

measuring vibrations of known amplitude both with the Beta prototype as well as a reference

instrument and comparing the results.

The measured signal was created by shaking the sensor with a hydraulic actuator. The following

displacement signal was constructed and used as an input to the actuator:

66

Table 12: Calibration signal

Parameter Value

Signal form Sinusoidal

Amplitude 10 mm

Frequency 9.54 Hz

Duration 15 s

ADC sampling rate 1 kHz

The parameter considered first for this signal was the frequency. It was primarily chosen so as to

exactly fall on a frequency bin (in this case, the 100th). It also needed to fall within the overlap of the

usable bandwidth of the accelerometer (between 2 Hz and 10 kHz) as well as what the actuator was

capable of. The amplitude that resulted was a function of dynamic response envelope of the

actuator. The resulting acceleration was verified beforehand to ensure no clipping of the data in

case of excessive acceleration.

4.3.2 Test setup

The test setup used two controller cards: the National Instruments (NI) PCI-6733 DAC card and the

PCI-4474 ADC card. As the name implies, these devices consist of PCI cards inserted into a PC from

which it is controlled as well (via Matlab, in this case). Each card has two channels.

The signal, constructed using Matlab, was input to one of the DAC channels of the NI controller that

controls the actuator.

The resulting motion of the actuator was measured in three ways: the internal LVDT of the actuator

measured the displacement of the piston (using an ADC channel of the National Instruments ADC

card), a reference accelerometer measured the acceleration at the tip of the rod (using the

remaining ADC channel of the NI ADC controller), and the Beta prototype measured the acceleration

at the tip of the rod as well.

Figure 50: Beta prototype calibration setup

67

4.3.3 Procedure

The procedure involved sending the constructed displacement signal through the NI DAC card to the

actuator. The ADC card immediately started recording the LVDT and reference accelerometer

signals. The Beta prototype started sampling once the actuator started (initiated by hand).

The sinusoidal signal was played for 15 seconds, during which the measurements, described above,

were taken. The signal from the Beta prototype was downloaded unto a PC from the SD card and

compared with the measured signals from the NI ADC card.

The acceleration signal from the Beta prototype could be directly compared to the reference

acceleration signal. As the LVDT measures the displacement of the piston, the double derivative of

the signal could be compared to the acceleration signals of the reference accelerometer and the

Beta prototype.

4.3.4 Calibration Philosophy

Several properties were considered for use as a calibration factor. The maximum value was

considered, it is however based on a single data point in each set being the largest in their respective

sets. This was not considered the best as the single data point may not be representative of an

entire signal.

The best parameter was thought to be RMS. This parameter takes into account the entirety of the

recorded signal and is less susceptible to instantaneous values.

The RMS of the reference accelerometer was compared to the RMS of the Beta prototype. The

double differentiated LVDT signal was used for verification purposes, as it is not a direct

measurement of the accelerometer mounting plate, but a displacement measurement of the

actuator piston.

The following calibration value was then used:

 [Eq. 28]

This is to say, the calibration value consisted of a single multiplier generated by dividing the RMS

value from the reference accelerometer signal with the RMS value from the ADM beta prototype

signal. To calibrate the ADM Beta prototype now simply involved multiplying the time domain

values measured by its ADC with the calibration factor.

4.3.5 Results

The results are shown below in Figure 51. The blue plot is the double differentiated LVDT, the green

plot is the reference accelerometer and the red line the ADM Beta prototype after calibration.

It is noted that the double differentiated LVDT acceleration signal looks significantly noisier; the

sources of this may include the following:

68

 Dithering noise on the hydraulic valves of the actuator

 Numerical errors originating from the fact that the double derivation of the LVDT to obtain

the acceleration signal

 The LVDT only measures the displacement of the piston, whereas the accelerometers

(reference and Beta prototype) measures acceleration at the rod end.

Figure 51: Comparison between LVDT (after double differentiation), the reference accelerometer and the Beta
prototype (after calibration)

A further check was done to ensure that the values are in the correct ballpark. This merely involved

hand calculating the amplitude of the double differentiation of a sine wave of the same magnitude

and frequency as the input signal and checking that the result is similar to the magnitude of the

reference accelerometer. This is performed below.

With:
S 0.01 m
f 9.54 Hz
c 2π×f

 () () [Eq. 29]

 ()

 () () [Eq. 30]

 ()

 () () [Eq. 31]

The amplitude is therefore:

69

 | | [Eq. 32]

 | () |

Converting this value of m/s2 to a G value yields the following:

 [Eq. 33]

As can be seen in Figure 51, the acceleration signals correspond very well with this value, thereby

adding confidence that the calibration was done correctly.

The calibration ratio that resulted was:

 [Eq. 34]

This value would then include:

 Analogue amplification of the signal in the signal conditioning circuitry

 The quantization procedure (assigning a voltage on the pin of the ADC to a bin number)

 Volt to G conversion (basically the specific sensitivity of the accelerometer)

 Various electronic variances discussed in the beginning of this section

70

5. Field testing

5.1 Measurement chronology and rationale

The field measurements described in this section, were all performed at the Sasol plant in Secunda.

The plant utilises various types of gearboxes and being driven by electrical motors of various power

outputs. It therefore provided an opportunity to gather a significant amount of data from various

types of gearboxes.

A shortcoming of the test site was however the fact that all the gearboxes operated in a single

application – conveyor belt drives. For this reason, it is considered vital that the system under

development be exposed to different sites and different applications. For this project however, the

single site was deemed sufficient.

The first set of field measurements, described in Section 5.2 below, was conducted before the

hardware specification began. A large number of gearboxes were measured to determine the type

and nature of the gearbox faults – specifically the bearing faults. From the results of these

measurements, the algorithm set and hardware specification of the Alpha prototype was generated.

The second field measurement campaign was executed after the Alpha prototype was manufactured

and tested in the laboratory. It was a verification exercise to observe the behaviour of both the

hardware and software in the field. The lessons gleaned from the laboratory testing and especially

the field testing of the Alpha prototype were incorporated into the specification and design of the

definitive hardware of this project – the Beta prototype.

Finally, the Beta prototype was field tested. It contained a considerable amount of revisions

compared to the Alpha prototype and had to be thoroughly tested. The tests were somewhat more

extensive, due to the fact that laboratory tests were not as exhaustive as performed on the Alpha

prototype. As with the Alpha prototype, the tests were performed to test the hardware and

software of the system. Qualitative lessons regarding the practical use of such a system was also

learned and discussed in the conclusion and further work section.

5.2 Initial data gathering campaign

5.2.1 Conveyor belt drive layout

As mentioned previously in this document, the field tests took place at the SASOL plant in Secunda.

The measurements were made on several gearboxes in the Coal Supply section of the plant. These

gearboxes formed an integral part of the drive line of the conveyor belts transporting coal to the

production section of the plant.

Typically such a drive system would consist of the following:

 Electric motor

 Fluid coupling

 Gearbox

 Conveyor drive roller

71

Figure 52: Conveyor belt drive arrangement

Figure 53: Conveyor belt arrangement within plant

Several (typically four) such arrangements would be present in a single drive house and several such

drive houses would service a conveyor belt line, often spanning several kilometres.

5.2.2 Test setup instrumentation

The test setup used to develop the

software package will now be

described.

This setup chiefly comprised of a

commercial hardware data

acquisition package, the capabilities

of which far exceeded the final

system’s capabilities. This measure

was deemed necessary to explore the

boundaries of what was necessary for

the final system

The test setup is depicted in Figure 54. The main part of the data acquisition system consisted of a

Somat eDAQ lite. To this were connected four ICP 100mV/g accelerometers. The eDAQ was then

connected to a laptop which contained the necessary control software, required for the data

gathering operation of the eDAQ. As the appropriate power supply was not available, both the

eDAQ and the Laptop were powered by a portable power supply.

The figures below show the actual setup of the equipment on a typical gearbox. As can be seen,

measurements were taken in both the axial and radial directions. The accelerometers were attached

to the gearbox via an aluminium plate (this was done to improve high frequency vibration

transmission, as this often suffers with the industry standard magnetic base). This plate was glued

to the gearbox casing and the accelerometers were, in turn, screwed onto the plate. The

accelerometers were placed on the casing so as to make the transmission path most direct to the

Figure 54: Test setup diagram

72

bearings. This involved placing it directly on the housing when measuring in the radial direction and

on a blank flange edge in the axial direction (see the figures below).

Figure 55: eDAQ unit with which data was recorded Figure 56: Laptop on which data was recorded

Although it would have been desirable to get rotation speed measurements as well, this was not
possible due to extremely restricted access to both the input or output shafts of the gearboxes (see
Figure 59). However, it was found that the input speed of the gearbox was clearly visible on the
vibration spectrum as long as steady state operation was maintained.

Figure 59: A typical gearbox from our industrial partner, showing the output- and input shafts' protective shrouds

Figure 57: Accelerometers on gearbox Figure 58: Detail showing accelerometer
mounting

73

5.2.3 Signal flow

In the signal flow diagram below, the signal of a single accelerometer is displayed. As all the

accelerometers’ signals follow same paths, it is unnecessary to show all.

Figure 60: Test setup signal flow

The signal enters an accelerometer (100mV/g) where it is amplified and subjected to an anti-aliasing

filter. From there the data gets converted to digital format by the eDAQ data acquisition unit and is

temporarily stored until it is downloaded onto a computer where it is post-processed.

5.2.4 Test procedure

Tests were performed on the following gearboxes:

Table 13: List of gearboxes which was tested

Gearbox Stages Ratio

Type 1 2 14:1

Type 2 3 25:1

Type 3 2 16:1

Type 4 3 22.4:1

Type 5 2 20:1

Type 6 2 20:1

Measurements were taken on each gearbox listed in the axial and radial directions as close as

possible to the shaft and being mindful of the best transmission path. This often resulted in the

accelerometers being placed on the bolts securing the blank flanges at the shaft ends. Consultation

with the condition monitoring department of coal supply confirmed this as being suitable positions

as they often use them for their own measurements as well.

The measuring procedure started by cleaning the surfaces on which the accelerometers would be

placed by industrial alcohol to remove any coal dust and oil as well as cleaning the intermediary

mounting blocks.

These small aluminium plates were used as a mounting surface between the accelerometers and the

gearbox surface (the accelerometer was screwed to one side of the plate while the other side was

glued to the gearbox surface) and were glued to the surface of the gearbox with superglue. Before

an aluminium plate was glued to a new gearbox surface, the residue of the previous use was cleaned

off thoroughly.

After all the aluminium plates were secured to the gearbox and the accelerometers attached to

them, typically 2 measurements, one axial and one radial, were made on two shafts at a time until

74

the entire gearbox was measured. Three complete measurement sets were made per gearbox,

ensuring that at least 10 minutes had passed between each measurement to allow sufficient time

for any change in operating conditions (speed variations, loads, shocks, etc.) to take effect. In

addition, only gearboxes that served loaded and running conveyor belts were measured.

The A/D values that were used were:

 15s sample length

 16-bit resolution

 15kHz sampling frequency (limited by accelerometer resonance)

 Anti-aliasing filter at 7kHz cut-off frequency

5.3 ADM Alpha prototype field testing

5.3.1 Test description

After the laboratory tests (explained at length in Section 4.2), the Alpha prototype was tested at the

SASOL plant in Secunda to see how the system would perform in a real plant. Several key

observations were made regarding its performance. In addition, the commercial eDAQ was taken

along as well for comparative tests.

5.3.2 Test setup

5.3.2.1 eDAQ system

As the initial data gathering test used the eDAQ as well, the test setup with regard to the eDAQ was

exactly the same as depicted in Figure 54. Once again, four ICP 100mV/g accelerometers were used,

while the eDAQ received power from a portable power pack. The eDAQ was connected to, and

controlled by, a laptop. After each test, the test data was downloaded unto the laptop for

investigation. As before it was not possible to measure the gearbox speed at either the input or

output shaft. The analogue to digital conversion parameters of interest, with regard to the eDAQ

system, was as follows:

Table 14: ADC parameters used by the eDAQ during the measurements at SASOL

Parameter Value

Resolution 16-bit

Sampling frequency 10kHz

Sampling time 8s

Anti-aliasing filter cutoff frequency 3kHz

Full scale ±2G

The photos below illustrate the test setup.

75

In the figure to the left the electric motor and fluid coupling (underneath a protective shroud –

indicated by the blue box) is shown. This assembly stands on a large metal ladder-frame structure.

5.3.2.2 ADM Alpha Prototype

The testing of the Alpha prototype involved measuring the vibrations of the gearboxes one position

at a time (the hardware only has one channel). The exact same positions on the gearbox were

measured with the Beta prototype as with the eDAQ. This was done using the same pickup points

(comprising aluminium plates glued to the gearbox into which the accelerometers were screwed).

The prototype was controlled by the laptop, but all the data acquisitioning and processing was done

by the prototype and the result passed back to the laptop afterwards. The analogue to digital

conversion parameters were as follows:

Figure 61: Test setup

Figure 62: Accelerometer placement

Figure 63: Typical fluid coupling in a gearbox drive system

Figure 61 key:

Green: Laptop

Red: eDAQ

Yellow: Power pack

Blue: Accelerometers

Figure 63 key:

Blue: Fluid coupling

76

Figure 64 key:

Green: Laptop

Red: Beta prototype

Yellow: Power pack

Blue: ICP Power supply

Table 15: ADC parameters of the Alpha prototype

Parameter Value

Resolution 16-bit

Sampling frequency 15.625kHz

Sampling time Approximately 2s

Anti-aliasing filter cut-off frequency 2.8kHz

Full scale ±10Gs (±1V)

In, the test setup of the developed prototype is illustrated.

As with the eDAQ, the developed prototype was

permanently connected to the laptop, as the required

hardware to make it fully independent was not operational.

However, only the results were relayed back to the laptop

and all the data acquisitioning and computation was done on

the hardware. Figure 65 condenses this information into the

signal flow of the Alpha prototype.

Figure 64: Test setup of Alpha prototype during test at SASOL

77

Figure 65: Signal flow of the Alpha prototype

5.4 ADM Beta prototype field testing

5.4.1 Test description

After the calibration laboratory tests, the Beta prototype and a reference instrument was taken to

the SASOL plant in Secunda, as was done in the initial measurements and the Alpha prototype. The

reference instrument was once again the proven eDAQ system.

During the test, the eDAQ as well as the Beta prototype was used to measure the vibrations of four

different gearboxes. Signal quality (a problematic facet of the Alpha prototype) as well as diagnostic

accuracy were tested and is discussed in Section 6.3.

5.4.2 Test setup

5.4.2.1 eDAQ system

As with the previous tests, the eDAQ system was used as a basis for comparison, as it is an industrial

and well proven system. The test setup was therefore very similar to previous measurements of the

project. Figure 66 and Figure 67on the next page details the test setup.

The procedure for the test was similar to previous tests as well. After the conditions were deemed

to be steady state, the measurement run was initiated for 5 minutes (300 seconds). After the

measurements, the data was downloaded and saved to the laptop. The following table lists the A/D

parameters:

78

Figure 68 key:

Green: Accelerometer

Red: Beta prototype

Figure 67: eDAQ test setup (Cont.)

Table 16: ADC parameters as used by the eDAQ

5.4.2.2 Prototype

After the benchmark test was done on gearbox using the eDAQ

system, the same measurement points (using the same exact

same sensor per measurement point as well) were tested using

the Beta prototype. It was attempted to get as close as possible

to the same state of the drive line, i.e. steady state running with

as close as possible to the same amount of load on the conveyor

belts. The photographs below illustrate the test setup.

Parameter Value

Resolution 16-bit

Sampling frequency 20 kHz

Sampling time 300s

Anti-aliasing filter cut-off frequency 7.9 kHz

Full scale ±10G

Figure 68: Beta prototype hardware setup

Figure 66 key:

Green: Laptop

Red: eDAQ

Yellow: Power pack

Orange: Accelerometers

Figure 66: eDAQ test setup

79

The ADC values of the Beta prototype were hard programmed into the firmware to be as follows:

Table 17: ADC parameters as used by the eDAQ

Parameter Value

Resolution 12-bit

Sampling frequency 6.25 kHz

Sampling time 10.5 s

Anti-aliasing filter cutoff frequency 2.1 kHz

Full scale ±16 G

Figure 69: Diagrammatical illustration of the Beta prototype test setup

The signal flow of the Beta prototype is illustrated in the figure above. As can be seen when

comparing the signal flow diagrams of the eDAQ test setup (Figure 54) and the Alpha prototype test

setup (Figure 65) the signal flow of the Beta prototype (Figure 69 above) is progressively simplified.

This is due to the system becoming more self-contained as the project continued. Due to the

deliverable of the project being a hand held and highly portable device, this aspect was absolutely

necessary. Indeed, the Laptop in the diagram above does not need to be present when the device is

in the field and its presence is only required when the data is downloaded. Therefore, when in the

field, only the device is required is the Beta prototype along with the attached accelerometer.

80

6. Field testing results and interpretation

6.1 Chronological discussion

This section discusses the data gathered during the field measurements of this project, as described

in section 5. The data processing was performed, where applicable, according to the algorithm as

described in section 3.

Each set of data had an effect on the hardware used to gather the next set. In practice, this meant

that the first data gathering campaign had an effect on the specification of the Alpha prototype and

the results from the Alpha prototype had an effect on the specification of the Beta prototype.

The experimental development model (XDM), as described in section 2.2, was never meant to be

field tested and was a bridging hardware between the initial data gathering campaign and the Alpha

prototype.

6.2 Initial data gathering campaign

During the test, six different types of gearboxes were tested as per the technique described in

Section 5.2. The data gathered was processed and the results analysed. The analyses performed

involved a spectral analysis approach to bearing damage and formed the basis on which the eventual

firmware was based. Important factors were:

1. Evaluation of bearing damage in the form of spectral peaks

2. Detection of input speed and harmonics

3. Detection of GMFs and harmonics

4. Determining if there is any interfering factors (coincident frequencies, etc.).

Below are a few noteworthy examples of the numerous samples are discussed and the relevant

conclusions drawn.

6.2.1 Vibration analysis definition

Before the results are presented, it is necessary to define the analysis terminology in this text. Three

stages of bearing vibrations were selected for this project. These stages are defined as follows:

Table 17: Definition of the stages of bearing damage

Analysis outcome Definition

Vibration normal
The vibration emitted by the bearings on the shaft are judged to be of a
low enough amplitude not be of concern

Vibration caution

The vibration emitted by the bearings on the shaft are judged to be of
large enough amplitude to be cautious. Close attention should be paid to
subsequent measurements and professional help is prudent

Vibration warning
The vibration emitted by the bearings on the shaft are judged to be of
large enough amplitude to be concerned and the data should be
investigated immediately. Professional help is strongly advised.

81

6.2.2 Time domain analysis

Some of the historical time domain methods of detecting bearing damage were tested during the

development of the algorithms, namely Crest factor and Kurtosis (Patil, et al., 2010). Judged

according to frequency domain techniques (which are deemed to be more accurate) and the

historical feedback from SASOL, they were evaluated.

Several signal samples were taken from bearings which were qualitatively judged to be undamaged,

moderately damaged and severely damaged and their kurtosis and crest factor values compared.

These measurements were made on 6 different types of gearboxes. In both measurements

directions (axial and radial) per measurement point were used to gather the data (the most

dominant case is reported here). The following is a table of the gearboxes measured as well as the

time domain results.

Table 18: Time domain analysis results

 Location* Run Direction Crest Factor Kurtosis

No Damage

Type 4 2nd shaft 1 Vertical 4.138 2.642

 Horizontal 4.325 2.979

 2 Vertical 3.710 2.719

 Horizontal 4.156 2.725

Type 2 3rd shaft 1 Vertical 4.329 2.828

 Horizontal 5.038 2.959

 2 Vertical 4.236 2.821

 Horizontal 4.037 2.879

Moderate Damage

Type 5 3rd shaft 1 Vertical 4.137 3.145

 Horizontal 4.822 2.894

 2 Vertical 4.885 3.084

 Horizontal 4.076 2.752

Type 5 2nd shaft 1 Vertical 4.723 3.051

 Horizontal 4.971 2.879

 2 Vertical 5.879 3.207

 Horizontal 4.048 2.730

Severe Damage

Type 6 1st shaft 1 Vertical 4.625 3.003

 Horizontal 5.047 3.031

 2 Vertical 4.635 3.059

 Horizontal 4.762 3.039

Type 3 2nd shaft 1 Vertical 4.428 2.922

 Horizontal 4.760 2.976

 2 Vertical 4.416 2.925

 Horizontal 4.868 3.009

 Maximum 4.544 2.927

 Mean 3.710 2.642

 Minimum 5.879 3.207
*Referenced from the input shaft

82

Signals with a crest factor of more than 3.5 and a kurtosis of more than 4.0 would tend to allude to

bearing damage (Norton & Karczub, 2003).

Examining the signals above one can see that the minimum crest factor is in fact about 4.5 which

would indicate bearing damage as it is larger than the accepted 3.5. However, this is obviously false

as the first eight of the bearing samples are of undamaged bearings. Therefore crest factor can be

ruled out as an indicator of bearing damage in this application

In addition, the maximum kurtosis value in the sample range is 3.2 which would indicate no damage

in any of the bearings as it is smaller than the minimum kurtosis of 4.0 for damaged bearings. This

again is false as the next eight samples are of data with moderately damaged bearings and the final

eight samples are of data with severely damaged bearings. This would also indicate that kurtosis is

not a suitable indicator of bearing damage in this application as well.

The unreliability of the crest factor value can be explained simply by the enormous array of signals

composing each measurement. Present in the signals are components from:

1. The motor

2. The fluid coupling

3. Multiple shaft frequencies

4. Multiple GMFs

5. Potential bearing faults

6. Any external noise emanating from the

a. Conveyor belts

b. Vibrating structures on which the motor and gearbox are mounted

c. Vibrations from the coal chutes

7. Harmonics of all the above

All these signals combined creates a noisy environment in which signals with crest factors as high as

those observed is created.

The kurtosis value can be explained by its very nature. Kurtosis, being the fourth statistical moment,

provides information about the “peakedness” of the sample (Samual & Pines, 2005). However, as

the peaks in the signal sample becomes spread out and distributed, the kurtosis value will become

lower. The many spectral components present in the signal will likely create a diversified series of

peaks within the time domain leading to the lowered kurtosis value.

To summarise, the two most prominent time domain techniques commonly employed in the

industry is ineffective at detecting bearing damage within the noisy environment created by the

gearbox and its surroundings. These techniques will likely be more effective for isolated bearings in

plumber blocks (for example) in which the frequency content is less cluttered with external signals

or at least where the hardware allows some scope for filtering. This route is not possible in this

project, because in embedded hardware using digital filtering for this purpose would be impractical

as there would be too many frequencies to account for.

83

6.2.3 Frequency domain analysis

6.2.3.1 Initial remarks

Frequency domain analysis was always considered as the most promising analysis technique and it

was developed as described in Section 3 “Algorithm Development”. The algorithm was initially

programmed in Matlab and then applied to the recorded data.

The algorithm was applied to a measurement of every shaft of every gearbox. These gearboxes had

been diagnosed previously with the help of Johan Pretorius from SASOL using their Condition Based

Maintenance (CBM) techniques. As noted in the before, three stages of damage were defined,

samples of which are given below. These spectra were derived from data recorded using the eDAQ

data logger.

In this section, the gearboxes are described as having no damage, moderate damage and severe

damage. This assessment was made by the condition monitoring department at SASOL. Therefore,

during the development of the algorithm, the results of the tests were known and the algorithm

adapted to best fit those results.

This is contrary to the rest of this chapter, where definitive diagnoses are not explicitly provided, but

a course of action is recommended. The course of action is naturally based on the results of the

algorithm developed in conjunction with known results. This course of action was verified according

to known states of the gearboxes provided by SASOL.

6.2.3.2 No damage

Figure 70: FFT of undamaged gearbox bearing (Type 4, 2nd shaft)

84

The figure above provides an illustration of an undamaged gearbox. Marked frequencies are

Table 19: Frequency components

Origin Frequency (Hz)

A separate, but damaged, bearing on the same shaft 130.3

A harmonic of the input shaft 145.9

The third harmonic of the 3rd shaft’s GMF 214.1

The frequencies of the bearing under investigation are not clearly found because no damage is

present, as evidenced by the fact that the spectral peaks found are well below the boundary values,

see the legend.

Also visible on the figure (and legend) is the black “Mean” line. This line, in conjunction with the

“Median” line gives a visual idea of the relation between the Median and Mean. This relationship,

though not important in the algorithm, is interesting to note. It lends credence to the fact that the

median is a better indication of background noise than mean, due to the observation that the mean

value is easily influenced by irrelevant stray peaks in the range.

One can see how the algorithm adapts according to the noise levels within the search domain of the

spectrum. In the BPFO and 2x BSF regions, the noise is relatively insignificant. However, in the BPFI

region, the noise is a somewhat more and therefore the search boundaries go up accordingly with

the increased amount of noise.

Nevertheless, no damage is present on the bearing under investigation.

6.2.3.3 Moderate Damage

Figure 71: FFT of moderately damaged gearbox bearing (Type 5, 2nd shaft)

85

The figure above is a typical illustration of a moderately damaged bearing on a gearbox shaft. This

particular sample was found on the second shaft of Type 5 gearbox and a ball was damaged

generating a 2×BSF frequency. Including this, the following frequencies are also present:

Table 20: Frequency components

Origin Frequency (Hz)

Sideband of input shaft speed, at 2nd shaft speed 31.58

2×BSF bearing fault frequency 33.29

2nd Harmonic of input shaft speed 49.8

Unknown signal 52.5

In this figure one can see the 2×BSF frequency peak above the 5×Median boundary indicating

moderate damage to the rollers of the bearing. Again one gets an idea of how the algorithm adapts

to the noise levels within the vicinity of the signal component under investigation; increasing the

bounds when the noise increases.

In addition, there is an unknown signal component within the signal, appearing as a spectral peak at

52.5 Hz. The known signal components in the spectrum are:

Table 21: Known frequency components

Origin Frequency (Hz)

Motor input 25.0

Shafts
 Gearbox input
 Intermediate shaft
 Output shaft

 24.80

 6.28

 1.23

GMF 1 100.47

GMF 2 496.05

Bearing 1
 BPFI
 BPFO
 2×BSF

Bearing 2
 No info

 59.22

 41.23

 33.18

 52.5

It is very likely that this unknown component of the frequency spectrum originates from this

unknown bearing. In addition, there were many other sources of noise and external signals present

in the vicinity of the test which may have an influence on the frequency spectrum including all

signals from the conveyor belts, vibrating structures, etc. It does not appear to be a harmonic of any

other signal as there seems to be no integer correlation between it and the other signals and neither

is any geometric pattern visible on the spectrum itself.

6.2.3.4 Severe Damage

Figure 72 illustrates the case of a gearbox with a severely damaged bearing (inner race damage in

this case). The measurement was taken in the axial direction on the 3rd and final shaft of the

gearbox. Clearly visible on this spectrum is the BPFI peak at around 14Hz and notice that it is

somewhat above the 10× Median boundary.

86

For the sake of clarity, because the signals are so closely spaced at low rotation frequencies the

frequency markers and the boundary conditions were highlighted for the bearing spectral

component under investigation, namely the BPFI.

In addition, another unknown spectral component is visible in this spectrum at 17.8Hz. This signal

does not correlate with any of the known frequencies (or their harmonics) in the signal and the only

conclusion that can be made is that it originates from outside the gearbox, perhaps from the

vibrating structure or from the conveyor belts.

Figure 72: FFT of severely damaged gearbox bearing (Type 6, 3rd shaft)

6.2.4 Success rate

During the process of testing the algorithm, all the shafts on all six gearboxes were tested both in the

radial and axial directions (some faults appeared to show up somewhat better in the axial direction).

Each of the diagnoses were then evaluated with the guidance of the CBM team at Secunda and their

protocols.

The success of the tests was measured according to how many diagnoses were deemed to be

correct. This is defined in the context of an operator using the hand held device: if the operator

measures a gearbox with a bearing that is considered – by the analysis presented in this section – as

being damaged in some way, would the device convey the appropriate sentiment.

This sentiment is given in this project a direct correlation to the perceived damage state of the

bearing as follows:

87

 No damage – Vibration normal

 Moderate damage – Vibration caution

 Severe damage – Vibration warning

This correlation was deduced from the philosophy employed by a number of institutions that a

mechanical component still has a certain useful life span, even after initial damage is detected. That

is to say, a mechanical component is not discarded after the first sign of damage, but can often

operate for a definite time frame as long as the behaviour of the component is scrutinised on a

regular basis.

By that token, a bearing whose vibration signature leads one to believe that it is moderately

damaged can still function, as long as the user proceeds with caution – therefore a ‘Vibration

caution’ message is given with the implicit recommendation that a specialist or OEM is involved in its

observation over time.

A bearing whose vibration signature leads one to believe that it is severely damaged, possibly after a

time of being judged as moderately damaged, should be attended to as soon as possible. A

‘Vibration warning’ is therefore issued and the user is implored to seek professional help.

Table 22: Success statistics

 Number Percentage

Total number of cases 158

Successes 127 80.4

Failures 11 6.9

Ambiguous 20 12.7

In this review of algorithm accuracy, whether the assessment itself is “Vibration normal”, “Vibration

caution” or “Vibration warning” was irrelevant, if it was the correct assessment (as described in the

two paragraphs preceding Table 23) it was counted as a success.

Table 23 summarises the results and shows an over 80% success ratio of the algorithm. The cases

marked “Ambiguous” were usually when other spectral components interfered with the assessment.

This often occurred when harmonics of a different signal overlapped with the bearing frequency.

These assessments were delivered on a first attempt basis, though the problem with the ambiguous

signals could often be resolved by waiting a short period and taking a measurement again. In the

tests performed three measurements were taken on each shaft (approximately 30 minutes apart) of

each gearbox and therefore alternative data was available.

In the case of the failed assessments there are several reasons why they did not convey the

appropriate sentiment. The following table illustrates the number and cause of the failures:

Table 23: Failed diagnosis summary

Number Cause of incorrect diagnosis

6 Boundary case

4 Interference

1 Too much noise in vicinity of signal

Total incorrect: 11

Grand total: 158 (6.9%)

88

In the table above, one can see that 6 of the 11 incorrect assessments were simply because the

signal peak was very near the edge of the diagnosis boundary (the 5 × median or 10 × median lines).

Stated differently, the peak was just barely on the wrong side of the boundary to produce a false

assessment. In these cases, as with the ambiguous assessments, taking another measurement a few

minutes later would usually produce a different assessment.

The second reason for failed assessments were interference, often in the form of sidebands or

harmonics of a different signal (in which case, the actual backup check for harmonic interference

barely failed to detect this). This happened four times and was as the result of the bearing

frequency being the same as a harmonic or a sideband of either the gear train or the input frequency

to the gearbox.

Lastly, a case was encountered in which the bearing frequency was located within a haystack of

signals originating from a loose shaft. The many high peaks within the region therefore greatly

amplified the median values within the region as well as the signal at the particular frequency so as

to induce a “Vibration caution” assessment instead of a “Vibration warning” assessment.

6.3 Field testing of the Alpha prototype at SASOL

6.3.1 Results and analysis

Figure 73: Spectral comparison between the Alpha prototype and the eDAQ system

The figure above is a typical example of what was found during the tests. The blue spectrum is what

was measured by the eDAQ and the green overlay was the selected sections of the spectrum as

measured by the prototype. These sections correspond to the 2×BSF, BPFO and BPFI of the test

gearbox on its input shaft.

As can be seen, the prototype correctly detected the major peaks at the right places, indicating the

correct functioning of the ADC and FFT algorithm. However, it is obvious that the finer details of the

spectrum were lost during the process and only broader outline of the spectrum was captured

89

without sufficient details to observe fine nuances such as sidebands and other closely spaced peaks.

The reasons for this are as follows:

1. The somewhat low spectral resolution of 0.5Hz coupled with the minimum resolution

bandwidth of the Hanning window smears the finer details of the spectrum.

2. Although a window function decreases leakage, it does not eliminate it. As leakage is a

parameter that affects the amplitude accuracy of discrete bins within an FFT, the lower the

spectral resolution the higher the interval of frequencies will be effected, as every bin that is

affected by leakage covers a larger frequency interval.

3. As all electronic components generate noise, there is some scope for improving the layout of

the circuitry so that a minimum of this noise reaches the ADC portion of the circuit.

Therefore, keeping that portion of the circuit away from the rest and generally following

good circuit layout practices, the noise added to the signal can be reduced.

With the quality of the results as they are illustrated in Figure 73, it was nearly impossible to

distinguish nearby frequencies with any accuracy. In addition, because the spectral leakage was so

high, the median value in the vicinity of the frequency of interest rose as well to levels that

desensitised the algorithm.

The success rate of the algorithm could therefore not be ascertained any more accurately than

during the laboratory tests and certainly could not be compared to the initial measurements from

which the algorithm was developed (as explained in the Section 5.2).

The test was therefore used rather as a means to gain operational experience with embedded

hardware and the useful deliverables of the test were testing of system stability and identifying

operational weaknesses, as explained in the next section.

6.3.2 General comments about the performance of the hardware during the test

The purpose of the Alpha prototype was to build a first iteration device capable of acquiring and

processing a signal. Once the signal was processed, an inference regarding the signal was made.

During this time, several lessons were learned in preparation for the definitive Beta prototype.

The first of which was the use of an external power supply for the accelerometer. This proved to be

somewhat troublesome as the units were not very reliable when in a constant on-off environment.

Their batteries (three 9V units) also suffered to a large extent, needing regular replacement –

especially when the power supplies were left on; and seeing how the power supply is separate from

the Alpha prototype, it was an easy mistake to make.

In addition, the unit takes a considerable amount of time to process the data and yield a result, up to

5 minutes per measurement. This is considered much too long in a practical environment.

As the device did not have a dedicated means to export the data to a PC, interpreting the results was

often challenging. It was possible to read the data from the internal registers of the MCU, viewable

from a debugging application in the programming software – as was done in Figure 73 – but this

proved very cumbersome and impractical on a large scale.

90

However, the system is very robust and compact. Although it was not ready to operate on its own (it

was connected to a laptop throughout the tests), the functionality of a keyboard and display were

emulated on the Laptop and it was very easy to use. Indeed, it did not require the skill set of an

engineer to use.

All of these comments were taken into consideration for the next phase of the project, namely the

Beta prototype. This hardware system incorporated remedies to all of the vices mentioned and

added additional functionality as well, as discussed in Section 2.4.

The results from the field testing of that device are discussed in the next section.

6.4 Field testing of the Beta prototype

Due to being the definitive hardware and final deliverable of this project, the results from the field

tests of the Beta prototype is discussed at length. Due to the poor signal reproduction accuracy of

the Alpha prototype, this aspect of the hardware was at a premium and is discussed separately from

the algorithm results.

The algorithm results are presented slightly differently than in Section 6.2. In that section, the

results were analysed in conjunction with known gearbox condition data from the condition

monitoring department of SASOL, in order to formulate an algorithm. The results in this section

were not based on that of the condition monitoring department, but were verified against them.

6.4.1 Signal reproduction accuracy

The inferences made by the algorithm are based, at this time, completely on the shape of the

spectra, hence why accurate correlation between the reference data (from the eDAQ) and the Beta

prototype is of paramount importance. Furthermore, it is entirely possible that as this system is

developed, absolute values of the data may be important as well. For that reason, the correct

amplitude scaling was also considered important.

Comparing the data, it is important to note that the Beta hardware has the signal post-processing

programmed into it, so when the signals were downloaded onto a PC, it was ready for comparison.

The eDAQ hardware output is only the raw signal, so a certain amount of signal processing had to be

done before the signals could be compared. The signal processing performed (be it on a PC

afterward, in the case of the eDAQ or as part of the algorithm as in the case of the Beta prototype)

was exactly the same and explained at length in Section 3 “Algorithm development”. Frequency

domain results are easier to compare than time domain results and a sample is illustrated below.

The graph represents samples that were measured both with the Beta prototype and the eDAQ

system under similar circumstances of the same gearbox.

Comparing the spectra, one can see the different peaks correspond very well both in terms of peak

amplitude and shape. Importantly, one can easily distinguish individual closely spaced peaks, such

as the peak and sidebands around 24 Hz. Also visible in the figure below is that the relationship

between the background noise level and the spectral peaks compares well in the two sets of data –

91

this is also a very important factor for the algorithm as the inference boundary values are based on

this relationship.

Figure 74: Comparative spectrum of the Beta prototype and eDAQ

It is now worthwhile to compare the spectrum in Figure 74 above to the spectrum of the Alpha

prototype in Figure 73. Comparing these figures, the effect of the measures taken in the Section 2.4

“Advanced Development Model - Beta prototype” is taken and judged to be successful in

significantly increasing signal quality.

6.4.2 Comparison between the Beta prototype and SASOL data

A comparison is now made between the results obtained by the Beta prototype and the commercial

system used by the condition monitoring department of the Sasol Plant in Secunda. Regarding the

system in use by SASOL (CSI AM/RBM Suite), after gathering the vibration data using a logger, the

data is processed to the frequency domain where relevant data peaks are highlighted for inspection.

Time domain plots and techniques are also available. Finally, the results of each gearbox are

archived and can be arranged into a waterfall plot to observe the changes.

As mentioned, the suite plots the data in either time or frequency domain and assists the observer in

identifying relevant information by overlaying markers where events are expected (such as peaks on

a frequency spectrum, or impulses spaced at a period in the time domain plot). After a history of the

machine in question is generated a judgment is then made based on changes in the data – be it time

or frequency domain.

Figure 75 illustrates an example plot that compares the data from the Beta prototype to the system

in use by SASOL. An important part of the spectrum is illustrated in which three prominent

components are visible: The second and third harmonics of one of the gear sets as well as a signal

coming from a damaged outer race of a bearing.

92

Figure 75: Overlaid broadband plot of the Beta prototype and SASOL data

In the figure, one can clearly see how the spectral components correspond very well in terms of

frequency and amplitude. As the software package used by SASOL only has a somewhat coarser

frequency resolution as produced by the Beta prototype, frequency components from the Beta

prototype are significantly more distinguishable. Spectral clarity is further aided by the optimized

window used by the Beta prototype that results in less leakage into adjacent bins as explained in

section 1.3.3.

It is mentioned that as the results obtained from Sasol was scaled in RMS amplitude, the results

from the Beta prototype had to be scaled to RMS as well in post processing. Even though this is not

the normal operation of the Beta prototype and the scaling had to be done in post processing, the

results are still considered to be valuable as only the magnitude of the spectrum is changed and not

the shape.

6.4.3 Inference accuracy

With the signal integrity of the Beta prototype verified by comparing it to a commercial system as

well as the system in use by SASOL, the accuracy of the inference can now be verified. During the

Beta prototype test, four gearboxes were measured, totalling 26 different bearings of 8 different

types. Two of the gearboxes had bearing problems large enough for SASOL to schedule

replacement. The other two were not sufficiently damaged for SASOL to consider replacement.

GMF × 3

GMF × 2

BPFO

93

6.4.3.1 Samples of damaged bearings

The two gearbox samples below are both from the same type of gearbox. A specific bearing on the

input shaft of this type of gearbox was found to be susceptible to damage in this application. Both

these gearboxes were identified by SASOL as requiring a new bearing on the input shaft.

The data presented here are the very spectra from the signals as measured by the Beta prototype

and obtained from the saved data. And as can be seen in the frequency spectra below, both these

bearings produced pronounced peaks at the outer race fault frequency (159 Hz on CV2203–1 and

161 Hz on CV3011; the slight difference is due to slightly different operating speeds).

In fact, the bearing on CV 2203 produced a frequency peak at the inner race fault frequency as well

(which was flagged by the Beta prototype). It was found at a later stage that there was indeed a

fault at the inner race even though at the time of measurement it was not known yet. An

encouraging indication was that the Beta prototype detected this fault without prior knowledge.

Figure 76: Frequency spectrum of input shaft of gearbox CV 3011 with damaged outer race

The spectrum above is from the input shaft of gearbox CV 3011. The three fault frequencies are

included in this plot and are:

Table 24: Identified bearing frequency components of Figure 76

Signal component Frequency [Hz]

BPFI 232.1 Hz

BPFO 161.9 Hz

2× BSF 131.2 Hz

A sharp peak is clearly distinguishable on the plot at 161.2 Hz, which was flagged by the Beta

prototype as being possible outer race damage. The 28 in the caption indicates the peak-median

94

ratio was 28, thus exceeding the 10× boundary and flagged as a ‘Vibration Warning’. The other two

bearing frequencies, BPFI and 2×BSF had ratios of less than 5 and were thus not flagged.

Table 25: Other frequencies identified in Figure 76

Signal component Frequency [Hz]

2× GMF2-3 156.3 Hz

9× Shaft 1 222.5 Hz

3× GMF2-3 234.5 Hz

The bearing in question was removed not long

after the tests and Figure 77 shows the pitting

on the outer race as detected up by the Beta

prototype and as well as SASOL.

As mentioned, the gearbox under consideration

is susceptible to damage of the input shaft

bearings in this application. The next sample is from the same type of gearbox and it suffered the

same type of bearing damage.

Figure 78: Frequency spectrum of input shaft of gearbox CV 2203-1 with damaged outer and inner race

Visible in the spectra of Figure 78, the same fault is present on the outer race as in the previous

example and indicated by an arrow and BPFO caption. A peak-to-median ratio was obtained of 50.2

which far exceed the 10× threshold. In addition, a fault is present on the inner race as well. To the

observer, this fault appears very close to the 3rd harmonic of the shaft 2-3 GMF. However, the Beta

prototype successfully distinguished this peak from the GMF harmonic and flagged this fault as

having severe damage as it had a peak-to-median ratio of 84.

6.4.3.2 Samples of undamaged bearings

A few samples will now be given of shafts with undamaged bearings (as confirmed by SASOL). These

samples may come from the same types of gearboxes discussed already, but which illustrates how

Figure 77: Inspected bearing with damage

95

the signals from undamaged bearings look in the frequency domain and how the Beta prototype

interpreted the signals.

The first sample under consideration is of gearbox CV 3301 – 2 at SASOL. The spectrum shown

below is a two stage gearbox, implying that three shafts are present. The spectrum is of shaft 2 (the

intermediate shaft). This shaft has two types of bearings, giving 6 potential fault frequencies. The

spectrum was drawn over a range that covers all these frequencies, summarised in the table below

(the numeral in the name differentiates the bearings)

Figure 79: Spectrum illustrating healthy bearings on an intermediate shaft

Table 26: Identified frequencies in Figure 79

Signal component Frequency [Hz]

BPFI 1 65.0 Hz

BPFO 1 44.4 Hz

2× BSF 1 39.0 Hz

BPFI 2 52.3 Hz

BPFO 2 36.5 Hz

2× BSF 2 31.0 Hz

As can be seen in the plot of Figure 79, none of these frequencies really created a distinct peak,

apart from the BPFO 1 peak. However, this peak was not large enough to trigger a flag, as the

surrounding activity decreased the peak-to-median ratio.

It is important to note, that the condition monitoring department at SASOL does not consider any of

these bearings to be faulty, unlike the previous samples. This corresponds to the fact that no

spectral activity was found by the Beta prototype in at these frequencies.

The next sample is of the output shaft of a SASOL gearbox. On this shaft is two bearings of the same

type, therefore if one was damaged it is possible that one would find a peak in the frequency

96

domain. These frequencies are marked in the spectrum of Figure 80 below (along with other nearby

peaks) and the frequency values given in the table below.

Table 27: Spectral components of interest in Figure 80

Signal component Frequency [Hz]

BPFI 15.4 Hz

BPFO 10.8 Hz

2× BSF 9.16 Hz

As with the previous example, the spectrum gives no indication of there being a bearing problem as

there are no distinct peaks at the frequencies one would expect to see them. Once more, this is

expected as SASOL reported no bearing faults on this shaft.

Figure 80: Spectrum illustrating healthy bearings on an output shaft

6.4.3.3 Misdiagnoses

On a number of occasions, it was found that the current methodology for evaluating the potential

damage on bearings in a gearbox was conservative, i.e. flagging bearing damage when the bearing

was not considered to be damaged by SASOL. An illustration of this happening is given in the

spectrum below.

97

Figure 81: Spectrum of the first misdiagnosis example

Figure 81 illustrates a range in the frequency spectrum of the intermediate shaft where the

fundamental frequencies are located of the two types of bearing present on the shaft. Using the

arrows and captions, one can see that the Beta prototype flagged the 2×BSF and BPFI of the first

bearing as ‘Vibration caution’, with a 5.68 and 5.46 peak-to-median ratio (exceeding the 5× limit for

moderate damage).

However, SASOL advised that their monitoring program did not indicate any damage in the bearing

and they consider it completely healthy, even though some peaks were distinguishable at the

predicted frequencies. Therefore, in actuality no need for caution existed.

The most severe case in which a misdiagnosis occurred is illustrated in Figure 82 below. The first

type of bearing on the shaft produced peaks on the outer race (BPFO) and inner race (BPFI)

frequencies, in addition to the 2×BSF frequency coinciding with the shaft 2-3 GMF.

The BPFO frequency had a peak-to-median ratio of almost 16 and the BPFI had a ratio of about 18,

but as before, SASOL indicated that it did not consider the bearings to be particularly damaged nor

did they intend to replace the bearings soon.

It also has to be said that the 2×BSF frequency identified happens to be the third sideband

(modulation by shaft 3; rotating at the 1.7Hz spacing frequency) of the shaft 2-3 GMF. Even though

it did not flag this peak as being even moderately damaged (the surrounding spectral activity

increased the median value enough to decrease the peak-to-median ratio), the frequency was still

wrongly identified, as the algorithm does not include sidebands as exclusion criteria.

98

Figure 82: Spectrum of the second misdiagnosis example

6.4.3.4 Discussion

Based on the different bearings observed in the various gearboxes, it is concluded that the system is

conservative, which is accordance with the projected behaviour of a ‘Protection system’. Its

behaviour is such that although it sometimes happens that the bearings are overly conservatively

evaluated as having higher levels of vibration (implying higher risk of failure) than they actually have,

it never declared a bearing as ‘Vibration normal’ when there was damage present. Based on the

four gearboxes sampled, and taking every bearing’s diagnoses as a sample, the following figures can

be compiled regarding the inference accuracy:

Table 28: Inference accuracy figures

Parameter Figure

Number of correct inferences 40

Number of incorrect inferences 8

Total number of cases 48

Success percentage 83.3%

This is figure of 83.3% is very similar to the 80.4% quoted the Section 6.2.4 where the algorithm was

tested on the measured data of the first measurement exercise. This consistency is taken as a

positive sign that translation of the algorithm from the Matlab environment, to the Alpha prototype

and finally the Beta prototype was a success.

From the project philosophy point of view, the 83.3% success ratio is considered adequate as the

system was not designed to replace human judgement, but to supplement it. As the system has

proven to be conservative, this behaviour paves the way for the laymen wielding the finished

product (the product being the commercial successor of the Beta prototype) to inspect his

99

consignment of gearboxes. When the product flags a potential problem, he can hand over the data

to an engineer or technician to make the judgement of whether to replace the bearing or to leave it

for a while yet, safe in the knowledge that the system will not fail to catch a damaged bearing.

100

7. Conclusion

7.1 Cost analysis

The entire premise of the project was to develop a low cost condition monitoring device. A target

budget of R5000 was set and a summary of the costs involved are given below. As is often the case,

costs per part differ for the quantity of a part ordered. The target was to get the total cost of

manufacturing one unit below the target budget, with any savings for bulk an added bonus. Where

possible, the price for both 1 unit and 100 units are given, otherwise the price for 1 unit was used

and the entry was underlined. All prices in ZAR are inclusive of VAT.

Table 29: Prices of components and manufacturing

Part/Task Supplier Price (1) Price (100)

MCU RS Components 136.52 66.88

Memory Avnet 21.06 19.27

LCD Nu Vision 96.95 96.95

Battery Communica 78.50 78.50

Accelerometer (including cables) Anderson and Hurley 1334.94 1334.94

Miscellaneous electronic components Farnell 360.25 310.69

Casing Routertec 877.00 237.00

PC Hardware (once off) Mikroelektronika 647.26 0

High speed SD Card Orms 499.99 499.99

Serial to USB converter Communica 112.00 112.00

Circuit board printing Deman Manufacturing 800 (approx) 300 (approx.)

Circuit board populating Deman Manufacturing 90 18

Total 5054.47 3074.22

The price column for 1 unit lists all of the materials and manufacturing costs in addition to auxiliary

costs such as PC hardware (once off), casing design and die manufacturing (incorporated into the

Casing category) and the initial programming and setup of the circuit board printing and populating

machinery. Therefore, it includes the initial investment required for production.

Contrary to this, the price column for a 100 units assumes the necessary initial investments (as

described) have been made, so these items are not included. Furthermore, this price column

includes all manufacturer and dealer discounts available to large orders.

As the project budget is R5000, the additional funding available if production quantities are made

(100 units or more), will be well spent on a higher quality accelerometer. In addition, a better case

design (such as an IP66 compliant case) may also be considered.

101

7.2 Project review

The aim of this project was to develop a low cost vibration protection device.

An initial data gathering campaign was therefore undertaken to characterise a variety of gearboxes

in the industry. During this excursion, several different types of gearboxes were measured in various

states of health.

Considering the information gleaned from the measured data, a literature study was undertaken

during which typical signal processing techniques were investigated and considered. A fairly simple

frequency domain technique (developed in the robust Matlab environment) was chosen as the most

promising avenue of work. This is in line with the market positioning for a low-cost protection

system, which does not give precise diagnoses, which require a powerful processor, but

recommendations on a course of action. The technique employed was based on the results from the

initial data gather campaign and evaluated against it.

In parallel with this, the XDM was acquired. This allowed familiarisation with the embedded

environment as well as serving as a vessel for translating and testing the developed algorithm from

Matlab to ANSI C. This was however the scope of usefulness for this system, as it was very large in

dimensions, could not store a large amount of data and unable to gather analogue signals.

This was corrected with the Alpha prototype of the ADM, this was a custom designed system

capable of holding more data (in volatile memory) and measuring an analogue signal. It was

however still very slow and lost the data when switched off. It was tested at the SASOL plant and

found to be slow and it is data of poor quality. It also had to be connected to a PC and was thus not

an independent system.

The definitive hardware specification was of the Beta prototype of the ADM. This device is

considered to be pre-production and incorporated many improvements to aid signal quality as well

as incorporating an LCD, pushbuttons, a user interface, non-volatile memory, future expandability

and increased speed.

The algorithm proved to be fairly accurate and successfully made a large percentage of correct

inferences. However it made several misdiagnoses and is considered to be a priority improvement.

The system also remains to be tested outside of SASOL.

A requirement of the project was for the final device to cost R5 000 or less. The final system cost

depends on how many devices are manufactured. For a single device, the cost is R 5054.47. This is

marginally more than the target budget, but includes a R1 287.26 once-off start-up cost. For a

hundred units, the cost is much less, at R3 074.22. The surplus is recommended for a better

accelerometer, faster SD Card or an IP66 case.

The goals of this project is therefore deemed to be met as the device is small enough to be operated

by hand or mounted onto a machine. It is capable of performing the necessary procedures to fulfil

the role of vibration protection device. This includes:

102

 Acquiring and archiving data from various different gearboxes

 Applying rudimentary techniques to obtain a conservative state of the bearings within the

gearbox

 Notifying the operator of the appropriate course of action based on the findings

 Storing a history of the time and frequency domain of the various gearboxes as well as a full

test log of every test for later evaluation by experts

This is considered to fulfil the requirements for the current interpretation of the vibration protection

device.

7.3 Summary of findings

7.3.1 Experimental development model

The experimental development model was never intended for either field or laboratory testing. Its

sole purpose was to serve as a test bed having the same family of processor and using the same

compiler.

It was therefore mainly used to translate the developed algorithms from the Matlab programming

language to the C programming language. Further use was excluded due to limitations on its ADC

module and very limited memory.

It was used primarily in the time during which the Alpha prototype was being manufactured.

7.3.2 Advanced development model – Alpha prototype

The advanced development model was the first custom designed hardware for the project. It

contained many improvements to the hardware and addressed the ADC and memory limitations of

the XDM. It also incorporated an LCD screen, although it never worked. Importantly, it used a

higher specification of processor.

It performed reasonably well in laboratory and field tests, but several limitations existed. Data could

not be downloaded onto a PC, the system had to be connected to a controlling PC at all times (due

to the LCD not working), it was very slow in its operation and it had an un-ergonomic power supply

that made it easy to forget on – thus depleting the battery.

The measurement results indicated a severe lack of spectral resolution. The root cause of this was

found to be a sub-optimal window function, very high sampling rate (in conjunction with finite

memory) and a problematic memory chip.

The prototype found a second use during the time in which the Beta prototype was being used.

During this time, some modifications made to the hardware allowed the development of drivers

which was used in the Beta prototype.

7.3.3 Advanced development model – Beta prototype

The Beta prototype was the final specification hardware of this project and included a number of

further improvements upon the Alpha prototype in addition to correcting its flaws.

103

The changes between the Alpha and Beta systems involved the use of the PLL (which multiplied the

operating speed by 8), a working LCD screen, push-buttons (providing a user interface and

independence from a PC), RS232 connectivity, the use of an SD card for non-volatile storage, on-

board accelerometer power supply and a rechargeable battery.

In addition, many algorithmic improvements were made during the transition which included a

much optimised FFT which better utilises the memory in order to provide twice the number of

samples. A study was conducted about window functions, and an optimised window function was

chosen.

Field tests confirmed a vastly improved frequency spectrum. The results were compared to samples

from SASOL in Secunda and the Beta prototype yielded better spectral resolution. Regarding the

inference accuracy, more 80% of the inferences were deemed to be correct. This was deemed to be

a success.

7.4 Recommendations

With the final deliverable of the project being a prototype, there are several aspects of the hardware

that can be improved to make a better product. These items are listed below.

7.4.1 Input speed and calibration amplitude inclusion to the param.txt file

Currently, the SD card only serves to house gearbox design data. This includes number of gear teeth,

number of stages and bearing frequency. The inclusion of the input speed will make for a system

that is more modular.

The reason for its present omission is due to the fact that all the gearboxes measured in the industry

operated at approximately the same input speed. However in practice this will obviously not be the

case and a more robust scheme to change this parameter will be required.

It is noted that the firmware currently works with the input frequency. This may be somewhat

confusing to operators used to working with input speeds in units of RPM. As there is a simple ratio

between input frequency (in units of Hertz) and input speed (in units of Rotations per minute) it is

logical to have the operator use the input speed and let the firmware do the conversion internally,

as this would eliminate the possibility of an error.

The calibration amplitude would serve the envisioned auto calibrate routine described below.

7.4.2 Auto calibrate routine

As has been mentioned in Section 4.3 where the calibration procedure is explained, there are several

factors that can cause erroneous variances in the amplitude logged by the device. For this reason, it

is considered prudent to include an auto calibrate routine in the firmware to take care of this and

reduce the amplitude error that may exists from machine to machine.

This routine may comprise of a simple option that exists in the menu of the device that would

initiate the auto calibrate routine in the device. The routine would follow the same procedure as

outlined in Section 4.3. When this routine is initialised, the operator would have to measure a signal

104

of known amplitude (included in the param.txt file). The routine would then compare the internal

amplitude logged by the device with the known calibration amplitude and correct for it with a

calibration factor.

7.4.3 Gear and shaft fault finding

Currently, the firmware on the Beta prototype only looks for possible bearing problems. The scope

of the project was intentionally limited to these components due to the fact that bearing problems

are the most common on gearboxes found at SASOL. Furthermore, being a prototype it was deemed

sufficient to prove the validity of the system.

However, bearing defects are of course not the only defect type that exists in a gearbox. Shaft and

gear defects are also found on gearboxes and can be found using vibration based techniques (Bloch

& Geitner, 1999). In the industry, these problems will arise from time to time and it would add

immense value to the product if these defects can be detected, especially since the hardware

infrastructure already exists for this.

7.4.4 Spectral averaging, higher quality SD card and improved SD card routines

This is another common vibration monitoring technique that would add value to the system as it

would likely suppress stray peaks in the frequency spectrum and generally smooth the noise level (it

is important to note however that the technique does not reduce spectral noise, but merely

averages it).

Currently the hardware itself is not capable of storing enough data to store more than one

frequency spectrum, unless the bandwidth is reduced. The SD card can however store this data, as

when it saves the spectra for further analysis.

However, this procedure is currently taking too long (in the order of a minute and even then it only

saves up to 500 Hz). However, it is readily admitted that the SD card routines have much potential

for optimization.

In addition, the SD card in use is not of the highest quality and at higher writing speeds becomes

unstable. The use of a higher quality, higher speed SD-card would sever to improve the writing

speeds.

Improving the SD card write speeds, through the use of optimized SD card routines and a higher

quality SD card, will make spectral averaging feasible by temporarily storing successive spectra on

the SD card and the averaging them. This will likely improve the damage prediction performance

and ease third party consultation on the data as the spectra will appear ‘cleaner’.

7.4.5 Algorithm calibration

Another important aspect task is calibration of the algorithm. The current peak to median ratios of

5× and 10× in the frequency spectrum was effective enough to prove the concept and be effective at

SASOL, but further data will be needed to verify if these figures are appropriate for other sites and

applications as well.

105

This can only be achieved by putting further models in the field and monitoring their performance.

Fortunately, the coding infrastructure is already in place, in the form of the log file, to prepare for

this exercise.

7.4.6 Signal interference compensation

It was mentioned in the Section 3.2.7 “Algorithm development – Exclusion criteria” that when there

is interference (in the form of frequency coincidence) that the algorithm ignores this spectral

component.

This is creates a vulnerability in the system, as that component may well be damaged, even though

this damage is masked by the interfering component. Further research is necessary to minimise this

problem, but a scheme in which the system looks to time domain parameters such as maximum

value for a backup plan.

It is realised that whatever scheme is put in place will likely be less sensitive to problems, but this is

considered to be better than nothing. In addition, the system fortunately incorporates the

functionality to save data, which means third party consultants or our Industrial partner can offer

assistance in interpreting the data.

1

References
Avigad, J., & Donnelly, K. (2004). Formalizing O notation in Isabelle/HOL. Basin and Rusinowitch:

Springer Verlag.

Balderston, H. l. (1969). The detection of incipient failure in bearings. Material Evaluation(27), 121-

128.

Bartelmus, W. (2008, April 4). Root cause and vibration signal analysis for gearbox condition

monitoring. BINDT Insight Journal, 50(4).

Bartelmus, W., & Zimroz, R. (2009). Gearbox condition degradation models. The sixth International

Conference on Condition Monitoring and Machinery Failure Prevention Technologies, (pp. 1-

10). Dublin.

Bloch, H., & Geitner, H. (1999). Machinery Failure Diagnosis and Troubleshooting (4th Edition ed.).

Bores Signal Processing. (2009, 06 02). FFT window functions: Limits on FFT analysis. Retrieved 10 10,

2010, from Bores signal processing:

http://www.bores.com/courses/advanced/windows/files/windows.pdf

Bores Signal Processing. (2009, 2 6). FFT windows: Coherent power gain. Retrieved 04 17, 2011, from

Advanced DSP: http://www.bores.com/courses/advanced/windows/10_cpg.htm

Combet, F., & Gelman, L. (2007). An automated methodology for performing time synchronous

averaging of a gearbox signal without speed sensor. Mechanical systesms and signal

processing, 21, 2590-2606.

Combet, F., & Zimroz, R. (2009). A new method for the estimation of the instantanous speed relative

fluctuation in a vibration signal based on the short time scale transform. Mechanical Systems

and Signal Processing, 23, 1382-1397.

DLIengineering. (2010). Review of Techniques for Bearings & Gearbox Diagnostics. Richmond,

Virginia: SpectraQuest, Inc. Retrieved 03 21, 2010, from

http://www.dliengineering.com/vibman/gloss_bearingtones1.htm

Ganeriwala, S. (2010). Review of Techniques for Bearings and Gearbox Diagnosis. IMAC Conference,

(pp. 1-37). Jacksonville FL.

Girdhar, P., & Scheffer, C. (2004). Practical Machinery Vibration Analysis and Predictive Maintenance

(1st ed.). Oxford: Elsevier.

Graham, R. L., Knuth, D. E., & Patashnik, O. (1994). Concrete Mathematics: A foundation for

computer science (2 ed.). Reading: Addison-Wesley Publishing Company.

Grover, D., & Vollmer, M. (2010). Fast Fourier Transform (FFT) FAQ. Retrieved March 17, 2010, from

http://www.dspguru.com/dsp/faqs/fft

Harris, F. J. (1978). On the use of windows for harmonic analysis with the discrete fourier transform.

Proceedings of the IEEE, 66(1), pp. 51-84.

2

Heng, A., Zhang, S., Tan, A. C., & Mathew, J. (2009). Rotating machinery prognostics: State of the art,

challenges and opportunities. Mechanical Systems and Signal Processing(23), 724-739.

Hochmann, D., & Sadok, M. (2004). Theory of Synchronous Averaging. IEEE Aerospace conference

proceedings. Vergennes, USA: Aerospace Conference.

Ifeachor, E. C., & Jervis, B. W. (1998). Digital Signal Processing: A practical approac. Harlow: Addison

Wesley.

Jardine, A. K., Lin, D., & Banjevic, D. (2006). A review on machinery diagnostics and prognostics

implementing condition-based maintenance. Mechanical Systems and Signal Processing(20),

1483-1510.

Karacay, T., & Nizami, A. (2009). Experimental diagnostics of ball bearings using statistical and

spectral methods. Tribology Internation(42), 836-843.

Kardushin, D., 1991. 3rd International Machinery & Diagnostics Conference. Las Vegas, Union

College.

Kiral, Z., & Hira, K. (2003). Simulation and analysis of vibration signals generated by rolling element

bearing with defects. Tribology International(36), 667-678.

Kiral, Z., & Karagülle, H. (2003). Simulation and analysis of vibration signals generated by rolling

element bearing with defects. Tribology International(36), 667 - 678.

Kochan, S. G. (1988). Programming in ANSI C (1st ed.). Indianapolis: Hayden Books.

Konstantin-Hansen, H. (2003). Application Note 7773: Envelope Analysis for Diagnostics of Local

Faults in Rolling Element Bearings. Brüel & Kjær Application note, pp. 1-8.

Lai, E. (2004). Practical Digital Signal Processing for Engineers and Technicians. Oxford: Newnes.

Ma, J., & Jiang, J. (2011). Applications of fault detection and diagnosis methods in nuclear power

plants: A review. Progress in Nuclear Energy(53), 255-266.

Mathew, J., & Alfredson, R. J. (1984). The condition monitoring of rolling element bearings using

vibration analysis. ASME Transactions - Journal of Vibration, Acoustics, Stress and Reliability

in Design(106), 447-453.

Mathworks. (n.d.). Minimum 4-term Blackman-Harris window - MATLAB. Retrieved 05 03, 2011,

from Mathworks: http://www.mathworks.com/help/toolbox/signal/blackmanharris.html

McInemy, S. A., & Dai, Y. (2003). Basic Vibration Signal Processing for Bearing Fault Detection. IEEE

Transactions on Education, 46(1), 149 - 156.

Microchip. (2010). Microchip PIC product page. Retrieved February 13, 2010, from

http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=2551

Microchip Technology Inc. (2008, January 22). AN1152: Achieving Higher ADC Resolution Using

Oversampling. Retrieved from Microchip application notes:

3

http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1824&appno

te=en533730

Microchip Technology Inc. (2009). dsPIC33FJXXXMCX06/X08/X10 Data Sheet. United States.

MikroC. (2010). FFT Library help file. MikroC Pro for dsPIC30/33 and PIC24 Help. MikroC.

Mobley, R. K. (2004). Maintenance Fundamentals (2nd ed.). Burlington: Elsevier.

National Instruments. (2009, 06 08). he Fundamentals of FFT-Based Signal Analysis and

Measurement in LabVIEW and LabWindows/CVI. Retrieved 04 17, 2011, from National

Instruments Developer Zone: http://zone.ni.com/devzone/cda/tut/p/id/4278

Nelwomondo, F. V., Marwala, T., & Mahola, U. (2006). Early classification of bearing faults using

hidden Markov models, mel-frequency cepstral coefficients and fractals. International

Journal of Innovative Computing, Information and Control, 2(6), 1281-1299.

Norton, M., & Karczub, D. (2003). Fundamentals of noise and analysis for Engineers (2nd ed.).

Cambridge: Cambridge university press.

Patil, M. S., Mathew, J., Rajendrakumar, P. K., & Karade, S. (2010). Experimental studies using

response surface methodology for condition monitoring of ball bearings. Journal of

Tribology, 132, 44505-44511.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1995). Numerical Recipes in C: "The

art of Scientific Computing". Cambridge: Press Syndicate of the University of Cambridge.

Radoslaw, Z., Urbanek, J., Barszcz, T., Bartelmus, W., Millioz, F., & Martin, N. (2011). Measurement of

instantaneous shaft speed by advanced vibrtation signal processing - application to wind

turbine gearbox. Metrology and measurement systems, 505-722.

Randall, R. B., & Antoni, J. (2011). Rolling elementbearingdiagnostics—A tutorial. Mechanical

Systems and Signal Processing(25), 485–520.

Samual, P. D., & Pines, D. J. (2005). A review of vibration-based techniques for helicopter

transmission diagnostics. Journal of Sound and Vibration(282), 475–508.

SKF. (n.d.). Bearing frequencies. Retrieved 6 6, 2009, from

http://www.skf.com/skf/productcatalogue/calculationsFilter?lang=en&action=Calc6

Skolnick, D., & Levine, N. (1997, December 1). Why Use DSP?: An introductory course in DSP system

design. Retrieved January 17, 2010, from

http://svconline.com/mag/avinstall_why_dsp_introductory_2/

Smith, S. W. (1998). The Scientist and Engineer's Guide to Digital Signal Processing. Retrieved 04 20,

2011, from http://www.dspguide.com

Stander, C. J., & Heyns, P. S. (2002). Using vibration monitoring for local fault detection on gears

operating under fluctuating load conditions. Mechanical systems and signal processing,

16(6), 1005-1024.

4

Tandon, N., & Choudhury, A. (1999). A review of vibration and acoustic measurement methods for

the detection of defects in rolling element bearings. Tribology International(32), 469–480.

Taylor, J. I., & Kirkland, D. W. (2004). The Bearing analysis handbook: A practical guide for solving

vibration problems in bearings. Vibration Consultants Inc.

von Hippel, P. T. (2005). Mean, Median, and Skew: Correcting a Textbook Rule. Journal of Statistics

Education, 13(2).

Wilmshurst, T. (2007). Designing Embedded Systems with PIC Microcontrollers: Principles and

applications. Oxford: Newnes.

5

 APPENDIX A – XDM evaluation board

Figure A1: Data sheet of XDM evaluation board

6

 APPENDIX B – ADM Beta prototype hardware specification
Table B1: Hardware specifications of ADM Beta prototype

Parameter Value Parameter Value

Sensitivity (± 20%) 100 mV/g Storage 2 GB (exchangeable)

Measurement range ± 16g Package SD Card

Frequency range 0.95 Hz to 3250 Hz File type .txt

Broadband resolution 8 mg Possible number of records > 16 million

Non - linearity ±1% Stored records Time and Frequency

Transverse sensitivity ≤ 7%

 Expandability • RS 232
• I2C
• SPI Size 200 ×120×80

Weight 510 g

Battery 6 V (3200 mAh) LCD 128 × 64

Battery runtime (typical use) 3 days Selection buttons 3

Charge time ≈ 8 hours MCU speed 80 MHz

Outlet type 220 V (AC) – kettle connector

Temperature range -40°C to 150°C

7

 APPENDIX C – Electronic fundamentals and configuration
The objective of this section is to provide a brief overview of key electronic principles required for

the operation of the electronics in this project, followed by a data flow and explanation of how the

system internally operates. Finally in this section the physical electronic design is provided as well as

the layout of the system on the Printed Circuit Board (PCB).

C.1 Microcontroller I/O ports primer
Microcontrollers (and indeed the related microprocessors) have a basic necessity that requires them

to be useful in practical applications: input and output (I/O) interfaces (Wilmshurst, 2007). These so

called I/O ports, provides the device with two way communications to the outside world – often, but

not always, by means of integrated circuits (ICs) connected to these ports. Examples of devices

typically connected to the ports include:

1. Buttons

2. Rotary dials

3. ADC units

4. Displays (seven segment, LCD)

5. Speakers

6. GPRS units

7. SD Card reader

8. Communication ports (USB, RS232)

As can be seen, some of these devices are for input into the system (the first three items listed),

some are for output (items 4 and 5) and some are for two way communication (items 6 to 8). The

common denominators of these units are that they use the I/O ports MCU. It is true that some of

them use some intermediary circuitry, but in principle, all the signals from peripherals go through

the I/O ports.

These ports manifest themselves as a specific series of pins on the MCU device (note however that

not all pins are for I/O purposes, and some have a dual purpose) that is connected to the data bus (a

figuratively parallel series of data lines from one point to another) of the MCU. Several pins are

grouped together to form a port and can be used as a group or individually. A typical MCU has

several of these ports. Figure C1 is an illustration of a basic MCU with the I/O ports highlighted.

Information on the pins manifests themselves as voltages. Typically, a voltage on a pin may be 3.3V

– which will register as 1, or 0V (ground) which will register as a 0. Depending on whether the pin is

configured as an input to the MCU or output to the MCU will determine whether the MCU reads the

voltage or sets the voltage. If the pin is configured as an input, the peripheral (such as a button) will

cause the pin to reflect a voltage, which is read by the MCU and used. Conversely, if the pin is

configured as an output, the MCU will set the voltage, which will be read by the peripheral (such as

an SD Card reader).

8

Figure C1: A basic MCU of the Mircrochip 16-bit family (Microchip Technology Inc, 2009)

These ports are useful as peripheral interfaces often require a series of pins that make up, say, a

byte. Consider a hypothetical IC peripheral and the MCU below. The 4 pins of the port are all

configured as input, meaning that the MCU will read the information from the pins (in the form of a

voltage set by the peripheral). These pins are connected to four pins of the peripheral.

Figure C2: Data flow via pins

Peripheral

1 2 3 4

PINS

MCU

9

Table 31 illustrates how a number is passed in a parallel pin configuration from the peripheral to the

MCU. As the pins are configured to be inputs to the MCU, the peripheral has control to set the

voltages.

Table C1: Example of how parallel pin voltages relate to information

Pin number Voltage [V] Logic

1 3.3 1

2 3.3 1

3 0 0

4 3.3 1

Binary value passed 13

If the peripheral (say, an ADC) sets the voltages as follows, the 4 pins can be combined into a port to

recreate a 4 bit binary number – in this case 13. This number can now be read from port and used in

the MCU for computation

It is emphasised that the pins can still be used separately. This does pose the restriction that only

two values can be read or written – this is however a common requirement, such as with switches.

C.2 Circuit flow diagram

Figure C3: ADM beta prototype information flow diagram

SD Card

RS 232

(not

used)

ADC

SRAM

Memory

MCU

Buttons

LED

LCD

Cache

memory

10

Figure C3 illustrates how information passes between the components of the ADM beta prototype.

Blue boxes represent input components, red boxes represent output components and grey boxes

represent internal components among which input data is passed for processing, before being sent

to the output components. Note the SD card and RS232 units act as both input and outputs, hence

they are gradient shaded to reflect this. In addition, the ADC unit is internal to the MCU, but

operates separately unit from the main processing unit.

To assist with the distinction between input, output and internal components; the arrows

symbolising data flow are colour coded as well: Blue for data going into the MCU, red for data

flowing from the MCU and black for bi-directional data.

As expected, input data flows from the buttons (as a means of UI) and the ADC unit (the raw

measured data). Additional input data is retrieved from the SD-card. During processing, the

information is passed between the MCU and the memory (via the cache memory – where active

variables are stored). After the data analysis is complete, outputs are passed to the LCD display, the

SD card and potentially the RS232 unit (unimplemented in the final firmware release, but

operational). In addition, while the device is active, certain activities may trigger the LEDs, to

provide the user with assurance of normal operation.

11

 APPENDIX D – MCU driver operation
Although the focus of this project is how the bearing state assessment algorithm works in

conjunction with the signal processing hardware, significant resources were spent on driver

programming which allows the various electronic subsystems to communicate with each other

through the central MCU.

This section details some of the non-algorithmic routines (hardware drivers) which had to be

manually coded in order to make the device function. Each driver is discussed in terms of functional

premise and philosophy rather than technical computing. This approach is deemed sufficient

considering the focus of this document.

Appendix C provides a background to this section.

D.1 ADC driver
The most recent ADC driver of the beta prototype is now discussed. This will differ from the driver

used for the alpha prototype, as the two systems use different ICs for the purpose. In fact, the alpha

prototype used an external IC connected to the main MCU whereas the beta prototype uses the on-

board system of the MCU, as explained in section 2.4.3. The premise and basic source code was

obtained from Microchip but had to be heavily modified to work with the current design and

compiler (Microchip Technology Inc, 2008).

Operational premise:

The framework of the driver, along with the oversampling technique (section 1.3.3.6) was obtained

from Microchip. Therefore, the entire driver was designed around this technique.

The philosophy involved the use of ‘ping-pong’ buffers. This involved the use of two buffers to

which the ADC can write data. The implementation then involved low-pass filtering and decimation

on the buffer that was already full, while filling the other buffer with new data.

A FIR filter was used for this driver, which of-course requires a history of previous samples to

calculate the next, filtered, data point. This implied that the buffers were intricately linked and care

had to be taken to ensure that, during the first few data points in the new buffer, the required

history in the old buffer was not yet overwritten (luckily, the MCU speeds are orders higher than the

ADC sampling rate, so realistically this was never expected to be a problem). This additionally

required the MCU to both read and write to the same buffer at the same – a requirement that

necessitated the use of the DMA (Direct Memory Access). As the name implies, this allows that ADC

module to bypass the MCU core and communicate directly with the appointed section of memory

(specifically, the section that housed the ping-pong buffers), freeing the MCU core to process the

data (filtering, decimation, etc.) without requiring it to administrate the ADC-memory data flow.

Preliminary configurations: Interrupt, timer and DMA

During initialisation, the ADC driver was programmed to ready a number of parameters. The most

important of which are:

 ADC resolution to 12 bit

12

 Points the ADC analogue input to the appropriate bit of a port (i.e. a specific pin on the chip)

 Synchronises the ADC conversion period to a general purpose timer and sets the period of

the timer to correspond to the desired sampling frequency

 Allocate the addresses of the ping-pong buffers

 Activates the DMA and links the ADC output buffer to the ping-pong buffer

 Sets the necessary flags (such as interrupt flags, buffer select flags and buffer full flags).

Main driver

The procedure followed by the driver is best described by means of a flow diagram, as in figure D1.

Figure D1: ADC driver flow diagram

The entire operation resides within a loop that repeats the number of times that the buffers require

to fill the memory with the desired amount of processed data samples (for reference, each buffer

was 512 bits long and 32 768 samples). When the buffers had, in turn, filled the memory with the

required amount of samples, the loop will exit and the ADC module switched off to save power (not

pictured). This counting process is illustrated in the blue box.

Within the loop there also exists a function that monitors whether the one buffer had been

completely filled with data from the ADC, after the other had been processed. This is necessary as

the MCU operates much faster than the ADC, implying that the MCU will finish processing the one

buffer before the ADC can finish filling the other. This function therefore allows the ADC the time

Buffer A Buffer B

Count number of times the

buffers were filled and

initiate loop exit, when

required

Wait for buffer full flag and

buffer select flag

DMA interrupt:

automatically triggered

when a buffer is full

MCU operation:

FIR, decimation, flag, UI,

store to memory

ADC operation:

Fill buffer using the DMA

13

required to fill the current buffer it is working on and temporarily suspends the MCU. After the ADC

has finished filling its buffer, the function will allow the buffers to switch allowing the MCU to

operate on the other buffer and allowing the ADC to refill the buffer that the MCU had been

operating on.

Had this function not been in place, a conflict would occur as the MCU would start processing the

same buffer that the ADC is filling with data, after it (the MCU) finished with the other buffer. This

process is illustrated in the left most green box. The function just explained is assisted by the DMA

interrupt (see note at the end of this section for a brief explanation on interrupts) which is triggered

when a buffer is full. The interrupt – represented by the right most green box – lets the main

function (the left most green box) know that the ADC had finished filling a buffer with data and that

switch has taken place.

In the meantime, while the one buffer is being filled with data, the other buffer is being processed

according to the requirements of the oversampling algorithm. During this time, the data in the

buffer is filtered, decimated and stored in the SRAM memory. The operations on the buffers are

illustrated by the purple boxes. The ADC will however still be occupied filling the other buffer. Once

it has finished doing so, a buffer full flag will be set.

After this process is finished, the loop would start over again. Therefore, a counter (in the first

function – indicated by the blue box) would increase in value and that function will then decide if

more samples are required.

Note

An interrupt is a function that automatically executes only when a certain condition is met and is not

explicitly called. Sources of interrupts include RS232 connections, timers, SPI interfaces, ADC units,

etc.

In this project, the interrupt function was configured to execute automatically when the ADC had

finished filling a buffer with data. The function relayed to the main driver that the ADC had finished

filling a buffer and also which buffer, specifically.

D.2 Memory driver
Introduction

The volatile SRAM of the alpha and beta prototypes (Static Random Access Memory) were used to

store the data samples that is being used by the algorithm. This was necessary as the internal cache

memory of the MCU was not large enough to house all the data. SRAM is an asynchronous type of

memory, implying that its operation is not synchronised to a clock pulse and can be utilised anytime,

as long as it is configured properly. In addition, the memory has 512k addressable locations of 8-bits

(one byte) each.

The memory is connected to the MCU via several ports. A control bus runs from one port on the

MCU to the memory chip (for turning on the chip, write command, read command), an address bus

for setting the address to write to or to be read from and the data bus, where the actual data

transfer takes place. The figure D2 illustrates the layout.

14

Figure D2: Memory bus connections to the MCU

Table D1: Memory address layout

Addr 0 Addr 1 Addr 2 Addr 3 Addr 4 Addr 5 Addr 6
…

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Digital number formats used

As mentioned, the ADC outputs integer data of 16 bits. Which implies that each sample had to be

stored in two separate memory locations. However, the algorithms work strictly with floating point

values which are 32 bits in length. Therefore, after all the data had been sampled by the ADC, every

data sample was converted to a floating point number of the same value. Thus, if the ADC yielded

digitised values of 12, 23, 120, 97, 571... (bear in mind, these values did not reflect values in

traditional ADC units, but digitized values based on the input pin from the ADC), they were

converted after the sampling process to 12.0000000, 23.0000000, 120.0000000, 97.0000000,

571.0000000….

Driver layout

The driver consist of several functions: Initialisation of the memory module, writing integer

numbers, writing floating point numbers, reading integer numbers, reading floating point numbers

and converting the integers existing in the memory to floating point numbers.

Initialisation

The initialisation routine is executed once during start-up of the device and configures the pins

connecting the address bus as output (as the address is always sent to the memory module –

whether one needs to read from the address or write to the address and, the command bus as

output (commands are always sent to the memory module). In addition, the memory module

requires a series of initial commands that needs to be sent to the module before the first operation.

Integer write

The next function that forms part of the driver suite is the integer write function. This function is

typically used when the ADC values are written to the memory.

When writing an integer value (of 16 bits), a control command is given to prepare the chip to receive

data whilst the data port (connecting to the data bus) is configured as an output. It then performs

two write operations. This is because the memory module is divided into 8 bit memory slots. The 16

Memory

module

MCU

Port A (Control)

Port B (Address)

Port C (Data)

Control bus

Address bus

Data bus

15

bit integer therefore had to be separated into a higher and lower byte and stored separately. The

operation of the integer write operation is illustrated in the figure below (note that when integers

are written, only the first and second - of four - memory slots are used. The third and fourth are

reserved for a floating point conversion, as will be explained imminently).

Memory

module

MCU

Port A (Control)

Port B (Address)

Port C (Data)

Memory

module

MCU

Port A (Control)

Port B (Address)

Port C (Data)

MCU

Port A (Control)

Port B (Address)

Port C (Data)

MCU

Port A (Control)

Port B (Address)

Port C (Data)

A notification is sent

to the memory

module, via the

control bus, that

data will be written

to the chip

The data port is now

configured to be an

output (from the

MCU perspective)

The MCU specifies

the first memory

address it requires.

The first byte is

written

The MCU specifies

the next memory

address it requires.

The second byte is

written

Memory

module

8-bit memory slots

Memory

module

16

Figure D3: Diagram depicting the steps of integer storage to the SRAM module

Therefore, if the number 14893 (binary number 0011101000101101) had to be stored in memory,

the first 8-bit memory location would contain 00111010, and the second would contain 00101101.

Floating point write

As seen in Figure D3, where integer write is illustrated, only the first and second, of four, memory

locations are used per write. This was because the integers used are 16 bits long, while each

memory location is only 8 bits longs. The integer therefore had to be divided into two 8 bit halves

and stored consecutively.

The same principle applies to floating point numbers as well. Only now, each floating point number

is 32 bits long. This implies that each number will be divided into four 8 bit quarters and stored

consecutively.

Incidentally, this is also the reason why only the first two of every four memory location are used by

the integer write routine – to leave space for when that number is later converted into a floating

point value.

This will be required, as the algorithms work with floating point values, yet the ADC outputs integers.

The table below illustrates how the transition to floating point numbers:

Table D2: Integer vs. floating point number layout in 8-bit memory

Data entry number Memory location Integer bytes Floating point bytes

1 0 Low byte Low byte

 1 High byte Middle byte 1

 2 Middle byte 2

 3 High byte

2 4 Low byte Low byte

 5 High byte Middle byte 1

 6 Middle byte 2

 7 High byte

3 8 Low byte Low byte

 9 High byte Middle byte 1

 10 Etc…

MCU

Port A (Control)

Port B (Address)

Port C (Data)

The next integer is

written four

memory locations

from the first byte of

the previous integer

(in case floating

point convers is

required)

17

Integer read

In many ways, reading integers from the memory is the reverse of writing them to memory. Firstly,

a command is sent via the control bus to the memory that data will be read from the chip. After

data port is then configured as an input, two read operations, from consecutive memory slots, are

performed and the results combined into a 16 bit integer value. A figure depicting driver operation

is provided below.

Memory

module

MCU

Port A (Control)

Port B (Address)

Port C (Data)

Memory

module

MCU

Port A (Control)

Port B (Address)

Port C (Data)

MCU

Port A (Control)

Port B (Address)

Port C (Data)

MCU

Port A (Control)

Port B (Address)

Port C (Data)

A notification is sent

to the memory

module, via the

control bus, that

data will be read

from the chip

The data port is now

configured to be an

input (from the MCU

perspective)

The MCU specifies

the first memory

address it requires.

The first byte is read

The MCU specifies

the next memory

address it requires.

The second byte is

read

18

Figure D4: Diagram depicting the steps of integer storage to the SRAM module

Floating point read

The similarities that exist between integer write and floating point write, exist between integer read

and floating point read. Assuming the numbers in the SRAM was converted to floating point values,

each value will be 32 bits (4 bytes) long – which implies that they will each be distributed across four

consecutive 8-bit memory addresses.

The floating point read routine would then follow a similar pattern to the integer read, except that

four distinct read cycles would be repeated and the four byte appended to each other to form the

number.

Integer to floating point conversion

This function was called after the sampling process was complete and the integer results from the

ADC stored in the memory. The function was fairly simple in that it consisted of reading each integer

(spread across two memory locations), converting the number to a floating point value, and

rewriting the number, overwriting the integer in the process.

D.3 SD Card driver
Introduction

The SD card is utilised in the beta prototype to store parameters of several gearboxes on as well as

analysis results.

The SD card reader and circuit communicates with the MCU by means of a Serial Peripheral Interface

(SPI). As the name implies, it is a serial interface which implies that data is sent, bit for bit, along a

data line. This is opposed to the SRAM, which utilises parallel data lines (a data bus). SPI connection

between two devices requires also a shared clock pulse between connected devices.

The complete SPI interface is illustrated below:

MCU

Port A (Control)

Port B (Address)

Port C (Data)

The next integer is

read four memory

locations from the

first byte of the

previous integer

19

Figure D5 illustrates the connections required for a SPI connection. The clock line synchronises the

data transfer between the master (in this application, the MCU) and the slave (in this application the

SD Card reader). The master out/slave in line is where data is transmitted from the master to the

slave device. This occurs bit for bit on each clock pulse. After 8 bits, the slave will typically recognise

that a full data byte has been received, which can then be used. Conversely, the master in/slave out

line is where the data is similarly transferred to the MCU.

The chip select line is unnecessary if only one peripheral is connected to the SPI port of the MCU. It

is however possible to connect several devices on the same port, in which case each device will have

its own chip select port, but share the same clock, master in and master out lines. Since only the SD

card is connected to the SPI port, this line is redundant.

Driver layout

Write operations

The compiler library includes a section that deals with SD card operations, including SPI connections.

It was soon discovered however that these operations are performed using a 512 bit buffer,

regardless of the length of the data that needs to be sent or received. Therefore, if only 16 bits of

data is written to the SD card by the user, a full 512 bits will be written with the final 504 bits being

zero.

This is not necessarily inefficient, but it does need to be harnessed, as the SPI cycle described above

will be repeated 64 times (512 bit buffer, implying 64 eight bit serial writes to the SD card), with

every write command.

Therefore, the write function initially stored all the data in a global buffer (of 512 bits long) every

time it was called, until the buffer was filled, upon which the entire buffer was written to the SD

card. The buffer would then be cleared and the process would start again. The process is illustrated

below:

SPI device

MCU

Clock

Chip select

Master out

Master in Slave out

Slave in

Chip select

Clock

10110101….10010100

00001010….10100011

Figure D5: SPI connections

20

Figure D6: SD card write flow diagram

Read operation

Reading operations work in a different way to write operations, however. Even though the chip still

read a full 512 bit sector with each call of standard SD read library function, it does not really matter,

because the algorithm requires very few reads per execution (<100 – it only reads the contents of

the parameter file), while thousands of write operations are performed (saving the time and

frequency domain outputs of the algorithm as well as the test log file).

With so few reads, it was not considered worthwhile to buffer all the data required from the files on

the SD card at once.

However, a distinction was made between what type of data is required from the SD card: integer

data, floating point data, or alpha numeric data. Bearing in mind, that from an end-user perspective,

the data on the SD card would appear as an ASCII file. A read would then be performed as illustrated

in the figures D7 and D8.

If is firstly necessary to briefly describe how an ASCII file is encoded: An ASCII file consists of

characters – some of which are printed and some of which are not. The long string of numbers and

symbols in figure D7 represent how the ASCII file in figure D8 is encoded (in actuality, it is more

complex than illustrated, but for the purposes of understanding the driver, the illustration is

sufficient). As can be seen, all the characters in figure D8 are present (including the spaces,

illustrated with double apostrophes). However, two extra characters are present: /r and /n. These

characters represent the carriage return and newline ‘characters’. In essence, the /r character

instructs the cursor to go the beginning of the current line and the /n character tells the cursor to go

the next line. In light of this, the string in figure D8 can be interpreted.

SD Card write routine

Main program requests a

write to SD operation

If 512 bit buffer full

True False

Erase buffer

Write buffer to

SD using SPI

communication

Write buffer to

SD using SPI

communication

21

With this in mind, the driver operation can be explained (the example of integer read will be

explained): The routine starts its first cycle with an empty buffer in which successive numerals will

be stored. Keeping this in mind, it commences reading the first character of the ASCII file, which is

an ‘A’. This value does not fall between the ASCII values of ‘0’ and ‘9’ and, since the buffer is still

empty, reads the next character: ‘b’. This character also does not fall between ‘0’ and ‘9’, the buffer

is still empty, and the next character is therefore read.

This process continues until a character is read that does fall between ‘0’ and ‘9’. In the example

above, this occurs at the 9th cycle of the code where the character ‘2’ is read. This character replaces

the first null (empty) bit in the buffer. The cycle then continues. Figure D7 depicts the following

cycle, where the character ‘5’ is read and appended to the buffer.

This will continue until another character is read which falls outside the ‘0’ to ‘9’ boundary (by the

12th cycle, in this example). This character would be the carriage return (/r) character. As it falls

outside the boundary, and the buffer is not empty anymore (it would contain the values of 256), the

routine would exit. A function would now read the buffer up to the first null character and convert

the string to an integer, which can be used for computations.

Int: <9 or

FP: <9 or >0 or ‘.’

Char: <A or

>z

True

A b c /r /n d e ‘ ‘ 2 5 6 /r /n f ‘ ‘ 1 6 ‘ ‘ g

Buffer empty?

2 5 / / etc

Exit
routine

Enter routine

Move to next digit

Buffer

Figure D7 legend:

/0 Empty bit - null

/r Carriage return

/n New line
Figure D8: An example ASCII file

Figure D7: SD read flow diagram (at 10
th

 cycle)

22

The algorithm works the same when searching for floating points. Only then, the boundary would

be ‘0’ to ‘9’ and the ‘.’ character would be tested for as well, and added to the buffer if found. The

results would again be passed to a function that reads the buffer up to the first null character. The

string would then be converted to a floating point number, which can be used.

The alpha numeric search works in the same way.

D.4 Button driver

Figure D9: Simplified button circuit

Figure D9 illustrates a simplified button circuit. The button is basically a spring loaded switch that

completes an electronic pathway once pressed, allowing the VDD voltage to appear on the pin, to

which the circuit is connected.

The driver utilises this by firstly setting the pin in question to be an input, implying that the MCU

reads the value on the pin. When the button is pressed, this will have the effect of changing a bit in

a standard port register, which is monitored by software when a button press is expected. The flow

diagram of driver operation is illustrated below:

Figure D10: Button driver flow diagram

MCU

Pin on port

VDD

Button

Check bit value MCU idle

1 0

Perform operation

required

23

D.5 LED driver

Figure D11: Simplified LED circuit

Figure D11, illustrates a simplified LED circuit. Driver operation is fairly straight forward, in that the

pin on the port needs to be configured as an output. When the pin is supplied with a voltage (via a

bit in the specific ports register), a voltage difference will exist across the LED, which will cause it to

illuminate.

D.7 LCD and RS232
There are two more peripherals that require mention: the LCD and the RS232. Of course, these

devices required drivers as well. They were not manually programmed however.

The LCD driver was obtained from Periseo and the adaptation required for it to function was small

enough not to warrant its own section.

Likewise, the RS232 driver – although not used in the final release of the firmware – was mostly

composed of a library function from the Mikroe compiler.

MCU

Pin on port

Ground

LED

24

APPENDIX E – Circuit design and layout

E.1 Circuit design
This section includes the design of the circuitry, i.e. the physical connections between the components (as opposed to their arrangement, as illustrated in

section E.2).

Note that this represents the circuit design as sent to that was manufactured. After manufacturing, it was found that several slight mistakes were made,

which were repaired after manufacturing and therefore is not included here.

Figure E1: Power supply circuit

25

Figure E2: Anti-aliasing filter circuit

26

Figure E3: Main circuit board design

27

E.2 Circuit layout
The circuit board layout is illustrated here. Note that the beta prototype used a four layer PCB. This implies that four separate layers were sandwiched and

printed. The electronic components were placed on the top and bottom layers, which also housed the majority of the copper connection lines between

components.

A third and fourth layer exists between these outer layers. One contained a common ground and another a common power level. These layers are not

pictured.

Figure E4: Top printed layer

28

Figure E5: Top printed layer

29

APPENDIX F – ADM Beta prototype illustrations

Figure F1: ADM beta prototype photo (switched off)

Figure F2: ADM beta prototype photo (switched on)

30

Figure F3: ADM prototype illustrating RS232 and BNC connector

Figure F4: ADM prototype illustrating RS232 and BNC connector with cables

31

Figure F5: Photo illustrating LCD and LEDs

Figure F6: LCD writing

32

Figure F7: SD card and buttons

Figure F8: Naked PC board

33

APPENDIX G – Equipment used
Table G1: Equipment used

Item Make Model/Serial number Specification

EDAQ MEASUREMENT EQUIPMENT

eDAQ Somat 762049 N/A

Field test accelerometer PCB M627A01 / SN11990 103 mV/g

Field test accelerometer PCB M627A01 / SN11991 102 mV/g

Field test accelerometer PCB M627A01 / SN1151 105 mV/g

Field test accelerometer PCB M627A01 / SN4670 103 mV/g

PROTOTYPE MEASUREMENT EQUIMENT

Hardware accelerometer IMI 603C01 / SN178281 95 mV/g

Calibration accelerometer PCB M627A01 / SN4670 103 mV/g

LVDT Instron PL25N / 2109 10 mm/V

	Abstract
	Acknowledgements
	Glossary
	List of Figures
	List of Tables
	1. Introduction
	1.1 Background
	1.2 Vibration monitoring fundamentals
	1.2.1 General gearbox condition monitoring
	1.2.2 Speed measurements
	1.2.3 Bearing faults
	1.2.4 Research trends

	1.3 Electronic application considerations
	1.3.1 Synopsis
	1.3.2 Processor type
	1.3.3 Software implementation
	1.3.3.1 Development rationale
	1.3.3.2 Algorithm efficiency primer
	1.3.3.3 Sorting algorithm
	1.3.3.4 Fast Fourier Transform performance
	1.3.3.4.a Basic Fast Fourier transform
	1.3.3.4.b Fast Fourier Transform optimisation

	1.3.3.5 Window performance
	1.3.3.5.a Spectral resolution
	1.3.3.5.b Minimum resolution bandwidth (MRB)
	1.3.3.5.c Coherent gain
	1.3.3.5.d Window comparison
	1.3.3.5.d.i Spectral comparison
	1.3.3.5.d.ii Computational comparison

	1.3.3.6 Achieving higher ADC resolution using oversampling and decimation

	1.4 Scope of Research
	1.4.1 Literature survey
	1.4.2 Algorithm development
	1.4.3 Experimental hardware work
	1.4.4 Alpha prototype
	1.4.5 Beta prototype

	1.5 Summary of chapters

	2. Design Philosophy
	2.1 Preliminaries
	2.2 Experimental development model (XDM)
	2.2.1 Overview
	2.2.2 Limitations
	2.2.2.1 ADC functionality
	2.2.2.2 Memory space

	2.3 Advanced development model – Alpha prototype
	2.3.1 Memory space required for vibration data
	2.3.2 Spectrum characteristics
	2.3.2.1 Lowest frequency component measureable
	2.3.2.2 Frequency spectrum resolution

	2.3.3 Architecture
	2.3.3.1 MCU
	2.3.3.2 LCD and keypad
	2.3.3.3 Asynchronous memory
	2.3.3.4 Analogue to digital converter
	2.3.3.5 External Programmer and ICD
	2.3.3.6 Anti-aliasing filter

	2.3.4 Limitations
	2.3.4.1 Data retention
	2.3.4.2 System independence
	2.3.4.3 Speed of operation
	2.3.4.4 Accelerometer power supply

	2.4 Advanced development model - Beta prototype
	2.4.1 Clock speed increase
	2.4.2 Addition of external storage and serial communication with a PC
	2.4.3 Signal acquisitioning and elimination of external ADC
	2.4.4 File system
	2.4.5 User interface

	3. Algorithm development
	3.1 Algorithm premise
	3.2 Bearing assessment process
	3.2.1 Detrending and windowing
	3.2.2 FFT computation
	3.2.3 Input speed
	3.2.4 Identifying the relevant spectral peaks
	3.2.5 Bearing state assessment
	3.2.6 Statistical parameter (median) search boundaries
	3.2.7 Exclusion criteria
	3.2.8 Fault frequency search boundaries

	4. Laboratory testing
	4.1 Overview
	4.2 Alpha prototype laboratory testing
	4.2.1 Exploratory test
	4.2.1.1 Description
	4.2.1.2 Test setup
	4.2.1.3 Test bearings
	4.2.1.4 Diagrammatical illustration
	4.2.1.5 Results
	4.2.1.5.a Comparison: Damaged/Undamaged
	4.2.1.5.b Algorithm testing
	4.2.1.5.c Exploratory test conclusion

	4.2.2 Developed hardware testing
	4.2.2.1 Setup
	4.2.2.2 Tests results

	4.2.3 Conclusion

	4.3 ADM Beta prototype calibration
	4.3.1 Summary
	4.3.2 Test setup
	4.3.3 Procedure
	4.3.4 Calibration Philosophy
	4.3.5 Results

	5. Field testing
	5.1 Measurement chronology and rationale
	5.2 Initial data gathering campaign
	5.2.1 Conveyor belt drive layout
	5.2.2 Test setup instrumentation
	5.2.3 Signal flow
	5.2.4 Test procedure

	5.3 ADM Alpha prototype field testing
	5.3.1 Test description
	5.3.2 Test setup
	5.3.2.1 eDAQ system
	5.3.2.2 ADM Alpha Prototype

	5.4 ADM Beta prototype field testing
	5.4.1 Test description
	5.4.2 Test setup
	5.4.2.1 eDAQ system
	5.4.2.2 Prototype

	6. Field testing results and interpretation
	6.1 Chronological discussion
	6.2 Initial data gathering campaign
	6.2.1 Vibration analysis definition
	6.2.2 Time domain analysis
	6.2.3 Frequency domain analysis
	6.2.3.1 Initial remarks
	6.2.3.2 No damage
	6.2.3.3 Moderate Damage
	6.2.3.4 Severe Damage

	6.2.4 Success rate

	6.3 Field testing of the Alpha prototype at SASOL
	6.3.1 Results and analysis
	6.3.2 General comments about the performance of the hardware during the test

	6.4 Field testing of the Beta prototype
	6.4.1 Signal reproduction accuracy
	6.4.2 Comparison between the Beta prototype and SASOL data
	6.4.3 Inference accuracy
	6.4.3.1 Samples of damaged bearings
	6.4.3.2 Samples of undamaged bearings
	6.4.3.3 Misdiagnoses
	6.4.3.4 Discussion

	7. Conclusion
	7.1 Cost analysis
	7.2 Project review
	7.3 Summary of findings
	7.3.1 Experimental development model
	7.3.2 Advanced development model – Alpha prototype
	7.3.3 Advanced development model – Beta prototype

	7.4 Recommendations
	7.4.1 Input speed and calibration amplitude inclusion to the param.txt file
	7.4.2 Auto calibrate routine
	7.4.3 Gear and shaft fault finding
	7.4.4 Spectral averaging, higher quality SD card and improved SD card routines
	7.4.5 Algorithm calibration
	7.4.6 Signal interference compensation

	References
	APPENDIX A – XDM evaluation board
	APPENDIX B – ADM Beta prototype hardware specification
	APPENDIX C – Electronic fundamentals and configuration
	C.1 Microcontroller I/O ports primer
	C.2 Circuit flow diagram

	APPENDIX D – MCU driver operation
	D.1 ADC driver
	D.2 Memory driver
	D.3 SD Card driver
	D.4 Button driver
	D.5 LED driver
	D.7 LCD and RS232

	APPENDIX E – Circuit design and layout
	E.1 Circuit design
	E.2 Circuit layout

	APPENDIX F – ADM Beta prototype illustrations
	APPENDIX G – Equipment used

