Conversion of calcium sulphide to calcium carbonate during the process of recovery of elemental sulphur from gypsum waste

M. de Beera,b,*, J.P. Mareec, L. Liebenbergb, and F.J. Doucetd,*

a DST/CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial Research, PO Box 395, Pretoria 0001, Republic of South Africa.
b Centre for Research and Continued Engineering Development, North-West University, Pretoria, Republic of South Africa.
c Department of Environmental, Water and Earth Science, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria 0001, Republic of South Africa.
d Industrial Mineralogy Laboratory, Council for Geoscience, Private Bag X112, Pretoria 0001, Republic of South Africa.

* Corresponding authors: mdebeer@csir.co.za (M. de Beer; Tel: +27 (0) 841 4987); fdoucet@geoscience.org.za (F.J. Doucet; Tel: +27 (0) 841 1300)

Abstract

The production of elemental sulphur and calcium carbonate (CaCO\textsubscript{3}) from gypsum waste can be achieved by thermally reducing the waste into calcium sulphide (CaS), which is then subjected to a direct aqueous carbonation step for the generation of hydrogen sulphide (H\textsubscript{2}S) and CaCO\textsubscript{3}. H\textsubscript{2}S can subsequently be converted to elemental sulphur via the commercially available chemical catalytic Claus process. This study investigated the carbonation of CaS by examining both the solution chemistry of the process and the properties of the formed carbonated product. CaS was successfully converted into CaCO\textsubscript{3}; however, the reaction yielded low-grade carbonate products (\textit{i.e.} < 90 mass % as CaCO\textsubscript{3}) which comprised a mixture of two CaCO\textsubscript{3} polymorphs (calcite and vaterite), as well as trace minerals originating from the starting material. These products could replace the Sappi Enstra CaCO\textsubscript{3} (69 mass % CaCO\textsubscript{3}), a by-product from the paper industry which is used in many full-scale AMD neutralisation plants but is becoming insufficient. The insight gained is now also being used to develop and optimize an indirect aqueous CaS carbonation process for the production of high-grade CaCO\textsubscript{3} (\textit{i.e.} > 99 mass % as CaCO\textsubscript{3}) or precipitated calcium carbonate (PCC).

Keywords

Gypsum waste; carbonation; valorisation; calcium carbonate; calcium sulphide

1. Introduction

The chemical manufacturing industry and the industrial waste remediation sector generate millions of tons of gypsum-rich solid wastes and sludge. Those include processes such as phosphoric, hydrofluoric, citric and boric acid production, treatment of waste from desulphurisation of flue gases from coal-fired power stations, ore smelting, and acid mine water treatment. Most of this poor-quality gypsum is generally regarded as unsuitable for further use, and is therefore stored in large stockpiles. The remediation of acid mine drainage (AMD) using alkaline-based processes gives rise to a gypsum-rich sludge which requires proper environmental management [1] in order to prevent serious environmental pollution such as airborne dust and contamination of groundwater resources. An alternative approach to the often expensive management of stockpiles is to treat the sludge with the aim of converting it into potentially useful products [2].
Gypsum waste can represent a good resource for the recovery of sulphur (S) and calcium carbonate (CaCO\textsubscript{3}) [3]. Elemental sulphur is an essential raw material for many manufacturing industries such as fertilisers, acids, steel, petroleum, insecticides, titanium dioxide, and explosives [4]. Its application as an alternative feedstock for the production of polymeric materials has also been recently suggested [5]. CaCO\textsubscript{3} also has many uses in a wide variety of industrial and commercial applications, either as ground calcium carbonate (GCC; for instance in the manufacturing of concrete or Portland cement, for producing lime to be used in soil stabilization and acid neutralization, for water treatment, and flue gas desulphurization [6]) or as precipitated calcium carbonate (PCC; for instance as a filler and coating pigment in paper, plastics, paints, rubbers and adhesives [7,8].

A multi-step process for the recovery of sulphur and CaCO\textsubscript{3} from gypsum waste has been proposed [3]. It involves the following three steps:

(i) Thermal reduction (900°C-1100°C) of gypsum waste to produce calcium sulphide (CaS) using reducing agents (e.g. solid carbon materials such as coal or activated carbon (Eq. (1); [9,10]), carbon monoxide gas (Eq. (2); [11,12]), or hydrogen gas (Eq. (1); [13]).

\[
\begin{align*}
\text{CaSO}_4 (s) + 2C (s) & \rightarrow \text{CaS} (s) + 2\text{CO}_2 (g) \quad (1) \\
\text{CaSO}_4 (s) + 4\text{CO} (g) & \rightarrow \text{CaS} (s) + 4\text{CO}_2 (g) \quad (2) \\
\text{CaSO}_4 (s) + 4\text{H}_2 (g) & \rightarrow \text{CaS} (s) + 4\text{H}_2\text{O} (\ell) \quad (3)
\end{align*}
\]

(ii) Direct aqueous carbonation of CaS to produce hydrogen sulphide (H\textsubscript{2}S) and CaCO\textsubscript{3}. The reaction proceeds according to Eq. (4).

\[
\text{CaS} (s) + \text{H}_2\text{O} + \text{CO}_2 (g) \rightarrow \text{H}_2\text{S} (g) + \text{CaCO}_3 (s) \quad (4)
\]

(iii) Recovery of elemental sulphur from H\textsubscript{2}S via the commercially available chemical catalytic Claus process [14].

Two steps of the process (steps (i) and (iii)) are fairly well understood [15,16], but little effort has been given to the investigation of the second step, except for two independent studies on the stripping of H\textsubscript{2}S [3], and on the conversion of CaS into H\textsubscript{2}S and CaCO\textsubscript{3} but making use of methyldiethanolamine (MDEA) as a CO\textsubscript{2} and H\textsubscript{2}S solubility catalyst [17]. The primary objective of this paper, which focuses on step (ii) above (eq. (4)), was therefore to provide a better understanding of the direct aqueous carbonation reaction between CaS and CO\textsubscript{2}, by investigating both the solution chemistry of the process and the properties of the formed carbonated product.

2. **Experimental section**

2.1 **Materials preparation and characterization**

A calcium sulphide-rich calcine powder (hereafter denominated CaS\textsubscript{r}) was produced from a gypsum waste sample collected at an acid mine water neutralisation plant in South Africa. CaS\textsubscript{r} was generated in an electrically heated kiln at 1080°C using an existing thermal reduction process with
duff coal as the reducing agent [15]. The sample was then stored in sealed plastic bags inside a container filled with nitrogen gas to ensure its stability and to avoid spontaneous oxidation to CaSO₄ [18].

The elemental and mineralogical compositions of the gypsum waste sample, CaS, and the formed carbonate products were analysed using XRF (PANalytical Axios X-ray fluorescence spectrometer equipped with a 4 kW Rh tube) and XRD (Bruker D8 Advance X-ray diffractometer), respectively. The samples were micronized to sub-30 µm particle size for increased accuracy prior to XRD analysis. The samples were further characterised for their total carbon and sulphur content using an Eltra CS800 Carbon & Sulphur analyser (Eltra GmbH, Germany).

2.2 Direct aqueous carbonation experiments

Industrial-grade carbon dioxide (CO₂; Air Liquide, South Africa) was used in all carbonation experiments. The rationale for using CO₂ in a direct carbonation setup was that i) it promotes CaS dissolution in water, ii) it induces the stripping of hydrogen sulphide gas (H₂S) from solution, and iii) it stimulates the carbonation of solubilized calcium derived from CaS dissolution to form calcium carbonate.

All experiments were performed in a 3-liter Perspex stirrer tank batch reactor equipped with four equally spaced baffles. The reactor was equipped with a sparger with small diameter (<1 mm) openings for the introduction of the CO₂ gas. A mechanical overhead stirrer (RW 20 digital from IKA®-Werke GmbH & Co. KG, Germany) and a Rushton impeller (manufactured by Manten Engineering, South Africa) were used for mixing. The Rushton impeller had six vertical blades which are fixed onto a disk. This disk design ensured that most of the torque of the motor was consumed at the tips of the agitator. The CO₂ gas flow rate was controlled using a rotameter (Fisher & Porter, model 10A6132M/T62). All experiments were conducted at atmospheric pressure (Pretoria, South Africa).

CaS, was subjected to direct aqueous carbonation and stripping in a one-step process. A preliminary experiment was performed under set conditions to better understand the prevailing processes. For this purpose, CaS, was first dispersed in distilled water to obtain a 10 wt% CaS, slurry. After 30 min of continuous mixing at 300 min⁻¹, CO₂ gas was introduced at a constant flow rate of 2.94 ℓ CO₂/min/kg CaS, into the slurry. The pH, electrical conductivity and temperature of the suspension were logged using a Hanna HI 2829 multiparameter logger at 5 second intervals to collect time-series data on the dynamics of the system. The reaction was terminated when the pH and electrical conductivity remained unchanged for 10 to 15 min.

Upon completion, the suspension was removed from the reactor and filtered using Whatman grade no. 1 filter paper; the filter cake was thoroughly rinsed with water, dried at mild temperature (i.e 60° C; to prevent thermal conversion of gypsum [19]) for 24 h and characterized by XRD and high-vacuum SEM. Throughout the experiments, sub-samples of the suspensions were collected from the reactor at regular intervals and filtered using 0.45µm PALL acrodisc PSF GxF/GHP membranes (Microsep (Pty) Ltd, South Africa). The filtrates were analysed for their calcium and sulphide content. Total sulphide concentration (sum of dissolved H₂S, HS⁻ and S²⁻) of the filtrates was determined iodometrically, where an excess of added iodine was titrated back with sodium
thiosulfate. The analysis was carried out manually on filtered (for soluble sulphide) and unfiltered (for total sulphide, i.e. in both solution and solid phases) samples according to procedures 4500-S²⁻ /iodometric method described in Standard Methods [20]. The sulphide in the solid phase and the sulphide stripped from solution were calculated by difference. The concentration of calcium ions in solution was determined by direct complexometric titration with ethylene-diamine tetraacetate (EDTA) according to the procedure 3500-Ca/EDTA titrimetric method [20]. High-vacuum scanning electron micrographs were collected using a JEOL JSM7500 microscope to obtain information on morphologies and size distribution of the solid materials. Samples were dispersed on carbon tape and sputter-coated with a thin, conductive layer of gold using a Emitech K950X sputter coater. The acceleration voltage was 2 kV.

The preliminary experiment was followed by a second set of experiments, where the effect of the stirring rate (180 vs 300 vs 480 min⁻¹) on solution dynamics and the influence of the CO₂ flow rate (2.53 vs 8.80 vs 14.83 vs 29.33 vs 44.00 ℓ CO₂/min./kg calcine) on both solution dynamics and the CaCO₃ particle characteristics were also studied.

3. Results and Discussion

3.1 Materials characterization

The XRD pattern of the untreated gypsum waste demonstrated that the primary mineral phase was gypsum (CaSO₄·2H₂O; 96.9%), which co-existed with magnesite (MgCO₃; 3.1%). The amount of gypsum contained in the waste was further confirmed by the total content of calcium and sulphur determined by XRF (Table 1) and by carbon and sulphur analysis (Table 2) respectively. The sample

| Chemical composition (wt %) of starting material and formed products. |
|-------------------------|----------------|----------------|---------|--------|--------|--------|
| SiO₂ | Al₂O₃ | Fe₂O₃(%) | MgO | CaO | SO₃ | LOI¹ |
| 0.13 | 0.08 | 0.03 | 0.27 | 30.18 | 47.71 | 21.59 |
| 4.07 | 2.58 | 0.90 | 0.07 | 50.84 | 60.41 | -21.60² |
| 3.21 | 2.14 | 1.17 | 0.02 | 40.01 | 5.92 | 44.73 |

¹ Loss on ignition
² Sample CaSᵢ exhibited a negative loss on ignition. This characteristic suggested the possible occurrence of a weight increase arising from the oxidation of CaS to CaSO₄, which would have been higher than the weight loss caused by removing volatiles from the mineral structures. Similar observations were already made for iron-rich coal ashes, in which case negative loss on ignition was best explained by the oxidation of Fe³⁺ to Fe²⁺ (FeO to Fe₂O₃) and its associated weight increase [35].
Table 2 Carbon and sulphur content (wt %) of starting material and formed products.

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated gypsum waste</td>
<td>0.29</td>
<td>18.17</td>
</tr>
<tr>
<td>CaS</td>
<td>16.76</td>
<td>28.65</td>
</tr>
<tr>
<td>Formed carbonate</td>
<td>20.91</td>
<td>3.37</td>
</tr>
</tbody>
</table>

was characterised by a mean diameter D(v,0.5) of 43.86 µm, with 90% of the particles being smaller than 176.70 µm. The gypsum waste was converted into CaS by thermal reduction in an electrically heated kiln at 1080°C, using duff coal as the reducing agent [15].

The bulk mineralogical composition of CaS was also determined. The most abundant mineral was calcium sulphide (CaS; 50.7%), also called oldhamite. Less abundant mineral phases included hydroxyapatite (Ca₈.₆₆(PO₄)₆(OH)₂), quartz (SiO₂), anhydrite (CaSO₄), and lime (CaO). The sample contained 50.84% Ca (Table 1) and 28.65% elemental sulphur (Table 2), which were present as both calcium sulphide and anhydrite (for Ca and S), as well as hydroxyapatite (for Ca). CaS contained some impurities (e.g. Al, Fe; Table 1), which originated most probably from duff coal used during the thermal reduction process.

3.2 Solution chemistry

Theoretically, the direct reaction between solid CaS dispersed in water and CO₂ produces H₂S gas and precipitated CaCO₃ according to Eq. (5). The reaction involves at least four primary coexistent mechanisms: (i) aqueous dissolution of CaS and other soluble mineral phases, (ii) aqueous dissolution of CO₂, (iii) precipitation of carbonates, and (iv) stripping of H₂S.

\[
\text{CaS (s) + H}_2\text{O (ℓ) + CO}_2 (g) \rightarrow \text{H}_2\text{S (g) + CaCO}_3 (s) \quad (5)
\]

The dynamics existing and evolving between these four mechanisms in the CaS-H₂O-CO₂-H₂S system was investigated by monitoring the profile of several solution parameters over time: conductivity and temperature (Figures 1a and 1b respectively), and pH and the chemical distribution of sulphide species between solid, liquid and gaseous phases (Figure 2).

Preliminary experiment – Solid CaS was initially suspended in water (no CO₂) and was continuously mixed for 30 min. Solution pH increased rapidly from 6.35 to 11.56 within the first minute, and stabilized at 11.71 after about 2 minutes of stirring. This was accompanied by an increase in solution conductivity (ca. 2.5 mS/cm) and temperature (ΔT 0.16°C), and in the concentration of soluble sulphur (9 mmol/l as S) and calcium (9 mmol/l as Ca); these observations could be ascribed to the dissolution of CaS present in CaS. The dissolution of anhydrite and hydroxyapatite cannot be discounted and may have contributed to the release of some calcium (Ca²⁺) and sulphur (S²⁻) in solution, although only to a small extent in comparison to CaS. CaS dissolution proceeded via the
release of Ca\(^{2+}\) and S\(^{2-}\) ions in water, with S\(^{2-}\) subsequently binding with proton ions from the water molecules and thereby generating equimolar amounts of hydroxide ions (OH\(^-\)). As a result, a solution containing soluble calcium hydrosulfide (Ca(HS)\(_2\)) (Eq. (6); [21]), which was characterized by a pH of 11.71 (Figure 2), was generated. CaS is a sparingly soluble salt in water and reported values for its solubility at 25°C varies widely, with published values ranging from 0.125 g/l to 1.0 g/l [22-24]. The difference can be ascribed to the complicated dissolution mechanisms involved. The high sulphur content (733 mmol/l as S) of the solids dispersed in water and the low amount (9 mmol/l as S) of dissolved S in solution measured following a period of 30 min of dissolution prior to the addition of CO\(_2\) (time = 0 min) confirmed the low solubility of CaS in water (Figure 2).

\[
2\text{CaS (s)} + 2\text{H}_2\text{O (ℓ)} \leftrightarrow \text{Ca(HS)}_2 \text{(aq)} + \text{Ca(OH)}_2 \text{(s)}
\]

(6)
Following the addition of CO$_2$ to the aqueous CaS suspension, temporal changes in the conductivity and temperature of the solution were observed. They exhibited similarly-shaped profiles, with both parameters having reached their maxima after 200-210 min of reaction (Figure 1). These profiles correlated closely with the one found for the distribution of soluble sulphur species (Figure 2). When adding CO$_2$ (time = 0 min), the pH initially dropped sharply from 11.7 to 9.6 within a short period of time (< 1 min), after which it continued decreasing more gradually down to ca. 6.8. The gradual drop in pH exhibited 3 different slopes: (1) from 1 to 125 min, (2) from 125 to 210 min, and (3) from 210 to 240 min, before stabilizing at about 6.8 from 250 min onwards.

During the first stage of the reaction (0 to 200 min), the total S concentration in the reactor remained constant at about 708 mmol/l (as S). The S concentration in solution increased steadily to a maximum of 684 mmol/l whilst the S content in the undissolved material decreased at the same rate from about 730 mmol/l to about 8 mmol/l. The steady increase in dissolved S upon CO$_2$ addition, which was not observed in the absence of CO$_2$, indicated the greater solubility of CaS in water in the presence of dissolved CO$_2$. This was further confirmed by the increase in solution conductivity from 2.57 to 43.8 mS/cm during the first 120 min. During this time, little, if any, S was stripped from the system (as indicated by the constant total S concentration in the reactor), which can be explained by the hydrogen sulphide speciation diagram (Figure 3) illustrating the required pH conditions for H$_2$S formation. The diagram was obtained by calculating the fractional composition of the sulphide species in water using the dissociation constants for hydrogen sulphides at 25°C. The ionization of H$_2$S in water proceeds in two steps and can be calculated from the dissociation constants (K$_1$ = 9.1 x 10$^{-8}$ and K$_2$ = 1.1 x 10$^{-12}$; [23]) and Eq. 7 and 8.

\[
\begin{align*}
H_2S (aq) + H_2O (l) &\leftrightarrow HS^- (aq) + H_3O^+ (aq); \ pK_{a1} = 7.04 \\
HS^- (aq) + H_2O (l) &\leftrightarrow S^{2-} (aq) + H_3O^+ (aq); \ pK_{a1} = 11.96
\end{align*}
\]
Temporal chemical analysis of the soluble sulphide and soluble calcium species (Figure 4, time = 0 to 120 min) showed that one mole of \(\text{Ca(HS)}_2 \) was formed for every two moles of \(\text{CaS} \) dissolved in the reactor, which is in agreement with Eq. (9).

\[
2\text{CaS (s) + CO}_2 (g) + \text{H}_2\text{O (aq)} \leftrightarrow \text{Ca(HS)}_2 (\text{aq}) + \text{CaCO}_3 (s) \tag{9}
\]

Figure 4 The distribution of soluble sulphide and soluble calcium concentrations with time of a calcine slurry in equilibrium with distilled water upon \(\text{CO}_2 \) addition (\(\text{CaS} \) slurry containing 22.7 g/l as S; initial pH: 11.7; gas flow: 2.94 l \(\text{CO}_2 \)/min./kg calcine; stirring rate: 180 min\(^{-1}\)).

3.3 Effect of stirring rate

Solution dynamics – Figure 5 shows the effect of the stirring rate on \(\text{CaS} \) dissolution and \(\text{H}_2\text{S} \) stripping from the calcine slurry. During the first stage of the reaction, the electrical conductivity increased mainly as a result of \(\text{CO}_2 \) gas absorption and \(\text{CaS} \) dissolution, and decreased in the second stage as a
Figure 5 Effect of stirring rate on a) the solution conductivity, b) pH, c) total sulphide concentration, d) soluble sulphide concentration, e) sulphide in solid phase and f) sulphide stripped from solution with time (CaS slurry containing 22.7 g/ℓ as S; initial pH: 11.7; gas flow-rate: 2.94 ℓ CO₂/min/kg calcine).

result of H₂S gas stripping and CaCO₃ precipitation (Figure 5 (a)). With a stirring rate of 180 min⁻¹ the reaction was complete (as indicated by levelling off of all the salient parameters) in approximately 390 min, while the use of a stirring rate of 300 min⁻¹ and 480 min⁻¹ reduced the completion time of
the reaction down to approximately 240 min and 160 min, respectively. Both the rate of CaS dissolution and H$_2$S were positively influenced by faster stirring rates (Figure 5 (a)-(f)). The Rushton impeller used in this study was a radial flow type specially designed to provide high shear conditions required for breaking gas bubbles and thereby increasing the rate of gas transfer. In systems where mass transport is the rate-determining step, it is possible to increase the reaction rate by increasing the mass transfer rate [25]. For solid particles, the interfacial area is generally determined by the physical appearance of the particle and there is therefore little benefit in increasing the stirring rate. However, for gas reactions an increase in stirring rate can generate smaller bubbles and can consequently increase the interfacial area of CO$_2$ gas bubbles. The increased interfacial area of the gas phase is directly related to an increase in the mass transfer rate [26]. The current experiments confirmed that faster reaction rates could be achieved by increasing stirring rates in the case of direct aqueous carbonation reactions. Table 4 illustrates that an increase in the stirring rate accelerated both the CaS dissolution reaction as well as the carbonation reaction.

3.4 Effect of CO$_2$ flow rate

Solution dynamics – The effect of the CO$_2$ gas flow rate on the temporal distribution of soluble sulphide concentrations was investigated. A summary of the calculated reaction rates for various CO$_2$ flow rates is presented in Table 5. As shown in Figure 6, the reaction was complete (as indicated by the levelling off of soluble sulphide concentration) in approximately 86 min at a flow-rate of 2.53 ℓ CO$_2$/min/kg CaS$_r$, while at 8.80, 14.93 and 29.33 ℓ CO$_2$/min/kg CaS$_r$, the reactions were completed in 38, 26 and 18 min, respectively. The dissolution of gaseous CO$_2$ in solution is generally the first rate-limiting step in direct carbonation reactions [27], but it can be enhanced by increasing the CO$_2$ flow rate [28] when working at atmospheric pressure and thereby ensuring that excess carbonate ions are present relative to calcium ions. However, a further increase of the flow rate to more than 29.33 ℓ CO$_2$/min/kg CaS$_r$ had little effect on the overall reaction time (Table 5 and Figure 6). If the
solubilisation of CO₂ was the limiting factor, no further improvement in CO₂ dissolution with increased flow rates would be evident due to the solubility of CO₂, which is constant at the given conditions. For example, at 25°C and 1 atmosphere, the solubility of CO₂ is about 0.09 ℓ CO₂ per 100 ml of water [29]. When the CO₂ gas flow rate is higher than the solubility of CO₂ gas in water, the excess CO₂ gas cannot be adsorbed and will run through the system, eventually escaping from the gas phase. Under the specific experimental conditions, it is also possible that the dissolution of CaS might have been the rate-limiting step (not further investigated to confirm this mechanism). If solubilisation of calcium was slower than CO₂ dissolution, the overall reaction time will also not increase upon increased CO₂ flow rates.

It was also observed that the maximum sulphide concentration measured in solution was lower than that of total sulphide added to the system as CaS (i.e. 708 mmol/ℓ as S) for all CO₂ flow rates tested (Figure 6). Given that the sulphur content of all the carbonate products generated at different CO₂ flow rates was very low (< 0.15 mass % (as S)), the loss of sulphur from the system could essentially be attributed to the escape of volatile H₂S gas.

CaCO₃ produced – The effect of CO₂ flow rate on the crystal structure and polymorphism of the formed CaCO₃ products was also investigated. CaCO₃ has three anhydrous crystalline forms (i.e. calcite, aragonite and vaterite). In this study, calcite and vaterite were the only polymorphs of CaCO₃ that were identified, regardless of the CO₂ flow rate used (Tables 3 and 6). The distribution of the

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Chemical formula</th>
<th>Low-grade CaCO₃¹ (wt %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcite</td>
<td>CaCO₃</td>
<td>87.65</td>
</tr>
<tr>
<td>Vaterite</td>
<td>CaCO₃</td>
<td>0.59</td>
</tr>
<tr>
<td>Fluorite</td>
<td>CaF₂</td>
<td>1.22</td>
</tr>
<tr>
<td>Quartz</td>
<td>SiO₂</td>
<td>1.62</td>
</tr>
<tr>
<td>Apatite</td>
<td>Ca₅(PO₄)₃OH</td>
<td>3.46</td>
</tr>
<tr>
<td>Anhydrite</td>
<td>CaSO₄</td>
<td>5.40</td>
</tr>
<tr>
<td>Oldhamite</td>
<td>CaS</td>
<td>0.05</td>
</tr>
</tbody>
</table>

¹Low-grade CaCO₃ is a published terminology [6] which refers to carbonate material containing < 90 mass % as CaCO₃.

Table 3 Mineralogical composition (wt %) of low-grade calcium carbonate formed, as determined by XRD using Rietveld refinement.

<table>
<thead>
<tr>
<th>Stirring rate (min⁻¹)</th>
<th>Process step</th>
<th>Rate (g/ℓ/min (as S))</th>
<th>Standard deviation (±)</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td>CaS dissolution</td>
<td>0.116</td>
<td>0.002</td>
<td>0.9975</td>
</tr>
<tr>
<td></td>
<td>H₂S stripping</td>
<td>-0.127</td>
<td>0.002</td>
<td>0.9972</td>
</tr>
<tr>
<td>300</td>
<td>CaS dissolution</td>
<td>0.218</td>
<td>0.005</td>
<td>0.9954</td>
</tr>
<tr>
<td></td>
<td>H₂S stripping</td>
<td>-0.205</td>
<td>0.002</td>
<td>0.9993</td>
</tr>
<tr>
<td>480</td>
<td>CaS dissolution</td>
<td>0.355</td>
<td>0.013</td>
<td>0.9948</td>
</tr>
<tr>
<td></td>
<td>H₂S stripping</td>
<td>-0.313</td>
<td>0.005</td>
<td>0.9985</td>
</tr>
</tbody>
</table>

Table 4 Effect of stirring rate on reaction rate (CaS slurring containing 22.7g S/ℓ; initial pH: 11.7; gas flow-rate: 2.94 ℓ CO₂/min/kg calcine).
combined CaCO₃ phases reached 86-88 mass % (the sum of calcite and vaterite) in every sample produced, whilst mineral impurities (sum of all the non-CaCO₃ mineral phases) amounted to 12-14 mass %. CaCO₃ discoloring could not be satisfactorily explained by the presence of the mineral impurities detected by XRD (Tables 3 and 6); it was probably due to ash from the duff coal used as reducing agent in the thermal reduction step, and possibly to a lesser extent to iron impurities (1.17% Fe₂O₃; Table 1). Based on their carbonate contents, the greyish products (Figure S1)

Supplementary Figure S1 Representative photograph of the low-grade CaCO₃ product formed via the direct aqueous CaS process.

obtained were classified as low-grade CaCO₃ (< 90 mass % as CaCO₃; [6]). The XRD results showed that at the lowest CO₂ flow rate of 2.5 ℓ CO₂/min/kg CaS, the product was mainly composed of calcite. Samples prepared at higher CO₂ flow rates showed the presence of binary mixtures of calcite and vaterite, with a progressive decrease in mole fraction of calcite and a corresponding increase of vaterite with increased CO₂ flow rates. Figure 7 depicts a clearer view on the variation in the proportion of calcite to vaterite produced at different CO₂ flow rates. Therefore, although the total CaCO₃ content of produced low-grade CaCO₃ was not significantly different between the CO₂ flow rates tested, the distribution ratio of calcite and vaterite was greatly influenced by the CO₂ flow rate. For all flow rates tested, the conversion of CaS was complete, with only trace amounts (< 0.1%) of CaS detected in the produced materials.
The distribution ratio of calcite and vaterite polymorphs in the low-grade CaCO$_3$ products formed at various CO$_2$ gas flow rates (CaS slurry containing 22.7 g/l as S; initial pH: 11.7; stirring rate: 600 min$^{-1}$).

Table 5 Effect of the CO$_2$ flow rate on reaction rate (CaS slurry containing 22.7g S/l; initial pH: 11.7; stirring rate: 600 min$^{-1}$).

<table>
<thead>
<tr>
<th>CO$_2$ flow (ℓ CO$_2$/min/kg calcine)</th>
<th>Process step</th>
<th>Rate (mmol/ℓ/min (as S))</th>
<th>Standard deviation (±)</th>
<th>R^2</th>
<th>Reaction time (min)</th>
<th>Actual (g/100g CaS$_r$)</th>
<th>% yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.53</td>
<td>CaS dissolution</td>
<td>16.08</td>
<td>0.43</td>
<td>0.9929</td>
<td>86</td>
<td>127.3</td>
<td>91.7%</td>
</tr>
<tr>
<td></td>
<td>H$_2$S stripping</td>
<td>-13.57</td>
<td>0.57</td>
<td>0.9913</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.80</td>
<td>CaS dissolution</td>
<td>45.57</td>
<td>1.58</td>
<td>0.9964</td>
<td>38</td>
<td>127.5</td>
<td>91.9%</td>
</tr>
<tr>
<td></td>
<td>H$_2$S stripping</td>
<td>-21.82</td>
<td>4.36</td>
<td>0.8931</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.93</td>
<td>CaS dissolution</td>
<td>47.87</td>
<td>3.06</td>
<td>0.9919</td>
<td>26</td>
<td>126.5</td>
<td>91.2%</td>
</tr>
<tr>
<td></td>
<td>H$_2$S stripping</td>
<td>-30.76</td>
<td>2.93</td>
<td>0.9402</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29.33</td>
<td>CaS dissolution</td>
<td>65.12</td>
<td>4.16</td>
<td>0.9761</td>
<td>18</td>
<td>128.1</td>
<td>92.3%</td>
</tr>
<tr>
<td></td>
<td>H$_2$S stripping</td>
<td>-38.34</td>
<td>1.92</td>
<td>0.9925</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44.00</td>
<td>CaS dissolution</td>
<td>61.81</td>
<td>3.65</td>
<td>0.9795</td>
<td>18</td>
<td>130.6</td>
<td>94.1%</td>
</tr>
<tr>
<td></td>
<td>H$_2$S stripping</td>
<td>-36.88</td>
<td>2.27</td>
<td>0.9814</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 6 Mineralogical composition of low-grade CaCO$_3$ produced at different CO$_2$ gas flow rates (CaS slurry containing 22.7 g/ℓ as S; initial pH: 11.7; stirring rate: 600 min$^{-1}$).

<table>
<thead>
<tr>
<th>Mineral composition (mass%)</th>
<th>CO$_2$ flow-rate ($ℓ$ CO$_2$/min/kg calcine)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.5</td>
</tr>
<tr>
<td>Calcite</td>
<td>86.0</td>
</tr>
<tr>
<td>Anhydrite</td>
<td>4.5</td>
</tr>
<tr>
<td>Vaterite</td>
<td>1.8</td>
</tr>
<tr>
<td>Quartz</td>
<td>1.9</td>
</tr>
<tr>
<td>Apatite</td>
<td>4.1</td>
</tr>
<tr>
<td>Fluorite</td>
<td>1.4</td>
</tr>
</tbody>
</table>

* Only minerals present in amounts larger than 1% are reported.

Figure 8 Low-magnification SEM micrographs of low-grade CaCO$_3$ products formed at various CO$_2$ gas flow rates (CaS slurry containing 22.7 g/ℓ as S; initial pH: 11.7; stirring rate: 600 min$^{-1}$).

SEM micrographs of the samples produced at different CO$_2$ flow rates confirmed the distribution between the two polymorphs identified by XRD (Figure 8). The two prevalent CaCO$_3$ phases can clearly be distinguished by their characteristic morphologies. Vaterite can be recognised as the lens-shaped particles [30] whilst calcite was identified as rhombohedral crystallites [31]. All precipitates were micron-sized lumps made up of randomly aggregated rhombohedra of calcite and lens-shaped (or ellipse-like) vaterite. The product generated at 2.5 $ℓ$ CO$_2$/min/kg CaS consisted mostly of irregular polyhedron calcite crystals (Figure 8a). Some crystal planes of the irregular polyhedron structure were flat with smooth surfaces, while other planes were rough with a “step” structure. At higher CO$_2$ flow rates, mixtures of vaterite and calcite were found (Figures 8b-e). Interpenetrated rhombohedral cubes of calcite with smooth surfaces and mixtures of ragged and sharp edges were
identified. Calcite particles aggregated to form large, irregular particles and were partly overgrown by clusters of vaterite (Figures 8b-e). It was also observed that only lens-shape vaterite particles had been formed in this study, and no classical spherical vaterite particles had been identified. Figure 9 shows a higher magnification of Figure 8c, whilst Figure 9b exhibits a higher magnification of Figure 8e to illustrate the detail of the lens-shape vaterite crystals.

Figure 9 SEM micrographs of low-grade CaCO₃ products at 25 000 × magnification showing the lens-shaped crystals of vaterite produced at a) 14.5 and b) 44.0 ℓ CO₂/min/kg calcine respectively (CaS slurry containing 22.7 g/ℓ as S; initial pH: 11.7; stirring rate: 600 min⁻¹).

The median size D(v,0.5) of the particles produced at CO₂ flow rates between 2.53 and 44.00 ℓ/min/kg calcine varied between 16.1 and 21.3 μm. No significant reduction in median particle sizes was observed when using higher CO₂ flow rates, which was in agreement with published findings [32]. Approximately 0.95 kg low-grade CaCO₃ (< 90 mass% as CaCO₃) was produced for every 1 kg of CaS processed. Actual yields were independent of the CO₂ flow rate.

3.5 Estimated economic feasibility

On the basis of our laboratory studies, the recovery of CaCO₃ and sulphur (S recovery studies not included in this paper) from gypsum waste is economically promising. The treatment of 1 ton of waste gypsum yields 0.58 ton of CaCO₃ (valued at R145) and 0.19 ton of sulphur (valued at R294). The price of CaCO₃ and sulphur were taken as R250/t and R1550/t respectively (average values from 2007 to 2011, for limestone sales in South Africa and S imports to South Africa [33]). This compares favourably with the input cost of the main raw material, coal. 0.14 ton of coal is needed for the thermal reduction of 1 ton of waste gypsum to CaS. At a coal cost of R400/t, the input cost of the coal amounts to R56/t waste gypsum. This is significantly less than the combined value of the products, R383 for CaCO₃ and sulphur (the energy requirement of the thermal process was not taken into account). The major advantage of the process of conversion of gypsum waste to commercial-grade products lies in the savings on gypsum waste disposal costs. Long-term storage and management of gypsum waste dumps present economic as well as potential environmental challenges. Not only are these dumps unsightly, but they also occupy large areas of land and require long-term expenditures for maintenance and monitoring.
4. Conclusions

The production of elemental sulphur and CaCO$_3$ from gypsum waste can be successfully achieved by combining the thermal reduction of gypsum into calcium sulphide (CaS), followed by the direct aqueous carbonation of CaS for the generation of hydrogen sulphide (H$_2$S) and CaCO$_3$, and the subsequent conversion of H$_2$S into S via the commercially available chemical catalytic Clauss process. While the overall process can successfully produce elemental sulphur, this study has shown that direct carbonation can only yield low-grade CaCO$_3$ products (i.e. < 90 mass % as CaCO$_3$), which are made up of binary mixtures of calcite and vaterite, with a progressive decrease in mole fraction of calcite and corresponding increase of vaterite with increased CO$_2$ flow rates. These formed materials could replace the Sappi Enstra CaCO$_3$ (69 mass % CaCO$_3$), a by-product from the paper industry which is used in many full-scale AMD neutralisation plants in South Africa [34] but is becoming insufficient. The insight gained on the solution chemistry and the characteristics of formed CaCO$_3$ derived from this study on the direct aqueous CaS carbonation process has also served as the basis for our current effort in developing and optimising indirect aqueous CaS carbonation processes for the production of high-grade CaCO$_3$ (i.e. > 99 mass % as CaCO$_3$) or precipitated calcium carbonate (PCC).

Acknowledgments

The authors thank the following organisations for financial support and/or technical/scientific input: THRIP (Technology and Human Resource for Industry Programme of the National Research Foundation (NRF)), Tshwane University of Technology (TUT), North-West University (NWU), the Council for Scientific and Industrial Research (CSIR) and the Council for Geoscience (CGS).

References

