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ABSTRACT 

 

This work presents a three dimensional geometric 

optimisation of a conjugate cooling channel in forced 

convection with an internal heat generation within the solid for 

isosceles right triangular channel and equilateral triangular 

channel configurations. The isosceles right triangle and 

equilateral triangle are special case of triangle which can easily 

and uniformly be packed and arranged to form a larger 

constructs.  

The configurations were optimised in such a way that the peak 

temperature was minimised subject to the constraint of fixed 

global volume of solid material. The cooling fluid is driven 

through the channels by the pressure difference across the 

channel. The structure has channel height, width and channel to 

channel spacing as degrees of freedom as design variables.  The 

shape of the channel is allowed to morph to determine the best 

configuration that gives the lowest thermal resistance. A 

gradient-based optimisation algorithm is applied in order to 

search for the best optimal geometric configurations that 

improve thermal performance by minimising thermal resistance 

for a wide range of dimensionless pressure difference. This 

optimiser adequately handles the numerical objective function 

obtained from CFD simulations. The effect of porosities, 

applied pressure difference and heat generation rate on the 

optimal aspect ratio and channel to channel spacing are 

reported. There are unique optimal design variables for a given 

pressure difference  

The numerical results obtained are in agreement with the 

theoretical formulation using scale analysis and method of 

intersection of asymptotes  

Results obtained show that the effects of dimensionless 

pressure drop on minimum thermal resistance are consistent 

with those obtained in the open literature.  

 

INTRODUCTION 

Constructal theory and design [1, 2] have been adopted 

as an optimisation technique for the development of a 

procedure that is sufficiently allocating and optimising a fixed 

global space constraint using a physical law (constructal law). 

The method seeks to optimise the flow architecture that predicts 

the flow and thermal fluid behaviour in a structure that is 

subject to a global volume constraint. Bejan [1, 2] stated this 

law as: For a finite-size system to persist in time (to live), it 

must evolve in such a way that it provides easier access to the 

imposed (global) currents that flow through it.   

The application of this theory started with Bejan and Sciubba 

[3], who obtained a dimensionless pressure difference number 

for optimal spacing of board to board of an array of parallel 

plate to channel length ratio and a maximum heat transfer 

density that can be fitted in a fixed volume in an electronic 

cooling application using the method of intersection 

asymptotes. This body of knowledge has been applied in all 

facets of lives; from humanity and nature to science and 

engineering [4-8]. 

In this paper our focus is on the original engineering 

application of Constructal theory, which is the geometric and 

shape optimisation especially in heat transfer analysis [9-11]. 

The advantage of constructal law in the engineering field is that 

flow architecture is not assumed in advance of the optimisation 

process, but is its consequence by allowing the structure to 

morph [12]. The applications of this theory have been reviewed 

most recently by the work of Bejan and Lorente [13], in which 

under certain global constraints, the best architecture of a flow 

system can be archived as the one that gives less global flow 

resistances, or allows high global flow access. In other words, 

the shapes of the channels and unit structure that is subject to 

global constraint are allowed to morph. The optimisation of 

heat exchangers and multiscale devices by constructal theory 

was also, recently reviewed and summarised by Luo  Fan [14].  
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Yilmaz et al. [15] studied the optimum shape and 

dimensions for convective heat transfer of laminar flow at 

constant wall temperatures for ducts with parallel plate, 

circular, square and equilateral triangle geometries. 

Approximate equations were derived in the form of maximum 

dimensionless heat flux and optimum dimensionless hydraulic 

diameter in terms of the duct shape factors and the Prandlt 

number (Pr).  

Da Silva et al. [16], optimised the space allocation on a wall 

occupied by discrete heat sources with a given heat generation 

rate by forced convection using the method  of constructal 

theory in order to minimise the temperature of the hot spot on 

the wall.  

Also, Bello-Ochende et al. [17] conducted a three-

dimensional optimisation of heat sinks and cooling channels 

with heat flux using scale analysis and the intersection of 

asymptotes method based on constructal theory to investigate 

and predict the design and optimisation of the geometric 

configurations of the cooling channels. Rocha et al. [18] and 

Biserni et al. [19] applied the theory to optimise the geometry 

of C- and H-shaped cavities respectively that intrude into a 

solid conducting wall in order to minimise the thermal 

resistance between the solid and the cavities. Muzychka [20] 

studied and analysed the optimisation of microtube heat sinks 

and heat exchangers for maximum thermal heat transfer by 

using a multiscale design approach. In his analysis, he was able 

to show that through the use of interstitial microtubes, the 

maximum heat transfer rate density for an array of circular 

tubes increased. Reis et al. [21] optimised the internal 

configurations of parallel plate and cylindrical channels using 

contructal theory to understand the morphology of particle 

agglomeration and the design of air-cleaning devices.  

The recent comment by Meyer [22] on the latest review 

of constructal theory by Bejan and Lorente [23] shows that the 

constructal law’s application in all fields of educational design 

is a wide road to future advances. 

This paper focuses on the study of three-dimensional, 

laminar forced convection cooling of triangular solid structures. 

It examines the optimisation of a fixed and finite global volume 

of solid materials with an array of rectangular cooling channels, 

which experience a uniform internal heat generation which will 

result in the minimal global thermal resistance. The objective is 

the building of a smaller construct to form a larger construct 

body that will lead to the minimisation of the global thermal 

resistance or, inversely, the maximisation of the heat transfer 

rate density (the total heat transfer rate per unit volume). This is 

achieved by forcing a coolant to the heated spot in a fast and 

efficient way so as to drastically reduce the peak temperature at 

any point inside the volume that needs cooling. The 

optimisation process is carried out numerically under total fixed 

volume and manufacturing constraints.  

This study is an extension of our previous work [24, 25] on the 

constructal theory for the cylindrical, square and rectangular 

configurations with internal heat generation, where we showed 

that the minimised peak temperature is a function of the 

geometry and shape. Triangular shapes are considered 

separately because of the unique nature of the internal 

configurations. 

 

NOMENCLATURE 

Be  [-] Dimensionless pressure drop number 

P  [Pa] Pressure  

Re  [-] Reynolds number 

Pr  [-] Prandtl number 
''

q  [ 2/W m ] Heat flux 

PC  [ kgKJ / ] Specific heat at constant pressure  

T  [ C0 ] Temperature 

maxT  [ C
0 ] Peak temperature  

inT  [ C
0 ] Inlet temperature 

H  [m] Structure height 

R  [-] Thermal resistance 

V  [m3] Structure volume 

W  [m] Structure width 

L  [mm] Axial length 

LFOPC [-] Leapfrog Optimisation Program for Constrained 

Problems 

elv  
[m3] Elemental volume 

cv  [m3] Channel volume 

w  [mm] Elemental width 

h  [mm] Elemental height 

I-R [-] Isosceles right 

Equi [-] Equilateral 

hd  [mm] Hydraulic diameter 

s  [mm] Channel-to-channel spacing 

N  [-] Number of channels 

zyx ,,  [m] Cartesian coordinates 

n  [-] Normal 

 

Greek symbols 

k  [ mKW / ] Thermal conductivity 

α  [ sm /2 ] Thermal diffusivity 

µ  [ mskg /. ] Viscosity 

ν  [ sm /2 ] Kinematics viscosity 

ρ  [ 3
/ mkg ] Density 

∞   Far extreme end 

φ  [-] Porosity 

∆  
[-] Difference 

i [-] Mesh iteration index 

γ  [-] Convergence criterion 

 

Subscripts 
0  Initial extreme end 

f   Fluid 

in  Inlet 
max   Maximum 
Min  Minimum 

opt  Optimum 

out  Outlet 

s   Solid 

 

 

COMPUTATIONAL MODEL 
The physical configuration is shown schematically in 

Fig. 1. The system consists of parallel cooling channels of 

length, L
 

of fixed global volume, V for the two 

configurations. The internal heat generation in the solid 

material is 
sq ′′′ . The body is cooled by forcing a single-phase 
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cooling fluid (water) from the left side through the parallel 

cooling channels. The flow is driven along the length L, of the 

circular channel with a fixed pressure difference ∆P.An 

elemental volume, elv
 
, consisting of a cooling channel and the 

surrounding solid was used for analysis because of the 

assumption of the symmetrical heat distribution inside the 

structure. However, the elemental volume elv  is not fixed and 

is allowed to morph by varying cooling channel shape cv
 
for 

fixed porosity.  The heat transfer in the elemental volume is a 

conjugate problem, which combines heat conduction in the 

solid and the convection in the working fluid. These two modes 

of heat transfer are coupled together through the continuity of 

heat flux at the solid-fluid interface. 

 

L

( )  Global Volume V

( )  elElemental Volume v

W

H

s
q ′′′

flo
w

Fluid

P∆
in

T

 
Figure 1.  Three-dimensional parallel square channels across a 

slab with heat flux from one side and forced flow from the 

other side 

 

h
d

sq′′′

L

w

h

flo
w

Fluid

P∆ inT

0
T

z

∂
=

∂

0
T

z

∂
=

∂

Periodic

Periodic

Symmetry

c
w

c
h

2
/ 2s

1
/ 2s

 
Figure 2.   The boundary conditions of the three-dimensional 

computational domain of the elemental volume 

Design variables for isosceles triangle 

In Fig. 2, an elemental volume, elv , constraint is 

considered to be composed of an elemental cooling channel of 

hydraulic diameter, 
hd , and the surrounding solid of thickness 

s  (spacing between channels) and these variables are defined 

as: 

2

2 2

,      ,       ,      
2

,      
42

c
c

c c
h

c c

w
w h v w L h

el

w w
d v L

cw w

= = =

= =
+

 
(1) 

However, the void fraction or porosity of the unit structure can 

be defined as: 

   = 
4

c c

el

v w

v w
φ =  (2) 

Design variables for equilateral triangle 

In Fig. 2, an elemental volume, elv , constraint is 

considered to be composed of an elemental cooling channel of 

hydraulic diameter, hd , and the surrounding solid of thickness 

s  (spacing between channels) and these variables are defined 

as: 

2

2

3
,      ,      ,     

2

1 3
,      

43

c c

h c c

w h v w L h w
el

d w v w L
c

= = =

= =

 
(3) 

However, the void fraction or porosity of the unit structure can 

be defined as: 

3
   =  

4

c c

el

v w

v w
φ =  (4) 

For a fixed length of the channel, the cross-sectional area of the 

structure is 
  

s
A HW=  (5) 

Therefore, the number of channels in the structure arrangement 

Therefore, the total number of channels in the structure 

arrangement for the two configurations can be defined as: 

( )( )12 swsh

HW

hw

HW
N

cc ++
==  (6) 

Some other assumptions imposed on the two triangular 

configurations model are, the solid structure top and bottom 

boundaries of the domain correspond to periodic boundary 

conditions, the left and right side of the solid surfaces were 

taken as symmetry boundary conditions. All the outside walls 

were taken as plane of symmetry of the solid structure and were 

modelled as adiabatic as shown in Figure 2.  

The fundamental problem under consideration is the 

numerical optimisation of  hd  and S, which corresponds to the 

minimum resistance of a fixed volume for a given pressure 

drop. The optimisation is evaluated from the analysis of the 

extreme limits of ( )0
h

d≤ ≤ ∞  and the extreme limits of 

( )0 s≤ ≤ ∞ . The optimal values of the design variables within 

the prescribed interval of the extreme limits exhibit the 

minimum thermal resistance. The temperature distribution in 

the model was determined by solving the equation for the 

conservation of mass, momentum and energy numerically. The 

discretised three-dimensional computational domain of the 

configuration is shown in figure. 3. The cooling fluid was 

water, which was forced through the cooling channels by a 

specified pressure difference P∆   across the axial length of the 

structure. The fluid is assumed to be in single phase, steady and 

Newtonian with constant properties. Water is more promising 

than air, because air-cooling techniques are not likely to meet 
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the challenge of high heat dissipation in electronic packages 

[26, 27].  

 
y

x

z

                                 
Figure 3. The discretised 3-D computational domain for 

triangular cooling channel 

 

The governing differential equations used for the fluid flow and 

heat transfer analysis in the unit volume of the structure are:  

0u∇ ⋅ =
r

 (7) 

( ) 2
u u P uρ µ⋅∇ = −∇ + ∇
r r r

 (8) 

( ) 2C u T k T
f Pf f

ρ ⋅∇ = ∇
r

 (9) 

Energy equation for a solid given as: 

2   0k T q
s s

′′′∇ + =  (10) 

The continuity of the heat flux at the interface between the solid 

and the liquid is given as: 

T T
k k
s fn n

∂ ∂
=

∂ ∂
 

(11) 

A no slip boundary condition is specified at the wall of the 

channel, 0=u
r

, at the inlet (x = 0),  0 , x y inu u T T= = =  

and 

2 out

Be u
P P

L

α
= +  (12) 

 

where, Be is the dimensionless pressure difference called 

Bejan number [28,29]. 

 

At the outlet ( Lx = ), zero normal stress, 1  outP atm=    

At the solid boundaries,   

0=∇T  (13) 

The measure of performance is the minimum global thermal 

resistance, which could be expressed in a dimensionless form 

as:  

( )max min
min 2

f in
k T T

R
q L

s

−
=

′′′
 (14) 

And it is a function of the optimised design variables and the 

peak temperature. 

 

( )( )min 1 2 max min
, , , , ,

h
R f AR d s s Tφ=  (15) 

Rmin is the minimised thermal resistance for the optimised 

design variables. The inverse of Rmin  is the optimised overall 

global thermal conductance.  

 

NUMERICAL PROCEDURE AND GRID ANALYSIS 

The simulation  work began by fixing the length of the 

channel, applied pressure difference, porosity, The internal heat 

generation and material properties and we  kept varying the 

values of the elemental volume and  hydraulic diameter  of the 

channel in order to identify the best (optimal)  internal 

configuration that minimised the peak temperature. The 

numerical solution of the continuity, momentum and energy 

Eqs. (7) - (10) along with the boundary conditions (11) - (13) 

was obtained by using a three-dimensional commercial package 

FLUENT™ [30], which employs a finite volume method. The 

details of the method were explained by Patankar [31]. 

FLUENT™ was coupled with geometry and mesh generation 

package GAMBIT [32] using MATLAB [33] to allow the 

automation and running of the simulation process. After the 

simulation had converged, an output file was obtained 

containing all the necessary simulation data and results for the 

post-processing and analysis. The computational domain was 

discretised using hexahedral/wedge elements.  A second-order 

upwind scheme was used to discretise the combined convection 

and diffusion terms in the momentum and energy equations. 

The SIMPLE algorithm was then employed to solve the 

coupled pressure-velocity fields of the transport equations. The 

solution is assumed to have converged when the normalised 

residuals of the mass and momentum equations fall below 10
-6

 

and while the residual convergence of energy equation was set 

to less than 10
-10

. The number of grid cells used for the 

simulations varied for different elemental volume and 

porosities. However, grid independence tests for several mesh 

refinements were carried out to ensure the accuracy of the 

numerical results. The convergence criterion for the overall 

thermal resistance as the quantity monitored is:  

( ) ( )

( )
1max max

max

0.01
ii

i

T T

T
γ

−
−

= ≤  

(16) 

where i is the mesh iteration index. The mesh is more refined 

as i increases. The 1−i  mesh is selected as a converged mesh 

when the criterion (16) is satisfied.  

 

NUMERICAL RESULTS  

In this section, we present results for the case when the 

elemental volume was in the range of 
3 30.025 mm 5 mm

el
v≤ ≤  and the porosities ranged between 

 = 0.2φ  and a fixed length of L = 10 mm and fixed applied 

dimensionless pressure differences of 50 kPaP∆ = . The 
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internal heat generation within the solid was taken to be fixed at 

100 kW/m
3
. The thermophysical properties of water [34] used 

in this study were based on water at 300K and the inlet water 

temperature was fixed at this temperature.  

Figures 5 and 6 show the existence of an optima hydraulic 

diameter and optimal elemental volume of the structure that 

minimised the peak temperature at any point in the channel for 

the for the two types of triangular configurations studied. 

Figure 5 shows the peak temperature as a function of the 

channel hydraulic diameter at this fixed pressure difference. It 

shows that there exists an optimal channel hydraulic diameter, 

which lies in the range 0.005 ≤ dh/L ≤ 0.02 minimising the peak 

temperature.   

28.5

30

0 0.015 0.03

I-R Triangle ( φ = 0.1 )

Equi Triangle ( φ = 0.1 )

I-R Triangle ( φ = 0.2 )

Equi Triangle ( φ = 0.2 )

T
m

a
x
 (

 0
C

 )

d
h 

/ L

Porosity increasing

 
Figure 5 Effect of optimised hydraulic diameter hd , on the  

peak temperature 

 

Also, the elemental volume of the structure has a strong effect 

on the peak temperature as shown in Figure 6. The minimum 

peak temperature is achieved when the optimal elemental 

volume of the structure that minimised the peak temperature 

and this lies in the range of 0.2 mm3 
≤ vel ≤ 2.5 mm3 . Any 

further increase or decrease in the design variable beyond the 

optimal values indicates that the working fluid is not properly 

engaged in the cooling process, which is detrimental to the 

global performance of the system. The results also, show that 

the optimal arrangement of the elemental volume for the entire 

structure at this fixed pressure difference should be very small 

in order to achieve better cooling. 

 

MATHEMATICAL OPTIMISATION 

In this section, we introduce an optimisation algorithm 

that will search and identify the optimal design variables at 

which the system will perform best. A numerical algorithm, 

Dynamic-Q [35],  is employed and incorporated into the finite 

volume solver and grid (geometry and mesh) generation 

package by using MATLAB for more efficient and better 

accuracy in determining the optimal performance.  

The Dynamic-Q is a multidimensional and robust 

gradient-based optimisation algorithm, which does not require 

an explicit line search. The technique involves the application  

28
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T
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a
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v
el
 ( mm
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Figure 6 Effect of optimised elemental volume, elv , on the 

peak  temperature 

 

of a dynamic trajectory LFOPC optimisation algorithm to 

successive quadratic approximations of the actual problem [36]. 

The algorithm is also specifically designed to handle 

constrained problem where the objective and constraint 

functions are expensive to evaluate. The details of the 

Dynamic-Q and applications can be found in open literature 

[35-40].  

 

OPTIMISATION PROBLEM 

Design variable constraints 

The constraint ranges for the optimisation are:  
3 3

1 2

0.025mm     5mm ,      0.1    0.2,     

 0    ,      0    ,      0    ,    

  0    ,      0    

el

h

v

h h w w d w
c c

s w s w

φ≤ ≤ ≤ ≤

≤ ≤ ≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

 
(17) 

The design and optimisation technique involves the search for 

and identification of the best channel layout that minimises the 

peak temperature, 
max

T  such that the minimum thermal 

resistance between the fixed volume and the cooling fluid is 

obtained with the desired objectives function. The hydraulic 

diameter and the channel spacing and elemental volume of the 

square configuration were considered as design variables. A 

number of numerical optimisations and calculations were 

carried out within the design constraint ranges given in (17) and 

the results are presented in the succeeding section in order to 

show the optimal behaviour of the entire system. The elemental 

volume of the structure was in the range of 0.4 mm
3
 to 5 mm

3
. 

The optimisation process was repeated for applied 

dimensionless pressure differences (Be) that correspond to ∆P 

= 5 kPa to ∆P = 50 kPa. 
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Effect of applied pressure difference on optimised geometry and 

minimised thermal resistance 

Figures 7 show the minimised dimensionless global 

thermal resistance as a function of dimensionless pressure 

difference at different porosity for the two triangular 

configurations. The results show that the minimised 

dimensionless global thermal resistance monotonically 

decreases as the dimensionless pressure difference increases.  
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Figure 7.  The effect of dimensionless pressure difference on 

the minimised thermal resistance 

 

Also Figures 8 and 9 show the optimal behaviours of the 

geometry with respect to applied dimensionless pressure 

difference (or Bejan number) at different porosity for the two 

triangular configurations. The Figure 8 show that the optimal 

hydraulic diameter decreases as the dimensionless pressure 

differences increase and there exists a unique optimal geometry 

for each of the applied dimensionless pressure differences for 

the configurations. The trend is in agreement with previous 

work [24, 40]. 

The optimal channel spacing ratio (s1/s2) remains unchanged 

and insensitive to the performance of the system whereas 

regardless of the dimensionless pressure difference number for 

the two triangular configurations as shown in Figure 9. This 

constant value could be described as allowable spacing due to 

manufacturing constraints. This implies that the closer the 

channels are to one another, the better the effective cooling 

ability of the global system.  

Figure 10a and 10b show the temperature contours of the 

elemental structure and of the inner wall of the cooling channel 

with cooling fluid triangular configurations. The blue region 

indicates the region of low temperature and the red region 

indicates that of high temperature 
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Figure 9.  The effect of dimensionless pressure difference on 

the optimised spacing 

 

CONCLUSION 

This paper studied the numerical optimisation of geometric 

structures of cooling volumes with internal heat generation for 

isosceles right triangular channel and equilateral triangular 

channel cross-sections based on constructal theory. The effects 

of different geometrical parameters such as the hydraulic 

diameters, and channel spacing and elemental volume were 

comprehensively studied. The results showed that there is an 

optimal geometry for the two channel configurations 

considered which minimises the peak temperature and hence 

thermal resistance.  
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(a) 

 
(b) 

Figure 10. Temperature distributions (a) on the unit structure 

and (b) on the cooling fluid and inner wall, and unit structure 

 

Also, the numerical result shows that the dimensionless 

global thermal resistance for the two triangular configurations 

are almost the same, though that of isosceles right triangular is 

slightly lower than that of equilateral triangular. The numerical 

analysis also showed that the optimised geometry and 

minimised thermal resistance are function of the dimensionless 

pressure difference for different  porosites. This shows the 

existence of unique optimal design variables (hydraulic 

diamters) for a given applied dimensionless pressure number 

for each configuration. The results also show that the 

minimised peak temperature decreases as the porosity 

increases. 

The optimal channel spacing ratio (s1/s2) remains 

unchanged and insensitive to the performance of the system 

whereas regardless of the dimensionless pressure difference 

number for the two triangular configurations. This constant 

value could be described as allowable spacing due to 

manufacturing constraints. This implies that the closer the 

channels are to one another, the better the effective cooling 

ability of the global system. 

The use of the optimisation algorithm coupled to the CFD 

package made the numerical results to be more robust with 

respect to the selection of optima structures’ geometries, 

internal configurations of the flow channels and dimensionless 

pressure difference. 

Future work will investigate the analytical 

optimisation of this study to confirm this numerical solution 
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