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ABSTRACT 
Laminar electrically conducting fluid flow in various conduits 

under different magnetic fields has received great attention in 

recent years due to its various applications for biomedical (i.e.: 

blood filtration in artificial kidney), thermal (i.e.: cooling of 

turbine blades), chemical (i.e.: food processing), 

environmental (i.e.: dust separation) and nuclear (i.e.: 

ionization control) purposes. 
 

Present paper studies flow characteristics of electrically 

conducting fluid under uniform magnetic field in the small gap 

between uniformly moving lower plate and a fixed parallel 

semi porous plate that governed by dimensionless Hartman 

number (Ha), and Reynolds number (Re). The weighted 

residual Least Squares Method (L.S.M.) is used to solve the 

two dimensional governing simulation equations.  
 

In the range Re < 1.0 and Ha < 1.0, neither Ha nor Re has 

noticeable effect on vertical flow velocity V. The rate of V is 

linear within the gap and vanishes in the vicinity of both 

plates. Fluid flow rate q leaving out through the semi porous 

upper plate shows significant dependency on both Ha and Re, 

where it decreases with increasing either Ha or Re due to the 

dependency of the horizontal velocity U on both Ha, and Re. 
 

In the ranges 1.0 < Re, Ha < 10 both Ha and Re also still have 

minor effects on V. At higher Re the results show higher shear 

stress and lower U values in vicinity of lower plate, signifying 

a reluctant fluid flow that does not follow the speeding up of 

the moving lower plate. At Ha = 10, the effect of Re on U 

diminishes to its lowest limit, and the flow suffers an almost 

oscillating nature in the upper 75% of the gap between the 

plates, and a very high shear stress is in the lower 25% of the 

gap.  

 

Present results agree well with other published results that had 

used Galerkin method, numerical methods and Homotopy 

analysis method.  

 

Keywords: Generalized laminar viscous flow; Semi-porous 

channel; Uniform magnetic field; Weighted Least Squares 

method. 

 

INTRODUCTION 
 

The flow problem in porous channels/tubes has received great 

attention in recent years because of its various applications in 

different engineering branches. Examples include blood 

filtration in artificial kidney, blood flow in capillaries and 

oxygenations, transpiration, cooling of turbine blades, 

lubrication of ceramic machine parts, food processing, 

electronics cooling, gaseous diffusion, magnet-hydro dynamic 

applications, the extraction of geothermal energy, pollution 

control by dust collection and nuclear reactor ionization 

control and cooling systems. Much of the credit of progress in 

the field of flow in porous channel/tubes goes to the pioneer 

research work undertaken by Berman [1] who described an 

exact solution of the Navier-Stokes equation for steady two-

dimensional laminar viscous incompressible flow in a channel 

with porous walls driven by uniform, steady suction or 

injection at the walls. Over the years, several authors [2-9] 

have used Berman’s solution [1] as a benchmark to their 

numerical or theoretical investigations for solving the flow 

problem in channel of a semi-permeable membrane. 
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The influence of magnetic field over a laminar viscous flow in 

a semi-porous channel gas has been studied analytically and 

numerically [10-11]. In recent years, much attention has been 

paid to develop new methods for analytic solutions of such 

governing equations. These methods include the 

decomposition methods [10], perturbation methods [11], and 

homotopy analysis methods (HAM) [11]. Hayata et al. [12] 

investigated the channel flow of a third order fluid that is 

electrically conducting in the presence of a magnetic field 

applied transversely to the porous walls of a channel. They 

developed an expression for velocity by the homotopy 

analysis method (HAM). More recently, Makinde and 

Chinyoka [13] have numerically solved the governing 

equations using a semi-implicit finite difference scheme in 

order to determine the transient heat transfer in channel flow 

of an electrically conducting variable viscosity fluid in the 

presence of a magnetic field and thermal radiation. Numerical 

analysis of this flow problem was developed by Desseaux 

[14], who examined a two-dimensional laminar boundary-

layer flow of a conducting Newtonian fluid in a semi-porous 

channel with a possible moving boundary in the presence of a 

transverse magnetic field. The governing ordinary differential 

equations were analyzed using the cross flow Reynolds 

number as a perturbation parameter and then numerical 

integration was applied to obtain the solution. Ziabakhsh and 

Domairry [15] solved the laminar viscous flow in a semi-

porous channel in the presence of a uniform magnetic field 

using the homotopy analysis method. They presented detailed 

equations to relate the velocity to the distance normal to the 

plates. The Adomian decomposition method (ADM) was used 

by Ganji and Ganji [16] to compute an approximation for the 

solution of the system of nonlinear differential equations 

governing the problem. Their results of the (ADM) were 

compared with solutions of the numerical method (NM), 

homotopy perturbation method (HPM), and variation iteration 

method (VIM). The results have revealed that their method 

was very effective and simple. 

 

In a recent study [17], Abdel-Rahim et al. solved the laminar 

viscous flow in a semi-porous channel under uniform 

magnetic field using the weighted residual Galerkin method to 

solve the governing equations for low values of flow and 

magnetic effects. They presented the flow characteristics in 

terms of graphical representations and fitted equations relating 

flow velocities and flow rates in terms of Reynolds number 

and Hartman number. Talmage et al. [18] treated the flow of a 

conducting fluid in a toroidal duct under influence of 

transverse magnetic field , and concluded that inertial effects 

in magneto-hydrodynamic (MHD) duct flows can lead to 

unexpected flow patterns. They mentioned that this 

mechanism exists in MHD pumps, flow meters, sea water two-

phase flow propulsion systems and power conversion systems 

such as liquid-metal sliding electrical contacts for homo-polar 

devices. Figueroa et al. [19] reported experimental 

observations and numerical comparisons of laminar flow in 

thin horizontal layer of electrolyte under unidirectional electric 

current and of small permanent magnetic field. Their results 

indicated that, except in the zone above the lateral edges of the 

magnet, no recirculating flows had appeared and vertical 

velocity components were negligible. Narasimhan [20] 

constructed continuum theory of an electrically conducting 

nonlocal viscous fluid flow between two non-conducting 

parallel plates under a transverse magnetic field. He 

analytically and numerically investigated the velocity and 

shear stress fields under varying magnetic field. Ferdows [21] 

investigated the steady laminar boundary flow over an 

impulsively stretching surface enclosed by strong magnetic 

field due to its industrially increasing importance. Kalita [22] 

discussed unsteady channel flow of electrically conducting 

viscous liquid flow containing non-conducting small dust 

particles between two parallel plates in the presence of a 

transverse magnetic field. His solutions under different values 

of Hartman number, pressure gradient, dust concentration and 

time have shown that the velocity of dust particles was always 

greater than that of the liquid especially near the axis of the 

channel. Experimental ultrasonic investigation conducted by 

Nakamura et al. [23] on two-dimensional channel flow of a 

magnetic fluid subject to magnetic fluid have concluded that 

the ferromagnetic particles have showed an aggregation along 

the direction of the magnetic field and have formed clusters. 

Eguía et al. [24] studied the effects of temperature on 

viscosity, electric conductivity, Reynolds number and particle 

concentration on the unsteady MHD flow of a dusty, 

electrically conducting fluid between parallel plates under 

uniform perpendicular magnetic field using the network 

simulation method. They studied velocity and temperature for 

different values of viscosity, magnetic field parameters, 

different particle concentrations and different upper wall 

velocities. Turkyilmazoglu [25] conducted analytical solution 

of the boundary layer flow of a steady, laminar, 

incompressible, viscous and electrically conducting fluid due 

to a rotating disk using homotopy analysis method.  They 

computed the mean velocity profiles corresponding to a wide 

range of magnetic strength.  

 

The objective of the current work is to study the flow 

characteristics of the laminar semi-porous channel electrically 

conducting flow subjected to a high magnetic field and under 

high values of Reynolds number. The results are to be 

presented, discussed and compared with other published data. 

 

NOMENCLATURE 
a,b, ..., h coefficients for V and U equation. 

B magnetic field. 

Ha  Hartman number. 

L plate length. 

Px pressure component in x-direction. 

Py  pressure component in y-direction. 

q  flow rate though upper porous wall. 

Re Reynolds Number. 

U dimensionless velocity component in x-direction u. 

u velocity component in x-direction. 
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uo uniform velocity of lower plate in x-direction.  

ux x-derivative of fluid horizontal velocity.  

V dimensionless velocity in y-direction.  

v velocity component in y-direction. 

vy y-derivative of fluid vertical velocity. 

v normal velocity at the porous wall. 

V
 ‘  

derivative of dimensionless velocity component in y-

direction. 

x, y  horizontal and vertical coordinates. 

  channel gap. 

 fluid kinematic viscosity. 

   fluid density. 

    fluid electrical conductivity. 

 

ANALYSIS 

 

A Mathematical Model: Consider the laminar two-

dimensional stationary flow of an electrically conducting 

incompressible viscous fluid in a semi-porous channel as 

shown in Fig. 1. The channel is made of one stationary infinite 

porous upper plate and a horizontal plate uniformly moving in 

the x-direction at a distance  from the upper plate where the 

plate length is much greater than the distance (   ). A 

uniform magnetic field B is assumed to be applied in the y-

direction.  

 

The fluid properties (, ρ, and ) are assumed to be constants. 

The uniform velocity of the plate is uo, while the normal 

velocity at the porous wall is V. By neglecting the electrical 

field and gravity forces, the governing equations over the flow 

domain and the appropriate boundary conditions, [15], are: 
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In the above equations, subscripts signify partial 

differentiation. Using the assumptions, non-dimensional 

similarity transformations introduced by [13] and the method 

of separation of variables, then the above equations in 

dimensionless forms reduce to: 

 

  0..Re..Re 2  VVHaVVV IV                                   (5) 
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In the above equations, the two dimensionless numbers: 

Reynolds number )
.

(Re
v

U
  and the Hartman number 

)
.

.(
v

hBHa



  that represent the effects of dynamic 

forces and the magnetic forces respectively are assumed to be 

constants [2]. 

 

B. Solution by Weighted Residual Least Squares 

Method (L.S.M.): The weighted residual least square 

method has been used to solve the above system of equations. 

This method can basically be summarized, (e.g.: [26, 27] as 

follows:  
 

(i) Assign some presumed values for Re number and  Ha 

number and substitute them in the above equations. 
 

(ii) Assume solution sets with unknown coefficients αij and βij  

for each of V and U (or alternatively V’ and U) in the forms of 

functions in y so that: (1) they satisfy the boundary conditions 

given by Equ. (7) and (2) they should be chosen as a linear 

combination of basic functions selected from of a linearly 

independent set. Present study uses the following forms: 
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nnlk,-yyU lk
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Repeated indices signify summation process and the integer 

numbers are positive, i.e.: m1, m2, n1, n2 >  0. 
 

(iii) Substitute the above solution set into Equs. (5 - 6) to 

formulate the following two residual equations: 
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2121212121
)..Re(..Re 2

nnmmnnmmnn
UVHaUVUEU             (11) 

 

These equalities will be zero if the assumed solutions are 

found to be the exact ones, i.e.: 
21mm

VV  and 
21nn

UU  .  
 

(iv) Use the partial derivative of the above residual equations 

with respect to each unknown coefficient as weight for its 

respected residual equation to form the weighted residual 

Least Squares equations. 
 

(v) Equate to zero the integrals of the weighted equations over 

the y-domain {0, 1} to get algebraic equations relating the 

unknown coefficients. These integrals have the form: 
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(vi) Solve the resulting set of the simultaneous algebraic 

equations to calculate the unknown coefficients that 

correspond to the assumed values of Re number and of Ha 

number.  
 

(vii) Substitute the results into the residual equations to 

calculate the values of the errors, and compare them to 

presumed acceptable error limits. Reject the assumed 

equations if the test fails, and repeat the above steps for other 

assumed solution equations. 
 

(viii) If the error test passes, accept the solutions equations and 

repeat steps (iv – vi) for other values of Re number and  Ha 

number.  

 

C. Flow rate (q): The flow rate of the fluid through the 

porous upper plate (q) can be calculated by equating its value 

to the main stream flow rate in the horizontal direction. For 

unit width, this is given as: 

 


1

0

.dyUq

           

 (14) 

 

RESULTS AND DISCUSSION  
 

Many trail solutions are assumed for V (or alternatively V’) 

and U that fulfill the boundary conditions given by Equ. (7). 

The coefficients of these assumed trials are determined using 

the L.S.M. solution steps given above. The trial solutions that 

gave acceptable results are: 
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which by integration, results in value of V as: 
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And the horizontal velocity is expressed as: 
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Using the above equations as solutions of the differential 

equations has resulted in errors, as given by Eqs. (12 -13), less 

than -7.3E-12.  

 

I. Flow characteristics in the range 

0.10.00.1Re0.0  Haand
 

 

I.1. U and V characteristics: The variations of the 

horizontal and vertical flow velocities; U and V; over the gap 

between the plates are 

displayed in Fig.2 and 

Fig.3 for values of 

Reynolds number Re and 

Hartman number Ha in 

the range (0.0, 1.0). At a 

value of Re = 1.0, Fig.2 

shows that the vertical 

flow velocity V is almost 

independent from the 

effect of Ha. This 

velocity has an almost 

zero rates of variation of 

with y in the vicinity of 

both the lower and upper 

plates, and this rate is 

almost linear at its 

highest value inside the 

gap between the plates. 

The value of this vertical 

velocity starts from zero 

at the lower plate to its 

maximum value at the 

upper plate, i.e. where 

the fluid leaves the 

perforation. The Hartman 

number Ha has a minor 

 Fig.2 Effect of Ha on V and U at Re=1.0 over  

the whole domain of y. 

 Fig.3 Effect of Re on V and U at Ha =1.0 over  

the whole domain of y. 
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effect on the horizontal velocity U near both the plates, and 

this effect increases towards the center of the gap. This 

horizontal velocity U is at its maximum value which is 

identical to that of the lower plate, and decreases to zero value 

towards the upper fixed plate. The shear stress is very high in 

the vicinity of the lower plate (exemplified by the high rate of 

variation of U with respect to y), and is at its lowest value near 

the upper plate. Figure 3 shows the effects of Reynolds 

number Re on the horizontal and vertical flow velocities at a 

value of Ha =1.0. As discussed in Fig.2, Re has almost no 

effect on the vertical velocity V and has an appreciable effect 

on the horizontal velocity within the gap. Again, 

characteristics of these two velocities in Fig.3 are the same as 

discussed in regards to Fig.2.  

 

I.2. Flow rate q through porous wall: The flow rate q 

through the upper 

porous plate, as 

calculated from Eq. 

(14) shows a 

significant 

dependency on both 

Ha, and Re as 

presented in Fig. 4. 

For a constant value 

of Ha, q decreases 

with increasing the 

value of Re. Similar 

trends of q is shown 

with increasing Ha at 

constant value of Re. The reason is attributed to the fact that 

the velocity U is mainly dependent on both Ha, and Re as 

presented in Figs. 2 and 3. The general conclusion from this 

figure is that the lower the values of both Re and Ha numbers 

the higher the flow rate is. 

 

II. U, V and V’ Flow characteristics in the range 

100.010Re0.1  Haand  

Figure 5(a), (b) and (c) show the variations of the horizontal 

flow velocity; U, vertical flow velocity; V and its rate; V’ over 

the gap; y for the designated ranges of Re and Ha numbers. 

Figure 5(a) shows that both Ha and Re have appreciable effect 

on the horizontal velocity U. For values of Ha = 0.0, 3.0 and 

5.0, the higher the value of Re the lower this velocity is, and 

the higher the shear stress is in the vicinity of the lower plate 

(as exemplified be the higher slope near y=0.0). This behavior 

of U means that the fluid is reluctant to follow the speeding up 

of the moving lower plate. At a value of Ha = 10, the effect of 

Re on U diminishes to its lowest limit. At this value of Ha the 

flow has an almost oscillating nature in about the upper 75% 

of the gap. This is exhibited by the alternating positive and 

negative values of this velocity. At this value of Ha, the shear 

stress is very high in the lower 25% of the gap. In Fig. 5(b), 

neither Ha number nor Re number has appreciable effects on 

the vertical velocity V along the whole range of y, where its 

value starts from zero at the lower plate to its maximum value 

at the upper plate. However, as shown in Fig. 5(c), these two 

dimensionless numbers have noticeable effects on the velocity 

rate especially in the center of the gap, where its value is about 

V’ =1.5 at Ha = 0.0 and decreases with the increase of Ha for 

all values of Re. At a value of Ha = 10, the velocity rate 

flattens in the center of the gap with a value of about V’ = 1.2. 

This decrease in the rate of the vertical velocity supports the 

concluded nature of the oscillating flow for high values of Re 

and Ha numbers, as previously explained in Fig. 5(a). 

 

Figures 6(a), (b) and (c) show the effect of Ha and Re on the 

flow velocities U, V and its rate V’. Figure 6(a) shows that the 

value of Ha results in oscillating flow in the upper 75% of the 

gap irrespective of the value of Re. In this figure, the slight 

increase in shear stress with the increase of Re was on the 

expense of the value of the velocity, which suffers a slight 

decrease at all values of Ha. Again, Fig. 5b above shows a 

slight effect on vertical velocity for all values of Re and Ha. 

As compared to slight effect of Re on V’ at constant Ha 

displayed in Fig. 5(c) before, at constant values of Re Fig.6 (c) 

shows great dependency of  V’ on Ha number. 

 

 Fig.4 Contour values of the flow rate q as 

dependent on Re and Ha values. 
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III. Comparison with Galerkin Method Results [17]:  
Present results of solving the governing differential equations 

by the weighted residual least square method (L.S.M.); shown 

by solid lines, with their solution [17] by Galerkin Method 

(G.M.); shown by dotted lines, are shown in lower figures of 

both Fig. 6(a), (b) and (c). The displayed figures show a very 

good agreement between the results of these two methods, 

signifying the creditability of the solution by both methods. It 

should be noted that although both methods belong to the 

weighted residual solutions methods, they do not necessarily 

give comparable results unless the system of differential 

equations is stable. This signifies that the controlling equations 

of the present simulation is completely stable, and any 

solution results by any of these two methods will logically 

represent the behavior of the flow system.  

 

IV. Comparison with Published Results of Homotopy 

Analytical Method and Numerical Method [15]:  
Comparisons of present results of values of U and V with other 

published results for some specific values of Re and  Ha  are 

shown in Figs. 7(a), (b), (c) and (d). The variations of 

dimensionless velocity components U and V versus vertical 

distance y at Re = 1.0 and Ha = 0 are presented in Figs. 7(a) 

and (b). A good agreement between present results and those 

predicted by [15] is shown in the figures. The published work 

had used two solution methods, namely: (i) Homotopy 

analytical method (DTM) and (ii) Numerical method (Num). 

The results by both these two methods agree well with present 

results. The variations V, and U versus vertical distance y at 

Re = 1.0 and Ha = 1 are presented in Figs. 7(c) and (d). 

 

Shown comparisons between those predicted results of [15] 

and present results indicate that there is a slight difference 

between the value of U, while V values show better 

agreement. 

 

CONCLUSIONS 
Weighted residual Least Squares Method is used to solve the 

two dimensional flow of electrically conducting fluid in a 

channel under uniform magnetic field between uniformly 

moving lower plate and a fixed parallel semi-porous plate. The 

flow is governed by the two dimensionless numbers Hartman 

number (Ha), and Reynolds number (Re). In the range Re < 

1.0 and Ha < 1.0, neither Ha nor Re has noticeable effect on 

vertical flow velocity V. The rate of this velocity is linear 

within the gap and vanishes in the vicinity of both the lower 

and upper plates. 

 

The fluid flow rate q through the upper porous plate shows 

significant dependency on both Ha and Re, where it decreases 

with increasing the value of either Ha or Re due to the 

dependency of the horizontal velocity U on both Ha, and Re. 

 

In the ranges 1.0 < Re, Ha < 10 both Ha and Re have 

appreciable effect on the horizontal velocity U, where the 

higher Re the lower this velocity is, and the higher the shear 

stress is in the vicinity of the lower plate. This behavior of U 

means that the fluid is reluctant to follow the speeding up of 

the moving lower plate upon the increase of Re. At a value of 

Ha = 10, the effect of Re on U diminishes to its lowest limit, 

and the flow suffers an almost oscillating nature in the upper 

75% of the gap between the plates. At this value of Ha, the 

shear stress is very high in the lower 25% of the gap.   
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and comparisons of results of LSM with Galerkin method. 
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 Fig.7 Comparison of present results of U and V with 

published results. 
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Present results agree well with elsewhere 3 different published 

results that have used weighted residual Galerkin method 

(G.M.), numerical method and Homotopy analytical method.  

 

Future work is needed to consider variations in both the 

magnetic field and the electrical conductivity and viscosity of 

the fluid. Also the effect of pressure gradient needs further 

investigations.  
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