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ABSTRACT 

In the present work, a study of the mixed convection flow of 

low Prandtl number fluid ( Pr = 0.015) confined in a cylindrical 

container having an aspect ratio equal to 2 , with and without 

magnetic fields, has been considered. The finite volumes method 

has been used to resolve the equations of continuity, momentum 

(or Navier-Stokes), energy and electric potential. In the absence 

of magnetic field, the numerical results obtained show the 

appearance of oscillatory instabilities for the values of the critical 

Reynolds number Recr = 2575, 924, 802 and 606, corresponding 

respectively to the values of the Richardson number Ri = 0 , 0.5, 

1.0 and 2.0. However, in the presence of the vertical magnetic 

field, the fluid continues its stable flow until the values of 

Reynolds number greater than those predictable to have 

oscillatory instabilities. Stability diagrams have been established 

according to the numerical results of this investigation. These 

diagrams put in evidence the dependence of the critical Reynolds 

number and critical frequency of oscillations with the increase of 

the Hartmann number for various values of the Richardson 

number. In conclusion, the stabilizing technique of the mixed 

convection flows of fluids having low Prandtl number 

(semiconductors) by the application of an external magnetic field 

is practically reliable. 

 

INTRODUCTION 
The incompressible viscous fluid flow confined in a 

cylindrical enclosure induced by the rotation of one or more 

walls of the cylinder, which contains the fluid was studied 

intensively and on several occasions during the last years. This 

type of flows can occur in many practical situations [1]: 

rotational viscosimeters, centrifugal machinery, pumping of 

liquid metals at high melting point, crystal growth from molten 

silicon in Czochralski crystal pullers [2], geophysical systems 

[3],…etc. 

After this foreword, we expose some work available in the 

literature which treats the flow in question, with and without heat 

transfer by forced and mixed convection. Gelfgat et al. [4] 

presented a very detailed numerical study stable states and 

beginning of oscillatory instabilities of the incompressible 

Newtonian fluid flow confined in a vertical cylinder. 

Bessaih et al. [2] carried a numerical study on rotating MHD 

laminar flow of a liquid metal contained in a cylindrical 

enclosure, having an aspect ratio equal to 1 and subjected to a 

vertical external magnetic field. A good agreement between the 

asymptotic and numerical results was obtained by the authors. 

They showed that we can control the primary flow by a good 

choice of the electric conductivity of the enclosure walls in 

question. Bessaih et al. [3] carried out a numerical and analytical 

combined study of the same flow already mentioned in [2]. They 

showed the strong dependence of the flow and heat transfer 

structures with the magnetic field and the electric conductivity 

of the walls constituting the cylindrical enclosure. 

The present work investigates numerically the determination of 

hydrodynamic and thermal instabilities which are created in a 

cylindrical chamber having an aspect ratio equal to 2, filled with 

a liquid metal and having a rotating top disk. This configuration 

(Figure 1) is subjected to a constant vertical magnetic field. We 

determine the critical value of the Reynolds number Recr for each 

value of Richardson, Ri = Gr / Re2 = 0, 0.5, 1 and 2, and Ha is 

fixed in 0, 5, 10, 20, 30, 40, and 50. And  𝐻𝑎 =  𝐵𝑅√σ /ρυ  . 

NOMENCLATURE 
 

B [Tesla] Magnetic field 
F [ - ] Dimensionless Frequency 

Flr ,Flθ [ - ] Dimensionless Lorentz force in the radial and 

azimuthal directions, respectively 
g [m/s2] Gravtational acceleration 

H [m] Height of the cylinder 

N [ - ] Interaction parameter 
P [ - ] Dimensionless pressure 

R [m] Radius of the cylinder 

r,θ,z [ - ] Dimensionless radius, height, and azimuthal 

Th, Tc [K] Temperature of the hot and cold walls 
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u [ - ] Dimensionless radial velocity 
v [ - ] Dimensionless axial velocity 

w [ - ] Dimensionless azimuthal velocity 

 
Special characters 

υ [m2/s] Kinematic viscosity 

ρ [kg /m3] Density of the fluid 
σ [ 1/ Ω m] Electrical conductivity 

β [1/K] Thermal expansion coefficient 
Ω [rad /s] Angular velocity,  

Φ [ - ] Dimensionless electric potential 

ψ [ - ] Dimensionless stream function 
Θ [ - ] Dimensionless temperature 

γ [ - ] Aspect ratio 

τ [ - ] Dimensionless time 
 

Subscripts 

Gr  Grashof number 
Ha  Hartmann number 

Pr  Prandtl number 

Re  Reynolds number 

Ri  Richardson number 

GEOMETRY AND MATHEMATICAL MODEL 
The geometry of the flow field analyzed in this study is 

illustrated in Figure 1. The flow field driven by a rotating top 

wall, with an angular velocity Ω, is assumed to be axisymmetric. 

A liquid metal with a density ρ, a kinematics viscosity υ and an 

electrical conductivity σ, fills a cylinder of radius R and height 

H is submitted to an axial magnetic field B. The top end wall 

rotates with a constant angular velocity Ω. The bottom wall is 

kept at a local hot temperature Th , the top rotating disk is 

maintained at a local cold temperature TC (TC < Th) , and the 

sidewall is adiabatic The simplified dimensionless expressions 

describing the flow; the continuity equation , Navier Stokes 

equations, energy and potential equations, together with 

appropriate boundary conditions in the cylindrical coordinate 

system (r, θ , z) are : 

 

 

 
Figure 1. Geometry of the physical problem.   
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At   𝜏 = 0 :  𝑢 = 0 , 𝑣 = 0 , 𝑤 = 0 , Θ = 0, Φ = 0. 

 

For  𝜏 > 0 : = 0 ,
𝜕𝑣

𝜕𝑟
= 0 , 𝑤 = 0 ,

𝜕Θ

𝜕𝑟
= 0 , 

𝜕Φ
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(𝑟 = 0 , 0 ≤ 𝑧 ≤ 𝛾) 
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𝜕Φ

𝜕𝑟
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(𝑟 = 1 , 0 ≤ 𝑧 ≤ 𝛾) 

 

                  𝑢 = 0 , 𝑣 = 0 , 𝑤 = 0 ,Θ = 0 , 
𝜕Φ
𝜕𝑧

= 0 

(𝑧 = 𝛾 , 0 ≤ 𝑟 ≤ 1) 

 

                  𝑢 = 0 , 𝑣 = 0 , 𝑤 = 0 ,Θ = 1 , 
𝜕Φ

𝜕𝑧
= 0 

(𝑧 = 𝛾 , 0 ≤ 𝑟 ≤ 1) 

 

The governing equations were solved using a finite volume 

method (see, Patankar [4]). Scalar quantities (P, w, Φ) are stored 

in the centre of these volumes, whereas the vectorial quantities 

(u and v) are stored on the faces. For the discretisation of spatial 

terms, a second-order central difference scheme was used for the 

diffusion and convection parts of the equations (2-5), and the 

SIMPLER algorithm [4] was used to determine the pressure from 

continuity equation. The grid used has 80 × 160 nodes and was 

chosen after performing grid independency tests, since it is 

considered to have the best compromise between the computing 

time and the sufficient resolution in calculations. Calculations 

were carried out on a PC with CPU 2.8 GHz; thus, the average 

computing time for a typical case was approximately of 8 hours. 

 

 

Top rotating 

Primary flow 

Secondary flow 

Sidewall 

Bottom wall 

Magnetic field “B” 
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RESULTS AND DISCUSSION 
 

Validation of the code 

With an aim of allotting more confidence to the results of our 

numerical simulations, we have established some comparisons 

with the experimental investigation presented in the literature 

[5]. 

Comparison has been made for the axial distribution of the 

azimuthal velocity w at r = 0.60, with experimental measurem-

ents obtained by Michelson [5], which used technique LDA to 

determine the azimuthal velocity w in a cylindrical cavity, whose 

higher disk is in rotation, for Re =1800 and γ = 1, Figure 2. It is 

clear that the computed values can be seen to be in excellent 

agreement with measurements over the whole flow field. 

 

 

 
Figure 2. Validation of the code with experimental 

measurements (Michelson [5]) for Re=1800, γ = 1, and Ha = 0. 

 
Solution with magnetic field (Ha ≠ 0) 

In the presence of the magnetic field B, the increase of 

Reynolds numbers Re, the flow beyond those known as critical 

will generate a junction of the flow towards the unstable mode 

(Figure 3), as well as a multiplicity of the frequencies of 

oscillations in the flow will take place, as mentioned in [6]. This 

is illustrated in Figure 3-b, which shows the prevalent 

frequencies of oscillation for some cases of the oscillatory flow. 

This spectral analysis is the result of the application of the fast 

Fourier transform of temporal evolutions of some parameters. 

 

 

 
Figure 3. Temporal evolutions for Recr = 961, Ri = 0.5 and 

Ha = 5: (a) temperature Θ and (b) density of the spectrum of 

energy according to the frequency. Where S5 (r = 0.486, z = 

0.967), S6 (r = 0.90, z = 0.967), and S7 (r = 0.099, z = 1.80) are 

the probes of recordings. 

 

We present the temporal evolution during one period of the 

dimensionless radial velocity u for the case where Recr =  961,  

Ri = 0.5 and Ha = 5, and we indicate the various moments noted 

by: τa, τb τc, τd τe, τf, τg, τh, in Figure 4. 

 

 
Figure 4. Temporal evolution of u at point S1(0.099,0.2) 

r = 0.60 

  Experimental results 

 Numerical results 

 
τa = 54.83 
τb = 61.03 
τc = 69.16 
τd = 75.72 
τe = 81.97 
τf = 91.00 
τg = 97.52 
τh = 103.75 

 

Θ
 [

 ]
 

S5(0.48,0.967) 

S6(0.90,0.967) 

S7(0.099,1.80) 

0.02365 

Frequency [ ] 

r [ ] 
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Figure 5 shows the dimensionless stream functions ψ. 

During the dimensionless times (τa, τb τc, τd, τe τf, τg, τh), we 

notice the existence of a simple cell close to the side wall having 

a positive mass flow (in dotted lines). Also, this cell dilates and 

narrowed during time (τa, τb τc, τd, τe τf, τg, τh),  this process for 

one period of  1 /Fcr = 1/ 0.02365 ≈ 42.28. 

 

 
(𝑎)    𝜏 = 54.83                          (𝑏)    𝜏 = 61.03  

 
 

 
(𝑐)    𝜏 = 69.16                          (𝑑)    𝜏 = 75.72 

 

 
(𝑒)    𝜏 = 81.97                                (𝑓)    𝜏 = 91.00 

 

 
(𝑔)    𝜏 = 97.52                          (ℎ)    𝜏 = 103.75 

 

Figure 5: Temporal evolution of  ψ at various times indicated 

by (a, b, c, d, e, f, g, h) for Recr = 961, Ri = 0.5 and Ha = 5. 

 

The application of a vertical magnetic field is recognized on 

the stability of the convective flows [2-4]. With regard to the 

dependence between the critical Reynolds number and the 
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magnetic field intensity, the growth of Recr with the increase of 

Ha clearly seen in the stability diagram (Recr -Ha),Figure 6.  

 

 
Figure 6. Stability diagram (Recr-Ha) 

 

 

This growth is monotonous except for the case for Ri = 2.0 

and Ha = 30, where a slight reduction of Recr, (this cases was 

also obtained by Gelfgat [6]). This growth is explained by the 

interaction of the vertical magnetic field on the mixed convection 

flow, this one is produced with the radial component of the 

velocity. 

Consequently, a stronger magnetic field is necessary to keep 

the stable flow for certain high values of the Reynolds number. 

CONCLUSIONS 
A numerical study of the mixed convection in a cylindrical 

enclosure filled with a liquid metal, subjected to a vertically 

magnetic field, has been made. The finite volumes method has 

been used to solve numerically the transport equations. Our 

numerical simulations have been presented for various values of 

the Hartmann (Ha = 0, 5, 10, 20, 30, 40, 50 and 60) and various 

values of the Richardson number (Ri = 0, 0.5, 1.0, and 2.0), in 

order to see their effects on the value of the critical Reynolds 

number, Recr and of the critical frequency of oscillation, Frcr .In 

the presence of the vertical magnetic field, the fluid continues its 

stable flow up to the values of Reynolds number larger than those 

foreseeable to have oscillatory instabilities although the 

application of a magnetic field causes a remarkable change of the 

flow and heat transfer structures. 
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