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ABSTRACT 
Fouling of heat exchangers is a prevalent operating 
drawback in many industries. Efficient chemical inhibitors 
have predominantly been used for many years to combat 
deposit formation. Nevertheless new stringent 
environmental legislations limit their utilization. In the 
present experimental study, two spherical type projectiles of 
different sizes and hardness have been used to clean the 
inner surface of a single heated tube which was subjected to 
the deposition of calcium sulphate. Projectiles were then 
injected at different time intervals of injection of every 2, 5, 
10, 15, and 30 minutes. The experimental results show that 
i) the projectiles would expedite initial nucleation of 
crystals even if they are soft and easy to propel inside the 
tube and ii) fouling can only be mitigated if the projectiles 
exert a shear force that its corresponding removal rate is 
greater than the net rate the deposition. 
 
INTRODUCTION 
Heat exchangers are the workhorse of most chemical, 
petrochemical, food processing and power generating 
processes. Of many types of heat exchangers, 
approximately 60% of the market is still dominated by the 
shell and tube heat exchanger.  It is largely favoured due to 
its long performance history, relative simplicity, and its 
wide temperature and pressure design ranges [1]. The 
global heat exchanger market is estimated to top a total of 
$12.7 billion in 2012 with an increase of 3-5% per annum 
[2]. Despite this very positive market trend, manufacturers 
are under increasing pressure to produce heat exchangers 
which are more efficient in terms of heat recovery and use 
of material, while at the same time being faced with fluids 
which are increasingly difficult to process. One major 
problem directly related to these requirements is the 
deposition of unwanted materials on the heat transfer 
surfaces, which occurs in the majority of heat exchangers. 

Fouling may cause one or more of several major operating 
problems: i) loss of heat transfer, ii) under-deposit corrosion, 
iii) increased pressure loss and v) flow mal-distribution.  
There are many different mitigation techniques available in the 
market to keep the surfaces of heat exchangers clean to some 
extent. Nevertheless, the successful application of any such 
technique requires in-depth understanding of respective fouling 
mechanisms which otherwise may even lead to counter-
productive result of increased deposition.  
Among different mechanical techniques, projectiles of different 
shapes e.g. sponge balls and wire brushes can be propelled 
through the heat exchanger tubes to mitigate deposition. 
Projectile cleaning is ideal as it can be applied at frequent 
intervals and will mitigate fouling on a continuous basis. Thus 
the degradation of heat exchanger efficiency can be controlled. 
The frequency and duration of application depends on the 
severity of fouling and the strength of interaction between 
cleaning projectile and deposit. Nonetheless the experimental 
data about the performance of various projectiles is scarce and 
non-conclusive [3-4].  
The present study as part of a European project “Clean-Ex” 
aims at investigating the performance of various projectiles 
under harsh fouling environments. Due to laboratory restriction, 
the fouling runs were conducted at accelerated conditions to 
rigorously characterize the impact of projectile cleaning in 
terms of injection time intervals and various types of projectiles 
in relatively short period of time.  

 
NOMENCLATURE 
Ai [m²]  Inner surface area for heat transfer 
C [-]  Constant in equation (1) 
Cb [kg/m3] Concentration 
Cp [J/kg.K] Specific heat capacity 
m [kg]  Mass of fouling 
mf [kg/m2 ] Mass of deposition per unit area 

 [kg/s]  Mass flow rate 
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water with a conductivity of 50 µS/cm is used. Since 
calcium sulphate crystals do not dissolve easily in water 
thus calcium nitrate tetrahydrate (Ca(NO3)2.4H2O) and 
sodium sulphate (Na2SO4) were dissolved in water to 
produce calcium sulphate crystallizing onto inner hot 
surface of the tube [5].  
The volume of supply tank was 60 L thus at the start of 
each run, the test rig was run just with 30 L demineralized 
water and once in steady state then two 15 L of high-
concentrated calcium nitrate tetrahydrate and sodium 
sulphate were added to the supply tank. The two solutions 
were then mixed immediately due to high turbulence in the 
supply tank.  
15 L calcium nitrate tetrahydrate and 15 L sodium sulphate 
solutions are heated to 40°C in a separate thermostat tanks. 
Some minutes before the surface temperature reaches its set 
temperature, these two solutions are added into the supply 
tank. During the experiment, the concentration of CaSO4 is 
measured by EDTA titration and controlled by addition of 
respective solutions. The titration is done every half an 
hour. In the event of fouling, the concentration will initially 
decrease due to surface crystallization. To maintain its set 
value, more chemical with specified ratio has to be added 
into the supply tank.  
 
Data Reduction 
For the determination of heat transfer coefficient, data such 
as bulk temperature (input flow), output temperature, flow 
velocity and inner surface temperature is required. Inner 
surface temperature could be calculated using two inserted 
thermocouples in the middle of wall pipe. The exact 
positions of these thermocouples toward inner surface were 
calculated with the Wilson-plot test. By deviation of heat 
transfer coefficient during the time then the fouling curve 
could be plotted. The shape of fouling curves indicates the 
deposition trend and impact of projectile injections during 
the experiment. To characterize the deposition process thus 
fouling resistance Rf can be calculated according the overall 
heat transfer coefficients at clean and fouling conditions. 
 

	 	       (1) 

 
where Uf and Uc are the overall heat transfer coefficients 
under fouling and clean conditions. Uf is measured from the 
following equations:  
 

∙ ∙      (2) 
	 ∙ 	 ∙      (3) 

 
It is imperative to mention that fouling spots on the tube 
surface has also a direct effect on the surface roughness; 
this roughness leads to increased turbulence. Sometimes 
when the first crystals are formed then the surface 
roughness increases. This in turn may result in the boundary 
layer to be agitated thus the heat transfer coefficient may 
even be higher than those under clean conditions. As a 
result, a negative fouling resistance would be expected. 

RESULTS AND DISCUSSION 
Fouling is usually the net product of difference between the 
deposition and removal rates. While the first mainly depends on 
the driving forces that force precursors to move and attach to 
the surface, the latter dominantly due to the shear forces exerted 
by the fluid flow. The presence of particulate solids in the 
crystal lattice of the fouled layer, the increase of the thickness 
of the deposit and thermal stresses due to temperature 
gradients/transients make the fouling layer more fragile and 
accelerate the removal rate. Therefore the net rate of increase of 
the fouling layer can be formulated as: 
 

  rdff
ff mm

td

Rd

td

md
       (4) 

 
Subscripts “d” and “r” refer to deposit and removal, 
respectively. In this equation, rm , removal rate, is a function 

wall shear stress, and strength of deposit layer to the surface, 
thus: 
 


mC

mr         (5) 

 
where  is the wall shear stress, ψ is the strength of scale factor 
and C is a proportionality constant. Field data and laboratory 
findings suggest that for instance in refineries, asphaltenic 
fouling at crude oil preheat train conditions can be mitigated 
when the wall shear stress exceeds approximately 10 Pa and is 
significantly suppressed when the shear stress at the wall 
surpasses roughly 15 Pa [6]. Nevertheless these shear stresses 
correspond to a velocity range that may not practically 
attainable. For a projectile, the rate of removal should be 
greater than the net rate of deposit formation in order to 
maintain the heat transfer surface clean:  
 

,		
     (6) 

 
Mohammadi and Malayeri [7] calculated that soft balls, with 
similar sizes presented in this paper, would typically exert a 
shear stress ranging from 103 to 105 Pa on the surface. This is 
by far is too much high to any shear stress that can be exerted 
by the fluid. Nevertheless this would only mitigate fouling is 
the projectiles are injected while the surface is still clean. Once 
deposit forms on the surface then it may require much higher 
shear stress to remove it. More work is currently underway by 
the author to determine the required force to remove a certain 
layer of deposit layer.  
In this study, the first attempted projectile was P01. It is made 
of spongy material and quite soft. The projectile has a nominal 
diameter of 21 mm which 5% larger than the pipe inner 
diameter. It is first examined at clean conditions to discern if 
there is any improvement in heat transfer when the projectile 
agitates the boundary layer. Figure 2 illustrates typical variation 
of the surface temperature (interface between the surface and 
bulk) when P01 is injected every minute. As it can be seen the 
surface temperature is fluctuating around 3°C when the 
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