
Reconstruction in Database

Forensics

by

Oluwasola Mary Adedayo

Submitted in partial fulfilment of the requirements for

the degree of Philosophiae Doctor in Computer Science

In the Faculty of Engineering, Built Environment and

Information Technology,

University of Pretoria

February 2015

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Reconstruction in Database Forensics

by

Oluwasola Mary Adedayo

E-mail: madedayo@cs.up.ac.za

Abstract

The increasing usage of databases in the storage of critical and sensitive information in

many organizations has led to an increase in the rate at which databases are exploited

in computer crimes. Databases are often manipulated to facilitate crimes and as such

are usually of interest during many investigations as useful information relevant to the

investigation can be found therein.

A branch of digital forensics that deals with the identification, preservation, analysis and

presentation of digital evidence from databases is known as database forensics. Despite

the large amount of information that can be retrieved from databases and the amount

of research that has been done on various aspects of databases, database security and

digital forensics in general, very little has been done on database forensics. Databases

have also been excluded from traditional digital investigations until very recently. This

can be attributed to the inherent complexities of databases and the lack of knowledge

on how the information contained in the database can be retrieved, especially in cases

where such information have been modified or existed in the past.

This thesis addresses one major part of the challenges in database forensics, which is

the reconstruction of the information stored in the database at some earlier time. The

dimensions involved in a database forensics analysis problem are identified and the thesis

focuses on one of these dimensions. Concepts such as the relational algebra log and

the inverse relational algebra are introduced as tools in the definition of a theoretical

framework that can be used for database forensics.

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



The thesis provides an algorithm for database reconstruction and outlines the correct-

ness proof of the algorithm. Various techniques for a complete regeneration of deleted

or lost data during a database forensics analysis are also described. Due to the impor-

tance of having adequate logs in order to use the algorithm, specifications of an ideal log

configuration for an effective reconstruction process are given, putting into consideration

the various dimensions of the database forensics problem space. Throughout the the-

sis, practical situations that illustrate the application of the algorithms and techniques

described are given.

The thesis provides a scientific approach that can be used for handling database forensics

analysis practice and research, particularly in the aspect of reconstructing the data in a

database. It also adds to the field of digital forensics by providing insights into the field

of database forensics reconstruction.

Keywords: Digital Forensics, Database Forensics, Reconstruction, Forensic Analysis,

Database Management System.

Supervisor: Prof. Martin S. Olivier

Department: Department of Computer Science

Degree: Philosophiae Doctor

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Acknowledgements

Words would not express my gratitude to the faithful and true God, who speaks and

brings to pass, who knows the end of a thing from the beginning and who orchestrates

all things and decisions to work for my good. You have been the lifter up of my head

and I am forever grateful to You, the lover of my soul.

My sincere gratitude also goes to my supervisor, Professor Martin S. Olivier, you are a

mentor worthy of emulation and I could not have asked for a better supervisor. Thank

you very much for the time, money and effort that you invested in this research and my

career. I appreciate all your kind words of encouragement from the very beginning to

the end of this research.

I am grateful for the financial support that I received from various organizations in

order to complete this research. Thanks to everyone who recognized the potential in

me and gave me a chance. Thanks to the Organization for Women in Science for the

Developing World (OWSDW) for the OWSD fellowship award, the African Network of

Scientific and Technological Institutions (ANSTI) and the German Academic Exchange

Service (DAAD) for the ANSTI/DAAD fellowship, L’ORÉAL and UNESCO for the

L’ORÉAL/UNESCO fellowship for Women in Science in Sub-Saharan Africa, Google

for the Google Anita Borg Memorial fellowship and lastly to the Heidelberg Laureate

Forum for giving me the opportunity to meet some of the great minds in Mathematics

and Computer science.

I would also like to take this opportunity to say a big thank you to all the members of

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



the ICSA research group that I met during my studies. You all played a part in the

success story of this research.

Thanks to all my friends for your encouragement, support and understanding during

this time. Thanks to the members of The Bridge Church, who always asked me how far

along I was. I appreciate you all. God bless you.

This acknowledgement would not be complete without mentioning my family. To my

parents, Johnson Kolawole Fasan and Eunice Modupe Fasan, thank you for giving me

the opportunity to begin small. We are here now! To my siblings, Femi, Bros Ay, Bros

Jhyde, Sis T, I’ll always be grateful for having you in my life. To my awesome husband,

Adebayomi, thank you for your support and love. Indeed love conquers all, I love you

dear. To the latest addition to what I call family, Inioluwami, this had to finish because

of you. I pray that you will be greater than your parents, I love you.

To everyone that has played a part in the success of this research, thank you very much.

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



To my maker and closest friend, I am nothing without HIS grace.

To Mum and Dad, thank you for being ever caring and always believing in me.

To Adeorimi, Adebayomi Oluwaseunfunmi, You are the best husband ever!

To Inioluwami, You rock my world babe, and I know you will be greater than me!

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Contents

List of Tables vii

List of Figures viii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Scope of the Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6 Thesis Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.7 Contribution of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Concepts of Digital Evidence and Digital Forensics 11

2.1 A Brief History of Digital Forensics . . . . . . . . . . . . . . . . . . . . . 11

2.2 Nature of Digital Evidence . . . . . . . . . . . . . . . . . . . . . . . . . . 14

i

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



2.2.1 Admissibility of Digital Evidence . . . . . . . . . . . . . . . . . . 16

2.2.2 Forensic Science and Digital Evidence . . . . . . . . . . . . . . . . 17

2.2.3 Absence of Evidence and Exchange of Evidence . . . . . . . . . . 18

2.2.4 The Role of Computers in Crimes . . . . . . . . . . . . . . . . . . 20

2.3 Investigative Process for Digital Forensics . . . . . . . . . . . . . . . . . . 22

2.4 Examination and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.1 Examination of Data . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.2 Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.3 Attribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.4 Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Database Systems 35

3.1 Concepts of Database Systems . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Characteristics of Database Systems . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 Structured and Self Describing . . . . . . . . . . . . . . . . . . . . 38

3.2.2 Concurrent Use and Multiple Views of Data . . . . . . . . . . . . 39

3.2.3 Data Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.4 Program-Data Independence . . . . . . . . . . . . . . . . . . . . . 40

3.2.5 Backup and Recovery . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Other Advantages of Database Systems . . . . . . . . . . . . . . . . . . . 45

3.4 Logging in Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

ii

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



3.5 Database Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.6 Relational Data Model and Relational Algebra . . . . . . . . . . . . . . . 52

3.6.1 Relational Data Model . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6.2 Relational Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Concepts of Database Forensics 60

4.1 Database Forensics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Dimensions of Database Forensics . . . . . . . . . . . . . . . . . . . . . . 63

4.2.1 Compromised Databases . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.2 Damaged/Destroyed Databases . . . . . . . . . . . . . . . . . . . 66

4.2.3 Modified Databases . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.4 Orthogonality of the Dimensions . . . . . . . . . . . . . . . . . . 69

4.3 Database Forensics Process . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3.1 Database Forensics and File System Forensics . . . . . . . . . . . 72

4.3.2 Database Forensics Investigation Process . . . . . . . . . . . . . . 75

4.3.3 Database Forensics Analysis Techniques . . . . . . . . . . . . . . 76

4.3.4 Preservation, Collection and Analysis of Artifacts . . . . . . . . . 78

4.4 Database Forensics Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.5 Challenges in Database Forensics . . . . . . . . . . . . . . . . . . . . . . 81

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

iii

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



5 Database Reconstruction Algorithm 83

5.1 Database Forensics Reconstruction . . . . . . . . . . . . . . . . . . . . . 84

5.2 Inverse Relational Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2.1 Complete Inverse Operators . . . . . . . . . . . . . . . . . . . . . 87

5.2.2 Partial Inverse Operators . . . . . . . . . . . . . . . . . . . . . . . 89

5.3 Relational Algebra Log and Value Blocks . . . . . . . . . . . . . . . . . . 92

5.4 Concept of Database Reconstruction . . . . . . . . . . . . . . . . . . . . 93

5.5 Database Reconstruction Algorithm . . . . . . . . . . . . . . . . . . . . . 98

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6 Correctness Proof of Algorithm 105

6.1 Partial Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2 Total Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7 Completeness of Reconstructed Data 121

7.1 Limitation of the Reconstruction Algorithm . . . . . . . . . . . . . . . . 122

7.2 Absence of Evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.3 Reconstruction from Interaction . . . . . . . . . . . . . . . . . . . . . . . 127

7.4 Reconstruction Through Iteration . . . . . . . . . . . . . . . . . . . . . . 130

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8 Reconstruction of a Database Schema 136

iv

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



8.1 Compromising a Database Schema . . . . . . . . . . . . . . . . . . . . . 137

8.1.1 Localized Changes to Data . . . . . . . . . . . . . . . . . . . . . . 138

8.1.2 Changes to Blocks of Data . . . . . . . . . . . . . . . . . . . . . . 139

8.1.3 Changes to Links Between Blocks of Data . . . . . . . . . . . . . 141

8.2 Schema Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

8.2.1 Reconstruction from Previous Manipulations . . . . . . . . . . . . 142

8.2.2 Reconstruction Using Inverse Relational Algebra . . . . . . . . . . 143

8.2.3 Reconstruction Through Consistencies . . . . . . . . . . . . . . . 149

8.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

9 Effectiveness of Database logs in Reconstruction 152

9.1 Default Log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

9.1.1 MySQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

9.1.2 Microsoft SQL Server . . . . . . . . . . . . . . . . . . . . . . . . . 156

9.1.3 PostgreSQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

9.1.4 Oracle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

9.1.5 DB2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

9.1.6 Sybase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

9.1.7 Summary of Default Log Settings . . . . . . . . . . . . . . . . . . 163

9.2 Ideal Log Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

9.2.1 Ideal Log Requirement for Database Forensics Reconstruction . . 164

9.2.2 Challenges and Solution for Ideal Logging Preferences . . . . . . . 171

v

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



9.2.3 Identification of Possible Ideal Logging Preferences . . . . . . . . 173

9.3 Database Forensics Reconstruction Dimensions and Log Files . . . . . . . 176

9.3.1 Modified Databases and the Ideal Log Setting . . . . . . . . . . . 176

9.3.2 Compromised Database and the Ideal Log Setting . . . . . . . . . 176

9.3.3 Damaged/Destroyed Databases and the Ideal Log Setting . . . . . 177

9.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

10 Conclusion 180

10.1 Thesis Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

10.2 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

10.3 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

A SQL Log Conversion to RA Log 187

B Acronyms and Symbols 190

Bibliography 191

vi

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



List of Tables

2.1 Comparison of Digital Investigative Process Models. . . . . . . . . . . . . 23

3.1 Basic Operators of the Relational Algebra. . . . . . . . . . . . . . . . . . 55

5.1 Summary of Output Generated by Inverse Operators. . . . . . . . . . . . 88

7.1 Reconstructed Relation S∗. . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.2 An Empty Reconstructed Relation H∗. . . . . . . . . . . . . . . . . . . 125

7.3 Relation J∗ from Inverse Difference Operation. . . . . . . . . . . . . . . . 130

7.4 H through Reconstruction from Interaction. . . . . . . . . . . . . . . . . 130

7.5 Table Sr Generated from Re-execution and Inferences. . . . . . . . . . . 133

7.6 H from Reconstruction Through Iteration. . . . . . . . . . . . . . . . . . 134

8.1 Transpose of the Relational Algebra Operators. . . . . . . . . . . . . . . 145

vii

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



List of Figures

2.1 Evidence Transfer in Physical and Digital Dimensions [29]. . . . . . . . 19

3.1 A Simplified Database System Environment [122]. . . . . . . . . . . . . 37

3.2 The Three-Schema Architecture [19, 51]. . . . . . . . . . . . . . . . . . . 41

4.1 Dimensions of Database Forensics. . . . . . . . . . . . . . . . . . . . . . 70

5.1 A Relational Algebra Log Grouped into Value Blocks. . . . . . . . . . . . 94

5.2 The INVERSE(Relation D, RA Query VDi
[1]) Function. . . . . . . . . . 98

5.3 The SOLVE(Relation D, Value Block VDi
, RA Log log, Set S) Function. 100

5.3 The SOLVE(Relation D, Value Block VDi
, RA Log log, Set S) Function (contd.).101

7.1 A Relational Algebra Log Grouped into Value Blocks. . . . . . . . . . . . 122

7.2 Original Relations Obtained from Queries Executed. . . . . . . . . . . . . 124

7.3 Reconstructed Relations Rr and Sr. . . . . . . . . . . . . . . . . . . . . 131

7.4 Re-execution of Queries Using Reconstructed Relations. . . . . . . . . . . 132

7.5 Reconstructed Relation Ir and Current Relation I. . . . . . . . . . . . . 132

7.6 Re-execution of Queries Using Reconstructed Relations. . . . . . . . . . . 133

7.7 Reconstructed Relation Hr and Current Relation H . . . . . . . . . . . . 134

viii

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



8.1 Modifying Schema to Swap two Column Names. . . . . . . . . . . . . . . 138

8.2 Modifying Schema to Hide a Column. . . . . . . . . . . . . . . . . . . . . 139

8.3 Modifying Schema to Change Attribute’s Datatype. . . . . . . . . . . . . 139

8.4 View of a Relation Before and After Data type Compromise in Schema. . 140

8.5 Changes to Blocks of Data in Schema. . . . . . . . . . . . . . . . . . . . 140

8.6 Changes to Link Between Blocks of Data in Schema. . . . . . . . . . . . 141

8.7 Retrieving Schema as a Table. . . . . . . . . . . . . . . . . . . . . . . . . 143

8.8 Typical Schema Retrieved as a Table. . . . . . . . . . . . . . . . . . . . . 144

8.9 Retrieved Schemas of Relations C and Relation B. . . . . . . . . . . . . 147

8.10 Reconstructed Schema of Relation A Using Inverse Union Operation. . . 147

ix

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 1

Introduction

“Known to God from eternity are all his works.”

- Acts 15:18

With the growing use of computers and technology in various aspects of everyday life,

it has become almost impossible to imagine a crime that does not involve a computer or

a digital aspect at some point. Criminals use technology to facilitate crimes and avoid

apprehension. This has created new challenges for law enforcement agencies, security

professionals and forensic examiners [29]. The increasing use of computers in facilitating

crimes has also led to an increased volume of digital evidence that can be used to hold

offenders accountable. This current nature of crimes has resulted in a new branch of

forensic science known as digital forensics. Although it involves the application of science

to investigations and prosecution as does the field of forensic science in general, digital

forensics deals with the collection and analysis of data produced, transmitted or stored

by digital devices and is aimed at clarifying the events that occurred during an incident

and identifying the perpetrators [64].

Database systems are a core component of many computing systems and have a signifi-

cant impact on the growing use of computers in various areas in the modern society. It is

fair to say that databases play a critical role in almost all fields in which computers are

used, including business, commerce, medicine, engineering, law, education and sciences

[51]. The use of databases in many systems cannot be overemphasized as databases

are often used to store critical and valuable information relating to an organization, her

1

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 1. INTRODUCTION

clients, or the operations of the organization [53].

The important role played by databases in many computing systems has led to an in-

crease in the rate at which databases are exploited in computer crimes. Databases are

often manipulated in order to facilitate criminal acts and as such they are of interest

during many digital forensics investigations as useful information relevant to an investi-

gation can usually be found therein [53]. The branch of digital forensics that deals with

the information found on databases is referred to as database forensics. As with other

branches of digital forensics, database forensics is aimed at determining the root cause

of an incident and finding out what was done by the perpetrator.

Due to the fact that the information stored in a database can be retrieved, updated

and manipulated in various ways, database forensics often requires the recovery of lost

data or the previous values of data which have been modified because of normal business

operations, modifications or updates performed on the database. This requires that such

updates or modifications can be reversed and is comparable to the process of reconstruc-

tion in digital forensics in that it assists an investigator to have information about both

the final and the previous states of the data in a database by examining the operations

performed on the database [25].

However, despite the importance of databases and the increasing amount of research in

digital forensics and database security in general, only a little amount of research has been

done in database forensics, even though the field is gradually gaining attention. This

can be attributed to the inherent complexity of databases that is not yet completely

understood in a forensic sense [100]. It is hoped that this thesis will contribute to a

better understanding of database forensics, particularly the process of reconstruction in

database forensics analysis.

1.1 Motivation

The need to perform a forensic analysis on a database may arise either because the

database has been involved in a crime or because it contains information that may

2

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 1. INTRODUCTION

assist in resolving a crime. In many investigations, the information stored in a database

may be the required piece of evidence or information that provides more insight into

the incident. Until recently, traditional digital investigations often excluded databases

even though evidence can often be found in them [59]. One of the main concerns in

conducting a database forensics analysis involves the lack of adequate knowledge on

how the information stored in the database can be retrieved, considering the fact that

the information might have existed a long time ago, updated in various ways or even

deleted from the database. Many of the publications that are available on database

forensics [84, 85, 86, 87, 88, 89, 90, 59, 60, 139] are either focused on the technical details

of a specific database system or fail to give a scientific approach that can be used to

reconstruct the information in a database.

In order to determine the data in a database at a particular time, prior to various updates

or modifications, it is required that the data of interest can be reconstructed. Thus, there

is need for an approach that can be applied for the reconstruction of data in different

database systems.

1.2 Problem Statement

The main goal of this thesis is to describe techniques that can be used for reconstruction

in database forensics. Although the term reconstruction is often used to refer to the

process of determining the events that happened during an incident [64, 25], in the

context of this thesis, it refers to the process of determining the values of the actual data

stored in a database at some earlier time of interest. This thesis explores techniques

that can be used for reconstructing the information in a database at an earlier time prior

to various, updates, modifications or even deletion. The thesis addresses the following

questions:

• What are the different categories of databases that may be encountered during a

database forensics analysis?

3

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 1. INTRODUCTION

• What are the techniques that can be applied for reversing data manipulation op-

erations performed on a database?

• How can an algorithm for database forensics reconstruction be developed?

• Can such an algorithm be proved to be correct?

• What approaches should be used to ensure that the algorithm is capable of recon-

structing as much information as possible?

• What information is required for an efficient database forensic analysis or recon-

struction?

By addressing these questions, this thesis lays a foundation upon which future research

in database forensics can be built and defines various techniques for the reconstruction

of the data stored in a database at some time of interest.

1.3 Scope of the Research

The title of the thesis makes reference to the term, reconstruction which may have

different meanings in different contexts. As mentioned earlier, reconstruction may be

referred to as the process of identifying and analyzing the events that occurred during

an incident being investigated. While this is a possible aspect of database forensics

that may be considered, it is not the focus of this thesis. In the context of this thesis,

reconstruction refers to the process of determining the initial values of data stored in

a database, which might have been lost or updated due to normal processes, updates

or other manipulations. Although the thesis involves the exploration of the operations

(or queries) performed on a database, which may be viewed as the events leading to an

incident, the main focus is to reconstruct the data stored in the database and not the

queries or events involved.

Due to the widespread use of the relational database model in most of the current

and popular database systems today, the work presented in the thesis relates mostly to

relational databases. The use of relations for data representation in relational databases

4

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 1. INTRODUCTION

is explored. Although it may possible that the ideas presented can be adapted to other

database models, this possibility is not investigated in this thesis.

As will be later discussed in the thesis, database forensics may deal with the analysis

of databases that have gone through several changes. These changes may range from

normal modifications or updates on the database to several levels of malicious updates or

changes to the database. Although the thesis later considers some of the applications and

effects of the techniques described in various types of databases that can be investigated,

the main focus of the thesis is on the analysis of databases that have undergone normal

business changes or modifications. Other types of databases that may be investigated

are considered but not explored in much detail.

Since only a little amount of work has been done on database forensics and due to the

proprietary nature of many database management systems, the focus of this thesis is to

add to knowledge on database forensics and to give a theoretical understanding of the

process of reconstruction in database forensics. As such, most of the techniques described

in the thesis are not automated and are left for future work outside this thesis.

1.4 Methodology

To address the questions raised in the problem statement, the thesis first presents an

overview of the concepts involved in digital forensics. Aspects of the literature that

are considered necessary for an understanding of the focus of the thesis and the ideas

later presented are discussed. An overview of the concepts of database systems is also

presented in order to highlight some of the characteristics of databases that distinguish

database forensics from other branches of digital forensics, and reflect the need for a more

specialized approach for database forensics analysis. Emphasis is placed on describing

the relational data model and relational algebra since a core part of the thesis relies on

an understanding of both topics.

In order to position this thesis in the right context, an overview of the literature on

database forensics is also presented. Although there is only a little amount of literature

5

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 1. INTRODUCTION

on database forensics, the analysis of the available literature leads to the solution of the

first question raised in the problem statement and lays the necessary foundation for the

remainder of the thesis.

A large part of this thesis uses a mathematical approach in developing the database

reconstruction algorithm and handling various aspects of the algorithm such as proving

its correctness and investigating its completeness. The main part of the thesis consists

of the development of an algorithm that allows the reversal of queries used to manipu-

late a database. The algorithm uses the information available in the database log and

analyses them in a way that enables the earlier values of data to be determined. Using

mathematical techniques of proving correctness, the algorithm is also proven to be cor-

rect and yielding correct results. However, one limitation of the algorithm is that results

generated may be incomplete due to certain instances of irreversible operations that may

occur in a database manipulation. Various approaches of ensuring the completeness of

the results generated from the algorithm are presented in order to address this limitation.

Since it is common knowledge that a database is not only composed of the raw data but

also of the metadata that describes the data, the reconstruction algorithm is extended

for the reconstruction of the database schema. This leads into the analysis of databases

that might not only have been changed or manipulated under normal circumstances but

which might have involved malicious changes. Techniques that can be employed for the

reconstruction of the schema are explored.

The techniques described in the thesis are considered in a real life situation so as to

address the last question pointed out in the problem statement. An analysis of the

information required for an efficient database forensics investigation is carried out by

considering six popular database management systems in use today and how their log-

ging preferences may affect the volume of information available for an investigation.

The required or ideal logging preferences for ensuring the availability of the informa-

tion usually needed for a database forensics analysis are then identified and considered

in the various categories of databases that can be investigated. Each of the questions

6

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 1. INTRODUCTION

highlighted in the problem statement are answered and compiled into this thesis.

1.5 Terminology

Most of the terms used in this thesis are defined in the chapters dedicated to or related

to the topics being discussed. Various definitions are given throughout the literature as

required in order to aid the readability of the thesis and provide a contextual under-

standing of the terms. However, it is important to mention that the terms incident and

crime are sometimes used interchangeable throughout the text. While it is true that

an incident may not necessarily be a crime, both terms are used to refer to events that

violate a law or some policies, or to events that need to be investigated. A glossary of

the acronyms and symbols used in the thesis is included in Appendix B.

1.6 Thesis Layout

This thesis consists of 10 chapters with appendices to aid readability and lastly a bibli-

ography of the literatures cited in the thesis. The details of the chapters are as follows:

Chapter 1, which is the current chapter introduces the thesis and gives a brief overview

of the importance of the research conducted therein. The problem statement and the

methodology describe the focus of this research and the approach used in solving the

identified problems. A summary of the contributions made in this thesis is also given in

this chapter.

In order to lay the necessary foundations for understanding the concepts of digital foren-

sics, Chapter 2 provides a discussion of the concepts of digital evidence and digital

forensics. The nature of digital evidence and the processes involved in a digital forensics

analysis process are described, the related literatures are also discussed.

Chapter 3 presents the background work necessary for an understanding of the prop-

erties of databases and database systems. Since a large part of this thesis deals with the

use of the logs on databases, a conceptual description of the concept of logging is given

7

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 1. INTRODUCTION

in this chapter. The relational model and the relational algebra are also discussed in

detail since the remaining parts of the thesis rely on these topics.

Chapter 4 deals with database forensics and gives an overview of the importance of

database forensics in digital investigations. Based on a comprehensive review of the

available literature in database forensics, the dimensions involved in a database forensics

investigation are identified. This provides solution for the first problem identified in the

problem statement and places the rest of the thesis in perspective, as the remainder of

the thesis focuses particularly on one of the dimensions identified. An overview of the

processes, tools and challenges involved in database forensics research and practice is

also provided in the chapter.

Chapter 5 presents one of the main contributions of this thesis which is an algorithm for

reconstructing the values of data in a database at an earlier time prior to various modi-

fications, updates or deletions. Concepts such as the inverse operators of the relational

algebra, and the notion of relational algebra log and value blocks which are important

aspects of the algorithm are introduced. A detailed description of the algorithm, together

with application examples are also given.

Chapter 6 builds on Chapter 5 by presenting the correctness proof of the algorithm

presented in Chapter 5. Using a mathematical approach, the proof of the partial and

the total correctness of the algorithm is presented by building on several lemmas relating

to different aspects of the algorithm and proving theorems that can be drawn from the

lemmas.

Chapter 7 is another addition to the reconstruction algorithm as it considers the issue

of completeness of the results generated when using the algorithm. The limitation of the

reconstruction algorithm is described with typical examples and various techniques to

ensure that a more complete set of data can be reconstructed in many cases are described.

Since a database is composed of both the raw data and the metadata describing the

data, it is important to consider how the metadata can be retrieved and this is the

8

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 1. INTRODUCTION

focus of Chapter 8 of the thesis. Various ways in which a database schema can be

compromised are discussed with a few examples. Different ways of reconstructing the

schema by applying the reconstruction algorithm and other techniques are described

with examples of how it can be done.

Chapter 9 considers real life situations relating to the techniques described in the

earlier chapters of the thesis by considering the effectiveness of database logs in database

forensics. This is done through a study of popular database systems in use today and

their various logging preferences. The ideal set of information that should be present in

a database log in order to ensure that a database forensics analysis can be effectively

conducted is identified and the required logging preferences to enable the availability of

the information are also considered.

Chapter 10 concludes the thesis and reflects on the future work identified during the

completion of the research.

1.7 Contribution of the Thesis

The main focus of this thesis is to develop algorithms to assist digital forensics examin-

ers in reconstructing the information in a database at a particular time, prior to various

updates, modifications or deletions. The first contribution of this work is the identifi-

cation of the various dimensions that may be involved in a database forensics analysis.

The ability to reconstruct the data in a database at some earlier time of interest is an

important aspect of forensic investigations as databases often contain information that

may assist in many investigations, but which might have been modified in various ways.

To the best of our knowledge, this has not been considered in any previous work. This

thesis provides a new way of reconstructing the data in a database at some earlier time

of interest by presenting an algorithm that can be used for the reconstruction process.

One of the requirements that enable the presentation of digital evidence in a court of law

involves proving the technique used to arrive at the evidence. The second contribution

of this thesis is the presentation of the correctness proof of the database reconstruction

9

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 1. INTRODUCTION

algorithm which ensures that this requirement is met and allows us to know that results

presented are right if they have to be presented in a court of law. In addition, since some

data may not be easily reconstructed due to certain modifications performed on them,

it is important to find alternative ways of determining such data when required. The

thesis describes various techniques in which this can be done and show examples that

illustrate the various approaches.

The third contribution of this thesis is the extension of the reconstruction algorithm

for reconstructing the database schema. Since a database contains both the raw data

and the data describing it, it is important that both sets of data can be reconstructed

when necessary. This thesis is the first work that illustrates how the schema can be

reconstructed using the algorithm described.

Lastly, this thesis contributes to the identification of the information required for database

forensics analysis in the different dimensions of database forensics. It reveals the inad-

equacy of the logging preferences on some databases when it comes to the information

required for a forensic analysis or reconstruction in a database. It also gives a view of

the information that a database administrator should ensure is in the log for an effective

database forensics analysis, should the need arise.

1.8 Summary

This chapter provides an introduction to this thesis and explains the importance of the

research. It gives the problem statement and outlines the methodology describing how

the objectives of the research will be accomplished. The layout of the thesis and the

contributions of the thesis are also given in the chapter.

10

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 2

Concepts of Digital Evidence and

Digital Forensics

“Study to show thyself approved unto God, a workman that needeth not to be

ashamed, rightly dividing the word of truth.”

- 2 Timothy 2:15

The extensive use of technology in various aspects of our daily living today has led to an

increased usage of computers in facilitating crimes all over the world. Over the past few

years, this has created new challenges for law enforcement agencies, forensic examiners

and security practitioners and has resulted in significant advances in the field of digital

forensics. The aim of this chapter is to describe the terms and concepts in the field of

digital forensics and also give an overview of digital evidence and the digital forensics

process. Section 2.1 gives a brief history of digital forensics and describes some of the

events that resulted in the emergence of the field. Section 2.2 describes the nature of

digital evidence in detail. An overview of digital forensics process is given in Section

2.3. A detailed explanation of the examination and analysis stage of the digital forensics

process, which involves the process of reconstruction is given in Section 2.4.

2.1 A Brief History of Digital Forensics

Over the past decade, the digital forensics field has grown from a relatively obscure trade-

craft to an important part of many investigations [63]. It originated from attempts to

11

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 2. CONCEPTS OF DIGITAL EVIDENCE AND DIGITAL FORENSICS

acquire and analyze chains of evidence relating to investigations, by computer profession-

als who worked with the law enforcement and/or by law enforcement personnel with very

little background in computing. The early days of digital forensics were characterized by

the diversity of hardware, software and applications as well as the increasing number of

different file formats, many of which were poorly documented [63]. The lack of a formal

process, tools and training in digital forensics was also a major issue in the early days.

Although the field has progressed over the years with a rapid growth in research and

professionalism, many researchers have pointed out the need for standardization and a

unified process and training for digital forensics [10, 63, 93].

One of the driving forces of digital forensics research (which is also a challenge in the

field) is the progressive nature of technological advancement and this has an impact on

any attempt to describe the origin of digital forensics. The remainder of this section

examines the fundamental attribute of the digital forensics field by reflecting on the

history of the practice as well as the definitions and perspectives that have evolved over

the years.

Donn Parker is perhaps the first person to perceive the emergence of computer related

crimes. He described the use of digital information for investigation and prosecution of

computer related crimes in the earliest one of his books [108, 110, 109] in 1976. During

this time, system administrators were often responsible for the security of their own

system, most of which were not networked to the outside world. System audits (which

constituted the first approach to information security) were designed for ensuring the

accuracy and efficiency of data processing and the information collected could be used

to investigate wrongdoings [114, 108].

The need to handle computer related evidence, especially in mini-systems and mainframe

computers became a major issue in the 1980s. Organizations such as the New Scotland

Yard in the UK and the Department of Defense and Federal Bureau of Investigation in

the US established groups of law enforcement agents that were given basic mainframe

and minicomputer training and were able to assist case investigators in obtaining digital

12

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 2. CONCEPTS OF DIGITAL EVIDENCE AND DIGITAL FORENSICS

information usable as evidence [114, 7]. However, these units were the exception because

many investigations were still carried out by individual officers with minimal training,

little or no equipment and no supervision. The late 80s into the early 90s, experienced

a growth in the use of personal computers, an increasing awareness of digital evidence

and the recognition of the need for techniques for preserving digital evidence [119].

A tremendous growth in size and maturity of digital forensics was witnessed in the next

decade starting from the late 90s and was driven by the explosion of technology and an

increased number of child pornography cases [114]. Digital forensics became an important

part of many investigations and was useful in solving various crimes. Although very little

amount of academic or research work were done on digital forensics up to the late 90s,

the new millennium has experienced an increased number of journals and conferences

targeted specifically at digital forensics. Some of these include the Digital Forensics

Research Workshop (DFRWS) that was established in 2001, the International Journal of

Digital Evidence, established in 2002 , the International Journal of Digital Investigation

which was established in 2004, the IFIP Working Group 11.9 International Conference

on Digital Forensics, which was established in 2005, and many more that have evolved

since then.

Until the late 90s, terms such as computer forensics and forensic computing remained

informally defined even though they were used in publications. In 1999, McKemmish

defined forensic computing as “the process of identifying, preserving, analyzing and pre-

senting digital evidence in a manner that is legally acceptable” [92]. The Scientific Work-

ing Group on Digital Evidence (SWGDE) defined computer forensics as “the scientific

examination, analysis and/or evaluation of digital evidence in legal matters” [120]. The

first broad and widely accepted definition of digital forensics was given by researchers

at the first Digital Forensics Research Workshop (DRFWS) in 2001. They defined dig-

ital forensic science as “the use of scientifically derived and proven methods toward the

preservation, collection, validation, identification, analysis, interpretation, documenta-

tion and presentation of digital evidence derived from digital sources for the purpose of

13

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 2. CONCEPTS OF DIGITAL EVIDENCE AND DIGITAL FORENSICS

facilitating or furthering the reconstruction of events found to be criminal, or helping to

anticipate unauthorized actions shown to be disruptive to planned operations” [107].

Today, the terms digital forensics, computer forensics and forensic computing are still

arguably used interchangeably. However, one unifying aspect of the various definitions

is the concept of digital evidence. Also, even though there has been recent concerns

about the future of digital forensics due to technological advancements, fundamental

changes in the computer industry and the current lack of standardization [63, 10], an

increasing number of research is being done on digital forensics in general and on various

branches of digital forensics such as cloud forensics, mobile forensics, network forensics,

and database forensics, all of which involve the analysis of digital evidence and rely on

the same underlining principle of digital forensics, despite their specific challenges. The

following sections describe the concept of digital evidence and digital forensics in detail

and lay a foundation for the subsequent chapters in this thesis.

2.2 Nature of Digital Evidence

There is an increasing number of evidence that can be found on computers during various

investigations, even in investigations that are not necessarily electronic in nature. The

law enforcement agencies and investigators have come to terms with the fact that digital

data should be collected in any investigation.

The term digital evidence is defined as any data stored or transmitted using a computer,

and that support or refute a theory of how an offense occurred or that address critical

elements of the offense such as intent or alibi [29]. The data can include files stored on

a computer, including text, images, video or audio files, network packets, audit trails,

application logs, application metadata, internet service provider logs, or database con-

tents or transaction logs. Although digital evidence can be used to support or refute a

theory about a crime, it may also be simply used to facilitate the investigation of a crime,

reconstruct a crime or incident, understand criminal motivations, identify suspects or to

defend the innocent. Also, even though digital evidence may be used as a form of physical

14

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 2. CONCEPTS OF DIGITAL EVIDENCE AND DIGITAL FORENSICS

evidence, it possesses some unique properties that define the way it should be handled

and sometimes create problems that can complicate the use of digital evidence. Some

of these properties include the context and volume of digital data, the completeness of

digital information, anonymity of digital information, and the fragility and reproduction

of digital data.

Context and volume of digital data: The volume of data that can be retrieved from

a digital device is one of the challenges involved in handling digital evidence. Digital

evidence is often a mixture of various pieces of information, layered on top of each other

over time. Only a small portion of these data is usually relevant in many investigations

and it is important to be able to extract only the useful information. However, even

when the relevant data has been retrieved, the content and meaning of the information

highly depends on the context in which the data was produced. For example, a hard

drive may contain lots of data that may relate to hundreds of users or events. It is

also possible that the relevant information on the hard drive had been generated for use

by some specific device or computer program. Thus, it is necessary to retrieve relevant

pieces of information, understand their context and be able to fit them together in order

to correctly interpret it.

Completeness of digital information: The digital information retrieved during an

investigation is often an abstraction of the actual events. Although the layers of abstrac-

tion that exists in a digital data can often be used to analyze the data [20], the record

of activities available on a computer (for example, emails and log files) are often only

capable of providing a partial view of the events that occurred. Thus, the absence of

some data does not proof whether or not an event occurred.

Anonymity of digital information: Digital evidence is usually suggestive. That is,

even though it may be used to prove that some activities was performed using a particular

computer, it may be difficult to attribute the activities to an individual. For example, if

a computer log contains record that a person’s account was involved in an incident, it is

necessary to prove that no one else could have used the person’s account. Thus, a piece

15

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 2. CONCEPTS OF DIGITAL EVIDENCE AND DIGITAL FORENSICS

of digital evidence is only one component of a solid investigation [29] and it often relies

on other digital evidence.

Fragility and reproduction of digital data: Digital data is highly sensitive and can

be easily manipulated or destroyed. It can be changed accidentally during collection,

through a damaged storage media or by a malicious offender and this creates a huge

concern during many investigations. However, a positive aspect of handling digital data

is that it can be easily duplicated and the copy can be treated as original. Thus making

it harder for evidence to be destroyed in only one attempt since there may be multiple

copies in different places. In addition, by using the appropriate tools and techniques

(for example, checksumming [79]), it is easy to determine when digital data has been

tampered with or modified.

2.2.1 Admissibility of Digital Evidence

The properties of digital evidence described above raise questions about the authenticity

of data and its acceptance in a court of law. A piece of evidence needs to be considered

admissible before it can be accepted as evidence in a court of law. The conditions relating

to the admissibility of digital evidence in a court of law is often determined by the law

in a jurisdiction and the decision is sometimes made by the judge [29]. The admissibility

of digital evidence is usually assessed based on three major characteristics of digital

evidence: relevance, authenticity, and weight.

Relevance refers to the tendency of a piece of evidence to make the fact in question more

or less probable than it would be without the evidence [43]. Authenticating a piece of

evidence generally requires a testimony which reliably identifies the evidence (that is,

which shows that a complete and accurate copy of the digital evidence was acquired),

establish a chain of custody and integrity documentation, as well as the location of the

evidence since its copying. In order for an evidence to pass the admissibility test, it

must also be proven to have weight. The weight of evidence is a measurement of how

much the evidence changes the probability of the fact in question. It depends on how

16

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 2. CONCEPTS OF DIGITAL EVIDENCE AND DIGITAL FORENSICS

probable the evidence is if the fact is false [64]. Thus, to preserve the weight of digital

evidence, the possibility of tampering with it must be minimized since evidence that is

likely to originate from tampering as much as from the fact being proved, has no weight

in proving the fact.

2.2.2 Forensic Science and Digital Evidence

Forensic science is the application of science to investigation and prosecution of crime,

or the just resolution of conflict [29]. There are various disciplines in forensic science

that have been accepted in courts to help in different investigations. When the scientific

study of digital data (or digital evidence) relates to the investigation and/or prosecution

of a crime or the resolution of a conflict, it becomes a forensic discipline. Forensic science

provides scientific techniques and theories that allow digital investigators to analyze and

process digital data, reconstruct a crime or incident, and test their hypotheses in order

to generate strong possibilities about an incident.

In the same way that the admissibility of digital evidence can be questioned, the tech-

nique or scientific theory used in processing digital evidence can also be challenged by

categorizing them as scientific evidence. If scientific evidence is based on a theory that

lacks adequate experimental support or that involves a questionable process, the admissi-

bility of the evidence may be affected. In various countries of the world, different criteria

are often used to establish scientific evidence and its underlying theory. For example,

the United States makes use of some criteria specified in the Daubert vs Meriell Dow

Pharmaceutical Inc. case [47] for evaluating the validity of scientific evidence. These

criteria include [29]:

• whether the theory or technique used can be (and has been) tested.

• whether there is a high known or potential rate of error associated with the theory

or technique.

• whether there is an existence and maintenance of standard controlling the tech-

nique’s operation.

17

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 2. CONCEPTS OF DIGITAL EVIDENCE AND DIGITAL FORENSICS

• whether the theory or technique has been subjected to peer review and publication.

• whether the theory or technique enjoys a widespread or general acceptance within

the relevant scientific community.

According to Olivier [101], these criteria continue to reverberate in the minds of those

trying to establish a forensic discipline such as digital forensics. He described scientific

correctness from the perspective of algorithmics and argues that rather than just follow-

ing a set of protocols, correctness should be based on scientific facts and a formal proof

of correctness of an algorithm with a quantifiable rate of error [43]. Other researchers

[102, 130] have also discussed the issue of hypothesis in digital forensics and pointed out

the need for a higher level of scientificness in digital forensics than what is done cur-

rently. One approach described by Olivier [101] to handle the issue of correctness is by

reconstructing information and checking the validity of the reconstructed data with what

is known. It is important to note that even when an algorithm is proven, correctness

still depends on its correct implementation.

2.2.3 Absence of Evidence and Exchange of Evidence

Due to the ubiquitous nature of digital evidence, it is often rare to find a crime that

does not have some related data that are stored or transmitted with a computer system.

These data can be the evidence required for a prosecution1, or it may be used to support

other evidence or get more information during an investigation. However, even when

no data can be found, it is important to remember an axiom from forensic science that

states that, “the absence of evidence is not the evidence of absence”[57]. For example,

if no evidence could be found on a computer to determine whether or not it accessed a

particular web page, it does not mean that the computer was not used to access the site.

It is important to base all assertions on solid supporting evidence and not on an absence

of evidence [29]. Thus, it is necessary for an investigator to find corroborating evidence

[27] that clearly demonstrates the falsity or truth of a claim when the required evidence

1subject to admissibility in court

18

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 2. CONCEPTS OF DIGITAL EVIDENCE AND DIGITAL FORENSICS

cannot be found.

The principle underlying the process of finding corroborating evidence is a principle

that is usually applied in a physical crime scene which is known as Locard’s exchange

principle, that contact between two items will result in an exchange of matter between

them [34]. That is, there will always be some trace evidence with every interaction even

though it may not be easily detected. For example, hair, fiber or fingerprints from a

criminal are often found at a physical crime scene.

According to Casey [29] and Carrier [22], this principle applies in both the physical and

digital realms because the same effect often occurs in a digital crime scene. The data

entering or leaving a computer leave traces of digital evidence. The principle can also

provide link between the physical crime scene and the digital crime scene as shown in

figure 2.1 [29]. For example, in a case involving email harassment, the act of sending

messages over a web-based email service can leave traces such as files and links on the

sender’s hard disk and/or web browser as well as some date-time related information.

Digital Crime Scene

Physical Crime Scene

Offender Victim

Evidence transfer

Evidence transfer

Figure 2.1: Evidence Transfer in Physical and Digital Dimensions [29].

Although this principle may not be true for all systems in general, it is true for systems

that keep record of their actions or activities. However, such records may have to rely

on the operating system and/or the application developer since the evidence that will be

stored depends on both. The traces left on a digital crime scene (or a computer) may

19

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 2. CONCEPTS OF DIGITAL EVIDENCE AND DIGITAL FORENSICS

also depend on the role played by the computer in the crime being investigated. In the

following section, some of the roles played by computer in a crime are briefly described.

2.2.4 The Role of Computers in Crimes

Before describing the process involved in digital forensics investigation, it is important to

highlight some of the roles that computers can play in a crime since it may affect the type

of evidence that can be found on the computer. Over the years, several sources of digital

evidence have evolved. Apart from computer systems, sources of digital evidence have

expanded into areas including networks, mobile devices, media devices and databases.

For simplicity, these devices are generally referred to as computers in this section. The

type of evidence that can be collected from a computer and their possible uses depend

on the specific role that the computer played in an incident. There are three major

categories of the use of computers in a crime [109, 26]:

• Computer as the target (or object): a computer is the target of a crime when

the computer is affected by the criminal act. This may include cases involving

the destruction of a computer and/or the misuse of the data contained in it. For

example, a computer is the target of a crime if it is used to steal intellectual

property, personnel data, government records or destroy programs on a computer

with the intent of creating havoc to a business or procedure.

• Computer as the instrumentality of a crime: this occurs when a computer is used

as an instrument or tool for conducting or facilitating a crime. It involves the use

of the computer processes and not necessarily the data stored in files. An example

is when a computer is used to forge documents or commit other frauds that can be

done through computer transactions.

• Computer is incidental to other crimes: a computer is incidental to a crime when

the computer is related to but not compulsory for the crime to occur. This often

includes the use of computers to speed up a crime or to enable multiple instances of

the crime. Examples include, the usage of a computer in money laundering process,

20

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 2. CONCEPTS OF DIGITAL EVIDENCE AND DIGITAL FORENSICS

or a situation where murder is committed by changing a patience’s medication

information and dosage in a hospital computer [26].

Other categories of the role of computers in a crime include Parker’s [109] categories of:

• Computer as the subject: a computer is the subject of a crime when it is the site

or the environment in which the crime is committed. For example, the presence

of a rootkit or computer virus on a computer, which impairs its use makes the

computer the subject of the incident.

• Computer as the symbol: this occurs when a computer is used to intimidate or

deceive. An example is a situation where a merchant makes people to believe that

they can make money from the internet through the use of some computer program.

And even though the merchant has no such program, lots of people were convinced

to pay for the supposed program.

In the three major categories described above, a computer may act as the source of both

physical evidence (computer components) and digital evidence (data stored or transmit-

ted using a computer). The US Department of Justice’s [134] created a different set of

categories that makes this distinction. However, it is important to note that evidence

that proves or disproves a claim about an incident can often also be found on a computer

even though the computer did not play any role in the crime or incident. For example,

a computer that contains records of people whose tags were used in accessing a building

may become a source of digital evidence when investigating a crime committed in the

building.

Regardless of the role played (or not played) by a computer in an incident, various

procedures and techniques have been developed for investigating digital evidence. In the

next section, the investigative process of digital forensics is described.

21

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 2. CONCEPTS OF DIGITAL EVIDENCE AND DIGITAL FORENSICS

2.3 Investigative Process for Digital Forensics

This section summarizes the various process models that have been developed for digital

forensics investigations and describes the major stages involved in an investigation. Some

of the process models that have evolved over the years include the linear process models

such as [96, 107, 43, 91, 116] and other methodical approaches such as [9, 11, 22, 36,

29]. Many of these models were developed to handle different circumstances and as

such may not be adequate for all types of investigations. A comparison of the different

process models, shown in table 2.1 highlights four major stages in the digital investigation

process: Preparation, Collection, Examination and analysis, and Presentation. The first

column of the table shows different process models while the other columns show the

term used to refer to each of the major stages identified in the respective process model.

Preparation: the preparation stage involves the generation of an action plan and

preparation of tools and equipment necessary to perform a digital investigation

in the event of an incident. It also involves getting the necessary authorizations

or approval to collect data for an investigation. This stage ensures that the best

evidence can be collected when the need arises.

Preservation and collection: Preservation involves the steps taken in order to main-

tain the integrity and authenticity of data during an investigation. It involves the

prevention of activities that can damage the data available during an investigation.

Operations such as making duplicate copies of data, avoidance of deletion processes

and early collection of volatile data that may be lost when a system is turned off

are often carried out as part of the preservation stage. Failure to ensure that data is

preserved may lead to inadmissibility of evidence. The preservation stage is usually

followed by the collection of data. The collection stage may involve different tech-

nologies and techniques depending on the circumstance [43]. It consists of finding

and collection of digital data that may be relevant to an investigation. The col-

lection stage may also involve the removal of the hardware or personal computers

22

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 2. CONCEPTS OF DIGITAL EVIDENCE AND DIGITAL FORENSICS

Stages Preparation Collection Examination
and analysis

Presentation

Equivalent
in [96]

Preparation Assessment,
Acquisition

Examination Documenting
and reporting

Equivalent
in [107]

Identification,
Preservation,
Collection

Examination,
Analysis

Presentation,
Decision

Equivalent
in [43]

Identify,
Collect,
Preserve,
Transport,
Store

Analyze,
Interpret,
Attribute,
Reconstruct

Present,
Destroy

Equivalent
in [91]

Pre-incident
preparation,

Data collection Data analysis Reporting

Detection of in-
cident,

Initial response,

Formulate re-
sponse strategy

Equivalent
in [116]

Identification,
Preparation,
Approach strat-
egy

Preservation,
Collection

Examination,
Analysis

Presentation,
Returning
evidence

Equivalent
in [11]

Preparation, In-
cident response

Data collection Data analysis Findings pre-
sentation,
Incident clo-
sure

Table 2.1: Comparison of Digital Investigative Process Models.

from the physical crime scene, copying of all files on a computer or some necessary

files and gathering of network traffic.

Examination and analysis: The nature and extent of the examination and analysis

stage depends on the circumstances of the crime and the constraints placed on

the digital investigator [29]. Digital investigation can involve two main types of

analysis techniques: live analysis and dead analysis (also referred to as live forensics

and dead forensics, respectively) [24]. In a live analysis, software that exist on

the system being investigated are used in the analysis and as such the system is

23

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 2. CONCEPTS OF DIGITAL EVIDENCE AND DIGITAL FORENSICS

kept running during the analysis. This technique is often used in critical systems

where it may be too expensive to switch the system off. On the other hand, dead

analysis does not require the use of any software on the system being investigated

because it involves switching the system off and making a copy of the disk for

further analysis with a trusted operating system and/or applications. Unlike the

live analysis technique, dead analysis enables an investigator to repeat the steps

taken during an analysis, since copies of the disk at the time of the incident can

be easily made.

The examination stage entails searching of collected information for relevant data or

the recovery of relevant data. The purpose of the examination stage is to find trace

elements such as files, timestamps and other data that might have generated the

data being examined. The analysis of these trace elements allows an investigator to

draw conclusions based on the evidence gathered. The four major steps completed

in this stage include, examination of collected data, interpretation, attribution and

reconstruction.

Presentation: This is the last stage of the digital investigation process and it involves

a summarization of the findings and conclusions of an investigation into a report

that conveys the findings to other people and which may be presented in a court.

The report contains an outline of the examination process as well as the data

recovered during an investigation.

The preparation, preservation and collection, and presentation stages of the digital in-

vestigation process are not explored further in this thesis since the focus of the thesis

(that is, reconstruction) falls into the examination and analysis stage. The rest of this

thesis assumes that all the necessary preparations for data collection were made and that

the steps necessary to ensure that data is preserved were followed during data collection.

For interested readers, more information about the preparation, preservation and collec-

tion, and presentation stages, as well as a set of steps that should be employed by an

investigator during these stages can be found in practice guides such as the ACPO guide

24

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 2. CONCEPTS OF DIGITAL EVIDENCE AND DIGITAL FORENSICS

[5] and guides from the US Department of Justice [96, 97]. Various tools that can assist

in the preservation and collection of digital evidence have also been developed and these

include, EnCase [68] and Forensic Toolkit (FTK) [1].

2.4 Examination and Analysis

The aim of this section is to describe the tools and techniques used in the examination

and analysis stage of the digital forensics process. The four major steps involved in the

examination and analysis stage are described in the following subsections.

2.4.1 Examination of Data

The examination of collected data focuses on the extraction and preparation of data for

analysis [29]. This step involves data translation, reduction, recovery and organization

of relevant pieces of information in order to facilitate detailed analysis.

At its simplest level, digital data exists on physical media such as wires, magnetic disk

or in form of signals. It is required that these forms of data can be translated into

a form that is humanly understandable in order to examine them [28]. However, the

abstraction layer that usually exists in all forms of digital data is a major challenge in

data translation since it can introduce errors or loss of important information. Carrier

[20] discussed these layers of abstraction, their properties and the error types that can

be encountered in digital forensics analysis. A technique for mitigating the risk of errors

caused by data translation is to validate data using multiple forensic tools [28]. Forensic

tools should also satisfy requirements such as usability, accuracy and verifiability [20] in

order to ensure that data is correctly translated.

Another aspect of the examination step deals with the reduction or filtering of data. Due

to the large volume of information that may be collected during an investigation, it is

important that an investigator focuses only on the relevant information. The reduction

of data often include the elimination of valid system files and other known entities that

are of no relevance, identification of most probable user-created data, identification of

25

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 2. CONCEPTS OF DIGITAL EVIDENCE AND DIGITAL FORENSICS

files created within a restricted time frame, managing of duplicate files and identifica-

tion of discrepancies between different forensic tools [29]. In addition, various search

techniques can be used to identify the types of objects or data that are relevant to an

investigation. Based on the level of search automation, Gladyshev [64] categorized cur-

rent search techniques into groups including, manual browsing, keyword search, regular

expression search, approximate matching search, custom search, and search of modifica-

tion. Although data reduction allows an efficient and thorough examination of data, the

risk of missing important information or clues makes it important for an investigator to

identify the appropriate data reduction technique in any given situation.

Data examination also involves the recovery of data from various data or file types, or

from data hidden amongst other collected information. The recovery process depends

on the type of data, its state, the type of hardware and/or software involved, their

configuration and the operating system being used. Data can often be recovered from

binary files of various applications, from slack space or unallocated space containing parts

of previously deleted files, from encrypted data and from other hard-to-find places such

as files/file systems that are not normally used [43]. Some of the various techniques that

have been developed for the recovery of data include the extraction of document headers

and fragments for grafting, finding the paraphrase protecting private keys or finding

unencrypted versions of data in unallocated space or swap files [29], and searching for

indicators that represent potential presence of hiding methods [45].

The final part of the data examination stage involves the organization of retrieved rel-

evant data into classes of objects with similar characteristics or features such as file

formats, hardware model, software versions, combinations of words in a document or

number of pixels in a picture. To organize data, it is necessary to ascertain what the

digital object is, determine its distinguishing characteristics, and evaluate its source [29].

The ability to organize data facilitates the easier location of data fragments on disks and

enables an investigator to analyze data more thoroughly.

26

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 2. CONCEPTS OF DIGITAL EVIDENCE AND DIGITAL FORENSICS

2.4.2 Interpretation

Interpretation deals with the application of context to information available during an

investigation. Despite the fact that data relevant to an investigation may be found on a

computer, there may also be many possible sequences of events that might have resulted

in the presence of such data. For example, data might have been maliciously placed

on a computer by an intruder or a virus program, or it might have been produced by

another program that looks similar to the one being considered [43]. The presence of a

particular piece of information does not always indicate that the event indicated really

took place. The purpose of interpretation is to consider alternative explanations that fit

the complete collection of data and not just a single piece of information. This assists

an investigator in explaining the events that might have occurred and provides a level of

certainty for assumptions made [43]. Explanations which prove to be inconsistent with

available information may be discarded in order to arrive at reasonable conclusions.

Interpretation involves the use of logic and other reasoning techniques and tools. How-

ever, even though tools such as EnCase [68] and FTK [1] may be employed, the process

of interpretation is mainly a decision making process in which the investigator considers

steps to be taken and those not to be taken in order to reach a conclusion or gener-

ate a hypothesis. Thus, it is important that an investigator does not over-interpret or

mis-interpret data and must ensure that tools used also do not. Apart from the inter-

pretation of available data, the absence of some data (that should probably be present)

in a collection can also lead to various interpretations [41]. Missing data can facilitate

the detection of alterations or spoliation.

A major challenge of the interpretation stage is the possibility of arriving at false posi-

tives or false negatives due to the mis-interpretation of data, over-interpretation of data,

missed content, context, meaning, process, relationship, ordering, time, location, corrob-

oration, and consistency faults. Thus creating a level of uncertainty in conclusions made.

Casey [27] discusses the issue of uncertainty in digital evidence in detail. As mentioned

in Section 2.2.3, a technique for handling this problem is to find corroborating evidence,

27

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 2. CONCEPTS OF DIGITAL EVIDENCE AND DIGITAL FORENSICS

which can reduce the number of alternative explanations and evaluate the probability of

falsity or truth of the different explanations. Other techniques that have been explored

for mitigating errors that can arise from interpretation include the use of the redun-

dancy in tool use, application of information physics, and substitutions and similarity

comparison mechanisms [43].

2.4.3 Attribution

Attribution refers to the question of who or what caused certain effects on a piece of

digital evidence [80, 33]. To identify the relationships between events, suspects and

victims in a digital environment, one of the techniques used is to represent the digital

environment as a finite state automaton. The states of the automaton represent places

where the suspect has been, email or IP addresses he has accessed, telephone numbers

called, and so on. The objective of the automaton is to establish connections between

the states, and thus enabling an investigator to get an overview of an incident and locate

sources of digital evidence that may be initially unknown. Examples of analysis tools

used to connect events during investigation include NetMap [99] and Analyst Netbook

[73]. In many situations there is a relatively small number of inputs, program interactions

or events that make up the finite state automaton, thus allowing the easy construction of

the automaton for attribution purpose. However, a problem arises when the complexity

of the automaton is too high for a precise modelling of connections between states of the

automaton [43].

Other techniques that can be used for attribution include simulation of the events, use

of complexity argument, and the use of redundant information that may be available

from the environment. For example, the information retrieved from a CCTV camera

may be useful in asserting who was in an office at a particular time. These techniques

often provide an independent support for hypotheses made about the attribution of some

events to someone.

Although the purpose of authentication mechanisms (for example, biometric devices, file

28

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 2. CONCEPTS OF DIGITAL EVIDENCE AND DIGITAL FORENSICS

ownership and/or authorship and passwords) is to confirm an identification, it is also

often used as a basis for attribution and the certainty of the attribution relies on the

additional or corroborating evidence that can be found. Cohen [40] explains in more

detail, the concept of attribution, mechanisms used, their limits and the complexity

issues with tools used for attribution.

2.4.4 Reconstruction

This section defines the concept of reconstruction in digital forensics process and gives

a survey of the different techniques that have been employed for reconstruction. It also

lays a foundation for Chapter 4 of this thesis, which discusses the database forensics field

and the process of reconstruction in database forensics.

All the examination and analysis steps discussed earlier, as well as many of the available

digital forensics tools are focused on finding evidence and identifying who might be

responsible for an incident that is being investigated. However, the fact that a digital

object exists on someone’s computer does not prove that he is responsible for its presence.

It is required that all the examination, interpretation and attribution together with the

hypothesis made in these steps can be tested in order to confirm or refute the hypothesis

[29]. And this is achieved through reconstruction.

Reconstruction involves the examination of digital evidence with the aim of identifying

why it has its characteristics and the events that might have caused the occurrence of

the evidence. The process of reconstruction assists an investigator to not only have

information about the final state of an object but to also deduce its previous states

by examining the events that might have involved the object [25]. It also questions

the source and the time of creation of an object. Reconstruction differs from the re-

enactment or recreation of an incident and criminal profiling in the sense that it is more

comprehensive and directed towards a final resolution [83].

Based on the available literatures, this thesis groups reconstruction techniques into two

major approaches. The first approach, experimental reconstruction, is focused on testing

29

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 2. CONCEPTS OF DIGITAL EVIDENCE AND DIGITAL FORENSICS

hypotheses about an investigation in order to confirm, refute or reveal more information

about the hypotheses. The second approach, retrospective reconstruction, involves an

attempt to go backwards in time in order to determine the previous inputs and states

that could have generated the available evidence [3]. A survey of the literatures relating

to these two approaches is discussed below.

Experimental Reconstruction

In this approach, the process of reconstruction generally involves four main steps:

1. the creation of hypothesis based on available evidence,

2. reproduction of the evidence based on the hypothesis made,

3. comparison of reproduced evidence and the original evidence,

4. Evaluation or refining of hypothesis for further reconstruction.

Some of the work that have been done on experimental reconstruction of a physical crime

scene include that of Miller in James et al. [77], Rynearson [118], Bevel and Gardner

[12] and that of Chisum [133]. Miller [77] describes a process of reconstruction which

consists of five phases:

• collection of evidence from the crime scene,

• formulation of an initial conjecture about the events at the crime scene,

• formulation of a reconstruction hypothesis about the incident, based on the exam-

ination of the physical scene and evidence,

• testing of the hypothesis to confirm or refute all or some aspects of the hypothesis,

• and lastly the formulation of a reconstruction theory.

Rynearson [118] incorporates the “common sense reasoning” and its applicability in foren-

sics science to the examination of evidence at a crime scene. His method of reconstruction

concentrates on the evaluation of a crime scene and the recognition of individual objects,

relationships between objects, or environmental observations. His method is focused on

30

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 2. CONCEPTS OF DIGITAL EVIDENCE AND DIGITAL FORENSICS

revealing relational clues (that come from an object’s location and orientation with re-

spect to other objects), functional clues (that come from the operational conditions of

the object), and temporal clues (that come from the interaction of time and environment

on the evidence) [118] and determining how an object happen to be. The process involves

getting an initial idea about the crime scene, followed by a reconstruction of events that

might have occurred and the development of a hypothesis. The hypothesis can then

either be confirmed or refuted depending on whether or not evidence is found to support

it. If it is refuted, the reconstruction process retracts to the point of the contradiction

in order to show why the hypothesis is not valid.

A formal procedure for reconstruction was developed by Bevel and Gardner [12]. They

describe the term event as an occurrence at the macro level and the term event segments

as the micro level events that make up an event. For example, a login and logout on a

computer that has been used to commit a crime may be viewed as event segments. Their

reconstruction procedure involves the collection and examination of evidence, followed by

the creation of event segments, and the sequencing and grouping of event segments into

larger events. Once the sequence of events and event segments is determined, a flowchart

representing the incident can then be created in order to get a complete picture of the

incident.

In relation to a digital crime scene, Stephenson [126, 127] proposed the use of a colored

Petri net model for testing event reconstruction hypotheses. This approach involves the

definition of a petri net model for the system being investigated and the simulation of

events to determine if they could have occurred. The stages in the reconstruction process

include, collection of evidence, analysis of individual events, preliminary correlation of

events, event normalization, event deconfliction, second level correlation, timeline analy-

sis, chain of evidence construction, and corroboration [126]. This model of reconstruction

is more applicable in large and complex investigations.

Based on the principle of relational, functional and temporal information that can be

found in a piece of digital evidence [133], Casey and Turvey [29] describe three analysis

31

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 2. CONCEPTS OF DIGITAL EVIDENCE AND DIGITAL FORENSICS

techniques for reconstruction:

1. Relational analysis: involves the use of the relationships between suspects, vic-

tims and crime scene in identifying which event could have occurred and where

additional evidence can be located.

2. Functional analysis: assesses how a computer functions and determines if a com-

puter or an individual is capable of performing the event that is believed to have

occurred at a particular time.

3. Temporal analysis: creates a chronological list of events by exploring the time

information available on a computer. This information may include MAC times2,

date-time stamps on log files or databases showing times of various activities. The

objective of temporal analysis is to develop a timeline [70] or a histogram of times

which may be useful in recognizing patterns and understanding deviations from

regular events [29].

Carrier and Spafford [25] present a more formalized approach to experimental recon-

struction which is similar to that of Bevel and Gardner [12]. Their reconstruction model

consists of five phases. The evidence examination phase examines each piece of digital

evidence in an attempt to identify and individualize it. The reliability and credibil-

ity of the evidence is also examined. The second phase is the role classification phase

which examines each object and identifies what type of information it has, based on the

functional, relational, and temporal categories [29]. The event construction and test-

ing phase entails the correlation of cause and effect objects using either a forward or a

backward search technique [25]. The fourth phase is the event sequencing phase during

which events are ordered based on the time at which they occurred. The last phase

involves the testing of hypothesis in order to attach a confidence level to each hypothesis

and determine which ones can be confirmed or refuted. The Petri net model [126] of

reconstruction can also be applied in the testing phase of their reconstruction model.

2Time of last Modification, time of last Access, and time of Creation.

32

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 2. CONCEPTS OF DIGITAL EVIDENCE AND DIGITAL FORENSICS

Retrospective Reconstruction

The retrospective (or backward) reconstruction is another approach to reconstruction in

the digital forensics process. Many of the techniques that have been proposed in this

regard involve the definition of the system to be investigated as a finite state machine

(FSM). The reconstruction of events is done by going backwards in time (or in transitions)

from the final state (or the state in which the system was discovered) to determine the

previous inputs and states that must have or could have produced the evidence. Scenarios

that disagree with the available evidence are then discarded.

Gladyshev and Patel [65] proposed a reconstruction technique that uses FSMs. The

generic algorithm presented in their work computes the set of all possible explanations

for the evidence, with respect to the FSM generated for the system involved. The steps

involved in their reconstruction algorithm includes a procedure for computing observation

sequences, meaning of observation sequences, and how these can be combined into the

meaning of the evidence [65]. Due to the exponential complexity of the algorithm, it is

more suited for small systems [64].

Another backward reconstruction mechanism similar to that of Gladyshev and Patel [65]

is the hypothesis based approach proposed by Carrier [23] in that it also uses a FSM

to model the system being investigated. He presents a history model that can be used

either for reconstruction or to identify assumptions made during an investigation. The

formulation and testing of hypotheses is done through the application of the scientific

process [49, 83] in the investigation process.

Cohen [43] outlines some of the hindrances that may arise (based on the concept of infor-

mation physics) when using the retrospective reconstruction approach. For example, it

is possible that there are several inputs that could have generated a piece of evidence and

this possibility may increase the time and space complexity of a retrospective reconstruc-

tion technique. However, it is important to note that these hindrances may be negligible

in certain situations, so that the retrospective reconstruction technique is adequate in

33

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 2. CONCEPTS OF DIGITAL EVIDENCE AND DIGITAL FORENSICS

such cases. Also, regardless of the reconstruction approach used, there are various chal-

lenges that must be overcome in order for the result of the reconstruction process to be

admissible. Some of the questions that should be asked after a reconstruction in order

for it to be admissible are discussed in [43].

2.5 Summary

This chapter describes the concept of digital evidence and digital forensics. A brief

history of digital forensics is given to show how technological advancement and the need

to analyze data from digital equipment during an investigation have caused a tremendous

growth in the digital forensics field over the last decade. The nature of digital evidence is

described in order to highlight the properties and challenges involved in handling digital

evidence. An important aspect of digital evidence deals with the exchange of evidence

between a physical and a digital crime scene. And even though evidence may sometimes

be absent (or cannot be found), this does not prove that it does not exist and it is

important to find corroborating evidence to support or refute a claim.

The chapter also discusses some of the digital forensics process models and gives attention

to the examination and analysis stage during which reconstruction takes place. The two

general approaches of reconstruction are described as these lay a foundation for many of

the concepts which are discussed in the subsequent chapters of this thesis.

34

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 3

Database Systems

“For precept must be upon precept, precept upon precept, line upon line, line

upon line, here a little, there a little.”

- Isaiah 28:10

The focus of this thesis is on the reconstruction process of the forensics analysis of a

database system. In Chapter 2, the concepts of digital forensics and digital evidence have

been explained. In order to understand the application of digital forensics techniques in

databases and highlight some of the relevant aspects of databases in relation to forensics

analysis, this chapter discusses some of the concepts and architecture of databases and

database management systems (DBMSs). The chapter positions the thesis within the

context of database forensics and introduces some of the basic terminology used in the

rest of the thesis. Section 3.1 gives a brief introduction to the concepts of database

systems. In Section 3.2 and Section 3.3, the characteristics and advantages of database

systems are described. Section 3.4 discusses the concepts of logging and the use of logs

in ensuring database consistency and recovery. A brief description of database models

is given in Section 3.5. Section 3.6 explains the relational database model and explains

some of the concepts used in the rest of the thesis.

3.1 Concepts of Database Systems

Databases play an important role in various organizations where computers are used.

Databases are often used to store large amounts of sensitive and critical information

35

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 3. DATABASE SYSTEMS

relating to an organization and/or her clients, and assist in running the organization’s

business. In order to adequately describe the concept of database systems, a general

definition of a database is required.

A database can be defined as a logically coherent collection of data, which is designed for

some specific purpose and an intended group of users [51]. Databases have a major impact

on the increasing usage of computers and are among the most important applications of

computer technology. The main purpose of a database is to provide multiple users with

a structured way of handling real world data using various application programs that

enable interaction with the database or a database management system.

A database management system (DBMS) is a collection of programs that enables users to

create and manage a database. That is, a DBMS is a software system that facilitates the

processes of creating, storing, retrieving, editing and updating of the data in a database.

A database together with the software used to manipulate (execution of operations such

as querying, updating, and report generation) the data in the database is referred to as

a database system. Figure 3.1 [122] illustrates the components of a simplified database

system environment and shows their interaction. As shown in the figure, a DBMS has

three basic components that provide the following facilities [122]:

1. Data definition language (DDL): this is used by the database users to define data

types, structures and constraints on the data to be stored in the database. The

DDL compiler in the DBMS processes the DDL statements from the user and

generates an object schema that is stored in the DBMS catalog.

2. Data manipulation language and query facility: Manipulations that can be done

on data include retrieval, insertion, deletion, and updates. The DBMS provides

a data manipulation language for these purposes. It also provides general query

facility through the use of a query language such as SQL.

3. Software for controlled access to the database: The DBMS provides controlled

access to the database. This includes the prevention of unauthorized access to the

database, provision of a concurrency control system to allow shared access of the

36

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 3. DATABASE SYSTEMS

Users / Programmers

Application Programs / Queries

Database 
System

DBMS
Components

Data Description Language
(DDL)

Software to process
Queries/Programs

Software for Controlled Access
of Stored Data

Stored Database
Definition 
(Metadata)

Stored Physical 
Database

Figure 3.1: A Simplified Database System Environment [122].

database, and the activation of a recovery system to ensure that a database can be

restored to a previous consistent state in the event of a hardware, software or any

other failure.

Although a database is really a set of related files, there are various characteristics

that distinguish a database system from a traditional file management system. For

example, in traditional file management, each user determines the content of the files

needed for a specific application and files are not easily linked to one another. This

results in redundancy in the creation and storage of data records when one or more users

require the same set of data. On the other hand, a database system maintains a single

repository of data that can be accessed by different users. A detailed description of the

main characteristics of a database system is discussed in the next section.

37

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 3. DATABASE SYSTEMS

3.2 Characteristics of Database Systems

Database systems are used in various organizations and application areas. Although the

size and the complexity of a database vary depending on different factors, including the

amount of information contained in the database and the number of users, there are

several fundamental characteristics of database systems that unify different databases

and make data management more efficient. Some of these characteristics are described

in the following sections.

3.2.1 Structured and Self Describing

One of the fundamental characteristics of a database system is that it does not only con-

tain the database but also contains a complete definition and description of the database

and the data contained. This description is known as the metadata or database schema

and is stored in the system catalog. The metadata contains details about the structure,

type and the format of each file and data item, as well as the relationship between the

data and any other constraints [51, 98]. The metadata is used by the DBMS to provide

information to database users or application programs that need certain information

about the database structure. Since the DBMS software is not written for one specific

database application, the metadata provides the information needed by a DBMS in order

to understand the structure, type and format of files and data that it will access.

One important consequence of this characteristic is that there may be many database

instances (that is, the data in the database at a particular time) that correspond to a

particular database schema. The DBMS is partly responsible for ensuring that every

instance of the database satisfies the structure and constraints specified in the schema

or metadata.

38

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 3. DATABASE SYSTEMS

3.2.2 Concurrent Use and Multiple Views of Data

A typical database allows multiple users to access the database at the same time, par-

ticularly in cases where the data for different applications or purposes are merged and

maintained in a single database. The DBMS is required to put in place adequate mea-

sures to ensure that several users do not try to update the same data at the same time,

so that the integrity of data can be maintained. One of the mechanisms used to facili-

tate the sharing of data involves allowing database users to have different views of the

database depending on their access rights and data need. A data view may consist of a

subset of the data stored in the database or it may consist of data that is derived from

the database files but which is not explicitly stored in the database [51].

3.2.3 Data Abstraction

Another fundamental characteristic of a database system is that it provides some level of

data abstraction by providing users with a conceptual representation of data that hides

details of how data is stored [51]. This abstraction is achieved by using a data model.

A data model is a set of logical concepts used to describe data types, data relationships

and constraints that should hold on the data stored in a database. Most data models

also include a set of operations for modifying the database. Database users refer to

this conceptual representation of files when an information is required and the DBMS

extracts the details of the file storage from the catalog on behalf of the users. Over the

years, several data models have been proposed and can be categorized based on the type

of concept used to describe the data structure:

1. High-level or conceptual data models: these data models provide concepts that are

similar to the way users perceive data.

2. Low-level or physical data models: these data models provide concepts that de-

scribe the details of how data is stored in the computer.

39

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 3. DATABASE SYSTEMS

3. Implementation or representational data models: these are data models that pro-

vide concepts that may be understandable to the user but which also reflects how

data is organized within the computer [51].

Regardless of the data model used, the description of the database (database schema or

metadata) is always separated from the database itself.

3.2.4 Program-Data Independence

Application programs do not require a knowledge of the structure, format or type of

data and data files in order to get access to the data stored in a database. This is

because the metadata, which is stored in the database catalog, is separated from the

application programs trying to access data. Programs communicate with the DBMS

through standardized interfaces and languages (for example, SQL) in order to understand

the database structure or access data. This property is often referred to as program-data

independence and it implies that applications can be totally separated from the data in

a database. The DBMS has an exclusive right of access to data and the metadata. The

property also implies that database internal reorganizations or improvement of efficiency

would have no effect on the operation of application programs [98].

In order to help in achieving this characteristic of database systems, a three-schema

architecture also known as the ANSI/SPARC1 architecture [132, 78] was proposed. Al-

though from a user perspective, most database systems have a similar basic architecture

[98], the ANSI/SPARC architecture is described to provide insight into some of the in-

teresting aspects of a database and have a comparable abstract picture of a database.

The main goal of the three-schema architecture is to separate user applications and the

physical database. The logical structure of the architecture is shown in figure 3.2 [19, 51].

1American National Standards Institute/Standards Planning and Requirements Committee.

40

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 3. DATABASE SYSTEMS

End Users

External
View

External
View

. . . . . .

Conceptual Schema

Internal Schema

External Level

Conceptual Level

Internal Level

External / Conceptual Mapping

Conceptual / Internal Mapping

Storage Mapping

External
View

Figure 3.2: The Three-Schema Architecture [19, 51].

The Three-Schema Architecture

The ANSI/SPARC architecture defines a database schema at the following three levels

[51]:

1. Internal level: the internal level consists of an internal schema that describes the

structure of the database from a view that is closest to the physical storage. Thus,

it describes the complete detail of data storage methods, access paths and other

technical aspects of the way the data is physically stored. A low-level data model

can be used for internal schemas.

2. External level: the external level or the view level contains the external schemas

or the external views of the database. Each of the external schemas is a collection

of data representing the properties and relationships in the database that affects a

specific user or group of users. The external level is the view closest to the users

and is concerned with how users view data. Thus, it describes the information

about the user view (the part of the database that a particular user or group is

41

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 3. DATABASE SYSTEMS

interested in), and the methods and constraints associated with this information

but hides the rest of the database from the user. A high-level data model or an

implementation data model can be used for external schemas.

3. Conceptual level: the conceptual level is concerned with a community of user views.

That is, the conceptual schema describes the structure of the whole database. It

gives a global description of the database by describing the entities that make up the

data, together with their properties, data types, interrelationships and constraints.

However, the details of the physical storage are hidden so that the conceptual level

acts as an intermediary between the internal level and the users. A conceptual

schema can be based on a high-level data model or an implementation data model.

The three-schema architecture gives a description of the data in the database. However,

the data is only existent at the physical level. User requests to access data are processed

by mappings between any two of the three levels. This assists in ensuring program-data

independence in a database system.

Three-Schema Architecture and Data Independence

This section gives a brief description of how the three-schema architecture assists in

achieving data independence. The concept of data independence can be viewed as the

ability to change the schema at one level of a database system without changing the

schema at the next higher level [51]. Thus, there are two types of data independence:

1. Physical data independence: this is the ability to change the internal schema with-

out having to change the conceptual or the external schema [51]. This property

assists in ensuring that the reorganization of files in a database does not affect the

structure of the whole database or how the users view the database.

2. Logical data independence: this is the ability to change the conceptual schema

without having to change the external schema or modify the application programs.

This property assists in ensuring that modifications to the database do not call for

changes to the application programs.

42

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 3. DATABASE SYSTEMS

The DBMS catalog contains the mapping information between any two levels and fa-

cilitates data independence by modifying the mapping information whenever any of the

schemas involved is changed, instead of having to change all the connected higher level

schema. However, a consequent disadvantage of having these mappings is that they cre-

ate an overhead when compiling or executing a query or program, and sometimes cause

inefficiencies in the DBMS. Techniques such query optimization [66, 69, 51] are used in

many DBMSs to speed up the execution of queries.

3.2.5 Backup and Recovery

The DBMS provides facilities for recovering from failures, including system crash, disk

failure, power failure and transaction2 errors. The DBMS ensures that transactions

submitted are either entirely completed with their effect recorded in the database or the

transaction has no effect whatsoever on the database or on any other transaction [51].

A transaction is expected to have properties, often referred to as the ACID (Atomicity,

Consistency, Isolation and Durability) properties in other ensure that the database is

recoverable. These properties are enforced by the concurrency control and recovery

method of the DBMS. The ACID properties are described as follows:

• Atomicity implies that a transaction is an atomic unit of processing and it should

either be performed in its entirety or not at all.

• Consistency implies that if all the operations of a transaction are completely

executed, the database is transformed from one consistent state to another [75].

• Isolation implies that a transaction should appear as if it is executed in isolation

from other concurrently running transactions.

• Durability or Permanency means that once a transaction is successfully com-

pleted, the changes made by the transaction must persist in the database and not

be lost even if a system failure occurs.

2A transaction is the execution of a program or query(ies) that accesses or changes the content of

the database.

43

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 3. DATABASE SYSTEMS

These properties allow the recovery of a database to be possible in the event of a failure.

To recover from failures, some of the concepts used in the recovery process include the

use of logs, checkpoints, and the use of commit points. A large part of this thesis deals

with using the log files in databases. As such a detailed description of the concepts of

logging in databases is discussed in Section 3.4. The commit point of a transaction is

reached when all the operations that access the database in the transaction have been

executed successfully and the effect of all the transaction operations on the database has

been recorded in the log file. Beyond this point, a transaction is said to be committed

and its effect must be recorded permanently in the database [51]. The recovery concepts

are used in conjunction with techniques such as; Transaction rollback, immediate update

and deferred update.

• The deferred update technique do not perform any update on a database until

after the transaction reaches its commit point or is committed. If a transaction

fails before reaching its commit point, it would not have modified the database

in anyway. Before the commit point is reached, transaction updates are usually

recorded in the main memory buffers maintained by the DBMS. Before a commit,

updates are permanently recorded in the log and are then written to the database

on disk after commit. Although nothing would have to be undone if a transaction

fails before reaching its commit point, it may be necessary to redo the effect of the

operations of a committed transaction from the log, because their effect may not

yet have been recorded in the database on disk [51].

• The immediate update technique may allow some operations of a transaction to

update the database before the transaction reaches its commit point. However,

these operations are typically recorded in the log and forced to disk before they

are applied to the database. If a transaction fails after updating the database

and do not reach its commit point, the effect of its operation is undone through a

transaction rollback. Also in the event of certain failures, it may be necessary to

redo the effect of the operations of a committed transaction from the log because

44

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 3. DATABASE SYSTEMS

their effect may not yet have been recorded in the database [51].

• Transaction rollback technique is used to ensure that any data item values changed

by a transaction that eventually fails after updating the database are returned to

their previous values prior to the update. In the event of a failure, the log is

searched for all transactions that have a record in the log that they have been

started but with no record of their completion. These transactions are rolled back

to undo their effect on the database. Transactions that are recorded to have been

completed in the log, must also have written all the changes made in the log, so

that their effect on the database can be redone from the log records if necessary.

The transaction rollback technique involves the use of records stored in the log to

ensure that the database is in a consistent state.

It is important to note that the transaction rollback technique is fundamentally different

from the concept of reconstruction discussed in Section 2.4.4. Transaction rollback deals

with retrieving values that are not yet permanently stored in the database from the

log records while the concept of reconstruction deals with finding events, data or states

of a system that could have generated or led to the current state of the system. The

difference is of utmost importance in understanding the focus of the remaining chapters

of this thesis.

Database backups also provide a way for databases to recover from events such as a disk

crash or other physical failures that affect a large part of a database. A backup involves

a periodical copying of the whole database and log unto a storage medium. Critical

applications are often backed up and moved to safe locations. In the event of a failure,

a past consistent version of the database can be loaded onto the disk from the backup

and the available log records may then be reapplied in some cases.

3.3 Other Advantages of Database Systems

Apart from the characteristics of database systems discussed in the last section, there are

other advantages of using database systems which also define how databases are handled.

45

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 3. DATABASE SYSTEMS

Some of these are described below.

1. Redundancy control: database systems integrate the views of different users during

database design and allow several users to access views of the database at the same

time. This removes the redundancy that would have been involved with storing

the same data several times.

2. Enforcing data integrity and restricting unauthorized access: Database applica-

tions often have integrity constraints that must hold on the data [51]. Integrity

constraints are specified in a database and are expected to hold on every instance

of the database. There are different types of constraints that can be defined on

database, some of which include, key constraints, entity integrity and referential

integrity constraints. The database administrator is responsible for specifying the

constraints that should apply on a database during the designing of the database.

In addition to the data integrity constraints, the database catalog also contains

authorization constraints that are used to specify which information in the database

some users are not authorized to access. A DBMS typically includes a security and

authorization subsystem that is used by the administrator to create user accounts

and specify the restrictions that apply to the account. The DBMS automatically

enforces these restrictions and ensures that information access privileges are given

only to the authorized users.

3.4 Logging in Databases

This section gives a conceptual description of the concept of logging in database systems.

It is important to note that some of the concepts discussed may be subject to the logging

preference enabled on any particular system.

Database systems usually maintain a log (also called transaction log3) in order to enable

recovery from failures that affect transactions and keep track of operations that change

3A transaction log may also be called a different name depending on the database system.

46

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 3. DATABASE SYSTEMS

the value of database items. Apart from the transaction log, a database may also contain

other types of logs that are used to store information that may be useful for recovery

from failures [51]. A log is a sequence of log records, which is kept on disk so that it

is not affected by any type of failure or other physical problems such as fire, theft, or

overwrites [75].

Typically, and for performance reasons, the last part of a log is first held in a main

memory buffer until the log buffer is filled or some other conditions occur. The buffer is

then added to the end of the log file. The log file is periodically backed up to archival

storage or may be handled according to the logging options enabled on a system. In

the event of an extensive damage to the database or some other physical failures, the

recovery method restores as much information as possible from the archival storage and

reapplies operations of committed transaction from the log.

Log records or entries are often dependent on the logging preferences enabled on a system.

However, the various types of entries that can be stored include [75]:

• Start record: A log record [Ti, start] is used to show that a transaction Ti has been

started.

• Update record: The log record [Ti, X, Vo, Vn] is used to show that a transaction Ti

has performed an update operation on the data item X , with the old value being

Vo and new value being Vn.

• Read record: A log record [Ti, X ] is used to show that a transaction Ti has read

the data item X from the database.

• Commit record: A log record [Ti, commit] is used to show that a transaction Ti

has been committed.

• Abort Record: The log record [Ti, abort] is used to show that a transaction Ti has

been aborted, and needs to be rolled back.

Two types of log entries known as the undo-type log entry and the redo-type log entry are

47

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 3. DATABASE SYSTEMS

stored whenever a transaction needs to update the value of a database item. The undo-

type log entry includes the copy of the data item before the update is performed and is

used to undo the effect of an operation on the database when necessary. The redo-type

log entry includes the copy of the data item after the update has been performed and

is used to redo the effect of a database operation that was not recorded in the database

before a system failure occurs [75]. A technique known as Write-Ahead Logging (WAL)

is often used to ensure that all log records are forced-write to disk or a stable storage

before any changes are made to the database. This ensures that a consistent version of

the database can be recovered by examining the log and using the appropriate recovery

technique (Section 3.2.5), should a system failure occur.

Another type of entry that may be found in a log is known as a checkpoint. When a

database system is restarted after a failure, the entire log needs to be scanned in order to

know what operations should be undone or redone to get the database into a consistent

state. Checkpointing is an approach that is used to reduce the time overhead involved

with scanning the logs before determining what needs to be done. A checkpoint is a

point of synchronization between the database and the log. It is used to find a point

that is sufficiently far back enough in the log to ensure that any item written to the

log before that time has been correctly stored in the database [122]. The checkpoint

approach is an additional component of the logging scheme that may be used to limit

the volume of log records and as such reduce the amount of searching to be carried out

on the log. A checkpoint is periodically written to the log, typically when all modified

buffers are written to the database. This implies that all the transactions that have their

commit records in the log before a checkpoint entry is written do not require that their

update records be redone during recovery since all the updates would have been stored

to the database during checkpointing. The recovery manager of a DBMS is responsible

for deciding the intervals at which checkpoints should occur [51].

Despite the importance of logs in ensuring that a database can be recovered, a disad-

vantage of logs in database systems involves the overhead incurred from writing to and

48

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 3. DATABASE SYSTEMS

reading from logs to maintain database consistency. There is usually a trade-off between

the volume of log records and the performance of the database. This may be seen as

the major reason why many database systems allow various levels of logging and provide

different log preservation options. Unless necessary precautions are taken, a log file may

grow indefinitely, making it difficult to handle the log or even causing the system to run

out of space in extreme cases. Log rotation techniques are often used to put a bound on

how large a log file may become. It involves a regular (usually daily or weekly) moving of

an existing log file into a different file (with a timestamp or some ordering) and opening

of a new log file. Some of the techniques used for log rotation include:

• Circular logging: works by overwriting the oldest log file once the specified size of

the log is reached. Logs in these cases are usually used and retained only to the

point of ensuring the integrity of the current transactions [72].

• Archive logging: involves the archiving of logs when they become full, without

overwriting any of the logs.

Similar to the concept of log rotation for limiting log sizes, techniques such incremental

backup (storage of only the data items that have changed since the last full backup of a

database) [135] are also used to reduce the time and space required for database backups.

It is important to note that the level of logging enabled on a system may have some

implications. An implication on the amount of information available in the logs and how

logs are preserved for future use is that it determines how much of the database and how

far back in time the database can be recovered when necessary.

3.5 Database Models

As mentioned earlier, a database model (or a data model) is a set of logical concepts

used to describe how data is represented, used and manipulated. And depending on

the concept used, data models can be categorized into three types, namely, high-level or

conceptual data models, implementation or representational data models, and low-level

49

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 3. DATABASE SYSTEMS

or physical data models. Although the representational data models hide some of the

information about data storage from the user, they can be implemented directly on a

computer system and as such they are most frequently used in all traditional commercial

DBMSs [75]. In the history of database design, the most often used database models

(representational data models) are the hierarchical data model, network data model, and

the relational data model. Object-based data models have also recently become popular.

A brief description of each of these models is given below.

• Hierarchical Data Model: The hierarchical model is the oldest data model,

developed by IBM in 1968 [75]. In this model, data is organized in a tree-like

structure where each entity has only one parent but can have several children (or

dependents). A database based on the hierarchical data model consists of records

that are connected through links that associate two or more records. The top of

the tree consists of a single record called the root node and which has no parent.

• Network Data Model: The network model was proposed by the Data Base Task

Group (DBTG) of the Conference on Data Systems Language (CODASYL) in 1969

[46, 129]. In the network model, the entities are in the form of graphs, where the

links represent an association between precisely two records [75] and there is no

hierarchy. Each record represents a node in the model.

Although the hierarchical and the network data models have their unique advan-

tages, there are several issues that limit their usage. One of these is the complexity

of implementing the system. It is also difficult to make changes to the database

system without a substantial redesigning effort since the physical links between the

records are hard-coded into the data structure.

• Relational Data Model: The relational model, which was developed by E. F.

Codd [38], does not require physical links between records as in the hierarchical and

network models. In the relational model, the user view of the database is simplified

through the organization of data into two-dimensional tables called relations. Each

row of a table (also called a tuple) represents an entity in the table while each

50

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 3. DATABASE SYSTEMS

column (or field) represents an attribute of the entities. The relationship between

any two relations is shown through a common attribute in the tables. The data

type describing the type of values that can appear in each column is represented

by a domain of possible values [75].

Over the years, the relational database model has become more programmer friendly,

popular and dominant both in academia and in the industry. Most of the leading

database systems, including Oracle, Sybase, DB2, Postgres,MySQL and Microsoft

SQL Server are based on the relational database model. Some of the advantages

of the model include [122]:

1. Simplicity: this allows designers to focus on the logical view of the database

and not the details of the physical storage.

2. Structural independence: the model does not rely on physical links and as

such changes to the database structure do not affect data access.

3. Ease of design, implementation, maintenance and use of relational database

systems.

4. Powerful, flexible and easy-to-use query facility through the use of the Struc-

tured Query language (SQL).

Due to the high relevance of the relational database model, this thesis focuses

on relational databases. A detailed discussion of relational databases and the

relational algebra is given in Section 3.6.

• Object-based Data Model: In recent years, the object-oriented programming

paradigm has been applied to database systems. The model enables the flex-

ibility of data structuring capabilities and the explicit specification of integrity

constraints. Two new data models that have been developed based on the object-

oriented paradigm are the object-oriented data model and the object-relational

data model. The object-oriented data model extends the concepts of object-

oriented programming language [48] with persistence, versioning, concurrency con-

trol and other database capabilities [75]. The object-relational data model extends

51

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 3. DATABASE SYSTEMS

the relational data model by combining features of the relational data model with

that of the object-oriented data model. Although the object-based data model

is capable of improving the productivity of database application developers and

also data access performance, there is still no precise definition of what constitutes

an object-oriented DBMS because some of the available products and prototypes

differ significantly from one another. The model is also difficult to maintain [122].

• NoSQL and NewSQL Databases: The advances in web technology and the

proliferation of devices that are connected to the Internet have resulted in the

generation of a massive amount of data that need to be stored and processed. This

poses a challenge for the relational database management system and have led to

the development of new database technologies such as NoSQL and NewSQL [67].

These technologies provide data processing alternatives that can handle the huge

volume of data and also provide scalability. As the name implies, NoSQL (Not Only

SQL) technology does not make use of SQL and is able to handle unstructured data

unlike relational databases [82]. The NewSQL technology is aimed at bringing the

relational data model into a NoSQL environment.

Although these technologies are relatively new, they are gradually becoming the

main data store for large enterprises. However, one of the issues with the use of

these technologies is the growing number of different systems that are based on

the technology and the large amount of discrepancies among them. This makes it

difficult to formulate a perspective on the domain or select an appropriate system

for a particular situation [67].

3.6 Relational Data Model and Relational Algebra

Based on the importance and the widespread use of the relational data model in most of

the current and popular database systems, this thesis focuses on the concept of recon-

struction in relational databases. In this section, a detailed description of the relational

database model as well as the concept of relational algebra is given. This section lays a

52

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 3. DATABASE SYSTEMS

foundation for the remaining parts of the thesis. Also, due to the mathematical nature

of the relational model and relational algebra upon which the model is based, different

mathematical notation such as ⊂,⊆,∈, /∈, ∃, ∄ and ∀ will be used in the remaining parts

of the thesis. The usual meanings of the notation are implied throughout the thesis.

3.6.1 Relational Data Model

The relational data model was introduced by E. F. Codd of IBM Research in 1970 [37] and

is characterized by its simplicity and mathematical foundation. The model originated

from the concept of mathematical relation [52] and is composed of only one type of

compound data known as a relation. It also has its theoretical basis in set theory and

first order predicate logic [51]. In the relational data model, a database is represented

as a collection of relations (also called tables), where each row is called a tuple and each

column header is referred to as an attribute, and contains values drawn from a particular

domain. A domain is used to define the data type of an attribute. The number of tuples

in a relation is called its cardinality while the number of attributes is called the degree.

In formal terms, a domain can be defined as a set of atomic values, which are indivisible

to the relational model. For a given n number of domains D = (D1, D2, D3, . . . , Dn), a re-

lation R consists of an un-ordered set of tuples with attributes A = (A1, A2, A3, . . . , An),

where each value of Ai is drawn from the elements of the corresponding domain Di, such

that, A1 ∈ D1, A2 ∈ D2, . . . , An ∈ Dn or is a special NULL value. The Relation R (also

expressed as R(A)) is a subset of the Cartesian product (denoted as ×) of the domains

that define R [38]. That is,

R(A) ⊆ (D(A1)×D(A2)× . . .D(An)).

Characteristics of a Relation

It is important to note that a relation differs from a table and from a file because of

certain characteristics of a relation. These include:

1. No two tuples in a relation are identical: since a relation is a set of tuples, two

53

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 3. DATABASE SYSTEMS

tuples with the same values for all the attributes cannot exist in a relation.

2. Ordering of tuples in a relation: since a set has no particular ordering of its ele-

ments, tuples in a relation have no particular order. Although tuples can be ordered

by the values of one or more attributes, the information in a relation remains the

same regardless of the ordering.

3. Ordering of values in a tuple: Each tuple in a relation is an ordered set of attributes

values (v1, v2, v3, . . . , vn) belonging to the domain D1, D2, D3, . . . , Dn, respectively.

As such, the order in which the values of a tuple appear is significant.

4. Values and Nulls in a tuple: since a domain is a set of atomic values, each tuple

in a relation contains a single (non-composite) value for each of its attributes.

In addition, the value of an attribute can be denoted as null if the value of the

attribute does not exist or the value is unknown.

3.6.2 Relational Algebra

The Structured Query Language (SQL) has become the universal and standard language

for relational databases and is supported by nearly every DBMS [103]. SQL may be

considered as one of the reasons for the commercial success of relational databases as it

allows the migration of database applications across different types of relational DBMSs.

It is a non-procedural language that can be used for defining the structure of data,

modifying the data in a database and specifying constraints. The first version of SQL

(also known as SEQUEL) was developed by Donald D. Chamberlin and Raymond F.

Boyce as part of the SYSTEM R project at IBM in the 1970s [31, 6] and has since been

standardized and expanded to include more features [30].

Although SQL provides an interactive query interface that allows users to execute com-

plex queries, the user is only able to specify what the result should be and the decision

on how to execute the query is left solely to the DBMS. The formal language associated

with the relational model, which can be used to specify basic retrieval requests is known

54

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 3. DATABASE SYSTEMS

as the Relational Algebra [75]. It is an abstract language with operations for manipu-

lating and accessing relations. Relational Algebra (sometimes referred to as RA in the

thesis) consists of a set of relational operators that are of importance in understanding

the types of requests that may be specified on a relational database [51]. In relational

algebra, a query is written as a sequence of operations that generates the required result

when executed. It can be shown that SQL queries can be expressed in relational algebra

notation as relation databases make use of the relational algebra for internal represen-

tation of queries for query optimization and execution [66, 69]. This thesis exploits the

expressiveness and mathematical nature of the relational algebra as well as the ability

to transform SQL queries into relational algebra operations.

The relational algebra operators4 include basic operators used to manipulate relations

and a relational assignment operator (←). The basic operators transform either one or

two relations into a new relation. Such transformations are referred to as a relation-

valued expression (rve). A query is defined in the form T ← rve , where T is the name of

the relation obtained when the rve is evaluated. The basic relational algebra operators

Operators Notation

Projection (π)
T ← R[A1, A2, A3]

T ← πA1,A2,A3
(R)

Selection (σ)
T ← R[p(A)]

T ← σp(A)(R)

Join (✶)
T ← R[p(A,B)]S

T ← R ✶p(A,B) S

Cartesian product (×) T ← R× S

Union (∪) T ← R ∪ S

Intersection (∩) T ← R ∩ S

Difference (−) T ← R− S

Division (/) T ← R[A,B/C]S

Rename (ρ) R← ρAi=Bj
(R)

Table 3.1: Basic Operators of the Relational Algebra.

as defined by Codd [38] and the notation often used for each operator are shown table

4This section of the thesis is an excerpt from previously published papers [56, 53].

55

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 3. DATABASE SYSTEMS

3.1, where R, S and T are relations and A,B and C are attributes of these relations.

The notation, p(attributes) is a logical predicate on one or more attributes representing a

condition that must be satisfied by a row before the specified operation can be performed

on it. A description of each of the relational algebra operator as well as the corresponding

expressions and SQL queries are described below. These definitions are widely used in

the rest of the thesis.

Project operator (π): The project operator takes a single relation as its operand and

generates a relation containing columns of the operand which are listed as part of the

command. As with all relational operators, the operator removes re-occurrence of any

tuple in the relation generated. The notation used for the operator is as follows:

T ← R[A1, A2, A3] or T ← πA1,A2,A3
(R)

In SQL: SELECT A1, A2, A3 FROM R

Select operator (σ): The select operator employs a single Relation R as its operand

and generates a relation that contains some of the rows in the operand so that such rows

satisfy the condition specified by a logical predicate p on the attribute(s). The notation

used for the select operator is as follows:

T ← R[p(A)] or T ← σp(A)(R)

In SQL: SELECT * FROM R WHERE p(A)

Join operator (✶): The join operator takes two relationsR(A) and S(B) as its operands

and generates a relation containing rows of one operand concatenated with rows of the

second operand but only where the condition specified by the logical predicate p(A,B)

is found to hold true. The notation used for the operator is as follows:

T ← R[p(A,B)]S or T ← R ✶p(A,B) S

In SQL: SELECT * FROM (R JOIN S ON p(A,B))

It is important to note that the join operator described above refers to the inner join.

However, there are several variations of the join operation that can be performed. These

56

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 3. DATABASE SYSTEMS

include natural join, left outer join, right outer join, full outer join and semi join. Al-

though each of the join operators have specifics ways in which the rows are concatenated,

the notation used are the same (but with the appropriate join type specified).

Cartesian product (×): The Cartesian product is a special case of the join operator

where the predicate is simply true. That is, each row of the operand R(A) is concatenated

with each row of S(B) without any condition specified. The operator is expressed as

follows:

T ← R × S

In SQL: SELECT * FROM R, S

Union operator (∪): The union operator takes two relations, R and S that are union-

compatible (that is, they have the same number of columns and the ith attribute in both

relations draw values from the same domain) as its operands and generates a relation

containing all the rows of S together with all the rows of T but with duplicate rows

removed. The notation used is as follows:

T ← R ∪ S

In SQL: (SELECT * FROM R) UNION (SELECT * FROM S)

Intersection operator (∩): The intersection operator takes two relations, R and S

that are union-compatible as input and produces a relation containing only those rows

of R that also appear as rows of T . The notation used for the operator is as follows:

T ← R ∩ S

In SQL: (SELECT * FROM R) INTERSECT (SELECT * FROM S)

Difference operator (−): The difference operator takes two relations R and S that

are union-compatible and generates a relation containing only those rows of R that do

not appear as rows of S. The operator is expressed as:

T ← R− S

In SQL: (SELECT * FROM R) EXCEPT (SELECT * FROM S)

57

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 3. DATABASE SYSTEMS

Division operator (/): The relational division operator works in a similar way to

arithmetic division with a divisor, dividend, quotient and remainder except that instead

of numbers, these operands are all relations. Suppose column B of a Relation R is

divided by column C of a Relation S and column A of Relation R is the source of values

for the quotient, then the quotient T is written as5:

T ← R[A,B/C]S

Rename operator (ρ): The operator renames an existing domain, relation or the

column of an existing relation. Both the old name and the new name are supplied as

part of the command. All references to the old name are updated to the specified new

name. The operator is expressed as follows:

R← ρAi=Bj
(R)

In SQL: ALTER R RENAME Ai TO Bj

3.7 Summary

This chapter explains the underlying concepts of database systems and describes the

architecture of database management systems. The characteristics that unify different

database systems and which make data management efficient in databases are also de-

scribed. The three-schema architecture of database systems is described in conjunction

with how the architecture assists in achieving data independence. In order to lay a

foundation for subsequent chapters of the thesis and differentiate between the concept

of reconstruction and database backup or recovery, a brief description of database trans-

actions as well as the techniques used for backup and recovery is given. The ACID

properties expected of transactions are also explained. Since a major part of this thesis

deals with the applications of log files in databases (as will be explained in the next

chapter), the concepts of logging in databases, the different types of log entries, log ro-

tation techniques and the importance of logs in databases are also discussed. Although

5There is no DIVIDE operator defined in SQL commands, but the operator can be expressed using

a combination of SQL equivalents of other operators.

58

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 3. DATABASE SYSTEMS

this thesis relates mainly to the relational database model, due to its high relevance and

popularity, a description of the different data models is given. The relational data model

and the relational algebra are also explained in detail. A description of the relational

algebra operators and the notation used for each is given as these are of importance

throughout the rest of the thesis.

59

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 4

Concepts of Database Forensics

“Who art you, O great mountain? Before Zerubbabel you shall become a

plain!”

- Zechariah 4:7

In the previous chapter, the concepts of database systems were described. This chapter

builds on the two previous chapters and explains the need for the forensic analysis of

databases. The chapter describes the concepts of database forensics since the process

of reconstruction in databases is really a subset of the steps involved in the forensics

analysis of a database. A description of the processes, tools and methods involved in

database forensics is also given. The first contribution of this thesis to the field of digital

forensics, which is the definition of the dimensions of reconstruction and/or research in

database forensics, is discussed in this chapter. The chapter builds on a paper that was

previously published in [55].

In Section 4.1, an introduction of the database forensics research field as well as its

importance is given. In Section 4.2, the dimensions in which research in database forensic

has been focused as well as the relationship of these dimensions and the research that has

been done in each of the dimensions are discussed. In Section 4.3 the database forensics

analysis process and the need for an effective reconstruction process is discussed. Section

4.4 describes some of the tools that are currently being used in database forensic analysis.

Some of the challenges involved in database forensics research and practice are discussed

in Section 4.5.

60

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 4. CONCEPTS OF DATABASE FORENSICS

4.1 Database Forensics

Over the years, database systems have become a core component of many computing

systems in our society and are used to store critical and sensitive information relating

to an organization or her clients. Unfortunately, the increase in the usage of databases

to store volumes of information has led to an increase in the number of attacks directed

towards databases and the rate at which databases are manipulated to facilitate crimes

[55]. Several security breaches have been reported in the recent years, many of which

involve the theft of personal data or financial information stored within a database. The

fact that many organizations combine several databases onto fewer database servers in

order to cut costs and simplify their management [59] also compounds this problem and

presents databases as prime targets for attackers. However, even when a database is

not the target of an attack, information relevant to an investigation are usually found

in databases and can be retrieved to facilitate such investigations. As such, databases

have become of interest in finding artifacts that may assist in solving various kinds of

investigations [55].

Examples of organizations that have been targets of some of the largest security breaches

in history include CardSystems and TJ Maxx. CardSystems experienced a security

breach that allowed the exposure of 200,000 credit card numbers and the TJ Maxx breach

led to the exposure of over 45 million credit and debit card numbers [59]. These incidents

reflect the enormous amount of information that may be lost from a single attack on a

database system. Another example is where an unauthorized user (or an authorized

user with illegal motives) gains access to an organization’s database and modifies their

production database server (for example, by changing order dates, delivery address or

production prices), resulting in erroneous product shipment and financial loss to the

company [58]. It is also possible that a database was not manipulated to commit a

crime but the database contains information that may be used to resolve the crime.

For example, in a situation where every access into a building is stored in a database,

investigating a murder case in which there was no break-in may require querying the

61

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 4. CONCEPTS OF DATABASE FORENSICS

database to know who was in the building at the time. A forensic analysis of the database

may also be required if the database was manipulated to hide certain information.

Database forensics is an emerging branch of digital forensics that deals with the iden-

tification, preservation, analysis and presentation of evidence from databases [59]. It

involves the application of digital forensics [20, 116, 107] techniques in gathering evi-

dence admissible in a court of law from databases.

Although digital forensics has grown over the past decade to an essential part of many

investigations [63], the same cannot be said of database forensics. Despite the large

amount of research that has been done on digital forensics and other related fields such

as database systems and database security, very little has been done on database forensics

[100] even though investigations involving databases have been explored in theory and

practice. Due to this lack of research, traditional digital investigations often excluded

databases despite that evidence can usually be found in them. Research in the database

forensics field only started taking root in the last three to five years. Although the field

is still in its early years, it is quickly becoming an important part of many investigations

due to the increased volume of information that may be helpful in solving different

crimes and the large number of risks associated with the information stored on many

databases. In addition, the increasing number of crimes involving databases and the

ongoing changes in cybercrime and digital investigations now require digital forensics

practitioners to augment traditional forensic skills with database forensics techniques in

order to enhance digital investigations. Some of the advantages of incorporating database

forensics techniques into digital investigations include the following [59]:

• Prove or disprove the occurrence of a data security breach.

• Retrace queries executed on a database.

• Identify data pre- and post-transactions.

• Reconstruct previously deleted database data.

62

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 4. CONCEPTS OF DATABASE FORENSICS

Of major importance in database forensics is the ability to retrace the operations per-

formed on a database and reconstruct previously deleted or modified information in the

database, and this is the main focus of this thesis. This requirement affects how data

is collected and analyzed during the forensic analysis of a database, thus making it nec-

essary that certain guidelines are followed during the process. In order to explain the

processes, tools and techniques involved in the forensic analysis of a database, the next

section considers some of the research that has been done on database forensics and

presents the dimensions that exist in database forensic investigations.

4.2 Dimensions of Database Forensics

Although different aspects of database forensics have been explored by researchers over

the past few years, research work have taken directions that define various dimensions

of reconstruction and investigation in database forensics. The various research seem

divergent, often focusing on aspects that may only be relevant in a fraction of database

forensics investigations. An analysis of these dimensions shows the research that has

been done in relation to each dimension and reflects some of the aspects of database

forensics that is yet to receive any research attention. This section presents the idea that

the apparently diverging strands of research in database forensics are, in fact related.

And much more, that they form different dimensions of a problem space, where most of

the work done has focused on only a specific dimension of the space [55].

Considering most of the research work that have been done in database forensics, three

main dimensions of databases that can be investigated emerge. These are:

1. Compromised databases.

2. Damaged or Destroyed databases.

3. Modified databases.

In the following sections, these dimensions are considered in more detail and previous

database forensics research (by different authors) are positioned into a dimension.

63

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 4. CONCEPTS OF DATABASE FORENSICS

4.2.1 Compromised Databases

A compromised database can be defined as a database in which some of the metadata or

some software of the DBMS have been modified by an attacker even though the database

is still operational. It is a known fact that the result of a database query is a function

of both the metadata of the database and the data stored in the database. As such,

a major concern of database forensics in this situation is that an investigator cannot

trust the information provided by the database being investigated [55]. For example,

a criminal may corrupt a database or hide certain data from the user by storing the

data in a column (of a relational database) with a column name that does not reflect its

purpose or even store the data in several relations with foreign keys that link to them.

A view (which is stored as metadata) may enable the criminal to have an easy access to

the data. However, once the metadata is deleted, the logical relationship between the

data is lost and the data may not be retrievable even though the raw data may still exist

[100].

Olivier [100] pointed out that although a database itself seems to be the best tool for

collecting data for a forensic analysis, the integrity of the data contained or the results

obtained from queries cannot be trusted since the database might have been coerced

into giving false information, for example, if the data dictionary has been destroyed or

modified to yield query results that are different from the correct ones. This problem is

somewhat similar to the problem faced during a live investigation of an operating system

[24, 125], in which the data apparently collected from the system may not be the actual

data on it, but what a rootkit or other malware [76, 81] on the system wants to be seen.

In the case of a compromised database, the retrieved data is imbued by the metadata.

Unfortunately a dead analysis [24] does not solve the problem in this case because it is

likely that the same metadata will still be used to interpret the raw data collected from

the database [100].

Kornbrust [81] identified the similarities in the architecture of database systems and

operating systems, and posits that a database can also be affected by a malware (like

64

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 4. CONCEPTS OF DATABASE FORENSICS

viruses or rootkits) in the same way as an operating system. He illustrated how an

Oracle database can be attacked by a rootkit. The presence of a database user, as well

as the jobs and processes executed by the user can be hidden by implementing a rootkit

on the system. As such, to ensure that the evidence collection process is not hampered

by a rootkit, it is important to ensure that the data model has not been compromised.

The problem with investigating compromised databases was also identified by Litchfield

[87] while discussing steps to perform in a live response to attack on an Oracle database.

He pointed out that even though the knee-jerk reaction in the event of an incident is

to pull the plug or disconnect a system from the network in order to avoid additional

incursions or data theft, this may lead to the loss of useful evidence such as volatile,

in-memory data [87]. For example, an attacker that compromises an Oracle database

with administrator privileges could create a trigger that clears the audit trail (or do

much worse), making it difficult for the investigator to perform an analysis.

In other recent work by Beyers et al. [13, 14], the authors also identify that the metadata

affects the view of data and as such presents complications during the forensic analysis

of a database. In their paper [13], the authors describe four abstract layers of a DBMS:

the data model layer, the data dictionary layer, the application schema layer, and the

application data layer; which separates the various levels of DBMS metadata and raw

data. Various techniques that can be used in the collection phase of the database foren-

sics process when one or more of the abstract layers have been compromised are also

described. In a subsequent paper [14], the authors describe the notion of a clean data

model environment and a found data model environment. This differentiation is neces-

sary since the data model can be considered as a code or underlying software that controls

the metadata and the data, as a rootkit [76] or as a toolkit during a forensic analysis.

Various techniques on how to achieve different states of data model environment was

described by the authors.

It is important to note that the major decision that has to be made when investigating

compromised databases is whether to use the metadata as it exists on the database or

65

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 4. CONCEPTS OF DATABASE FORENSICS

to try and get a clean copy of the DBMS [13]. This makes it important that the DBMS

used in the investigation of this category of databases is specified by the investigator.

4.2.2 Damaged/Destroyed Databases

Another dimension of database forensics deals with the investigation of damaged or

destroyed database. This category of databases refers to databases where the data con-

tained or other data files have been modified, deleted or copied from their original (or

expected) locations into other places. These databases may or may no longer be oper-

ational depending on the extent of the damage done. Most of the research that have

been done in database forensics falls into this dimension of database forensics. A prac-

tical example of a damaged database is a situation where an attacker deletes or moves

information from a particular location in the database in order to hide traces of what he

had done.

The series of papers by Litchfield [84, 85, 86, 87, 88, 89, 90] seem to be the most detailed

and practical resource available on database forensics in this category. The papers focus

on the forensic analysis of Oracle databases (specifically, Oracle 10g Release 2 server

running on Windows). The first two papers [84, 85] address how information or potential

evidence can be retrieved from the redo logs and how dropped objects can be located.

The author described the contents of the redo logs by dissecting the log into different

sections. He also demonstrated how the data manipulation language (DML) operations

performed on a database can be determined by reading the binary format of the redo

log. Litchfield [85] also described the structure of Oracle data blocks and discussed how

dropped tables, functions and deleted tuples can be located. Anti-forensics techniques

that can be used by an attacker to cover his footprints are also mentioned in the papers

[84, 85].

In the subsequent series of papers [86, 88, 89, 90], Litchfield discussed various ways of

finding evidence of attacks on the authentication system, evidence of data theft, or other

evidence in different places in an Oracle database. He described how failed login attempts

66

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 4. CONCEPTS OF DATABASE FORENSICS

usually stored in the audit trails as well as records in the TNS Listener’s log file of Oracle

databases can be used in a forensic analysis. In the absence of auditing, other sources

of evidence in the database server and web server’s log file are also identified. Other

work that has been done on the forensic analysis of Oracle databases includes that of

Wright [139, 138]. He explains technical methods that can be used to identify when the

data in an Oracle database has been modified and how to recognize vulnerabilities in

the database. In addition, Wright [138] also investigates the possibility of using Oracle

LogMiner as a forensic tool. However, even though many of these work describe practical

techniques that can be employed in the forensic analysis of an Oracle database, they do

not represent a generic underlying model that can serve as a basis for database forensics

in general.

Another database that has been considered in this dimension of database forensics is

the SQL Server. In his book on SQL Server Forensic Analysis, Fowler [59] discusses

techniques that can be used for the collection and preservation of database artifacts,

and how they can be of benefit during an investigation. Specific methods that can be

used to configure an SQL Server in a state of preparedness for forensic analysis as well

as ways of verifying security incidents and analyzing the artifacts collected from a SQL

Server database are also described. In addition, the author discusses the effects that

rootkits can have on the collection or analysis of data and describes ways of detecting

and handling database rootkits during a SQL Server forensic analysis.

Other research that fall into this dimension of database forensics deals with the detection

of database tamper, and data hiding in a database. Snodgrass et al. [123] proposed a

technique which relies on cryptographically strong one-way hash functions for detecting

when the data in a database has been tampered with. The idea presented in the paper

was extended to deal with the forensic analysis of a data security breach in a subse-

quent paper [111], where the notion of corruption diagrams was introduced as a way

of visualizing attacks and forensic analysis algorithms. In [112], another algorithm for

detecting tampering and determining what and when a database was tampered with was

67

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 4. CONCEPTS OF DATABASE FORENSICS

also presented. Although the work of Stahlberg et al. [124] and that of Pieterse and

Olivier [113] seem to be anti-forensics, they both expose the areas of database systems

that should be checked for previously deleted data or any form of information hiding

during the forensic analysis of a database.

In order to investigate a damaged database, it may be necessary to employ techniques for

reconstructing files in which the metadata have been lost or damaged (a process referred

to as file carving [62]). This may assist in regenerating damaged or destroyed underlying

files in a database that may be helpful in retrieving data of interest during a forensic

analysis.

4.2.3 Modified Databases

In contrast to compromised and damaged or destroyed databases, a modified database is

a database where the data, metadata and other data files of the systems have not been

compromised or damaged, but which has undergone changes due to normal business

processes since the event of interest occurred. For example, proving a shop attendant’s

claim that he sold a good at the price on the database on a particular day involves getting

values from a modified database. This dimension of database forensics deals mostly

with the investigation of databases that are not directly involved in the incident being

investigated but is used to store information that may assist in resolving the incident

[55]. Research in this dimension are of importance because it is possible that a database

is modified prior to or after a damage or compromise is done. This thesis, as well as

most of the work that have been published during the completion of the thesis [56, 53, 2]

(details of which are in subsequent chapters of the thesis) fall into this dimension of

database forensics.

Other research that have been done in this category includes the work of Frühwirt et al.

[60, 61]. The authors describe the file format of MySQL database with InnoDB storage

engine and give practical examples of how to reconstruct and interpret the data in the file

system. The content of the redo logs, often used for crash recovery in InnoDB database

68

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 4. CONCEPTS OF DATABASE FORENSICS

is also explored for the forensic analysis of the database. The authors also describe and

demonstrate how data manipulation queries executed on an InnoDB database can be

reconstructed from the log files during an investigation.

Although there are various locations where forensic data or artifacts can be found on

databases (as will be shown in Section 4.3), most of the work that have been done in all

the dimensions of database forensics, especially on modified databases rely on the use of

log files found in databases. As discussed in Section 3.4, log files serve as a rich source of

information that can be used to gain knowledge of changes made to a database and the

queries executed on the database. Also, the use of log files in database forensics is one

of the unifying elements for the three dimensions of database forensics described earlier

[3]. Another aspect of the database forensics dimensions that is worth mentioning is the

seemingly orthogonal nature of the three dimensions; this is explained in detail in the

following section.

4.2.4 Orthogonality of the Dimensions

At the moment, most of the research in database forensics treats the dimensions discussed

above as being orthogonal (in mathematics terminology) or independent of one another1.

Figure 4.1 shows the positioning of most of the previous research in database forensics

into a single dimension of the database forensics problem space.

However, even though it is possible for research to be directed in a single dimension, this

is not always the case in practice. A database being investigated may belong to one or

dimensions of database forensics in varying degrees. For example, an investigation may be

positioned at point A on the problem space as shown in figure 4.1, such that the database

involved in the forensic analysis has been compromised at A1 degrees, damaged at A2

degrees and modified at A3 degrees. Thus, it is possible that a database was compromised

by modifying the metadata and some of the data in the database was later destroyed in

order to hide traces of the compromise. Also, it is possible that a damaged database is

1This section of the thesis has been published in [55].

69

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 4. CONCEPTS OF DATABASE FORENSICS

AA1

A2

A3O

C
om

p
ro
m
is
ed

d
at
ab

as
es

Modified databases

D
am
ag
ed
da
ta
ba
se
s

Olivier [100]
Litchfield [87]
Beyers et al. [13, 14]

Fowler [59]
Wright [139, 138]
Litchfield [84, 85, 86]
Litchfield [88, 89, 90]
Snodgrass et al. [123]
Pavlou and Snodgrass [111]
Pavlou et al. [112]
Stahlberg [124]
Pieterse and Olivier [113]

Fasan and Olivier [56, 53]
Frühwirt et al. [60, 61]

Figure 4.1: Dimensions of Database Forensics.

still operational and the damage is only discovered after much normal processing. The

database forensics problem space is at least three dimensional, where any given forensic

investigation can be positioned somewhere in this three dimensional space. This poses

challenges both for database forensics research and practice. In practice, heuristics that

can be used to place an investigation into a position in this space may be required. The

implication of a research conducted in one dimension may also have to be considered

in the other dimensions. In addition, it also raises questions about whether or not it

is possible to quantify the degree of each dimension that occurs during the forensic

analysis of a database and the order or approach to be followed in investigating each of

the dimensions involved in an investigation.

In deciding the technique to be used during an investigation involving more than one

dimension of database forensics, questions relating to the trustworthiness of the database,

the authenticity of the data it contains, or if there is any known modification of the

database should first be asked. The investigation of each dimension involved should be

conducted putting into account the degree of that dimension in the analysis. For example,

70

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 4. CONCEPTS OF DATABASE FORENSICS

if an investigation is place at the origin (point O in figure 4.1) of the three dimensions,

that is where the database has not been compromised, damaged or modified, then the

required data can be collected from the database by simply querying the database.

However, the same approach will not be applicable if the database has been compromised,

damaged and/or modified. In addition, since there is no defined method for identifying

a compromised database, it may be necessary to assume that an investigation is at the

origin of the dimensions when conducting the analysis of time or mission critical database

systems. Educated guesses can then be made from the set of possibly contradicting

information gathered based on this initial assumption.

The decision regarding the dimensions that will be considered in a database forensics

investigation, as well as the degree or extent of each dimension determines the tools that

should be used, as well as the process that should be followed during a database forensics

analysis. An overview of the techniques, processes and tools that have been employed in

database forensics analysis is given in the sections 4.3 and 4.4.

4.3 Database Forensics Process

Although research in digital forensics has led to the development of various techniques

and process models, many of these techniques are not completely transferable to database

forensics due to some of the unique characteristics of database systems which requires

the techniques to be adapted for database forensics [55]. Given the limited amount of re-

search in database forensics, it is necessary to find a foundation on which the techniques

and processes of database forensics may be built. In this section, the similarities and

differences of database forensics and file system forensics are explored in order to derive

some of the principles that apply to database forensics. In addition, some of the steps

involved in the general digital forensics process are considered from a database perspec-

tive. The steps that should be involved in a database forensics investigation process are

also proposed.

71

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 4. CONCEPTS OF DATABASE FORENSICS

4.3.1 Database Forensics and File System Forensics

One method of exploring database forensics is to consider the similarities and differences

between file systems and database systems, and then build on the principles that apply

to file system forensics in order to derive principles for database forensics [100]. This is

because, even though both fields are applied in different environments, they both focus

on the retrieval of stored data. As such, since the field of file system forensics is well

developed and often used in practice, some of the approaches from this field may be

transferable to database forensics.

File systems provide a method for the storage and retrieval of data from a computer

system. In many operating systems, data is usually stored on a computer in a hierarchy

of files and directories (files that contain other files), with the metadata. A file system

makes use of the files and directories to organize data in a way that enables the computer

to know where to find them. Although the attributes of a files vary depending on the

operating system, various attributes such as file name, file type, location, size, access

information, MAC time and user information are usually associated with each file [21, 18].

This information is commonly referred to as the metadata. The metadata is used to map

files to their physical location on disk because it provides information on how to locate

and assemble a file or directory. According to Olivier [100], some of the aspects of files

systems that are of relevance from a forensics perspective include:

• The contents of the file [18];

• Metadata about a file [18, 50];

• File carving techniques [62]; and

• Recovery of data or files stored in slack space or on free parts of the disk [50].

On the other hand, as discussed in Chapter 3, databases provide a structured way of

handling collections of data. The metadata in a database describes the structure of the

database as well as the structure and relationship of the data it contains. One of the

main similarities of database forensics and file system forensics is that both the data in

72

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 4. CONCEPTS OF DATABASE FORENSICS

the database and the data describing the data (metadata) are required to recover lost

or deleted information, just as it is also the case in file system forensics. Techniques for

reconstructing files when the metadata has been lost or damaged (file carving) will also

be required for damaged databases.

However, the differences arise from the fact that database systems have a significantly

more complex structure than file systems. The complexity of databases is described in

more detail by Olivier [100]. Another important difference in database forensics and file

system forensics is the high level of logging that occurs in databases, in contrast to file

systems. As described in Section 3.4, database logs often contain enough information

that can be used to roll back or forward a database in order to get the database into a

consistent state. As such, log files play a very important role in the forensic analysis of

a database, especially in the reconstruction of deleted data.

The fundamental elements that may be derived from file system forensics process deals

with integrity, searchability, and restoration of files, as well as the extraction of meta-

data and attribution [100]. These elements can be combined with the characteristics of

database systems in order to gain more insight into database forensics. The elements are

considered below, in relation to database systems.

Searchability: In digital forensics analysis process, one of the important phases deals

with the location of evidence among the volumes of data collected from the com-

puter. This is usually done by compiling data from different sources and using

different search techniques to locate data items that might be of interest in an in-

vestigation. In database forensics, the database itself seems to be the best forensic

tool for searching for evidence because it allows an investigator to perform a search

using powerful queries on the database [100].

Integrity: In file system forensics, data is usually collected from a computer through

a process known as imaging, where a copy of the disk is made. Various techniques

to ensure the copy is provably an exact copy of the original are often employed.

73

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 4. CONCEPTS OF DATABASE FORENSICS

However, in the case of database forensics, even if an exact copy of the database

is retrieved, the database may still be forced into giving false result, depending on

whether or not the data dictionary has been modified [100]. This gives rise to the

question of whether the data model on a database system should be used as it is

found or whether a “clean” data model should be used. This concern is discussed

in more detail in [13, 100].

Metadata extraction: As mentioned earlier, a file is usually associated with metadata

including details such as the file name, MAC time, and size. The metadata is useful

during a forensic analysis as it provides more information about the file. According

to Olivier [100], it is of forensic use in database forensics to indicate that a particular

version of the data model, data dictionary, application schema, application data

or segment of the metadata as they existed at some point in time is to be used in

the analysis. He also suggested notation that can be used to differentiate different

versions of the metadata.

Reconstruction: Similar to the concept of file carving in file system forensics, differ-

ent forms of carving can be achieved in database forensics. For example, tuples,

tables, and database schema can be recovered from the data collected during the

analysis of a database. In this thesis, the process of carving data is referred to

as reconstruction. Apart from the application data, data from the lower levels of

a database architecture may also be reconstructed or guessed from available or

other reconstructed information. For example, if a deleted table can be entirely

reconstructed, then the schema of the table may be derived. However, it may be

necessary to differentiate between the reconstructed and the actual data during an

investigation. This is because, if a table is carved or reconstructed, it is possible

that not all records with a similar structure necessarily formed part of the table

and one might need to use other hints - such as links in other tables, to confirm

whether records do or do not belong to the table. Also from the perspective of

74

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 4. CONCEPTS OF DATABASE FORENSICS

admissibility, hypothesis may be tested by reconstructing a scenario with a hypoth-

esis and comparing the reconstructed instance with the original instance in order

to check the validity of the hypothesis.

Attribution: Attribution refers to the task of determining who is responsible for

certain effects in a file (or other evidence), or who caused it to have certain charac-

teristics [80, 33]. In file system forensics, attribution may be based on the textual

feature of a file or on the metadata. In the context of database forensics, attri-

bution may be addressed two ways. One is to make use of the database logs, if

available; while the other way is to make use of the metadata to determine who has

the privilege to perform certain actions. Although it is possible that a perpetra-

tor might have modified the logs, or bypassed the logging facility or authorization

system, a combination of the two methods may be useful in correlating findings in

an investigation [100].

This thesis relates directly to the reconstruction of data during the forensic analysis of a

modified database, where the data of interest might have occurred at some earlier time

prior to various modifications and/or deletion of the data in the database. Issues relating

to the integrity of collected data, searchability, metadata extraction and attribution are

not discussed in detail even though they may be mentioned where necessary. An overview

of the database forensics investigation process and the steps involved in the analysis of

a database are discussed in the following sections.

4.3.2 Database Forensics Investigation Process

One of the pointers to the need for further research in database forensics is the fact that

there is currently no defined underlying process model for database forensics. The avail-

able methods are focused on a few specific DBMSs. Wong and Edwards [137] presented

a patent method for the forensic analysis of an Oracle database. The method consists

of generic steps that a forensic investigator may try to follow to discover more informa-

tion about an operation that was performed on a database [100]. Another methodology

75

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 4. CONCEPTS OF DATABASE FORENSICS

focused on a damaged SQL Server database was presented by Fowler [59]. The methodol-

ogy consists of four major steps: investigation preparedness, incident verification, artifact

collection and artifact analysis.

Although the exact steps to be taken during a database forensic analysis will depend on

the specific situation and the DBMS being investigated, the database forensics investi-

gation process should in general include the following steps [55].

• Determining whether the database has been compromised, damaged or modified,

or if an investigation involves more than one dimension.

• Determining which acquisition method is most applicable to the situation.

• Collection of volatile artifacts.

• Collection of non-volatile artifacts.

• Preservation and authentication of collected artifacts.

• Analysis of collected data and determination of the intruders activities.

• Reconstruction of required data.

4.3.3 Database Forensics Analysis Techniques

As with digital forensics analysis in general, database forensics analysis can involve live

or dead analysis techniques [24]. A live analysis involves the use of the resources and

software of the database system. Considering the fact that databases are usually a critical

component of many systems and organizations, a live analysis can provide a means of

investigating the database without disrupting all activities or causing a significant loss

to the organization. In addition, it allows a large amount of information to be identified,

stored, or manipulated using the database itself. Live analysis can be used to retrieve

both volatile and non-volatile data (that would be lost if the database was switched off)

from the database. However, an important point to note in a live investigation of a

database is that any action performed changes the state of the database and may lead

to a potential loss of evidence in the logs or system memory. The risk of the system data

76

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 4. CONCEPTS OF DATABASE FORENSICS

being altered due to the presence of a rootkit on a database system is another issue in

the live analysis of a database as this may cause the database to give false answers to

queries.

On the other hand, a dead analysis of a database requires that the database system

is inactive. This may be done by abruptly switching the system off (or pulling the

plug) in order to prevent the execution of system and application shutdown routines

[59]. However, a dead analysis results in the loss of volatile and in-memory data which

may contain evidence. Unlike other branches of digital forensics where a dead analysis

may be used to prevent the interference of rootkits or malware, it does not solve the

problem in database forensics because the same database metadata may still be used

to interpret the raw data collected. Also, depending on the logging technique used in a

database system, it is possible that data modifications recorded in the log have not yet

been written to disk. An abrupt shutdown of the database may cause the image collected

not to reflect the true state of data during an analysis. Although a dead analysis may

allow the reproduction of results obtained during an analysis, it may introduce several

complexities in the forensic analysis of a database and as such, it is not considered to be

the best approach for database forensics [59, 87].

Another analysis technique for database forensics, known as the hybrid analysis was

described by Fowler [59]. The hybrid analysis involves the key elements of both the

live and the dead analysis techniques. Hybrid analysis can be viewed as a typical dead

analysis which is performed after the live acquisition of volatile data and selected non-

volatile data. One advantage of this analysis technique is that it allows an investigator

to align the ratio of live versus dead acquisition to specific needs in an investigation.

Although an investigator may decide to use any of the analysis techniques, it is important

that the benefits of using any of the techniques are weighed with the possibility of

losing potential evidence if the technique is used. This will assist in determining which

technique is most appropriate for a given investigation. Regardless of the technique used,

it is necessary to ensure that evidence is preserved and data is not unintentionally altered

77

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 4. CONCEPTS OF DATABASE FORENSICS

or destroyed.

4.3.4 Preservation, Collection and Analysis of Artifacts

The objective of preservation in database forensics is to reduce the amount of evidence

that may be overwritten. Data must be collected in a forensically sound manner that

generates a correct image of database data and extreme care must be taken to guarantee

that actions performed do not unintentionally alter data [55]. This may be achieved by

using a MD5 algorithm (or any other trusted digital algorithm) to ensure that the image

corresponds to the original copy of data. A write blocker may also be used to prevent

modifying data accidentally. Although data can be acquired from a modified database

by querying the database, the execution of any query that can delete the information

in the database must be avoided. In the case of a compromised or damaged database,

no SQL statements should be executed as this may modify the data stored in memory,

cause splits in the internal data pages, or lead to the storage of new data in the caches,

and thus complicating the investigation process [59]. As with other branches of digital

forensics, the preservation of data is an important aspect of database forensics because

it may be necessary of prove the integrity of the data used as evidence in a court of law,

if required.

Although the logs often provide a vast amount of information for database forensics,

forensic data also exists in several places in a database. It is important to know which

data is important for an investigation and to prioritize evidence collection due to the

volatility of some data. Apart from using the database itself as a source of data in an

investigation, data can also be found in tools used by the database system; for example

in the execution plan cache. An execution plan cache is a documentation of the most

efficient way of executing data requests issued by database users and are stored in the

plan cache for possible reuse. The information in the plan cache can be used to identify

database misuse by an insider or data damage in a database [59]. Other sources of

forensic data in a database consist of files that are used to store histories relating to the

78

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 4. CONCEPTS OF DATABASE FORENSICS

database. Some of these file (for example, log files and data files) may be specifically

reserved for the database while others (such as web server logs or system event logs of

the operating system) are not explicitly reserved for database server usage. Records of

logins to a database will also be useful in identifying patterns that may be useful. It is

important that the level of volatility of a file is considered in deciding which information

should be collected first during an investigation. A summary of the volatility level of

various areas in which data can be found in a database is given by Fowler [59].

The analysis of artifacts (or collected data) involves the consolidation and evaluation of

the data. The specific steps taken in this phase may depend on the type of data, the

specific DBMS and the specific situation being investigated [55]. The analysis should take

into account the dimensions involved in an investigation and where relevant information

can be found. Another important criterion for the analysis phase in database forensics

is that previously deleted or modified data should be reconstructed where necessary and

the actions performed by an intruder must be determined. Events such as login attempts

and irregular database activities should be identified and included in the investigation

timeline as this may assist in recognizing patterns and identifying activities that may

not be logged sequentially in the database log file.

4.4 Database Forensics Tools

The decision regarding the dimensions involved in a database forensic analysis, the de-

gree of the dimension(s), and the analysis technique to be used plays an important role

in deciding the tool to use during an analysis. However, the current unavailability of

enough tools for database forensics also reflects the need for research in the field [55].

Database forensics tools should allow information from different sources in a database to

be gathered and consolidated to provide more insight into an investigation. It should as-

sist the investigation process and the recovery of information regardless of the dimensions

involved in the investigation. In addition, a database forensics tool should be capable of

recognizing the dimensions of database forensics involved in any investigation.

79

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 4. CONCEPTS OF DATABASE FORENSICS

Currently, database forensics is done with inbuilt database tools that are not specifically

designed for database forensic analysis and with the database itself (by executing queries

to retrieve data). As such, most of the tools being used are only applicable to specific

DBMSs and are focused only on damaged databases. Although these tools have been

helpful in collecting data and identifying fraudulent activities, they are not accurate or

precise enough to be used as a forensic tool. For example, the Oracle LogMiner was

investigated for possible use as a forensic tool by Wright [138]. He reported that there

are anomalies with the way it works which makes it inadequate for a forensic analysis.

Other tools that have been used include audit features such as SQL Server Audit [59, 115]

and the Oracle Audit [104, 139].

Although the use of the database itself as a forensic tool allows an investigator to search

the database using powerful queries, the database cannot be used as a tool in the investi-

gation of a damaged or compromised database. As mentioned earlier, one is immediately

faced with questions regarding the integrity of the database since the data is clouded by

the metadata [100]. In addition, the query processor on many databases may optimize

queries in ways that cannot be controlled by the user. An investigator has to be certain

that an optimized query is an exact representation of the original query, especially in

cases where changes might have been made to the metadata by an intruder or the pres-

ence of a database rootkit is suspected. These constraints restrict the use of databases

as a forensic tool for itself in many cases [55].

As the field of database forensics develops further, it is hoped that more tools that are

specifically designed for database forensics will be developed. For example, Litchfield

[136] announced that he is in the process of developing an open source tool called Forensic

Examiners Database Scalpel (FEDS) for database forensics a few years ago. One of the

main concerns that may be faced in the development of tools includes the fact that the

data model is typically hardcoded into the DBMS. Since such a data model that can

be used as a forensic tool for itself does not currently exist, new models will have to

be created [100]. Further research is still required in order to develop tools that can be

80

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 4. CONCEPTS OF DATABASE FORENSICS

used for database forensics. The development of these tools calls for an understanding

of databases as well as the processes involved in database forensics analysis [55].

4.5 Challenges in Database Forensics

Sections 4.3 and 4.4 have described some of the pointers to the need for extensive scientific

research on many aspects of database forensics. Although the field is slowly becoming

popularly, the limited amount of research can be attributed to the different challenges

involved in database forensics investigations. Olivier [100] identified three facets in which

a database has to be considered during a forensic analysis. This inherent multidimen-

sional structure and complexity of databases, which is not yet completely understood in

a forensic sense is a major contribution to the lack of research in the field.

In addition, there are various challenges that are encountered in the data collection and

analysis stage of database forensics. First, is how to determine whether a database has

been compromised, damaged, modified, or if there are more than one dimension involved.

There is no heuristic on how to determine the dimensions involved or where to start an

investigation in this three dimensional space. Moreover, deciding about the degree of the

dimensions involved in an investigation as well as the most appropriate data acquisition

method to use in investigations with more than one dimension is another challenge since

no research that offers any guideline has been done. Similar to other branches of digital

forensics, the volume of data that can be collected from a database is another issue. An

examiner must determine which data are pertinent to an investigation and the order

in which to collect them. The process of eliminating some data sources to reduce the

volume of data poses challenges such as misinterpretation or over-interpretation of data.

Coupled with the fact that there are usually different file formats for files in various

databases, some of which may be encrypted, this results in the potential dismissal of

valuable content [42].

Another challenge in database forensics deals with the reconstruction of data. Since re-

construction may involve the restoration of data from proprietary formats, collaboration

81

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 4. CONCEPTS OF DATABASE FORENSICS

between researchers and vendors is also required in order to have a good knowledge of

the proprietary formats in individual DBMSs and assist in the development of database

forensics tools.

4.6 Summary

This chapter focuses on the concepts, processes, tools and challenges involved in database

forensics. The need for database forensics analysis as well as the benefits of incorporating

database forensics into traditional digital investigation process are highlighted in this

chapter. One of the contributions of this thesis, which is the definition and description

of the three-dimensional nature of the database forensics field, is also discussed in detail.

Moreover, the notion that database forensics investigations may involve more than one

of these dimensions in varying degrees is emphasized.

In order to present a detailed overview of the database forensics process, the concepts

involved in database systems are compared to those of file systems since both fields deal

with the retrieval of stored data and the use of metadata in the process. Although the

fields apply to different environments, the similarities and differences are explored in the

discussion of various aspects of database forensics. An explanation of the database foren-

sics process, analysis techniques, and the techniques used in the preservation, collection

and analysis of artifacts from databases is given in order to position the specific focus of

this thesis, which is the reconstruction of data that might have been modified or deleted

at some earlier time of interest in a modified database. An overview of the tools and

challenges involved in carrying out the processes involved in database forensics analysis

are also described.

The ideas and concepts described up to this point in the thesis lay the necessary founda-

tion for the subsequent chapters and are explored in the remaining parts of this thesis.

82

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 5

Database Reconstruction Algorithm

“He reveals the deep and secret things; He knows what is in the darkness, and

light dwells with him.”

- Daniel 2:22

Although the information currently stored in a database can be determined by simply

querying the database, much more effort is required in order to determine the information

in a database at an earlier time. As mentioned in Chapter 4, an important aspect

of database forensics involves the ability to reverse data manipulation operations and

determine the values in a database at an earlier time, prior to various modifications

of the data in the database. This process is referred to as reconstruction (of data) in

database forensics in this thesis. In this chapter, an algorithm for the reconstruction of

data in a database for forensic purposes is presented. The chapter is based on a previously

published paper [56]. The first part of the chapter describes the need for reconstruction

in database forensics analysis and highlights a possible way of reconstructing data. The

notion of relational algebra log and value blocks are introduced together with the concept

of inverse relational algebra, as these are of utmost importance in the formalization of

the reconstruction algorithm. The database reconstruction algorithm is presented in

conjunction with a few examples of its application in typical instances.

In Section 5.1, the need for database forensics reconstruction is described using typical

instances that require reconstruction. The approach taken in this thesis to solve the

problem is also highlighted. Section 5.2 gives the definition of the inverse operators of

83

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 5. DATABASE RECONSTRUCTION ALGORITHM

the relational algebra and categorizes the operators into groups. In Section 5.3, the

notion of relational algebra log and value blocks are discussed in detail. The steps taken

in typical examples of the database reconstruction process are shown in Section 5.4.

These examples reflect the ideas formalized into the database reconstruction algorithm

presented in Section 5.5.

5.1 Database Forensics Reconstruction

Although various data restoration techniques such as database rollback and incremental

backups have been explored over the years, these techniques are sometimes inadequate

for database forensics. For example, a rollback operation can only be used provided that

the transaction has not been committed and the use of incremental backups is dependent

on the availability of viable backups from which data can be restored. Database forensics

requires the ability to revert data manipulation operations even when a transaction has

been long committed or when there are no viable backups.

The reconstruction of the data in a database is important in digital forensics investiga-

tions since databases are usually of interest in many investigations and useful informa-

tion relevant to an investigation are often found therein. A typical instance is where a

database has been manipulated in order to facilitate a suspicious act. It is a known fact

that output produced by queries on a database is dependent on the raw data it contains.

However, forensic investigations often require finding the data contained in a database at

an earlier time. Although the data stored in a database at a point in time can be deter-

mined by executing a query on the database (with the appropriate privileges), answers

to queries arising from a forensic investigation may require more than just the current

instance of the database. This is because the current information in the database may

be different from what it was at the time of interest to the investigation, since various

modifications or updates of the database might have taken place since then.

An illustration of this fact is a situation where a shop attendant claims to have sold a large

quantity of a certain good at the selling price on the database at a particular date even

84

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 5. DATABASE RECONSTRUCTION ALGORITHM

though the price presents a huge loss to the shop. Verifying the shop attendant’s claim

requires that the selling price of the good at that particular date be determined. However,

since various updates of the database might have occurred prior to the investigation date,

it is necessary to find ways of reversing queries that have been performed on the database

which have affected the price of the good since the particular date of interest. Other

examples of questions that call for the ability to reconstruct values in a database at an

earlier time during a forensic investigation include the following instances.

• If a table in an organization’s database was deleted by a criminal, can it be proved

that a customer’s record was actually in the deleted table based on previously

executed queries involving the table?

• Can it proved that an hospital patient died because the ‘Prescribed Drugs’column

of the patient’s record some weeks before his death is not what it was supposed to

be?

As mentioned earlier, the information about queries performed on a database is usu-

ally stored in the database log (also referred to as query log or transaction log) of the

database1. And this information is often used to recover from failures. However, the

query log also constitutes a rich source of information that can be used for reconstruc-

tion. Although the queries executed on a relational database are usually expressed in

SQL notation, the log files may sometimes be stored in the binary format. Various work

[84, 85, 60, 61] have been done on how the corresponding SQL queries can be generated

in these cases. Thus, the assumption in this thesis is that a log of queries executed in

the traditional SQL format is available or can be generated.

In Section 2.4.4, the concept of a retrospective (or backward) reconstruction is described.

From a database forensics perspective, retrospective reconstruction can be performed

on a database by reversing the queries performed on the database since a particular

time of interest. The constraint of increasing time and space complexity pointed out

by Cohen [43] when using this reconstruction approach can be overlooked in database

1The extent of information logged is usually dependent on the logging preference of the database.

85

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 5. DATABASE RECONSTRUCTION ALGORITHM

forensics reconstruction because database systems maintain a log of queries executed on

the system and queries can be reversed in accordance to the possibilities reflected in the

log.

A possible way of reversing queries performed on a database since a particular date

is to find the inverse of such queries. In order to do this, it is necessary to convert

queries expressed in the SQL notation into a more mathematical notation such as the

relational algebra so that inverse functions can be applied. This concept is described in

Section 5.3. Although an extensive research and industrial effort has been invested into

query processing and database efficiency over the last few decades, very little attention

has been given to reverse query processing or finding the inverse of a query despite its

several applications. The little amount of work that has been done on reversing of queries

[15, 16, 121, 17] focus specifically on the generation of test databases, testing of DBMS

performance and debugging of SQL queries. However, even though these techniques can

be used to generate good test databases, they cannot be used for forensic purposes as

the databases often generated are non-deterministic in nature. That is, it is possible

to generate more than one instance of the database with the same set of input and the

decision procedure is left for a model checker in order to guess the best result [15]. This

chapter focuses on describing how inverse queries can be used for database forensics

reconstruction.

In the following sections, the definition of the inverse operators for relational algebra as

well as the concept of relational algebra log is introduced. The process of dividing the

relational algebra log into value blocks is also discussed. By traversing the relational

algebra log and value blocks, and applying the inverse relational algebra, an algorithm

that can be used for reconstruction in database forensics is given in Section 5.5.

5.2 Inverse Relational Algebra

This section gives a definition of inverse functions for the operators of the relational

algebra [38]. The inverse functions are defined such that they can be used for the

86

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 5. DATABASE RECONSTRUCTION ALGORITHM

reconstruction [39] of a database during an investigation and determine values in the

database at an earlier time. The inverse operators rely on both the queries (from the

query log file) executed on the database and the database schema. The goal of the

inverse operators is to find the value of an attribute A (for a tuple in Relation R) at a

specific time t by finding the inverse of the most recent query performed on the current

Relation Rt sequentially until the desired time ti is reached. The operators work on

the assumption that a complete set of queries that have modified the database from a

particular time of interest in an investigation (or earlier) to the present time is available

and that the database schema is known (both for the input and the expected output).

The operators generate a result which is either a partial or a complete inverse of the

query. More formally, the inverse of a query Q is defined as Q−1 such that:

Q−1(Q(Rt)) = R∗

t , (5.1)

where R∗

t ⊆ Rt and the notation, ⊆ means that R∗

t is contained in Rt. That is, R
∗

t may

contain some missing tuples or missing values in some columns. In cases where R∗

t = Rt,

the inverse is referred to as a complete inverse. Otherwise, the inverse found is referred

to as a partial inverse. A partial inverse can either be a partial tuples inverse or a partial

columns inverse depending on whether it has missing tuples or missing values in some

columns, respectively. There are also cases where an inverse is both a partial tuples

and partial columns inverse. The definition of the inverse operators for each operator of

the relational algebra and a specification of which operators produce a complete, partial

tuples or partial columns inverse is given below. Table 5.1 gives a summary of the

inverse operators and the type of inverse that can be produced when each is used. A

more detailed description of the information provided in the table is given in sections

5.2.1 and 5.2.2.

5.2.1 Complete Inverse Operators

Only two inverse operators of the relational algebra generate outputs that are always

a complete inverse. The first operator which is the inverse rename (ρ−1) operator is

87

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 5. DATABASE RECONSTRUCTION ALGORITHM

Complete Inverses Partial Columns
Inverses

Partial Tuples Inverses

Inverse rename

Inverse Cartesian prod-
uct

- Except when one empty re-
lation is involved.

Inverse projection Inverse projec-
tion

- If projection was done on all
the columns of the operand.

Inverse selection Inverse selection

- If all the tuples of the se-
lection operand satisfied the
condition.

- If some tuples did not satisfy
the selection condition.

Inverse join Inverse join

- If all tuples of the join
operands satisfied the join
condition.

- If some tuples did not satisfy
the join condition.

- If the join is a full outer join.

Inverse intersection Inverse intersection

- If the operands of the inter-
section are equal.

- If the operands are not
equal.

Inverse divide Inverse divide

- If one of the divide operands
is known.

- Of left operand if both
operands are not known.

Inverse union Inverse union

- If one of the union operands
is known and both operands
had no tuples in common.

- If one of the union operands
is known.

Inverse difference Inverse difference

- If one of the difference
operands is known.

- Of left operand if both
operands are not known.

- For either operands if the
other is known and the right
operand is a subset of the left
operand.

Table 5.1: Summary of Output Generated by Inverse Operators.

88

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 5. DATABASE RECONSTRUCTION ALGORITHM

the simplest inverse operator since a rename operation does not change the data in a

database in any way but only changes a name. The inverse is found by changing the

name of the renamed object to its previous name. That is, if the query A← ρA1=B2
(A)

is performed to change the name of column A1 in Relation A to B2, then the inverse of

the operation is, ρ−1(A) = ρB2=A1
(A).

Another operator that generates a complete inverse is the inverse Cartesian product

(×−1). Given a Relation T representing the Cartesian product of two relations R(A)

and S(B), the result of ×−1(T ) (that is, R and S) can be completely determined by

doing a projection on their respective attributes and removing redundant tuples. That

is, ×−1(T ) = (R, S) where R = πA(T ) and S = πB(T ). The trivial case of the in-

verse Cartesian product is when one of the operands of the Cartesian product was an

empty relation. In this case, the second operand cannot be determined from the inverse

operation, but this rarely happens in practice.

5.2.2 Partial Inverse Operators

Most of the inverse operators are classified as partial inverses. However, regardless of

this classification, there are often instances where a complete inverse can be found. Each

of the remaining inverse operators is explained below and the situations in which they

may yield a complete inverse are highlighted.

Inverse projection (π−1)

Given the result R of a projection operation, the inverse projection generates a partial

columns inverse. The result is a relation having the expected columns (determined from

the schema) but with values in the columns not included in the projection being null. The

columns included in the projection contain the data in R. That is, if R← πA1,A2
(S), then

π−1(R) = S∗ where both S and S∗ have exactly the same columns; values in attributes

A1 and A2 of both S and S∗ are exactly the same and values of other attributes in S∗

are null. A complete inverse projection can be found when the projection was done on

all the columns of a relation.

89

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 5. DATABASE RECONSTRUCTION ALGORITHM

Inverse selection (σ−1)

The inverse selection generates a partial tuples inverse. It is similar to the inverse

projection except that it contains missing tuples instead of columns with missing data.

Given the result R of a selection operation R ← σp(A)(S), the inverse selection is given

by, σ−1
p(A)(R) = S∗, where S∗ = R. The inverse selection yields a complete inverse if

all the tuples in the operand of the selection operator satisfied the condition that was

specified.

Inverse join (✶−1)

The inverse join is similar to the inverse Cartesian product except that the output gen-

erated may contain missing tuples depending on which of the tuples in the operands

satisfied the condition specified in the join performed. Similar to the inverse Cartesian

product, the output of the inverse join operator is found by doing a projection on the

columns of the expected outputs. In general, a complete inverse join can be found in the

following cases. Otherwise, the inverse generated is a partial tuple inverse.

1. If all the tuples in the join operands satisfied the join condition.

2. If the join type is a full outer join.

3. The left (or right) operand of the join can be completely determined by the inverse

join operator if the join type is a left (or right) outer join.

Inverse intersection (∩−1)

Given a query T ← R ∩ S, the inverse intersection generates partial tuples inverses

containing all the tuples in T . A complete inverse intersection can be found if and only

if R and S are known to be the same, in which case the three relations R, S and T are

equal. In addition, if either R or S is known, then from set theory it is known that:

1. if ∃ x ∈ S and x /∈ T then x /∈ R and

2. if ∃ x ∈ R and x /∈ T then x /∈ S.

Inverse divide (/−1)

90

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 5. DATABASE RECONSTRUCTION ALGORITHM

Given the quotient Q and the remainder RM of a divide operation (Q ← R/S), the

inverse divide operator generates two relations R∗ and S∗. The Relation R∗ is readily

known since all the tuples in RM are also in R∗ (RM ⊆ R∗). A complete inverse divide

can be determined if and only if one of the outputs is known.

1. If R is previously known, then S = R/T and

2. if S is previously known, then R = (S × T ) ∪RM .

Inverse union (∪−1)

The inverse of a union operation T ← R∪S can only be determined if one of the outputs

is known. Even so, the output generated may be a partial inverse. If Relation S is known,

then R∗ = T − S. On the other hand, if R is known, then S∗ = T − R. A complete

inverse union is found only when both R and S have no tuples in common. The trivial

case of the inverse union is when T contains no tuples which implies both R and S also

contain no tuples. In cases where neither R nor S is known, working with the knowledge

from set theory may be useful in order to determine at least a partial inverse. That is;

1. if ∃ x ∈ T then x ∈ R or x ∈ S.

2. If ∃ x ∈ T and x /∈ R (x /∈ S) then x ∈ S (x ∈ R).

Inverse difference (−−1)

Given a difference operation T ← R − S, the left operand of the operation is readily

determined by the inverse difference operator as R∗ = T since T ⊆ R. A complete R can

be determined only if the Relation S is known and all the tuples in S are also known to

be in R (that is, S ⊆ R) so that R = T ∪ S. The Relation S∗ with partial tuples can

also be determined if R is known, in which case, S∗ = R− T . If it is known that S ⊆ R,

then a complete Relation S is found from the inverse as S = R− T .

91

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 5. DATABASE RECONSTRUCTION ALGORITHM

5.3 Relational Algebra Log and Value Blocks

As a definition, a relational algebra log (also referred to as RA log) is a log of queries

expressed as operations involving relational algebra operators instead of the traditional

SQL notation. The concept of converting a query expressed in SQL into a relational al-

gebra expression is an important aspect of query processing, optimization and execution

[66, 69, 51] which has been explored over the years. Relational databases use relational

algebra for internal representation of queries for query optimization and execution. Al-

though SQL is the query language that is used in most relational databases [51], a SQL

query first has to be converted into its relational algebra equivalent in order for it to

be optimized and executed. One of the properties of relational algebra that is usually

explored in this regard involves the knowledge of various transformation and equivalence

rules that allow relational algebra expressions to be transformed into equivalent ones.

As such, the operators of the relational algebra can be used independently, that is, one

or more operators can be used to express another operation. For example,

R ∩ S = R− (R− S)

πA(R ∪ S) = (πA(R) ∪ (πA(S)))

R ✶p(A,B) S = σp(A,B)(R× S)

This research exploits these characteristics of the relational algebra by expressing the

query log in a database as a sequence of relational operations The resulting log is referred

to as a Relational Algebra Log (RA Log).

The use of the RA log allows us to easily determine when a relation has changed. In

relational algebra, a relation is changed only when a new assignment operation is made

into the relation. This knowledge allows us to group the RA log into a set of overlapping

value blocks. Another motivation for the use of RA log instead of the usual SQL log file

is that relational algebra allows queries to be represented as a sequence of unary and

binary operations involving relational algebra operators. Thus, making the log file more

readable. In addition, a typical select statement in a SQL log file can take several forms,

92

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 5. DATABASE RECONSTRUCTION ALGORITHM

the use of the RA log eliminates ambiguities that may arise in defining an inverse for

select statements since any select statement can be expressed with relational algebra

operators.

A value block is defined as a set of queries within which a particular relation remains the

same. Value blocks are named based on the relation that remains the same in the block

and subscripts are used to signify which block occurs first. A value block starts with an

assignment or a rename operation and ends just before another assignment or rename is

performed on the relation. For example, the value block of a Relation R is denoted as

VRi
where i = 1, 2, 3, . . . . The Relation R remains the same throughout the execution of

block VR1
until it is updated by the execution of the first query of block VR2

. Typically,

the value block of a relation can be contained in or overlap that of another relation, so

that VR1
and VS2

can have a number of queries in common. However, two value blocks

of the same relation, VR1
and VR2

cannot overlap or be a subset of the other. The time

stamps usually associated with each query is preserved in the RA log in order to group

the value blocks into appropriate sequences. An example of an RA log divided into value

blocks is shown in figure 5.1. The SQL equivalent of the RA log is listed in appendix A.

Using the notion of value blocks, and RA log and the inverse relational algebra operators,

Section 5.4 gives typical examples of how the value in a database at an earlier time can

be reconstructed.

5.4 Concept of Database Reconstruction

In this section, typical examples of the steps involved in reconstructing the information

in a database are given. Although the main focus is to determine specific values in a table

at some earlier time, the concept can be applied to generate tables in a database. Figure

5.1 shows an example of a relational algebra log generated from the complete query

log of a typical database by transforming queries into operations involving relational

algebra operators. The RA log is also grouped into value blocks, representing blocks of

queries in which a particular relation remains unchanged. The notation VA1
represents

93

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 5. DATABASE RECONSTRUCTION ALGORITHM

the first value block of a Relation R while t1, t2, . . . represent the time stamps at which

a particular query is executed. Considering this RA log, some of the questions that can

be asked as part of a forensic investigation include the following. The reconstruction of

the desired values in the different cases are discussed thereafter.

• Case 1: Was a particular value present in column D1 of table D at time t8?

• Case 2: Is the claim that a value is in column H2 of table H at time t13 true?

• Case 3: Is the value in column J1 of Relation J the same as expected at time t15?

t1 : A← ∅

t2 : B ← ∅

t3 : C ← ∅

t4 : A← {tuple1, tuple2, tuple3 . . . }

t5 : B ← {tuple1, tuple2, tuple3 . . . }

t6 : C ← {tuple1, tuple2, tuple3 . . . }

t7 : D ← σindex=1(πA1,A3,A4,A6
(ForderDesc(σA5>10000(A))))

t8 : E ← σindex=1(πA1,A3,A4,A6
(ForderAsce(σA5>100(A))))

t9 : G← D ∪ E

t10 : D ← D ∪ πA1,A3,A4,A6
(A)

t11 : H ← A ✶(A2=B1) B

t12 : B ← Fupdate(B3=NewValue)(σB1=Value(B))

t13 : I ← A ✶NJ B

t14 : J ← H ∩ I

t15 : H ← ∅

t16 : H ← I − J

t17 : A← ρA2=B1
(A)

t18 : J ← ∅

VA1

VA2

VA3

VB1

VB2

VB3

VC1

VC2

VD1

VD2

VE1

VG1

VH1

VH2

VH3

VI1

VJ1

VJ2

Figure 5.1: A Relational Algebra Log Grouped into Value Blocks.

94

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 5. DATABASE RECONSTRUCTION ALGORITHM

Case 1

In order to determine if a particular value was in column D1 of Relation D at time t8, it is

necessary to reconstruct at least the values which were in column D1 at time t8 and check

for the desired value. From the RA log in figure 5.1, the data in D remained unchanged

between t7 and t9 (value block VD1
). Thus, if the data in D1 can be determined anywhere

in the value block VD1
, then the check for the desired value can be performed. This can

be achieved by finding the inverse of the union operation between relations D and E at

time t9. Since the second operand of the union (E) as well as its result (G) have not

been changed since t9, a partial or complete tuple inverse D (depending on if D and E

had any tuple in common) can be found as:

∪−1 (G) = (D∗, E) where D∗ = G− E (5.2)

An easier alternative to the reconstruction of values in D1 is to perform the actual query

which resulted in D at time t7. This requires that the inverse of operations that has

changed the data in Relation A between t7 and the current time be found. Since the

queries at t7, t8 . . . t16 are in the same value block of A, that is VA2
, the Relation A is only

modified at t17. The inverse of the rename operation at t17 (A← ρA2=B1
(A)) is found by

simply changing the name of column B1 to its previous name, A2, as shown in equation

5.3. The query at t7 can then be performed again to generate the complete Relation D.

ρ−1
A2=B1

(A) = ρB1=A2
(A) = A (5.3)

Since t7 is in VD1
, another alternative to reconstructing the values in D is to find the

inverse of the first query in value block VD2
(that is, D ← D ∪ πA1,A3,A4,A6

(A)). This is

done in the same way as in equation 5.2, that is:

∪−1 (D) = (D∗, πA1,A3,A4,A6
(A)) where D∗ = D − πA1,A3,A4,A6

(A) (5.4)

Even though the Relation A has been updated at t17, the update does not affect the

projection involved in equation 5.4 since the renamed column is not projected. And

thus, no inverse rename is required.

95

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 5. DATABASE RECONSTRUCTION ALGORITHM

It is important to note that the reconstruction of a value in a database can often be

done in several ways. The various ways may either yield the same outputs or some

outputs may be more complete than others. In cases where the various approaches to

the reconstruction of a value generate minimal tuples (or columns), the union of the

different approaches should be taken in order to generate a relation with more data.

Case 2

To determine whether a value was in column H2 of Relation H at time t13 (in value block

VH1
), both value blocks VH1

and VH2
need to be checked. It is obvious that the inverse

of the first line of VH2
cannot be found since the data in H was deleted at this point

(t15). From value block VH1
, there are two alternatives for the reconstruction of column

H2 of Relation H . An inverse of the intersection operation at t14 will generate a partial

tuples H∗ containing all the data in Relation J . Unfortunately, the data in J have been

deleted at t18. Thus, the only feasible option to reconstruct a value in H is to redo the

query which resulted in H at t11 (H ← A ✶(A2=B1) B). In order to do this, the inverse

of the rename operation on A at t17 and the inverse of the update on B at t12 must be

found. The Relation B can also be determined by finding the inverse of the natural join

operation at t13.

The inverse of the rename operation at t17 is found as shown in equation 5.3. To deter-

mine B using the inverse of the update at t12, the values in column B3 of B need to be

replaced with the previous values prior to the update. Since these values are not known

from the query log, the values in column B3 are replaced with nulls. In addition, since

the update contains a selection from B first, the result generated from the inverse of the

update operation contains partial tuples of B with missing values in column B3. That

is, the inverse of the query at t12 is given as:

F−1
update(B3=NewValue)(σ

−1
B1=Value(B)) = Fupdate(B3=null)(B

∗) = B∗ (5.5)

The Relation B, with partial tuples, can also be found by taking the inverse of the natural

join operation at t13. Since both relations I and A (from equation 5.3) are known, B

96

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 5. DATABASE RECONSTRUCTION ALGORITHM

can be found as:

✶
−1
NJ (I) = (A, B∗) where B∗ = πB1,B2...Bn

(I) (5.6)

As mentioned earlier, the union of the two relations generated from equations 5.5 and 5.6

can be taken to generate a more complete B∗. For example, the actual values of the nulls

in column B3 of B∗ generated from equation 5.5 may be determined from those of B∗

generated from equation 5.6. Finally, since both relations A and B (with partial tuples

and probably some null values) can be determined, the query at t11 (H ← A ✶(A2=B1) B)

can be executed again in order to find H∗ most likely containing partial tuples as well.

The claim that H2 contains a particular value can then be ascertained by checking the

data in H2.

It is possible that the value of interest is contained in the tuples missing in H when

reconstruction is done. In a forensic investigation, the conclusion about the presence

(or absence) of a value in a relation can be strengthened by reconstructing the value in

other relations in which it is expected to be present. If the value cannot be reconstructed

in any other relation in which it should be present then it is highly probable that it is

actually not in the relation of interest (H).

Case 3

The data in column J1 of Relation J at time t15 can be reconstructed in two ways. Since

the difference operation (H ← I − J) at t16 is in the same J value block as at time t15

and both relations H and I are known, the easier way to reconstruct J (with partial

tuples) is to find the inverse of the difference operation. That is:

−−1(H) = (J∗, I) where J∗ = I −H .

Alternatively, J can be reconstructed by executing the query at t14 again. This requires

that the relations H and I be reconstructed in the associated value blocks, VH1
and VI1.

The reconstruction of the data in Relation H in value block VH1
is exactly the same

situation as in case 2 above. The reconstruction of values in I in value block VI1 is done

97

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 5. DATABASE RECONSTRUCTION ALGORITHM

by finding the inverse of the rename operation on A (equation 5.3) and executing the

query at t13 again. With at least some tuples in the reconstructed relations H and I,

the Relation J (probably with partial tuples) can be generated by executing the query

at t13 again. The values in column J1 can then be checked to determine if it contains

the expected values.

5.5 Database Reconstruction Algorithm

In Section 5.4, typical examples of how values in a database can be reconstructed have

been given. This section generalizes the reconstruction process by providing an algo-

rithm that can be used to reconstruct values in a database. The algorithm, defined as

SOLVE(Relation D, value block VDi
, RA log log, Set S) takes as input the name of the

relation to be reconstructed D, its value block in which it is to be reconstructed VDi
, a

relational algebra log log, and a set S which is used to store tuples of relation and value

block (and the corresponding result) which have been considered during the reconstruc-

tion. The reconstructed Relation D in the specified value block is returned from the

algorithm as Relation RD.

01: INVERSE(Relation D, RA Query VDi
[1]) {

02: OUTPUT: Inverse of the assignment into D from query q

03: Let q = the query at VDi
[1];

04: switch(q) {
05: case (D ← ∅):
06: T = ∅; return T;

07: case (D ← op D):

08: T = op−1(D); return T;

09: case (D ← A op D):

10: case (D ← D op A): //Assume A is in VAi

11: if (op = ∩): T = D; return T;

12: if ((op = ∪) and (∃ VAi+1
)): T = ∅; return T;

13: else:

14: A← SOLVE(A, VAi
, log, S);

15: T = op−1(D)|A; return T;

16: }
17: }

Figure 5.2: The INVERSE(Relation D, RA Query VDi
[1]) Function.

98

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 5. DATABASE RECONSTRUCTION ALGORITHM

The SOLVE function makes use of the INVERSE function (shown in figure 5.2) which

takes as input the name of the relation to be reconstructed (D) together with a query,

specifically the first line of a value block of D (denoted as VDi
[1]) and finds the inverse

of the query in order to determine D in its previous value block (VDi−1
). Calls to the

INVERSE function occur only when a value block VDi−1
exists and its output depends

on the operation performed by the query. Since updates on a relation involves taking

the relation itself as an operand, except when the tuples in the relation are deleted

(D ← ∅), the INVERSE function considers the different instances that may occur in a

query. The inverse of a query involving the deletion of all the tuples in a relation cannot

be determined and the function simply returns an empty Relation D∗ in this case (line

6). This situation also applies to a case in which a constant assignment was made into a

relation. For example, D ← M , where M is a relation. However, this case is not included

in the INVERSE function since it does not apply to any typical SQL command. In all

other cases of a query, the inverse of the query is found based on the inverse operators

of the relational algebra defined in Section 5.2. The notation op−1(D)|A (in line 15 of

the INVERSE function) means the inverse of an operation with two operands, of which

one (that is, A) is known.

The SOLVE function (shown in figure 5.3) starts by generating a set Q of queries involving

the Relation D in the value block VDi
in which it is to be reconstructed. Each element

of Q represents a different approach in which D can be reconstructed. The algorithm

initializes a set R in which all possible reconstructions ofD will be stored. The parameter

S of the SOLVE function is empty the first time the function is called and it stores

tuples of relation and value block (with the corresponding result) that have already been

considered in a reconstruction process in order to avoid loops in the recursive calls to

SOLVE. If an attempt to reconstruct D in value block VDi
has been made earlier (line 3),

the SOLVE function returns the associated reconstructed Relation RD. Otherwise, the

relation and value block parameters of SOLVE are stored as a tuple in S with an associated

reconstructed relation RD, which is initially empty. The algorithm then considers the

various possible combinations of D in a query and outlines the steps to be followed in

99

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 5. DATABASE RECONSTRUCTION ALGORITHM

SOLVE(Relation D, Value Block VDi
, RA Log log, Set S)

OUTPUT: Reconstructed Relation D in value block VDi
(RD)

01: Let Q = Set of queries involving Relation D in value block VDi
;

02: Let R = Set to reconstructed D from different approaches;

03: If (D, VDi
, RD) ∈ S: return RD;

04: else:

05: S = S ∪ (D, VDi
, RD); //RD is initialized as an empty relation

06: for each element e in Q:

07: switch(e) {
08: case (D ← op D):

09: if (∄ VDi+1
): return D;

10: else:

11: D ← SOLVE(D, VDi+1
, log, S); T ← INVERSE(D, VDi+1

[1]);
12: Insert T into R;

13: OR

14: D ← SOLVE(D, VDi−1
, log, S); T ← op D;

15: Insert T into R;

16: case (D ← op A): //Assume is in VAi

17: if (∄ VDi+1
): return D;

18: else:

19: if (∄ VAi+1
):

20: D ← op A; return D;

21: else:

22: A← SOLVE(A, VAi+1
, log, S); A ← INVERSE(A, VAi+1

[1]);
23: D ← op A; return D;

24: case (D ← A op D):

25: case (D ← D op A): //Assume A is in VAi

26: if (∄ VDi+1
): return D;

27: else:

28: D ← SOLVE(D, VDi+1
, log, S); T ← INVERSE(D, VDi+1

[1]);
29: Insert T into R;

30: if (∄ VAi+1
):

31: D ← SOLVE(D, VDi−1
, log, S);

32: T ← A op D or (D op A); //depending on case

33: Insert T into R;

34: else:

35: D ← SOLVE(D, VDi−1
, log, S);

36: A← SOLVE(A, VAi
, log, S);

37: T ← A op D or (D op A); //depending on case

38: Insert T into R;

39: OR

40: D ← SOLVE(D, VDi−1
, log, S);

41: A← SOLVE(A, VAi+1
, log, S); A← INVERSE(A, VAi+1

[1]);
42: T ← A op D or (D op A); //depending on case

43: Insert T into R;

Figure 5.3: The SOLVE(Relation D, Value Block VDi
, RA Log log, Set S) Function.

100

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 5. DATABASE RECONSTRUCTION ALGORITHM

44: case (G← op D): //Assume G is in VGi

45: if (∄ VDi+1
): return D;

46: else:

47: if (∄ VGi+1
):

48: T ← op−1(G); Insert T into R;

49: else:

50: D ← SOLVE(D, VDi+1
, log, S); T ← INVERSE(D, VDi+1

[1]);
51: Insert T into R;

52: OR

53: G← SOLVE(G, VGi+1
, log, S); G← INVERSE(G, VGi+1

[1]);
54: T ← op−1(G); Insert T into R;

55: case (G← D op A):

56: case (G← A op D): //Assume G and A are in VGi
and VAi

respectively

57: if (∄ VDi+1
): return D;

58: else:

59: if (∄ VGi+1
):

60: if (op = ∩):
61: Insert G into R;

62: if (op 6= ∪):
63: T ← op−1(G)[1]; //D is at index 1 in the output of op−1(G)
64: Insert T into R;

65: if (∄ VAi+1
):

66: T ← op−1(G)|A; Insert T into R;

67: else:

68: A← SOLVE(A, VAi+1
, log, S); A← INVERSE(A, VAi+1

[1]);
69: T ← op−1(G)|A; Insert T into R;

70: else:

71: if (∄ VAi+1
):

72: G← SOLVE(G, VGi+1
, log, S); G← INVERSE(G, VGi+1

[1]);
73: T ← op−1(G)|A; Insert T into R;

74: else:

75: G← SOLVE(G, VGi+1
, log, S); G← INVERSE(G, VGi+1

[1]);
76: if (op = ∩): Insert G into R;

77: else:

78: A← SOLVE(A, VAi+1
, log, S); A← INVERSE(A, VAi+1

[1]);
79: T ← op−1(G)|A; Insert T into R;

80: }
81: RD ← union of all the relations in R; //Reconstructed D

82: return RD;

Figure 5.3: The SOLVE(Relation D, Value Block VDi
, RA Log log, Set S) Function

(contd.).

101

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 5. DATABASE RECONSTRUCTION ALGORITHM

reconstructing D from the different approaches listed in Q. In all the approaches, the

first check is to confirm whether there is a value block of D after the one in which it

is to be reconstructed (that is, VDi+1
). If there is none, it implies that D has not been

modified and the current Relation D is returned as in lines 9, 17, 26, 45 and 57 of

figure 5.3. If D has been modified, the algorithm considers the different ways in which

D can be reconstructed based on the operation in which it was involved and stores the

reconstructed Relation D in the set R. For example, if an operation (D ← D op A) is

in set Q, and it is confirmed that there is a subsequent value block of D (in line 27).

The Relation D can be determined by reconstructing it in the subsequent value block,

VDi+1
and finding the inverse of the operation leading to the generation of this value

block. The resulting Relation T is a possible reconstruction of D in VDi
(lines 28 – 29).

Alternatively, D can be reconstructed by checking if the Relation A has also changed.

If A has not been modified, then D can be found by reconstructing the relation in its

earlier value block (VDi−1
) and performing the query being considered again (lines 31 –

33). In a case where both relations D and A have been modified (from line 34), D can

be reconstructed by finding D in its earlier value block VDi−1
and also reconstructing A

either from its current value block (as in line 36 of figure 5.3) or from its subsequent

one (as in line 41). The query being considered can then be performed again (as in

lines 37 or 42 respectively). Other queries in the set Q are examined in a similar way

based on the suitable case in the SOLVE function and all possible reconstructions of D

are included in the set R. Once all the queries in Q have been considered, the union of

all the possible reconstructions is stored as the reconstructed Relation RD and returned

as the final result.

It is important to note that some of the reconstructed relations in R may contain more

information than others and might be adequate for the purpose of the reconstruction

process. In situations where reconstruction is done to determine or check a particular

value in or claim about a relation, the reconstruction algorithm can be improved by

searching each of the possible reconstructed relations before inserting it in the set R. The

SOLVE algorithm can then be terminated when the value of interest or desired information

102

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 5. DATABASE RECONSTRUCTION ALGORITHM

has been determined.

In very few cases, it is possible that the reconstruction process results in an empty re-

lation. For example, this might happen when all the tuples in a relation were deleted

before the relation was used in any way. However, in general, the algorithm presented

above can be used in reconstructing values in a relation especially for forensic purposes.

The typical examples discussed in Section 5.4 are solved using the reconstruction algo-

rithm. It can be proven that tuples generated in a reconstructed relation are indeed in

the relation and that the algorithm terminates and does not result in an infinite loop.

These proofs are presented in Chapter 6 of the thesis.

5.6 Summary

This chapter describes some of the main contributions of this thesis. It presents the

concepts involved in database forensic reconstruction and an algorithm that can be used

for the reconstruction. The chapter describes the purpose of reconstruction in database

forensics analysis and highlights instances where the reconstruction of the values stored

in a database is required. In order to describe the reconstruction algorithm, the concepts

of inverse relational algebra, Relational algebra (RA) log, and value blocks are presented.

A definition of the inverse operators of the relational algebra is given together with the

conditions in which complete or partial inverses can be found. The concept of translating

entries (SQL queries) in a log file into the equivalent relational algebra notation (called

an RA log) is also presented. The process of dividing the RA log into value blocks is also

described in detail. Lastly, the chapter combines the concepts described therein in the

formalization of the database reconstruction algorithm presented. Typical examples of

situations involving the reconstruction of values in a database at an earlier time using the

database reconstruction algorithm are also shown. The reconstruction algorithm works

on the assumption that the database being investigated works correctly and has not been

compromised or damaged in any way (that is, the modified databases category). It is

also assumed that the query log is maintained in a certain order.

103

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 5. DATABASE RECONSTRUCTION ALGORITHM

The remaining chapters of this thesis build on the ideas presented in this chapter, par-

ticularly the database reconstruction algorithm. For example, as mentioned earlier, it

can be proved that the reconstruction algorithm is correct and that it always terminates.

This proof is presented in Chapter 6 of the thesis. The following chapters also describe

various aspects of the reconstruction algorithm for database forensics.

104

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 6

Correctness Proof of Algorithm

“Correct your son, and he will give you rest; yes, he will give delight to your

soul.”
- Proverb 29:17

In Chapter 5, one of the main contributions of this thesis, an algorithm for reconstruction

in database forensics, is presented. The reconstruction algorithm can be applied for

the regeneration of data that may be used as evidence or in support of findings in

a database forensics investigation. However, since legal requirements that apply to the

presentation of evidence in a legal proceeding require that tools and techniques used must

be proven to be reliable [94], this chapter builds on the previous chapter by presenting a

correctness proof of the algorithm. It gives an assurance that the values generated using

the reconstruction algorithm are indeed contained in an earlier instance of the database.

The chapter is based on a previously published paper [53].

The correctness proof consists of the proof of partial correctness as well as the total

correctness [44] of the algorithm. This is done by first showing that the output generated

(which is a reconstructed relation) when the algorithm terminates is correct. Correctness

in this sense means that the output is at least a subset of the original relation desired.

We then prove that the algorithm always terminates regardless of whether there is a

recursive call to the function or not.

In Section 6.1 the partial correctness is described by showing that if the algorithm ter-

minates then the output generated is indeed correct. Section 6.2 presents the total

105

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 6. CORRECTNESS PROOF OF ALGORITHM

correctness proof by showing that the algorithm always terminates regardless of the re-

cursive calls to the SOLVE function. The correctness proofs are established through a

sequence of lemmas leading to each conclusion.

6.1 Partial Correctness

The correctness of the output of the reconstruction algorithm is proved by using the

principle of mathematical induction [52] on the entries of the RA log. To establish

the proof, the following lemmas showing the correctness proof for each of the inverse

operators are presented. In all the notation used, Relation D is the relation to be

reconstructed. And the inverse operations refer to the definitions in Section 5.2.

Lemma 6.1.1. Any query used as parameter of the INVERSE function is of the form

D ← rve and the Relation D is a parameter of the operation in the rve (relation-valued

expression).

Proof. We know that any update on a relation always includes the relation as a parameter

when expressed in relational algebra. That is, an update on a Relation D can only be

of the forms: D ← op D, D ← D op A or D ← A op D, where A is another relation.

The only exception to this is when a relation is created for the first time, in which case,

operations on any operand(s) can be assigned into the relation. We also know that the

INVERSE function in the reconstruction algorithm always takes a query which is the first

line of a value block of the relation to be reconstructed as one of its parameters and the

function is called only when the relation exists in an earlier value block. Thus, since the

first query in a value block is an update of the associated relation, it implies that any

query used as parameter of the INVERSE function always contain an assignment operation

into the relation to be reconstructed and the relation is also an operand of the operation

performed in the query. That is, to find the inverse of the first query in a value block

of Relation D, the query used as a parameter of the INVERSE function can only be of

the forms, D ← op D, D ← D op A or D ← A op D. This justifies the different cases

considered in proving the correctness of each of the INVERSE operators in the subsequent

106

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 6. CORRECTNESS PROOF OF ALGORITHM

lemmas in this chapter.

Lemma 6.1.2. The INVERSE function yields a correct output for queries with the rename

operation as its parameter.

Proof. Given a query involving a rename operation as a parameter in the INVERSE func-

tion, from lemma 6.1.1 we know that the query is of the form D ← ρAi=Bj
(D) where

Ai is an attribute of D. The inverse returned from the INVERSE function (ρ−1(D)) is

defined as ρ−1(D) = ρBj=Ai
(D) from Section 5.2. This implies that the previous name of

the renamed attribute is replaced and thus the relation generated is the same as before

the rename operation was performed since the operation did not modify the data in the

table.

More formally, in equation 5.1, we have defined the inverse of a query Q as Q−1 such that

Q−1(Q(Rt)) = R∗

t , where Rt and R∗

t are relations and R∗

t ⊆ Rt. Since the inverse rename

operation usually generates a complete inverse, we now show below that R∗

t = Rt when Q

is a rename operation. That is, Q−1(Q(D)) = D. If we assume that the original Relation

D (before the rename operation) has n attributes given as A = {A1, A2, . . . , Ai, . . . , An}

and D′ is the resulting relation after the rename operation, then we have:

Q−1(Q(D)) = ρBj=Ai
(ρAi=Bj

(D))

= ρBj=Ai
(D′) where A = {A1, A2, . . . , Bj, . . . An}

= D′′ where A = {A1, A2, . . . , Ai, . . . , An}

Since the data in D′′ has not been modified in any way and it has the same attributes

(A = {A1, A2, . . . , Ai, . . . , An}) as D, it implies that D′′ = D.

Lemma 6.1.3. The INVERSE function yields a correct output for queries with the selec-

tion operation as its parameter.

Proof. If the query parameter of the INVERSE function involves a selection operation,

from lemma 6.1.1, the query is of the form D ← σp(A)(D). Since a selection operation

107

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 6. CORRECTNESS PROOF OF ALGORITHM

generates a relation that contains some of the rows in its operand satisfying the condition

specified as p(A), it implies that the result is a subset of the operand. Also, since the

output of the inverse selection is defined as the result of the selection performed (in

Section 5.2), it implies that the output is a correct partial inverse. Formally, we want to

show that

Q−1(Q(D)) = D∗ where D∗ ⊆ D. (6.1)

If D′ is the resulting relation from the selection operation, we have,

Q−1(Q(D)) = σ−1
p(A)(σp(A)(D))

= σ−1
p(A)(D

′) where D′ ⊆ D

= D′

Since D′ ⊆ D and D′ is unique (since we always get the same result from the same

query), it implies that equation 6.1 is true.

Lemma 6.1.4. The INVERSE function yields a correct output for queries with the inter-

section operation as its parameter.

Proof. Given a query with an intersection operation as a parameter of the INVERSE

function, the query is of the form D ← D ∩ A or D ← A ∩D (from lemma 6.1.1). We

know that all the tuples in the resulting D are also in the initial D. Since we have defined

the relation generated from an inverse intersection operation to contain all the tuples

in the result of the actual intersection, it implies that the output generated from the

INVERSE function when a query parameter involves an intersection operation is correct.

We now show that Q−1(Q(D)) = D∗, where D∗ ⊆ D. If we denote the resulting D of

the intersection operation as D′, then we have;

Q−1(Q(D)) = ∩−1(D ∩A)

= ∩−1(D′) where D′ ⊆ D

= D′

Since D′ ⊆ D, it implies that the output of the INVERSE function is correct when the

query parameter is an intersection operation.

108

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 6. CORRECTNESS PROOF OF ALGORITHM

Lemma 6.1.5. The INVERSE function yields a correct output for queries with the union

operation as its parameter.

Proof. From lemma 6.1.1, we know that any query used as a parameter of the INVERSE

function, and which contains a union operation is of the form D ← D∪A or D ← A∪D.

The resulting D (denoted as D′) contains all the tuples in both the initial D and A.

To find only the tuples in the initial D, we would have to remove the tuples in A from

D′. That is, ∪−1(D′) = (D,A) where D = D′ − A. However, this requires that all

the tuples in A are known, otherwise the result is incorrect. Since the reconstruction

algorithm does not guarantee that a complete relation can be reconstructed, it implies

that a reconstructed Relation A cannot be used to compute the initial D. Thus, the

Relation A must not have been modified. The inverse algorithm handles this on line 12

of figure 5.2. We now show that if A is known, then Q−1(Q(D)) = D∗, where D∗ ⊆ D:

Q−1(Q(D)) = ∪−1(D ∪A) = ∪−1(A ∪D)

= ∪−1(D′)

= ∪−1(D′)|A

= D′ − A

= D∗ where D∗ ⊆ D

Since the INVERSE function ensures that A is known before finding the inverse of a

union operation, it implies that the function generates a correct result when the query

parameter contains a union operation.

Lemma 6.1.6. The INVERSE function yields a correct output for queries with the differ-

ence operation as its parameter.

Proof. If a query involving a difference operation is used as a parameter of the INVERSE

function, we know from lemma 6.1.1 that the query is of the form, D ← D − A or

D ← A− D. The first case implies that the resulting D (denoted as D′) is a subset of

the initial D (with tuples in A removed). If A is known and A is a subset of D, then A

109

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 6. CORRECTNESS PROOF OF ALGORITHM

can be added back to D′ to regenerate D completely. To show that Q−1(Q(D)) = D∗,

where D∗ ⊆ D, we have:

Q−1(Q(D)) = −−1(D −A)

= −−1(D′)

=







D′ ∪A if A is known and A ⊆ D

D′ otherwise.

We know that if A ⊆ D then (D′ ∪ A) is also a subset of D and so also is D′. Thus, it

implies that the INVERSE function generates a correct inverse in the first case.

The second case of the difference operation queries (D ← A−D) implies that, any tuple

in A is either in the initial D or the resulting D′ after the query is executed. If the tuples

in D′ are removed from A, the result is D∗, where D∗ ⊆ D. That is, we have:

Q−1(Q(D)) = −−1(A−D)

= −−1(D′)

= A−D′

= D∗

D∗ ⊆ D since there might have been some tuples in D which were not in A when the

difference operation was performed. Thus, the inverse is also correct in this case.

Lemma 6.1.7. A query with a Cartesian product operation cannot be a parameter of

the INVERSE function but the inverse Cartesian product can be found correctly.

Proof. From 6.1.1, if a Cartesian product is the operation performed in a query used

as parameter of INVERSE function, then the query should be of the form D ← D × A

or D ← A × D. However, considering database schemas, these queries cannot occur

in practice as the resulting Relation D′ would have a different schema from Relation D

that was used as the operand. Thus, queries with Cartesian product cannot be used as

parameter of the INVERSE function.

110

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 6. CORRECTNESS PROOF OF ALGORITHM

Regardless of this, the inverse of a Cartesian product can be found correctly (as in line 63

of figure 5.2). We know that given two relations D(A) and E(B) where attributes A =

{A1, A2, . . . , An} and attributes B = {B1, B2, . . . , Bm}, the relation resulting from their

Cartesian product (G← D×E) has attributes AB = {A1, A2, . . . , An, B1, B2, . . . , Bm}.

If the sets of attributes can be separated from each other in G and redundant tuples

is removed the relations generated are exactly D and E. That is, D = πA(G) and

E = πB(G) which is the inverse Cartesian product definition in Section 5.2. We now

show that Q−1(Q(D)) = D since inverse Cartesian product generates a complete inverse:

Q−1(Q(D)) = ×−1(D × E)

= ×−1(G) where G has attributes {A,B} (6.2)

= πA(G) (6.3)

= D′ with attributes A1, A2, . . . , An

Since the projection operation does not modify the data in the columns projected in

equation 6.3, and D′ has exactly the same attributes as D, it implies that the inverse

of the Cartesian product, D′ = D. Note that, the inverse Cartesian product has two

outputs (D′ and E ′) and E ′ can be proven to be correct in the same manner as above.

Lemma 6.1.8. A query with a join operation cannot be a parameter of the INVERSE

function but the inverse of a join can be found correctly.

Proof. For the same reasons as in lemma 6.1.7 above, it is impossible to have a query of

the form (D ← D ✶p(A,B) A) or (D ← A ✶p(A,B) D). Thus, queries with a join operation

cannot be a parameter of the INVERSE function. In addition, since a join operation is

the same as a Cartesian product with some conditions that must be satisfied by tuples

that will be joined, the proof that the inverse of a join operation can be found correctly

follows from lemma 6.1.7 as well. However, since it is possible that not all tuples of D

and E are joined, the Relation G in equation 6.2 may not contain all the joining of tuples

in D and/or E, thus the projection in equation 6.3 may not contain all the tuples that

111

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 6. CORRECTNESS PROOF OF ALGORITHM

was previously in D. The resulting relation of the inverse join operation D′ is therefore

a subset of D.

Lemma 6.1.9. A query with a projection operation cannot be a parameter of the INVERSE

function but the inverse of a projection can be found correctly.

Proof. From lemma 6.1.1, we know that if a query used as a parameter of the INVERSE

function involves a projection operation, then the query is of the form D ← πA(D). On

the contrary, this query cannot occur in practice as the schema of the resulting D′ and

the initial D are different. The exception to this however is when A represents all the

attributes of D, in which case the INVERSE function can generate a correct result.

Now we show that the inverse of a projection operation can be found correctly. Given

a projection operation G ← πA(D), we know that G contains all the data in some of

the columns in D. Thus, a correct inverse projection can always be found by copying

the data in G back into D and leaving columns that were not specified in the projection

as columns with missing values. Assume that, D as attributes {A,B}, to show that

Q−1(Q(D)) = D′ where D′ ⊆ D, we have,

Q−1(Q(D)) = π−1
A (πA(D))

= π−1
A (G)

= D′ where D′ ⊆ D

The Relation D′ has exactly the same attributes as D but with values in attributes B

set to null since they cannot be determined from the inverse projection. Since D′ ⊆ D,

it implies that the inverse of a projection can be found correctly. The inverse projection

is the only operation that generates partial column inverses.

Lemma 6.1.10. The inverse of a selection operation can always be found correctly.

Proof. The proof of lemma 6.1.3 shows that the INVERSE function yields a correct result

for queries with selection operation. The same proof applies when the queries are of the

112

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 6. CORRECTNESS PROOF OF ALGORITHM

form D ← σp(A)(G) or A← σp(A)(D). That is, queries (with selection operation) which

cannot be a parameter of the INVERSE function according to lemma 6.1.1.

Using the various lemmas proven above, we now show that the output from the recon-

struction algorithm is correct. As mentioned earlier, correctness in these proofs means

that the reconstructed relation is at least a subset of the original relation and may be

missing some tuples or values in some columns. The correctness proof of the reconstruc-

tion algorithm is based on the principle of mathematical induction [52] which is applied

on the entries of the relational algebra log.

Theorem 6.1.11. Any relation in a database can be reconstructed at any earlier time.

Proof. Given a relational algebra log, we show that an earlier instance of a relation can

be correctly regenerated using the reconstruction algorithm presented. We assume that

the log entries are labelled L0, L1, . . . , Ln where L0 is the last query executed in the

log file and Ln is the first query in the RA log. For simplicity, the proof is divided into

two parts. From figure 5.2, the algorithm involves series of reverse operations on queries

performed (for example, on lines 11, 22, 28), as well as re-execution of queries with

known operands (for example, on lines 14, 20, 42). The first part of the proof shows that

relations can be reconstructed from the reverse operations on queries using the principle

of mathematical induction. The second part of the proof, which is a consequence of the

first part, shows that queries can be re-executed in order to regenerate a relation.

For the base case of the inductive proof, it is trivial that we can always reconstruct any

relation after the execution of L0 since L0 represents the current instance of the database.

In reality, this does not require any reconstruction since all the relations in the current

database instance are known.

Now we assume that the database instance after the execution of RA log entry Lk where

0 < k < n is known. That is, the information contained in all the relations in the

database after the execution of Lk are known.

113

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 6. CORRECTNESS PROOF OF ALGORITHM

We can now show that any relation in the database after the execution of Lk+1 can be

reconstructed. From the definition of a value block, we know that a relation remains

unchanged until a new value block of the relation is encountered in the RA log and a new

value block of a relation is characterized by an assignment operation into the relation in

the first query of the value block. Thus, to prove that a relation can be reconstructed

after the execution of entry Lk+1 of the RA log, it suffices to show whether the relation

was modified at Lk or not. This can be done by checking the query executed at Lk. If

the query at Lk belongs to a new value block of the relation to be reconstructed, then the

relation at Lk+1 is different from what we currently know at Lk. Otherwise, the relation

at Lk+1 is the same as what is known at Lk.

If D is the relation to be reconstructed, we now consider the different query cases that

can occur at Lk as follows:

1. The query does not involve D: this is a query of the form (A← B op C) where A,B

and C are relations. The Relation D at Lk+1 in this case can be reconstructed since

we know D after the execution of Lk and D was not generated from the execution

of the query at Lk. That is, both log entries at Lk+1 and Lk are in the same value

block of D. Thus, since D is known at Lk then D is known at Lk+1.

2. The query involves D but does not include an assignment operation into D: this

includes queries of the form (A ← op D), (A ← A op D) or (A ← D op A).

Although these queries involve the Relation D as an operand of the operations

performed, we know that in relational algebra notation, a relation is only modified

if there is an assignment into it. Thus, if any of these queries occur at Lk, it implies

that both Lk+1 and Lk are still in the same value block of D and since D is known

at Lk then D is known at Lk+1.

3. The query modifies D: queries modifying a Relation D can be of the form (D ←

op D), (D ← A op D), (D ← D op A), (D ← op A) or (D ← A op B). From

lemma 6.1.1, we have shown that a query modifying a Relation D must have D

as an operand of the operation performed except if D is being created for the first

114

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 6. CORRECTNESS PROOF OF ALGORITHM

time. This implies that if either of the queries (D ← op A) or (D ← A op B) is

performed at Lk then the Relation D does not exist at Lk+1. In the algorithm, a

reverse operation to regenerate a relation that has just been created never occurs

since calls to the INVERSE function requires that there is an earlier value block of the

relation being considered. On the other hand, if a query of the form (D ← op D),

(D ← A op D) or (D ← D op A) is performed at Lk, it implies that the Relation

D at Lk+1 is different from the one at Lk. To determine the Relation D after the

execution of Lk+1, we have to be able to reverse the query at Lk. From lemma

6.1.1 through lemma 6.1.10 above, we have shown that the INVERSE function can

be used to find the inverse of queries used as its parameter and also shown that

inverses of queries which cannot be used as parameter of the INVERSE function can

be determined if needed. This implies that the reconstruction algorithm can be

used to determine the value of Relation D at Lk+1. That is, it can regenerate an

earlier instance of a relation by reversing the queries performed on such relations.

For the second part of this proof, we show that a relation can also be reconstructed

by re-executing the queries that were used to generate the relation initially. As shown

in the reconstruction algorithm (for example, lines 14, 20, 37, 42), this requires that

the relations involved in the operation can be reconstructed in a particular (usually

earlier) value block. In the first part of the proof, we have shown that a relation can

be reconstructed at an earlier log entry (or value block). Thus, if a Relation D was

generated at Lk+1 as D ← A op B and both A and B can be reconstructed (or are

known) in their associated value blocks, then it is trivial that D can also be regenerated

by executing the query again.

Thus, from the base case (L0) and the induction step (Lk ⇒ Lk+1), it can be concluded

that the reconstruction algorithm can be used to generate an earlier instance of a relation

in a database.

Theorem 6.1.12. Any relation generated from the reconstruction algorithm is correct.

115

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 6. CORRECTNESS PROOF OF ALGORITHM

Proof. From theorem 6.1.11, we know that an earlier instance of a relation in a database

can be generated using the reconstruction algorithm. Also, from the definition of the

inverse relational algebra operators in Section 5.2, we know that having a reconstructed

relation does not imply that all the information in the original relation were successfully

reconstructed. That is, a reconstructed relation may contain missing tuples or missing

values in column(s). However, we now prove that the tuples in any reconstructed relation

are indeed in the original relation, meaning that the reconstructed relation is correct.

From figure 5.3, we know that there are three major ways to regenerate a relation using

the algorithm. First, is when there is no subsequent value block of the relation to be

reconstructed. In this case, the correctness of the relation returned from the algorithm is

trivial since it implies that the relation has not been modified and can be simply returned

as in the algorithm. The other cases involve finding the inverse of queries and re-executing

of queries based on relations that are known or also reconstructed from inverses. In

lemma 6.1.1 through lemma 6.1.10, we have shown that the results generated from the

INVERSE function and the inverse operators of the relational algebra are correct. Since

reconstructed relations are based on these inverse operators and the INVERSE function in

figure 5.2, it implies that any output from the reconstruction algorithm is correct. The

term “correct” in this case means that the reconstructed relation is at least a subset of

the original relation.

6.2 Total Correctness

In Section 6.1, we have shown that if the reconstruction algorithm terminates, then the

output generated is correct. In order to complete the correctness proof of the algorithm,

this section presents the proof that the algorithm always terminates. Similar to Section

6.1, the proof is established based on the sequence of lemmas which we prove below.

Lemma 6.2.1. There is at least one query in the set Q.

Proof. The set Q is defined in line 1 of figure 5.3 as the set of queries involving the

116

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 6. CORRECTNESS PROOF OF ALGORITHM

relation to be reconstructed (D) in the value block in which it is to be reconstructed

(VDi
). Showing that Q is a non-empty set is trivial since every value block starts with

an assignment operation into the relation involved. Thus, Q contains at least one query

which is the first line of the value block VDi
and the query contains an assignment

operation into D.

Lemma 6.2.2. The number of log entries in the relational algebra log is finite.

Proof. We have assumed that the relational algebra log used in the reconstruction al-

gorithm consists of a complete set of modifying queries that have been performed on

a database from the time in which a relation is to be reconstructed (or earlier) to the

present time. The number of operations that can be performed on a database in a

bounded time interval is finite. Thus, the number of log entries that can be in a query

log is finite. Since a relational algebra log is generated from traditional query logs, it

implies that the number of log entries that can be in a RA log is always finite.

Lemma 6.2.3. The number of value blocks in a relational algebra log is finite.

Proof. We know that a database consists of a finite number of relations [32]. Lemma

6.2.2 also shows that number of log entries in an RA log is finite. Since value blocks

are defined using the entries of the relational algebra log (by putting into consideration

relations that are modified by any query), and they represent groupings of the log entries,

it implies that the number of value blocks that can exist in a relational algebra log is

also finite.

Lemma 6.2.4. The number of possible relation and value block tuples are finite.

Proof. As mentioned earlier, we know that the number of relations in a database is finite.

Lemma 6.2.3 also proves that the number of value blocks into which a RA log can be

divided is finite. If we represent the number of relations in a database and the number of

value blocks in a RA log as S and T respectively, we can show that the set representing

the Cartesian product of S and T is finite.

117

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 6. CORRECTNESS PROOF OF ALGORITHM

Since S and T are finite sets, it implies that the cardinality of S × T is |S| × |T | which

is also finite. S × T represents the total number of relation and value blocks tuples that

can exist. Since |S × T | is finite, it implies that the number of relations and value block

tuples that can be encountered in the reconstruction algorithm is finite.

Theorem 6.2.5. The database reconstruction algorithm always terminates.

Proof. There are various conditions in the reconstruction algorithm that ensure its ter-

mination. The simplest condition checks whether or not there is a subsequent value

block of the relation being reconstructed after the value block specified in the call to the

reconstruction algorithm. This step occurs on lines 9, 17, 26, 45 and 57 of figure 5.3. It

is obvious that none of the instances leading to these lines requires a recursive call to

the SOLVE function. Thus, the termination of the reconstruction algorithm can be said

to be trivial in these cases.

In the non-trivial cases of the reconstruction algorithm, at least one subsequent or earlier

value block of the relation being reconstructed exists. There are two conditions in the

algorithm that ensure its termination in these cases. The first one is the set Q defined

in the algorithm (on line 1 of figure 5.3), which contains a list of all the queries involving

the relation to be reconstructed in the specified value block. The algorithm works by

examining each of the queries in Q and attempting a reconstruction based on each query.

Lemma 6.2.1 shows that there is at least one query in Q whenever the SOLVE function

is called. In lemma 6.2.2, we have also shown that the number of log entries in the RA

log is finite. Since the set Q is a subset of the RA log, it implies that Q is also a finite

set. Since the reconstruction algorithm considers each element of Q only once, it implies

that the algorithm eventually considers all the elements of Q and terminates when there

are no more elements in Q to consider.

However, we note that the analysis of each query in Q can lead to a recursive call to the

SOLVE function. The algorithm ensures termination in this case by keeping track of the set

S (a parameter of the SOLVE function) which stores tuples of relations and value blocks

118

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 6. CORRECTNESS PROOF OF ALGORITHM

(and the associated result) already considered in a particular reconstruction process.

If a relation and value block tuple which has been stored in S is used as parameters

SOLVE function, the algorithm simply returns the result associated with such parameter

combination. Otherwise, the tuple is included in the set S and the corresponding result

is initially set to an empty relation which is replaced by the reconstructed relation after

the successful completion (line 81 of figure 5.3) of the reconstruction process. Thus, if an

attempt to reconstruct a relation in a value block leads to a recursive call to reconstruct

the relation in the same value block, it implies that the relation cannot be reconstructed

and the algorithm return an empty relation and terminates. On the other hand, if a

relation has already been reconstructed in a particular value block, there can never be

an infinite loop to continue reconstructing the same relation in the same value block

since the associated result is always returned (as in line 3 of figure 5.3). Even though

the algorithm contains recursive calls to the SOLVE function, we have proved in lemma

6.2.4 that the number of relation and value block tuples that can be encountered in a

reconstruction process is finite. The worst case scenario that can be encountered in the

reconstruction algorithm is when every relation is reconstructed in every value block (an

almost impossible case). Since the number of such tuples is finite, then it implies that

the reconstruction algorithm always eventually terminates.

The proof of partial correctness of the database reconstruction algorithm presented in

Section 6.1 and the proof of its termination presented in Section 6.2 both show that the

reconstruction algorithm is correct.

6.3 Summary

This chapter builds on the database reconstruction algorithm presented in Chapter 5 by

proving the algorithm to be correct. This is in support of the requirement that the tools

and techniques used in the analysis and presentation of evidence in digital forensics must

be proven to be reliable. Due to the mathematical nature of the relational algebra, which

is a core aspect of the techniques presented in this thesis, the proof of correctness is done

119

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 6. CORRECTNESS PROOF OF ALGORITHM

by applying mathematical methods of proof such as proof by contradiction and proof by

induction. The correctness proof of the database reconstruction algorithm is described

in two sections where the first deals with the partial correctness of the algorithm and the

second deals with the total correctness of the algorithm. The proof of partial correctness

shows that the output of the algorithm is correct by presenting several lemmas and

building on them to reach the conclusion. The proof of total correctness shows that the

algorithm will always terminates. The conclusion is also reached by building on several

lemmas presented in the chapter.

This chapter proves the applicability of the algorithm for the reconstruction process in

database forensics. In the following chapter, the completeness of the reconstructed data

that can be generated from this algorithm is considered as it is also important that as

much information as possible can be reconstructed if required during the forensic analysis

of a database.

120

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 7

Completeness of Reconstructed

Data

“Put on the whole armor of God, that you may be able to stand against the

wiles of the devil.”
- Ephesians 6:11

In the previous chapter, the proof of correctness of the database reconstruction algorithm

is presented. The term correctness implies that any reconstructed relation is at least

a subset of the original relation, even though it may be incomplete if compared (in

terms of the tuples contained) with the original relation. The generation of incomplete

relations or inability to reconstruct values of interest in a relation when using the database

reconstruction algorithm stems from the fact that the inverse generated from some of

the inverse operators of the relational algebra may be missing one or more tuples or

values in a column of the original relations. This also implies that the evidence needed

from a database during an investigation may not be found. However, this does not

imply that such evidence does not exist. The objective of this chapter is to discuss the

limitation of the database reconstruction algorithm and describe some of the techniques

that can be applied in conjunction with the algorithm in order to generate more complete

relations or tuples of a relation as well as provide corroborating evidence regarding

claims about the information on a database at an earlier time. A typical application

of the reconstruction algorithm which reflects its limitation is given and two different

techniques of reconstructing more information from a database using the reconstruction

121

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 7. COMPLETENESS OF RECONSTRUCTED DATA

algorithm are described in the chapter.

Section 7.1 describes the limitation of the database reconstruction algorithm in detail

and gives a typical example of a situation in which the limitation can be encountered.

In Section 7.2, the absence of evidence in terms of data reconstruction in database

forensics is discussed. Sections 7.3 and 7.4 describe techniques that can be applied for

the generation of complete inverses by showing how the missing values of the example

given in Section 7.1 can be reconstructed.

7.1 Limitation of the Reconstruction Algorithm

As mentioned earlier, the output generated from the inverse operators of the relational

algebra may either be complete or partial when compared with the original relation.

Even though every reconstructed relation is always correct, that is, it is at least a subset

of the original relation, partial inverses sometimes affect the amount of information that

can be reconstructed using the database reconstruction algorithm. Since the algorithm

depends on the inverse operators of the relational algebra, the generation of partial

inverses from some of the operators sometimes result in the generation of incomplete (or

empty) relations when using the algorithm.

t0 : R← {tuple1, tuple2}
t1 : S ← {tuple1, tuple2}

t2 : H ← R ∩ S

t3 : S ← Fupdate(word=six )(σnumber=5(S))

t4 : I ← R ∪ S

t5 : J ← H ∩ I

t6 : H ← ∅

t7 : H ← I − J

t8 : R← ρnumber = numeral (R)

t9 : J ← ∅

VR1

VR2

VS1

VS2

VH1

VH2VH3

VI1

VJ1

VJ2

Figure 7.1: A Relational Algebra Log Grouped into Value Blocks.

This section gives an example that reveals the limitation of the algorithm when dealing

122

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 7. COMPLETENESS OF RECONSTRUCTED DATA

with inverse operators that generate partial inverses. In figure 7.1, an example of a

RA log generated from a traditional SQL log file is given. For simplicity and further

explanations in subsequent sections of this chapter, we assume that the content of each

relation after executing the queries in the RA log at each timestamp are as computed in

figure 7.2.

The aim of using the reconstruction algorithm is to reconstruct the tuples in Relation

H at time t3 since several modifications of the relation has occurred. The relations R

and S both have attributes word and number and contains two tuples each, which were

stored at time t0 and t1, respectively.

From figure 7.1, the Relation H at time t3 is the same as H at any time between t2 and

t5 inclusively, since the queries executed between these times are in the same value block

of H , that is, VH1
. Using the reconstruction algorithm, there are three different ways in

which the Relation H at t3 can be reconstructed:

1. By reversing the query performed on the first line of value block VH2
at time t6.

Unfortunately, this cannot be achieved since the Relation H was dropped (or all

its contents were deleted) at this point.

2. Another alternative is to find the inverse of the intersection operation performed

at time t5 in order to obtain a partial reconstruction of H . However, since the

Relation J was also subsequently deleted at time t9, this inverse cannot be found

since the inverse of the intersection operation is given as ∩−1(J) = (H∗, I∗) where

H∗ = I∗ = J .

3. The last possible way of reconstructing H at t3 is to re-execute the query at time

t2. This requires that the relations R an S at time t2 are known (or reconstructed

first). Since relations R and S are in value blocks VR1
and VS1

, respectively at

time t2 and they both have subsequent value blocks, the relations must first be

reconstructed in their respective value blocks at t2 before the query at t2 can be

re-executed. The Relation R at time t2 (or in VR1
) can be found by finding the

inverse of the rename operation performed at time t8, which is given as ρ−1(R) =

123

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 7. COMPLETENESS OF RECONSTRUCTED DATA

t0 : R ← {tuple1, tuple2} R

Word Number

five 5

six 6

t1 : S ← {tuple1, tuple2} S

Word Number

four 4

five 5

t2 : H ← R ∩ S H
Word Number

five 5

t3 : S ← Fupdate(word=seven)(σnumber=5(S)) S

Word Number

four 4

seven 5

t4 : I ← R ∪ S I

Word Number

four 4

five 5

six 6

seven 5

t5 : J ← H ∩ I J
Word Number

five 5

t6 : H ← ∅ H
Word Number

t7 : H ← I − J H

Word Number

four 4

six 6

seven 5

t8 : R← ρnumber = numeral (R)
R

Word Numeral

five 5

six 6

t9 : J ← ∅ J
Word Number

Figure 7.2: Original Relations Obtained from Queries Executed.

124

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 7. COMPLETENESS OF RECONSTRUCTED DATA

ρnumeral = number (R). Since an inverse rename operation always generates a complete

relation, the Relation R at t2 is successfully reconstructed from the inverse rename

operation. The Relation S at time t2 (or in VS1
) can be found by getting the inverse

of the update operation performed on S at t3. The inverse of the update can be

represented as:

F−1
update(word=six )(σ

−1
number=5(S)) = Fupdate(word=null )(σnumber=5(S)).

This generates the partial Relation S∗ shown in table 7.1. Since relations R and

S at t3 are now known, the query at t3 (H ← R ∩ S) can be re-executed in order

to reconstruct the tuples in H at time t3. However, because the reconstructed

Relation S∗ is a partial inverse, the tuple in H at t3 cannot be reconstructed from

the re-execution of this query and an empty Relation H∗ with the same attributes

as the original Relation H is generated (table 7.2).

S∗

Word Number

four 4

null 5

Table 7.1: Reconstructed Relation S∗.

H∗
Word Number

Table 7.2: An Empty Reconstructed Relation H∗.

This example reflects a limitation of the database reconstruction algorithm that

can be encountered when dealing with partial inverses. In the rest of this chapter,

we discuss some of the techniques that can be applied in conjunction with the

reconstruction algorithm in order to generate more complete reconstructed rela-

tions and/or find corroborating evidence regarding the data in a database during

database forensics.

125

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 7. COMPLETENESS OF RECONSTRUCTED DATA

7.2 Absence of Evidence

In this same way as data collected in different branches of digital forensics can be the

required evidence or assist in carrying out an investigation, reconstructed relations may

often be used as the evidence1, to provide support for other evidence during an investi-

gation, or to provide more information about an investigation. Unfortunately, the fact

that a reconstructed relation may be incomplete implies that some evidence may not be

found. In situations where the evidence to refute or support a claim cannot be found in

a reconstructed relation, it is important to remember an axiom from Forensics Science

that says that, “absence of evidence is not evidence of absence” [29]. For example, if

no evidence (or reconstructed data) could be found to support the sales representative’s

claim about the price of good sold on a particular date, it does not mean that the rep-

resentative is lying. Also, if no evidence could be found on a computer to determine

whether or not it accessed a particular web page, it does not mean that the computer

was used to access the site. It is important to base all assertions on solid supporting

evidence and not on an absence of evidence [29]. Thus, it is necessary for an investigator

to find corroborating evidence that clearly demonstrates the falsity or truth of a claim

about the information in a database at an earlier time.

There are two techniques that can be used for finding corroborating evidence about

claims on the data in a database. The first technique works based on Locard’s exchange

principle that contact between two items will always result in an exchange [34]. That

is, there will always be some trace evidence with every interaction even though it may

not be easily detected. As discussed in Section 2.2.3, this principle applies in both the

physical and digital realms and can provide links between them [29]. Although this

principle may not be true for all systems in general, it is true for systems that keep

record of their actions or activities, for example a database. In database reconstruction,

the items involved in an interaction are the relations in a database while the interactions

are the operations performed on such relations. This technique works on the fact that if

1evidence may or may not be admissible in a court of law.

126

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 7. COMPLETENESS OF RECONSTRUCTED DATA

there is a claim that some data was in a relation at an earlier time, then there should be

some trace evidence that can be gathered from the interaction of the relation with other

relations in the database.

The second technique for finding corroborating evidence involves the reconstruction of

more complete relations through the iteration of the database reconstruction algorithm

and making inferences from reconstructed relations. This technique works based on the

fact that the data created when an investigator reenacts the events in a crime should re-

semble the original evidence collected as close as possible. That is, given a reconstructed

relation, if an investigator re-executes the queries performed on the database (using the

log record), the recreated database instance should be the same as the current instance

of the database. If this is not the case, then it implies that some information is missing in

the reconstructed relation since we have already proved that any data in a reconstructed

relation is indeed correct and contained in the original relation [53].

The following sections describe how these techniques can be applied in finding corrob-

orating evidence regarding claims about the information in a database at an earlier

time and how the database reconstruction algorithm can be used to get more complete

reconstructed relations.

7.3 Reconstruction from Interaction

According to Locard’s exchange principle [34], the interaction or contact between two

items will always result in an exchange. The technique of reconstructing data from

interaction works on this principle and is synonymous to the collection of trace evidence

from a crime scene.

From the reconstruction example in Section 7.1, it is obvious that the tuples in Relation

H at t3 could not be reconstructed because of two reasons:

1. the database reconstruction algorithm depends on the inverse of the update per-

formed on Relation S, which results in the generation of a partial Relation S∗ with

127

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 7. COMPLETENESS OF RECONSTRUCTED DATA

missing values in one of its columns.

2. The inverse of the first query of the subsequent value block of H after time t3, that

is, the query at t6 in value block VH2
cannot be found since H was either dropped

or all of its tuples were deleted at this point.

In general, a particular situation in which the database reconstruction algorithm may

be unable to reconstruct the required data during an investigation is when the relation

to be reconstructed is deleted in the subsequent value block of the relation; one or more

relations which the relation being reconstructed interacted with have been deleted; or

where the re-execution of the actual query that led to the relation being reconstructed

cannot be done due to the inability to determine or reconstruct a complete version of

other relations involved in the query.

An alternative way of reconstructing data in these cases is to explore the interaction

of the relation to be reconstructed with other relations (using the RA log) and making

inferences based on the operations performed during the interaction. A summary of

inferences that can be made when considering different operations in an interaction are

given below:

1. Cartesian product: if H ← I(A) × J(B), where A and B are attributes of the

relations, then:

(a) x ∈ πA(H)⇔ x ∈ I

(b) x ∈ πB(H)⇔ x ∈ J .

2. Union: if H ← I ∪ J , then:

(a) x ∈ H ⇔ x ∈ I or x ∈ J , and this means that,

(b) x ∈ H and x /∈ I ⇒ x ∈ J and

(c) x ∈ H and x /∈ J ⇒ x ∈ I.

3. Intersection: if H ← I ∩ J , then:

(a) x ∈ H ⇔ x ∈ I and x ∈ J .

128

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 7. COMPLETENESS OF RECONSTRUCTED DATA

4. Difference: if H ← I − J , then:

(a) x ∈ H ⇔ x ∈ I and x /∈ J

(b) x ∈ J ⇒ x /∈ H .

5. Division: if H ← I/J , then

(a) x ∈ H × J ⇒ x ∈ I. That is H × J ⊆ I.

6. Projection: if H ← πA(J), then:

(a) H ⊆ J , that is, y ∈ H ⇒ y ∈ J where y are values in similar columns of H

and J .

7. Selection: if H ← σA(J), then:

(a) H ⊆ J , that is, x ∈ H ⇒ x ∈ J .

8. Rename: if H ← ρA=B(J), where A and B are attributes, then:

(a) J = ρB=A(H) and x ∈ H ⇔ x ∈ J .

Considering the reconstruction example in Section 7.1, this technique can be applied to

reconstruct the tuple in H instead of the empty Relation H∗ generated from the recon-

struction algorithm. It is important to note that the technique of reconstruction from

interaction is not independent and requires the usage of the inverse operators of the rela-

tional algebra or the use of the reconstruction algorithm in regenerating other relations

that might be involved in an interaction. This technique can be used in reconstructing

the tuples in a relation by taking the following steps. The reconstruction of the tuples in

Relation H at t3 (problem from Section 7.1) is used to provide an example of the process

at each step.

1. Identify all the interactions involving the relation to be reconstructed from the RA

log. There should be at least one interaction before and after the deletion of the

relation. For example, the interactions of H in figure 7.2 include the query at t5

(that is, J ← H ∩ I) and at t7 (that is, H ← I − J).

129

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 7. COMPLETENESS OF RECONSTRUCTED DATA

2. Determine the tuples in the other relations involved in the interaction(s) that oc-

curred after the deletion of the relation of interest using the reconstruction algo-

rithm. For example, we need to find the inverse of the query H ← I − J in order

to determine the tuples in J since Relation I is known. Thus, we have2:

−−1(H) = J∗ = I −H

which is as shown in table 7.3.

J∗
Word Number

five 5

Table 7.3: Relation J∗ from Inverse Difference Operation.

3. The last step involves making inferences from the other relations that have been

reconstructed in step 2, and which were also involved in an interaction with the

relation being reconstructed before its deletion. For example, the Relation J was

involved in an interaction with H at t5 (that is the query, J ← H ∩ I) and since

this involves an intersection operation, the inferences described earlier implies that

every tuple in J must also be in H . That is, we have the Relation H which is given

H
Word Number

five 5

Table 7.4: H through Reconstruction from Interaction.

as table 7.4 instead of the earlier empty relation in table 7.2.

7.4 Reconstruction Through Iteration

Another technique that can be used in reconstructing the information in a database is

through the iteration of the database reconstruction algorithm and the queries in the

RA log, and making inferences from tuples generated and queries performed during the

process.

2Although the resulting J∗ is complete when compared with the original J at t7, this is not always

the case with inverse difference operator.

130

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 7. COMPLETENESS OF RECONSTRUCTED DATA

The technique works on the notion that if the queries in a log are re-executed using

some reconstructed relations, then the final instance of the database generated after the

re-executions should be the same as the current instance of the database (that is, as

it was found before the investigation). Since it has been proved in 6 that the output

generated from the database reconstruction algorithm is correct, any difference between

the current instance of the database and the instance generated from the re-executions

implies that there are some missing data in one or more relations involved in the queries

that were re-executed. The differences identified between the two database instances can

be used to make inferences and reconstruct the missing data in the relations involved.

Considering the reconstruction example in Section 7.1, this technique can be applied

to reconstruct the tuple in H instead of the empty Relation H∗ generated from the

reconstruction algorithm. The steps involved in this technique are listed below. The

reconstruction of the tuples in Relation H at t3 (problem from Section 7.1) is used to

provide an example of the process at each step.

1. Attempt the reconstruction using the database reconstruction algorithm and iden-

tify other relations that need to be reconstructed. For example, our attempt to

reconstruct Relation H at t3 in figure 7.2 required the reconstruction of relations

R and S. For simplicity, the subscript r is used to denote relations that were re-

constructed or generated from reconstructed relation. Thus, the reconstruction of

relations R and S generated the relations Rr = R and Sr = S∗ (as explained in

Section 7.1) given in figure 7.3.

Rr

Word Number

five 5

six 6

Sr

Word Number

four 4

null 5

Figure 7.3: Reconstructed Relations Rr and Sr.

2. Re-execute the queries in the log using the reconstructed relations and make possi-

ble inferences whenever a reconstructed relations differs from the current instance

on the database. For examples, in the reconstruction of H , we can re-execute the

131

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 7. COMPLETENESS OF RECONSTRUCTED DATA

queries in figure 7.2 using the relations Rr and Sr. The re-execution process is

shown in figure 7.4.

t0 : Reconstructed Relation Rr Rr

Word Number

five 5

six 6

t1 : Reconstructed Relation Sr Sr

Word Number

four 4

null 5

t2 : Hr ← Rr ∩ Sr Hr

Word Number

t3 : S ← Fupdate(word=seven)(σnumber=5(S))
Skipped since Sr was

generated from its inverse.

t4 : Ir ← Rr ∪ Sr Ir

Word Number

four 4

five 5

six 6

null 5

Figure 7.4: Re-execution of Queries Using Reconstructed Relations.

Ir

Word Number

four 4

five 5

six 6

null 5

I

Word Number

four 4

five 5

six 6

seven 5

Figure 7.5: Reconstructed Relation Ir and Current Relation I.

At time t4 of the re-execution, the Relation Ir generated differs from the Relation

I in the current instance of the database. A comparison of the two relations (figure

7.5) shows that I contains a tuple that is not in Ir and Ir contains a tuple that

is not in I. It is possible to assume that the null value in Ir is indeed the value

“seven” since there is only one column with a missing value and the second column

in both I and Ir matches. Alternatively, we can make inferences from the tuple

132

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 7. COMPLETENESS OF RECONSTRUCTED DATA

in I which is not in Ir. That is, since I is a union of R and S, then the tuple

<seven, 5> should be in either Rr or Sr. However, since we are sure that the

Relation Rr is complete, it implies that the tuple is in Sr. That is, Sr is given

as table 7.5. Since the Relation Sr generated from the inferences are exactly the

Sr

Word Number

four 4

seven 5

Table 7.5: Table Sr Generated from Re-execution and Inferences.

same as the current instance of the Relation S, no further inferences can be made

at this point. The concluding part of the re-execution process is shown in figure

7.6. The Relation Hr generated from the re-execution process at time t7 should be

t5 : Jr ← Hr ∩ Ir Jr

Word Number

t6 : Hr ← ∅ H
Word Number

t7 : Hr ← Ir − Jr Hr

Word Number

four 4

five 5

six 6

null 5

t8 : R← ρnumber = numeral (R)
Skipped since Rr was

generated from its inverse.

Figure 7.6: Re-execution of Queries Using Reconstructed Relations.

the same as the current instance of H on the database. But, this is not the case

(as shown in figure 7.7). Again, the differences between the two relations can be

used to make inferences about the data in the database. Relation Hr contains the

tuple <five, 5> which is not present in the current instance of H , this implies that

some data was missing in the reconstructed relations used to compute Hr. Since

the tuple, <five, 5> is not expected to be in Hr, then the only possibility is that

133

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 7. COMPLETENESS OF RECONSTRUCTED DATA

Hr

Word Number

four 4

five 5

six 6

null 5

H

Word Number

four 4

six 6

seven 5

Figure 7.7: Reconstructed Relation Hr and Current Relation H .

it should have been in the Relation Jr since all the tuples in Jr were removed from

Ir to generate Hr (from the difference operation at t7). If the tuple is in Jr at t7,

it implies that it was also in Jr at t5 since both times are in the same value block

of J . This further implies the tuple <five, 5> was in both Hr and Ir at time t5.

Also, since t5 and t2 are in the same value block of H , it implies that the tuple

<five, 5> was in H at t2 and subsequently at t3. Thus, the Relation H at t3 can

be reconstructed as shown in table 7.6.

H
Word Number

five 5

Table 7.6: H from Reconstruction Through Iteration.

As with the technique of reconstruction from interaction and as shown in the example

above, the technique of reconstruction data through iteration also rely on the use of

the database reconstruction algorithm, inverse relational algebra and value blocks. Both

techniques can be used in reconstructing data when dealing with situations involving

incomplete reconstruction of some other relations or the deletion of the required relation

at some point in the log file. The decision about which of the techniques to use will

depend on the content of the log file and/or an intuitive decision of which technique is

likely to enable the reconstruction of more data in any particular situation.

7.5 Summary

One limitation of the database reconstruction algorithm deals with the fact that recon-

structed relations may be incomplete due to information that may be missing in the

134

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 7. COMPLETENESS OF RECONSTRUCTED DATA

output generated by the inverse operators of the relational algebra. Unfortunately, this

may imply missing evidence during an investigation that requires the ability to recon-

struct missing parts of a reconstructed relation. However, since the evidence may still

exist, it is important to find ways to reconstructing the missing the data or find corrob-

orating evidence that can be used to support claims about the data on a database. This

chapter describes techniques that can be used for ensuring that more complete relations

can be reconstructed using the reconstruction algorithm earlier described in Chapter 5.

The techniques explore axioms and principles in forensic science and show with a typical

example how missing data in a reconstructed relation can be determined.

As mentioned in Section 3.2, one of the characteristics of a database system is that the

database contains both the data stored in it together with a complete description of the

database and the data contained, called the metadata or schema. In the next chapter,

the concepts described for the reconstruction of data contained in a database is extended

for the reconstruction of the schema as well. This handles the earlier assumption that

the database schema is always known and describes techniques that can be used for

reconstructing the schema when it is unknown or not trusted, which may be the case of

a compromised database.

135

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 8

Reconstruction of a Database

Schema

“Neither do men put new wine into old bottles; else the bottles break, and the

wine is spilled, and the bottles perish. But they put new wine into new bottles,

and both are preserved.”

- Matthew 9:17

The focus of this chapter is to describe techniques that can be used for the reconstruction

of a database schema. Until this chapter, it has been assumed that the schema is known

and can be trusted, since our focus is on the dimension of modified databases. However,

in practice this is not always the case. One of the main challenges of database forensics

analysis deals with the fact that the results obtained from an analysis may actually differ

from the raw data stored in the database due to changes that may have been made to

the metadata. Although a situation involving a metadata change would be categorized

as a compromised database forensics dimension (Section 4.2), it is interesting to consider

how the database reconstruction algorithm and other techniques described in the thesis

till now can be applied in the reconstruction of the database schema.

This chapter considers how the actual schema of a database can be reconstructed after

the database has been compromised or some information have been lost or deleted.

The categories of changes that can be made to a database schema by an attacker are

described and typical examples are used to show that metadata changes can truly affect

136

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 8. RECONSTRUCTION OF A DATABASE SCHEMA

results obtained from queries executed on a database. Techniques for reconstructing

the schema are then discussed. Similar to the reconstruction of the data in a database

relation, the techniques described work by considering the operations performed on the

relations involved and applying the inverse operators of the relational algebra. Section 8.1

highlights the fact that a database schema can be compromised using typical examples

and Section 8.2 describes various techniques that can be used for schema reconstruction

in database forensics. This chapter is based on a previously published paper [4].

8.1 Compromising a Database Schema

In Section 4.2, the various dimensions that exist in database forensics have been de-

scribed. The category of compromised databases deals with databases where some of

the metadata of the DBMS have been modified, even though the database is still opera-

tional. This section describes some of the various ways in which a database schema can

be compromised and illustrate the fact that this causes a database to give false answers

to queries. The study presented in this section was done using Postgres 9.2 running on

a Windows 8 operating system.

There are several activities that can be carried out on a database schema to compromise

the database. Usually an attacker may compromise a database with the intention of

damaging the database so that it is not useful for the intended purpose or users. An

attacker may also compromise a database in an attempt to hide some data (stored

legitimately by a user or by the attacker) or to cover his tracks. In general, we can

categorize the activities that can be carried out by an attacker to achieve his objectives

into the following groups:

• Localized changes to data,

• Changes to blocks of data, and

• Changes to links between blocks of data.

137

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 8. RECONSTRUCTION OF A DATABASE SCHEMA

8.1.1 Localized Changes to Data

Within a database schema, an attacker may make changes to specific columns of a

relation. This may be done to hide the information contained in such columns or make

the data unavailable to the database user. In practice, there are several ways in which

this can be accomplished. A compromise such as simply swapping two columns can

have severe effects on the operation of a database [100]. A typical example is where the

“Purchase price” and the “Selling price” of a store’s database are swapped by tampering

with the schema. This obviously causes the store to sell their goods at a loss to the

store. Figure 8.1 shows a code segment that can be used to compromise a database by

swapping the column names through the schema. This swap causes a select statement

on one of the columns to return values from the second column.

update pg_attribute set attnum = ’5’ where attrelid = ’16432’

and attname = ’purchasePrice’;

update pg_attribute set attnum = ’2’ where attrelid = ’16432’

and attname = ’sellingPrice’;

update pg_attribute set attnum = ’3’ where attrelid = ’16432’

and attname = ’purchasePrice’;

Figure 8.1: Modifying Schema to Swap two Column Names.

A possible way of manipulating the database schema by changing specific values in

the schema in order to hide information is to change the identification of the attribute

(within the schema) to something unknown to the schema. Although the raw data may

still be present in the database, it becomes impossible to query the database for that

information. It is possible that information initially thought to have been deleted or non-

existent, turns out to be irretrievable because it now appears hidden from the DBMS

through a modification of the schema. Figure 8.2 shows the commands that can be

used to hide the attribute purchasePrice from the authorized users by changing the

identification used by the DBMS to access the column into a different one.

Details such as the data type of the attributes of a relation can also be modified by

138

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 8. RECONSTRUCTION OF A DATABASE SCHEMA

update pg_attribute set attnum = ’5’ where attrelid = ’24587’

and attname = ’purchasePrice’;

Figure 8.2: Modifying Schema to Hide a Column.

changing specific values in the schema. This information affects both the type of infor-

mation that can be inserted into a column and the information that will be retrieved

when the column is queried. Modifying an attribute’s data type in the schema causes

data (whether being inserted or retrieved) to be formatted according to the new data

type. The implication of this is that it may become impossible to comprehend previously

stored information due to changes in the data type. Figure 8.3 displays the command

that can be used to change the data type of a column to another recognized data type

in a database. An example of the original data and the result of a query executed after

modifying the data type in the schema are shown in figures 8.4(a) and 8.4(b), respectively.

update pg_attribute set atttypid = ’18’ where attrelid = ’16432’

and attname = ’firstName’

Figure 8.3: Modifying Schema to Change Attribute’s Datatype.

Depending on the DBMS, it is possible to compromise various parts of a database schema,

including the column names, data types, constraints and other details in the schema

by changing specific values in the schema. An attacker with an understanding of the

structure of a DBMS can execute a SQL query that affects the schema and the result

obtained from subsequent queries on the database.

8.1.2 Changes to Blocks of Data

Apart from changes to specific values, blocks of data such as complete tables or set

of columns can be modified through the schema of a database. A typical instance is

where an attacker changes similar column names in different tables to a different name

or changes the name of several tables to different names that are not understandable

139

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 8. RECONSTRUCTION OF A DATABASE SCHEMA

(a) Original Data (b) Retrieved Data after Schema Change

Figure 8.4: View of a Relation Before and After Data type Compromise in Schema.

to the user. For example, executing the code in figure 8.5, changes the name of all the

tables with names starting with letter s into a different name. As such, it becomes

impossible to retrieve the tables with the original name. In the same way as changing

the name of several blocks of data, blocks of data can also be removed or even combined

to compromise the database.

update pg_class set relname = ’s-unknown’||nextval(’serial’)

where relname in

select relname from pg_class where relnamespace=2200 and

reltype!=0 and relkind =’r’ and relname like ’s%’

Figure 8.5: Changes to Blocks of Data in Schema.

140

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 8. RECONSTRUCTION OF A DATABASE SCHEMA

8.1.3 Changes to Links Between Blocks of Data

Another category of changes that can be made to a database schema to compromise the

database involves changes that affect the links between data. This type of changes often

involves a modification of the foreign keys and/or the primary keys of the relations in

the database. It can involve a localized change of specific information in the schema or

changes to groups of data in the schema or a combination of both. A typical instance

is where an attacker modifies the constraint specified on a table (within the schema) by

removing the foreign key, so that it becomes impossible to link the information within

two different tables. It is also possible to modify the links such that a table is linked to

a wrong table. For example, executing the code in figure 8.6 causes a primary foreign

key to become a primary key in a table. The trigger controlling the constraint is also

modified. The effect of this is that values that do not have a corresponding value in the

referenced table can now be entered into table with the modified schema.

update pg constraint set contype = ’p’ where conname = ’DEPT FK’;

update pg trigger set tgtype = 17 where oid = 16460;

Figure 8.6: Changes to Link Between Blocks of Data in Schema.

Regardless of the category of changes that can be made by an attacker, an important

aspect of database forensics is the reconstruction of information. This requires that the

schema of a table can be reconstructed along with the data in the table. In the following

section, we describe techniques that can be used to reconstruct the schema by considering

operations that have previously been performed on the database.

8.2 Schema Reconstruction

In this section, we again explore the simplicity and mathematical nature of relational

algebra in the reconstruction of database schema. Section 8.2.1 describes how the schema

of a relation can be reconstructed by looking at the conditions associated with each of

the operators of the relational algebra. Section 8.2.2 investigates the application the

141

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 8. RECONSTRUCTION OF A DATABASE SCHEMA

concept of the inverse relational algebra previously used for the reconstruction of data

in a database for reconstructing schemas. Section 8.2.3 describes how the schema can be

reconstructed by checking the consistency of the information in the database.

8.2.1 Reconstruction from Previous Manipulations

As discussed in Section 3.4, database logs provide a rich source of information that

can be used for reconstruction in the forensic analysis of a database. Although, the

logs may be stored in different formats, translating the log into a relational algebra

log (RA log) offers several benefits described in Section 5.1 and allows an investigator to

exploit the characteristics of the relational algebra. Given a RA log, the attributes of the

operations performed on a relation can be used to determine the schema of the relation.

In addition, the operations performed on a database to compromise the schema can also

be represented in relational algebra notation since they are usually SQL operations.

Many of the operators of the relational algebra that require two operands have the char-

acteristics that the structures of the two operands are the same. The Union, Intersection

and Difference operators fall into this category. Given a query expressed in relational

algebra,

C ← A op B

where A,B and C are relations and op is a union (∪), intersection (∩) or difference

operation (−), the three relations have exactly the same structure. Thus, if the structure

of one of the relations is known, it can be used as the structure for any of the other two

relations and the data in the relation can be reconstructed [56, 53] based on this structure.

This is also true with the selection operator. Given select query, B ← σp(attr)(A), where

some tuples in A are selected as B given the condition expressed as p(attr), both relations

A and B have exactly the same structure. And the structure of one can be used for the

other during reconstruction of data or to infer the structure of other relations.

An interesting aspect of applying this approach to schema reconstruction deals with the

fact that it makes it possible to combine different operations and analyze what the likely

142

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 8. RECONSTRUCTION OF A DATABASE SCHEMA

schema for the resulting relation would be.

8.2.2 Reconstruction Using Inverse Relational Algebra

A more formalized approach to reconstructing the schema of a relation is to apply the

database reconstruction algorithm earlier described. Since a major part of the algorithm

is based on the inverse relational algebra, we describe how the inverse operators of the

relational algebra can be used for schema reconstruction.

Transposing Schemas into Relations

Since the inverse operators of the relational algebra require a relation as their operand, it

is necessary that the schema of a relation can also be expressed as a relation in order to

use the inverse operators in schema reconstruction. Many DBMSs provide the ability to

retrieve the structure of a relation on the database as a table. In Postgres for example,

the command shown in figure 8.7 can be used to retrieve the structure of a relation into a

table where each attribute of the relation becomes a tuple in the retrieved table. Figure

8.8 shows a typical result of the application of this command.

select ordinal_position, column_name, data_type, is_nullable,

descrip.description AS comment

from information_schema.columns columns

left join pg_class class on (columns.table_name = class.relname)

left join pg_description descrip on (class.oid = descrip.objoid)

left join pg_attribute attrib on (class.oid = attrib.attrelid

and columns.column_name = attrib.attname

and attrib.attnum = descrip.objsubid)

where table_name= ’actor’ /* The table name*/

group by ordinal_position, column_name, data_type,

is_nullable, table_schema, descrip.description;

Figure 8.7: Retrieving Schema as a Table.

As a consequence of retrieving the schema of a relation as another relation, we also

need to find the transpose of the operations performed on the original relations so that

the transposed operation can be applied to the retrieved schemas and used for schema

143

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 8. RECONSTRUCTION OF A DATABASE SCHEMA

Figure 8.8: Typical Schema Retrieved as a Table.

reconstruction. Below, we consider each of the relational algebra operators and identify

the operation that can be considered as a transposition of each operation.

• Cartesian product (×): Given a query T ← R × S, we know that the resulting

Relation T has all the attributes of both R and S. That is, if we can retrieve the

schema of both relations R and S, then the schema of T would be the union of

both schemas. Thus, the transpose of a Cartesian product operation is a union

operation.

• Union (∪): Given a query T ← R ∪ S, the schema of T is the same as that of R

and S. If the schema of each of the operands could be retrieved, then the schema

of T would be an intersection of the two schemas. Thus, the transpose of a union

operation is an intersection operation1.

• Intersection (∩): Based on the same reason as for the union operation, the trans-

pose of an intersection operation, T ← R ∩ S, is also an intersection operation.

• Difference (−): In a difference operation expressed as the query, T ← R − S, we

know that the schema of T is the same as that of R and S. Similar to the union

and intersection operation, the transpose of a difference operation is an intersection

operation.

• Join (✶): A join operation can be compared to a Cartesian product, except for the

fact that a join is performed under certain specified condition and as such may not

include all the tuples that might be in a Cartesian product. However, this has no

effect on the attributes of the operands or the resulting relation. As such, given a

1The transpose of Union, Intersection and Difference operations may also be considered as a Union

operation.

144

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 8. RECONSTRUCTION OF A DATABASE SCHEMA

join query, T ← R ✶p(A,B) S, Relation T has all the attributes of both R and S.

Thus, if we can retrieve the schema of both R and S, then the schema of T would

be the union of both schemas. This implies that the transpose of a join operation

is a union operation.

• Projection (π): A projection operation selects some of the attributes of a relation

as another relation. Given a query, T ← πA1,A2,A3
(R), the attributes of T is a

subset of that of R. Thus, the transpose of the projection operation is a selection

operation.

• Selection (σ): The output of a selection operation, T ← σp(A)(R), has exactly the

same set of attributes as that of the operand, since a selection only affects the

tuples of a relation. Thus, the transpose of a selection operation is a selection

(without any conditions) of all the tuples in the schema of the operand.

• Division (/): Given a query, T ← R[A,B/C]S, where a Relation R is divided by

an attribute C of the Relation S, we know that the attribute of T will include all

the attributes of A except the attribute (also in S) that was used in the division.

That is, if the schema of the two relations R and S are known, then the schema

of T would be the schema of R minus the schema of S. Thus, the transpose of a

divide operation is a difference operation.

Operators Transposed Operators

Cartesian product (×) Union (∪)

Union (∪) Intersection (∩)

Intersection (∩) Intersection (∩)

Difference (−) Intersection (∩)

Join (✶) Union (∪)

Projection (π) Selection (σ)

Selection (σ) Selection (σ)

Division (/) Difference (−)

Table 8.1: Transpose of the Relational Algebra Operators.

Table 8.1 gives a summary of the transposed operations that can be applied in the

reconstruction of a schema. As mentioned in the definition of the inverse operators of

145

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 8. RECONSTRUCTION OF A DATABASE SCHEMA

the relational algebra, the objective of the inverse operators is to find the value of a

particular attribute of a relation at a specific time t by finding the inverse of the most

recent query performed on the current relation and sequentially going backwards until

the desired time is reached. The same technique can be applied in schema reconstruction,

with the addition that the transposed operations are used to handle the schemas involved

in any of the relational algebra operations. Below, we consider the application of the

inverse relational algebra in conjunction with the transposed operations and show that

the inverse operators can also be used for schema reconstruction in database forensics.

Applying the Inverse RA and Transpose Operators for Reconstruction

This section describes how the transposed operators can be used together with the inverse

functions defined for the operator in order to reconstruct table schemas. From table 8.1,

there are four relational algebra operators that we need to consider: The union (∪),

Intersection (∩), Selection (σ) and Difference (−) operators since the relational algebra

operators can be transposed as one of them.

As discussed in Section 5.2, the inverse of a union operation T ← R ∪ S can only be

determined if one of the expected outputs (that is R or S) is known. If Relation S is

known, then ∪−1(T ) = (R∗, S) where R∗ = T − S. On the other hand, if R is known,

then ∪−1(T ) = (R, S∗) where S∗ = T −R. A complete inverse union is found only when

both R and S have no tuples in common [56, 53]. Since the transpose of the Cartesian

product and the join operators is a union operation, this definition can be applied in

the reconstruction of the schemas of relations involved in either operations. Given an

operation C ← A op B, where op is a Cartesian product or a join operator, if the

schema of C can be retrieved as Relation T , then the schema of A can be reconstructed

using the inverse union operator, provided that the schema of B is known, or vice versa.

As an example, if the schema of Relation C (SC) and Relation B (SB) are retrieved using

the code in figure 8.7 and stored as the tables in figure 8.9, then we can reconstruct the

schema of Relation A as (SC − SB), which yields the result in figure 8.10.

146

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 8. RECONSTRUCTION OF A DATABASE SCHEMA

ordinal position column name data type

integer character varying character varying

1 id integer

2 lastname character varying

3 firstname character varying

4 lastupdate timestamp

5 emp id integer

6 dept character varying

7 address character varying

(a) Schema of Relation C (SC)

ordinal position column name data type

integer character varying character varying

1 id integer

2 lastname character varying

3 firstname character varying

4 lastupdate timestamp

(b) Schema of Relation B (SB)

Figure 8.9: Retrieved Schemas of Relations C and Relation B.

ordinal position column name data type

integer character varying character varying

5 emp id integer

6 dept character varying

7 address character varying

(a) Reconstructed Schema of Relation A (SA)

emp id dept address

...
...

...
.
..

.

..
.
..

(b) Structure of Relation A

Figure 8.10: Reconstructed Schema of Relation A Using Inverse Union Operation.

Also from Section 5.2, the inverse of an intersection operation T ← R ∩ S, generates

partial tuples inverses containing all the tuples in T , that is, ∩−1(T ) = (R∗, S∗) where

R∗ = S∗ = T . Complete inverses can be found when R and S are known to be the

same [56, 53]. The inverse intersection operator can be applied for the reconstruction

of the schemas of relations involved in a union, intersection or difference operation since

their transpose is an intersection operation. That is, given an operation C ← A op B,

where op is a union, intersection or difference operator, if the schema of C can be

retrieved as a Relation T , then the schema of A and B can be reconstructed using the

definition of the inverse intersection operator. A unifying characteristic of the union,

intersection, and difference operators is that their operands must have the same schema.

Thus, if the schema of Relation C (or that of A or B) is retrieved as a table, then we

can completely reconstruct the schema of the other relations by applying the inverse

147

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 8. RECONSTRUCTION OF A DATABASE SCHEMA

intersection operator.

Given a selection operationR← σp(A)(S), the inverse selection is given by, σ−1
p(A)(R) = S∗,

where S∗ = R. That is, all the tuples in R are also in S. The inverse selection yields

a complete inverse if all the tuples in the operand of the selection operator (that is, S)

satisfied the condition specified as p(A) (Section 5.2). The inverse selection operation can

be applied in the reconstruction of the schemas of relations involved in a projection or a

selection operation since the transpose of both operations is a selection operation. That

is, given a projection operation C ← πA1,A2
(B) or a selection operation C ← σp(A)(B),

if the schema of Relation C is known (say SC), then the schema of B contains all the

tuples in SC . In the case of a projection operation the reconstructed schema may be

incomplete since a projection is usually a selection of some columns of the operand. In

the case of a selection operation, the reconstructed schema is complete since a selection

picks some of the tuples of its operand with all their attributes.

The inverse difference operation can be applied for the reconstruction of the schema of

the operands of a division operation since its transpose is a difference operation. Given

a difference operation T ← R − S, the left operand is easily determined by the inverse

difference operator as R∗ = T since T ⊆ R. A complete R can be determined only if the

Relation S is known and all the tuples in S are also known to be in R (that is, S ⊆ R)

so that R = T ∪ S. The Relation S∗ with partial tuples can also be determined if R is

known, in which case, S∗ = R − T . If we know that S ⊆ R, then a complete Relation

S is found from the inverse as S = R − T [56, 53]. This implies that if the schema

of C (SC) in the divide operation C = A/B is known, then we know that the schema

of A contains all the tuples in SC . The schema may be incomplete since the Relation

A may contain other attributes that were not included in the divide operation. The

reconstructed schema for A is given by SC ∪ SB and is complete if we know the schema

of B (SB) and also know that all the columns in B are also in A. On the other hand,

the schema of Relation B can be reconstructed as SA − SC if the schema of A (SA) is

known. Also if all the columns in B are also in A, then the reconstructed schema for

148

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 8. RECONSTRUCTION OF A DATABASE SCHEMA

Relation B is complete.

Although reconstructed schemas are generated as a table, the structure of the corre-

sponding table is simply a matter of transposing the reconstructed schema so that tuples

in the reconstructed table becomes the columns of the required relation. The tech-

nique described above can be applied to sequence of operations in order to arrive at the

particular relation whose schema is required. This is equivalent to working with the re-

construction algorithm described in Chapter 5 and using the transposed operations and

the schemas expressed as tables instead of the actual operators and operands involved

in an operation.

8.2.3 Reconstruction Through Consistencies

Another approach that can be used for the reconstruction of a database schema in-

volves checking the consistency of the information contained in the database. Typically,

a DBMS provides the ability to represent complex relationships between data. The

descriptions of these relationships are stored in the schema and imply that certain con-

ditions hold between related data. An understanding of the conditions expected to hold

in any relationship can be used to identify instances that fail to satisfy these conditions

and this may point to actions performed by an attacker.

This approach is particularly useful for the reconstruction of the constraints associated

with a relation. For example, if there is a referential integrity constraint [51] from a

Relation R to a Relation S, then the attributes concerned in both relations are expected

to be of the same data type. This knowledge can be used to determine the data type of

the attribute involved if either of the schemas of R or S needs to be reconstructed. The

referential integrity constraint also points to the fact that the referenced column is the

primary key of one of the two relations. Another example of the application of database

consistencies for reconstruction is the application of the entity integrity constraint [51],

which specified that no primary key value can be a NULL value. This shows that an

attribute that can take a null value is not the primary key of the relation whose schema

149

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 8. RECONSTRUCTION OF A DATABASE SCHEMA

is to be reconstructed and vice versa.

A combination of the different constraints that can be specified on a database as well

as the characteristics of various attributes may also be useful for identifying the char-

acteristics relating to the schema of a relation. We note that even though it may be

possible to retrieve some of the constraints in a schema using the two techniques earlier

described, it may be necessary to use an additional techniques such as checking for the

data consistencies in reconstructing the constraints relating to a relation.

8.3 Summary

In addition to reconstructing the data in the relations of a database, it may also be

required to reconstruct the schema of the relation as well. This is mainly because the

information retrieved from a database query is dependent on both the raw data contained

in the database and the metadata of the database. This chapter builds on the database

reconstruction algorithm earlier presented for the reconstruction of data by describing

techniques that can be used in conjunction with the algorithm for reconstructing the

schema of a database. This is particularly useful in the investigation of compromised

database where the metadata might have been modified even though the database is

still operational. The chapter discusses the different categories of changes that can be

made to a database schema and then describes how the schema can be reconstructed

either by considering the operations previously performed on the relation concerned or

by using the inverse operator of the relational algebra and the reconstruction algorithm

described in Chapter 5. The technique of reconstruction through the consistency of the

information retrieved from the database with the information expected to be present on

the database is also described.

The main assumption in this thesis is that log files that provide information about the

operations or manipulations carried out of a database are available. Although logs are

maintained by most database systems, it is possible that the information required for

a forensic analysis or to use some of the techniques described in this thesis may not be

150

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 8. RECONSTRUCTION OF A DATABASE SCHEMA

available in certain cases. In the following chapter, database log settings (or preferences)

are explored in conjunction with the information required for a forensic analysis of a

database system and some recommendations about the logging preferences required for

an analysis are made.

151

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 9

Effectiveness of Database logs in

Reconstruction

“When I applied my heart to know wisdom and to see the business that is done

on earth, even though one sees no sleep day or night, then I saw all the work of

God, that a man cannot find out the work that is done under the sun.”

Ecclesiastes 8:16, 17

Similar to most of the work done in this thesis, many of the research that have been

done in database forensics explore the volumes of relational, functional and temporal

information (Section 2.4.4) available in a database log file in describing techniques that

can be used for database forensics analysis. For example, Litchfield [84, 85] explored

how the redo logs in Oracle can be used for locating dropped objects and recovering

data in an Oracle database. Fowler [59] describes how the transaction log in SQL Server

database can be used to reconstruct data manipulation operations performed on the

database. Frühwirt et al. [60, 61] explored the use of the redo logs in InnoDB for

the reconstruction of data manipulation queries previously performed on the database.

Although many databases maintain logs that are used for recovery from failures, and

it can sometimes be assumed that the information required for a forensic analysis of

a database is available in the logs, logging preferences set on a database system can

usurp these facts. This is because, in practice, most DBMSs allow different levels of

logging, including a default logging preference. Unfortunately, some of these logging

preferences and usually the default logging preference may not be adequate for database

152

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 9. EFFECTIVENESS OF DATABASE LOGS IN RECONSTRUCTION

forensics analysis or reconstruction should the need to investigate the database arise.

This is due to the fact that the logging preferences selected on a database affect the

volume and relevance of the information that may be available in its log during a forensic

investigation. For example, the technique used in handling log rotation or what should

be done when a log becomes full depends on the logging preferences and this affects how

much of past information is available during an investigation.

Another important issue about the use of log files for database forensics reconstruction,

is that the use of log files for analysis seems to be a unifying factor for the various

dimensions of database forensics discussed in Section 4.2. However, since the challenges

faced in the investigation of the different dimensions and with the use of logs in each

dimension differ, the logging preferences required in each dimension of database forensics

may also differ from one another.

Since most of the techniques discussed in this thesis relate to the use of database log

files for database forensics analysis and reconstruction, this chapter is dedicated to ex-

ploring the default logging preferences in database systems and how these preferences

affect the information needed during a database forensics investigation. This is done by

considering six of the popular DBMSs namely: MySQL, Microsoft SQL Server, Postgres,

Oracle, DB2, and Sybase. The objective of the chapter is to highlight the information

that are important for reconstruction and the appropriate logging preferences that will

enhance reconstruction in the selected databases. In addition, the identified informa-

tion requirements and logging preferences are considered in relation to each dimension

of database reconstruction and the specific requirements necessary to ensure an effec-

tive forensics analysis and reconstruction in each of the dimensions are discussed. The

chapter is based on a published paper [3].

9.1 Default Log

In this section, we consider six of the popular databases and describe their default logging

preferences. Although the default preferences are often the same in different versions of

153

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 9. EFFECTIVENESS OF DATABASE LOGS IN RECONSTRUCTION

many of the database systems considered, the specific versions of the systems studied

are MySQL 5.6, SQL Server 2008 and 2012, Postgres 9.2, Oracle 11g release 1 (11.1),

DB2 10.1, and SybaseIQ 15.1. In addition, we describe only the logs that are considered

most useful for forensic analysis in many of the systems. The effect of the default logging

preference on the information that may be available for a forensic investigation of the

database thereafter are also discussed in this section.

9.1.1 MySQL

MySQL is an open source relational database management system. The database soft-

ware works as a client/server or embedded system with a multi-thread SQL server that

supports various backends, client programs, administrative and other tasks. MySQL

server is the main program in the DBMS that manages access to the data directory con-

taining the databases, tables, and other information such as the log files [105]. MySQL

server has five different log files, namely the error log, general query log, binary log, slow

query log and the relay log. These logs store information about the activities taking

place in the database.

The error log is used to store information about problems encountered when starting,

running or stopping a MySQL server. Error logging is enabled by default on a MySQL

database. The general query log is used to store information about the client connections

that are established and SQL statements or queries received from the client. Queries

written to this log are in the order in which they are received and this may be different

from the order of their execution. All queries including statements that are only used

to select or show data are stored when the general query log is enabled. In addition

to enabling the log, the destination of the log file also needs to be set in order for the

server to write queries received to the log file. However, the general query log is disabled

by default. The slow query log is used to store queries that take more than a specified

amount of time to execute (the default time is set as 10 microseconds). Similar to the

general query log, statements are written to the slow query log file after their execution

154

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 9. EFFECTIVENESS OF DATABASE LOGS IN RECONSTRUCTION

and before the release of any locks on the database. Thus, the order of the log entries

may be different from the order in which the queries are executed. The slow query log

is disabled by default.

The binary log is used to store statements that change the data on a MySQL database.

For example, it stores table creation operations and operations that change table data.

The binary log also contains information about the duration of the queries that update

data. Unlike the general query log, it does not store queries that do not modify data.

Also, statements are logged after they are completed but before the database locks are

released. Thus, the order of the statements in the binary log is the same as the order

of execution. The format of the statements stored in the binary log is dependent on

the logging format enabled (row-based, statement-based or mixed base logging) on the

database [105]. The binary log is disabled by default. Although enabling the binary log

on MySQL database makes performance slightly slower, it is important for two major

purposes:

• replication of data changes on slaves,

• and recovery of the current instance of a database from previous backup point

[105].

The Relay log is used to store data changes received from a replication server master

[105]. It also stores statements that describe database changes and has the same format

as the binary log file. The relay logs are automatically deleted once all the events in the

file have been executed and it is no longer needed. The relay log is not enabled in the

default setting of the server.

Quite a large volume of information can be collected from MySQL server logs for an

investigation, if the logs are enabled. Unfortunately, the default logging preference on

MySQL disables all the logs except for the error log (in the Windows operating sys-

tem).In the event that the forensics analysis of a MySQL server is required, the error

log contains virtually no information that can be useful for reconstruction or forensic

155

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 9. EFFECTIVENESS OF DATABASE LOGS IN RECONSTRUCTION

investigation of the database in general. It is important that a logging preference that is

suitable for database forensics be enabled by the user or administrator. In Section 9.2,

we describe a possible logging preference that allows an effective forensics analysis and

the reconstruction of data on a MySQL database.

9.1.2 Microsoft SQL Server

The Microsoft SQL Server (henceforth referred to as SQL Server) is another relational

database management system. A SQL Server installation contains a set of system

databases as well as the user databases that are created as needed [115]. There are

four default system databases that play distinctive roles in the operation of the SQL

server database: the master database, the model database, the Tempdb and the MSDB

database.

• Master: this is the heart of SQL Server. It contains information about logins,

system configuration settings and data relating to other databases.

• Model: this is a database template that is used for all newly created databases on

SQL Server.

• Tempdb: this is a database that is used as a preliminary storage for complex

operations, intermediate results, temporary objects and stored procedures. The

database is overwritten only at restart.

• MSDB: this holds a wide range of information about the database, including

database backups.

The user databases are created for data storage and manipulation by the user. Similar to

the system databases, a user database consists of two types of operating system files: the

data files and the log files. The data files are used to store database objects such as tables

and procedures while the log files keep record of the events that occur on the database.

There are four main types of logs1 that are available on the SQL Server database: the

1Other log files in Microsoft SQL Server include the SQL Server setup log and the SQL Server profiler

log [106].

156

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 9. EFFECTIVENESS OF DATABASE LOGS IN RECONSTRUCTION

Windows event log, SQL Server agent log, SQL Server error log and the transaction log.

The Windows event log contains three useful logs that can be used for troubleshooting

SQL Server errors; the application log which stores events that take place in the SQL

Server and the SQL Server agent), the security log that stores authentication information,

and the system log which stores service startup and shutdown information. The SQL

Server agent log keeps record of any information, warning and error messages concerning

the SQL Server agent and its operations. A new SQL Server agent log is created with a

time stamp each time the server is started [106]. The SQL Server error log works in the

same way as the SQL Server agent log and is used to store information about errors that

occur during the database operations. For example, if a procedure refuses to startup.

The transaction log is arguably the most important log file and a critical component

of a SQL Server database because it keeps a record of all data modification queries

executed on the database in the order in which they occur. The database ensures that

data is written to the transaction log files before they are effected on the database,

thus transaction logs are useful for recovery from failed transactions and retrieval of a

consistent version of the database in the event that the system crashes.

One advantage of the SQL Server is that, every database has a transaction log and logging

is enabled by default. The size of the transaction log is also determined dynamically by

the server and log truncation automatically occurs after certain events [95]. Looking

at the volume of information stored in the different log files and the system databases,

it is possible that data stored in a SQL Server can be reconstructed during its forensic

investigation provided that the structure of the logs are understood. However, it might

be an added advantage in some cases, if the system administrator can specify the size of

the transaction log.

157

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 9. EFFECTIVENESS OF DATABASE LOGS IN RECONSTRUCTION

9.1.3 PostgreSQL

PostgreSQL (or Postgres) is an open source object-relational database management sys-

tem that was derived from the POSTGRES package written at the University of Cali-

fornia at Berkeley [131]. Postgres uses two main types of logs2 both of which are helpful

for forensics analysis. These are;

• Write-ahead logging (WAL) or transaction log, and

• Server log.

Write ahead logging (WAL) is a standard method in Postgres used specifically for main-

taining data integrity. The WAL log is used to store changes that occur in data files

before the changes are made on the data. This allows the recovery of a database from

the WAL log in the event of a failure by retrieving changes that have not been applied

to the data pages from the WAL log records.

WAL uses several configuration parameters that affect the volume of the information

stored in the log, and as such the performance of the database [131]. One of the pa-

rameters of the WAL configuration is the wal level. The wal level parameter determines

how much information is written to the WAL log and can be set either to minimal,

archive or hot standby at server startup. The archive setting allows the logging of in-

formation needed to recover from a crash and enables the archiving of the WAL logs.

The hot standby setting allows the storage of additional information that are required

to reconstruct the status of running transactions in the WAL log and also allows logs to

be archived. The minimal setting keeps only the information required to recover from a

crash or immediate shutdown. It avoids the logging of bulk operations, in order to make

the operations faster. The default wal level setting on Postgres is the minimal setting.

Unfortunately, the minimal setting of WAL does not contain enough information that

can be useful for reconstructing data from the WAL logs or from the backups [131].

2Other log files in PostgreSQL include the event log and the server log [131].

158

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 9. EFFECTIVENESS OF DATABASE LOGS IN RECONSTRUCTION

The server log in Postgres is used mainly for error reporting, server messages, and logging

of executed SQL statements. There are various parameters that determine what the

database logs and when it logs in the server log. Some of the parameters that affect the

volume of information that may be available in the server log for forensic investigations

include the following [131]:

1. log min messages : this parameter controls the level of messages that are written

to the Postgres server log. The possible settings are PANIC, FATAL, LOG, ER-

ROR, WARNING, NOTICE, INFO, DEBUG1, DEBUG2, DEBUG3, DEBUG4,

and DEBUG5. Every level logs all the information contained in the preceding level

together with other additional information. The default setting is NOTICE.

2. log min error statement : this parameter determines which SQL statements that

generate an error condition will be included in the server log. The possible settings

are the same as for the log min messages parameter and the default setting is

ERROR, which means that only statements causing errors, fatal errors or panics

will be logged.

3. log statement : this parameter allows the specification of which SQL statements are

logged regardless of whether or not an error occurs. The possible setting include

none (no statement is logged), ddl (data definition queries are logged) and mod

(all data definition and data modification queries are logged). The default setting

is none, which implies that it is impossible to find queries executed in a Postgres

database using a default log setting should a forensics analysis be required.

9.1.4 Oracle

The Oracle database is a relational database management system that includes some as-

pects of other paradigms such as hierarchical and object oriented models [104]. Although

evidence can be collected from various sources in an Oracle database, for example, from

the listener logs, alert logs, sqlnet logs, intelligent agent logs, and access logs [140], there

are three major logs in Oracle that are of utmost importance for reconstruction in a

159

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 9. EFFECTIVENESS OF DATABASE LOGS IN RECONSTRUCTION

forensic analysis of the database; the redo logs, the archived redo logs and the alert logs.

The redo log in Oracle is the most important part of Oracle when it comes to recovery

or forensics analysis. Every instance of an Oracle database has a redo log that serves

as a protection of the database against failure. The log consists of two or more log files

that are used to store all the changes made to the database as they occur. Records in

the log files describe changes made to single blocks in the database. The data stored in

the files can be used to identify all the changes made to the database as well as the undo

segments [104]. The redo log is enabled by default on the Oracle database.

Groups of redo log files can be saved to offline locations by using the archived redo logs.

The archived redo logs allow the recovery of a database in the event of a crash or disk

failure. It also allow the updating of a standby database, and provide information about

the history of a database when using the LogMiner utility in Oracle. There are two

modes that can be activated to instruct the database whether or not to archive the redo

logs:

1. NOARCHIVELOG: this mode disables the archiving of redo logs. Although this

mode protects a database from instance failures, it does not allow the recovery of

a database in the event of a system failure.

2. ARCHIVELOG: this mode enables the archiving of the logs and can be done man-

ually or automatically.

The archiving mode is usually selected at the time of creation a database and is by

default set to NOARCHIVELOG.

Alert logs and trace files are used to keep record of errors that occur in an Oracle

database. The alert log keeps a chronological record of messages and errors involving

data definition queries, administrative operation statements, errors relating to functions

of shared servers and processes, and errors with values of initialization parameters that

are different from the default values. Background processes write to a trace file when

an internal error is detected by the process. The information written to a trace file may

160

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 9. EFFECTIVENESS OF DATABASE LOGS IN RECONSTRUCTION

be used by an administrator to tune applications and instances of the database. The

default setting for trace files is the trace level 0, which disables archive log tracing.

9.1.5 DB2

IBM DB2 is a relational database management system that uses two main types of logs3

in its operations:

• the database recovery log (or transaction log) and

• the diagnostic information log.

The database recovery log keeps record of all the changes made to the database, including

created tables and updates on existing tables. It is useful for ensuring that the database

can be recovered from a failure and that the database is in a consistent state [72]. In

the event of a failure, the changes already made to the database but which are not yet

committed are rolled back while the committed transactions that have not been written

to disk are written by using the information available in the recovery logs, in order to

preserve the integrity of the database [72]. The logging option can be set either as

circular logging (which does not allocate more space for a log file when it becomes full,

but overwrites the same file provided that the records in the file have been committed)

or infinite logging (where full log files are not overwritten but are closed, and archived).

The diagnostic information log files consist of various log files that can be used to trou-

bleshoot and diagnose errors and causes of errors in a DB2 database. The diagnostic

information log files include dump files, trap files, administration notification log files and

alert log files. These files are stored in a single directory and can be sorted or merged

based on the date and time stamps included in the files. There are various parameters

that can be used to control how much information is logged and how the log files are

3In Linux, UNIX and Windows operating systems, DB2 also offers error logs that are specific to each

platform.

161

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 9. EFFECTIVENESS OF DATABASE LOGS IN RECONSTRUCTION

handled in DB2. Many of the default settings are already the best choices for recon-

struction. However, we highlight some parameters of the default settings that may not

be beneficial for reconstruction during a forensic investigation below:

1. log ddl stmts : this parameter is used to specify whether or not extra information

regarding data definition statements should be written to the log. The default

setting is NO, which implies that such statements are not logged.

2. logarchmeth1 : this parameter is used to specify the log archiving method that will

be used in the database. The possible settings include OFF and LOGRETAIN. The

default setting is OFF which implies that logs are not archived and the database

uses circular logging. Thus full logs are overwritten and the database is not roll-

forward recoverable [72].

3. logfilsiz : this parameter is used to define the size of the log file. The possible range

is from 4 to 1048572 (in kb) and the default is 1000.

9.1.6 Sybase

Sybase IQ (or Sybase) database is a relational database with a fundamental difference

in that it focuses on the readers and not writers. That is, it is aimed at providing fast

responses to queries from many users [128]. The two logs in the Sybase DBMS are the

transaction log and the message log.

Sybase automatically handles the creation and deletion of its transaction log and the

database server always requires a transaction log in order to run. A transaction log

mirror (duplicate) is also maintained by the database. Although it is not required, the

mirror provides an alternative source of information and may be useful in places where

regular backups are not maintained [128]. The transaction log stores changes made to

the database including, version information, free spaces and other information that may

be useful for recovery and auditing of the database. Over time, the size of the transaction

log may grow very large and it may be necessary to truncate the log. The method used

to truncate the log is a decision made by the administrator, but can be done either by

162

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 9. EFFECTIVENESS OF DATABASE LOGS IN RECONSTRUCTION

stopping the database and making a copy of the log or by using the backup utility in

Sybase.

A message log is created for every newly created database in Sybase. By default, Sybase

logs error messages, status messages, insertion notification messages, and query plans

in the message log file. The message log file grows to an unlimited size by the default

setting and exists until the database is dropped. Archiving is not enabled by default in

Sybase.

9.1.7 Summary of Default Log Settings

From the survey of the information logged by default in the popular databases described

in Section 9.1.1 through Section 9.1.6, it is evident that the default logging configuration

in many DBMSs does not generate logs containing enough information for a database

forensics analysis and reconstruction. Some of the issues with the default logging con-

figurations are summarized below.

• Not all the available logs on a DBMS are usually enabled by default. For example,

among the six DBMS considered, only one DBMS (SQL Server) has all its logs

enabled by default.

• In cases where some logs are enabled, the most valuable log (in terms of data

used for forensic analysis) is sometimes excluded in the default configuration. For

example, only the error log is enabled by default in MySQL, even though the other

logs may contain more valuable data for reconstruction if they were enabled.

• The level of logging selected by default on many DBMS allows the storage of only

a minimal amount of data specifically for crash recovery, or the log size is set to

a default value as is the case with the SQL Server, Postgres and DB2 database

systems.

• Although many DBMS support the archiving of logs or the use of an online storage,

the default logging preference on most systems does not support the archiving of

163

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 9. EFFECTIVENESS OF DATABASE LOGS IN RECONSTRUCTION

logs and the logs are usually overwritten.

These issues reflect the need to specify the ideal log settings or the log data that are

required for database logs to be effective for analysis and reconstruction in database

forensics.

9.2 Ideal Log Settings

In this section, the information required in a database log file in order for it to be useful

for reconstruction during a forensic analysis of the database are identified. A general

view of the required set of information is given since the content of the log files in different

databases differ and the settings on different databases are unique in most cases. The set

of required information may be regarded as the ideal log requirements for reconstruction

in database forensics. We also consider the identified requirements in relation to the

operations of the databases discussed in Section 9.1 and determine the log settings and

preferences that should be enabled in the databases in order to satisfy the requirements.

It is important to note that the definition of an ideal log requirement does not imply

that database log files that do not meet the requirements should not be included in the

data collected for a forensic analysis. Although it may be more difficult to reconstruct

information using log files that do not store all the information identified, the information

available in such logs may still be useful and there may be additional techniques that

can be employed for the forensics analysis of the databases.

9.2.1 Ideal Log Requirement for Database Forensics Recon-

struction

In many databases, there is a trade-off between the performance of the database and the

volume of information that can be stored in the log files used for recovery or for ensuring

the consistency of the database in the event of a failure or other incidents. Unfortunately,

the log files are often the richest source of information during the forensics analysis of

a database. Ensuring that adequate logs are available on a DBMS serves as part of

164

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 9. EFFECTIVENESS OF DATABASE LOGS IN RECONSTRUCTION

a forensic readiness plan [8, 117] for future incidents that may involve the database.

As such, it is important to ensure that vital information that can be used during the

forensic analysis of a database exists in its log files, particularly in the transaction logs

(or its equivalent) of the database. Other log files, such as the error logs and server logs

should also contain as much information as possible that may be useful in the event of

an incident.

The required information that should be stored in a database log can be determined by

considering the objective of a database forensic analysis. According to the frameworks for

digital forensic investigation process that have been developed by various researchers [11,

22, 74], the objective of the reconstruction phase of a digital forensic analysis is to draw

conclusions from various pieces of information and provide answers to the what?, who?,

when?, where?, why? and how? questions. Ieong [74] describes the FORZA framework

which gives a technical overview of various roles in an investigation and how they are

interrelated through these questions. In order to identify the set of information required

for database forensics reconstruction, we also consider these questions and highlight four

aspects that are usually of interest in database forensic analysis based on the questions.

These aspects are described below:

• Identifying changes made to a database: this aspect corresponds to the what? ques-

tion of the reconstruction process and involves the recognition of the information

required to achieve this objective.

• Identifying who may be responsible for the changes: this aspect of database foren-

sics deals with the who? and where? questions together with the recognition of

the information necessary to achieve this objective.

• Confirming what we expect to see in the database: this aspect corresponds to the

why? and how? questions of the reconstruction process. Information about why

a database (or piece of information) is the way it is on the database and how this

might have happened assists in confirming the information in the database.

• Determining the timeline of events on the database: the when? question of the

165

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 9. EFFECTIVENESS OF DATABASE LOGS IN RECONSTRUCTION

reconstruction process is handled in this category. Information about when an

event occurred in a database is required to determine a timeline of events that

occurred in the database.

As mentioned earlier, much of the previous work in describing the process of recon-

struction or the forensics analysis of a database assume that the required information

is available in the log files. Unfortunately, this is not always the case. In Section 9.1,

some of the popular DBMS have been discussed and various default settings that do not

allow a database to store the required information was highlighted. In order to deter-

mine the logging preferences or settings that would allow an effective database forensics

reconstruction to take place in a database, we identify the information that should be

stored in a database log by considering each of the aspects described above.

Identifying Changes made to a Database

Identifying the changes made to a database is arguably the most important aspect of a

database forensic analysis. The reconstruction phase of database forensics relies mainly

on the ability to identify what was done to the database. In order to identify changes to

a database, the database log should contain the information below.

Data modification queries: The fact that many of the work that has been done

on the forensic analysis of a database [84, 85, 60, 61, 59, 56, 53] rely on the log

of queries that was executed on a database reflects its importance in database

forensics. Since a database is typically usually modified by executing a query,

information about queries that modify the data in a database should always be

logged. While it is true that quite a number of databases maintain a transaction

log, the volume of data stored is often minimal with the default setting. Logs of

data modification queries should contain all the information needed to be able to

reconstruct such queries. This is particularly useful for an investigator when there

are no backups or when a value of interest occurred in between two backups during

an investigation. In such a case, the inverse of the queries performed may be found

166

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 9. EFFECTIVENESS OF DATABASE LOGS IN RECONSTRUCTION

in order to reconstruct data in these cases [56, 53]. The information needed to

maintain the consistency of a database and perform recovery should also be stored

in the appropriate log files on a database.

Data definition queries: Unlike data modification queries, most databases do not

keep record of data definition queries by default. This information is of utmost

importance when reconstructing data because it gives an insight into what tables

should or should not be present in a database and why. This functionality should be

enabled by an administrator and information about the time of execution, the user

who issued the query, and other details of data definition queries such as CREATE,

ALTER, DROP, RENAME, TRUNCATE should be included in a log file. Details

of unsuccessful queries in this case should also be included in the error logs. This

information is also required in confirming the consistency of the information on the

database with what is expected to be in the database.

Metadata changes: As mentioned earlier, queries executed on a database may give

a false result due to changes made to the metadata, making it difficult for an in-

vestigator to comprehend some of the changes that might have been made to a

database. Since the output from a database is dependent on the data stored in

it and the metadata describing the data, it is possible to get incorrect informa-

tion from queries if the metadata has been tampered with. As such, the changes

made to a database metadata or other database files should be logged regardless

of whether or not the changes were carried out by the administrator, a program

or a malicious user. The logging of metadata changes will enable an investigator

to get information about the previous state of the metadata, especially where a

database rootkit is involved. In a paper by Beyers et al. [13], the authors describe

techniques for obtaining a clean investigation environment of a database where one

or more layers of the database metadata have been compromised. The logging of

metadata changes in a database log file will also be a useful approach in identifying

changes and obtaining a clean (or uncompromised) version of the metadata during

167

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 9. EFFECTIVENESS OF DATABASE LOGS IN RECONSTRUCTION

a database forensics analysis.

Identifying Who may be Responsible for Changes

Another aspect of database forensics analysis involves an attempt to identify who may

be responsible for the changes made to a database. In order to achieve this objective, it

is important that the following information are available in a database log.

Access information: In order to identify the users that are logged on or that may

be responsible for an event that occur within a particular time frame, details of

user logins and logouts of a database should be logged in the server log file (or its

equivalent) of a database. Analyzing previous logins and logouts of a database may

reflect certain patterns and assist an investigator in identifying anomalies in such

patterns. The identification of anomalies can be useful in reconstructing events

that occurred or the data that was stored in a database.

Data access queries: Although database access information may show the users that

are logged in on a database at some time, it does not reflect who might have

accessed a particular information. As discussed in Section 9.1, the default logging

preference on most databases do not enable the logging of accesses to data on

the database. This is an important information that may be useful in identifying

intents when investigating an incident and as such should be logged. It may also

be useful in recognizing when a piece of data was last accessed and who accessed

it. Log records about data accesses should include at least the name of the table

that was accessed, the user that issued the query, and the date and time stamp of

when the query was performed. Details of unsuccessful accesses should be included

in the error logs.

Changes in privileges: To understand log records about data access queries, it may

necessary to know more about the privileges given to a certain user. Information

regarding changes in the privilege given to anyone with access to a database should

168

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 9. EFFECTIVENESS OF DATABASE LOGS IN RECONSTRUCTION

be logged with the date and time of such changes. This enables an administrator

to occasionally review privileges given to users and assist an investigator to identify

possible culprits in the event of certain crimes, such as data theft.

Database administrator operations: Since the database administrator has access to

all the information on a database, it is necessary to know the operations performed

on the database by the administrator. Information about operations performed

on a database by an administrator or anyone with similar access privilege should

be logged, especially in cases where the operation may have a critical effect on

the database. The definition of what is critical should be known to the database

administrator and the database. This may be useful in identifying the operations

performed by anyone or anything pretending to be the administrator when the

database has been compromised.

Confirming the Information in the Database

This aspect of database forensics analysis deals with checking the consistency of the

database with what the investigator or administrator expects to see on the database

logs. Some of the information that should be available in the logs for this purpose are

described below.

Server information: In order to confirm the information in a database, it is impor-

tant that the state of the database can be determined. The log should contain

information that will be useful in understanding failures, identifying why a partic-

ular log may be missing certain information, and any other issue that may arise

during a forensics investigation of the database. Thus, events that occur during

database start-ups, stops or restarts should be logged in a database log file. This

information should reflect the conditions or configurations under which a database

was started or restarted, as well as information about how the database was last

stopped. Errors and messages displayed during these stages should also be logged.

169

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 9. EFFECTIVENESS OF DATABASE LOGS IN RECONSTRUCTION

Operational messages such as errors that occur during a backup operation or log

archiving process (when enabled) should also be included in the database log files.

System failures and errors: Errors logs are the most popular log files that are

maintained on almost every DBMS. Error logs can sometimes reflect abnormal

conditions in data and show evidence of tampering. It can also be used for time

analysis during an investigation. However, the volume of information stored in

the error logs differs depending on what the database has been configured to log.

Error logs should consist of details about system failures and other failed internal

processes. This information may become useful in knowing the evidence to look

for and where to look when conducting a forensic analysis of the database. An

error should contain important pieces of information about each error, such as, the

cause, the date and time of occurrence, and any failed attempt by the DBMS to

correct the error.

Relocation of log files Many databases contain a default directory used for storing

log files but also allow a different directory to be specified. Records of events

that cause the relocation of log files will be useful for reconstruction and forensic

analysis in cases where a malicious user has copied files from their original location

to other places (or deleted them) to hide their activities. Therefore, events that

cause changes in the default directory for storing log files, or the copying and/or

deletion of log files should be logged in one of the database log files. This type

of logging should also apply to the relocation of files that are expected to be in a

particular location in a database.

Determining the Timeline of Events

As with digital forensics in general, creating timeline of events can assist an investigator

to gain insight into the events that occurred and the people involved. It also assists in

identifying patterns and anomalies that may reveal other sources of evidence in a system.

All the ideal log information described earlier are useful in the creation of a timeline of

170

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 9. EFFECTIVENESS OF DATABASE LOGS IN RECONSTRUCTION

events. An additional information that is required for the creation of a timeline of events

is the archive of all the information identified above.

Archived logs: In many databases, the size of the log files is kept to a certain maximum

by overwriting the file from the top when it becomes full (for example, with circular

logging in Oracle). Archive of database log files should be maintained rather than

allowing overwrites. Archives are very useful in reconstructing data since a single

log file may not contain all the information of interest. Log archives provide a rich

source of information for an investigator regardless of how long ago the data of

interest might have existed or have been manipulated on the database.

9.2.2 Challenges and Solution for Ideal Logging Preferences

Logging of all the information identified above doubtlessly creates various challenges that

affect the operations and the investigative process of a database. Some of the challenges

that may be faced when logging all of the required information are highlighted below.

• Effect on database performance: in most databases, logging causes an overhead that

affects query performance. Although error logs and server logs (or their equivalents)

have little effect on a database, transaction logs and/or audit logs can significantly

reduce the speed of a database in completing queries due to the number of records

that may need to be written to such logs before it is completed or updated on the

database. Despite this, the increasing need to ensure data security and provide

a means of reconstructing data requires that adequate log records are kept at all

times.

• Volume of information in log files: One of the challenges of handling digital evidence

is the volume of information that can be retrieved during an investigation. Logging

all the information mentioned earlier implies that the same problem is encountered

in database forensics. Tools and techniques that can be used to extract useful and

relevant information from the logs will be required in order for the logging process

to be worthwhile. Even in the absence of analysis tools, database log records are

171

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 9. EFFECTIVENESS OF DATABASE LOGS IN RECONSTRUCTION

very useful for forensics analysis, although more effort will be required for a manual

analysis.

• Log file formats and contents: Another challenge with handling database log files

is the various file formats used in different databases. In addition, some databases

also provide the option of logging into tables on the database itself. Thus, it is

required that an investigator understands the format used by the database being

investigated and how to handle data in such format. Also, data records stored

in the log files of different DBMSs differ both in organization and in length. For

example, certain information about a similar query may be logged in one DBMS

and not logged in another even when similar settings are used. This makes the

automation of log analysis an issue that has to be handled with a specific DBMS

in mind.

In order to handle these challenges or minimize their effects on a database forensics

analysis, some of the techniques that can be employed are described below:

• Storing log files on separate physical mediums: a possible way of handling the

volume of log files and its effect on database performance is to store archived log

files on a different physical medium from the database itself. This is beneficial

particularly in systems that use different data access formats for the logs and the

data files. For example, in Sybase, the catalog and the IQ store (which contains

the data files and data dictionary) are randomly accessed while the transaction log

is sequentially accessed. An additional advantage of this technique is that it also

preserves the logs against loss or attack on the database and provides a way of

retrieving the logs for analysis without affecting the operation of the database. A

relatively similar alternative to this approach is to take regular backups of the log

files before it is overwritten by default.

• Use of log analysis and/or log management tools: to enhance the analysis of the

volume of information that may be retrieved from log files during database foren-

sics, the analysis process should be automated. Many databases provide tools that

172

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 9. EFFECTIVENESS OF DATABASE LOGS IN RECONSTRUCTION

can be used for analyzing the log files. For example, the Log Analysis tool in DB2

[71], the Oracle LogMiner [138], and the Microsoft SQL Server Profiler [115]. Very

few external tools are also available for the analysis of specific databases, for exam-

ple, the pgFouine4 tool that can be used for analyzing Postgres logs. These tools

provide an efficient way of analyzing logs, even though they can only be used in the

specific DBMS for which they were designed. Tools and techniques used in the gen-

eral field of digital forensics may also be useful for analyzing logs in specific formats

in some cases. Chuvakin [35] discussed the need for a more advanced database log

management tool that is capable of working across various DBMSs and automating

not only the process of log analysis, but also the process of collection, transferring

and storing of log files. The availability of an advanced log management tool will

alleviate the problem of handling and combining logs in tables and in files. It is

also important that such tools have the capability to reconstruct data based on the

information in the log files.

• Occasional review of logs and auditing: an occasional review of logs is required in

order to provide insight about what information should be excluded from the logs

or needs to be included. This may assist in reducing the volume of irrelevant data

in logs during an investigation. In addition, the auditing feature (when available)

of a database should be enabled as it offers a level of protection for log files and

other database files, and enhances the early detection of suspicious activities on a

database.

9.2.3 Identification of Possible Ideal Logging Preferences

In this section, possible logging preferences that may be used to ensure that the required

information is present in the log files of the popular databases considered in Section

9.1 are identified. These preferences are meant to explain possible settings that can be

enabled (which are not enabled by default) and do not imply that the settings are the only

ideal settings. A definition of which information (among the log requirements discussed

4http://pgfouine.projects.pgfoundry.org/

173

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 9. EFFECTIVENESS OF DATABASE LOGS IN RECONSTRUCTION

above) is of utmost importance in a specific database application will be required in

realizing the ideal logging preferences in any particular DBMS. The possible settings for

the databases are considered below.

MySQL: MySQL server consists of various logging options (all disabled by default)

that can provide a lot of information. To explore the capability of these logs for

forensic analysis, the logs should be enabled. The slow query log may be viewed

as a subset of the general query log and may be excluded. However, the General

query log, the Binary log and the Relay log should be enabled on a MySQL server.

The server automatically deletes relay logs once they are no longer needed, so the

space required for relay logs and their effect performance is minimal. The size of

the general query log and the binary log may grow large over time; some of the

techniques described earlier (Section 9.2.2) may be employed to combat the space

requirement problem.

Microsoft SQL Server: As mentioned earlier, logging is enabled by default on SQL

server. However, a default size is specified for the log file. It may be necessary

to increase the size of the log, especially the transaction log in some cases. The

autoshrink option, which allows the shrinking of specified files on the database,

is also set to false by default. While it is not advisable to shrink data files on

a database, the log files can be configured to shrink when they become big. To

handle the problem of transaction logs growing big over time, the use of backups

or a different physical medium for logs can be explored to ensure that performance

is not significantly hampered.

Postgres: In order to exploit the potential capability of the WAL logs in reconstructing

the information on a Postgres database, the wal level setting for the WAL log

should be set either to the archive or the hot standby setting before starting up

the database. In addition, the log min messages, log min error statement and the

log statement parameters of Postgres should be given values that allow the logging

of enough information about queries. For example, the log statement parameter

174

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 9. EFFECTIVENESS OF DATABASE LOGS IN RECONSTRUCTION

should be set to mod so that all data definition and data modification queries can

be logged.

Oracle: The ARCHIVELOG setting in Oracle should be enabled to exploit the rich

source of information that archived logs provide. The auditing capability of the

database should also be turned on. The default archive logs trace level of 0 (which

disables archive log tracing) should also be changed to 1 (by setting the parameter

LOG ARCHIVE TRACE = 1) so that information or errors about the process of

archiving log files can be retrieved.

DB2: In order to be able to reconstruct data definition statements, the log ddl stmts

parameter in DB2 should be changed from the default NO value to YES. The

logarchmeth1 parameter which is used to specify the log archiving method is also

set to OFF by default. This makes it impossible to access earlier log records as

they are overwritten when using this default setting. A better alternative value

for this parameter is the LOGRETAIN setting, which specifies that log files should

be retained and become online archived log files which can be subsequently used

for roll-forward recovery [72]. If performance is an issue, and the LOGRETAIN

option cannot be used, the default size of the log should be increased as much as

possible in order to ensure that much information can be retrieved from the logs

when required. The use of a different physical medium for log archives can also be

explored.

Sybase: Using the default settings in Sybase, message logging stops if the disk becomes

full while writing a message to the log and a record of this is made in the server

log. Although message logging also resumes by default when the error condition is

resolved (by creating a new log file), it would be better to avoid log files growing

indefinitely and instead archive relatively shorter log files. This makes it easier

to recognize relevant log files and is also beneficial in the event of a system crash

or disk failure. In addition, rather than stopping the database to truncate the

transaction log, the backup facility in Sybase should be employed. This allows

175

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 9. EFFECTIVENESS OF DATABASE LOGS IN RECONSTRUCTION

the availability of more information in the event that a live forensics [24] of the

database needs to be conducted.

9.3 Database Forensics Reconstruction Dimensions

and Log Files

In this section, each of the required set of information identified in Section 9.2.1 is

considered in relation to the three dimensions of reconstruction in database forensics [55].

This is to ensure that the required information is applicable in the various dimensions and

that additional requirements for any of the information are identified in each dimension.

9.3.1 Modified Databases and the Ideal Log Setting

Amongst the three dimensions of database forensics reconstruction, the modified database

category is able to provide the most readily usable log files, since the database (and

therefore, the log files) have not be compromised or damaged, and requires no additional

steps in order to obtain the log files. As such, the required set of information described

in Section 9.2.1 completely applies to a modified database. One of the advantages of

storing these required set of information in the log of a modified database is that the

information in the log may reflect inconsistencies that expose a compromise or damage

to the database during an investigation, such that a database initially considered to be

a modified database may eventually have to be investigated as a compromised and/or a

damaged database. When the objective of the forensics analysis of a modified database

is to retrieve data that existed as some earlier time, and an archive of logs is available,

it may be necessary to identify and analyze only the relevant logs, so as to reduce the

volume of information that needs to be processed.

9.3.2 Compromised Database and the Ideal Log Setting

The main concern during the investigation of a compromised database is that the infor-

mation provided by the database cannot be trusted. This concern may also affect the

176

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 9. EFFECTIVENESS OF DATABASE LOGS IN RECONSTRUCTION

use of some or all of the information in the log files on the compromised database. In

order to ensure that the data in the logs have not been compromised, it is important

that an investigator checks the consistency (or inconsistencies) of the logs and also the

hypotheses made based on the log records [43]. To check that a log is consistent, the

investigator may need to confirm that the log reflects only the information that was

selected to be logged in the configuration, and that the data formats of the files are as

expected. Checking the consistency of hypotheses made may involve an attempt to re-

generate the current instance of a database from a reconstructed version of the database.

If the regenerated instance differs from the actual database instance, then it shows that

some information might not have been logged or there might have been some compromise

of the database. This process may also be useful in identifying the events or steps taken

by an attacker when investigating an incident.

On the other hand, there is a large amount of data to support the investigation of a

compromised database if the required set of information described in Section 9.2.1 are

logged. For example, if changes to a database metadata are logged, then it is possible

for an investigator to identify the changes made to compromise a database and when

the changes were made during an analysis. Also, the logging of data definition queries

is useful for identifying changes made to the tables in a database. Other information in

the log also provide bits and pieces of data that can be used by an investigator.

9.3.3 Damaged/Destroyed Databases and the Ideal Log Setting

One of the challenges of investigating a damaged or destroyed database is the fact that

the data files or log files of the database may have been modified, deleted or moved into

other locations different from the expected locations. Similar to the use of log files in the

investigation of a compromised database, it is important for an investigator to check for

any inconsistencies in the hypotheses made based on the log records [43] in cases where

the database is still operational. Differences in the reconstructed database instance and

the actual instance of the database may be useful in identifying missing information in

177

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 9. EFFECTIVENESS OF DATABASE LOGS IN RECONSTRUCTION

the log file or sections of the log file that have been modified. In cases where the database

is no longer operational or where the log file has been deleted, file carving techniques

[21] may be used in regenerating the log file (or other files) of the database for forensics

purposes.

Some of the advantages of having the required set of information described in Section

9.2.1 during the investigation of a damaged database include the fact that if the infor-

mation about the relocation of log files are stored, then the log file can be easily located

when it is moved to a different location. Information about events relating to database

startups, stops and restarts (server information) is also a good pointer to the possible

intents of a database attacker. Access information and metadata changes recorded in the

log file serves as a valuable source of information for identifying what was changed and by

who during database forensics. The log of changes in privileges allows an investigator to

identify privileges that should not have been given, and this may be useful in identifying

the intent of possible culprits. It is possible that the damage to a database was carried

out by an attacker pretending to be an administrator, the log of database administrator

operations will be particularly useful in this case.

In summary, the required set of information for database forensics described in Section

9.2.1 applies to all the dimensions of database forensics. Although additional steps may

be required to obtain or use the log files from compromised and/or damages databases,

the information ensures that as much information as possible is available to assist an

investigator in carrying out the forensics analysis of a database and reconstructing data.

9.4 Summary

Although many database systems contain logs that can be very valuable for recovery and

forensic analysis of the database, the effectiveness of the logs is affected by the amount of

information stored in it, which is often determined by the logging preferences enabled on

the database. This chapter examines the application of the various techniques described

throughout the thesis by considering the effective of database logs for forensic analysis,

178

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 9. EFFECTIVENESS OF DATABASE LOGS IN RECONSTRUCTION

since it constitutes a major part of the thesis. The chapter summarizes a detailed study

of the default logging preferences on six popular databases and reveals the inadequacy

of the logs generated through the default logging preferences in many DBMSs. It shows

that the information required for a database forensics analysis and reconstruction is not

always stored in logs generated using these preferences. In order to identify an ideal set of

log requirements for database forensics analysis and reconstruction, the various aspects

that are usually of interest in the forensic analysis of a database are considered. The

information required to handle the different aspects compose the ideal log requirement

for the forensic analysis and reconstruction of a database. In addition, the chapter

discusses the challenges and solutions for obtaining an ideal log for forensic analysis

from a database and describes the possible preferences that can be used to obtain the

ideal log in the popular DBMSs considered.

Lastly, even though the focus of this thesis and many of the techniques discussed therein

is on the process of reconstruction in the modified databases dimension of database

forensics, this chapter considers the identified set of required information in the three

dimensions of reconstruction described earlier (Section 4.2). Where necessary, additional

requirements for each of the dimensions are identified. It is important to note that in

certain instances of forensic analysis involving a compromised or a damaged database,

additional steps or techniques other than those described in this thesis may be required

to retrieve or use the database logs.

179

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 10

Conclusion

“Of making many books there is no end, and much study is wearisome to the

flesh. Let us hear the conclusion of the whole matter: Fear God and keep His

commandments, for this is the whole duty of man.”

Ecclesiastes 12:12-13

The work presented in this thesis deals with the reconstruction of the information stored

in a database during the forensic analysis of the database. Although such information

might have existed at some earlier time, deleted or updated in various ways, this thesis

presents various concepts and techniques that can be used for reconstructing the data

(and metadata) in a database during a forensic analysis of the database. The thesis is

focused on the modified databases category of database forensics but also gives some

directions relating to other dimensions of database forensics.

This chapter concludes the thesis by evaluating the extent to which the objectives stated

in the problem statement have been accomplished throughout the thesis. It also high-

lights the main contributions of the thesis and lastly gives directions for future research

that can be done in relation to the thesis.

10.1 Thesis Summary

The goal of this thesis was to address one of the main concerns of database forensics

analysis, which is the lack of knowledge on how the information stored in a database

can be reconstructed, particularly after several modifications of the information might

180

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 10. CONCLUSION

have occurred. In order to achieve this goal, the problem statement given in Section 1.2

describes the questions that need to be answered. A summary of the thesis, as well as an

indication of how the questions in the problem statement have been answered are given

in this section.

Chapters 2 and 3 give the necessary foundation for the remainder of the thesis and discuss

the necessary literatures on digital forensics examination and database management

systems, respectively. Chapter 2 discusses the nature of digital evidence and describes

the general concept of reconstruction in digital forensics. In Chapter 3, a discussion

of database systems is presented with emphasis on the characteristics of databases, the

relational model of database systems and the relational algebra which is a core part of

the thesis.

The answer to the first question of the problem statement, What are the different

categories of databases that may be encountered during a database forensics

analysis?, is presented in Chapter 4 of the thesis. The chapter gives an overview of the

concepts of database forensics and describes the three dimensions that exist in database

forensics analysis by considering existing literatures. The literatures relating to each

dimension are discussed and an analysis of the database forensics problem space is given.

The chapter also describes the database forensics process and the challenges involved in

detail.

Chapter 5 provides the answer to the next two questions mentioned in the problem

statement. That is, What are the techniques that can be applied for reversing

data manipulation operations performed on a database? And how can an

algorithm for database forensics reconstruction be developed? The chapter

introduces three main techniques (Inverse relational algebra, relational algebra log and

value blocks) that exploits the mathematical foundation of relational algebra and which

can be used in describing an algorithm for reconstruction in database forensics. The

reconstruction algorithm is then described and its use illustrated with examples.

In Chapter 6, the developed algorithm is proven to be correct using mathematical proof

181

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 10. CONCLUSION

techniques. This answers the fourth question stated in the problem statement, that is,

Can such an algorithm be proved to be correct? The chapter highlights the fact

that a log in SQL notations can be converted in a relational algebra format and that

using such log, the output generated when using the reconstructed algorithm described

in the thesis is correct. The proof is divided into series of lemmas that address different

portions of the algorithm, each of which are proven to be correct.

Chapters 7 and 8 of the thesis deals with ways of ensuring that information can still

be reconstructed from a database even in some “difficult” situations such as instances

where some information might have been deleted or where the schema has been modi-

fied to disrupt the operation of the database. Chapter 7 explains the limitation of the

reconstruction algorithm and describes various approaches of ensuring the information

that is as complete as possible can be reconstructed despite the generation of partial

inverses due to deletion or any other operations performed on the database. Chapter 8

shows examples of how a database schema can be compromised and discuss the different

approaches that can be used to reconstruct the schema in such conditions so that the

data stored in the database can be retrieved or reconstructed as necessary.

The last question of the problem statement, What information are required for an

efficient database forensic analysis or reconstruction? is answered in Chapter 9

of the thesis. The required log information as well as the necessary logging preferences to

ensure that an effective reconstruction can be carried out are identified. The requirements

were based on an analysis of the default log settings of some popular DBMSs and an

analysis of the information required to address recognized aspects of a database forensics

analysis. The set of required information are considered in all the dimensions of database

forensics and additional requirements or steps that may be necessary for each dimension

are identified. The analysis in Chapter 9 reflects the condition of real life systems and

as such gives a good indication of the information that should be present in a log for

reconstruction purposes.

To conclude the thesis, the main contributions are described in the next section.

182

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 10. CONCLUSION

10.2 Main Contributions

The main contribution of this thesis, which also addresses the overall goal of the thesis

is the development of an algorithm for reconstruction in database forensics. To achieve

this objective, the thesis first considers the various dimensions of reconstruction that

exist in database forensics. The identification of the three dimensions of database foren-

sics analysis and how they form part of a three-dimensional problem space is a novel

contribution to the literature which has not been previously addressed.

Another contribution of this thesis is the definition of the inverse operators of the rela-

tional algebra, as well as the concepts of relational algebra log and value blocks. These

concepts provide a way of dealing with the complexity of handling and reversing data

manipulations operations performed on a database. It contributes to the field of database

systems by adding to knowledge in relational algebra.

In addition, a major contribution of this thesis is that it presents a proven algorithm for

reconstructing the data in a modified database and also introduces various techniques

for reconstructing the schema of a database. To the best of our knowledge, this is

the first algorithm for database forensics reconstruction that exists. Although some

literatures have considered technical aspects of individual DBMSs, this thesis is the first

to investigate a significant number of DBMSs (relational databases) and formulate an

algorithm that can be used for reconstruction during their analysis.

The final contribution of this thesis is the identification of the ideal log requirements

and log setting that is necessary for an efficient reconstruction process in the various

dimensions of database forensics analysis. The identified requirements is new to literature

and can be useful in ensuring that a database is in a state that allows a forensic analysis

and/or reconstruction to be carried out should the need arise.

Most of the main contributions highlighted above have been individually compiled as

sub-research reports and submitted to either a relevant journal or conference. The title

of most of the work that have been accepted or with sections that are included verbatim

183

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 10. CONCLUSION

in this thesis are given below:

• On dimensions of reconstruction in database forensics [55]

• Reconstruction in database forensics [56]

• Database forensics [54]

• Correctness proof for database reconstruction algorithm [53]

• On completeness of reconstructed data for database forensics [2]

• Schema reconstruction in database forensics [4]

• Ideal log setting for database forensics reconstruction [3]

10.3 Future Research

The field of database forensics can be considered to be relatively new. As such, there

are still different aspects of research that can be considered in this field. In relation to

the process of reconstruction in database forensics, some of the future work that can be

considered are described below.

• As mentioned in Section 4.2, the problem of reconstruction in database forensics

consists of three dimensions. The reconstruction approaches presented in this thesis

focus mainly on one of these dimensions - that of modified databases. Research

is still required on how to reconstruct information in the compromised and the

damaged databases dimension of database forensics in order to give a complete

description of reconstruction in all dimensions of database forensics. Although

Section 8.1 briefly describes how a database can be compromised, this was done

with a view to address the problem of schema reconstruction. Future research

can involve adapting the reconstruction algorithm presented in this thesis to other

dimensions of database forensics or developing a new algorithm that is more suited

for these dimensions.

• In Section 5.1, we highlighted some techniques that can be used for data restoration

184

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 10. CONCLUSION

in databases. Although these techniques may not be adequate for generating all

the information often required during a database forensics analysis, it may be

possible that there are specific conditions in which using a particular restoration

technique may be more beneficial. An empirical research on which data restoration

technique or whether database forensics analysis is more suited for a particular

problem can be conducted. Intuitively speaking, data restoration techniques would

be inadequate when investigating a compromised or damaged database, but this

can also be studied.

• In Chapter 7, we discussed the limitation of the database reconstruction algorithm,

which arises from the fact that the inverse operators of the relational algebra may

generate incomplete data. We also described various techniques that can be applied

to generate more complete data during a reconstruction process. However, the re-

search does not investigate whether or not the data generated by incorporating the

techniques described is maximal, that is, if the log contains no further information

that can be used to reconstruct values. Further research can be conducted in this

regard to determine whether there are additional techniques that can be used to

reconstruct more complete data and if or when such data are maximal. Conditions

in which a particular approach may be a better option can be also be investigated.

• One of the approaches for schema reconstruction discussed in Section 8.2.3 involves

checking the consistency of the information stored in the database. Although we

have highlighted situations in which this approach may be used and given high-

level examples to illustrate its use, empirical research can be conducted to measure

the effectiveness of this approach. Detailed real life examples that illustrate the

application of the approach can also be examined. The effectiveness of the other

approaches described in Section 8.2.3 can also be measured against each other by

considering practical scenarios requiring the reconstruction of a database schema.

• Although the problem of reconstruction in database forensics as well as the need to

better understand database forensics analysis process spans across different mod-

els of database systems, this thesis is specifically focused on the relational model

185

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 10. CONCLUSION

of database systems due to their popularity and mathematical foundation. The

research can be extended to other models of database systems. In addition, the

problem of reconstruction and database forensics in general can also be considered

in other environments or technologies such as NoSQL, NewSQL, Big Data, cloud

or distributed databases environment.

• In Section 9.2.2, we identified the use of log management or log analysis tools as

a way of enhancing the analysis of database logs and automating the analysis pro-

cess. A survey of the capabilities of currently available database log management

tools can be conducted to measure the effectiveness of such tool across different

DBMSs. This can also be beneficial in determining the capabilities that should

be incorporated into new log management tools and enhancing the development of

more advanced tools.

• Lastly, although this thesis is focused on the theoretical detail of how reconstruction

can be done in database forensics, an implementation of the different techniques

discussed in the thesis is still required. Future research will investigate the imple-

mentation and usage of the algorithm on a live database.

186

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Appendix A

SQL Log Conversion to RA Log

A listing of the SQL log converted to the relational algebra log in figure 5.1 is given

below. The notation used in the conversion is also given thereafter.

CREATE TABLE Employees (EmpNo INTEGER NOT NULL primary key, DeptNo varchar(10) not null ,

LastName varchar(30), Initials varchar(5), DateOfBirth DATE NOT NULL, salary integer);

insert into Employees values

(11334330, ’CS1’, ’FASAN’, ’O M’, TO_DATE( ’21-06-1995’, ’DD-MM-YYYY’ ),20000),

(11322560, ’GEO1’, ’ADEOLU’, ’P Q’, TO_DATE( ’01-09-1965’, ’DD-MM-YYYY’ ),12000),

(13234010, ’PHY1’, ’MATTHEW’, ’K M’, TO_DATE( ’31-12-1987’, ’DD-MM-YYYY’ ),18000),

(24143130, ’MATHS1’, ’CELLIERS’, ’M K’, TO_DATE( ’13-07-1991’, ’DD-MM-YYYY’ ),8000),

(13456170, ’CS1’, ’NUCKLARD’, ’A S’, TO_DATE( ’21-08-1990’, ’DD-MM-YYYY’ ),10000);

select * from Employees;

DROP TABLE Departments CASCADE;

CREATE TABLE Departments (DeptNr varchar(10) Primary key, DeptName Char(40), BuildingName varchar(30));

DROP TABLE Dept_Emp CASCADE;

CREATE TABLE DEPT_EMP

(EmpNo integer not null, DeptNo varchar(10) not null, FromDate date, ToDate date, primary key(EmpNo));

insert into Departments values (’CS1’, ’Computer Science’, ’IT Building’),

(’GEO1’,’Geography’,’Earth building’),(’PHY1’,’Physics’,’Physics lab’),

(’MATHS1’,’Maths science’,’Sceince building’);

insert into Dept_Emp values

(11334330,’CS1’,TO_DATE( ’02-08-2011’, ’DD-MM-YYYY’ ), TO_DATE( ’31-12-2014’, ’DD-MM-YYYY’ )),

(11322560,’GEO1’,TO_DATE( ’02-07-2010’, ’DD-MM-YYYY’ ), TO_DATE( ’31-12-2012’, ’DD-MM-YYYY’ ));

select * from Departments;

DROP TABLE Emp_salary1 CASCADE;

187

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



APPENDIX A. SQL LOG CONVERSION TO RA LOG

select EmpNo,LastName, Initials, Salary into Emp_salary1

from Employees where salary>10000 order by salary desc limit 1;

DROP TABLE Emp_Salary2 CASCADE;

select EmpNo,LastName, Initials, Salary into Emp_salary2

from Employees where salary>10 order by salary limit 1;

select * from Emp_Salary2;

DROP TABLE BestWorseSalary CASCADE;

create table BestWorseSalary as(select * from Emp_Salary1 union select * from Emp_Salary2);

select * from BestWorseSalary;

insert into Emp_salary1 (select EmpNo,LastName, Initials, Salary from Employees);

select * from Emp_Salary1;

drop table DeptNoName cascade;

create table DeptNoName as SELECT * FROM Employees AS a INNER JOIN Departments AS b ON a.DeptNo = b.DeptNr;

select * from DeptNoName;

update departments set BuildingName = ’GeoScience Building’ where DeptNr = ’GEO1’;

select * from departments;

drop table DeptJoinEmp;

create table DeptJoinEmp as select * from Employees natural join Departments;

select * from DeptJoinEmp;

drop table DeptEmpIntersect;

create table DeptEmpIntersect as (select * from DeptJoinEmp intersect select * from DeptNoName);

select * from DeptEmpIntersect;

delete from DeptNoName;

insert into DeptNoName (select * from DeptJoinEmp EXCEPT select * from DeptEmpIntersect);

select * from DeptNoName;

alter table Employees rename column DeptNo to DeptNr;

delete from DeptEmpIntersect;

select * from DeptEmpIntersect;

188

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



APPENDIX A. SQL LOG CONVERSION TO RA LOG

Notation used in Conversion to RA Log

Employees - A

Departments - B

Dept Emp - C

Emp Salary1 - D

Emp Salary2 - E

BestWorseSalary - G

DeptNoName - H

DeptJoinEmp - I

DeptEmpIntersect - J

189

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Appendix B

Acronyms and Symbols

DBMS Database Management System

RA Relational Algebra

US United States

UK United Kingdom

p(A) Logical predicate involving attribute A

R(A) Relation R with attribute A

Rr Reconstructed relation R

Rt Relation R at a particular time

R∗ Incomplete relation R

VDi
The ith value block of relation D

VDi
[1] The first query of the ith value block of relation D

× Cartesian product operator

∪ Union operator

∩ Intersection operator

− Difference operator

/ Division operator

✶ Join operator

φ Projection operator

σ Selection operator

ρ Rename operator

190

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Bibliography

[1] Access Data. Forensic toolkit. www.accessdata.com. Accessed 25 February, 2013.

[2] O. M. Adedayo and M. S. Olivier. On the completeness of reconstructed data for

database forensics. In Digital Forensics and Cyber Crime, volume 114 of Lecture

Notes of the Institute for Computer Sciences, Social Informatics and Telecommu-

nications Engineering, pages 220–238. 2013.

[3] O. M. Adedayo and M. S. Olivier. Ideal log setting for database forensics recon-

struction. Digital Investigation, 2014. Manuscript submitted.

[4] O. M. Adedayo and M. S. Olivier. Schema reconstruction in database forensics.

In Tenth Annual IFIP WG 11.9 International Conference on Digital Forensics,

Vienna, Austria, January 2014. (In press).

[5] Association of Chief Police Officers of England (ACPO), Wales and Northern Ire-

land. Good Practice Guide for Computer-based electronic evidence, Version 4.

ACPO E-Crime working Group, April 2008.

[6] M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, J. Gray, W. F. K. III, B. G.

Lindsay, R. A. Lorie, J. W. Mehl, T. G. Price, G. R. Putzolu, M. Schkolnick,

P. G. Selinger, D. R. Slutz, H. R. Strong, P. Tiberio, I. L. Traiger, B. W. Wade,

and R. A. Yost. System R: A relational data base management system. IEEE

Computer, 12(5):42–48, 1979.

191

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

www.accessdata.com


BIBLIOGRAPHY

[7] J. Austen. Some stepping stones in computer forensics. Information Security

Technical Report, 8(2):37 – 41, 2003.

[8] D. Barske, A. Stander, and J. Jordaan. A digital forensic readiness framework for

South African SME’s. In Information Security for South Africa (ISSA), pages 1–6,

2010.

[9] M. V. Baryamureeba and F. Tushabe. The enhanced digital investigation process.

In Digital Forensic Research Workshop, Balltimore, Maryland, August 2004.

[10] N. Beebe. Digital forensic research: The good, the bad and the unaddressed. In

Advances in Digital Forensics V, volume 306 of IFIP Advances in Information and

Communication Technology, pages 17 – 36. Springer Berlin Heidelberg, 2009.

[11] N. L. Beebe and J. G. Clark. A hierarchical, objectives-based framework for the

digital investigations process. Digital Investigation, 2(2):147 – 167, 2005.

[12] T. Bevel and R. Gardner. Bloodstain pattern analysis: with an introduction to

crime scene reconstruction. 2nd Edition. CRC Press, Boca Raton, FL, 2002.

[13] H. Beyers, M. Olivier, and G. Hancke. Assembling metadata for database forensics.

In Advances in Digital Forensics VII, volume 383 of IFIP Advances in Information

and Communication Technology, pages 89 – 99. Springer Berlin Heidelberg, 2011.

[14] H. Beyers, M. Olivier, and G. Hancke. Arguments and methods for database data

model forensics. In Proceedings of the 7th International Workshop on Digital Foren-

sics and Incident Analysis (WDFIA 2012), pages 139 – 149. Plymouth University,

2012.

[15] C. Binnig, D. Kossmann, and E. Lo. Reverse query processing. In IEEE 23rd

International Conference on Data Engineering (ICDE), pages 506–515, April 2007.

[16] C. Binnig, D. Kossmann, and E. Lo. Towards automatic test database generation.

IEEE Data Engineering Bulletin, 31(1):28–35, 2008.

192

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



BIBLIOGRAPHY

[17] N. Bruno and S. Chaudhuri. Flexible database generators. In Proceedings of the

31st International Conference on Very Large Data Bases, VLDB ’05, pages 1097–

1107, 2005.

[18] F. Buchholz and E. Spafford. On the role of file system metadata in digital forensics.

Digital Investigation, 1(4):298 – 309, 2004.

[19] T. Burns, E. Fong, D. Jefferson, R. Knox, L. Mark, C. Reedy, L. Reich, N. Rous-

sopoulos, and W. Truszkowski. Reference model for DBMS standardization. SIG-

MOD Record, 15(1):19–58, March 1986. http://doi.acm.org/10.1145/16342.

16343.

[20] B. Carrier. Defining digital forensic examination and analysis tools using abstrac-

tion layers. International Journal of Digital Evidence, 1(4), 2003.

[21] B. Carrier. File system forensic analysis. Addison-Wesley Professional, Upper

Saddle River, NJ, 2005.

[22] B. Carrier and E. H. Spafford. Getting physical with the digital investigation

process. International Journal of Digital Evidence, 2(2):1 – 20, 2003.

[23] B. D. Carrier. A Hypothesis-based Approach to Digital Forensic Investigations.

PhD thesis, Purdue University, West Lafayette, Indiana, May 2006.

[24] B. D. Carrier. Risks of live digital forensic analysis. Communications of the ACM,

49(2):56–61, February 2006.

[25] B. D. Carrier and E. H. Spafford. Defining event reconstruction of a digital crime

scene. Journal of Forensic Sciences (JFS), 49(6):1291–1298, November 2004.

[26] D. L. Carter. Computer crime categories: How techno-criminals operate. FBI Law

Enforcement Bulletin, 64(7):21 – 27, July 1995.

[27] E. Casey. Error, Uncertainty and Loss in Digital Evidence. International Journal

of Digital Evidence, 1(2), 2002.

193

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

http://doi.acm.org/10.1145/16342.16343
http://doi.acm.org/10.1145/16342.16343


BIBLIOGRAPHY

[28] E. Casey. Handbook of Digital Forensics and Investigation. Elsevier Academic

Press, 2009.

[29] E. Casey. Digital Evidence and Computer Crime: Forensic Science, Computers

and the Internet. Academic Press, 3rd edition, 2011.

[30] D. D. Chamberlin. Early history of SQL. IEEE Annals of the History of Computing,

34(4):78–82, 2012.

[31] D. D. Chamberlin and R. F. Boyce. SEQUEL: A structured english query language.

In Proceedings of the 1974 ACM SIGFIDET (now SIGMOD) workshop on Data

description, access and control, SIGFIDET ’74, pages 249–264, 1974.

[32] A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive queries

in relational data bases. In Proceedings of the ninth annual ACM symposium on

Theory of computing, STOC, pages 77–90. ACM, 1977.

[33] C. Chaski. The keyboard dilemma and authorship identification. In P. Craiger

and S. Shenoi, editors, Advances in Digital Forensics III, volume 242 of IFIP The

International Federation for Information Processing, pages 133–146. Springer New

York, 2007.

[34] W. J. Chisum and B. Turvey. Evidence dynamics: Locard’s exchange principle &

crime reconstruction. Journal of Behavioural Profiling, 1(1), January 2000.

[35] A. Chuvakin. Introduction to database log management. Technical report, Log-

Logic Inc, August 2007. http://www.infosecwriters.com/text_resources/

pdf/AChuvakin_DB_Logging.pdf. Accessed, 19 March 2013.

[36] S. O. Ciardhuáin. An extended model of cybercrime investigations. International

Journal of Digital Evidence, 3(1), 2004.

[37] E. F. Codd. A relational model of data for large shared data banks. Communica-

tions of the ACM, 13(6):377 – 387, June 1970.

194

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

http://www.infosecwriters.com/text_resources/pdf/AChuvakin_DB_Logging.pdf
http://www.infosecwriters.com/text_resources/pdf/AChuvakin_DB_Logging.pdf


BIBLIOGRAPHY

[38] E. F. Codd. The Relational Model for Database Management, Version 2. Addison-

Wesley, 1990.

[39] F. Cohen. Digital Forensic Evidence Examination - 2nd Ed. Fred Cohen & Asso-

ciates, 2010.

[40] F. Cohen. Attribution of messages to sources in digital forensics cases. In 43rd

Hawaii International Conference on System Sciences (HICSS), volume 0, pages 1

– 10, January 2010.

[41] F. Cohen. A note on detecting tampering with audit trails, 1995. Fred Cohen and

Associates.

[42] F. Cohen. Challenges to digital forensic evidence. http://all.net/Talks/

CyberCrimeSummit06.pdf, October 2006. Fred Cohen and Associates.

[43] F. Cohen. Digital Forensic Evidence Examination - 3rd Edition. Fred Cohen &

Associates, 2011.

[44] P. Cousot. Methods and logics for proving programs. In Formal Models and

Semantics, volume B of Handbook of Theoretical Computer Science, pages 843–

993. 1990.

[45] J. P. Craiger, J. Swauger, and C. Marberry. Digital evidence obfuscation: recovery

techniques. In Sensors, and Command, Control, Communications, and Intelligence

(C3I) Technologies for Homeland Security and Homeland Defense IV, volume 5778,

pages 587–594, August 2005.

[46] Data Base Task Group. A survey of generalized data base management systems.

Technical report, Conference on Data Systems Languages (CODASYL), May 1969.

[47] Daubert v. Merrell Dow Pharmaceuticals Inc. 509 U.S. 579, 1993. http://supct.

law.cornell.edu/supct/html/92-102.ZO.html. Accessed 25 February, 2013.

195

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

http://all.net/Talks/CyberCrimeSummit06.pdf
http://all.net/Talks/CyberCrimeSummit06.pdf
http://supct.law.cornell.edu/supct/html/92-102.ZO.html
http://supct.law.cornell.edu/supct/html/92-102.ZO.html


BIBLIOGRAPHY

[48] P. J. Deitel and H. M. Deitel. C: How to Program. How to program series. Pearson

Education, Inc., Upper Saddle River, NJ, 6th edition, 2009.

[49] P. J. Denning. Is computer science science? Communications of the ACM,

48(4):27–31, April 2005.

[50] K. Eckstein. Forensics for advanced UNIX file systems. In Fifth Annual IEEE

SMC Information Assurance Workshop, pages 377 – 385. IEEE, 2004.

[51] R. Elmasri and S. Navathe. Fundamentals of Database Systems. Addison-Wesley

Publishing Company, USA, 6th edition, 2010.

[52] S. S. Epp. Discrete mathematics with applications. PWS Publishing Company,

1993.

[53] O. M. Fasan and M. S. Olivier. Correctness proof for database reconstruction

algorithm. Digital Investigation, 9(2):138–150, 2012.

[54] O. M. Fasan and M. S. Olivier. Database forensics. In Proceedings of the 3rd

Research Consortium on Information Technology Innovations (RECITI). Nigeria

Computer Society (NCS), 2012.

[55] O. M. Fasan and M. S. Olivier. On dimensions of reconstruction in database

forensics. In Proceedings of the 7th International Workshop on Digital Forensics

and Incident Analysis (WDFIA 2012), pages 97 – 106. Plymouth University, 2012.

[56] O. M. Fasan and M. S. Olivier. Reconstruction in database forensics. In Ad-

vances in Digital Forensics VIII, volume 383 of IFIP Advances in Information and

Communication Technology, pages 273–287. Springer Berlin Heidelberg, 2012.

[57] B. A. J. Fisher, W. J. Tilstone, and C. Woytowicz. Introduction to Criminalistics:

The Foundation of Forensic Science. Elsevier Limited, Oxford, 2009.

[58] K. Fowler. Forensics analysis of a SQL server 2005 database server, April 2007.

SANS Institute.

196

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



BIBLIOGRAPHY

[59] K. Fowler. SQL Server Forensic Analysis. Addison Wesley Professional, NJ, 2008.

[60] P. Frühwirt, M. Huber, M. Mulazzan, and E. R. Weippl. InnoDB database foren-

sics. In 24th IEEE International Conference on Advanced Information Networking

and Applications (AINA), pages 1028–1036, 2010.

[61] P. Frühwirt, P. Kieseberg, S. Schrittwieser, M. Huber, and E. Weippl. Innodb

database forensics: Reconstructing data manipulation queries from redo logs. In

Seventh International Conference on Availability, Reliability and Security (ARES),

pages 625–633, 2012.

[62] S. L. Garfinkel. Carving contiguous and fragmented files with fast object validation.

Digital Investigations, 4:2–12, September 2007.

[63] S. L. Garfinkel. Digital forensics research: The next 10 years. Digital Investigation,

7, Supplement(0):S64 – S73, 2010. The Proceedings of the Tenth Annual DFRWS

Conference.

[64] P. Gladyshev. Formalising Event Reconstruction in Digital Investigations. PhD

thesis, University College, Dublin, 2004.

[65] P. Gladyshev and A. Patel. Finite state machine approach to digital event recon-

struction. Digital Investigation, 1(2):130–149, 2004.

[66] G. Graefe. Query evaluation techniques for large databases. ACM Computing

Surveys, 25(2):73–170, 1993.

[67] K. Grolinger, W. A. Higashino, A. Tiwari, and M. A. Capretz. Data manage-

ment in cloud environments: NoSQL and NewSQL data stores. Journal of Cloud

Computing: Advances, Systems and Applications, 2(1):22, 2013.

[68] Guidance Software. EnCase forensic. www.encase.com. Accessed 25 February,

2013.

197

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

www.encase.com


BIBLIOGRAPHY

[69] L. M. Haas, J. C. Freytag, G. M. Lohman, and H. Pirahesh. Extensible query

processing in starburst. In ACM SIGMOD, pages 377–388. ACM Press, 1989.

[70] C. Hargreaves and J. Patterson. An automated timeline reconstruction approach

for digital forensic investigations. Digital Investigation, 9, Supplement(0):S69 –

S79, 2012. The Proceedings of the Twelfth Annual DFRWS Conference.

[71] IBM. IBM DB2 Log Analysis Tool for z/OS, User’s Guide. IBM, version 3 release

2 edition. http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.

ibm.db2tools.ala33.doc.ug/alaugc30.pdf?noframes=true. Accessed 19 Au-

gust 2013.

[72] IBM. IBM DB2 10.1 for Linux, Unix and Windows: Database administration

concepts and configuration. IBM, 2012.

[73] IBM Software. i2 analyst notebook. http://www.ibm.com/software/products/

us/en/analysts-notebook-premium/. Accessed 25 February, 2013.

[74] R. S. C. Ieong. FORZA - digital forensics investigation framework that incorporate

legal issues. Digital Investigation, 3:29–36, 2006.

[75] ITL Education Solutions Limited. Introduction to Database systems. Pearson

Education, India, November 2008.

[76] M. Jakobsson and Z. Ramzan. Crimeware: Understanding New attacks and De-

fences. Pearson Education, 2008.

[77] S. H. James and J. J. Nordby. Forensic Science: An Introduction To Scientific

And Investigative Techniques. CRC Press, Boca Raton, FL, 2003.

[78] D. A. Jardine, editor. The ANSI/SPARC DBMS Model, Proceeding of the Sec-

ond SHARE Working Conference on Date Base Management Systems, Montreal,

Canada, April 1976. North-Holland.

198

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2tools.ala33.doc.ug/alaugc30.pdf?noframes=true
http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2tools.ala33.doc.ug/alaugc30.pdf?noframes=true
http://www.ibm.com/software/products/us/en/analysts-notebook-premium/
http://www.ibm.com/software/products/us/en/analysts-notebook-premium/


BIBLIOGRAPHY

[79] T. A. Johnson. Forensic Computer Crime Investigation. International Forensic

Science and Investigation. Taylor & Francis, 2005.

[80] P. Juola. Future trends in authorship attribution. In P. Craiger and S. Shenoi,

editors, Advances in Digital Forensics III, volume 242 of IFIP The International

Federation for Information Processing, pages 119–132. Springer New York, 2007.

[81] A. Kornbrust. Oracle rootkits 2.0. www.red-database-security.com/wp/

oracle_rootkits_2.0.pdf, August 2006. Black Hat USA.

[82] N. Leavitt. Will NoSQL databases live up to their promise? Computer, 43(2):12–

14, February 2010.

[83] H. C. Lee, T. M. Palmbach, and M. T. Miller. Henry Lee’s Crime Scene Handbook.

Academic Press, London, UK, 2001.

[84] D. Litchfield. Oracle forensics part 1: Dissecting the redo logs, March 2007.

NGSSoftware Insight Security Research (NISR) Publication.

[85] D. Litchfield. Oracle forensics part 2: Locating dropped objects, March 2007.

NGSSoftware Insight Security Research (NISR) Publication.

[86] D. Litchfield. Oracle forensics part 3: Isolating evidence of attacks against the

authentication mechanism, March 2007. NGSSoftware Insight Security Research

(NISR) Publication.

[87] D. Litchfield. Oracle forensics part 4: Live response, April 2007. NGSSoftware

Insight Security Research (NISR) Publication.

[88] D. Litchfield. Oracle forensics part 5: Finding evidence of data theft in the ab-

sence of auditing, August 2007. NGSSoftware Insight Security Research (NISR)

Publication.

199

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

www.red-database-security.com/wp/oracle_rootkits_2.0.pdf
www.red-database-security.com/wp/oracle_rootkits_2.0.pdf


BIBLIOGRAPHY

[89] D. Litchfield. Oracle forensics part 6: Examining undo segments, flashback and the

oracle recycle bin, August 2007. NGSSoftware Insight Security Research (NISR)

Publication.

[90] D. Litchfield. Oracle forensics part 7: Using the oracle system change number in

forensic investigations, November 2008. NGSSoftware Insight Security Research

(NISR) Publication.

[91] K. Mandia and C. Prosise. Incident Response & Computer Forensics, 2nd Ed.

Security Series. McGraw-Hill Education, 2003.

[92] R. McKemmish. What is forensic computing. In Australian Institute of Crim-

inology, Trends and Issues in crime and criminal justice, number 118. June

1999. http://www.aic.gov.au/publications/current%20series/tandi.aspx.

Accessed: November 2012.

[93] M. Meyers and M. Rogers. Computer forensics: The need for standardization and

certification. International Journal of Digital Evidence, 3(2), 2004.

[94] M. Meyers and M. Rogers. Digital forensics: Meeting the challenges of scientific

evidence. In M. Pollitt and S. Shenoi, editors, Advances in Digital Forensics,

volume 194 of IFIP The International Federation for Information Processing,

pages 43–50. Springer US, 2005.

[95] Microsoft Developer Network. SQL Server 2012, 2012. http://www.msdn.

microsoft.com/library. Accessed 4 April, 2013.

[96] National Institute of Justice (U.S.). Forensic examination of digital evidence: a

guide for law enforcement. NIJ special report. U.S. Dept. of Justice, Office of

Justice Programs, National Institute of Justice, 2004.

[97] National Institute of Justice (U.S.). Electronic Crime Scene Investigation: A Guide

for First Responders, Second Edition. NIJ special report. U.S. Dept. of Justice,

Office of Justice Programs, National Institute of Justice, April 2008.

200

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

http://www.aic.gov.au/publications/current%20series/tandi.aspx
http://www.msdn.microsoft.com/library
http://www.msdn.microsoft.com/library


BIBLIOGRAPHY

[98] S. Nebiker and S. Bleisch. Introduction to Database Systems. Geographic Infor-

mation Technology Training Alliance (GITTA), June 2010. http://www.gitta.

info. Accessed 4 June, 2013.

[99] Netmap Analytics. Netmap. www.netmap.com. Accessed 25 February, 2013.

[100] M. S. Olivier. On metadata context in database forensics. Digital Investigation,

5(3-4):115–123, 2009.

[101] M. S. Olivier. On complex crimes and digital forensics. Technishe Berichte 63,

Hasso-Plattner-Instituts für Softwaresystemtechnik an der Universität Potsdam,

2013.

[102] M. S. Olivier and S. Gruner. On the scientific maturity of digital forensics re-

search. In Advances in Digital Forensics IX, IFIP Advances in Information and

Communication Technology - Advances in Digital Forensics, pages 33–49. Springer,

2013.

[103] A. J. Oppel. Databases: A Beginner’s Guide. McGraw-Hill, 2009.

[104] Oracle. Oracle database administrator guide 11g release 1(11.1). http://docs.

oracle.com/cd/B28359_01/server.111/b28310/toc.htm. Accessed 19 March

2013.

[105] Oracle. Mysql 5.6 reference manual. oracle, 2013, 2013. http://dev.mysql.com/

doc/refman/5.6/en/server-logs.html. Accessed 19 March 2013.

[106] M. Otey. SQL Server log file. SQL Server Pro Community. http://www.

sqlmag.com/article/log-files/sql-server-log-files-94131. Accessed 19

March 2013.

[107] G. Palmer. A road map for digital forensic research. Technical report, First Digital

Forensic Research Workshop (DFRWS), Utica, New York, August 2001.

[108] D. B. Parker. Crime by Computer. Scribner, New York, 1976.

201

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

http://www.gitta.info
http://www.gitta.info
www.netmap.com
http://docs.oracle.com/cd/B28359_01/server.111/b28310/toc.htm
http://docs.oracle.com/cd/B28359_01/server.111/b28310/toc.htm
http://dev.mysql.com/doc/refman/5.6/en/server-logs.html
http://dev.mysql.com/doc/refman/5.6/en/server-logs.html
http://www.sqlmag.com/article/log-files/sql-server-log-files-94131
http://www.sqlmag.com/article/log-files/sql-server-log-files-94131


BIBLIOGRAPHY

[109] D. B. Parker. Computer abuse research update. Computer/Law Journal, 2:329 –

352, 1980.

[110] D. B. Parker. Fighting computer crime. Scribner, New York, 1983.

[111] K. Pavlou and R. T. Snodgrass. Forensic analysis of database tampering. In

Proceedings of the 2006 ACM SIGMOD international conference on Management

of data, SIGMOD ’06, pages 109–120, 2006.

[112] K. Pavlou and R. T. Snodgrass. The tiled bitmap forensic analysis algorithm.

IEEE Transaction on Knowledge and Data Engineering, 22:590–601, April 2010.

[113] H. Pieterse and M. S. Olivier. Data hiding techniques for database environments.

In Advances in Digital Forensics VIII, volume 383 of IFIP Advances in Information

and Communication Technology, pages 289 – 301. Springer Berlin Heidelberg, 2012.

[114] M. Pollitt. A history of digital forensics. In Advances in Digital Forensics VI, vol-

ume 337 of IFIP Advances in Information and Communication Technology, pages

3 – 15. Springer Berlin Heidelberg, 2010.

[115] R. Rankins, P. Bertucci, C. Gallelli, and A. T. Silverstein. Microsoft SQL Server

2008 R2 Unleashed. Sams, 2010.

[116] M. Reith, C. Carr, and G. H. Gunsch. An examination of digital forensic models.

International Journal of Digital Evidence, 1(3), 2002.

[117] R. Rowlingson. Abstract a ten step process for forensic readiness. International

Journal of Digital Evidence, 2(3), 2004.

[118] J. Rynearson. Evidence and Crime Scene Reconstruction. National Crime Investi-

gation and Training, Redding, CA, 2002.

[119] B. Schatz. Digital evidence: representation and assurance. PhD thesis, Queensland

University of Technology, Australia, October 2007.

202

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



BIBLIOGRAPHY

[120] Scientific Working Group on Digital Evidence (SWGDE). SWGDE and SWGIT

digital and multimedia evidence glossary, May 2009. Version 2.3.

[121] X. Silao, W. Song, and H. Mei. Application of SQL RAT translation: A state-

ment of RQP/RMP with an object-oriented solution. Inter. Journal of Intelligent

Systems and Applications, 3(5):48 – 55, August 2011.

[122] S. K. Singh. Database Systems: Concepts, Design & Applications. Prentice Hall

Press, Upper Saddle River, NJ, USA, 1st edition, 2009.

[123] R. T. Snodgrass, S. S. Yao, and C. Collberg. Tamper detection in audit logs. In

Proceedings of the Thirtieth international conference on Very large data bases -

Volume 30, VLDB ’04, pages 504–515, 2004.

[124] P. Stahlberg, G. Miklau, and B. N. Levine. Threats to privacy in the forensic anal-

ysis of database systems. In Proceedings of the 2007 ACM SIGMOD international

conference on Management of data, SIGMOD ’07, pages 91–102, 2007.

[125] W. Stallings. Operating Systems: Internals and Design Principles. Pearson Pren-

tice Hall, 5th edition, 2005.

[126] P. Stephenson. Modeling of post-incident root cause analysis. International Journal

of Digital Evidence, 2(2), 2003.

[127] P. Stephenson. The application of formal methods to root cause analysis of digital

incidents. International Journal of Digital Evidence, 3(1), 2004.

[128] Sybase. SybaseIQ 15.1.2 documentation. Sybase, 2010. http://infocenter.

sybase.com/help/index.jsp. Accessed, 19 Mar. 2013.

[129] R. W. Taylor and R. L. Frank. CODASYL Data-Base management systems. ACM

Computing Surveys, 8(1):67 – 103, March 1976.

203

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

http://infocenter.sybase.com/help/index.jsp
http://infocenter.sybase.com/help/index.jsp


BIBLIOGRAPHY

[130] S. Tewelde, M. S. Olivier, and S. Gruner. Notions of “Hypothesis” in digital

forensics. In Eleventh Annual IFIP WG 11.9 International Conference on Digital

Forensics, Orlando, Florida, USA, January 2015. Accepted for presentation.

[131] The PostgreSQL Global Development Group. Postgresql 9.2.3 documentation,

2013. http://www.postgresql.org/docs/9.2/static/. Accessed 19 March 2013.

[132] D. C. Tsichiritzis and A. Klug. The ANSI/X3/SPARC DBMS framework: Re-

port of the study group on database management systems. Information Systems,

3(3):173–191, 1978.

[133] B. Turvey. Criminal Profiling: An Introduction to Behavioral Evidence Analysis.

Academic Press, 2002.

[134] U.S. Department of Justice. Federal guidelines for searching and seizing computers,

1994.

[135] B. Ward. How Linux Works: What Every Superuser Should Know. No Starch

Press, San Francisco, CA, 2004.

[136] R. Westervelt. Black hat 2007: New database forensics tool could aid

data breach cases. http://searchsecurity.techtarget.com/news/article/0,

289142,sid14_gci1266525,00.html, August 2007. TechTarget.

[137] D. M. Wong and K. B. Edwards. System and method for investigating a data

operation performed on a database. www.freepatentsonline.com/20050289187.

pdf, December 2005. United States patent application publication.

[138] P. M. Wright. Oracle database forensics using LogMiner, January 2005.

Next Generation Security Software. http://www.databasesecurity.com/dbsec/

OracleForensicsUsingLogminer.pdf.

[139] P. M. Wright. Oracle Forensics: Oracle Security Best Practices. Rampant Tech-

press, 2010.

204

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

http://www.postgresql.org/docs/9.2/static/
http://searchsecurity.techtarget.com/news/article/0,289142,sid14_gci1266525,00.html
http://searchsecurity.techtarget.com/news/article/0,289142,sid14_gci1266525,00.html
www.freepatentsonline.com/20050289187.pdf
www.freepatentsonline.com/20050289187.pdf
http://www.databasesecurity.com/dbsec/OracleForensicsUsingLogminer.pdf
http://www.databasesecurity.com/dbsec/OracleForensicsUsingLogminer.pdf


BIBLIOGRAPHY

[140] P. M. Wright. Oracle forensics in a nutshell, 2007. http://www.

databasesecurity.com/dbsec/OracleForensicsInANutshell.pdf. Accessed 19

March 2013.

205

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

http://www.databasesecurity.com/dbsec/OracleForensicsInANutshell.pdf
http://www.databasesecurity.com/dbsec/OracleForensicsInANutshell.pdf

	List of Tables
	List of Figures
	Introduction
	Motivation
	Problem Statement
	Scope of the Research
	Methodology
	Terminology
	Thesis Layout
	Contribution of the Thesis
	Summary

	Concepts of Digital Evidence and Digital Forensics
	A Brief History of Digital Forensics
	Nature of Digital Evidence
	Admissibility of Digital Evidence
	Forensic Science and Digital Evidence
	Absence of Evidence and Exchange of Evidence
	The Role of Computers in Crimes

	Investigative Process for Digital Forensics
	Examination and Analysis
	Examination of Data
	Interpretation
	Attribution
	Reconstruction

	Summary

	Database Systems
	Concepts of Database Systems
	Characteristics of Database Systems
	Structured and Self Describing
	Concurrent Use and Multiple Views of Data
	Data Abstraction
	Program-Data Independence
	Backup and Recovery

	Other Advantages of Database Systems
	Logging in Databases
	Database Models
	Relational Data Model and Relational Algebra
	Relational Data Model
	Relational Algebra

	Summary

	Concepts of Database Forensics
	Database Forensics
	Dimensions of Database Forensics
	Compromised Databases
	Damaged/Destroyed Databases
	Modified Databases
	Orthogonality of the Dimensions

	Database Forensics Process
	Database Forensics and File System Forensics
	Database Forensics Investigation Process
	Database Forensics Analysis Techniques
	Preservation, Collection and Analysis of Artifacts

	Database Forensics Tools
	Challenges in Database Forensics
	Summary

	Database Reconstruction Algorithm
	Database Forensics Reconstruction
	Inverse Relational Algebra
	Complete Inverse Operators
	Partial Inverse Operators

	Relational Algebra Log and Value Blocks
	Concept of Database Reconstruction
	Database Reconstruction Algorithm
	Summary

	Correctness Proof of Algorithm
	Partial Correctness
	Total Correctness
	Summary

	Completeness of Reconstructed Data
	Limitation of the Reconstruction Algorithm
	Absence of Evidence
	Reconstruction from Interaction
	Reconstruction Through Iteration
	Summary

	Reconstruction of a Database Schema
	Compromising a Database Schema
	Localized Changes to Data
	Changes to Blocks of Data
	Changes to Links Between Blocks of Data

	Schema Reconstruction
	Reconstruction from Previous Manipulations
	Reconstruction Using Inverse Relational Algebra
	Reconstruction Through Consistencies

	Summary

	Effectiveness of Database logs in Reconstruction
	Default Log
	MySQL
	Microsoft SQL Server
	PostgreSQL
	Oracle
	DB2
	Sybase
	Summary of Default Log Settings

	Ideal Log Settings
	Ideal Log Requirement for Database Forensics Reconstruction
	Challenges and Solution for Ideal Logging Preferences
	Identification of Possible Ideal Logging Preferences

	Database Forensics Reconstruction Dimensions and Log Files
	Modified Databases and the Ideal Log Setting
	Compromised Database and the Ideal Log Setting
	Damaged/Destroyed Databases and the Ideal Log Setting

	Summary

	Conclusion
	Thesis Summary
	Main Contributions
	Future Research

	SQL Log Conversion to RA Log
	Acronyms and Symbols
	Bibliography

