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Abstract

Inflation forecasts are a key ingredient for monetary policymaking - especially in an inflation
targeting country such as South Africa. Generally, a typical Dynamic Stochastic General
Equilibrium (DSGE) only includes a core set of variables. As such, other variables,e.g. such
as alternative measures of inflation that might be of interest to policymakers, do not feature
in the model. Given this, we implement a closed-economy New Keynesian DSGE model-based
procedure which includes variables that do not explicitly appear in the model. We estimate such
a model using an in-sample covering 1971Q2 to 1999Q4, and generate recursive forecasts over
2000Q1-2011Q4. The hybrid DSGE performs extremely well in forecasting inflation variables
(both core and non-modeled) in comparison with forecasts reported by other models such as
AR(1).
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1 Introduction

Forecasting inflation is a key component of an inflation targeting central bank such as the case of the
South African Reserve Bank, which adopted an inflation targeting framework since the February
of 2000. Essentially, a typical inflation targeting central bank uses its monetary policy instruments
(for example, the Repurchase (Repo) rate in South Africa) to bring inflation forecasts close to the
inflation target (Croce and Khan, 2000), which happens to be between 3 percent and 6 percent for
South Africa. Given this backdrop, accurate forecasting of inflation is important in the conduct of
monetary policy.

As tools for forecasting and policy analysis, Central Banks propose different Dynamic Stochastic
General Equilibrium (DSGE) models1 Schorfheide et al. (2010) argue that, unlike traditional
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system of equations models, the DSGE paradigm provides empirical models with a strong degree of
theoretical coherence. However, this comes at a cost: First, tight cross-equation restrictions result
in inferior fit compared to less restrictive time series models. Second, DSGE models only feature a
core set of macroeconomic variables e.g. real GDP, consumption, investment as well as wages, hours
worked, inflation and interest rate. Also, it is relatively easier to incorporate additional variables
of interest in traditional econometric models compared to DSGE models.

That being said, in practice, forecasts for macroeconomic variables that do not feature in the
DSGE model could be of interest to a researcher (Schorfheide et al., 2010). For instance, core
inflation, which excludes goods with volatile prices e.g. food and energy, is a gauge of the underlying
long-term trend of inflation. However, a typical DSGE specification does not include this variable.
In the same way, although unemployment is not included in a typical DSGE model framework,
it remains a key macroeconomic variable. For instance, unemployment is a persistent concern in
the South African economy (Amusa et al., 2013). As such, unemployment forecasts will provide
a framework for assessing the effectiveness of policy geared at job creation. Further, neither is a
variable, such as building plans passed, is included in a typical DSGE model. However as shown
by Aye et al., (2013), such a variable have historically played an important role in predicting South
African business cycles.

To address this issue, we implement the Schorfheide et al. (2010) DSGE model-based method
for forecasting variables that do not explicitly feature in the model. Essentially, Schorfheide et al.
(2010) use auxiliary equations to link the so-called non-core variables to the state variables of the
DSGE model. To apply this method, we proceed in three steps: (1) Bayesian estimation of the
DSGE model using the core variables as measurements; (2) based on the DSGE model parameter
estimates, we apply the Kalman filter to obtain estimates of the latent state variables given the
most recent information set; (3) we then use the filtered state variables as regressors to estimate
simple linear measurement equations with serially correlated idiosyncratic errors.

Our paper contributes to the existing and growing literature of forecasting macroeconomic
variables for South Africa using DSGE models, by being the first study to forecast both core
and non-core variables based on a DSGE model. According to Liu and Gupta (2007); Liu et
al. (2009); Liu et al. (2010) and Gupta and Kabundi (2011), Bayesian Vector Autoregressive
(BVAR) models tend to outperform DSGE models in forecasting key macroeconomic variables.
Nonetheless, Steinbach et al. (2009); Gupta and Kabundi (2010); Alpanda et al. (2011); and
Gupta and Steinbach (2013) show that DSGE models can compete with BVAR models when the
DSGE framework allows for open economy features and various kinds of nominal and real rigidities.
Also, Balcilar et al. (2013) apply a nonlinear DSGE model to South African macroeconomic data,
to show that the nonlinear DSGE model outperforms the linear model as well as a selection of VAR
models, thus highlighting the importance of incorporating nonlinearities in a DSGE framework to
account for regular structural changes in an emerging economy like South Africa.

The remainder of the paper is structured as follows: Section 2 presents the theoretical framework
of the DSGE model used in the empirical analysis. In Sections 3 and 4, we discuss the econometric
methodology and empirical results, respectively. Section 5 concludes the paper.
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2 Econometric Methodology

Consequently, the state space of the DSGE model2 is given by equation (25) and equation (28).
We follow the same econometric procedure in three steps implemented by Schorfheide et al.

(2010).

• We use Bayesian methods to estimate the linearized DSGE model on the seven core macroe-
conomic time series (output growth rate, consumption growth rate, investment growth rate,
nominal wage growth rate, 100× log hours, inflation, interest rates).

• We estimate so-called auxiliary regression equations that link the state variables associated
with the DSGE model to various other macroeconomic variables which are of interest to the
researcher but are not explicitly included in the structural DSGE model (non-core variables
such as PCE inflation, core PCE inflation, unemployment rate, building plans passed).

• We use the estimated DSGE model to forecast its state variables, and then map these state
forecasts into predictions for the core and non-core variables.

2.1 Bayesian Estimation of the DSGE model

Assuming that the innovations in equation (25), εt, are normally distributed, the likelihood function
for the DSGE model (p(Y T |θ), where Y T is a sequence of observations) can be evaluated using the
Kalman Filter.

The Kalman Filter also generates a sequence of estimates of the state vector ςt:

ςt|t(θ) = E
[
ςt|θ, Y t

]
, (1)

where Y t = [y1, .., yt] . The Bayesian estimation of the DSGE model combines a prior p(θ)
with the likelihood function p(Y T |θ) to obtain a joint probability density function for data and
parameters.

The posterior distribution is given by:

p(θ|Y T ) =
p(Y T |θ)p(θ)
p(Y T )

(2)

where

p(Y T ) =

∫
p(Y T |θ)p(θ)dθ (3)

The posterior is solved using the Markov Chain Monte Carlo (MCMC) methods as employed in
Schorfheide et al. (2010) and described in details in An and Schorfheide (2007). From the posterior
distribution p(θ|Y T ), we generate draws using a random-walk Metropolis Hastings algorithm.

2As suggested by the referee, we moved the section discussing the DSGE framework to the Appendix
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Table 1: Non-modelled and related DSGE model variables

Non-core variable DSGE model variable Transformation

PCE Inflation Final Good Inflation πt None

Core PCE Inflation Final Good Inflation πt None

Unemployment Rate Hours Worked Lt 0.05Lt

Building Plans Passed Investment it -0.06it

2.2 Non-core variables

The DSGE presented in Section 2 can predict for hours worked but does not include unemployment
as variable in the model. We assume Zt is a variable which is not included in the DSGE model
(non-core variable) even if it is of interest in a forecasting exercise.

Considering equation (27), we can recover St from the larger vector ςt using a selection matrix
M with the property St = Mςt .

Using the Kalman Filter, we use ς̂t|t to denote an estimate of the sequence ςt|t(θ), obtained by

replacing θ with the posterior mean estimate θ̂T .
Hence, Ŝt|t = Mς̂t|t and the auxiliary regression is as follows:

Zt = α0 + Ŝ′t|tα1 + ξt

ξt = ρξt−1 + ηt

ηt ∼ N(0, σ2
η) (4)

where ξt is a variable-specific noise process. We estimate auxiliary regression using Bayesian
methods.

This procedure follows the setup proposed by Schorfheide et al. (2010). The equation (4) can
be re-written in a quasi-differenced form as:

Z1 = α0 + Ŝ′1|1α1 + ξ1 (5)

Zt = ρZt−1 + α0(1− ρ) + [Ŝ′t|t − Ŝ′t−1|t−1ρ]α1 + ηt

t = 2, ..., T

We use the DSGE model to derive a prior distribution for the α’s for any Zt variables which are
linked to variables that are core in the DSGE. The prior means are based on the DSGE model’s
implied factor loadings for a model variable (the core variable) linked to the non-core variable. We
link the two measures of PCE inflation to the final good inflation πt, the unemployment rate to a
scaled version of log hours worked Lt, and building plans passed to scaled percentage deviations it
from its trend path.

Moreover, the priors take form as shown in Schorfheide et al. (2010):
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α ∼ N(µα,0, Vα,0)

ρ ∼ U(−1, 1)

ση ∼ IG(ν, τ)

We construct µα,0 using a population regression of the form:

µα,0 =
(
EDθ

[
S̃tS̃

′
t

])−1
EDθ

[
S̃tZ

∗∗
t

]
(6)

where S̃t = [1, S′t]
′, θ is replaced by its posterior mean θ̂T . E

D
θ is the expectation taken under

the probability distribution generated by the DSGE model, conditional on the parameter vector θ.
Z∗∗t is the variable from the DSGE chosen in the linkage between core and non-core variables.

The prior covariance matrix is diagonal with the following elements:

diag(Vα,0) =

[
λ0,

λ1
ω1
, ...,

λ1
ωj

]
where λ0 and λ1 are hyperparameters that determine the degree of shrinkage for the intercept

α0 and the loadings α1 of the state variable. We scale the diagonal elements of Vα,0 by ω−1j ,

j = 1, ...J, where ωj denotes the DSGE model’s implied variance of the jth element of Ŝt|t, as shown
in Schorfheide et al. (2010).

The procedure implemented can be interpreted as a factor model. The factors are given by the
state variables of the DSGE model, while the measurement equation associated with the DSGE
model describes how the core variables load on the factors. The random variable ξt in equation
(4)is an idiosyncratic error term. This setup introduced by Schorfheide et al. (2010) is a simplified
version of the approach introduced by Boivin and Giannoni (2006). The Boivin and Giannoni
(2006) methodology implies that factors are estimated as endogenous in the DSGE model, with
a computationally expensive procedure. Another way to introduce the idea of factors, combined
with DSGE model, is the DSGE-FAVAR as shown in Consolo et al. (2009). The DSGE-FAVAR
combines the hybrid DSGE-VAR à la Del Negro and Schorfheide (2004) with a Factor-Augmented
VAR representation, considering factors as exogenous variable respect to the DSGE model. The
auxiliary equations procedure of Schorfheide et al. (2010) is an alternative way to introduce the
latent variables with the linkage between the core macroeconomic variables from the DSGE and
the non-core variables.

2.2.1 Forecasting

Forecasts from the DSGE model are generated by sampling from the posterior predictive distribu-
tion of yT+h. For each posterior draw θ(i) we start from ς̂T |T (θ(i)) and draw a random sequence{
ε
(i)
T+1, ..., ε

(i)
T+h

}
. We then iterate the state transition equation forward to construct:

S
(i)
T+h|T = Φ1(θ(i))S

(i)
T+h−1|T + Φε(θ

(i))ε
(i)
T+h, (7)

h = 1, ...,H

ς
(i)
T+h|T = [S

(i)′

T+h|T , S
(i)′

T+h−1|TM
′
s(θ

(i))]′
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The measurement equation is employed to compute:

Y
(i)
T+h|T = A0(θ(i)) +A1(θ(i))ς

(i)
T+h|T . (8)

The posterior mean forecast ŶT+h|T is given by averaging the Y
(i)
T+h|T s.

As regards the non-core variable ZT+h, a draw from the posterior predictive distribution is

obtained as follows. Using the sequence S
(i)
T+1|T , ..., S

(i)
T+H|T constructed in equation (7), we iterate

the quasi-differenced version, equation (5) of the auxiliary regression forward:

Z
(i)
T+h|T = ρ(i)Z

(i)
T+h−1 + α

(i)
0 (1− ρ(i))

+[S
(i)′

T+1|T − S
(i)′

T+h−1|T ρ
(i)]α

(i)
1 + η

(i)
T+h

where the superscript i for the parameters of equation (4) refers to the ith draw from the

posterior distribution of ψ, and η
(i)
T+h is a draw from a N(0, σ

2(i)
η ). The point forecast ẐT+h|T is

given by averaging the Z
(i)
T+h|T s. We assume that the draws from the posterior distribution of θ

and ψ are independent; instead, we assume correlation in the joint predictive distribution of YT+h

and ZT+h, because the ith draw is computed from the same realization of the state vector S
(i)
T+h|T .

3 Empirical Results

3.1 Data Description

We include seven variables, measured at a quarterly frequency, in the vector of core variables that
is used for the estimation of the DSGE model: the growth rate of output, household consumption,
capital investment, nominal wages, hours worked, inflation and the nominal interest rate. Based on
data availability, we use the period 1971Q2-2011Q4 for our analysis. The data for these variables
was obtained from the South African Reserve Bank, Actuarial Society of South Africa and Statistics
South Africa. Real output is computed by dividing current gross domestic product by the South
African population of 16 years and older3 as well as the GDP deflator. Household consumption
is defined as nominal final consumption expenditure by households minus nominal final household
consumption expenditure of durable goods. The resulting variable is then divided by the population
of 16 years and older and deflated by the GDP deflator. Capital investment is defined as nominal
gross fixed capital formation plus nominal final household consumption expenditure of durable
goods. Investment is also deflated by using the population and the GDP deflator. Because there
is no complete series of hours worked in South Africa, we follow a methodology used by Touna-
Mama and Viegi (2012), where they use a production function method to extract hours worked
from a series of capacity utilization in the manufacturing sector. The basic idea is linking capacity
utilization to hours worked, considering that at business cycle frequency the only variable is labor.
We then take the log of the series and multiplied by 100 so that all values can be interpreted as
percentage deviations from the mean. Nominal wages are computed by dividing the total wage
bill by the product of the population measure and the computed measure of average hours. The

3The population data for South Africa is only available annually and as a result, the annual data was interpolated
to obtain quarterly data.
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inflation rate is derived as the log difference of the GDP deflator and converted into percentages.
For the nominal interest rate, we use the annualized 91-day Treasury bill rate.

For non-core variables – which are also obtained from the South Africa Reserve Bank and
Statistics South Africa, we consider household consumption expenditure inflation, core household
expenditure inflation, the (first-differenced) unemployment rate, and the building plans passed,
since unlike Shorfheide et al., (2010), South Africa does not have data on housing starts. For the
household consumption expenditure inflation, we use final consumption expenditure by households,
while for core household consumption expenditure inflation; we use final consumption expendi-
ture by households excluding food, non-alcoholic beverages and energy4. The unemployment rate
measure is the official unemployment rate of which is the proportion of the labor force5 that is
unemployed. The building plans passed variable is defined as the quarter-on-quarter growth rate
of the value of recorded building plans passed by large municipalities. Figures 1 and 2 provides the
plots for the core and non-core variables.

We use the period 1971Q2-2011Q4 for our analysis, which corresponds to a total sample of
163 observations on each series. We use the first 115 observations (1971Q2-1999Q4) for in-sample
estimation, while the remaining 48 observations (2000Q1-2011Q4) are used for out-of-sample fore-
casting, the starting point of which follows the literature on forecasting using DSGE-models, and
corresponds to the start of the inflation targeting regime.

4The data for disaggregated household consumption expenditure for South Africa is only available annually and
as a result, the annual data for food, non-alcoholic beverages and energy were interpolated to obtain quarterly data.

5The labor force comprises all persons who are employed and unemployed aged 15 to 64 years.
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Figure 1: Core variables
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Figure 2: Non-core variables
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3.2 DSGE Priors

As far as the DSGE priors are concerned, we follow Schorfheide et al. (2010). We adjust priors
of some parameters as in Alpanda et al. (2010) and Alpanda et al. (2011), considering the South
African economy.

Para (1) and Para (2) in Tables 2 and 3 list the means and standard deviations for the Beta,
Gamma, and Normal distributions: the upper and lower bound of the support for the Uniform
distribution; and s and ν for the Inverse Gamma distribution where pIG (σ|ν, s) ∝ σ−(ν+1)e−νs

2/2σ2

.
The joint prior distribution is obtained as a product of the marginal distributions tabulated in the
table, with this product being truncated at the boundary of the determinacy region. Posterior
summary statistics are computed based on the output of the posterior sampler. The following
parameters are fixed: δ = 0.019, λw = 0.3. Estimation sample: 1971Q2 to 2011Q4.

For the Bayesian Estimation of the equation (5), we set the τ hyperparameter (interpreted as
the prior standard deviation of the idionsyncratic error ξ1), to 0.12 (PCE inflation), 0.11 (core PCE
inflation), 0.40 (unemployment rate), and 0.10 (housing starts). These values imply that the prior
variance of ξ1 is about 15% to 20% of the sample variance of Z1. We set the degrees of freedom
parameter ν of the inverted gamma prior for ση equal to 2, and we set for λ0 = λ1 = λ three values:
1.00, 0.10, and 10−5 as implemented in Schorfheide et al. (2010). Note that the choice of λ = 10−5

is to have a dogmatic prior under which the posterior estimate and prior mean coincide. Increasing
λ, we allow the factor loading coefficients α to differ from the prior mean. In other words, higher
is the value of λ, the more is the variation in the variable explained by the ˆs′t|tα̂1, where α̂1 is the

posterior estimate of α1. That is, higher is λ, the more information is contained in the recursively
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estimated recovered states of the DSGE model based on the core variables. This is in fact what we
ideally want when predicting the non-core variables, since otherwise a small value of λ would imply
that the recovered states contain no information and the non-core variables can be predicted based
on their AR(1) structure, as can be understood from equation 5.

Table 2: Prior and posterior of DSGE model parameters (Part 1)

Name Prior Posterior

Density Para (1) Para (2) Mean

Monetary Policy Parameters

400π∗ Normal 3.00 1.50 4.71

ψ1 Gamma 1.50 0.40 1.42

ψ2 Gamma 0.20 0.10 0.003

ρR Beta 0.20 2 0.40

Household

h Beta 0.70 0.05 0.72

a′′ Gamma 0.20 0.10 0.16

νl Gamma 2 0.75 0.42

ςw Beta 0.60 0.20 0.66

400(1/β − 1) Gamma 2.00 1.00 1.11

Firms

α Beta 0.10 0.10 0.04

ςp Beta 0.60 0.20 0.65

S′′ Gamma 10 1.50 12

λf Gamma 0.08 0.15 0.10
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Table 3: Prior and posterior of DSGE model parameters (Part 2)

Name Prior Posterior

Density Para (1) Para (2) Mean

Shocks

400γ Gamma 2 2 1.22

g∗ Gamma 0.30 0.10 0.27

ρa Beta 0.2 0.1 0.02

ρµ Beta 0.80 0.50 0.73

ρλf
Beta 0.60 0.20 0.99

ρg Beta 0.80 0.05 0.86

ρb Beta 0.60 0.20 0.98

ρφ Beta 0.60 0.20 0.97

σa Inverse Gamma 4 2 4.2

σµ Inverse Gamma 0.75 2 0.92

σλf
Inverse Gamma 0.75 2 0.81

σg Inverse Gamma 2 2 3.71

σb Inverse Gamma 0.75 2 2.42

σφ Inverse Gamma 4 2 4.80

σR Inverse Gamma 0.20 2 0.40

3.3 Forecasting of Core Variables

Table 4 reports the out-of-sample root mean squared error (RMSE) statistics for the DSGE model’s
core variables, that is, growth rates of output, household consumption, capital investment as well
as nominal wages, a measure of hours worked, the GDP deflator inflation and nominal interest rate
for horizons h = 1, h = 2, h = 4, and h = 12.

We evaluate the DSGE model’s forecasting performance by comparing the RMSEs associated
with its forecasts to those associated with an AR(1) model recursively estimated by OLS.6

6As in Schorfheide et al. (2010), the h-step forecast is generated by iterating one-step ahead predictions forward,

ignoring parameter uncertainty: ŷi,T+h|T = β̂0,OLS + β̂1,OLS ŷi,T+h|T where the OLS estimators are obtained from
the regression yi,t = β0 + β1yi,t−1 + ui,t.
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Table 4: RMSEs comparison: DSGE model vs. AR(1)

Series Model h=1 h=2 h=4 h=12

Output growth (Q%) DSGE 1.78* 2.31 2.51*** 2.35*

AR(1) 2.12 2.13 1.78 1.86

Consumption growth (Q%) DSGE 1.88*** 2.00*** 2.36*** 1.88***

AR(1) 1.32 1.31 1.33 1.41

Investment growth (Q%) DSGE 2.48 3.34* 3.42 2.35**

AR(1) 2.72 2.60 2.67 2.93

Nominal wage growth (Q%) DSGE 0.02** 0.04** 0.07*** 0.18***

AR(1) 0.02 0.03 0.04 0.07

100xlog hours DSGE 2.86** 2.74*** 2.24 2.72

AR(1) 2.43 2.43 2.45 2.53

Inflation (Q%) DSGE 1.50 1.46 1.39 1.28*

AR(1) 1.53 1.53 1.58 1.67

Interest rates (A%) DSGE 0.85* 1.47 2.61* 3.98*

AR(1) 0.74 1.31 2.05 3.08

Note: We report RMSEs for the DSGE and AR(1) models. Numbers in boldface indicate a lower RMSE for the

DSGE model. *, **, *** denote 10%, 5% or 1% significance of the two-sided modified Diebold-Mariano test of

equal predictive accuracy under quadratic loss (DSGE vs AR(1)). The RMSEs are computed based on recursive

estimates starting with the sample 1971Q2 to 1999Q4 and ending with the samples 1971Q2 to 2011Q3 (h = 1),

1971Q2 to 2011Q2 (h = 2), 1971Q2 to 2010Q4 (h = 4), and 1971Q2 to 2008Q4 (h=12), respectively. The

h-step-ahead growth rate (inflation) forecasts refer to percentage changes between the periods T+h-1 and T+h.

Following Schorfheide et al. (2010), we use the Harvey, Leybourne, and Newbold (1998) variant
of the Diebold-Mariano (1995) test for equal forecast accuracy of the DSGE and AR(1) models,
using a quadratic loss function. On one hand, as shown in Table 4, the RMSE statistics for 1, 2, 4
and 12 quarters ahead forecasts of the GDP deflator, obtained from the estimated DSGE model are
lower than the corresponding RMSEs of forecasts associated with the AR(1) model. Also, we note
that, for the estimated DSGE models, the forecast accuracy improves at longer horizons. Therefore,
compared to the AR(1) model, the DSGE model performs better in forecasting the GDP deflator
inflation.

On the other hand, when comparing the DSGE model’s forecasts of the other core variables
and the corresponding forecasts associated with the AR(1), the outcome is mixed. For instance,
the RMSE statistic for one quarter ahead forecast of the growth rate of output obtained from the
estimated DSGE model is lower than the comparable RMSE statistic associated with the AR(1)
model forecast. However, the AR(1) model performs better in forecasting the growth rate of output
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at longer horizons, that is h = 2, h = 4, and h = 12. In the same vein, it appears that the DSGE
model outperforms the AR(1) model in forecasting the growth rate of capital investment at h = 1
and h = 12. Considering h = 1, h = 2, h = 4, and h = 12, RMSE statistics for forecasts
of household consumption growth obtained from the estimated DSGE model are higher than the
comparable RMSEs associated with the AR(1) model’s forecasts. Therefore, the DSGE models fails
to outperform the AR(1) model in forecasting the growth in household consumption. Lastly the
DSGE model’s forecast of nominal wage growth and interest rate are better than the corresponding
AR(1) model’s forecast only for a one-quarter ahead horizon. Also, the DSGE model can forecast
the hours worked better than the AR(1) model only for h = 4.7

3.4 Forecasting of Non-core Variables

Table 5 presents forecast error statistics for non-core variables - that is, personal consumption
expenditure (PCE) inflation, core PCE inflation, the unemployment rate and building plans passed,
obtained from estimated auxiliary regressions as in Schorfheide et al. (2010).

We compare the RMSE statistics of forecasts obtained from the auxiliary models to two alter-
native benchmark models: (1) an AR(1) model for Zt estimated using OLS (we compute h-step
forecasts by iterating one step ahead predictions forward) and (2) a multi-step least squares regres-
sion of the form: zt = β0 + y

′

t−hβ1 + zt−hβ2 + ut which we estimate for h = 1, h = 2, h = 4, and
h = 12.

Generally, RMSE statistics associated with the auxiliary regression models forecasts of PCE
inflation are consistently lower than the corresponding RMSEs associated with the AR(1) or multi-
step regression model’s forecast over longer horizons, that is h = 4, and h = 12. The preferred
choice of λ varies depending on the horizon. To illustrate, λ = 1 is the preferred choice for a
one-step ahead forecast. The larger the value of λ, the more of the variation in the variable is
explained by the DSGE model’s latent state variables. On the contrary, the lowest value of λ,
that is 10−5 means that the idiosyncratic error term essentially captures the differences between
the DSGE model variables and the related non-core variables. The other preferred choices and the
corresponding forecast horizons are as follows: λ = 0.1 for h = 2 and h = 4, as well as λ = 10−5 for
h = 12. In this last case, the idiosyncratic error term essentially captures the discrepancies between
the DSGE model variables and the related non-core variables for the 12 quarters-ahead forecast of
PCE inflation.

The auxiliary regression models attain a lower RMSE than the AR(1)or multi-step regression
benchmarks for core PCE inflation for h = 1, h = 2, h = 4, and h = 12. The preferred choice is
λ = 1 for h = 1, h = 2 and h = 12. At these horizons, the variation in the variable is explained
by the DSGE model’s latent state variables. On the other hand λ = 10−5 is the preferred choice
for h = 4. Also, the auxiliary models (for λ = 1 and λ = 0.1) perform better than the AR(1)or
multi-step regressions benchmark in forecasting building plans passed. Overall, the preferred choice
is the specification with λ = 1. On the other hand, RMSE statistics associated with the auxiliary

7In addition to comparing the DSGE model’s performance in forecasting core variables to that of the bench-
mark autoregressive AR(1) model, we also considered the forecast performance of the Vector Autoregressive (VAR),
Bayesian VAR (BVAR) models as well as forecast combination based on the simple mean of the forecasts from
the AR, VAR and BVAR, all estimated with one lag. On the whole (for h = 2, h = 4 and h = 12), we find that
DSGE-based forecasts for the inflation variable are still associated with smallest forecast errors compared to the other
benchmarks. However, for the other variables the BVAR and the forecast combination method tends to outperform
the other models. Details of these results are available upon request from the authors.

13



regression models’ forecasts of the unemployment rate are lower than the RMSEs obtained for
forecasts based on the AR(1)or multi-step regression only in the case involving a one quarter-ahead
forecast with λ = 1.

14



Table 5: RMSEs for auxiliary regressions

Series Model λ h=1 h=2 h=4 h=12

PCE inflation (Q%) Aux 1.00 0.97 1.08 0.91** 0.79***

Aux 0.10 1.06 0.93** 0.86*** 0.83***

Aux 10−5 0.98 0.98** 0.98*** 0.70***

Reg 1.03 1.06*** 1.03*** 1.48

AR(1) 1.04 1.28 1.40 1.51

Core PCE inflation (Q%) Aux 1.00 1.09 1.06** 1.17* 0.97***

Aux 0.10 1.27 1.41 1.35 1.28

Aux 10−5 1.20 1.30 1.15*** 1.09**

Reg 1.20 1.31* 1.22*** 1.64

AR(1) 1.29 1.46 1.52 1.63

Unemployment Rate (Q%) Aux 1.00 0.73 0.63 0.74 0.89

Aux 0.10 0.80 0.75* 0.81 0.95

Aux 10−5 0.95** 0.88** 0.92* 1.05

Reg 0.66 0.58 0.59 0.76

AR(1) 0.74 0.55*** 0.64 0.90

Building Plans Passed (A%) Aux 1.00 0.41 0.40 0.41 0.38

Aux 0.10 0.61 0.59 0.59 0.54

Aux 10−5 1.95 1.94 1.87 1.94

Reg 1.86 1.89 1.86 1.37

AR(1) 1.51** 1.49** 1.49 1.52

We report RMSEs for the DSGE, AR(1) process, and an alternative model (a multi-step least squares regressions).

Numbers in boldface indicate a lower RMSE of the DSGE model with respect AR(1) and/or the multi-step

regression. *, **, *** denote 10%, 5% or 1% significance of the two-sided modified Diebold-Mariano test of equal

predictive accuracy under quadratic loss (DSGE vs AR(1) and AR(1) vs multi-step). The RMSEs are computed

based on recursive estimates starting with the sample 1971Q2 to 1999Q4 and ending with the samples 1971Q2 to

2011Q3 (h = 1), 1971Q2 to 2011Q2 (h = 2), 1971Q2 to 2010Q4 (h = 4), and 1971Q2 to 2008Q4 (h = 12),

respectively. The h-step-ahead growth rate (inflation) forecasts refer to percentage changes between the periods

T+h-1 and T+h.
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3.5 Ex-ante forecasting of inflation variables

Given the fact that the hours worked series for South Africa is only available up to the fourth quarter
of 2011, we estimate the models over the sample 1971Q2 to 2011Q4. Thereafter, we estimate the
ex-ante forecasts8 over the period 2012Q1 to 2013Q4. Note that here, we do not estimate the model
recursively over 2012Q1-2013Q4, but produce forecasts based on a one-time estimation of the model
till 2011Q4 beginning in 1971Q2. This is, in some sense, an acid test of the ability of the models in
predicting possible turning points in the data.

Figure 3 plots the ex-ante forecasts for the inflation (GDP deflator), Core PCE as well as
PCE inflations (obtained from the DSGE and other benchmark models) together with their actual
(realised) values over the period 2011Q4 to 2013Q4. According to Figures 3(a) and 3(b), ex-ante
forecasts obtained from the predictive regression model perform the best in closely tracking both
actual PCE and actual Core PCE inflation series. On the other hand, Figure 3(c) shows that, in
general, the DSGE model’s ex-ante forecasts track actual GDP deflator inflation better than the
benchmark AR(1) model.

Figure 3: Ex-ante inflation forecasts
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8We only report forecasts for inflation variables - our variables of concern in this paper. However, forecasts for
all variables are available upon request from authors. However, it must be realized that we cannot compare the
generated forecasts with actual data for hours worked over 2012Q1-2013Q4.
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4 Conclusion

We follow Schorfheide et al. (2010) by applying a DSGE-based method for forecasting non-modeled
variables on South African macroeconomic data. Our prime interest is forecasting inflation. The
results show that forecasts of various measures of inflation (that is, GDP deflator inflation, PCE
inflation and core PCE inflation) based on the DSGE-based procedure are superior to those obtained
from statistical benchmark models. Essentially, the DSGE-based forecasts on inflation variables are
associated with lower forecast errors compared to forecasts obtained from benchmark models.

Our findings are in line with Liu et al. (2009), Alpanda et al. (2011) and Gupta and Steinbach
(2013). These studies develop more sophisticated frameworks that allow for various real and nominal
rigidities in closed and small open economy NKDSGE models for South Africa and find that DSGE-
based inflation forecasts tend to outperform those obtained from BVAR and VAR models. In
addition, Balcilar et al. (2013) show that by including non-linearities in the DSGE framework
to account for structural changes in South Africa’s economy, Non-linear DSGE-based forecasts
outperform those from the linear counterpart, as well as VAR models. In the same breadth, other
studies (e.g. Kanyama and Thobejane, 2013; Gupta and Hartley, 2013; Aron and Muellbauer,
2012; Pretorius and van Rensburg, 1996) in the literature comparing the performance of various
model in forecasting South African inflation conclude that model specifications beat benchmark
time-series models (e.g. ARIMA and Vector Autoregressive (VAR)) models in forecasting South
African inflation.

Given the inflation targeting regime in South Africa, the DSGE framework for forecasting non-
modeled inflation variables proves to be a relevant tool in the conduct of monetary policy. In fact,
a non-modeled variable such as the core PCE inflation contains important information about the
underlying long-term inflation trend which is of interest to policy makers. On the other hand, the
DSGE model’s forecast of other macroeconomic variables are competitive when compared to the
statistical benchmark models.
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Appendix: The DSGE Model

We consider a medium-scale New Keynesian model which features sticky nominal price and wage
contracts, capital accumulation, investment adjustment costs, variable capital utilization, and habit
formation. We follow Schorfheide et al. (2010) who use a medium-scale DSGE model based on the
models proposed by Smets and Wouters (2003, 2007), Christiano et al. (2005), and Del Negro et
al. (2007).

In the economy, there is a continuum of firms which combine capital and labor to produce
differentiated intermediate goods. The production function is Cobb-Douglas in nature with capital
elasticity α and total factor productivity (TFP) At. The TFP is assumed to be a non-stationary
process and we take its growth rate, at = ln(At/At−1),which is assumed to have a mean of γ. All
variables of the model, (output, consumption, investment, capital, and real wage) are detrended by
At. We define the log-deviation of each variables from the steady state of the model.

The intermediate goods producers hire labor and rent capital in competitive markets, and face
identical real wages, wt, and rental rates for capital, rkt . According to cost minimization, all firms
produce with the same capital-labor ratio:

kt − Lt = wt − rkt (9)

and the marginal costs are:

mct = (1− α)wt + αrkt (10)
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The intermediate goods producers sell their output to perfectly competitive final good producers,
which aggregate the inputs according to a CES function. The profit maximization of the final good
producers implies that:

ŷt (j)− ŷ = −

(
1 +

1

λfeλ̃f,t

)
(pt (j)− pt) (11)

where ŷt (j)− ŷ and pt (j)− pt are the quantity and price for the good j relative to the quantity
and price of the final good. We consider the zero-profit condition for the final good producers
to determine the price pt of the final good. Since the price elasticity of the intermediate goods
affects the mark-up that intermediate goods producers can charge over marginal costs, the mark-up
shock, λ̃f,t , is assumed time-varying. As in Calvo (1983), we assume that a certain fraction of
the intermediate goods producers ζp is unable to re-optimize their prices in each period. These
firms adjust their prices mechanically according to steady state inflation π∗. Hence, there is no
price dispersion in the steady-state. All other firms choose their price to maximize the expected
discounted sum of future profits, which leads to the New Keynesian Phillips Curve:

πt = βEt [πt+1] +
(1− ζpβ) (1− ζp)

ζp
mct +

1

ζp
λf,t (12)

where πt is inflation and β is the discount rate.
The log-linearized aggregate production function is:

ŷt = (1− α)Lt + αkt (13)

Considering, equations (10), (9), and (13), the labor share lsht equals the marginal costs in
terms of log-deviations, lsht = mct.

The economy is populated by a continuum of households with identical preferences, which are
separable in consumption, leisure, and real money balances. The parameter h captures the degree
of (internal) habit formation in consumption. The utility function at period t is a function of
ln(Ct−hCt−1). Households supply monopolistically differentiated labor services which are aggregate
according to a CES function that leads to a demand elasticity 1 + 1/λw.

The composite labor services are then supplied to the intermediate goods producers at a real
wage wt.

We assume that in each period, a certain fraction ζw of households is unable to re-optimize
their wages, in this way we introduce nominal wage rigidity. The households adjust their nominal
wage by the steady state wage growth e(π∗+γ). All other households re-optimize their wages. The
first-order conditions imply that:

w̃t = ζwβEt [w̃t+1 + ∆wt+1 + πt+1 + at+1]

+
1− ζwβ

1 + υl(1 + λw)/λw

×
(
υlLt − wt − ξt + b̃t +

1

1− ζwβ
φt

)
, (14)

where w̃t is the optimal real wage relative to the real wage for aggregate labor services, wt,
and υl is the inverse Frisch labor supply elasticity in a model without wage rigidity (ζw = 0) and
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differentiated labor. b̃t is a shock to the household’s discount factor; instead, φt is a preference
shock that affects the household’s intratemporal substitution between consumption and leisure.

The real wage paid by intermediate goods producers evolves according to:

wt = wt−1 − πt − at +
1− ζw
ζw

w̃t. (15)

Households share the same marginal utility of consumption ξt, which is given by the following
expression:

(eγ − hβ) (eγ − β) ξt = −
(
e2γ + βh2

)
ct

+βheγEt [ct+1 + at+1]

+heγ(ct−1 − at) + eγ (eγ − h) b̃t

−βh (eγ − h)Et

[
b̃t+1

]
(16)

where ct is consumption. In addition to state-contingent claims, households accumulate three
types of assets: one-period nominal bonds that yield the return Rt, capital kt, and real money
balances. Since the preferences for real money balances are assumed to be additively separable
and monetary policy is conducted through a nominal interest rate rule, money is block exogenous,
hence in the empirical analysis there will not be the households’ money demand equation as in
Schorfheide et al. (2010).

The first order condition with respect to bond holdings delivers the standard Euler equation:

ξt = Et [ξt+1] +Rt − Et [πt+1]− Et [at+1] . (17)

Capital accumulates according to the following law of motion:

kt = (2− eγ − δ)
[
kt−1 − at

]
+ (eγ + δ − 1)

[
it + (1 + β)S′′e2γµt

]
, (18)

where it is investment (which is subject to adjustment costs), δ is the depreciation rate of capital,
and µt can be interpreted as an investment-specific technology shock, and S′′ denotes the second
derivative of the investment adjustment cost function at the steady state.

The optimal investment satisfies the following first-order condition:

it =
1

1 + β
[it−1 − at] +

β

1 + β
Et [it+1 + at+1]

+
1

(1 + β)S′′e2γ
(
ξkt − ξt

)
+ µt, (19)

where ξkt is the value of the installed capital, which evolves according to:

(
ξkt − ξt

)
= βe−γ (1− δ)Et

[
ξkt+1 − ξt+1

]
+Et

[(
1− (1− δ)βe−γ

)
rkt+1 − (Rt − πt+1)

]
. (20)
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The capital utilization ut is variable, and rkt represents the rental rate of effective capital kt =
ut + kt−1. The optimal degree of utilization is determined by:

ut =
rk∗
a′′
rkt . (21)

Here a′′ is the derivative of the per-unit-of-capital cost function a(ut), evaluated at the steady
state utilization rate. The central bank follows a standard feedback rule:

Rt = ρRRt−1 + (1− ρR) (ψ1π1 + ψ2ŷt) + σRεR,t, (22)

where εR,t represents monetary policy shocks.
The aggregate resource constraint is given by:

ŷt = (1 + g∗)

[
c∗
y∗
ct +

i∗
y∗

(
it +

rk∗
eγ − 1 + δ

ut

)]
+ gt. (23)

Here c∗
y∗

and i∗
y∗

are the steady state consumption-output and investment-output ratios, respec-

tively, and g∗
(1+g∗)

corresponds to the government’s share of the aggregate output. The process gt
can be interpreted as the exogenous government spending shock. We assume that fiscal policy is
passive, i.e. the lump-sum taxes are used to satisfy its period budget constraint.

There are seven exogenous disturbances in the model, and six of them are assumed to follow
AR(1) processes:

at = ρaat−1 + (1− ρa)γ + σaεa,t

µt = ρµµt−1 + σµεµ,t

λf,t = ρλf
λf,t−1 + σλf

ελf ,t (24)

gt = ρggt−1 + σgεg,t

bt = ρbbt−1 + σbεb,t

φt = ρφφt−1 + σφεφ,t.

We assume that the innovations of these exogenous processes, as well as the monetary policy
shock εR,t, are independent standard normal random variates, and collect them in the vector εt.
We stack all of the DSGE model parameters in the vector θ.

All these equations are a linear rational expectations system solved numerically using the algo-
rithm proposed by Sims (2002).

The solution is represented by the following transition equation:

St = Φ1(θ)St−1 + Φε(θ)εt. (25)

The coefficients of the matrices Φ1 and Φε are functions of the DSGE model parameters θ, and
the vector St is given by:

St = [ct, it, kt, Rt, wt, at, φt, µt, bt, gt, λf,t]
′.

The variables ct, it, kt, Rt, and wt are endogenous state variables, whereas the remaining
elements of St are exogenous state variables.

The measurement equation which links the observables Yt to the states St is composed of:
quarter-to-quarter growth rates (measured in percentages) of real GDP, consumption, investment
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and nominal wages, as well as a measure of the number of hours worked, GDP deflator inflation,
and the federal funds rate. Since some of the observables include growth rates, the set of model
states St is augmented by lagged values (St−1) of output, consumption, investment, and real wages.

According to the DSGE model solution, the lagged output, Ŷt−1, can be expressed as a linear
function of the elements of St−1. Hence, we can write:[

Ŷt−1, ct−1, it−1, wt−1

]′
= Ms (θ)St−1 (26)

for a suitably chosen matrix Ms (θ), and we can define:

ςt = [S′t, S
′
t−1M

′
s (θ)]′. (27)

The measurement equations are:

Yt = A0 (θ) +A1 (θ) ςt (28)
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