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Abstract

In this thesis we design and implement finite volume schemes to approximate the solution

of 1-dimensional (partial) differential equations. Most of these partial differential equations

(PDEs) are made up of not only mathematically interesting but also physically relevant terms

such as the hyperbolic convective and parabolic diffusive operators. The coupling of higher

order, linear and nonlinear operators and the presence of a small parameter multiplying

the highest derivative imposes some stiffness into the equations thereby making both their

numerical and mathematical analysis interesting but very challenging. For example, singu-

larly perturbed second order ordinary differential equations (ODEs) possess boundary layers

and/or oscillatory solutions which make their numerical approximation by difference-type

schemes expensive.

We design two uniformly convergent finite volume schemes for a singularly perturbed

ODE: the Schrödinger equation. The first scheme is based on the nonstandard finite differ-

ence (NSFD) method which is known to preserve the qualitative properties of the physical

model and the second is based on boundary layer analysis.

We employ fractional splitting method for the analysis of higher order equations in order

to isolate the linear and nonlinear terms thereby resolving the stiffness in the equation. The

nonlinear hyperbolic term is solved by shock capturing schemes while the fourth order linear

parabolic term is handled by A-stable schemes. We also utilize the idea of the NSFD method

to design a scheme for the hyperbolic, nonlinear parabolic and the linear fourth order PDEs.

Each of the terms is solved sequentially within every time step and their solutions are pieced

together in such a way as to preserve the properties of the original equations.

We observe uniform convergence with better approximation at relatively low computation

cost when the Schrödinger equation was solved by the proposed schemes. We also examined

the computational strength of our schemes on two fourth order equations: the Kuramoto-

Sivashinsky equation and Cahn-Hilliard equation. We studied the effect of combining differ-

ent schemes for each of the split sub-problems on the convergence of the fractional splitting

scheme. We are able to reproduce all the expected properties of the selected equations.

We observed a better convergence when the nonstandard finite volume method was applied

to these PDEs. Throughout this work, numerical simulations are provided to validate the

computational power of the proposed schemes.
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Chapter 1

Introduction

In this thesis, numerical investigations of 1-dimensional singularly perturbed (partial) dif-

ferential equations are presented. The finite volume method is employed throughout. Each

chapter represents scientific contribution in form of published, accepted, submitted or work

in progress.

The real world is filled with different challenges ranging from social, physical and engi-

neering sciences. Reliable mathematical models offer the cheapest way of investigating these

challenges. These mathematical models range from algebraic, differential, integral, algebraic-

differential, algebraic-integral or differential-integro equations. Designing well-possed math-

ematical models is essential so as to provide realistic solutions under reasonable and dy-

namically consistent assumptions. Surprisingly, most of these equations, because of their

complexity, as we will see later, are not amenable to analytical solutions. For this reason,

there is need to develop approximate numerical solutions for these models. The size of sys-

tem of equations, the number of unknowns, the nonlinearity in the equations and some other

complexities in such equations coupled with limited space, time and human capacity con-

strained individuals to make assumptions which at the end of the day reduces the strength

and quality of the results, and consequently their applicability to real life models. Thanks

to the advent of computer system, now we only need to develop numerical algorithms which

are able to handle such equations with more realistic assumptions.

Computational/numerical mathematics has gained much ground over a century now. It

is a strong tool for scientific computing and very useful in solving problems from physical,

economical, engineering and biological models. There are many different numerical methods

for solving mathematical models. We have among many, the finite element method, finite

difference method and finite volume method. Some of the common features of these methods

are as follows.

• Grid generation: This is the process by which the continuous space is represented by

discrete points/grids in a numerical domain.

1
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Chapter 1 Introduction 2

• Time discretization: The whole time interval is sub-divided into finite intervals called

time steps.

• Lastly, the continuous equation is transformed into algebraic system of equations.

In the present work, we will employ the finite volume method to approximate the solutions

of three important models

1. The Kuramoto-Sivashinsky equation,

2. The Cahn Hilliard equation,

3. The Schrödinger equation.

This will help us to treat each of the differential equation models in their integral forms.

The process of discretization will be discussed in the next sections. Appeal is made to the

fractional splitting method for its stability and the nonstandard finite difference method for

their qualitative stability, monotonicity and positivity preserving properties.

1.1 Higher order equations

Pattern formation resulting from phase transition has been observed in alloys, glasses, poly-

mer solutions, binary liquid mixtures, ecological contexts among many. The fourth order

Cahn-Hilliard equation,

ut + γuxxxx = φ(u)xx + δuux (a < x < L, 0 < t), (1.1)

where

φ(u) = αu3 + βu2 + κu, (1.2)

has been a successful model for such transitions (see for example [18, 19, 62] and the references

therein). The research into the Cahn-Hilliard equation (1.1) has been documented in the

literature. The authors in [19] established the global existence or blow up in a finite time of

problem (1.1)-(1.2) when δ = 0 under some certain conditions. They observed that if α > 0,

there exists a unique solution for any initial data u0 ∈ H2 and satisfying ux(0, t) = 0 =

ux(L, t), but the solution must blow up in finite time for large initial data if α < 0. Along

side this, they noted that if γ > L2/π2 and the initial data is small, there will be a unique

global solution which decays to the constant M as t→ ∞ no matter the sign of α. This was

later verified in [18] via the Galerkin finite element method provided that
∫

I

(F(u0)− Fm)dx+
γ

2
|u0|21,

is sufficiently small, F(u0) > Fm ∀x, where Fm is of the local minimal of F(s) on R, M is

sufficiently close to um, where Fm = F(um) and the seminorm ‖Dsv‖ is denoted by |v|s. Next,
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Chapter 1 Introduction 3

a semi-discrete finite element scheme for the solution of the Cahn-Hilliard equation (1.1) -

(1.2) was derived in [20]. They also derived optimal order error bounds in various norms.

The Cahn-Hilliard equation (1.1) with boundary conditions u(0, t) = u(1, t) = uxx(0, t) =

uxx(1, t) = 0 was considered in [16]. They showed the existence and uniqueness of solution

based Faedo-Galerkin semi-discrete scheme and also presented a new finite element based

fully discrete scheme which has a Lyapunov functional. The Lyapunov functional helped

them to obtain point-wise estimate of the solution.

These theoretical results were verified numerically by several authors (see [12, 13, 14, 22,

48] among others). Eyre [22] studied the solution of the Cahn-Hilliard equation (1.1) em-

ploying a splitting method in which the contractive and expansive terms of the equation are

separated across the time step. They noted that the flops reported in their work do not di-

rectly apply to solving the Cahn-Hilliard equation in more than one spatial dimension. Later,

their type of splitting was employed in [13] to solve the Cahn-Hilliard equation subject to free

boundary condition and showed that unconditionally gradient stability is achieved in one,

two and three dimensions with large time steps. Recently, Cueto-Felgueroso and Peraire [12]

studied numerically the two dimensional phase separation problem governed by the Cahn-

Hilliard equation using a time adaptive procedure. They were able to provide a quantitative

characterization of the different time scales present in phase separation processes. The work

in [85] on the Cahn-Hilliard equation with degenerate mobility enjoyed the use of tanh, ho-

motopy perturbation and Adomian decomposition methods. The tanh method was used to

find the traveling wave solution while the main equation was solved by the homotopy per-

turbation and the Adomian decomposition separately. The work of Dehghan and Mirzaei

[14] reproduce most of the properties of the Cahn-Hilliard equation. The authors employed

a numerical method based on the boundary integral equation and dual reciprocity methods.

Most recently, Lee et al. [48] introduced a gradient stable scheme to solve the N-component

Cahn-Hilliard system. The method helped them to reduce the N-component system to a sys-

tem of N − 1 binary Cahn-Hilliard equations which they solved with the aid of a nonlinear

multi grid method.

If δ > −
√
2, γ = 1, β = 0, the asymptotic solution of equation (1.1) takes the form

of a valley and is called a kink while it takes the form of a hill (anti-kink) if δ <
√
2

[26]. The occurrence of a kink and anti-kink together is referred to as kink-anti-kink pair.

In 1996, Emmott and Bray [21] studied the Cahn-Hilliard equation (1.1) in the presence

of a driving force (i.e. δ 6= 0). They examined the effects of the driving force on the

solution of the equation. They observed that it has an asymmetric effect on the solution

for a kink and the direction of the field determines whether the analytic solutions derived

earlier by Leung [49] are unique. They also studied the dynamics of a kink-anti-kink pair.

Later, this problem was investigated by Golovin et al. [26] where they observed that the

kink-anti-kink pair actually comes as the final result of coarsening on a periodic domain.

They noted that such a solution does not exist for δ >
√
2 and that the far field solution

becomes unstable when δ > 0.94. This was also confirmed by the work of Watson [86] and

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 1 Introduction 4

Watson et al. [87]. Watson [86] derived the convective Cahn-Hilliard equation (1.1) when

examining the coarsening dynamics of crystal growth. He performed the direct simulation of

the equation with δ = 0.1 while Watson et al. [87] performed a matched asymptotic analysis

on the equation (1.1) (δ = 1, γ = 0.01) on a periodic domain. Both teams, Watson [86]

and Watson et al. [87], agree on the impossibility of binary coalescence of phase boundary

and the occurrence of ternary coalescence only through the kink-ternary interaction (i.e.,

two kinks meet an anti-kink resulting in a kink). They also concluded that when δ ≫ 1

the solution of the convective Cahn-Hilliard equation behaves like that of the Kuramoto-

Sivashinsky equation. This was shown for a two dimensional case in [26]. Recently, the

dynamics of domain walls (kinks) governed by the equation (1.1) with special interest in

the dynamics of kink pairs and triplets that play crucial role in the coarsening process was

investigated by Podolny et al. [69]. They were able to derive an analytical formula that

describes the motion of the kink pairs and the triplets.

Scaling the equation (1.1) by δ and letting ū = u
δ
gives rise to another interesting fourth

order unsteady equation [26], the Kuramoto-Sivashinsky equation,

{

ut + uux + αuxx + γuxxxx = 0, ∀ (x, t) ∈ R× (0,∞),

u(x, 0) = ψ(x),
(1.3)

as δ → ∞ after dropping the bar. Here, α, γ > 0 are constant coefficients accounting for the

long wave instability (gain) and short wave dissipation, respectively. Equation (1.3) is a well

known model of one dimensional turbulence which was derived in various physical contexts

including chemical-reaction waves, propagation of combustion fronts in gas, surface waves

in a film of a viscous liquid flowing along an inclined plane, patterns in thermal convection,

rapid solidification, and many others (see for example [41, 44, 80, 74, 75, 76]).

Various approaches have been presented in the literature to find the properties of the

solutions of the Kuramoto-Sivashinsky (K-S) equation, with special attention on the energy

bound derived theoretically in the form

lim sup
t→∞

‖u(x, t)‖2 = lim sup
t→∞

(LE(t))1/2 ≤ CLp, (1.4)

where

E(t) = 1

L

∫ L

0

u2dx. (1.5)

For example, Nicolaenko et al. [61] determined p = 5/2 with the assumption that initial

data is L-periodic, antisymmetric about the origin and of zero mean. In Collet et al. [10]

removed the antisymmetry requirement and observed that p = 8/5. A 1-dimension version

of the equation was considered by Goodman [27] where they removed the requirement of odd

solutions and arrived at the same value of p following a generalization of the Nicolaenko et

al. ’s Lyapunov function argument. Giacomelli and Otto [24] obtained two integral identities

in L4 − norm of u and employed these to determine a bound for equation (1.4). Through
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Chapter 1 Introduction 5

their analysis, they arrived at p = 3/2. A weaker bound which was proved to be necessary in

the presence of a linear destabilizing term was later introduced in [9]. Recently, a Lyapunov

argument was followed in [63] to obtain bounds that are independent of the system size.

The numerical solutions of the K-S equation have been widely investigated in the litera-

ture. In particular, we highlight the Galerkin method [89], the Chebyshev spectral methods

[43], the B-splines [46], the meshless method of lines [28], etc. The aim of these investi-

gations have been on the accuracy [89], and/or how these solutions compare with the well

documented benchmark solutions [64]. In [89], an explicit Runge Kutta method was used

to avoid the restrictive stability limit of the fourth order derivative. Further advantage of

the method is that the approach can easily be tweaked to obtain any required order of ac-

curacy. Other approaches are based on simplifying the partial differential equation in order

to reduce difficulties in its numerical approximation. For example, the B-spline approach

by Lakestani and Dehghan [46] reduced the problem to a set of algebraic equations, while

in [43] the equation was reduced to a system of ODEs that were solved by implicit-explicit

BDF method.

In this theses, we employ the fractional splitting method to simplify the analysis of

equations (1.1) and (1.3).

1.2 Singularly perturbed equation

The steady state of the Cahn-Hilliard equation (1.1) shows that it is probably a singularly

perturbed equation [70]. Equations of such type are known to be either strongly oscillatory

or possess boundary, interior or inversion layers. As γ → 0 (see equation (1.1)) they become

very stiff and computationally expensive to be handled by classical methods. Here, we

motivate the numerical study of the steady state CH equation via a well known second order

differential equation. A general expression of a second order singularly perturbed boundary

value problem is

−ǫ2u′′(x) + a(x)u′(x) + b(x)u(x) = f(x), x ∈ (a, b),

u(a) = α, u(b) = β,
(1.6)

where 0 < ǫ ≪ 1. Analytical approximation of equation (1.6) has been the subject of many

research activities (see for example [71, 88] and the references therein). Wollkind [88] com-

pared the effectiveness of the method of matched asymptotic expansion and the multiple

scale method in solving equation of type (1.6) when the coefficient of the diffusion term is

positive and a(x) is either only increasing or decreasing in the entire interval. They observed

that the two methods yield valid asymptotic approximation. Many algebraic calculations are

involved in the multiple scale method while the method of matched asymptotic expansion

needs more terms for greater accuracy. He also observed that the method of matched asymp-

totic expansion is very useful when studying flows past a body at high Reynold’s number
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Chapter 1 Introduction 6

than the method of multiple scales. In fact, later, an asymptotic estimate was derived in [71]

for the Reynold’s equation. They also established existence and a uniformly valid asymptotic

expansion following the matched asymptotic expansion method.

Here, our focus will be on the Schrödinger equation










ǫ2u′′(x) + q(x)u(x) = 0,

ǫu′(a) + ıpu(a) = 2ıp, ı =
√
−1, p > 0,

ǫu′(b) = ıpu(b),

(1.7)

where q(x) > 0, ǫ ≪ 1. It has its relevance ranging from industrial purposes to domestic

usage such as design of semiconductor appliances, resonant tunneling diodes, microwaves,

in quantum and plasma physics, etc. Therefore, a lot of numerical analysis and simulations

have been done on the system (1.7) based on finite difference (both classical and adaptive

mesh), finite volume, finite element and Wentzel-Kramers-Brillouin (WKB) methods (see

[8] and references therein). Two different iteration techniques for the numerical solution

of the self-consistent Poisson-Schrödinger equation subject to Dirichlet boundary condition

(with zero values at both ends) was suggested in [79]: the extrapolated-convergence-factor

and the perturbation-iteration method. The advantage of the perturbation-iteration method

over the extrapolated-convergence-factor method is its fast convergence even though it takes

longer computing time per round. This model was employed by Inoue et al. [35] to deter-

mine the electronic states in a selectively doped double-heterojunction system. The system

of equation was solved by the finite element method. Their observed electron concentration

variation with gate voltage agreed with experiment. Later, a two-dimensional Schrödinger-

Poisson equation was solved by Laux and Stern [47] by the finite difference method on a non

uniform mesh using a conjugate gradient method. They employed a Lanczos iteration in or-

der to tridiagonalize the Schrödinger equation and self-consistency is obtained by a damped

Newton iteration using an approximate Jacobian matrix. Their aim was to determine the

electron states under narrow gate in metal-oxide-silicon. They observed that the states for

motion parallel to the silicon-oxide-silicon interface are more closely spaced than the state

for motion perpendicular to the interface. The same equation was solved by the finite differ-

ence method on a uniform grid in [77] where Snider et al. determined the conduction band,

electron states and electron concentration in quantum well wires. Their simulation agreed

well with experiment for shallow mesa but not for deep mesa. Next, a finite difference

scheme on a non-uniform grid was proposed for the one dimensional Schrödinger-Poisson

equation in [83]. Their matrix transformation preserves symmetry, hence reduces computa-

tion time. They validated their result by comparing it with exactly calculated eigen-states of

GaAs/AlGaAs rectangular wells. Another application of the Schrödinger equation is found

in the resonant tunneling diodes. Equation (1.7) was solved subject to open boundary con-

dition coupled with the Poisson equation (subject to Dirichlet boundary condition) in [68].

The authors achieved self-consistence and fast convergence by a Gumel approach. Later,

Abdallah and Pinaud [1] improved on this result and were able to approximate the solution
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Chapter 1 Introduction 7

of the Schrödinger-Poisson equation on a coarser grid. They accomplished this by discretiz-

ing the equation on a finite element space with WKB oscillating interpolation basis. This

scheme was later analyzed in [59] for consistency and stability. Recently, another numerical

scheme for the Schrödinger equation (1.7) subject to the open boundary condition was pro-

posed and analysed in [8]. Their scheme based on a WKB-type transformation was able to

filter out the dominant oscillations, and the reduced equation was then solved on a coarser

grid with less computational cost.

Here, we will employ nonclassical finite volume schemes to approximate the Schrödinger

equation.

1.3 Numerical approach

This section introduces the several numerical methods used in this work. Here we highlight

the fractional split method, finite volume method and the NSFD method. All the schemes

in this thesis were implemented via the MATLAB programming language.

1.3.1 Fractional Splitting

The fractional splitting method originates from Alternating Direction Implicit method (ADI)

and the Local One Dimensional (LOD) method used by Peaceman and Rachford [66] and

Douglas and Rachford [15]. Yanenko [90] later built on these methods and designed the

fractional step method to solve problems in mathematical physics. This method was analyzed

by Crandall and Majda [11] when applied to conservation laws in 2-D. Since then, it has been

a very effective tool in solving incompressible Navier-Stokes equation [23, 67], nonlinear

convection diffusion equations [31, 39, 40], the Kortewg de Vries (KdV) equation [30, 32],

the thin film equation [91] and the Fisher equation [45]. The method simplifies the numerical

analysis and computation of complicated differential equations. The complicated unsteady

partial differential equation is split into simpler equations which may either be steady or

unsteady partial or ordinary differential equations. These are solved sequentially within every

time step until the final time of integration is reached. The method is always exact when

dealing with linear equations while the order of accuracy may be reduced when employed to

solve non linear equation. It is essential to note that the stability of each of the solver of the

sub problems guarantees the stability of the entire scheme. The idea of the method is best

illustrated using examples.

Example 1.1 We want to show the accuracy of the fractional splitting method for the solu-

tion of the equation

ut + ux − 2uxxxx = 0, u(0, x) = g(x), x ∈ RR, t > 0. (1.8)
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Chapter 1 Introduction 8

An exact solution of (1.8) is g(x − t) exp(2t). In order to apply the method of fractional

splitting to this equation, we first split it into two subproblems that can be solved indepen-

dently:

ut + ux = 0, u(0, x) = g(x), (1.9)

wt − 2wxxxx = 0, w(0, x) = w0(x). (1.10)

The solution of (1.9) is g(x − t), while that of the equation (1.10) is w0 exp(2t). Note that

the fractional step method requires the initial data of the second subproblem to be the final

solution of the first subproblem within that same time step. Hence, w0 = g(x − t) and

therefore, the solution of the entire equation gives g(x− t) exp(2t) which just reproduces the

exact solution of the equation (1.8).

We are interested in illustrating the general approach of fractional splitting method to

linear equations. We pick linear equation just for the simplicity of presentation. We will

consider the general equation

ut = (A+B)u, (1.11)

where A and B are differential operators, for example − ∂
∂x

and ∂4

∂x4 as in (1.8). Given that

A and B are time independent then

utt = (A+B)ut = (A+B)2u.

For this case it is generally acceptable that [51]

ujt = (A+B)ju.

If the operators are time dependent then

utt = (At +Bt)u+ (A+B)ut,

which leads to some other complications. If they are nonlinear operators, we can still appeal

to Taylor’s expansion to handle the higher derivatives as long as the solution is smooth. For

equation (1.11)

u(x,∆t) = u(x, 0) + ∆tut(x, 0) +
1

2
∆t2utt(x, 0) + · · ·

= u(x, 0) + ∆t(A +B)u(x, 0) +
1

2
∆t2(A+B)2u(x, 0) + · · ·

=

(

I +∆t(A+B)(I +
1

2
∆t(A+B)) + · · ·

)

u(x, 0)

=
∞
∑

j=0

∆tj

j!
(A+B)ju(x, 0).

(1.12)

By the aid of Taylor’s series this can be written as

u(x,∆t) = e∆t(A+B)u(x, 0).

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 1 Introduction 9

The operator e∆t(A+B) is called the solution operator for the unsplit equation. For the

fractional split method, following the same procedure we compute

u∗(x,∆t) = e∆tAu(x, 0),

for problem (1.9) and

u∗∗(x,∆t) = e∆tBu∗(x,∆t),

for (1.10). This means that the solution through the fractional split method will be

u∗∗(x,∆t) = e∆tBe∆tAu(x, 0).

Therefore, the splitting error is given by

u(x,∆t)− u∗∗(x,∆t) = (e∆t((A+B)) − e∆tBe∆tA)u(x, 0). (1.13)

The second term in (1.13) is

e∆tBe∆tAu(x, 0) = (I +∆tB +
1

2
∆t2B2 + · · · )(I +∆tA +

1

2
∆t2A2 + · · · )u(x, 0)

= (I +∆t(A +B) +
∆t2

2
(A2 +B2 + 2BA) · · · )u(x, 0).

(1.14)

We can easily see that the term I + ∆t(A + B) agrees with the expansion in (1.12) while

the term
1

2
(A2 +B2 + 2BA),

will only be the same as in (1.12) only if the operators A and B commute. When dealing

with nonlinear operators or whenever the operators do not commute, the above scheme tends

to reduce the order of accuracy in time by O(∆T ). We will quickly talk about some of the

types of splitting we have. The two major types of splitting are

1. Godunov Splitting: This was introduced in the previous section and we have already

ascertain that it is first order accurate unless the operators commute. We will discuss

another type which is an improvement on this.

2. Strang Splitting: Instead of taking the solution operator of problem (1.9) over the

entire time step, it is taken over half a time step and used as initial data for problem

(1.10) which will be integrated over the entire time step and finally use as initial to

solve the problem (1.9) again to be integrated over half a time step. We have the

Taylor’s expansion of the solution operator as

e∆tA
2 e∆tBe∆tA

2 = (I +
∆t

2
A+

∆t2

8
A2 + · · · )(I +∆tB+

∆t2

2
B2 + · · · )

(I +
∆t

2
A+

∆t2

8
A2 + · · · )

= I +∆t(A+B) +
∆t2

2
(A2 +B2 +AB+BA) +O(∆t3).

(1.15)
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Chapter 1 Introduction 10

From equation (1.15), one can see that the O(∆t2) is captured correctly as in (1.12).

Hence, the Strang splitting scheme is second order accurate.

Remark 1.1 When dealing with much complicated equations, it has been advised that the

Godunov splitting is often sufficient [51]. Also, in the presence of rough solutions it was

argued in [11] that the order of accuracy is always reduced to one no matter the type of

splitting employed. This may be due to the fact that at the region of discontinuity, the order

of accuracy always reduces to one [51].

1.3.2 Finite volume method

The finite volume method, like the finite difference and the finite element methods, is a

discretization method for differential equations. Unlike the finite difference method in which

the equation is approximated at the grid points and the finite element method in which it

is approximated element-wise, the finite volume approximation is evaluated at the intercell.

The domain of integration is first subdivided into cells (finite volumes), then the approxima-

tion are evaluated at the intercell average. Therefore, the approximation is kept away from

shock regions, since discontinuities that leads to shock occurs at grid points. Also, the flux

entering each cell (finite volume) is identical to the flux leaving, then the flux in each cell is

conserved. Hence, its application to conservation equations. Here, we will introduce this by

applying it to hyperbolic conservation laws.

Example 1.2 Consider the finite volume discretization of the hyperbolic equation

ut + f(u)x = 0, (1.16)

by the finite volume method.

The idea of finite volume follows the weak formulation. The domain of integration is subdi-

vided into grid cells called finite volumes, say,

Ij = [xj− 1
2
, xj+ 1

2
], j = 1, 2, 3, ..., m, (1.17)

with interfaces xj− 1
2
= xj − ∆x

2
and xj+ 1

2
= xj +

∆x
2
, see Figure 1.1. m is the number of

volumes and ∆x = xj+1 − xj = xj+ 1
2
− xj− 1

2
is the cell size on uniform grids. Here, x 1

2

and xm+ 1
2
are the boundaries. We will always employ boundary conditions to handle ghost

points where applicable. The integral formulation is approximated in each of the cells at the

cell interfaces for one dimensional problems.

We will integrate the equation (1.16) over Ij with respect to x.

∂

∂t

∫

Cj
u(x, t)dx+ f(u(xj+ 1

2
), t)− f(u(xj− 1

2
), t) = 0,
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t

tn+1 vn+1
j

tn vnj

x
x 1

2
xj−1

xj− 1
2

xj+ 1
2

xj xj+1

Figure 1.1: Finite volume domain discretization

integrating the above equation over time from tn to tn+1 yields

∫

Cj
u(x, tn+1)dx−

∫

Cj
u(x, tn)dx =

∫ tn+1

tn
f(u(xj− 1

2
), t)−

∫ tn+1

tn
f(u(xj+ 1

2
), t).

Dividing the above equation by ∆x and letting the average

vnj =
1

∆x

∫

Cj
u(x, tn)dx,

we have

vn+1
j = vnj − 1

∆x

(

∫ tn+1

tn
f(u(xj+ 1

2
), t)−

∫ tn+1

tn
f(u(xj− 1

2
), t)

)

. (1.18)

However, we can write this as

vn+1
j = vnj − ∆t

∆x

(

F n
j+ 1

2
− F n

j− 1
2

)

, (1.19)

where

Fj+ 1
2
=

1

∆t

∫ tn+1

tn
f(u(xj+ 1

2
), t),

is the numerical flux. The definition of this flux gives rise to many finite volume methods

for approximating the solution of (1.16). We will discuss more on this in later chapters.
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1.3.3 Nonstandard finite difference method

NSFD originates from the work of Mickens [57]. It has been employed to solve several

differential models including singularly perturbed equations [53, 54]. We will adapt the

NSFD procedure to design nonstandard finite volume schemes when solving some of the

equations in order to preserve some physical and dynamical properties of the equation. To

the best of our knowledge, this has not been employed to equations with complex solutions

like the Schrödinger equation and higher order equations.

Example 1.3 We will design a nonstandard finite difference scheme for the harmonic os-

cillator equation [57]
d2y

dt2
= −λ2y, λ ∈ R. (1.20)

The derivation is based on the two linearly independent solutions to (1.20), namely y1 =

exp(ıλt), y2 = exp(−ıλt). The linear independence of y1 and y2 implies

∣

∣

∣

∣

∣

∣

∣

yj eıλ∆tj e−ıλ∆tj

yj+1 eıλ∆t(j+1) e−ıλ∆t(j+1)

yj+2 eıλ∆t(j+2) e−ıλ∆t(j+2)

∣

∣

∣

∣

∣

∣

∣

= 0. (1.21)

The determinant in equation (1.21) leads to the difference equation

yj+2 − 2yj+1 cos(λ∆t) + yj = 0. (1.22)

Employing the trigonometric identity cos(θ) = 1−2 sin2( θ
2
) and shifting the index j simplifies

(1.22) to

yj+1 − 2yj + 4yj sin
2

(

λ∆t

2

)

+ yj−1 = 0.

Finally, we have the exact finite difference scheme

yj+1 − 2yj + yj−1

4
λ2 sin

2
(

λ∆t
2

) + λ2yj = 0. (1.23)

Equation (1.23) is an exact nonstandard finite difference scheme for the harmonic oscillator

equation (1.20). This method shall be adapted to the finite volume space in this thesis.

1.4 Thesis outline

This thesis is divided into self-contained papers that represent specific scientific contributions.

• In Chapter 2, we design finite volume schemes for fourth order equations: the Kuramoto-

Sivashinsky and the (convective) Cahn-Hilliard equations. The fractional splitting
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Chapter 1 Introduction 13

method is employed to split the linear higher order terms from the nonlinear lower

order terms. We employ shock capturing schemes for the nonlinear hyperbolic sub-

equations; design A-stable schemes for the fourth order equation and a θ− scheme

for the nonlinear diffusion equation. This way, we are able to resolve the restrictive

stability condition, ∆t ∼ O(∆x4), common to most explicit schemes and the stiffness

imposed by the coupling of the linear and the nonlinear terms. The physical behaviour

of these models are all verified numerically.

This is the first time these two equations will be investigated by the frac-

tional splitting method. The results in this chapter are the subject of the

papers [2, 3]. The presence of the small parameter in the Cahn-Hilliard equation led

us to the study of singularly perturbed equations. This is the subject of the succeeding

chapters.

• Chapter 3 is devoted to the study of singularly perturbed differential equations with

a special interest on the Schrödinger equation. The presence of the reduced Planck’s

constant, the oscillatory behaviour of its solution and the complex boundary conditions

makes its simulation challenging. Here, two different uniformly convergent finite vol-

ume schemes were designed for this equation. These schemes, semi-analytical scheme

based on perturbation analysis and the nonstandard finite volume scheme proved effi-

cient in resolving the challenges stated earlier. Their efficiency were shown through a

series of computation.

This is the first time nonclassical schemes of this type are being applied

to the Schrödinger equation and we are able to design exact schemes for

the complex dependent boundary conditions. Some of our observations are

subject of [4] while our major results are being prepared for submission.

• In Chapter 4, we design finite volume scheme for the Kuramoto-Sivashinsky equation

and the Cahn-Hilliard equation. The schemes enjoy several properties which include

preserving the properties of the original equation. Each of the sub-equations is approx-

imated by nonstandard finite volume schemes. The significance of this work includes

the reliability of the scheme in handling the small parameter. We also verified all the

properties tested for in Chapter 2.

The importance of this includes the construction of a nonstandard finite

volume scheme for the fourth order partial differential equation. Our ob-

servations are being prepared for submission.

• The last chapter is dedicated to discussion, conclusions on and possible further research

work.

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 2

Fractional splitting method for higher

order differential equations

In this chapter, we implement finite volume schemes to solve the 1-dimensional Kuramoto-

Sivashinsky equation and the Cahn-Hilliard equation. We design operator splitting algorithm

to resolve the restrictive stability condition (∆t ∼ O(∆x4)) imposed by the coupling of the

linear and the nonlinear terms. Our results on the K-S equation have been published in

Aderogba et al. [2] while our results on the CH equation [3] will soon appear in Engineering

Computations.

2.1 Introduction

We design operator splitting based finite volume schemes to solve some fourth order unsteady

partial differential equations. The operator splitting method is used in order to simplify the

computation of the solution of these nonlinear equations. We apply the schemes to approx-

imate the Kuramoto-Sivashinsky (K-S) equation and the Cahn-Hilliard (CH) equation.

The first equation under investigation in this chapter is the K-S equation (2.1),
{

ut + uux + αuxx + γuxxxx = 0, ∀ (x, t) ∈ R× (0,∞),

u(x, 0) = u0(x).
(2.1)

Unless otherwise stated, the initial condition u0(x) is considered to be a L-periodic function

with zero average, that is

u0(x+ L) = u0(x) and

∫ L

0

u0(x)dx = 0. (2.2)

Our focus is to implement finite volume scheme to solve equation (2.1). This is the object

of discussion in Section 2.3.4. This method allows us to treat the nonlinear hyperbolic term

14
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Chapter 2 Fractional splitting method for higher order equations 15

with optimal shock capturing schemes explicitly while the linear terms are approximated

by the backward differentiation formula. Consequently, our results validate all the physical

properties of this model: the existence of regular and oscillatory shock achieved through the

traveling wave solution, the chaotic behaviour of the solution and the bound on the energy.

We also examined the convective Cahn-Hilliard equation (cCH)

ut + γ2uxxxx = φ(u)xx + δuux, x ∈ Ω, 0 < t, (2.3)

where Ω ∈ (a, L) and

φ(u) = αu3 − u, α > 0,

which has been a successful model of phase transition observed in alloys, glasses, polymer

solution and binary liquid mixtures (see for example [18, 19, 62], and the references therein).

Our numerical approach for these equations through the fractional time splitting method

is discussed in Section 2.2 where we introduce the shock preserving schemes for the nonlinear

hyperbolic term, the θ-method for the nonlinear diffusion term and the schemes for the linear

fourth order term. Section 2.3.4 is dedicated to the analysis of the K-S equation while we

study the CH equation in Section 2.3.5 and 2.3.6 and discuss our observations in Section 2.4.

2.2 Numerical approach

We will employ the fractional time-splitting method to solve our desired equations. From

an abstract point of view, suppose we are dealing with a differential equation

ut +A(u) = 0,

and the operator A(u) is decomposable to either H(u) +N (u) + L(u) or H(u) + L(u), the
space discretized problem can be written as:

{

ut +H(u) +N (u) + L(u) = 0,

u(0) = u0,
(2.4)

or
{

ut +H(u) + L(u) = 0,

u(0) = u0,
(2.5)

where H is the discretization of the nonlinear (convection) operator, N is the discretization

of the nonlinear diffusion operator and L is the discretization of the linear operator. Apart

from the fact that the fractional step method substantially reduces computational time, it

has the advantage of simplifying a complex process efficiently. This method permits the

treatment of each segment of the original equation separately, thus
{

ut +H(u) = 0,

u(0) = u0,
(2.6)

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 2 Fractional splitting method for higher order equations 16

{

wt +N (w) = 0,

w(0) = w0,
(2.7)

and
{

yt + L(y) = 0,

y(0) = y0.
(2.8)

Let Htu0, Ntu0 and Ltu0 describe the approximate numerical solution operators for each of

the split models (2.6), (2.7) and (2.8) respectively. We will use the first order scheme based

on Marchuk splitting which can be written as v0 = u0 for n = 0; and for n > 0, we obtain

vn+1 from vn via the solution of

vk(x, nk) = [Lk ◦Nk ◦Hk]
nv0(x), (2.9)

or

vk(x, nk) = [Lk ◦Hk]
nv0(x), (2.10)

for some time step ∆t = k, where the notation ◦ denotes the composition of two operators [30]

and n denotes the time discretization step. Our splitting scheme will follow this algorithm

throughout this work. This algorithm can be explained as below

1. We initialise the solution via v0 = u0(xj) for j = 0, 1, 2, 3, · · · , m i.e., m+1 grid points.

2. For n > 0, we compute the intermediate solution Hk, from the advection equation.

3. Within the same time step, we use the solution from Step 2 to compute the solution

of the nonlinear equation to obtain Nk.

4. Within the same time step, we use the solution from Step 3 to compute the solution

of the linear equation to obtain Lk.

5. We use the solution from Step 4 in Step 1 to initialise the next time step.

6. We repeat until the final computational time.

Remark 2.1 The boundary conditions of each of the subproblems were corrected to first

order accuracy in time following a similar procedure in [42], and the references therein.

Remark 2.2 In the case where the original equation has only two discretized operator, there

will only be two split equations and hence only two solution operators. Consequently, one of

the steps 3 and 4 will not be essential in the described algorithm above.

In the succeeding sections, we will describe the numerical solution operators that will be

employed in our numerical experiments.
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Chapter 2 Fractional splitting method for higher order equations 17

2.2.1 Schemes for the hyperbolic equations (2.6)

The design of finite volume numerical schemes for equations of type

ut + f(u)x = 0, (2.11)

has been introduced earlier on. It is noteworthy that the robustness of existing schemes

on equations of this type is embedded in the way the numerical fluxes are handled and the

temporal order of convergence. In this work, we employed

1. Godunov scheme

2. The non-staggered scheme (NSTG), [5, 81]

3. Semi-discrete scheme (SemiD)

4. Fully discrete (FD), [82]

5. Weighted essentially non-oscillatory scheme (WENO), [72, 73]

6. Implicit schemes

It is worth mentioning here that apart from the implicit schemes, all the schemes listed above

are total variation diminishing (TVD), monotonicity preserving and conservative.

Remark 2.3 A TVD scheme is one in which TV (vn+1) ≤ TV (vn) where TV(u) is the total

variation of the function, u. This type of scheme preserves monotonicity and guarantees the

absence of spurious oscillation in our numerical simulations.

We will briefly outline these schemes.

2.2.1.1 Godunov scheme

Godunov methods, founded by Godunov (1959), rely on the solution of the Riemann problem.

The basic version of the scheme is only first order accurate but by updating the reconstruction

process with the introduction of slope limiters, there is a possibility of extending this to

higher order. Since the flux is convex, the application is direct. The intercell average at the

interface xj+1/2 is given as

vnj =
1

∆x

∫ x
j+1

2

x
j− 1

2

u(x, tn)dx, (2.12)

and the numerical flux is

f(unj+1/2) ≃ f(vnj ) +
h

2
f ′(vnj )

(

1− f ′(vnj )
∆t

h

)

σn
j ,
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Chapter 2 Fractional splitting method for higher order equations 18

where σn
j is a slope limiter and h = ∆x = xj+ 1

2
− xj− 1

2
is the space width. Several limiters

are documented in the literature, but throughout this thesis we will employ the monotonized

centered (MC) limiter, which is given as

σ(j) = minmod

(

2
vj+1 − vj

h
,
vj+1 − vj−1

2h
, 2
vj − vj−1

h

)

.

The minmod function compares the absolute value of the arguments and returns the one

with minimum absolute value as the slope. If σn
j = 0, the scheme will switch to the basic

first order Godunov scheme. For more information on limiters and the Godunov scheme, the

reader can consult [51, 84, 91] among others.

2.2.1.2 Non staggered central difference scheme

The non staggered central difference scheme (NSTG) is a second order extension of the

non staggered version of the central difference scheme by Lax-Friedrich (see for example

[81, 82]). It follows a process of reconstruction, evolution and projection step and takes an

easily implemented predictor-corrector form,

v
n+1/2
j = vnj − λf ′

j

2
, (2.13)

vn+1
j =

1

2

(

vnj+1 + vnj−1

)

+
1

4

(

v
′n
j−1 − v

′n
j+1

)

− λ

2

(

f(v
n+1/2
j+1 )− f(v

n+1/2
j−1 )

)

, (2.14)

where λ = k
h
is the CFL number. Furthermore, the non oscillatory behavior of this second

order scheme is guaranteed by the choice

v′j = minmod
(

∆vj+1/2,∆vj−1/2

)

,

and

f ′
j = a(vj)v

′
j ,

where a(vj) is the derivative of the flux function with respect to the argument vj which

should be interpreted as the Jacobian when dealing with systems of conservation laws.

2.2.1.3 Semi discrete central-upwind scheme

The second order semi-discrete central (SemiD) difference scheme (see [5, 6, 82]) in the

conservative form is given by

[vj ]t = −Fj+1/2 − Fj−1/2

h
, (2.15)

with the numerical flux

Fj+1/2 =
f(v+j+1/2) + f(v−j+1/2)

2
− aj+1/2

2
(v+j+1/2 − v−j+1/2), (2.16)
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where the intermediate values v±j+1/2 are given by

v+j+1/2 = vj+1 −
h

2
(ux)j+1,

v−j+1/2 = vj +
h

2
(ux)j,

and the aj+1/2 term is the maximal local speed given in the generic case as

aj+1/2 = max

[

ρ

(

∂f

∂u
(v+j+1/2)

)

, ρ

(

∂f

∂u
(v−j+1/2)

)]

.

In the scalar case with convex flux the maximal local speed simplifies to

aj+1/2 = max(|f ′(v−j+1/2)|, |f ′(v+j+1/2)|).

Also, the slope (ux)j is given by the minmod function

(ux)j = minmod

(

vj+1 − vj
h

,
vj − vj−1

h

)

,

and the time derivative in (2.15) is evaluated by the Euler’s scheme.

2.2.1.4 Weighted Essentially Non-Oscillatory Scheme

The scheme presented here follows the work of [72]. The hyperbolic conservation law (2.11)

can be cast into the semi-discrete form as

dvj
dt

= A(vj), (2.17)

where

A(vj) = −fj+1/2 − fj−1/2

h
. (2.18)

The left hand side of the equation (2.17) will be handled by the third order Total Variation

Diminishing Runge-Kutta scheme as developed in [73]:

u1 = vn +∆tA(vn),

u2 =
3

4
vn +

1

4
u1 +

1

4
∆tA(u1),

vn+1 =
1

3
vn +

2

3
u2 +

2

3
∆tA(u2).

(2.19)

The discretized flux terms fj±1/2 are given as

fj±1/2 = g(v−j±1/2, v
+
j±1/2),

where

g(a, b) =
1

2
(f(a) + f(b)− α(b− a)) , (2.20)
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is the Lax-Friedrich monotone flux and α = maxu |f ′(u)| is a constant. The maximum is

taken over the relevant range of u. The values of v−j+1/2 and v+j−1/2 are computed through

the intercell average of the conserved variable u given in equation (2.12).

v−j+1/2 =

l−1
∑

r=0

ωrv
r
j+1/2, v

r
j+1/2 =

l−1
∑

i=0

crivj−r+i,

and

v+j−1/2 =

l−1
∑

r=0

ω̃rv
r
j−1/2, v

r
j−1/2 =

l−1
∑

i=0

c̃rivj−r+i,

where r = 0, ..., l − 1. The linear weights

ωr =
αr

∑l−1
s=0 αs

, αr =
dr

(ǫ+ βr)2
,

and

ω̃r =
α̃r

∑l−1
s=0 α̃s

, α̃r =
d̃r

(ǫ+ βr)2
,

where ǫ = 10−6, βr are smooth indicators and d̃r = dl−1−r are constants. The order of

accuracy is 2l − 1. We use l = 2 in our computations, consequently, we only need d0 = 2/3

and d1 = 1/3. The values of constants c̃ri = cr−1,i are given in Table 2.1 as extracted from

[72]. Also, the smooth indicators are given as

β0 = (vj+1 − vj)
2, β1 = (vj − vj−1)

2.

Table 2.1: The values of cri

r i = 0 i = 1

-1 1.5 -0.5

0 0.5 0.5

1 -0.5 1.5

2.2.1.5 Fully discrete scheme

The fully discrete scheme for the convective equation (2.11) is given by [5]

(u)n+1
j =

1

h

∫ xj+1/2

xj−1/2

w̃(ξ, tn+1)dξ = λanj−1/2w
n+1
j−1/2 +

(

1− λ(anj−1/2 + anj+1/2)
)

wn+1
j

+ λanj+1/2w
n+1
j+1/2 +

h

2

(

(λanj−1/2)
2(ux)

n+1
j−1/2 − (λanj+1/2)

2(ux)
n+1
j+1/2

)

, (2.21)
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and

(ux)
n+1
j+1/2 =

2

h
minmod

(

wn+1
j+1 − wn+1

j+1/2

1 + λ(anj+1/2 − anj+3/2)
,

wn+1
j+1/2 − wn+1

j

1 + λ(anj+1/2 − anj−1/2)

)

,

wn+1
j+1/2 =

unj + unj+1

2
+
h− anj+1/2∆t

4
((ux)

n
j − (ux)

n
j+1)−

1

2anj+1/2

(

f(u
n+1/2
j+1/2,r)− f(u

n+1/2
j+1/2,l)

)

,

wn+1
j = unj +

∆t

2
(anj−1/2 − anj+1/2)(ux)

n
j −

λ

1− λ(anj−1/2 + anj+1/2)

(

f(u
n+1/2
j+1/2,l)− f(u

n+1/2
j−1/2,r)

)

,

with

u
n+1/2
j+1/2,l = unj+1/2,l −

∆t

2
f(unj+1/2,l)x, u

n
j+1/2,l = unj + h(ux)

n
j

(

1

2
− λanj+1/2

)

,

u
n+1/2
j+1/2,r = unj+1/2,r −

∆t

2
f(unj+1/2,r)x, u

n
j+1/2,r = unj+1 − h(ux)

n
j+1

(

1

2
− λanj+1/2

)

.

The local speed of propagation is

anj+1/2 = max

[

ρ

(

∂f

∂u
(u−j+1/2)

)

, ρ

(

∂f

∂u
(u+j+1/2)

)]

,

where ρ is the spectral radius,

u+j+1/2 = unj+1 −
h

2
(ux)

n
j+1, u

−
j+1/2 = unj +

h

2
(ux)

n
j ,

and

(ux)
n
j = minmod(

unj − unj−1

h
,
unj+1 − unj

h
),

with

minmod(a, b) =
sgn(a) + sgn(b)

2
min(|a|, |b|).

Remark 2.4 It is worth mentioning at this point that the convergence of the above schemes

for the convection equation has been documented in the literature as quadratic (see [5, 6, 51,

81, 91] for example). Throughout, we choose the CFL number to be less than 1, which is

within the stability requirement of all the schemes considered.

2.2.1.6 Implicit schemes

When the intercell time average is

f(unj+1/2) ≃
1

2
((1− θ)(f(vnj ) + f(vnj+1)) + θ(f(vn+1

j ) + f(vn+1
j+1 ))),

then the corresponding numerical scheme

vn+1
j = vnj − ∆t

2h
((1− θ)(f(vnj+1)− f(vnj−1)) + θ(f(vn+1

j+1 )− f(vn+1
j−1 )), (2.22)

is either fully implicit (θ = 1) or Crank-Nicolson (θ = 0.5).
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2.2.2 Schemes for the nonlinear diffusion equation

In this section, we implement finite volume schemes for a nonlinear diffusion equation. We

solve the nonlinear diffusion equation explicitly and implicitly by considering a conservative

scheme in which case the equation is written as

ut = α(u3)xx. (2.23)

We discretized (2.23) using the θ-method to give

vn+1
j = vnj + r

(

θ[φn+1
j+1 − 2φn+1

j + φn+1
j−1 ] + (1− θ)[φn

j+1 − 2φn
j + φn

j−1]
)

, (2.24)

where φn
j = (vnj )

3, r = k
h2 and vnj is the intercell averages. For the purpose of comparison,

we also solve (2.23) with second order non conservative schemes, in which case the equation

is re-written as

ut = α(ϕux)x, (2.25)

where ϕ = 3u2. Similarly, this is discretized using the θ method to give

vn+1
j = vnj + rθ

(

ϕn+1
j+1/2[v

n+1
j+1 − vn+1

j ]− ϕn+1
j−1/2[v

n+1
j − vn+1

j−1 ]
)

+

r(1− θ)
(

ϕn
j+1/2[v

n
j+1 − vnj ]− ϕn

j−1/2[v
n
j − vnj−1]

)

, (2.26)

where

ϕj±1/2 =
ϕj±1 + ϕj

2
,

and θ is a weighting factor. The schemes (2.24) and (2.26) will be fully implicit if θ = 1,

Crank-Nicolson if θ = 0.5 and fully explicit when θ = 0. The explicit schemes result in a

system of linear equations while the implicit schemes give a system of nonlinear equations.

While the linear equations can be solved directly, the nonlinear equations are solved by the

iterative Newton-Raphson method. Coupled with the corresponding second order boundary

conditions, the expected rate of convergence is 2 for all these schemes.

2.2.3 Schemes for the linear (diffusion) equation

In this section, we consider three different schemes for the numerical solution of the linear

subproblem

ut + uxx + γ2uxxxx = 0. (2.27)

Via the θ-scheme, we consider the implicit schemes in the following form

vn+1
j + θF n+1

j = vnj − (1− θ)F n
j , j = 1, 2, · · · , m− 1, (2.28)

where

F n
j = r(vnj−1 − 2vnj + vnj+1) + µ(vnj−2 − 4vnj−1 + 6vnj − 4vnj+1 + vnj+2),
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µ = γ2 k
h4 and r = k

h2 . The scheme is fully implicit if θ = 1 and Crank-Nicolson (C-N) if

θ = 0.5. We have chosen not to include the explicit scheme (θ = 0) in the analysis because

of its restrictive stability condition which requires a time step of O(h4). Scheme (2.28)

obviously include ghost nodes which are eliminated via the boundary conditions. This will

be explained later in this chapter.

We will also consider the backward differentiation formula (BDF2) in the form

3vnj + 2F n
j = 4vn−1

j − vn−2
j , n = 2, 3, 4, 5, · · · , (2.29)

where the backward Euler scheme

vnj = vn−1
j + F n

j ,

is used for the n = 1 time step and F n
j is as given above.

Lastly, we employ the Diagonally Implicit Runge-Kutta (DIRK) scheme which is given

as

v∗j = vn−1
j − 1

2
F ∗
j ,

vnj = vn−1
j − F ∗

j .

For periodic boundary conditons, we will also solve the linear equation using the Matlab

built-in fft-solver to serve as a benchmark for the other schemes.

2.3 Numerical experiments

In this section we apply each of the numerical schemes discussed in Section 2.2 to specific

examples in order to validate their effectiveness.

2.3.1 Hyperbolic equation

In this Section, we apply and compare the performance of the schemes listed in Section 2.2.1

in approximating the inviscid Burgers equations.

Example 2.1 Here we solve the following convection problem,

{

ut + uux = 0, ∀ (x, t) ∈ (0, L)× (0, T ],

u(0, x) = 0.5 + sin(x) ,
(2.30)

with periodic initial and boundary conditions.

Solution to the convection term preserves the average energy density until the formation of

the shock [24]. The profiles of E(t) in Figure 2.1 show the conservation of E(t) before the

development of shock. This is a generic behaviour of the solution of hyperbolic equations.
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Figure 2.1: Mean energy density profiles for problem (2.30).

Giacomelli and Otto [24] also claimed that the convection term preserves the mean energy

density before the onset of shock. This is confirmed by all the schemes through Figure 2.1.

These profiles also show that the shock develops at about time T = 1 except for the Godunov

scheme. The semi-discrete central and the implicit schemes agreed with the approximation

of time of shock development while the non-staggered central scheme depict shock as setting

in a little earlier before T = 1. These all agree with the assertion in [5]. The down-hill

sawtooth behavior of the mean energy after the shock in the implicit schemes (which is more

pronounced in the Crank-Nicolson scheme) may be due to oscillation about the shock region

as observed in the earlier work of Yong-Jung et al. [91]. Moreover, it is note worthy that

out of all the schemes, the mean energy climbs uphill after the shock only in the Godunov

scheme. Thus from here forthwith, we will drop the simulations based on the Godunov

scheme because of its poor performance.

2.3.2 Nonlinear diffusion equation

Here we consider the following example.

Example 2.2 Solve










ut − (u3)xx = f(x), x ∈ [0, π],

u(0, t) = u(π, t) = 0,

u(x, 0) = sin(x),

(2.31)

where f(x) = −3
4
[3 sin 3x− sin x], to test the effectiveness of schemes (2.24) and (2.26). We

compare our results with the exact steady state solution u(x, t) = sin(x) at time T = 0.5.

The ∞−norm error, e(mj), for different number of grid points, mj , were computed and the

convergent rates, p, were calculated based on the relation

p =
log(e(m2)/e(m1))

log(m2/m1)
. (2.32)
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The errors and the convergent rates due to each of the scheme are given in Table 2.2 for

different grid points. It is obvious that all the schemes are equally good.

Table 2.2: Convergence rate of the schemes for the nonlinear equation (2.48)

Grid points L∞ error×10−3 (p) at T = 0.5

Conservative Non Conservative Schemes

CN Explicit CN Explicit

20 18.1 18.2 23.0 20.0

40 6.34 (1.46) 6.39 (1.46) 7.86 (1.49) 7.30 (1.50)

80 2.03 (1.62) 2.02 (1.63) 2.50 (1.63) 2.39 (1.64)

160 0.58 (1.78) 0.58 (1.78) 0.72 (1.78) 0.70 (1.78)

Remark 2.1 We highlight here that it is not necessary to determine the convergence through

other norms. This guaranteed by the equivalence of all norms in Rd [52].

2.3.3 Linear diffusion equation

For finite domains, the boundary conditions are either periodic or non periodic. For the

non-periodic case we have nonhomogeneous Dirichlet and Neumann boundary conditions as

follows

u(0, t) = g(0, t), ux(0, t) = gx(0, t), u(L, t) = g(L, t), ux(L, t) = gx(L, t),

where g(x, t) is a known function related to the exact solution. In particular, we introduce

ghost nodes, vn−1 and vnm+1, which are eliminated using the following discretization,

vn0 = gn0 ,
−3vn−1 + 4vn0 − vn1

2h
+O(h2) = gx(0, t), (2.33)

and

vnm = gnm,
vnm−1 − 4vnm + 3vnm+1

2h
+O(h2) = gx(L, t), (2.34)

respectively.

Example 2.3 We solve

{

ut + uxx + γ2uxxxx = 0, ∀ t ∈ (0, T ],

u(x, 0) = Φ(x),
(2.35)

subject to periodic boundary condition.
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Grid points L∞ error×104 at T = 1

CNS Spectral BDF2 DIRK

20 74.4087 1516.61 74.4253 81.1000

40 19.1106 773.780 19.1108 19.4500

80 5.02760 390.024 5.02761 4.8850

160 1.28539 195.709 1.28539 1.6900

Table 2.3: Error due to each scheme for the numerical approximation of the linear equation.

We compare the numerical approximations by each of the scheme discussed in Section 2.2.3

to the exact solution u(x, t) = sin
(

x
γ

)

and compute the ‖ · ‖∞ error. These are shown in

Table 2.3. This computation is done with Φ(x) = sin
(

x
γ

)

.

It is claimed, see for example [24], that the energy density for this diffusion equation

grows exponentially. We validate this claim by considering Example 2.3 with different initial

conditions.
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(a) Φ(x) = sin(x) (b) Φ(x) = e−x2

Figure 2.2: Mean energy density profile for the diffusion term for T = 20, γ = 1 and (a)

x ∈ [0, 2π] and (b) x ∈ [−2π, 2π].

The growth of the mean energy of the diffusion equation as shown in Figure 2.2(b) agrees

with the earlier observations (see [24] and the references therein). No growth is expected

when the initial condition is a periodic exact steady state solution of the problem as was

shown in Figure 2.2(a).

From here forthwith, the convection term is solved by any of the above mentioned schemes

while the diffusion term is solved by the BDF2 scheme (for K-S equation) or DIRK scheme

(for CH equation). The C-N scheme was dropped basically because of the stiffness of the

problem under consideration. Hence, we will refer to the method of solution of the K-S

equation by the scheme used to handle the convection term. In all the schemes we will
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choose 320 grid points.

2.3.4 Kuramoto-Sivashinsky equation

In this Section, we will consider equation (2.1). The split scheme used here is motivated by

observing that the K-S equation consists of two different spatial operators: the linear and

the nonlinear operators. Interestingly, the nonlinear operator is hyperbolic, i.e., it is known

to introduce discontinuity in finite time while the linear fourth order term has a stabilizing

effect. Therefore, it is advantageous to split the equation into the nonlinear and the linear

equations for easy treatment. Hence, we split equation (2.1) into the following two partial

differential models

ut + uux = 0, (2.36)

and

ut + α uxx + γ2 uxxxx = 0. (2.37)

It is noteworthy at this point that while (2.37) accounts for the long wave instability (gain)

the equation (2.36) accounts for short wave dissipation. Consequently, the equation is split

into two physical processes evident in the equation: the convection (inviscid Burgers) equa-

tion and the linear fourth order equation. Each of the equations is solved numerically using

finite volume method [50] in such a way as to preserve some qualitative properties of the

solutions related to each continuous problem.

Our aim in this work is to present reliable and efficient solution approach and, in the

process, numerically validate some of the theoretical results of the K-S equation documented

in the literature. We verify the results stated above on the bound of the solution, preservation

of the periodicity and zero average as observed in [24].

The schemes that we will employ to treat the convective equation have been discussed in

the preceding section. We will only test the efficiency of four of these when combined with

the solver that will be used for the linear term. The four schemes are the Implicit, Godunov,

NSTG and SemiD schemes as outlined in Section 2.2.1 while we will make use of the BDF2

scheme outlined in Section 2.2.3 for the linear equation (2.37).

Example 2.4 We consider the computational domain to be [−L, L] with a focus on comput-

ing the solution of the entire K-S equation using the fractional time step method described

in Section 2.2. We test the convergence of the following problem as given by [89], solving

{

ut + uux + uxx + uxxxx = 0, ∀ (x, t) ∈ (−L, L)× (0, T ],

u(x, 0) = Φ(x).
(2.38)

First, we solve equation (2.38) with Φ(x) = g(x, 0) and subject to boundary conditions

u(−L, t) = g(−L, t), u(L, t) = g(L, t), ux(−L, t) = gx(−L, t), ux(L, t) = gx(L, t),

(2.39)
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where g(x, t) is the exact solution given by

g(x, t) = c+
15

19

√

11

19
(−9 tanh[l(x− ct− x0)] + 11 tanh3[l(x− ct− x0)]). (2.40)

The ghost points are removed via equations (2.33) and (2.34). Here, c, l and x0 are constants

and in the computations we take L = 30, x0 = −12, c = 5 and l =
√

11/19/2 as documented

in [7, 89].

For comparison we also solve equation (2.38) for Φ(x) = exp(−x2) subject to periodic

boundary conditions. We will follow the fractional step algorithm as given in Section 2.2.

The convergence results due to different numerical schemes for the convection equation are

all presented in Tables 2.4 and 2.5. The numbers inside the brackets are the convergent

rates, q. These are computed from the errors em and e2m corresponding to number of grid

points m and 2m respectively, that is

q =
log(e2m/em)

log 2
.

From Table, 2.5 the Godunov scheme admits the largest error followed by the non-

staggered central scheme and then by the implicit schemes, while the semi-discrete central

scheme appears to produce the best result. Interestingly, from Table 2.4, when the initial

data that corresponds to the exact solution of the K-S equation was employed, the explicit

schemes behave far better than the implicit ones. The semi-discrete is consistent in producing

the least possible error out of the explicit schemes. It is also evident that the convergent

rate non-staggered central scheme is better than any of the other schemes.

Table 2.4: Convergence rate of the fractional step for the K-S equation with initial data that

corresponds to the exact solution.

Grid points L∞ error (convergence rate, p) at T = 1

Godunov SemiD NSTG CNS FUIM

40 1.040 1.373 1.883 1.588 1.608

80 1.512 (-0.54) 0.535 (1.36) 1.258 (0.58) 0.709 (1.16) 0.688 (1.22)

160 0.950 (0.67) 0.137 (1.97) 0.6011 (1.07) 0.206 (1.78) 0.222 (1.63)

320 0.268 (1.82) 0.178 (2.94) 0.2197 (1.45) 0.056 (1.88) 0.068 (1.71)

640 0.099 (1.43) 0.007 (1.41) 0.0698 (1.65) 0.021 (1.45) 0.028 (1.26)

The profiles of the solution generated by the different schemes in comparison with the

exact solution including the ’close-up near the peaks’ are shown in Figure 2.3. The deviation

of all the numerical schemes from the exact solution is shown in Figure 2.3(a) while Figure

2.3(b) reveals the deviation of each of the schemes at the highest peak. Of particular interest,

the NSTG scheme gives the largest deviation from the exact solution at the peak.
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Table 2.5: Convergence rate of the fractional step scheme for the K-S equation with Gaussian

initial data. The exact solution is taken as the solution of the most refined grid (m = 640)

Grid points L∞ error ×103 (convergence rate, p) at T = 1

Godunov SemiD NSTG CNS FUIM

40 281 241 391 263 263

80 268 (0.07) 107 (1.18) 178 (1.14) 113 (1.22) 113 (1.22)

160 83.6 (1.68) 46.6 (1.20) 60.4 (1.56) 48.1 (1.24) 47.9 (1.23)

320 34.8 (1.26) 15.6 (1.58) 17.8 (1.76) 15.9 (1.59) 15.9 (1.59)
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(a) All schemes with the exact solution. (b) Close peaks.

Figure 2.3: Comparison of the exact solution with the numerical solutions.

2.3.4.1 Comparison with the traveling wave solution

The traveling wave solution of every time-dependent partial differential equation gives the

solution at all times. Therefore to test the accuracy of the numerical schemes, it makes

sense to initialize the solution with the traveling wave solution and check the deviation

of the schemes from the traveling wave solution as time advances, [91]. This section is

dedicated to traveling wave solution of the K-S equation. This is advantageous over any

other solution since the chaotic behavior of (2.38) is restricted to it being integrated over

a finite x−domain with periodic boundary conditions. Therefore, following the work of

Hooper and Grimshaw [34] and Yong-Jung et al. [91] (and references therein) we use the

transformation u(x, t) = u(z) where z = x − st, s is the wave speed, so that the traveling

wave solution is defined over the entire z−domain, −∞ < z < +∞. The boundary conditions

are such that u → ul as z → −∞ and u → ur as z → +∞. The substitution above reduces

equation (2.38) to an ordinary differential equation which can be integrated once to give

u′′′ = c+ su− 1

2
u2 − u′, (2.41)
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where the prime denotes the derivative with respect to z. The wave speed s and the constant

of integration c are determined by the far field solutions as

s =
ul + ur

2
, c = −ulur

2
.

The wave speed is found via the Rankine-Hugoniot condition to be

s =
f(ur)− f(ul)

ur − ul
.

The spatiotemporal behavior of the solution of (2.42) had been recorded by many authors

(see [24, 34, 55, 60] among many). Michelson [55] gave the steady solution of (2.38) and

studied the solution as a function of the square of a parameter c. With this, he classified

the behavior of the solution as conical (for large value of c2), periodic or quasi-periodic (for

small values of c2). Later, Hooper and Grimshaw [34] classified the solution based on the

shock development as either regular shocks, solitary waves or oscillatory shocks. This they

did by observing the far field behavior of the solution. They also noted that experiments

may show chaotic behavior with respect to traveling waves. Recently, Nickel [60] employed

the conditions for solitary and periodic waves to derive an exact solution to the traveling

wave. Here we implement the oscillatory shock behavior as given in [34]. Thus, we solve the

non homogeneous ordinary differential equation














u′′′ + u′ − (s− 0.5u)u = c,

u(−∞) = ul,

u(+∞) = ur.

(2.42)

The nonlinear boundary value problem (2.42) was discretized and the system of equations

derived were solved by the Newton’s method. In the numerical computations, we choose a

sufficiently large domain such that u′ vanishes at the truncated boundaries. We highlight

here that our numerical approach was able to reproduce most of the different families of

solutions predicted in [34]. For the oscillatory shock considered here, we impose the far field

boundary values, ul = 1 = −ur, consistent with the work of Hooper and Grimshaw [34].

The results in Figure 2.4 were all generated as outlined in Section 2.2. We highlight that

all the schemes produced the same quantitative behavior. Nevertheless, NSTG and the fully

implicit scheme solution are the closest to the traveling wave solution with the NSTG giving

the least deviation from the traveling wave solution. The Godunov and the semi-discrete

scheme solution gave the largest deviation of all the schemes.

2.3.4.2 Chaotic property of the Kuramoto-Sivashinsky equation

In this section we verify the chaotic nature of the solution of the K-S equation by solving

(using the time-splitting scheme) equation (2.38) subject to periodic boundary conditions.

We can see that the numerical simulations in Figure 2.5 are consistent with the work of [89].

We highlight the convergence of the presented scheme in Figure 2.5(a) and Figure 2.5(c).
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Figure 2.4: Traveling wave solution as standard compared to other schemes at T = 10.

2.3.4.3 Solution properties of the Kuramoto-Sivashinsky equation

We begin this section by validating the bound for the mean energy density of the full K-S

equation. In particular, Giacomelli and Otto [24] claimed that the effect of (2.30) will balance

the exponential growth of (2.35) resulting in a bound for the mean energy of the entire K-S

equation. We consider equation (2.38) with Φ(x) = sin(x) subject to periodic boundary

conditions. The validation is given in Figure 2.6. We note that all the schemes determine

approximately the same bound. However the NSTG scheme gives a largest deviation from

the other schemes.

In addition to the boundedness of the mean energy density of the full equation, we also

performed numerical experiments to validate the periodicity preserving property. In Figure

2.7(a), we show the conservation of the conserved variable. It is shown here by the zero

mean in Figure 2.7(b).

Next, in order to show the effectiveness of our proposed scheme, we validate the bound

as proved in earlier literature. We write the inequality (1.4) as

lim sup
t→∞

‖u‖2 =
(
∫ L

0

u2dx

)

1
2

= O(Lp). (2.43)

Hence, we plot log(‖u(x, t)‖2) against log(L) and p is approximated via the slope of the

best fit. The results are shown in Figure 2.8(a) for each of the fractional split scheme. The

conjectured bound is of O(L) (see [78] and references therein), i.e., p = 1. The value of the

slope for each scheme gives a good approximation of this value.

For the fully implicit scheme p = 1.0047, for the C-N scheme p = 1.0074, for semi-

discrete scheme p = 0.9988. However, we highlight that the largest deviation is recorded

for the NSTG scheme (p = 0.9767) which gives a lower bound compared to all the other
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Figure 2.5: The chaotic solution of the K-S equation with Gaussian initial conditions (Φ(x) =

exp(−x2)) up to T = 40.

schemes. Figure 2.8(b) shows the system size independence of the quantity

‖ux‖22 =
∫ L

0

u2xdx, (2.44)

as proved theoretically in [63]. Hence, the expression in (2.44) should be of O(L0). Our

computation reveals that the exponent is −0.02025, 0.0001, 0.0063 and 0.0009 for the NSTG,

semi discrete, fully implicit and C-N schemes respectively. It is also evident from Figure

2.8(b) that the NSTG scheme deviates significantly from all other schemes. It is obvious

from the Figure that the semi-discrete and the implicit schemes behave equally well unlike

the non staggered central scheme.
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Figure 2.6: Mean energy profiles for the full K-S equation.
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Figure 2.7: Profile of the K-S equation showing the periodicity and zero average of the

solution at T = 20 and L = 2π.

2.3.5 Cahn-Hilliard equation

In this section we apply the fractional splitting method to another relevant equation in

physics, the convective Cahn-Hilliard equation (cCH) (2.3). This equation is solved subject

to the boundary conditions

ux = γuxxx − φ(u)x = 0, (x = a, x = L). (2.45)

In particular, we split equation (2.3) using a fractional time step algorithm following the

work of, for example, [24, 91]. The stability of the method is guaranteed as long as the

properties of each subproblem are preserved, see for example [29]. We split equation (2.3)

into three subproblems: the hyperbolic equation

ut − δf(u)x = 0, (2.46)
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‖ux‖22

L
.

the linear fourth order equation

ut + γ2uxxxx + uxx = 0, (2.47)

and the nonlinear diffusion equation

ut − α(u3)xx = 0, (2.48)

where f(u) = u2/2.

For δ = 0, equation (2.3) reduces to the traditional Cahn-Hilliard (CH) equation

ut + γ2uxxxx = φ(u)xx, x ∈ Ω, 0 < t, (2.49)

which is an equation of conservation of mass with flux

J = −
[

φ(u)− γ2uxx
]

x
. (2.50)

It has been observed that the critical points of the Ginzburg–Landau free energy form

E =

∫ L

0

(

F (u) +
γ2

2
u2x

)

dx, (2.51)

where F is a Lyapunov functional,

F (u) =

∫ u

0

φ(s)ds,

is a steady state solution of the CH equation (2.49) [19, 62] giving the boundary conditions

ux = γ2uxxx − φ(u)x = 0, x ∈ ∂ Ω. (2.52)
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We believe that this is the first time the equation is handled numerically using a fractional

step method of this kind. The hyperbolic subproblem (2.46), and the parabolic subproblems

(2.47) and (2.48), being of different natures, can be handled using different efficient numerical

schemes.

The convective equation (2.46) will be solved by some of the finite volume schemes

designed for hyperbolic conservation laws [51], precisely the NSTG, FD and WENO as

outlined in Section 2.2.1 while the linear equation (2.47) will be handled by the second order

Diagonally Implicit Runge-Kutta (DIRK) scheme given in Section 2.2.3. Equation (2.48) will

be solved by an implicit/explicit conservative/non-conservative scheme, see Section 2.2.2.

We highlight here that the split into (2.47) and (2.48) is motivated by the need to treat

linear and nonlinear terms separately. This fractional step scheme converges to the solution

of equation (2.3) and this can be shown following a similar analysis as given by Holden et al.

[30]. For the specific case when δ = 0, we will combine only equations (2.47) and (2.48) to

obtain the solution of the CH equation in (2.49).

First, we discuss the solution of equation (2.3) for the case when δ = 0 for different

choices of α. All the simulations were run on a Windows XP, Intel Core 2 Duo, 2GB RAM

desktop and all the solutions were achieved within 10 seconds of computing time.

Example 2.5 For the convergence analysis, we consider
{

ut + (αu3 + u+ γ2uxx)xx = 0, x ∈ (0, 6)

u(x, 0) = cos(πx/6),
(2.53)

and boundary conditions (4.27).

It is obvious that the solution operator of this equation can be split into the solution

operator of equation (2.48) and the solution operator of equation (2.47), and the Algorithm

in Section 2.2 can be used. We determine the spatial rate of convergence of this scheme

for the Cahn-Hilliard equation (4.24) when γ = α = 1 using the refined grid as the exact

solution. The rate of convergence was computed by employing equation (2.32) and the results

are presented in Table 2.6.

In addition, we note that the evolution of equation (4.24), for α = 1/3 and γ2 = 0.02,

shown in Figure 2.9 compares well with the work of [18].

2.3.5.1 Solution property of the Cahn-Hilliard equation 4.24

It has been documented that the solution provided by any numerical scheme that solves the

Cahn-Hilliard equation must satisfy two main properties [13, 14, 18, 62]:

1. Conservation of mass:
∫

Ω

u0(x)dx =

∫

Ω

udx =ML, t > 0,

where M is the total mass of the system and

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 2 Fractional splitting method for higher order equations 36

Table 2.6: Convergence rate of the fractional step for the Cahn-Hilliard equation

Grid points maximum absolute error×103 (p) at T = 1

Conservative Non Conservative Schemes

CN Explicit CN Explicit

20 98.8 102 102 101

40 45.9(1.1) 47.5(1.1) 47.5(1.1) 47.2(1.1)

80 19.6(1.21) 20.3(1.2) 20.4(1.2) 20.2(1.2)

160 6.52(1.6) 6.74(1.6) 6.78(1.6) 6.73(1.6)
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Figure 2.9: Solution of the Cahn-Hilliard (4.24) at time T = 10. Profiles in (a) are given at

equally spaced time intervals.

2. Dissipation of the Ginzburg-Landau free energy functional (equation (2.51)) as time

passes.

Hence, this section is dedicated to validate these two main properties using Algorithm 2.9

and Example 2.5. The profiles in Figure 2.10(a) verifies the conservation of mass. We expect

change in mass to be zero since
d

dt

∫

Ω

udx =
d

dt
ML = 0. The decay in the profiles in Figure

2.10(b) validates the dissipation of energy as expected (see for example, [14, 18]). Note

that most of the profiles for the different schemes overlap and hence cannot be distinguished

from each other. The mass profile when the conservative implicit scheme is applied to the

nonlinear subproblem shows some deviation from the other schemes.

2.3.6 Convective Cahn-Hilliard equation

In this section we give the solution of the cCH equation (2.3) using the splitting Algorithm

2.9.
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Figure 2.10: Conservation of mass and dissipation of energy.

Example 2.6 We consider

{

ut − δuux + (u− αu3 + γ2uxx)xx = 0,

u(x, 0) = − sin(x/6),
(2.54)

and boundary conditions (2.45).

For the purpose of comparison with results in the literature, we choose γ = α = 1 and

δ = 0.1 – see for example [21, 86]. Following the same refined-grid method as discussed for

the Cahn-Hilliard equation, the convergence rate was computed and the results are shown

in Tables 2.7 to 2.9. Approximately, all the schemes predict a second order convergence in

space.

Table 2.7: Convergence rate of the fractional step for the cCH equation with the NSTG

scheme.

Grid points L∞ error×103 (convergence rate) at T = 1

Conservative Non Conservative Schemes

CN Explicit CN Explicit

20 116 116 116 116

40 53.6 (1.08) 53.5 (1.08) 53.6 (1.07) 53.4 (1.08)

80 22.9 (1.21) 22.8 (1.21) 22.8 (1.21) 22.8 (1.20)

160 7.72 (1.55) 7.70 (1.55) 7.72 (1.55) 7.70 (1.55)

The profiles of the solution as compared with the exact steady state solution are also

given in Figures 2.11 and 2.12. For all the schemes, the CFL number is taken between 0.1

and 0.5 which also gives a time step within the stability restriction of the explicit schemes for
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Table 2.8: Convergence rate of the fractional step for the cCH equation with the WENO

scheme.

Grid points L∞ error ×103 (convergence rate) at T = 1

Conservative Non Conservative Schemes

CN Explicit CN Explicit

20 110 110 110 110

40 51.5 (1.05) 51.4 (1.06) 51.5 (1.05) 51.3 (1.06)

80 22.2 (1.20) 22.1 (1.20) 22.2 (1.20) 22.1 (1.20)

160 7.58 (1.54) 7.55 (1.54) 7.57 (1.54) 7.55 (1.54)

Table 2.9: Convergence rate of the fractional step for the cCH equation with the FD scheme.

Grid points L∞ error×103 (convergence rate) at T = 1

Conservative Non Conservative Schemes

CN Explicit CN Explicit

20 110 110 110 110

40 51.6 (1.06) 51.5 (1.06) 51.6 (1.05) 51.4 (1.06)

80 22.2 (1.20) 22.1 (1.20) 22.2 (1.19) 22.1 (1.20)

160 7.58 (1.54) 7.56 (1.54) 7.57 (1.54) 7.56 (1.54)

the nonlinear equation. Figures 2.12 highlights the poor performance of explicit schemes (for

the nonlinear equation) when coupled with the NSTG scheme (for the advection equation).
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Figure 2.11: Numerical solution of the convective Cahn-Hilliard equation.

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 2 Fractional splitting method for higher order equations 39

−10 −5 0 5 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

u

 

 
NSTG
Steady
WENO
FD

−10 −5 0 5 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

u

 

 

NSTG
Steady
WENO
FD

(a) Conservative explicit schemes (b) Non-Conservative explicit schemes

Figure 2.12: Numerical solution of the convective Cahn-Hilliard equation.

2.3.6.1 Solution properties of the convective Cahn-Hilliard equation (4.26)

We will conclude this work by showing the conservation of mass and the coarsening property

for the convective Cahn-Hilliard equation (2.3). Coarsening is a major property since it

is the behavior of the physical process (spinodal decomposition) that the equation models

[25, 69, 86] as time progresses.

Example 2.7 We solve equation (4.26) with u(x, 0) = 0.5 cosx subject to periodic boundary

conditions, for δ = 0.1 using 160 grid points and Algorithm 2.9 (see for example [17]).

The integration continues until the solution coarsens and below we present a sequence of

figures (i.e., Figures 2.13 and 2.14) showing the behavior of the solution over time.
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Figure 2.13: Coarsening process.
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Figure 2.14: Coarsening process.

For the conservation of mass, we have:

d

dt

∫ 4π

−4π

udx =

∫ 4π

−4π

utdx,

=

∫ 4π

−4π

(δ
u2

2
+ (−γ2uxx + φ(u))x)xdx, (2.55)

=

(

δ
u2

2
+ (−γ2uxx + φ(u))x

)

∣

∣

∣

4π

−4π
= 0.

The last equality is due to periodicity.
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Figure 2.15: Conservation of mass .

Figures 2.15 and 2.16 shows the conservation of the mass for all the schemes as expected.

Another important property of the cCH equation (2.3) is transition from roughening to

an orderless pattern. This is due to the fact that as the value of the driving force, δ, increases,
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Figure 2.16: Conservation of mass.

the convective term dominates the equation, consequently it behaves exactly like the famous

Kuramoto-Sivashinsky equation. This can be verified by taking u → u/δ in equation (2.3),

then take δ → ∞. This was noted by Golovin et al. [26] and Watson [86] among others. The

former verified this property using the stationary and the traveling wave solution of equation

(2.3) while the latter just remarked this behavior. Here, Figure 2.17, the solution profile of

Example 2.7 at final computation time T = 80 with δ = 5, clearly shows this behavior.

t

x

0 20 40 60 80
0
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Figure 2.17: Rough behavior of the convective Cahn-Hilliard equation.

2.4 Conclusion

We have employed the fractional time splitting method to approximate the solutions of the

K-S and cCH equations through the finite volume discretization. For the K-S equation, the

deviation of each of the experimental solvers from the traveling wave solution as shown in
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Figure 2.4 reveals that all the schemes approximates the K-S solution. The NSTG is seen

to be the closest to the traveling wave solution. The chaotic behaviour of the solution as

expected was also replicated through this method (see Figure 2.5) and agrees with the obser-

vation of Yan and Chi-Wang [89]. We observed the exponential growth of the mean energy

of the linear equation (2.35) in Figure 2.2(b) and the preservation of the mean energy of the

hyperbolic equation (2.30) before the onset of shock in Figure 2.1. The poor performance

of the Godunov and the implicit schemes are evident here. The performance of the Implicit

schemes was also observed also in [91]. The behaviour of the mean energy of these two

equations leads to the dissipation of the mean energy of the K-S equation shown in Figure

2.6 [24]. We have shown numerically the observations documented in [24, 63] in Figures 2.6

and 2.8.

Our numerical experiments also reveal that the fractional splitting schemes’ approxima-

tion of the CH and cCH equations compares well both with existing result in the literatures

as well as the exact steady state solution. This is obvious from the Figures 2.9 to 2.12 and

Tables 2.6 to 2.9. In all these experiments, the consistency of the WENO scheme in approx-

imating the solution of equation (2.3) is evident. We also validated the dissipation of the

Ginzburg Landau energy functional and conservation of mass for the CH equation as well as

conservation of mass for the cCH equation, shown in Figures 2.10, 2.15 and 2.16 respectively.

In addition to these, Figures 2.13 and 2.14 demonstrates what happens when the mixture of

substances in hot temperature is allowed to cool. The solution coarsens because the grains

separates. In the presence of high driving force, convection dominates, hence the patterns

form becomes rough. This is shown in Figure 2.17. These observations agrees with the

physics of the equations as documented in [25].
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Chapter 3

Nonclassical methods for singularly

perturbed equations

In this chapter, we employ the matched asymptotic expansion method and the nonstandard

finite difference method to design two different finite volume schemes for the Schrödinger

equation. Results from these schemes are reported in [4].

3.1 Introduction

We investigated second order singularly perturbed equations with the goal of designing ac-

curate numerical schemes. Generally, these are equations of the type

− ǫ2u′′(x) + b(x)u′(x) + c(x)u(x) = f(x), (3.1)

with ǫ≪ 1. Equation (3.1) is a convection-diffusion equation if c = 0 or a diffusion-reaction

equation if b = 0. The application of equations of type (3.1) cuts across fluid dynamics,

investigating water quality in river networks, oil extraction simulations, thermodynamics,

semiconductor device simulation, among others. A quick look at the equation below will

open our eyes to what happens with these type of equations. Consider

− ǫ2u′′(x) + u(x) = 1, x ∈ (0, 1), u(0) = u(1) = 0. (3.2)

Setting ǫ = 0 gives u(x) = 1 which completely disagrees with the boundary conditions.

The reduced problem therefore has no solution in C2[0, 1]. This suggests that the solution

of equation (3.2) is not well behaved when ǫ becomes very small. Differential equations

depending on small parameters whose solutions approach discontinuous limit as ǫ → 0 like

the one above are termed singularly perturbed equations. Due to their applications, their

analysis and numerical solution has attracted the attention of many researchers. As expected,

43
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Chapter 3 Singularly perturbed equations 44

any discrete model applied to this equation yields ǫ-dependent solution. Hence, classical

methods fail to compute the properties of the solution as ǫ approaches some critical value.

Of practical interest, their solutions often contain layers; interior or boundary layers. The

special case when b = f = 0 in equation (3.1) with non-zero Dirichlet boundary condition

is of practical interest because of the oscillatory behaviour of the solution. This is evidence

from the investigation of the equation of the harmonic oscillator in which c in equation (3.1)

is constant. Obviously, the solution of such an equation is trigonometric with wavelength

λ = 2π

√

ǫ2

c
.

Any difference-type scheme that will well approximate the solution to such an equation there-

fore, must be with grid size less than the wavelength. Consider a case when the parameter ǫ

becomes very small, then such scheme will need much more smaller grid size, consequently it

becomes computationally costly. Hence, recent attraction of research activities into providing

both analytical and numerical approximation of singularly perturbed equations.

Here, we will focus on the robustness of two schemes discussed in succeeding sections.

3.1.1 Non classical finite volume method

This method combines the knowledge of analytical methods, like perturbation and matched

asymptotic expansion, with the strength of numerical approximation. It is referred to as

semi-analytical method in [37]. Our discussion here is based on the works of [36, 38, 70].

We will give a detailed description in Section 3.2.2. Jung [36] designed a finite element

scheme for singularly perturbed reaction-diffusion equations which has boundary layer ele-

ments embedded in it to reduce the effect of the small parameter. Later, Jung and Temam

[38] introduced some correctors based on asymptotic expansion into the finite volume scheme

to obtain a second order scheme to solve stiff convection-diffusion models. They observed

that their finite volume schemes are flexible to incorporate into the finite volume spaces.

Recently, Jung and Nguyen [37] introduced some perturbation techniques into the finite

volume scheme to resolve the oscillation due to the small parameter in convection-diffusion

equations with turning points.

3.1.2 Nonstandard finite difference scheme

Unlike the non classical method, this method derives its strength from the fact that the

exact difference scheme of the differential equation is first derived and solved. The idea

from the solution of the difference equation is then employed to correct the finite difference

scheme of the differential equation. Through this, the denominator is usually changed to a

special function of space and/or time step instead of just the grid size or time step. We will

follow the results in [53, 54, 57, 58] and the literatures therein. Nonstandard finite difference

scheme has been a very useful scheme in investigating differential equations because they
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are always designed to give exact schemes of the differential equations. Hence, their de-

sign for singularly perturbed equation always incorporate the small parameter into the step

size. Mickens [56] applied the nonstandard finite difference scheme to solve the unsteady

Schrödinger equation. He gave a comprehensive discussion on the derivation and application

including the challenges faced when designing the scheme to solve several models of ordi-

nary and partial differential equations. Recently, Lubuma and Patidar [53] employed the

scheme to solve self-adjoint singularly perturbation problems. Later, Patidar and Sharma

[65] extended the scheme to handle second order singularly perturbed differential-difference

equations with delay. Lubuma and Patidar [54] considered some singularly perturbed prob-

lems with oscillatory solutions. They constructed and analysed an exact scheme based on

the the works of Mickens. Additional advantages of this method includes preservation of

positivity and monotonicity of solutions of differential models with uniform convergence.

We will discuss the derivation and application of this method briefly in Section 3.2.3.

3.2 Numerical approach

In this section we design three different finite volume schemes to approximate the solution

of the equation
ǫ2u′′ + αu = 0, x ∈ (0, 1),

u(0) = α1, u(1) = α2.
(3.3)

3.2.1 Classical finite volume scheme

Here we design the traditional classical finite volume (CFV) scheme for equation (3.3).

Recall that in finite volume method, given the spatial domain x ∈ [0, 1] with xj = jh,

j = 0, 1, 2, 3, · · · , m, h = ∆x numerical approximations are implemented at cell interfaces

xj± 1
2
= xj ± h

2
, j = 1, 2, 3, · · · , m− 1, and

uj± 1
2
=
uj+1 + uj

2
.

Now, we multiply equation (3.3) by a test function χ(x
j− 1

2
,x

j+1
2
)(x) and integrate with respect

to x. By this we have

ǫ2u′
∣

∣

x
j+1

2
x
j− 1

2

+ α

∫ x
j+1

2

x
j− 1

2

uχ(x
j− 1

2
,x

j+1
2
)(x)dx = 0,

giving us

ǫ2u′
∣

∣

x
j+1

2
x
j− 1

2

+ αhuj = 0.

We employ the interpolation functions [38] for discrete values

uh(x) =
m
∑

j=0

ujχ(x
j− 1

2
,x

j+1
2
)(x), (3.4)
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and

u′(x) ∼ ∇huh =

m
∑

j=0

uj+1 − uj
h

χ(xj ,xj+1)(x), (3.5)

so that

u′(x) ∼ u1 − u0
h

χ(x 1
2
,x1)(x) +

m−1
∑

j=1

uj+1 − uj
h

χ(xj ,xj+1)(x) +
um+1 − um

h
χ(xm,x

m+1
2
)(x).

The boundary values of the variable u are approximated and ghost points are eliminated

using the given boundary conditions. Bearing these in mind, the equations above can be

written as

σj+1uj+1 + σjuj + σj−1uj−1 = zj,

where σj are some coefficients of discrete unknowns uj and zj = 0, j = 1, 2, 3, · · · , m − 1.

Therefore, we have a system of linear equations of the form σu = Z to solve where σ is a

tridiagonal matrix with entries

σj−1 =
ǫ2

h
,

σj =
−2ǫ2

h
+ αh, (3.6)

σj+1 =
ǫ2

h
,

and Z is a modification of zj via the boundary correction.

Remark 3.1 The boundary correction in the above scheme is direct if the boundary condition

is Dirichlet. It becomes much involved when dealing with Neumann boundary condition or

mixture of the two type of boundary condition. For the case above Z1 = z1 − α1
ǫ2

h
while

Zm−1 = zm−1 − α2
ǫ2

h
.

Remark 3.2 The above scheme as documented in literatures is deficient in handling sin-

gularly perturbed differential equations most especially in the presence of boundary layer,

interior layer or when the solution is strongly oscillatory, see [8, 37, 38]. Hence, the intro-

duction of the semi analytical schemes.

3.2.2 Non classical finite volume method

We discuss the derivation of the non classical finite volume method. Firstly we briefly

introduce the known analytical methods for some singularly perturbed differential equations.

By so doing we will familiarize ourselves with the tools that are essential for the method

under discussion. In particular, we discuss the following:

1. Perturbation method,

2. Matched asymptotic expansion (MAE) and

3. Wentzel-Kramers-Brillouin (WKB) method.
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3.2.2.1 Perturbation method

Even though this method is mainly designed for regular perturbation equation, it is a good

point to start for better understanding of the new method. Recall that a regular perturbation

problem is one in which the solution remains valid even if the small parameter ǫ → 0. A

possible example is the eigenvalue problem for the vertical displacement, u(x), of an elastic

string with variable density

u′′ + γ2[1 + ǫµ]u = 0, (3.7)

where µ(x) is positive and continuous. The solution u(x) and the eigenvalues γ are taken as

functions of ǫ. The regular perturbation assumes

u ∼ u0 + ǫu1,

γ ∼ γ0 + ǫγ1.

We can put these ansatz into equation (3.7) and equate terms with the same power of ǫ.

Inserting the ansatz into the equation, we have

u′′0 + ǫu′′1 + (γ20 + 2ǫγ0γ1)(1 + ǫµ(x))(u0 + ǫu1) = 0,

which after expansion and equating the coefficients of the powers of ǫ gives

O(1) → u′′0 + γ20u0 = 0, u0(0) = u0(1) = 0,

O(ǫ) → u′′1 + γ20u1 = 0, u1(0) = u1(1) = 0.
(3.8)

From the equation above, it is obvious that u0 = A sin(γ0x), γ0 = jπ where j ∈ Z.

Remark 3.3 Regular perturbation technique is not always uniformly valid for singularly

perturbed equation most especially near boundary layer regions.

3.2.2.2 Matched asymptotic expansion

The origin of this method is credited to the works of Prandtl on boundary layer problems,

see [33] and the literatures therein. It was a source of breakthrough in the study of singularly

perturbed differential equations. The algorithm follows three major steps.

1. Obtain the outer expansion (at least the leading order term).

2. Determine the boundary layer region and obtain the inner expansion.

3. Match the two approximations.

This is illustrated with the following example.
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Example 3.1 Consider the boundary value problem

ǫu′′ + 2u′ + u3 = 0, x ∈ (0, 1),

u(0) = 0, u(1) = 1
2
.

(3.9)

We will determine the composite expansion of equation (3.9) by the matched asymptotic

expansion method [33].

In this regard, assume the two term expansion u = u0 + ǫu1 and substitute this into (3.9).

This leads to

ǫ(u0 + ǫu1)
′′ + 2(u0 + ǫu1)

′ + (u0 + ǫu1)
3 = ǫ(u0 + ǫu1)

′′ + 2(u0 + ǫu1)
′ + u30 + 3ǫu20u1 = 0.

This yields,
O(1) → 2u′0 + u30 = 0, u0(0) = 0, u0(1) =

1
2
,

O(ǫ) → 2u′1 + 3ǫu20u1 = −u′′0, u1(0) = 0, u1(1) = 0.
(3.10)

Equation (3.10)1 is a first order differential equation which only needs one boundary con-

dition. The fact that we have two boundary conditions means there will be issues (say,

boundary layer) at one of the boundaries. We will use the right hand boundary condition

and assume there is boundary layer at x = 0. With this, the leading order solution is

u0 =
1√

2x+ 2
.

Since we assumed that there is a boundary layer at x = 0, we introduce the transformation

x̃ = x
ǫα

at this boundary, where α > 0 will be determined in the succeeding analysis. The

transformation above is referred to as stretching transformation. By this transformation, we

have
d

dx
=
dx̃

dx

d

dx̃
.

Suppose, U(x̃) is the solution we sought for at the boundary layer, then we have

ǫ1−2α
U

′′(x̃) + 2ǫ−α
U

′(x̃) + U
3(x̃) = 0, U(0) = 0. (3.11)

Also, we assume U ∼ U0(x̃) + ǫγU1(x̃), · · · for γ > 0. Putting this into equation (3.11) we

have

ǫ1−2α(U0 + · · · )′′ + 2ǫ−α(U0 + · · · )′ + (U0 + · · · )3 = 0. (3.12)

If we assume that the first and the second term are of the same order of ǫ while the third

term is of higher order, then α = 1 which implies that the first and the second terms are of

order O(ǫ−1) while third term is of order O(1). Hence, we need to solve

O(1
ǫ
) → U′′

0 + 2U′
0 = 0,

U0(0) = 0.
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The solution of this equation is A(1 − exp(−2x̃)) where A is a constant. Before matching

these solutions, we need to find the value of A. This is achieved by assuming that the

solution of the boundary layer equation outside the layer and the value of the outer solution

as one approaches the boundary layer should be equal, i.e. u0(0) = U0(∞). Hence, A = 1√
2
.

Now, we can determine the composite expansion which is the required solution by adding

the outer and the inner solution and subtracting the region common to both,

u = u0(x) + U0(x̃)− u0(0) =
1√

2x+ 2
− 1√

2
exp

(

−2x

ǫ

)

. (3.13)

Even though this method is outlined for a boundary layer problem, it is also applicable to

interior layer, boundary layer or corner layer problems.

Remark 3.4 It is note worthy here that most of the solutions by the match asymptotic ex-

pansion method ended up having an exponential dependence on the boundary layer coordinate.

3.2.2.3 WKB method

This method which supposedly originated from the work of the trio Wentzel, Kramers and

Brillouin assumes the exponential dependence on the boundary layer coordinate from the be-

ginning, see [33]. It has been a successful tool in solving problems arising from quantum and

solid mechanics, for instance, the Schrödinger equation. As done for the previous methods,

we will outline the method by employing it to solve the example below.

Example 3.2 Approximate the solution of

ǫ2u′′ − f(x)u = 0, (3.14)

analytically by the WKB method.

Suppose that f(x) = f̃ is a constant function, we know that equation (3.14) will admit a

general solution

u(x) = α exp

(

−1

ǫ

√

f̃x

)

+ β exp

(

1

ǫ

√

f̃x

)

. (3.15)

In the WKB method, the solution (3.15) is generalized to solve equation (3.14). The ansatz

here is

u(x) ∼ e
θ(x)
ǫα (u0(x) + ǫαu1(x) + · · · ) . (3.16)

We will need the second derivative of the assumed solution given above and then substitute

it into equation (3.14), equate the coefficients of the powers of ǫ, solve reduced equations

and hence, the entire equation. By ideas from calculus,

u′ ∼ e
θ
ǫα
(

ǫ−αθ′u0 + u′0 + θ′u1 + · · ·
)

, (3.17)

and

u′′ ∼ e
θ
ǫα
(

ǫ−2αθ′2u0 + e−α(θ′′u0 + 2θ′u′0 + θ′2u1) + · · ·
)

. (3.18)
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Putting equations (3.16) and (3.18) into equation (3.14) we have

ǫ2
(

ǫ−2αθ′2u0 + e−α(θ′′u0 + 2θ′u′0 + θ′2u1) + · · ·
)

− f(x) (ǫα(u0(x) + ǫαu1(x) + · · · )) = 0.

(3.19)

Interestingly, the exponential term dropped out. Following the same procedure as we did in

the last section, we determine that α = 1. With this, we have the eikonia equation

O(1) → (θ′)2 = f(x), (3.20)

which have the solution

θ(x) = ±
∫ x

√

f(s)ds. (3.21)

The first term in the expansion is determined by solving the transport equation

O(ǫ) → θ′′u0 + 2θ′u′0 + θ′2u1 = f(x)u1. (3.22)

Equation (3.21) reduces this to

O(ǫ) → θ′′u0 + 2θ′u′0 = 0, (3.23)

which has the solution

u0(x) =
c√
θ′
.

Therefore, the solution of equation (3.14) is

u ∼ f− 1
4 (x)

(

α exp

(

−1

ǫ

∫ x
√

f(s)ds

)

+ β exp

(

1

ǫ

∫ x
√

f(s)ds

))

. (3.24)

The methods outlined above are all analytical and easy to apply when treating linear equa-

tions with O(ǫ) or greater. A more realistic approximation will be obtained if one can

consider terms with O(ǫ2) or less. But this may prove really difficult and handling nonlinear

equations may present more difficult challenges. This is one of the reasons we may have to

appeal to numerical studies of these equations. This is non trivial since, we already know

that it is always costly employing standard numerical schemes for this type of equations.

Therefore, we will employ our ideas of analytical methods when constructing the numerical

schemes, see [37]. To this extent, we will dedicate the next section to the study of corrector

methods as introduced and discussed in [70].

The non classical method builds on the idea of the method of matched asymptotic ex-

pansion that was explained in Section 3.2.2.2. We will motivate the method by an example

also.

Example 3.3 Investigate the solution of the equation

L := −ǫu′′ + b(x)u′ + c(x)u = f(x), x ∈ (0, 1), (3.25)

u(0) = u(1) = 0, c(x) ≥ 0, b′(x) 6= 0, x ∈ [0, 1], (3.26)

given that b, c, f are smooth functions and 0 < ǫ≪ 1.
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It is evident that we can approximate the solution of equations (3.25) and (3.26) by the

method of MAE as outlined above in which case we need to first find the outer expansion,

say uas. Except in the presence of boundary layer, this will be a well behaved solution of

the equation. So let,

uas ∼
m
∑

i=0

ǫiui(x), (3.27)

ui is to be determined. Following the same procedure as in Section 3.2.2.1 and putting the

ansatz (3.27) into (3.25) leads to

O(1) → bu′0 + cu0 = f,

O(ǫi) → bu′i + cui = u′′i−1, for i = 1, · · · , m. (3.28)

Now, given some other conditions, we will be able to determine the values of the unknowns

[u0, ui] from these equations. To find u0 we need only one boundary condition, but we have

two, so we are faced with the challenge of choice making. To be able to make the correct

choice of the boundary condition, an appeal is made to cancelation law [70].

Remark 3.5 The location of the boundary layer depends on the behaviour of b. It will be

towards the right hand boundary given a positive b and at the left hand boundary otherwise.

For our case, because of the definition of the problem, it will be located at x = 1. Therefore,

we employ only the boundary value at x = 0 to define u0. Hence, uas does not approximate

the solution of equation (3.25) because it is deficient at x = 1.

Hence we focus on determining the reduced solution, u0, from the equations

O(1) → bu′0 + cu0 = f, u0(0) = 0,

O(ǫi) → bu′i + cui = u′′i−1, ui(0) = 0 for i = 1, · · · , m. (3.29)

There is need for a local corrector of the solution uas as we approach x = 1. To this end, we

introduce a stretching transformation at x = 1,

y =
1− x

δ
, 0 < δ ≪ 1.

Suppose L = ǫL1 + L0 where L0v := bv′ + cv, then we want to choose δ so that ǫL1 and L0

will have the same order with respect to ǫ after transformation from x to y , i.e.,

ǫδ−2 = δ−1,

which gives δ = ǫ. To continue, we have to expand the functions b(x) = b(1 − ǫy) and

c(x) = c(1− ǫy) by the Taylor’s expansion thus,

∞
∑

i=0

biǫ
iyi, with, b0 = b(1),
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∞
∑

i=0

ciǫ
iyi, with, c0 = c(1).

Based on these expansions, the boundary layer equation to be solved is

− 1

ǫ

d2u

dy2
− 1

ǫ

∞
∑

i=0

biǫ
iyi
du

dy
+

∞
∑

i=0

ciǫ
iyju = 0. (3.30)

Suppose, we have a local expansion for u(y)

uloc(y) =
m+1
∑

l=0

ǫlθl(y). (3.31)

Substituting this into equation (3.30) and equating the powers of ǫ we have

T0θ0 = 0, (3.32)

T0θl = −
l
∑

i=1

Tiθl−i, l = 1, · · · , m+ 1, (3.33)

where

T0 := − d2

dy2
− b0

d

dy
,

T1 := −b1y
d

dy
+ c0.

It appears now that we have to solve second order differential equations which require two

boundary conditions each for uniqueness. Since we are focussing on the boundary at x = 1,

we need a boundary condition here so that the error of our approximation will be zero, then

θl(0) = −ul(1). The second boundary condition will be based on the fact that we need the

boundary layer solution localized to this boundary alone, hence we need limy→∞ θl(y) = 0.

The MAE approximation is

uas =
m
∑

i=0

ǫiui(x) +
m
∑

l=0

ǫkul

(

1− x

ǫ

)

. (3.34)

Remark 3.6 It is the idea of the corrector here that was employed by Jung [36] and Jung and Nguyen

[37] in their work. The same procedure will be employed here to solve two equations.

3.2.3 Non standard finite volume method

In this section we will investigate some singular perturbed second order ordinary differential

equations (ODEs) in order to design more accurate scheme to solve them. As stated in

Section 3.2, we will investigate equations of the form
{

−ǫ2u′′(x)− g(x)u = 0, x ∈ [0, 1],

u(0) = α, u(b) = β.
(3.35)

Our discussion in this section is based on the works that were referred to in Section 3.1.2.
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3.2.3.1 Nonstandard finite difference schemes for first order differential equa-

tions

For better understanding, we derive the scheme for a simple first order decay differential

equation
du

dx
= −γu. (3.36)

Integrating equation (3.36), we have its general solution as

u = u0e
−γx, u0 = u(0).

This means the corresponding difference equation to (3.36) is

uj+1 = uje
−γh.

Hence,

uj+1 − uj = uj(e
−γh − 1),

and the nonstandard scheme for (3.36) is

uj+1 − uj
φ(h)

= −γuj , φ(h) =
1− e−γh

γ
. (3.37)

The replacement of the space width h in the denominator of the finite difference scheme by

the function φ(h) as in equation (3.37) such that

lim
h→0

φ(h) ∼ h,

gives a significant difference between the classical difference schemes and the NSFD.

3.2.3.2 Nonstandard finite difference schemes for second order differential equa-

tions

Here, we derive the denominator function φ(h) for equation (3.35) in the standard form

u′′ ± g(x)ǫu = 0, g(x)ǫ =
g(x)

ǫ2
. (3.38)

Assuming g is constant, for simplicity, we know that the two linearly independent solution

of (3.38) are

u1 = exp(ıgx), u2 = exp(−ıgx), ı =
√
−1. (3.39)

∣

∣

∣

∣

∣

∣

∣

φj exp(ı
√
gǫhj) exp(−ı√gǫhj)

φj+1 exp(ı
√
gǫh(j + 1)) exp(−ı√gǫh(j + 1))

φj+2 exp(ı
√
gǫh(j + 2)) exp(−ı√gǫh(j + 2))

∣

∣

∣

∣

∣

∣

∣

= 0. (3.40)
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From equation (3.40), it is evident that

uj(e
ı
√
gǫh − e−ı

√
gǫh)− uj+1(e

2ı
√
gǫh − e−2ı

√
gǫh) + uj+2(e

ı
√
gǫh − e−ı

√
gǫh) = 0,

which by the trigonometric identities

2 sin(θ) = eıθ − e−ıθ,

gives

uj − 2uj+1 cos(
√
gǫh) + uj+2 = 0. (3.41)

The interesting feature here is the common behaviour of the solution νj = Aeıγxj + Be−ıγxj

of both difference equation (3.41) and the constant coefficient equation (3.38) at the grid

point xj . Recalling that

cos(θ) = 1− 2 sin2

(

θ

2

)

,

after an index shift, equation (3.41) finally gives the nonstandard finite difference scheme for

the equation (3.39) as

uj−1 − 2uj + uj+1

φ(h)2
+ gǫ(x)uj = 0, φ(h) =

2ǫ√
g
sin

(√
g

2ǫ
h

)

. (3.42)

Now, for g = g(x), equations (3.42) gives

uj−1 − 2uj + uj+1

φ(h)2
+ gǫ(xj)uj = 0, φ(h) =

2ǫ
√

g(xj)
sin

(

√

g(xj)

2ǫ
h

)

. (3.43)

On a domain discretized into m + 1 grid points j = 0, 1, 2, 3, · · · , m, the above scheme will

result into a system of linear equations of the form

Au = Z, (3.44)

where the sparse matrix A has the entries

Aj−1 = − 1

φ(h)2
,

Aj =
2

φ(h)2
− gǫ(xj), j = 1, 2, · · · , m, (3.45)

Aj+1 = − 1

φ(h)2
,

(3.46)

and

Z1,2,··· ,m = [− u0
φ(h)

, 0, 0, 0, · · · ,− um
φ(h)

],

where u0 and um are boundary values.

It has been shown that the equation (3.64) when solved subject to Dirichlet boundary

condition such that u(0), u(1) ≥ 0 satisfies the maximum principle and that the schemes

(3.43) is qualitatively stable [54]. That is, the difference equation or its solution replicates

the properties of the original equation.
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3.2.3.3 Non standard finite finite volume scheme

The new finite volume scheme to be designed will be an adaptation of the nonstandard finite

difference scheme discussed above into the classical finite volume scheme. Comparing the

classical finite volume scheme with (3.43), the denominator of the nonstandard finite volume

scheme is the function

φ(h) =
2

√

fǫ(xj)
sin

(

√

fǫ(xj)

2
h

)

, fǫ =
1

hǫ2

∫ x
j+1

2

x
j− 1

2

g(x)dx. (3.47)

This makes sense since, limh→0 φ(h) ∼ h. Then, we will be solving system of linear equations

in the form giving in equation (3.44) where

Aj,j−1 =
1

φ(h)2
,

Aj,j = − 2

φ(h)2
+ fǫ(xj), j = 1, 2, · · · , m (3.48)

Aj,j+1 =
1

φ(h)2
,

(3.49)

and

Z1,2,··· ,m = [− u0
φ(h)

, 0, 0, 0, · · · ,−um+1

φ(h)
].

We discuss the application of these method to three different problems in the sequel.

3.3 Numerical experiments

Here we apply the three schemes designed above to equation (3.50) below

Example 3.1
ǫ2u′′ + αu = 0, x ∈ (0, 1),

u(0) = 1, u(1) = 0.
(3.50)

The boundaries are corrected through

u 1
2
= 1, um+ 1

2
= 0,

and the interpolation functions. The numerical approximations are compared with exact

solution

u(x) =
sin(1−x

ǫ
)

sin(1
ǫ
)
.
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The non classical method follows some algorithms to correct the solutions at the points

where the classical method fails using the idea of analytical methods. Therefore, we study

the formal perturbation approximation of the equation under investigation. Put

uper ∼
∞
∑

i=0

ǫiui,

into equation (3.50) and equate the orders of powers of ǫ. This leads to the equations

O(1) → u0 = 0, u0(0) = 1, u0(1) = 0, (3.51)

O(ǫ) → u1 = 0, u1(0) = 0, u1(1) = 0, (3.52)

ui = − 1
α
u′′i−2, ui(0) = 0, ui(1) = 0. (3.53)

Let

u ∼
∞
∑

i=0

ǫiθi(y),

then the boundary layer equation is
(

d2

dy2
+ α

) ∞
∑

i=0

ǫiθi = 0,

with the leading order equation
d2θ0
dy2

+ αθ0 = 0. (3.54)

This being a second order equation requires two boundary conditions. As discussed in

Section 3.2.2, if α = 1, the solution is oscillatory, hence we solve this equation subject to

θ0(0) = −1, θ0(1) = 0. The solution of equation (3.54) is

θ0 = cot

(

1

ǫ

)

sin
(x

ǫ

)

− cos
(x

ǫ

)

. (3.55)

Now, we will outline the design of the non-classical finite volume scheme. We seek the solution

of the target equation in the form u = uc+γθ0, where θ0 is the corrector just discussed above

and uc will be discretized with finite volumes, while γ ∈ R will be determined alongside the

unknown solution, see [38]. Therefore, the desired solution is

ũ = γθ0 + uh,

uh =

m
∑

j=1

ujχ(x
j− 1

2
,x

j+1
2
)(x), (3.56)

ǫ2uc
′′

+ αuc = 0. (3.57)

The boundary condition for this new equation is dependent on the original boundary and

the behaviour of the corrector at the boundary. Therefore,

uc(0) = u(0)− γθ0(0) = 1 + γ, uc(1) = u(1)− γθ0(1) = 0. (3.58)
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Remark 3.1 It is evident here that if γ = 0, then we will recover the classical finite volume

approximation.

Obviously, we need an additional equation to cater for the unknown parameter γ for the

existence of a unique solution to the expected system of discretized equations. To this

extent, we will multiply equation (3.50) by a test function θ0χ[0,x 3
2
) and integrate by part

over (0, 1). This leads to

ǫ2uc
′

θ0
∣

∣

x 3
2

0 − ǫ2
∫ x 3

2

0

θ0u
c′dx+ α

∫ x 3
2

0

ucdx = 0. (3.59)

At this point, we introduce the discrete interpolation functions for u and u′ as discussed

above to replace uc and recall that by the boundary condition uc0 = 1 + γ. Then,

uc
′

(x 3
2
) =

uc2 − uc1
h

,

and

uc
′

=
uc1 − uc0

h
=
uc − 1− γ

h
.

Putting all these together we have a system of linear equations

σ0,0γ + σ0,1u
c
1 + σ0,2u

c
2 = 0, (3.60)

to solve. Here,

σ0,0 =
ǫ2

h

(

θ0(0)−
∫ x1

0

θ′0dx

)

,

σ0,1 =
ǫ2

h

(

−(θ0(x 3
2
) + θ0(0))− (

∫ x1

0

−
∫ x2

x1

)θ′0dx

)

+ hα, (3.61)

σ0,2 =
ǫ2

h

(

θ0(x 3
2
) + (

∫ x2

x1

−
∫ x3

x2

)θ′0dx

)

.

We will move straightforward to design scheme for equations (3.57) putting in mind the

interpolation functions earlier discussed. Of course, we will solve a system of linear equations

in the form σu = Z, where the sparse matrix σ has the entries

σj,j−1 = −ǫ
2

h
,

σj,j =
2ǫ2

h
− hα, j = 1, · · · , m, (3.62)

σj,j+1 = −ǫ
2

h
,
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and Zj = 0 for j = 2, · · · , m while after boundary correction Z1 = − ǫ2

h
. Finally, the system

to be solved is

σ0,0 =
ǫ2

h

(

θ0(0)−
∫ x1

0

θ′0dx

)

,

σ0,1 =
ǫ2

h

(

−(θ0(x 3
2
) + θ0(0))− (

∫ x1

0

−
∫ x2

x1

)θ′0dx

)

+ hα,

σ0,2 =
ǫ2

h

(

θ0(x 3
2
) + (

∫ x2

x1

−
∫ x3

x2

)θ′0dx

)

,

σj,j−1 =
ǫ2

h
,

σj,j = −2ǫ2

h
+ hα, j = 1, · · · , m, (3.63)

σj,j+1 =
ǫ2

h
,

The performance of the two schemes (3.6) and (3.63) are compared in Figures 3.1 and

3.2.
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(a) Simulation at ǫ = 1 (b) Simulation at ǫ = 0.1

Figure 3.1: Comparison of the solution of the equation (3.50) as computed by the classical

scheme and the new scheme on 10 grids and compared with the exact solution on 200 grids.

We also compare the approximation of the classical and the nonstandard finite volume

schemes. The error computations are shown in Tables 3.1 and 3.2. The profile comparison

are given in Figures 3.3 and 3.4.

3.3.1 Schrodinger equation

In this section we will apply the three schemes discussed in Section 3.2 to approximate the

solution of the Schrodinger equation.
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Figure 3.2: Comparison of the solution of the equation (3.50) as computed by the classical

scheme and the new scheme on 40 grids and compared with the exact solution on 200 grids

when ǫ = 0.01.

Table 3.1: Error values of the nonstandard scheme and the classical scheme for different

values of ǫ
Grid points L∞ Norm error

ǫ = 1 ǫ = 0.1 ǫ = 0.01

CFV×105 NSFV×1016 CFV NSFV×1015 CFV NSFV×1013

10 6.577 3.330 0.8186 4.4408 1.9626 910.3

20 1.650 5.551 0.2938 3.8580 1.9743 14.21

40 0.412 15.54 0.0806 18.20 1.9743 1.043

80 0.103 18.87 0.0208 37.74 3.0325 22.64

Table 3.2: Error values of the nonstandard scheme for different values of ǫ
Grid points L∞ Norm error

ǫ = 10−3(×1013) ǫ = 10−4(×1012) ǫ = 10−5(×108)

10 1.165 2.695 1.137

20 1.150 2.819 1.138

40 94.48 2.684 1.137

80 1.066 2.864 1.138

Example 3.2 Solve the Schrödinger equation











−ǫ2u′′(x)− q(x)u(x) = 0, 0 < x < 1,

ǫu′(0) + ıp(0)u(0) = 2ıp(0),

ǫu′(1) = ıp(1)u(1),

(3.64)

where p(x) =
√

q(x) > 0 and 0 < ǫ≪ 1.
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(a) Simulation on 20 grids with ǫ = 0.1 (b) Simulation on 80 grids with ǫ = 0.1

Figure 3.3: Comparison of the solution of equation (3.50) by the schemes (3.6) and (3.47)
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Figure 3.4: Comparison of the solution of equation (3.50) by the schemes (3.6) and (3.47)

It is well known that equation (3.64) is strongly oscillatory and even though appears

simple, the presence of the small parameter ǫ has made it a very interesting problem over

decades. Also, the relevance of the equation in quantum physics modeling is another reason

for gaining attention over the years. Therefore, a lot of numerical analysis and simulation

have been done on (3.64) based on finite difference (both classical and adaptive mesh),

finite volume, finite element and WKB methods (for example see [8] and literatures therein).

Perturbation methods have been very useful in the analysis of equations of this type, most

especially, the WKB method, see [33]. Lately, numerical methods have been combined

with such perturbation methods. For instance, WKB combined with or used as basis for

finite element methods [59, 68]. It should be noted that effort to solve this equation are

directed towards the design of cost effective scheme in term of computing memory usage and

computing time.
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Here, we will employ the classical, non classical and the nonstandard finite volume method

as described above to solve (3.64).

3.3.1.1 Classical finite volume scheme for equation (3.64)

We follow the same approach as listed for the classical scheme in Section 3.2. Hence, for all

j′s, the classical scheme for equation (3.81) is

− ǫ
uj−1 − 2uj + uj+1

h
− uj

∫ x
j+1

2

x
j− 1

2

bdx = 0. (3.65)

The ghost points are taken cared of through the boundary conditions. The discretized form

of the boundary conditions are

ǫ(u 1
2
− u− 1

2
) + ıp(0)u0 = 2ıp(0), (3.66)

at x = 0 and

ǫ(um+ 1
2
− um− 1

2
)− ıp(1)um = 0, (3.67)

where the cell averages are approximated via the interpolation functions given in Section

3.2.

3.3.1.2 Non classical finite volume scheme for equation (3.64)

In order to resolve the in accurateness in the approximation given by the classical scheme,

we design here a non classical scheme. as we did for the first example we appeal to the

perturbation analysis of equation (3.64). The formal outer expansion based on the ansatz

u =

∞
∑

l=0

ǫlul,

gives on substitution into (3.64)
{

u0(x) = 0,

q(x)ul(x) = −u′′l−1(x), l > 0.
(3.68)

At x = 0 we have that

∞
∑

l=0

ǫl+1ul(0) + ıp(0)
∞
∑

l=0

ǫlul(0) = 2ıp(0),

∞
∑

l=1

ǫlul−1(0) + ıp(0)
∞
∑

l=1

ǫlul(0) + ıp(0)u0(0) = 2ıp(0),

{

u0(0) = 2,

ul(0) = − 1
ıp(0)

u′l−1(0), l > 0.
(3.69)
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Also, at x = 1
∞
∑

l=0

ǫl+1ul(1)− ıp(1)
∞
∑

l=0

ǫkul(1) = 0,

∞
∑

l=1

ǫlul−1(1) + ıp(1)

∞
∑

l=1

ǫkul(1) + ıp(1)u0(1) = 0,

{

u0(1) = 0,

ul(1) =
1

ıp(1)
u′l−1(1), l > 0.

(3.70)

From equations (3.68), (3.69) and (3.70) it is observed that u0 does not agree with the

boundary condition u0(0) = 2 while it satisfies u0(1) = 0. This suggests there will be

boundary layer issue at the boundary x = 0. In order to resolve this, following [38], we

carry out an inner expansion at x = 0. We employ a formal asymptotic expansion at this

boundary layer and Taylor expansion for q(x) at x = 0,

u(x) ∼∑∞
l=0 ǫ

lθl(x̄), x̄ = x
ǫ
, (3.71)

and

q(x) ∼
∞
∑

l=0

qlx̄
l

l!
, (3.72)

where ql is the l
th order derivative of q. Putting both (3.71) and (3.72) into (3.64), we have

the leading order equation as

− θ′′0(x̄)− q0θ0(x̄) = 0. (3.73)

Remark 3.2 The equation (3.73) is also a leading order equation near x = 0 for

ǫ2θ′′(x) + qlθ(x) = 0. (3.74)

We now apply the WKB method to obtain the solution of (3.74). Note that our usage of the

WKB approximation here is not the same as it was used in [1, 8, 59]. Here, the solution will

only be employed as a corrector at the boundary. Using the ideas from [33], the first order

WKB approximation to equation (3.74) is

θ(x) ∼ −q(x) 1
4

(

α0e
−ı 1

ǫ

∫ x
√

q(s)ds + α1e
ı 1
ǫ

∫ x
√

q(s)ds
)

. (3.75)

We determine the values of α0 and α1 via boundary conditions.

Now, following the same perturbation in the solution as done in the last problem, the

boundary conditions of the Schrödinger equation becomes

{

ǫu′(0) + γθx(0) + ıp(0)u(0) + ıp(0)γθ(0) = 2ıp(0),

ǫu′(1) + γθx(1) = ıp(1)u(1) + ıp(1)γθ(1).
(3.76)
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Now, we will multiply the Schrödinger equation by the function θχ[0, x 3
2
] and integrate over

(0, 1). This leads to the equation

− ǫ2uxθ |
x 3

2
0 +ǫ2

∫ x 3
2

0

uxθxdx−
∫ x 3

2

0

θqdx = 0, (3.77)

which we write in the form

σ00γ + σ01u1 + σ02u2 = 0, (3.78)

where, employing interpolation functions (3.4) and (3.5), we have

σ00 =
ǫ2

h
θ(x1)

(

θx(a)h

αǫ
+
ıp(0)θ(0)h

αǫ

)

,

σ01 =
ǫ2

h

(

θ(x 3
2
) + θ(x1)

αǫ+ 1 + ıp(a)h
2ǫ

αǫ

)

−
∫ x 3

2

0

qθdx,

σ02 = −ǫ
2

h

(

θ(x 3
2
)− 2θ(x2) + θ(x1)

)

−
∫ x 5

2

x 3
2

qθdx,

where

α =
ıp(a)h

2ǫ
− 1.

This is done in order to find an extra equation through which the value of the extra parameter

γ will be determined. Note that we have made use of the interpolation functions defined

earlier in the last problem. Substituting

ũ = uh + γθ, (3.79)

into the Schrödinger equation (3.64) and integrating over each cell, we have

σj,j−1uj−1 + σj,juj + σj,j+1uj+1 = Z̃j, (3.80)
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where Z̃ is zero everywhere except at j = 1 with Z̃1 =
2ıp(0)hǫ2

h(
ıp(0)h

2ǫ
−1)ǫ

and

σ1,0 = −ǫ
2

h

(

h

ǫ
θ′(0) +

h

ǫ
θ(0)

)

,

σ1,1 =
ǫ2

h

(

2 +
1 + ıp(0)h

2ǫ
ıp(0)h
2ǫ

− 1

)

,

σ1,2 = −ǫ
2

h
,

σj,j−1 = −ǫ
2

h
,

σj,j =
2ǫ2

h
−
∫ x

j+1
2

x
j− 1

2

q(x), (3.81)

σj,j+1 = −ǫ
2

h
,

σm,m−1 = −ǫ
2

h
,

σm,m =
ǫ2

h

(

2 +
1 + ıp(1)h

2ǫ
ıp(1)h
2ǫ

− 1

)

.
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Finally, we will solve a linear system σu = Z̄ for u = [γ, u1, u2, · · · , um] given Z̄ = [0, Z̃j],

where

σ00 =
ǫ2

h
θ(x1)

(

θx(a)h

αǫ
+
ip(0)θ(0)h

αǫ

)

,

σ01 =
ǫ2

h

(

θ(x 3
2
) + θ(x1)

αǫ+ 1 + ıp(0)h
2ǫ

αǫ

)

−
∫ x 3

2

0

qθdx,

σ02 = −ǫ
2

h

(

θ(x 3
2
)− 2θ(x2) + θ(x1)

)

−
∫ x 5

2

x 3
2

qθdx,

σ1,0 = −ǫ
2

h

(

h

ǫ
θ′(0) +

h

ǫ
θ(0)

)

,

σ1,1 =
ǫ2

h

(

2 +
1 + ıp(0)h

2ǫ
ıp(0)h
2ǫ

− 1

)

,

σ1,2 = −ǫ
2

h
,

σj,j−1 = −ǫ
2

h
,

σj,j =
2ǫ2

h
−
∫ x

j+1
2

x
j− 1

2

q(x), (3.82)

σj,j+1 = −ǫ
2

h
,

σm,m−1 = −ǫ
2

h
,

σm,m =
ǫ2

h

(

2 +
1 + ıp(1)h

2ǫ
ıp(1)h
2ǫ

− 1

)

.

Remark 3.3 The Scheme (3.81) gives the classical finite volume when γ = 0 otherwise,

NCFV scheme.

We ran the numerical experiment on this with q(x) = (x+1/2)2 ∀x ∈ [0, 1]. The convergence

and the behavior of the solution for different values of ǫ are shown in the Figures 3.5 and

3.6.

Remark 3.4 The rate of convergence is ∼ O(h1.56) for both schemes. When ǫ ≤ 0.02 error

due to the classical scheme becomes significant and the rate of convergence becomes non-

uniform.

Remark 3.5 We observe uniform convergence rate of O(h1.56) with the new scheme while

the convergence rate due to the classical scheme is not uniform, in fact it is ǫ−dependent.
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(a) Simulation at ǫ = 2× 10−1 (b) Simulation at ǫ = 2× 10−2

Figure 3.5: The slope of the lines say r = ∆(log(error))
∆(log(h))

represents the convergence rate due

to each scheme. The approximation on 32, 64, 128, 256 elements grid are compared with a

reference solution on 512 element grid.
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Figure 3.6: Comparison of the solution of the equation (3.64) between the classical scheme

and the new scheme. Solution was computed with ǫ = 2× 10−2 on 32 element grid.

3.3.1.3 Nonstandard finite volume scheme for equation (3.64)

Here, we design the nonstandard finite volume schemes designed in the previous section to

equation (3.64). We need to derive an exact scheme to handle the boundary equations. We

therefore, follow the same procedure that was highlighted above for first order equations at

the boundary. At the boundary x = 0,

u′ +
ıp(0)

ǫ
u =

2ıp(0)

ǫ
. (3.83)
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Multiply by the integrating factor, exp( ıp(0)
ǫ
x), and integrate. This yields

d

dx

(

u exp(
ıp(0)

ǫ
x)

)

=
2ıp(0)

ǫ
exp(

ıp(0)

ǫ
x),

u exp(
ıp(0)

ǫ
x) = 2 exp(

ıp(0)

ǫ
x) + c,

where c is an arbitrary constant of integration. This gives

u = 2 + c exp(− ıp(0)
ǫ

x).

c = φ(0)− 2 given that φ(0) is the initial condition. By this, the difference scheme will be

uj = 2 + (uj−1 − 2) exp(− ıp(0)
ǫ

h).

Then,

uj − uj−1 = 2 + (uj−1 − 2) exp(− ıp(0)
ǫ

h)− uj−1,

uj − uj−1 = 2(1− exp(− ıp(0)
ǫ

h))− uj−1(1− exp(− ıp(0)
ǫ

h)).

Hence, the scheme at the boundary x = 0 is,

ǫ
uj − uj−1

ǫ
ıp(0)

(1− exp(− ıp(0)
ǫ
h))

+ ıp(0)uj−1 = 2ıp(0). (3.84)

Following the same procedure at the boundary x = 1, we have

u′

u
=
ıp(1)

ǫ
,

ln(u) =
ıp(1)

ǫ
x+ c,

c is just an arbitrary constant of integration. This gives

u = Ae
ıp(1)x

ǫ ,

A is determined through the initial condition and we have

u = u0e
ıp(1)x

ǫ .

Therefore, a corresponding general difference solution at this boundary will be

uj+1 = uke
ıp(1)h

ǫ .

Then,

uj+1 − uj = uj(e
ıp(1)h

ǫ − 1),
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and exact difference scheme for the boundary condition at x = 1 is

ǫ
uj+1 − uj

ǫ
ıp(1)

(e
ıp(1)h

ǫ − 1)
= ıp(1)uj. (3.85)

From the equation (3.84) and (3.85) the values of u−1 and um+1 are estimated.

Now we design the scheme for x ∈ (0, 1). If we integrate the Schrödinger equation (3.64)

and let

Fj =

∫ x
j+1

2

x
j− 1

2

q(x)dx,

then the nonstandard finite volume scheme follows directly from Section 3.2. The entire

scheme results into solving system of linear algebraic equations. The entries of the sparse

tridiagonal matrix constructed is given below:

A1,1 =
2

φ̃2
1

− exp( ıp(a)
ǫ
h)

φ̃1

+ F1,

A1,2 = − 1

φ̃2
1

,

Aj,j−1 = − 1

φ̃2
j−1

,

Aj,j =
2

φ̃2
j

− Fj , (3.86)

Aj,j+1 = − 1

φ̃2
j+1

,

Am,m−1 = − 1

φ̃2
m

,

Am,m =
2

φ̃2
m

− exp( ıp(b)
ǫ
h)

φ̃m

+ Fm,

(3.87)

where,

φ̃j =
2ǫ
√

Fj

sin

(

h

√

Fj

4ǫ2

)

.

Our numerical experiments and observations are shown in Table 3.3 and Figures 3.7 to

3.8.

3.4 Conclusion

We investigated singularly perturbed second order ordinary differential equations via two

different methods. Firstly, we employed the semi-analytical method as proposed in [37, 70]
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Figure 3.7: Convergence of the simulations with, ǫ = 1× 10−2 and several grid choices.
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Figure 3.8: Comparison of the solution of the Schrödinger equation (3.64) on 40 grid nodes

(dots) and 512 grid nodes (solid line) with ǫ = 2× 10−2.

Table 3.3: Error between the solution at different grid points as compared with a reference

solution at 256 grid points

Grid points L∞ Norm error

ǫ = 0.2 ǫ = 0.1 ǫ = 0.02

CFV NSFV CFV NSFV CFV NSFV

16 0.1702 0.0407 0.4025 0.0412 2.2942 1.9891

32 0.0814 0.0204 0.2213 0.0278 1.5878 0.1154

64 0.0343 0.0091 0.1104 0.0151 0.1578 0.0146

128 0.0100 0.0031 0.0441 0.0056 0.0207 0.0037

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 3 Singularly perturbed equations 70

to solve equation (3.50). Figures 3.1 and 3.2 show the better performance of the non clas-

sical schemes even when ǫ is small with relatively small number of grids. This motivates us

to extend the scheme to approximate the Schrödinger equation which is more complicated

because the boundary condition is defined on a complex plane. Figure 3.5 shows the conver-

gence rate obtained for different grids when ǫ = 0.2 and 0.02 using the solution at 128 grid

points as reference solution. It is clearly seen that the new scheme converges better than the

classical scheme. Also, the approximation at 16 grids compared with the reference solution

when ǫ = 0.02 proves a better performance of the new scheme as shown in Figure 3.6.

The second part of the chapter employed a non standard finite volume scheme to the same

equations as above. The table of errors, Tables 3.1 and 3.2, reveals a better performance of

this new scheme as compared with the classical scheme for very small ǫ. This is also verified

in Figures 3.3 and 3.4. This non standard scheme approximates the solution almost exactly.

When this scheme is applied to the Schrödinger equation, Figure 3.7 shows the convergence

of approximations at different grid points to a reference solution. The new scheme is shown

to perform better at less number of grids than the classical one. This is also justified in table

of errors, Table 3.3.

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 4

Nonclassical methods for higher order

equations

In this chapter, we design a nonstandard finite volume scheme for fourth order equations and

test the application of the schemes by seeking numerical solution of the Kuramoto-Sivashinsky

(K-S) and the Cahn-Hilliard (CH) equations.

4.1 Introduction

We design an explicit nonstandard finite volume (NSFV) schemes each for the K-S and CH

equations investigated in Chapter 2 by the fractional splitting method. The schemes follow

the idea of nonstandard finite volume method discussed in Chapter 3. Our numerical algo-

rithm makes use of the a finite volume scheme for the hyperbolic equation and nonstandard

schemes for the nonlinear diffusion and the fourth order linear equations. The nonstandard

schemes were designed following the rules in [57].

As discussed in Chapter 3, the nonstandard finite difference methods has the advantage

of preserving the properties of the physical models in that it preserves positivity and mono-

tonicity of the solution. It has been employed in approximating various differential equations

of orders not more than 3. Here, we extend it to approximate the solution of fourth order

PDEs. We achieve this by designing nonstandard schemes for the sub-equations that make up

these higher order equations. This idea was employed earlier in solving the viscous Burger’s

equation and advection-logistic equation among others, see [57]. The sub-equations of the

CH and K-S equations are the inviscid Burger’s equation , the porous media equation and

the linear fourth order equation. Therefore, we design nonstandard schemes for each of these

equations.

Denoting the solution operators Hk, N k and Lk for the inviscid Burger’s, porous media

and the linear fourth order equations respectively, we apply the fractional time splitting

algorithm to approximate the solution of the K-S and the CH equations. Giving v0 = u0 for

71
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n = 0; for n > 0, we obtain vn+1 from vn via the solution of

vk(x, nk) = [Lk ◦ Hk]
nv0(x), (4.1)

for the K-S equation,

vk(x, nk) = [Lk ◦ N k]
nv0(x), (4.2)

for the CH equation and

vk(x, nk) = [Lk ◦ N k ◦ Hk]
nv0(x), (4.3)

convective CH equation. In Section 4.2, we use the subequation approach to design the NSFV

scheme for each of the equations and in Section 4.3, the performance of all the schemes were

tested and our observations were discussed in Section 4.4.

4.2 Numerical approach

We are interested in designing nonstandard finite volume schemes for the inviscid Burger’s

equation, porous media equation (PME) and the linear fourth equations which are com-

ponents of either the K-S or CH equations. Recall that for h = ∆x = xj+ 1
2
− xj− 1

2
, j =

0, 1, · · · , m and k = tn − tn−1, n = 1, 23, · · · , the intercell average

vn ∼ 1

∆x

∫ x
j+1

2

x
j− 1

2

u(x, tn)dx.

4.2.1 The inviscid Burger’s equation

In this section, we present the nonstandard scheme for the inviscid Burger’s equation

ut + δ

(

u2

2

)

x

= 0. (4.4)

Integrating this first, with respect to x in I = [xj− 1
2
, xj+ 1

2
] and later with respect to time

and employing the interpolation functions discussed in preceding chapters, we have

vn+1
j − vnj
∆t

+ δ
vnj+1 + vnj−1

2

(

vnj+1 − vnj−1

2∆x

)

= 0. (4.5)

An alternative approximation is the 3-point averaging used in [92] for the numerical approx

of the KdV equation. Here the schemes is given by

vn+1
j − vnj
∆t

+ δ
vnj+1 + vnj + vnj−1

3

(

vnj+1 − vnj−1

2∆x

)

= 0. (4.6)
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4.2.2 The porous media equation

Here, we design a nonstandard scheme for the porous media equation

ut = α(up)xx

in one-dimension.The nonstandard scheme for this equation is given as

vn+1
j − vnj
∆t

= rα
1

∆x2

(

fn
j+ 1

2
vnj+1 − (fn

j+ 1
2
+ fn

j− 1
2
)vn+1

j + fn
j− 1

2
vnj−1

)

, (4.7)

where the average

fj+ 1
2
=
fj+1 + fj

2
,

and fn
j = (unj )

r−1. The scheme (4.7) is non consistent but can be made conditionally consis-

tent. This is achieved as

vn+1
j − vnj
∆t

=
rα

∆x2

(

fn
j+ 1

2
vnj+1 − (fn

j+ 1
2
+ fn

j− 1
2
)vn+1

j + fn
j− 1

2
vnj−1

)

+
rα

∆x2
(fn

j+ 1
2
+fn

j− 1
2
)(vn+1

j −vnj ),

which implies that

(

1− rαλ(fn
j+ 1

2
+ fn

j− 1
2
)
)

(vn+1
j − vnj ) = rαλ

(

fn
j+ 1

2
vnj+1 − (fn

j+ 1
2
+ fn

j− 1
2
)vn+1

j + fn
j− 1

2
vnj−1

)

,

(4.8)

which gives

vn+1
j = vnj + rαλ

(

fn
j+ 1

2
vnj+1 + (fn

j+ 1
2
+ fn

j− 1
2
)vnj + fn

j− 1
2
vnj−1

)

,

where λ = ∆t
∆x2 . By this, we have to re-scale the time derivative of the target equation by

1− rαλ(fn
j+ 1

2
+ fn

j− 1
2
),

for consistency. We employ this scheme to solve porous media equation when r = 3,

ut = α(u3)xx = 3α(u2ux)x = 3α(f(u)ux)x = 0. (4.9)

4.2.3 The linear fourth order equation

Our focus here is to derive a nonstandard scheme for the equation

ut(x, t) + (u(x, t) + u(x, t)xx)xx = 0, u(x, 0) = u0(x). (4.10)

In doing this we will follow the rules and the procedures highlighted in [57, 58]. The steady

state of equation (4.10) is the linear homogeneous equation

(u+ γ2uxx)xx = 0, (4.11)
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which admits four linearly independent solutions γ, x
γ
, eıh

x
γ and e−ıhx

γ . From this we know

that
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

uj 1 hj eıj
h
γ e−ıj h

γ

uj+1 1 h(j + 1) eı
h
γ
(j+1) e−ıh

γ
(j+1)

uj+2 1 h(j + 2) eı
h
γ
(j+2) e−ıh

γ
(j+2)

uj+3 1 h(j + 3) eı
h
γ
(j+3) e−ıh

γ
(j+3)

uj+4 1 h(j + 4) eı
h
γ
(j+4) e−ıh

γ
(j+4)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0. (4.12)

This simplifies to give

h

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

uj 1 j 1 1

uj+1 1 j + 1 eı
h
γ e−ıh

γ

uj+2 1 j + 2 e2ı
h
γ e−2ıh

γ

uj+3 1 j + 3 e3ı
h
γ e−3ıh

γ

uj+4 1 j + 4 e4ı
h
γ e−4ıh

γ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0.

This can be written as
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 uj j 1 1

1 uj+1 j + 1 eı
h
γ e−ıh

γ

1 uj+2 j + 2 e2ı
h
γ e−2ıh

γ

1 uj+3 j + 3 e3ı
h
γ e−3ıh

γ

1 uj+4 j + 4 e4ı
h
γ e−4ıh

γ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0.

Factorization leads to

−

∣

∣

∣

∣

∣

∣

∣

2uj+1 − uj+2 − uj 2eı
h
γ − e2ı

h
γ − 1 2e−ıh

γ − e−2ıh
γ − 1

3uj+1 − uj+3 − 2uj 3eı
h
γ − e3ı

h
γ − 2 3e−ıh

γ − e−3ıh
γ − 2

4uj+1 − uj+4 − 3uj 4eı
h
γ − e4ı

h
γ − 3 4e−ıh

γ − e−4ıh
γ − 3

∣

∣

∣

∣

∣

∣

∣

= 0.

The determinant can be simplified to

(2uj+1 − uj+2 − uj)(3e
ıh
γ − e3ı

h
γ − 2)(4e−ıh

γ − e−4ıh
γ − 3)

−(2uj+1 − uj+2 − uj)(3e
−ıh

γ − e−3ıh
γ − 2)(4eı

h
γ − e4ı

h
γ − 3)

+(3uj+1 − uj+3 − 2uj)(2e
−ıh

γ − e−2ıh
γ − 1)(4eı

h
γ − e4ı

h
γ − 3)

−(3uj+1 − uj+3 − 2uj)(2e
ıh
γ − e2ı

h
γ − 1)(4e−ıh

γ − e−4ıh
γ − 3)

+(4uj+1 − uj+4 − 3uj)(2e
ıh
γ − e2ı

h
γ − 1)(3e−ıh

γ − e−3ıh
γ − 2)

−(4uj+1 − uj+4 − 3uj)(2e
−ıh

γ − e−2ıh
γ − 1)(3eı

h
γ − e3ı

h
γ − 2).

Appealing to the identity

sin(θ) =
eıθ − e−ıθ

2ı
,

the equation when simplified, after shifting the index j, gives

uj−2 − 4uj−1 + 6uj − 4uj+1 + uj+2

φ(h)4
+
uj−1 − 2uj + uj+1

φ(h)2
= 0, (4.13)
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where

φ(h) = 2γ sin

(

h

2γ

)

.

Equation (4.13) is the nonstandard finite difference scheme for equation (4.11). The non-

standard scheme for the fourth order time dependent equation (4.10) is therefore, using Euler

method to integrate with respect to time

un+1
j − unj
∆t

+ γ2
unj−2 − 4unj−1 + 6unj − 4unj+1 + unj+2

φ(h)4
+
unj−1 − 2unj + unj+1

φ(h)2
= 0. (4.14)

Equation (4.14), leads to an explicit scheme

un+1
j = unj −

γ2∆t

φ(h)4
(

unj−2 − 4unj−1 + 6unj − 4unj+1 + unj+2

)

− ∆t

φ(h)2
(

unj−1 − 2unj + unj+1

)

.

(4.15)

Now, we will adapt the NSFD scheme discussed above to a finite volume scheme for equa-

tion (4.10). As usual, we multiply equation (4.10) by a characteristic function χ(x
j− 1

2
,x

j+1
2
)(x)

and then integrate within each cell. This gives us

vn+1
j − vnj
∆t

+ γ2
vnj−2 − 4vnj−1 + 6vnj − 4vnj+1 + vnj+2

φ(h)3
+
vnj−1 − 2vnj + vnj+1

φ(h)
= 0, (4.16)

for j = 2, 3, · · · , m− 2, where we have used the interpolation functions

u ∼ uh =

m
∑

j=0

ujχ(x
j− 1

2
,x

j+1
2
)(x),

ux ∼ ∇uh =
m
∑

j=0

uj+1 − uj
h

χ(x
j− 1

2
,x

j+1
2
)(x),

and

uxxx ∼ ∇3uh =
m
∑

j=0

−uj−1 + 3uj − 3uj+1 + uj+2

h3
χ(x

j− 1
2
,x

j+1
2
)(x).

The solution approximations at j = 0, 1 and j = m − 1, m are addressed by employing the

given boundary conditions. The replacement of h by φ(h) makes sense since lim
h→0

φ(h) → h.

4.3 Numerical experiments

We will demonstrate the performance of all the schemes designed and discussed above. We

will start with the nonlinear porous media, the linear fourth order, the K-S, the CH and the

convective CH equations.
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4.3.1 The porous media equation

We carried out the following experiment in order to test the performance of the scheme (4.7).

Example 4.1 Solve the porous media equation











ut = (u3)xx, x ∈ [−6, 6],

u(−6, t) = u(6, t) = 0,

u(x, 1) = u0(x).

(4.17)

We compare our results with the famous Barenblatt solution of the porous media equation

u3(x, t) = t
1
4

√

[1− |x|2
12
√
t
]+, t > 0,

at time T = 2, where [.]+ = max(., 0). Taking λ = k
h2 , Figure 4.1 shows the convergence of

the scheme (4.7) as k → 0.

−6 −4 −2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

u

x

 

 

λ = 0.01
exact
λ = 0.05
λ = 0.1

Figure 4.1: Solution profile of equation (4.17)

Remark 4.1 Here, we did not solve Example 4.1 by (4.8). We observe that as long as

0 < unj < 1, then fn
j ≪ 1 by which it is obvious that equation (4.7)∼(4.8). Also, we note

that the solution profile when λ = 0.01 coincides with the exact solution profile.

4.3.2 The linear fourth order equation

In order for us to check the efficiency of the scheme (4.16) we perform the experiment below.
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Example 4.2 Solve the equation










ut(x, t) + (u(x, t) + γ2uxx(x, t))xx = 0,

u(x+ L, t) = u(x, t),

u(x, 0) = sin(x),

(4.18)

where we have chosen γ = 1.

The error computation for the classical finite volume (where φ is replaced by h), the BDF2

and nonstandard schemes (4.16) are compared in Table 4.1. The numerical solution is

compared with the steady state exact solution u(x, t) = sin(x).

Table 4.1: Error computations for Example 4.2

Grid points L∞ Norm error

Classical (error × 104) NSFV (error × 1016) BDF (error × 102)

10 150.1 2.220

20 40.71 1.665 15.91

40 10.26 6.661 7.923

80 2.568 4.441 3.951

Example 4.3 Apply the scheme (4.16) to approximate the solution of










ut(x, t) + (u(x, t) + γ2uxx(x, t))xx = 0,

u(x+ L, t) = u(x, t),

u(x, 0) = exp(−x2),
(4.19)

and show the behaviour of the mean energy

E(t) = 1

L

∫ L

0

u(x, t)2dx, (4.20)

in time.

Solving the above problem, we observe the exponential growth of the mean energy in time

as expected [24]. This is shown in Figure 4.3(a).

4.3.3 Kuramoto-Sivashinsky equation

In this section we consider the Kuramoto-Sivashinsky equation
{

ut + uux + uxx + uxxxx = 0, ∀ (x, t) ∈ (−L, L)× (0, T ],

u(x, 0) = g(x, 0).
(4.21)

Throughout this section, we employ the fractional splitting scheme (4.1) and use schemes

(4.6) and (4.16) to approximate the solutions of the inviscid Burger’s and the linear sub-

problems respectively.
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Example 4.4 Solve equation (4.21) by the fractional splitting scheme (4.1).

1.

u(−L, t) = g(−L, t), u(L, t) = g(L, t), ux(−L, t) = gx(−L, t), ux(L, t) = gx(L, t),

(4.22)

where g(x, t) is the exact solution given by

g(x, t) = c+
15

19

√

11

19
(−9 tanh[l(x− ct− x0)] + 11 tanh3[l(x− ct− x0)]), (4.23)

and c, l and x0 are constants. In the computations we take L = 30, x0 = −12, c = 5

and l =
√

11/19/2 as documented in [7, 89].

2. periodic boundary condition and initial condition

u(x, 0) = exp(−x2).

The errors due to the scheme (4.1) are shown in Table 4.2 while the solution profile for

the boundary condition (4.22) and the chaotic property of equation (4.21) due to periodic

boundary condition are shown in Figures 4.2(a) and 4.2(b) respectively.

Table 4.2: Error computations for Example 4.41
Grids Errors×102 rate of convergence

40 474.3

80 99.87 2.2

160 12.84 2.9

320 2.891 2.1

Remark 4.2 The major contribution to this error is coming from the solver for the hyper-

bolic sub-problem. The error due to the scheme for the linear equation is shown in Table

4.1.

Example 4.5 Solve equation (4.21) subject to periodic boundary condition and initial con-

dition u(x, 0) = sin(x) by the fractional splitting scheme (4.1).

Here, we verify the bounds on the mean energy (LE) 1
2 as was done in Chapter 2. The

scheme reproduces the bound that has been established in the literatures on the Kuramoto-

Sivashinsky equation (4.21) as discussed in Chapter 2, this is shown in Figure 4.3(b). We

note that the slope of this graph is 0.978.
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Figure 4.2: Solution of the Kuramoto-Sivashinsky equation by the NSFV scheme.
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Figure 4.3: Bounds verified for the linear and the Kuramoto-Sivasinsky (K-S) equation by

the NSFV scheme.

4.3.4 Cahn-Hilliard equation

In this section we approximate the solution of the Cahn-Hilliard equation by the fractional

step scheme (4.2) employing the nonstandard solution operators for each of the subproblems

involved. That is, we make use of the schemes (4.7) and (4.16) for the Cahn-Hilliard equation.

Example 4.6 Solve the CH equation

{

ut + (αu3 + u+ γ2uxx)xx = 0, x ∈ (0, 6)

u(x, 0) = cos(πx/6),
(4.24)
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subject to boundary conditions

ux = γ2uxxx − φ(u)x = 0, x ∈ ∂ Ω. (4.25)

We highlight here that these schemes perform comparably well with the schemes discussed

in Chapter 2. The evolution of the solution of the Cahn-Hilliard equation is shown in

Figure 4.5(a). We also solve Example 4.6 and demonstrate the conservation of mass and

the dissipation of the Ginzburg-Landau energy as expected. Figure 4.4 shows that the new

schemes preserves these properties.
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(a) Conservation of mass (b) Dissipation of the Ginzburg Landau energy

Figure 4.4: Properties of the Cahn-Hilliard equation verified by the nonstandard schemes

with γ2 = 0.03

Remark 4.3 We highlight that this properties are resolved better here when compared with

the standard schemes discussed in Chapter 2.

4.3.5 Convective Cahn-Hilliard equation

In this section we approximate the solution of the convective Cahn-Hilliard equation by the

fractional step scheme (4.3) employing the nonstandard solution operators for each of the

subproblems involved. That is, we make use of the schemes (4.6), (4.7) and (4.16) for the

Burger’s, porous media and the linear sub-problems respectively. We solve the problems

given below.

Example 4.7 Solve
{

ut − δuux + (u+ αu3 + γ2uxx)xx = 0,

u(x, 0) = − sin(x/6),
(4.26)

subject to boundary conditions

ux = γ2uxxx − φ(u)x = 0, x ∈ ∂ Ω. (4.27)
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The comparison of the numerical solution with the steady state solution for the convective

Cahn-Hilliard equation is shown in Figure 4.5(b). These nonstandard schemes are employed
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(a) Evolution of the CH equation (b) Solution of the cCH equation

Figure 4.5: Solutions of the Cahn-Hilliard and the convective Cahn-Hilliard equation by the

nonstandard schemes. (a)γ2 = 0.02, (b) γ = 1.

to solve Example 4.7 subject to periodic boundary condition and initial condition 0.5 cos(x)

for all x ∈ [−4π, 4π]. The conservation of mass is shown in Figure 4.6.
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Figure 4.6: Conservation of Mass of the cCH equation

We also verify the coarsening process of the cCH equation. To achieve this, we investigate

the problem below.

Example 4.8 Solve the Example 4.7 subject to periodic boundary condition and initial con-

dition 0.5 cos(x) for all x ∈ [−4π, 4π] by the fractional splitting scheme (4.3).

Figure 4.8 shows that the solution coarsens as we advance in time from integration time

T = 1 to T = 640. We have taken the value of γ = 1 in this experiment.
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Figure 4.7: Coarsening properties of the convective Cahn-Hilliard equation verified by the

nonstandard schemes
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4.4 Conclusion

We have proposed a fractional splitting scheme each for the the K-S and the CH equations

where each of the sub equations are approximated by nonstandard schemes. Hence, the

schemes are explicit. The nonstandard finite volume scheme (4.16) approximates the solution

of the fourth order time dependent equation more accurate that the classical scheme as shown

in Table 4.1. The exponential growth of the mean energy of its solution as expected is shown

in Figure 4.3(a).

All the properties of the K-S equation were reproduced when this scheme is combined

with the NSFV scheme (4.6) by the fractional step method. The chaotic behaviour of the

solution on a periodic domain is shown in Figure 4.2(b) while the profile for the mean energy

bound is shown in Figure 4.3(b).

Of particular significance, almost all the properties of the solution of the CH and cCH
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equations are reproduced by these new schemes. The dissipation of the Ginzburg-Landau

energy and the conservation of mass of the CH equation are shown in Figure 4.4. The

conservation of mass of the cCH equation is observed in Figure 4.6. The coarsening progress

are shown in Figure 4.7 and 4.8.
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Chapter 5

Conclusion and future perspective

This thesis is dedicated to the design and implementation of finite volume schemes to differ-

ential equations arising in mathematical physics. In Chapter 1 we introduced the equations

under investigation, i.e. the K-S equation, the CH equation and the Schrödinger equation.

We also introduced the numerical recipes used throughout this work. Our observations and

conclusions are highlighted below.

In Chapter 2, we proposed a fractional splitting method for each of the K-S and CH

equations. The hyperbolic sub-equation was handled by the shock capturing schemes. We

have compared the performance of some of the explicit schemes such as the semi-discrete,

the fully discrete, the non-staggered finite difference scheme and the WENO scheme for this

equation. The nonlinear diffusion equation was handled by a θ-method while the linear

fourth order by either of the backward differentiation formula or the diagonally implicit

Runge-Kutta scheme. This relaxes the stability restriction since the explicit schemes were

employed only for the hyperbolic equation and the schemes for the fourth order equation

are A-stable. The solution of the simplified equation are combined by the fractional step

splitting method. The complexity in the two equations were simplified without losing the

physical properties of the equations. We observed that all the known solution properties

of these two equations are reproduced. For the K-S equation, the traveling wave solution,

chaotic behaviour, preservation of periodicity, energy bounds are shown in Figures 2.4, 2.5,

2.7, 2.6 and 2.8 respectively. For the CH and cCH equation, the dissipation of the Ginzburg-

Landau energy, the conservation of mass, the coarsening process and the transition from

coarsening to roughening of the cCH equation are respectively observed in Figures 2.10, 2.13

and 2.14 and 2.17.

In Chapter 3, our quest for optimal schemes to handle singularly perturbed fourth order

equation encountered in Chapter 2 led us to the study of singularly perturbed second order

ordinary differential equations. One of the interesting example of these types of equations

is the Schrödinger equation. The complex boundary condition of the Schrödinger equation

makes its approximation by these two schemes non trivial. We proposed two new schemes

for the Schrödinger equation. The semi-analytical scheme is based on some perturbation

84
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technique while the nonstandard finite volume scheme is based on the existing nonstandard

finite difference scheme.

The semi-analytical scheme followed three main steps namely,

• perturbation analysis of the given equation which leads to

• boundary layer analysis through which boundary layer equations are derived, solved

and employed and lastly

• correcting of classical schemes.

The nonstandard finite volume scheme follows from deriving an exact scheme by the idea of

the difference equation of the given equation. The merit of this method is that it preserves

positivity, monotonicity and in fact the properties of the physical model. We design this

nonstandard scheme both for the equation and its complicated boundary conditions.

To test the performance of these schemes, they were employed to solve some singularly

perturbed equations. The approximation compares well with the exact solution of the tested

equations. This can be seen in Tables 3.1 to 3.2 and Figures 3.3 to 3.4. The two methods

reduce the computational cost known with classical approximation of singularly perturbed

equations. In addition, these two schemes reproduces the the expected oscillatory behaviour

of the Schrödinger equation with relatively little numbers of grids. Figures 3.5, 3.6, 3.7, 3.8

and Table 3.3 attests to the optimal performance of these new schemes as compared with

classical schemes.

In Chapter 4, we employed the nonstandard finite volume scheme discussed in Chapter

3 to design robust schemes for the singularly perturbed fourth order equation. We design

nonstandard schemes for the hyperbolic equation, the nonlinear diffusion equation and the

linear fourth order parabolic equation. We showed that the scheme gave a better approx-

imation of the linear fourth order PDE than any classical scheme. This is shown in Table

4.1. The exponential growth of the mean energy of its solution as expected is shown in

Figure 4.3(a). The nonstandard scheme for each of the sub-equations are combined via the

fractional splitting algorithm to yield nonstandard schemes for each of the K-S equation,

the CH equation and the cCH equation. We highlight here, that this is the first time such

a nonstandard scheme is designed for a higher order equation and suggest that this can be

extended to other higher order equations.

For the K-S equation, Figures 4.2(b) and 4.3(b) shows the chaotic behaviour and the pro-

file for the mean energy bound respectively. For the CH and cCH equations, the dissipation

of the Ginzburg-Landau energy and the conservation of mass of the CH equation are shown

in Figure 4.4. The conservation of mass of the cCH equation is observed in Figure 4.6 while

the coarsening progress is shown in Figure 4.8.

The results in this work can be employed as tools to investigate many other practically

relevant models. Some of the obvious area of further research from this thesis are listed

below.
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1. Numerical analysis of the schemes is possible even though non trivial. It is interesting

to investigate the convergence of operator splitting schemes to fourth order equations

[32].

2. Extension to higher order splitting is non-trivial but it is also a possible area of research

focus.

3. Simulation of these equations in higher dimension by the Alternating Direction Method

is an interesting area of research. In this case, one may need to employ other program-

ming environment than MATLAB for the computation.

4. The scheme employed for the Schrödinger equation in this work can be extended to

simulate the Schrödinger-Poison equation with better convergence and accuracy.
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