
ROADMAKERS PAVAGE, PULSE REFORMATION FRAMEWORK AND

IMAGE SEGMENTATION IN THE DISCRETE PULSE TRANSFORM

by

George Gene Stoltz

Submitted in partial fulfillment of the requirements for the degree

Master of Engineering (Electronic Engineering)

in the

Department of Electrical, Electronic and Computer Engineering

Faculty of Engineering, Built Environment and Information Technology

UNIVERSITY OF PRETORIA

April 2014

Hierdie verhandeling word opgedra aan my dierbare familie.

My vriende, vir al die goeie tye wat ek gemis het.

My studieleiers, vir die menigde geselsies.

Dankie.

Die pad na wysheid is lank en eensaam, laat God jou vergesel.

SUMMARY

ROADMAKERS PAVAGE, PULSE REFORMATION FRAMEWORK AND

IMAGE SEGMENTATION IN THE DISCRETE PULSE TRANSFORM

by

George Gene Stoltz

Supervisor(s): Dr I. Fabris-Rotelli, Prof L.P. Linde

Department: Electrical, Electronic and Computer Engineering

University: University of Pretoria

Degree: Master of Engineering (Electronic Engineering)

Keywords: LULU operators, DPT decomposition, Discrete Pulse Transform,

graph algorithm, connected operator leakage, image segmentation,

Pulse Reformation, BSD database, spot detection, DPT Library

The Discrete Pulse Transform (DPT) is a hierarchical decomposition of a signal in n-

dimensions, built by iteratively applying the LULU operators. The DPT is a fairly new

mathematical framework, with few applications, and is prone to leakage within the domain,

as are most other connected operators. Leakage is the unwanted union of two sets after the

DPT is applied. Leakage thus provides false information regarding the data. A solution

to the leakage is proposed. Implementing the DPT in n-dimensions is not a trivial task

and a platform to aid the research effort was required. The search for applications of the

DPT is extended to image segmentation, where the potential was measured in a quantitative

way.

The DPT was implemented by presenting a new algorithm, the Roadmakers Pavage based on

the Roadmakers algorithm. The algorithm utilizes graph theory as a basis and is packaged

in the DPT Library, created to assist other researchers. The Roadmaker’s Pavage is cur-

rently the fastest available algorithm and presents the extracted pulses in a a more suitable

manner.

The Pulse Reformation framework was developed to address the leakage problem within the

DPT. It was specifically tested with circular probes and showed successful object extraction

of red blood cells. Additionally, by utilising the LULU scale-space, similar performance

to the Difference of Gaussians method in detecting mRNA in fluorescence microscopy was

demonstrated.

The DPT was also utilized in image segmentation. Using Iterated Conditional Modes and

k-means, the DPT segmentation was compared to the other segmentation methods, such as

the Gaussian scale-space. The DPT showed potential in image segmentation and it is recom-

mended that further research be conducted with the DPT in image segmentation.

LIST OF ABBREVIATIONS

BCE Bidirectional Consistency Error

BSD Berkley Segmentation Dataset

CSA Cost Scaling Algorithm

CSR Compressed Sparse Row

DoG Difference of Gaussian

DPT Discrete Pulse Transform

GCE Global Consistency Error

ICM Iterated Conditional Modes

LCE Local Consistency Error

mRNA messenger Ribonucleic acid

PRI Probabilistic Rand Index

ROC Receiver Operating Characteristic

VOI Variation Of Index

TABLE OF CONTENTS

CHAPTER 1 Introduction 1

CHAPTER 2 The Discrete Pulse Transform 5

2.1 The Framework . 5

2.2 LULU Operators . 10

2.3 The Discrete Pulse Transform . 13

2.4 The DPT in Multi-dimensions . 14

2.5 Conclusion . 17

CHAPTER 3 The DPT Implementation 19

3.1 The Roadmakers Algorithm . 20

3.2 The Roadmakers Pavage . 23

3.2.1 Overview . 23

3.2.2 An Example . 23

3.2.3 Data Sequence Vectorization . 33

3.2.4 Define Connectivity Functions . 34

3.2.5 Constructing the graphs . 35

3.2.6 The Feature Table . 37

3.2.7 The DPT Decomposition . 38

3.2.8 The Pulse Graph . 41

3.2.9 Pulse Reconstruction . 42

3.3 Performance Evaluation . 45

3.4 Implementation Detail . 49

3.5 Conclusion . 49

CHAPTER 4 Pulse Reformation 51

4.1 The Leakage Problem . 52

4.2 The Proposed Framework . 56

4.3 Experimental Evaluation . 66

4.3.1 Leakage reduction . 66

4.3.2 Object Detection . 69

4.4 Conclusion . 72

CHAPTER 5 Image Segmentation 73

5.1 Segmentation Techniques . 73

5.2 Quantitative Evaluation Method . 75

5.2.1 The Berkley Segmentation Database 77

5.2.2 Evaluation Metrics . 79

5.3 Segmentation using the DPT . 85

5.3.1 The Clustering Algorithm . 86

5.3.2 The Confidence Map . 88

5.3.3 The Image segmentation algorithm . 92

5.4 Image Segmentation Evaluation . 93

5.4.1 Preparation . 93

5.4.2 Experimentation . 96

5.4.3 Analysis . 97

5.5 Conclusion . 100

CHAPTER 6 Conclusion 101

APPENDIX AThe DPT Library Guide 113

A.1 DPT Library Guide Index . 113

A.2 Overview . 114

A.3 How to use DPT.h . 114

A.4 DPT2Graph . 114

A.5 ReconstructGraph . 115

A.6 connectivity . 119

A.7 DPT_Graph - The IntStruct . 120

A.8 The Future . 122

A.9 Example . 122

CHAPTER 1

INTRODUCTION

The Discrete Pulse Transform (DPT) and LULU scale-space are modern mathematical tools

and only recently in 2011 [1] has the mathematics been proven. This opens a whole new

research arena with multiple research opportunities which includes a required computer im-

plementation, solutions to fundamental mathematical problems and some applications and

building on already investigated DPT applications.

The research objective is easily defined by the requirement of expanding the DPT research

domain. This may be achieved firstly by developing a computer platform implementation

of the DPT for easy use; then addressing the fundamental problem of leakage; and, finally,

providing some application of the solved problem which decreases the rawness of the DPT

environment. Lastly, by building on previous research efforts and applications, the literature

can be enhanced as a whole.

The development of a computer platform for the DPT is an obvious step, but addressing

a fundamental mathematical problem is not. The DPT is formed by iteratively applying

connected operators on a data set. Obvious problems with data sets are the discretisation

of elements. An obvious problem with transforms is the risk of hiding or creating false

information. The mechanism of creating or hiding information is specific to every transform,

in connected operators one such mechanism is called leakage [2]. Solving leakage and applying

the solution to some real-world problems forms part of the research objective to expand the

DPT research domain.

Most application-driven research effort in the DPT domain has been focused on image seg-

mentation [3], image compression [4] and data smoothing [5]. The bulk of the work has

Chapter 1 Introduction

been performed in image segmentation but no quantitative analysis exists to merge the re-

search with other image segmentation algorithms. Building on previous image segmentation

algorithms, the DPT effort can be enhanced.

With these objectives in mind three hypotheses may be formed:

• It is possible to create a d-dimensional DPT implementation which executes in a reas-

onable time and can be used by other researchers to enhance the research effort on the

DPT.

• The leakage problem found in the DPT can be solved to such an extent that the solution

can be applied to real-world problems, for example counting overlapping red blood cells

within an image.

• The capability of the DPT in image segmentation can be evaluated quantitatively and

reduce the literature gap within image segmentation literature.

Before any DPT applications can be approached, a computer implementation of the DPT

is required. There exist a few implementations of the DPT, but their computational speed

can be improved and they are dimension specific. A good library is required for the DPT

providing easy access to multi-dimensional extracted data, fast execution times and cross-

platform availability.

With good implementation of the DPT a fundamental mathematical problem can be ad-

dressed. The LULU operators, which are used in the DPT and form the LULU scale-space,

operate on connected sets. Connected operators result in leakage within the transformation,

creating false information in connecting two or more sets. This creates uncertainty within

the transformation data. A way to combat leakage within the DPT would create a more

predictable transform.

Following the solution to the leakage problem some applications can be investigated. The

DPT is easily applied to multi-dimensional data and is inherently discrete. Consequently,

discrete data sets are a good fit for the transform. A good starting point to understand

how the DPT acts within higher dimensional data would be to look at two-dimensional

data, for example images. A basic image processing technique is to apply segmentation

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

2

Chapter 1 Introduction

algorithms to images to extract information about specific regions within an image. To

produce DPT research, a definition of some guidelines to evaluate the viability of the DPT

in image segmentation is a good starting point.

This dissertation aims to provide the following:

• an introduction to the DPT,

• the development of a new graph-based implementation algorithm,

• a solution to the leakage problem within the DPT, and

• the evaluation of the DPT for image segmentation.

The available literature, on the DPT, is presented in the relevant chapters throughout the

dissertation. Chapter 2 provides an overview of the mathematical development of the LULU

operators, followed by the DPT and LULU scale-space. Chapter 3 implements the DPT by

providing a new graph-based algorithm called the Roadmaker’s Pavage. Chapter 4 provides

a solution to the leakage problem of the DPT and applies the solution to real world prob-

lems such as biomedical engineering, focusing on cell segmentation and mRNA detection.

Chapter 5 applies the DPT to image segmentation in order to evaluate the performance of

the DPT. Chapter 6 contains the conclusion and is followed by a complete list of the refer-

ences cited in the dissertation. One appendix is included which contains the user guide for

the DPT Library developed in the dissertation.

The following paper has been published in the Proceedings of the 23nd Annual Symposium

of the Pattern Recognition Association of South Africa: On the leakage problem with the

Discrete Pulse Transform decomposition[6].

The following paper has been submitted for journal publication: Pulse Reformation algorithm

for leakage of connected operators.

The following papers will be submitted for journal publication:

• Roadmaker’s Pavage: A graph-based Discrete Pulse Transform implementation with

application in data communication.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

3

Chapter 1 Introduction

• Applications and memory-efficient implementation of the two-dimensional Discrete

Pulse Transform.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

4

CHAPTER 2

THE DISCRETE PULSE TRANSFORM

The Discrete Pulse Transform started with the development of the LULU theory by Carl

Rohwer, in 1983 at the Institute for Maritime Technology in Simonstown, South Africa.

The collection of LULU theory and the Discrete Pulse Transform (DPT), previously called

multiresolution analysis, is discussed in depth in the book Nonlinear Smoothers and Mul-

tiresolution Analysis [7]. The book left the property of basic consistency unproven as well as

the Highlight Conjecture. The basic consistency was partially completed in one dimension by

Rohwer and Wild in 2007 [8] and finally completed in 2010 by Anguelov and Fabris-Rotelli [3].

The Highlight Conjecture, referring to the strong consistency of the DPT, was proven by

Laurie [1] in 2011 and also by Fabris-Rotelli [9] using a different method in 2012.

This chapter discusses the main aspects and concepts of the mathematical building blocks

of the DPT. We refer the reader interested in mathematical proofs and a more complete

development of the DPT to the sources referenced in this chapter, with emphasis on the

book by Carl Rohwer [7] .

2.1 THE FRAMEWORK

This section provides a mathematical framework in which the LULU operators and the DPT

will be explained. The framework is provided in one dimension. The LULU operators,

followed by the DPT will first be discussed in one dimension. The LULU operators and

DPT will then be discussed in multi-dimensions, followed by a brief overview of the LULU

scale-space.

The LULU operators were developed from the concept of a separator which follows from a

Chapter 2 The Discrete Pulse Transform

smoother. A smoother is an operator which removes noise from a signal by removing the

noise elements from the contaminated signal. A separator further divides the signal into

noise and true signal. A sequence in a vector space is most informative as a signal, as it is

easier to relate to the natural world, such as a sequence of temperature values over a period

of time. Although real world sequences are finite, their boundaries can be padded with zeros

to create bi-infinite sequences. Let X be the vector space of bi-infinite sequences x = {xi} of

real numbers with norms, such as

||x||p =

 ∞∑
i=−∞

|xi|p
 1

p

, for p = 1, 2, ... (2.1)

where the inner product between two bi-infinite sequences x = {xi} and y = {yi} is given

by

< x, y >=
∞∑

i=−∞
(xiyi)

1
2 . (2.2)

Other norms are also a possibility, but ||x||1 will mostly be used. All sequences are assumed

to have finite energy, such that ||x||1 <∞ [7]. We can more formally define the type of sets

with which we will be working, namely partially ordered sets [10].

Definition 1. For set S, the relation B is said to be a partial order of S if:

• B is reflexive: (xi, xi) ∈ B, ∀ xi ∈ S.

• B is anti-symmetric: if (xi, xj) ∈ B and (xj , xi) ∈ B it implies that xi = xj.

• B is transitive: if (xi, xj) ∈ B and (xj , xk) ∈ B then (xi, xk) ∈ B.

A partial order B does not consist of all the pairs in S, thus B is said to be a total order if

for all xi, xj ∈ S there exists either a (xi, xj) ∈ B or a (xj , xi) ∈ B. This property is also well

known as the Trichotomy Law [11].

To create a more usable set for real world problems, we can define a vector lattice A(Ω) of

all real functions defined on the Abelian group Ω. An Abelian group has axioms such as

closure, associativity, identity element, inverse element and commutativity and is also called

a commutativity group [10].

Definition 2. A partially ordered set L is a lattice if any s1, s2 ∈ S admit a least upper bound

l1
∨
l2 and a largest lower bound l1

∧
l2. For a vector lattice we have that for two sequences

x = {xn}, y = {yn} that x ≤ y ⇐⇒ xn ≤ yn∀ n ∈ Ω.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

6

Chapter 2 The Discrete Pulse Transform

A lattice can be seen as complete when every subset of L has a least upper bound and a

largest lower bound. Thus, the sets we will be considering will all be vector lattices. We also

need to perform operations on these sets where operators can be given in terms of element-

wise operations such as {Ax}i = ai, which take the sequence {xi, ..., xj} and transform it into

{ai, ...aj}.

Definition 3. Let F (X) be the set of all operators on X ,

F (X) = {A : X → X}. (2.3)

From here the notation of function composition will be used as g◦f = gf , thus if the operator

f : X → Y and operator g : Y → Z exist then g ◦ f : X → Z, which can also be written as

gf : X → Z.

Definition 4. An operator A ∈ F (X) is linear if A(x + y) = Ax + Ay and A(λx) =

λAx ∀x, y ∈ X and λ ∈ R.

Definition 5. For every A,B ∈ F (X) and x ∈ X

1. (A+B)x = Ax+Bx Sum of operators

2. Ix = x Identity operator

3. (0x)i = 0 Zero operator

4. (αA)x = α(Ax), α ∈ R Scalar associativity

5. (AB)x = A(Bx) Operator composition

6. (Ex)i = xi+1, ∀i Shift operator

7. Nx = −x Negative operator

8. (A+B)C = AC +BC Right distributivity

9. A0 = I, An+1 = AnA,n ∈ Z Operator powers/ compositions

In our space X , the obvious relation to use is the ≤ and ≥ operators. With this we can

define a syntone operator, which preserves the partial order relation on sequences. A syntone

operator is also called increasing [12] or monotone [13].

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

7

Chapter 2 The Discrete Pulse Transform

Definition 6. An operator P on X is syntone if and only if, for all sequences x, y ∈ X , x ≥

y ⇒ (Px) ≥ (Py).

We will be looking at a specific type of operator called a separator, which functions as a

complete smoother. A complete smoother should separate a signal into its noise component

and its true signal component, while changes to the signal must transform linearly to the

extracted true signal and noise component. Bearing these requirements in mind, the fol-

lowing axioms were developed by Mallows [14] and restricted to only non-negative scaling

factors [15]:

Definition 7. Smoother Axioms: An operator P on X is a smoother if:

1. PE = EP where E is the zero element of the space.

2. P (x+ c) = P (x) + c for each x where c ∈ X is a constant sequence.

3. P (αx) = αP (x) for each x and scalar α ≥ 0.

With these axioms, a separator can be defined [16].

Definition 8. An operator P is a separator if it satisfies the smoother axioms in Definition 7

as well as the following two axioms:

1. P 2 = P Idempotence

2. (I − P)2 = (I − P) Co-Idempotence

Evaluating these axioms for a separator, one notes that the original signal is presented by

Ix = x, the true signal is presented by Px and the noise is presented by (I − P)x. A

smoother P applied to a signal x consisting of the true signal s and noise n would imply that

Ix = s+ n = Px+ (I − Px). If P is a separator, reapplying P to the newly extracted signal

would yield PPx = Px = s, P (I − Px) = 0 and (I − P)(I − P)x = n.

To further aid in the concept of smoothers and separators four different criteria can be used

to evaluate smoothers and separators. For evaluation purposes the idea of true signal and

noise will be dependent on the application and usage of the operators. The following criteria

could be used [16]:

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

8

Chapter 2 The Discrete Pulse Transform

1. Effectiveness in terms of how well the operator separates the signal and noise com-

ponent, that is how close Px is to the true signal.

2. Consistency in terms of how well the smoother operates as a separator, how consist-

ently the operator decomposes the signal into Px and (I − P)x. This provides the

ability to predict the outcome of a non-linear operator.

3. Stability in which small changes in terms of noise must not result in large changes in

either the true signal or the noise signal.

4. Efficiency in terms of computational economy. A method that requires infinite time

to compute is unrealisable.

A good smoother will adhere to these criteria where the smoothness of the sequence on which

the smoother is applied also needs some kind of measurement. The total variation of a

sequence can be used as a measurement for smoothness [17].

Definition 9. The total variation T (x) of a sequence x ∈ X is given by:

T (x) =
∞∑

i=−∞
|xi+1 − xi|. (2.4)

Total variation, as defined in Definition 9, is a semi-norm as T (x) ≤ 0 for, all x 6= 0,

T (αx) = |α|T (x) and T (x + y) ≤ T (x) + T (y). With the LULU operators introduced in

Section 2.2, the total variation also becomes a natural norm, since T (x) ≤ 2‖x‖1 [18].

Operators can have specific effects on a sequence such as preserving variation in the sequence

or preserving the shape (trend) in the sequence. Operators are thus said to be variation pre-

serving, neighbour trend preserving, difference reducing or fully trend preserving [17].

Definition 10. An operator P is variation preserving if

T (x) = T (Px) + T (x− Px). (2.5)

Definition 11. An operator P is neighbour trend preserving if for each x,

xi+1 ≤ xi ⇔ (Px)i+1 ≤ (Px)i (2.6)

and

xj+1 ≥ xj ⇔ (Px)j+1 ≥ (Px)j . (2.7)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

9

Chapter 2 The Discrete Pulse Transform

Definition 12. An operator P is difference reducing if for each x and subscript i,

|(Px)i+1 − (Px)i| ≤ |xi+1 − xi|. (2.8)

Definition 13. An operator P is fully trend preserving if it is neighbour trend preserving

and difference reducing.

A fully trend preserving operator P is also total variation preserving. Fully trend preserving

operators produce some important results. Let P1 and P2 be fully trend preserving operators

then [7]:

1. The results of P1 ◦ P2 and P2 ◦ P1 are fully trend preserving.

2. αP1 + (1− α)P2 is fully trend preserving for α ∈ [0, 1].

3. I − P1 and I − P2 are fully trend preserving.

4. A fully trend preserving operator also preserves n-monotone sequences.

A monotone sequence can be extended to an n-monotone sequence which then refers to a

monotone set with a cardinality equal to n [19].

Definition 14. A sequence x ∈ X is n-monotone if and only if the sequence

{xi, xi+1, ..., xi+n+1} is monotone for every i.

2.2 LULU OPERATORS

The LULU operators exist in n dimensions but for a facile explanation only one dimension

will be treated, followed by the n-dimensional LULU in a later section. The LULU oper-

ators are built on two fundamental operators known as selectors. These selectors have the

fundamental property that only the elements appearing in their inputs can appear in their

outputs [7].

Definition 15. The erosion
∧

and dilation
∨

operators on X are:

1. (
∧
x)i = min {xi−1, xi}

2. (
∨
x)i = max {xi, xi+1}

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

10

Chapter 2 The Discrete Pulse Transform

These two operators can then be extended to multiple elements such that

(
∧n x)i = min {xi−n−1, ..., xi} and (

∨n x)i = max {xi, ..., xi+n+1}. When applying these

operators to a finite sequence the edges are padded with zeros.

In general the erosion operator can be visualized as increasing the size of a concavity or

decreasing the size of a convexity. Conversely, the dilation operator can be seen as increasing

the size of a convexity and reducing the size of a concavity. These operators act equivalently

to the erosion and dilation operators defined in mathematical morphology [13].

The erosion and dilation operators in Definition 15 have some logical properties which can

be deduced, but are also proven. The properties are as follows [7]:

1.
∧

and
∨

are syntone.

2.
∧m ≤ I ≤ ∨m for all m ≥ 0

3.
∨m∧m ≤ ... ≤ ∨∧ ≤ ∧∨ ≤ ∧m∨m for all m > 0

4.
∨m∧m∨m =

∨m and
∧m∨m∧m =

∧m
5. (

∨m∧m)2 =
∨m∧m and (

∧m∨m)2 =
∧m∨m

Property 5 shows that the composition operators are idempotent.

The dilation and erosion operators can be combined to become smoothers. This finally

brings us to the LULU operators which are the combination of erosion and dilation operat-

ors [7]:

Definition 16. The LULU operators are the finite composition of the operators:

Ln =
n∨ n∧

and Un =
n∧ n∨

(2.9)

where (
∧n x)i = min {xi−n−1, ..., xi} and (

∨n x)i = max {xi, ..., xi+n+1}.

Applying Un and Ln each iteratively but separately on a sequence, one will observe that

these operators are biased towards one direction. The sequence on which Un is applied will

be smoothed from below while Ln will smooth a sequence from above. These operators thus

need to be applied in composition to create unbiased smoothers. From the above properties

of the dilation and erosion operators we can create some basic properties for the LULU

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

11

Chapter 2 The Discrete Pulse Transform

operators to show the inner workings better:

1. Ln+1 ≤ Ln ≤ L0 = I = U0 ≤ Un ≤ Un+1 (Syntone)

2. LnLm = Lm and UnUm = Um for all m ≥ n

3. L2
n = Ln and U2

n = Un (Idempotent)

4. (LnUn)2 = LnUn and (UnLn)2 = UnLn

5. Ln ≤ LnUnLn ≤ LnUn and UnLn ≤ UnLnUn ≤ Un

6. LnUnx and UnLnx is n-monotone.

With these properties we can see that the LULU operators form a 4-element semigroup [20].

A semi-group is a non-empty set where a binary operation (a, b)→ ab has been defined which

forms a closure and is associative.

Definition 17. Let S be a set with a binary operator ·. (S,·) is a semi-group if · is associative,
i.e. (a·b)·c = a·(b·c) ∀ a, b, c ∈ S.

Smoothing is a subjective evaluation of your objective. Thus to smooth a sequence to a

certain degree in one step is not always desired. The amount of smoothing of a sequence

can be controlled by using systematical smoothing by utilising Cn and Fn also known as

the Ceiling and the Floor operators. The sequential application of the smoothers provides

better smoothing results by removing the ambiguity that’s present when using only Ln or

Un [18].

Definition 18. We define operator Cn,

Cn+1 = Ln+1 ◦ Un+1 ◦ Cn with C1 = L1 ◦ U1, (2.10)

and the operator Fn,

Fn+1 = Un+1 ◦ Ln+1 ◦ Fn with F1 = U1 ◦ L1. (2.11)

The LULU operators can be summarized as being effective separators which are fully trend-

preserving. The operators are stable as they have a Lipschitz constant and provide consistency

as they are idempotent and co-idempotent [7] . The LULU smoothers was also shown to

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

12

Chapter 2 The Discrete Pulse Transform

be computational efficient via the Roadmakers Algorithm [1]. The LULU operators are

good smoothers by the criteria presented for evaluating smoothers and in addition they also

function as separators [7].

2.3 THE DISCRETE PULSE TRANSFORM

The smoothing of a sequence has an inherent problem, as smoothing a sequence destroys

information unless the information removed is stored. The Discrete Pulse Transform (DPT)

provides a way to keep all information of the sequence while smoothing it. The DPT is a

hierarchical decomposition of a sequence and also forms a scale-space [9] and can be defined

by [21]:

Definition 19. The Discrete Pulse Transform is a mapping of a sequence x into a vector:

DPT (x) = [D1(x), D2(x), ..., DN−1(x)]. (2.12)

The DPT is a decomposition of x obtained using either Un ◦ Ln or Ln ◦ Un, thus

Dn = (Cn−1 − Cn) = (I − Ln ◦ Un)Cn−1 (2.13)

or

Dn = (Fn−1 − Fn) = (I − Un ◦ Ln)Fn−1. (2.14)

The DPT decomposition then relates to a sequence such that:

x =
N−1∑
n=1

Dn(x). (2.15)

Each of the sequences in DPT (x) can be described with a base function called a pulse. Each

of these pulses consist of different heights so that:

x =
N−1∑
n=1

γ(n)∑
s=1

ψns (2.16)

where ψns is called a pulse which consists of a sequence of n non-zero constant values and

elsewhere zero. The pulse will have relative height of αns which can be negative or positive.

The cardinality of ψns is equal to n.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

13

Chapter 2 The Discrete Pulse Transform

The Highlight Conjecture state that each of the heights of the pulses ψns can be scaled

with a positive non-zero integer before reconstructing the complete sequence. The sequence

will then decompose consistently into the new scaled base pulses from the first time it was

decomposed. The Highlight conjecture now known as the Highlight theorem was proved

using graph theory [1]. The DPT is a consistent hierarchical non-linear decomposition of a

sequence. It provides the ability to have a non-negative linear combination of a decomposition

which provides the same components when decomposed [21].

The DPT has another important property, namely total variation preservation for a hierarch-

ical decomposition of a sequence with the iterative application of separators it is important

for the decomposition to be total variation preserving [3]. The total variation using the DPT

decomposition is given by:

T (x) =
N−1∑
n=1

γ(n)∑
s=1

T (ψns) (2.17)

2.4 THE DPT IN MULTI-DIMENSIONS

Up until now we have only treated the LULU operators in one dimension. To have a complete

theoretical understanding we discuss the LULU operators in multi-dimensional space as well

as the Discrete Pulse Transform. The Discrete Pulse Transform also provides the LULU scale-

space. The multi-dimensional development including proofs can be found in [3] and [9].

An n-monotone sequence is part of a connectivity class and is thus a connected set. The

concept of an n-monotone sequence can be extended to higher dimensions with the introduc-

tion of connectivity classes [13].

Definition 20. Let A be an arbitrary nonempty set. A family C ∈ P(A) is called a con-

nectivity class if the following axioms hold:

1. ∅ ∈ C

2. {xi} ∈ C for every i such that xi ∈ A

3. For each Cj ∈ C and
⋂
j∈I Cj 6= ∅, then

⋃
j∈I Ci ∈ C.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

14

Chapter 2 The Discrete Pulse Transform

Any element of C is called a connected set where we say C defines a connectivity on A.

We can now extend our sequence to d-dimensions such that x ∈ Zd, d ∈ {1, 2, 3, ...} with

the additional constraint of a bounded space. If W ⊂ Zd then card(W) < ∞ where card

is the cardinality of the set. The LULU operators operate on n-monotone sequences in one

dimension which translate to connected sets in d-dimensions. Thus we require a discrete space

which is sufficiently rich in connected sets. The connectivity within the LULU framework

will be sufficient if it meets the following conditions [3]:

• Zd ∈ C

• Let C ∈ C then for any a ∈ Zd, Ea(C) ∈ C where Ea is the translation operator.

• If V ⊂W and V,W ∈ C then there exist x ∈W\V such that V ∪ {x} ∈ C.

For any set of cardinality or size of n+ 1 we can now define within the d-dimensional space

equivalent n-monotone sets which contain the point x ∈ Zd.

Nn(x) = {V ∈ C : x ∈ V, card(V) = n+ 1}. (2.18)

The LULU operators can be redefined on an abelian group A(Zd) such that commutativity

always holds within the lattice.

Definition 21. Let f ∈ A(Zd) and n ∈ N. Then for x ∈ Zd:

Ln(f)(x) = max
V ∈Nn(x)

{
min
y∈V
{f(y)}

}
, (2.19)

Un(f)(x) = min
V ∈Nn(x)

{
max
y∈V
{f(y)}

}
. (2.20)

In order to fully utilise the the partially ordered space A(Zd) we need to be able to define local

maximums and minimums in the space. In order to determine maximums and minimums we

need to know when an element is adjacent to another element.

Definition 22. Let V ∈ C then a point x 6∈ V is called adjacent to V if V ∪ {x} ∈ C. The

set of all adjacent points of V are then:

adj(V) = {x ∈ Zd : x 6∈ V, V ∪ {x} ∈ C}. (2.21)

With the concept of adjacency we can classify a connected set as a local minimum or a local

maximum.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

15

Chapter 2 The Discrete Pulse Transform

Definition 23. Let V ∈ C and f ∈ A(Zd) then V is called a local maximum set if:

maxy∈adj(V){f(y)} < minx∈V {f(x)}. (2.22)

Or V is called a local minimum set if

miny∈adj(V){f(y)} > maxx∈V {f(x)}. (2.23)

The Ln operator removes local maximums of size smaller and equal to n while Un removes

local minimums of size smaller and equal to n. The two operators can’t create new local

maxima or minima but they may enlarge the cardinality of a connected set attributed as

a local maxima or minima. The LULU operators maintain their properties from the 1-

dimensional case such as being a separator, being fully trend preserving and preserving total

variation. The total variation can be redefined for f ∈ A(Zd).

T (f) =
∑
p∈Zd

d∑
i=1
|f(p+ (ek)i)− f(p)| (2.24)

where ek ∈ Zd with (ek)i =

 0, if i 6= k

1, if i = k
for all k = 1, 2, ..., d.

The Discrete Pulse Transform in multi-dimensions is represented the same way as in the one

dimensional case:

DPT (f) = [D1(f), D2(f), ..., DN−1(f)]. (2.25)

Each component Dn is calculated as:

D1(f) = (I − P1)(f) (2.26)

Dn(f) = (I − Pn) ◦Qn−1(f), n = 2, ..., N − 1. (2.27)

where Pn = Ln ◦ Un or Pn = Un ◦ Ln and Qn = Pn ◦ ... ◦ P1, n ∈ N. Each different scale Dn

can be represented by:

Dn(f) =
γ(n)∑
s=1

ψns (2.28)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

16

Chapter 2 The Discrete Pulse Transform

and

f =
N−1∑
n=1

γ(n)∑
s=1

ψns (2.29)

where γ(n) is the total number of local maximum and local minima of size n and ψ is a

pulse.

Definition 24. A function ψ ∈ A(Zd) is called a pulse if there exist a connected set V and

a nonzero real number α such that

ψ(x) =


α, if x ∈ V

0, if x ∈ Zd\V.
(2.30)

The DPT decomposition forms a scale-space which can be formally defined as [9]:

Definition 25. Let f ∈ A(Zd). The set

Sf,Λ = {(λ,Lf (λ)) : λ ∈ Λ} (2.31)

is called a scale-space of f generated by the operator L with respect to scale parameter set Λ

and measure of smoothness S ∈ A(Zd).

S is a function called the measure of smoothness which is dependant on the requirement of the

specific task. Overall a very smooth signal yields a smoothness measure of 0 where rougher

signals yield higher values. In case of the DPT the measure of smoothness determines how

close the current sequence is to its local monotonicity. The interested reader can find more

information in Discrete Pulse Transform of images and applications [9].

The Discrete Pulse Transform forms the scale-space

Sf,LULU = {(n, Pn(f)) : n ∈ Λ0 = {0, 1, 2, ..., N}} (2.32)

called the LULU scale-space. A scale-space allows the tracking of structures within a domain

through different scales ranging from fine to coarse.

2.5 CONCLUSION

In this chapter we discussed a mathematical framework on which the LULU operators and the

Discrete Pulse Transform where built. Some interesting properties such as idempotence and

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

17

Chapter 2 The Discrete Pulse Transform

co-idempotence of the LULU operators where discussed. The LULU operators and DPT were

also discussed in multi-dimensions followed naturally by the creation of the LULU scale-space.

The consistent decomposition of the DPT was also discussed.

In the next chapter, the more practical side of implementing and representing the DPT will

be discussed. An example of the DPT decomposition is included with the development of a

software library for the DPT called The DPT Library [22] in Chapter 3.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

18

CHAPTER 3

THE DPT IMPLEMENTATION

The computation of any set of mathematics is important. If a set of mathematics can not be

computed by computers, the application of the mathematics in real-world problems reduces

drastically. The Discrete Pulse Transform (DPT) can be implemented by using the operators

as they were described in Chapter 2. This implementation method is however very inefficient

and execution time is slow. A general concept for implementing the DPT efficiently is called

the Roadmaker’s algorithm [23].

The Roadmaker’s algorithm showed, in 2006, that the DPT can be executed in O(n) time [23].

The Roadmaker’s algorithm uses the analogy of building a perfectly straight road in executing

the DPT. You start with filling all the holes of size one in the road, followed by removing all the

bumps in the road of size one. By continuously increasing the size of the holes and bumps to

be removed, the road will become perfectly smooth. The removed holes and bumps represents

the pulses extracted by the DPT. A Python implementation, specific in two dimensions, for

image processing of the Roadmaker’s algorithm was done in 2009 by Van der Walt [24].

The Roadmakers algorithm was extended to graph theory and used to prove the Highlight

Conjecture in 2011. Utilizing graph theory, the implementation of the DPT in d-dimensions

was shown to be possible and this was also implemented in Python [1].

The implementation done by Van der Walt [24] is based on a line scan method to find the

pulses and a Compressed Sparse Row [25] format to store them. The Compressed Sparse

Row format is used as each individual pulse can be represented by a sparse binary matrix.

The relation of each pulse is then stored as a tree where the nodes in the tree have various

properties such as, the height of the pulse and the Compressed Sparse Row matrix.

Chapter 3 The DPT Implementation

In this chapter a new algorithm and a library, based on the Roadmaker’s algorithm, is de-

veloped called the Roadmaker’s Pavage and the DPT Library. An in-depth discussion of

the Roadmaker’s Pavage is given with some comparison to the Roadmakers algorithm. An

execution time analysis is applied to the Roadmakers Pavage to show linear complexity. Im-

plementation specific details are also provided with a user guide for the DPT Library.

3.1 THE ROADMAKERS ALGORITHM

The Roadmaker’s algorithm in [1] is the first to use graphs to do the DPT decomposition.

The Roadmakers algorithm concepts are discussed with complementary pseudo code.

The d-dimensional sequence x with N elements can be represented as a real-valued function

with domain defined on a connected undirected graph. Each element is assigned a unique

tag such that no two elements have the same tag. An element tagged xj represents the node

j where the node’s value xj can also be referred to as the height hj of the node.

Each node has a set of neighbours N(j) associated with it where each neighbour is represented

by an edge such that if node j has a neighbour node i the edge is denoted by E(j, i). If node

j is a neighbour of node i then node i is a neighbour of node j thus the edges connecting

them is the same edge E(j, i) = E(i, j), that is the edges are undirected.

A cluster of size n is a subgraph consisting of n nodes. The neighbours of a cluster are

those nodes which are a neighbour of any node in the subgraph of n nodes but which is not

contained in the subgraph of n nodes. A cluster in which the value of every node is equal,

is called a constant-valued cluster. A constant-valued cluster can be contracted into a single

node of size n, with the same neighbours as the cluster of size n.

A pit is defined as a local minimum, thus if a node’s value is strictly lower than all of its

neighbours, it is called a pit. Conversely a node which is a local maximum is called a bump.

A node which is either a pit or a bump is called a feature. A node i is said to be the nearest

neighbour of node j if min
k∈N(j)

|xj − xk| is attained for k = i where N(j) are the neighbours of

node j.

The Roadmakers algorithm proposes two operators Pn and Qn which operate on the nodes

created in the graph. Pn is equivalent to Ln where Qn has is equivalent to Un.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

20

Chapter 3 The DPT Implementation

• Pnx = y, where yj = xm if node j is a pit of size n with nearest neighbour node m,

otherwise yj = xj .

• Qnx = y, where yj = xm if node j is a bump of size n with nearest neighbour node m,

otherwise yj = xj .

A feature is flattened whenever Pn or Qn have operated on it so that the feature node has been

modified to the value of its nearest neighbour, that is xm. The pit-removal operator Pn and

bump-removal operator Qn operate on the whole sequence instantaneously but separately.

Fortunately when executing Pn the pits of size n can be flattened in any order. Qn also have

this property.

To implement a mathematically sound DPT decomposition with this algorithm, a cluster of

infinite size and zero value must be part of the graph, this cluster is also called the zero node.

It is required to create edges between the zero node and the data elements which are on the

boundaries of the sequence.

The DPT can be executed by firstly creating a node for each data point in a graph where each

node has an edge towards each one of its neighbours. Secondly all pits of size 1 are flattened

which is followed with the flattening of all bumps of size 1. All the pits of size 2 are then

flattened followed with the flattening of all the bumps of size 2. The flattening of features

continue in this fashion until only one cluster of infinite size and 0 value is left. This state

will be achieved after all the features of size N and smaller have been removed. The process

can be executed by removing the bumps of size n before the pits of size n. The process is

shown in Algorithm 1.

If a feature j of size n is flattened to its nearest neighbour m, a pulse p of size n is created

and stored representing the flattened feature. The stored pulse forms part of the DPT decom-

position. The stored pulse is also assigned a height. The height hp of pulse p is equal to the

difference between the values of feature j and its nearest neighbour m, thus hp = xj − xm.

Note that hp can be negative.

The Roadmaker’s algorithm can be completed in O(m) complexity. An in-depth discussion on

the proposed algorithm based on the Roadmaker’s algorithm, called the Roadmaker’s Pavage,

will be given in Section 3.2 below. In the rest of the chapter, when referring to the Roadmakers

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

21

Chapter 3 The DPT Implementation

Algorithm 1 The Roadmaker’s algorithm overview
1: Create N nodes from sequence x

2: For every neighbour j of every node i create an edge E(i, j).

3: for n = 1 to N do

4: Apply Pn
for every pit of size n in graph do

Flatten feature

Store pulse of size n representing flatten feature.

end for

5: Apply Qn
for every bump of size n in graph do

Flatten feature

Store pulse of size n representing flatten feature.

end for

6: end for

Algorithm, the author specifically refer to the graph based algorithm given in [1].

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

22

Chapter 3 The DPT Implementation

3.2 THE ROADMAKERS PAVAGE

3.2.1 Overview

The Roadmakers Pavage is based on the Roadmakers Algorithm, named in such a manner

that by paying a fee a better road can be built. The fee comes in as computational gradient

where a more usable Discrete Pulse Transform decomposition is stored. The new algorithm

increases the required execution cycles per edge, but still keeps the algorithm complexity

linear. The Roamakers Algorithm provides a very dense representation of the DPT, thus

making it very difficult to utilise the decomposition. The Roadmakers Pavage extract pulses

in a more usable format as well as providing a way to easily visualise the DPT decomposition.

An overview of the Roadmaker’s Pavage is given in Algorithm 2 below.

Algorithm 2 The algorithm layout
1: data← vector of N d− dimensional elements.

2: Ck(i)← define connectivity function for data

with k = 1, 2..., p where p is the number of connections.

3: [WG, PG] = Construct Graph(data, Ck(i))

4: FeatureTable = Feature Table(WG)

5: PG = Discrete Pulse Transform(WG, PG,FeatureTable)

The data sequence is converted into a vectorized set by defining the connectivity of the data

sequence such as 4-connectivity for 2-dimensional data, see Definition 20 in Chapter 2. The

data sequence is used to create two graphs, the work graph WG and the pulse graph PG.

A feature table is created from analysing the work graph where the feature table is then

traversed to perform the DPT. Each new pulse extracted from the work graph updates the

pulse graph. The algorithm stops whenever the feature table becomes empty. The pulse graph

then presents the extracted pulses of the DPT.

3.2.2 An Example

Before an in-depth discussion of each section, an example will be discussed to aid the visualiz-

ation of the algorithm as well as providing a comparison between the Roadmakers Algorithm

and the Roadmakers Pavage. For simplicity we use a 1-dimensional example. The sequence

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

23

Chapter 3 The DPT Implementation

x = [x1 x2 x3 x4] = [7 3 5 5] consisting of four elements, each with a value as shown in

Figure 3.1. This sequence will be used in the example that follows.

0
1
2
3
4
5
6
7

x1 x2 x3 x4

Figure 3.1: The Input sequence for the DPT algorithm example.

Before the DPT can be performed, the data sequence x must be converted to a graph. The

converted data sequence is shown in Figure 3.2. Figure 3.2a shows the graph for the Road-

makers Algorithm where the additional zero padding node can be observed. The initialization

of the Roadmakers Pavage is shown in Figure 3.2b with two graphs, the pulse graph and work

graph. The pulse graph consist of arcs, where the work graph have edges. These two graphs

are linked by virtual edges which are not part of either graphs but keep track of how the

different nodes in each graph relate to the other.

The work graph constitutes the data sequence and its connectivity. The work graph is ini-

tialised by creating a node for each data element in the data sequence. The nodes are then

connected with edges to the neighbours of each data element. To conform to the DPT theory,

all the boundary elements in the data sequence must be connected to an element with a 0

value which connect to an infinite number of other elements with 0 value. For this purpose

we create a zero node in the work graph. The zero node is a node with value 0 and infinite

size. For a node created from a boundary data element, an edge is added, connecting to the

zero node. In Figure 3.2b, in the work graph, the number within the node represents the

value of the data element the node was created from. The superscript of the node represents

the number of elements the node contains. The Roadmakers Algorithm follows the same

initialisation, but excludes the superscript.

The pulse graph comprises the pulses extracted with the DPT. An important aspect of storing

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

24

Chapter 3 The DPT Implementation

the pulses is to know which pulse belong to which elements in the data sequence. This is

achieved when the pulse graph is initialised with base nodes of height zero and size equal to

the index within the data sequence. For each element in the data sequence, one base node is

created with the size equal to the index as the data element. Each base node is then connected

with a virtual edge to its corresponding work graph node. In Figure 3.2b, in the pulse graph,

the number within the node represents the height of the pulse the node represents where the

superscript represent the size of the pulse. Although the size of the node can determined by

traversing the graph for usability each node records its own size.

7 3 5 5 0

(a) Roadmakers Algorithm

Pulse Graph
Work Graph

Virtual Edges

0
1

0
2

0
3

0
4

7
1

3
1

5
1

5
1

0
∞

(b) Roadmakers Pavage

Figure 3.2: Initialization of the DPT decomposition algorithms

After the graphs have been initialised they can be traversed to find nodes with neighbours

of equivalent value. The work graph will also be traversed in the Roadmakers Pavage. The

equal-valued nodes are merged into clusters.

The Roadmakers Algorithm merges nodes by creating an arc between the equal-valued nodes,

with all arcs directed away from one arbitrary chosen node to represent the cluster. The

heights of the nodes not being used as a cluster representative is set to zero and all edges

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

25

Chapter 3 The DPT Implementation

connecting to them is moved to the cluster node. The cluster node then connects with edges

to all of the clusters’ neighbours.

The Roadmakers Pavage merges nodes to create clusters by subsequently removing all nodes

except one which will represent the cluster. A node is only deleted after all its edges and

virtual edges have been moved to the cluster node and the size of the cluster node has been

increased with the size of the node to be deleted.

While the graphs are traversed to find equal-valued nodes, each node is also checked to

determine whether it’s a feature. A feature table is created by adding every node identified

as a feature to the table. The feature table only contains references to nodes identified as

features within the graphs. This table is not sorted and needs to be traversed to find the

required feature size and type.

The new updated graphs can be seen in Figure 3.3. The two nodes in the work graph with

the value of 5 are merged to form a new node of size 2 which is shown in Figure 3.3b. All

the nodes left in the work graph are features. In Figure 3.3a an arc is added from the node

which will present the two merged nodes and the place holder node which becomes a zero.

For both graphs the node of value 7 is a bump of size 1, the node of value 3 is a pit of size 1,

the node of value 5 is a bump of size 2 and the node of value 0 is a pit of infinite size.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

26

Chapter 3 The DPT Implementation

7 3 0 5 0

(a) Roadmakers Algorithm

0
1

0
2

0
3

0
4

7
1

3
1

5
2

0
∞

(b) Roadmakers Pavage

Figure 3.3: Merging nodes.

The DPT decomposition is now applied starting with n = 1 by first applying the Pn and

then Qn followed by increasing n until n = N . The algorithm can be varied by applying Qn
first followed by Pn. The first feature to be extracted is the bump of value 7. The feature’s

nearest neighbour is the node of value 3. To flatten the feature a new pulse must be created

of height 4 consisting of the same elements as the feature.

The Roadmakers Algorithm achieves this by flattening the feature and setting the feature

nodes’ height to the height of the extracted pulse. An arc is created from the nearest neigh-

bour towards the feature node while all the edges is shifted to the nearest neighbour. This step

includes the pulse extraction and the creation of clusters and is shown in Figure 3.4a.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

27

Chapter 3 The DPT Implementation

4 3 0 5 0

(a) Roadmakers Algorithm

0
1

0
2

0
3

0
4

4
1

3
1

3
1

5
2

0
∞

(b) Roadmakers Pavage

Figure 3.4: Extracting the first pulse.

0
1

0
2

0
3

0
4

4
1

3
2

5
2

0
∞

Figure 3.5: Merging two nodes.

The Roadmakers Pavage creates a new node in the pulse graph with height 4 and size 1. The

feature node in the work graph connects to a base node in the pulse graph through a virtual

edge. An arc is created from this base node to the new node created in the pulse graph. The

virtual edge is then moved to connect between the new node in the pulse graph and the feature

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

28

Chapter 3 The DPT Implementation

node in the work graph. The flattening of the feature node is completed by setting the value

of the feature node to the value of the nearest neighbour, this is shown in Figure 3.4b. The

merging of all equal-valued nodes is show in Figure 3.5.

Next a second pulse can be extracted. The same procedure is followed as described for the

first pulse but now a pulse of size 2 and height 2 will be extracted. The extraction of the

pulse for Roadmakers Algorithm is shown in Figure 3.6a. The extraction of the pulse by

the Roadmakers Pavage is shown in Figure 3.6b and followed by the merging operation in in

Figure 3.7.

4 3 0 2 0

(a) Roadmakers Algorithm

0
1

0
2

0
3

0
4

4
1

2
2

3
2

3
2

0
∞

(b) Roadmakers Pavage

Figure 3.6: Extraction of second pulse.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

29

Chapter 3 The DPT Implementation

0
1

0
2

0
3

0
4

4
1

2
2

3
4

0
∞

Figure 3.7: Merged node after second extracted pulse.

4 3 0 2 0

(a) Roadmakers Algorithm

0
1

0
2

0
3

0
4

4
1

2
2

3
4

0
4

0
∞

(b) Roadmakers Pavage

Figure 3.8: Extraction of last pulse.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

30

Chapter 3 The DPT Implementation

A third pulse can be extracted from the graphs. There exist no features of size 3 thus

the third pulse is of size 4 and height 3. The pulse extraction is shown in Figure 3.8. The

extraction of this pulse shows the utility of using a tree structure to store the pulses. Although

the extracted pulse is of size 4, thus consisting of 4 elements, it only has three children or

references.

In Figure 3.8b it is evident that the pulse graph is in the form of a tree structure. This

structure is a special case of a Directed Acyclic Graph. The nodes are connected with arcs.

An arc is always directed towards the node’s parent. A node is a child of another node if

that node is its parent. It can then readily be said that a node in the pulse graph without

any children is a base node.

Figure 3.9 shows the completed DPT decomposition for both algorithms, the input signal

and the three reconstructed pulses. This figure concludes the example.

The example showed the complete process of the DPT decomposition as proposed by the

Roadmakers Pavage with a comparison to the Roadmakers Algorithm. Each step shown in

Algorithm 2 of the Roadmakers Pavage will now be discussed in more detail.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

31

Chapter 3 The DPT Implementation

0
1
2
3
4
5
6
7

(a) Input data sequence

0
1
2
3
4
5
6
7

(b) Pulse of size = 1

0
1
2
3
4
5
6
7

(c) Pulse of size = 2

0
1
2
3
4
5
6
7

(d) Pulse of size = 4

4 3 0 2 0

(e) Roadmakers Algorithm

0
1

0
2

0
3

0
4

4
1

2
2

3
4

0
∞

(f) Roadmakers Pavage

Figure 3.9: DPT decomposition with extracted pulses.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

32

Chapter 3 The DPT Implementation

3.2.3 Data Sequence Vectorization

The original data set must be digitised and placed into a workable format so we can work

with high dimensional data. Thus we use a lexicographic ordering.

The lexicographic ordering of the example given in the previous section is then:

x = O (data) = O





7

3

5

5




=
[
7, 3, 5, 5

]
. (3.1)

Any d-dimensional data sequence S can be ordered lexicographically. We create a formula

to convert the coordinates of the d-dimensional data to the index i = 1, 2, ..., N of a vector

x. Each element in the data sequence S can be addressed by a d-tuple such that the tuple

is presented by (s1, s2, ..., sd) where sj ∈ {1, 2, ...,maxj} and j ∈ {1, 2, ..., d}. Then xi =

S(s1, s2, ..., sd) and the index i is given by:

i = s1 +

(s2 − 1)(max1) +

(s3 − 1)(max2.max1) + ..+

(sd − 1)(maxd−1.maxd−2..max1)

(3.2)

1 2 2 1

3553

2442

Figure 3.10: 2-Dimensional data sequence(image)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

33

Chapter 3 The DPT Implementation

An image of a 2-dimensional sequence is shown Figure 3.10. The numbers in the image

indicate the value of each element, although it is also presented by grey levels. The sequence

in Figure 3.10 has a cardinality of N = 12, max1 = 4 and max2 = 3. The vectorized data is

then given by

x = O




1 2 2 1

3 5 5 3

2 4 4 2


 =

[
1, 2, 2, 1, 3, 5, 5, 3, 2, 4, 4, 2

]
. (3.3)

3.2.4 Define Connectivity Functions

To define neighbours and edges of different nodes in a graph, the connectivity of the data

set must be defined. The connectivity specifies the neighbours of a data point which then

gets translated to the index of the vectorized data. A node for each element in x will be

created. To find the neighbours of each node a function C is defined for each neighbour k.

The function is dependant on the index i of the current data point xi in the vector x. The

function Ck(i) outputs a new index jk which is used to allocate the neighbouring data point

xjk . The set of functions is then given by

jk = Ck(i) ∀k = 1, 2, ..p. (3.4)

Looking at a 1-dimensional data sequence, a logical 2-connectivity can be defined. The

neighbours of a data point in the 1-dimensional data sequence are defined as the data point

left and the data point right of the current data point position. The functions to support

this definition is then

C1(i) = i− 1,

C2(i) = i+ 1.
.

Looking at a typical 4-connectivity in a 2-dimensional data sequence such as an image, the

neighbours can be above, below, left and right of the current data point. The connectivity

functions supporting such configuration are then

Top neighbour C1(i) = i−max1,

Bottom neighbour C2(i) = i+ max1,

Left neighbour C3(i) = i− 1,

Right neighbour C4(i) = i+ 1.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

34

Chapter 3 The DPT Implementation

The max1 is the maximum of the 1st dimension of the 2 dimensions as used in the vectorization

of the data set in Section 3.2.3. By utilizing functions in this way the indexes are assigned with

regards to each data point. More complicated configuration and graphs can be constructed.

The connectivity function for 8-connectivity in a 2-dimensional space is then

Top left neighbour C1(i) = i−max1 − 1,

Top neighbour C2(i) = i−max1,

Top right neighbour C3(i) = i−max1 + 1,

Left neighbour C4(i) = i− 1,

Right neighbour C5(i) = i+ 1,

Bottom left neighbour C6(i) = i+ max1 − 1,

Bottom neighbour C7(i) = i+ max1,

Bottom right neighbour C8(i) = i+ max1 + 1.

3.2.5 Constructing the graphs

The algorithm is more formally started by initializing two graphs namely a pulse graph PG
and a work graph WG. The pulse graph will consist of the finished decomposition containing

all the extracted pulses of the DPT. The work graph is constructed by utilising the data points

and connectivity functions and is reduced to a single node when the DPT decomposition is

complete. The creation of these two graphs can be seen in Algorithm 3.

Algorithm 3 shows how to construct each node within the work graph and pulse graph by

assigning specific values to each node. The VW,0 is the zero node which connects to all the

boundary nodes in the work graph. The virtual edges are connected to each pair of nodes

considered in both graphs. The edges within the work graph are connected by using the

connectivity functions defined earlier and is shown in Algorithm 4.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

35

Chapter 3 The DPT Implementation

Algorithm 3 Construct Graph
1: procedure Construct Graph(data, Ck(i))

2: Create the empty work graph WG = (VW , EW)

3: Create the empty pulse graph PG = (VP , AP)

4: Create node VW,0 in work graph WG with . The Zero node.

size←∞

height← 0

5: for every i in data do

6: Create node VW,i in work graph WG with

size← 1 . Nodes have multiple properties

height←value of data point

7: Create node VP,i in pulse graph PG with

size← 0 . Show it present position data

height← i . i denotes index in data

8: Create VirtualEdge (VW,i, VP,i)

9: end for

10: Set Connectivity(WG, Ck(i))

11: end procedure

Algorithm 4 Set Connectivity
1: procedure Set Connectivity(WG, Ck(i))

2: for every node VW,i in work graph WG do

3: for every k in Ck(i) do

4: jk ← Ck(i) . Calculate relative index for node connection

5: if j out of bounds then

6: jk ← 0 . Connect to Zero node

7: end if

8: Create edge (VW,i, VW,jk) in WG

9: end for

10: end for

11: end procedure

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

36

Chapter 3 The DPT Implementation

3.2.6 The Feature Table

After creating the two graphs a feature table must be constructed from the work graph. This

feature table is the crux of the algorithm and keeps a list of all the features currently in

the work graph. This helps in reducing the requirement to traverse through the work graph

in the search for features of the correct size. The creation of the feature table is shown in

Algorithm 5.

Algorithm 5 Feature Table
1: procedure Feature Table(WG)

2: Create empty FeatureTable

3: for every node VW,i in work graph WG do

4: if height of VW,i = any height of neighbor VW,j then

5: size of VW,j ← size of VW,j + size of VW,i
6: Neighbor VW,j inherit all neighbors of VW,i
7: Neighbor VW,j inherit all VirtualEdges connected to VW,i
8: Delete VW,i from work graph WG

9: else if (height of VW,i > height of all neighbors)

OR (height of VW,i < height of all neighbors) then

10: Add node VW,i to FeatureTable

11: end if

12: end for

13: end procedure

While the feature table is created the nodes with equal-value neighbours are combined into

single nodes presenting the clusters. Whenever a node has a neighbour with the same value

they get combined. To combine two nodes, firstly the edge connecting them is removed after

which all the other edges and virtual edges are transferred to one node while the other node

gets removed from the graph.

An advantage to finding all the features in the beginning is that since new features cannot

be created with the DPT, no further search for features are required in the algorithm. A

current feature can only be amended to present a larger feature after it was flattened. The

maximum number of possible features that can exist in the feature table at one instance is

thus exposed in the beginning of the algorithm.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

37

Chapter 3 The DPT Implementation

3.2.7 The DPT Decomposition

The work graph and pulse graph have been initialized, the work graph has been optimized

by merging all the nodes with equal-valued neighbours forming clusters and a feature table

has been created. The Discrete Pulse Transform can now be applied on the work graph

which will then output a tree like structure in the pulse graph. The decomposition is seen in

Algorithm 6.

Algorithm 6 demonstrates the execution of aQnPn DPT decomposition which can be modified

to a PnQn DPT decomposition by applying Qn first. The DPT decomposition is started by

searching the feature table for any bumps of size 1. After all the bumps of size 1 in the feature

table have been removed the pits of size 1 are removed. Each time a feature is removed the

resulting node is checked to establish whether it is a feature or not. If the resulting node is a

feature, the old feature is updated in the feature table. Otherwise, the old feature is deleted

from the feature table.

The features are removed by sequentially increasing the scale. The scale can be increased

if and only if there exist no features in the feature table of the current scale. The scale is

increased until no features are left in the feature table.

Before removing any feature, it must be reaffirmed as a feature. By the nature of removing

features arbitrarily, one can not be certain that a previously removed feature did not change

the current node’s status as a feature. When removing a feature, a node must be added

into the pulse graph, which is achieved by using the virtual edges. After the removal of a

feature two nodes must always be merged as the node which was a feature will now have an

equivalent neighbour.

To reaffirm a feature as a feature, all the neighbours must be revisited to make sure that

the feature is still a local minimum or a local maximum. If a neighbour has changed to an

equal value, the current node must be merged with its neighbour and the feature table must

be updated. This process is shown in Algorithm 7.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

38

Chapter 3 The DPT Implementation

Algorithm 6 Discrete Pulse Transform
1: procedure Discrete Pulse Transform(WG, PG,FeatureTable)

2: scale← 1

3: CNode ← first node VW,i in FeatureTable

4: while FeatureTable 6= empty do

5: if CNode size = scale then

6: if Check Feature(WG,FeatureTable,CNode) then

7: NodeIsPulse ← false

8: if CNode is a min feature then . Apply Pn first

9: if max feature with size = scale 6 ∃ in FeatureTable then

10: NodeIsPulse ← true

11: end if

12: else if CNode is a max feature then

13: NodeIsPulse ← true

14: end if

15: end if

16: end if

17: if NodeIsPulse = true then

18: Add Pulse(WG, PG,FeatureTable,CNode)

19: end if

20: if FeatureTable contains no features which size = scale then

21: Increase scale

22: end if

23: CNode ← next node in FeatureTable

24: end while

25: end procedure

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

39

Chapter 3 The DPT Implementation

Algorithm 7 Check Feature
1: function Check Feature(WG,FeatureTable,CNode)

2: if height of CNode = any height of neighbor VW,j then

3: size of VW,j ← size of VW,j + size of CNode

4: Neighbour VW,j inherit all neighbors of CNode

5: Neighbour VW,j inherit all VirtualEdges connected to CNode

6: Delete CNode from FeatureTable

7: Delete CNode from work graph WG

8: Add VW,j to FeatureTable

9: return false

10: else if height of CNode > height of all neighbors then

11: CNode is max feature

12: return true

13: else if height of CNode < height of all neighbors then

14: CNode is min feature

15: return true

16: else

17: Delete CNode from FeatureTable

18: return false

19: end if

20: end function

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

40

Chapter 3 The DPT Implementation

3.2.8 The Pulse Graph

The aim of the Discrete Pulse Transform is to extract pulses from the set of data. These

pulses are represented in a graph structure which can be simplified to be a tree representation

with the leaves as the base nodes and the last extracted pulse, the zero infinite node (the

root). The leaves of the tree are initialised in the beginning and present the position nodes or

base nodes of the data points. The branches of the tree are then created while performing the

DPT decomposition. When the decomposition is completed the root of the tree is created.

The root node represents all the data points including the zero padding nodes. A node is

added to the tree whenever a feature is flattened within the work graph. To add the new

node in the correct position, virtual edges are used to connect the pulse graph and the work

graph. Algorithm 8 shows how an extracted pulse, thus a flattened feature in the work graph,

is added to the pulse graph as a new node.

Algorithm 8 Add Pulse
1: procedure Add Pulse(WG, PG,FeatureTable,CNode)

2: i, j, k ← arbitrary node indexes

3: VW,j ← neighbor of CNode with nearest height

4: Create node VP,k in work graph PG
size← size of VW,j
height← Cnode height minus VW,j height

5: for every VirtualEdge (CNode, VP,p) connected to CNode do

6: Create Arc (VP,p, VP,k)

7: Delete VirtualEdge (CNode, VP,p)

8: end for

9: Add VirtualEdge (VW,j , VP,k)

10: Delete CNode from FeatureTable

11: Delete CNode from work graph WG

12: Add VW,j to FeatureTable

13: end procedure

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

41

Chapter 3 The DPT Implementation

3.2.9 Pulse Reconstruction

The biggest advantage of storing the pulses as described previously is the ease of reconstruct-

ing the original signal from the pulses. The original data can be reconstructed by two means.

The first is to start the reconstruction from the leaves of the tree, in other words each data

point gets reconstructed separately. We can call this reconstruction the point reconstruction

of the DPT. The second method of reconstruction is to start at the root of the tree and recon-

struct all the data points in a recursive way called root reconstruction. Pulse reconstruction

does not only refer to reconstructing the original data but also to extract specific pulses in

the DPT and present it in the format of the original data.

Starting at the leaves of the tree, Algorithm 9 can be used to reconstruct the original data

by evaluating the value of each data point separately.

Algorithm 9 Point reconstruction of the DPT.
1: function PointReconstruction(PG)

2: Let j be an arbitrary index and data an array

3: for every VP,i → size = 0 do

4: Let CNode = VP,i, height = 0

5: while Arc(CNode, VP,j) exist do

6: height = height+ CNode→ height

7: CNode = VP,i

8: end while

9: data[VP,i → height] = height

10: end for

11: return data

12: end function

Algorithm 9 is not the most effective way to reconstruct the original data from the DPT

starting at the base nodes, but provides a way to integrate more advanced functions as

shown in Algorithm 10. In the algorithm we use the properties of a base node to reconstruct

the data. A base node in the pulse graph is denoted by having a size of zero and the height

then denotes the index to which the node corresponds in the original data.

Algorithm 9 can be extended to support various additional functions. One such function is to

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

42

Chapter 3 The DPT Implementation

reconstruct pulses of a certain size or reconstruct only specific data points. In Algorithm 10

we show the reconstruction of a specific sized pulse, which can easily be adapted to reconstruct

a range of pulses.

Algorithm 10 Conditional point reconstruction of pulses in the DPT.
1: function PointReconstruction(PG, RequiredSize)

2: Let j be an arbitrary index and data an array

3: for every VP,i → size = 0 do

4: Let CNode = VP,i, height = 0, StopWhileLoop = false

5: while (Arc(CNode, VP,j) exist) and (StopWhileLoop = false) do

6: if CNode→ size = RequiredSize then

7: height = height+ CNode→ height

8: else if CNode→ size > RequiredSize then

9: StopWhileLoop = true

10: else

11: CNode = VP,i

12: end if

13: end while

14: data[VP,i → height] = height

15: end for

16: return data

17: end function

A recursive way to reconstruct the original data can be used by starting at the root of the

tree. This algorithm relies on using the computers stack to store the various variables. First

we need to define the recursive function which is shown in Algorithm 11.

The initialization of recursive reconstruction of DPT is shown in Algorithm 12.

Opposed to the point reconstruction, the root reconstruction is not that easily modifiable to

provide different reconstruction functions. One function that is suitable for the root recon-

struction is the reconstruction of single pulses. Within that concept various queries can be

made on a specific pulse using root reconstruction. Queries such as how many other individual

pulses does a specific pulse contain, what is the spatial content of a specific pulse, and many

other queries can be resolved with the root reconstruction.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

43

Chapter 3 The DPT Implementation

Algorithm 11 Root reconstruction of DPT.
1: function RootReconstruction(PG,CNode,height,data)

2: height = height+CNode→ height

3: for all j such that Arc(VP,j ,CNode) exist do

4: if VP,j → size = 0 then

5: data[VP,i → height] = height

6: return data

7: else

8: data = RecursiveFromRoot(PG,VP,j ,height,data)

9: end if

10: end for

11: return data

12: end function

Algorithm 12 Root Reconstruct from the DPT root.
1: function RootReconstruction(PG)

2: Let data be an array

3: Let height = 0

4: Let root = VP,k for k such that VP,k → size =∞

5: data =RecursiveFromRoot(PG,root,height,data)

6: return data

7: end function

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

44

Chapter 3 The DPT Implementation

3.3 PERFORMANCE EVALUATION

The development of a new algorithm requires a performance evaluation. Firstly, as stated

before, the DPT can be computed in O(n) time, thus meaning it can be done in linear time

with regards to a set of input points. This was the case for the Roadmakers Algorithm which

in theory should then also be the case for the Roadmakers Pavage.

To be able to test the algorithms performance, suitable data must be generated, easy inter-

pretable data would make the evaluation easier such as utilising images. Images are currently

one of the main application areas of the DPT. The generated data must closely approximate

real-world images, as the DPT will mostly be applied to real-world images. A solution would

be to use real-world images of different sizes, but a large image database is required contain-

ing the range of image sizes over which the algorithm is to be tested. Such a database is not

available, thus we need to generate data which closely approximate the execution times of a

real image. To find a suitable way to generate data, we use four different generation meth-

ods in a 2-dimensional space with 4-connectivity. Images usually uses 4-connectivity and a

2-dimensional space can be visualised as an image. We will generate data for an 8-bit image,

meaning we only use values from 0 to 255. Firstly, we use a random number generator using

a uniform distribution over 0 to 255 for every pixel or element. Secondly, we use the images

from the Berkley Segmentation Dataset [26]. Thirdly, we use a uniform distribution for every

element, but limit the distribution within a range of a previous generated values. The third

method is seen in Algorithm 13. Lastly, we count through all possible values by increasing

the value of the previous pixel value by 1. For method four to work, the image’s length or

width must not be multiples of 256. The fourth method can be seen in Algorithm 14.

Algorithm 13 The third method
1: for every pixel i do

2: pixel(i) = Number from Uniform Distribution [pixel(i− 1)− 5, pixel(i− 1) + 5].

3: if pixel(i) > 255 or pixel(i) < 0 then

4: pixel(i) = Number from Uniform Distribution [0, 255]

5: end if

6: end for

Generating data with these four methods we can see how the execution time differ. 50 images

where generated with each method. The Roadmakers Pavage was executed on each image,

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

45

Chapter 3 The DPT Implementation

Algorithm 14 The fourth method
1: for every pixel i do

2: pixel(i) = pixel(i− 1) + 1

3: if pixel(i) > 255 then

4: pixel(i) = 0

5: end if

6: end for

and an average execution time for every method were calculated. The average times with

example images of the generation method are shown in Figure 3.11.

(a) Image for Method 1

with an average execu-

tion time of 286 ms

(b) Image for Method 2

with an average execu-

tion time of 960 ms

(c) Image for Method 3

with an average execu-

tion time of 1280 ms

(d) Image for Method 4

with an average execu-

tion time of 2700 ms

Figure 3.11: Examples of generated data with the average DPT execution time

Evaluating the average execution times of each method we observe that method three in

Figure 3.11c gives the best execution time approximation to real world images given in Fig-

ure 3.11b. Generating data with method four provides possibly worst case results for the

execution time of the DPT, but other methods must be investigated. Method one gives the

fastest execution time which is expected when every data element differ by large amounts as

only a few larger pulses is formed. For the rest of the evaluation tests we will use generation

method three as it approximate real world images the closest.

The Roadmakers Pavage and the Roadmakers algorithm are compared in Figure 3.12. The

algorithm used for the Roadmakers algorithm is the original algorithm implemented in Py-

thon [1]. Figure 3.12 show that the current Roadmakers Pavage implementation is signific-

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

46

Chapter 3 The DPT Implementation

antly faster than the original Roadmakers Algorithm implementation.

We will now look at the computational time of multi-dimensional data with different number

of connections per node, to demonstrate linearity with regards to the number of nodes (data

points) and to show how the chosen connectivity influence computational time. Different data

sets are generated contain different number of data elements starting at 1000 data points up

to one million data points. Ten images where created for every selected number of data points

producing a maximum, minimum and average execution time.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·106

0
10
20
30
40 ·106

Data Points

T
im

e(
µ
s)

Timing graph for 4-connectivity

Roadmakers Pavage Roadmakers Algorithm

Figure 3.12: Comparison between Roadmakers Algorithm and Roadmakers Pavage

The number of connections per node is selected by doubling the previous amount thus 2,

4, 8 and 16. Using two connections per node can be interpreted as choosing 2-connectivity,

or choosing eight connections per node can be interpreted as an 8-connectivity. Although

sixteen connections per node can not be related directly to some connectivity, it provides

insight in how the computation time scales with the change in connections per node.

It is important to show the minimum, maximum and average computation times to provide

better insight into the execution times. These graphs are not to compare the algorithm in

speed to other algorithms as hardware architecture, processor speed and operating system

has a influence in the algorithms execution time. The graphs are specifically to show the

Roadmakers Pavage linearity. The separate graphs for the four different number of connec-

tions per node are shown in Figure 3.13, where the number of data points is plotted against

the computation time.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

47

Chapter 3 The DPT Implementation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·106

0
2
4
6
8 ·106

.

Timing graph for 2 connections per node

Average Minimum Maximum

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·106

0
2
4
6
8 ·106

.

Timing graph for 4 connections per node

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·106

0
2
4
6
8 ·106

T
im

e(
µ
s)

Timing graph for 8 connections per node

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·106

0
2
4
6
8 ·106

Data Points

.

Timing graph for 16 connections per node

Figure 3.13: Timing diagram using number of data points

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

48

Chapter 3 The DPT Implementation

In Figure 3.13 the computation time increases linearly with the increase in the number of data

points. It is clear that in changing the number of connections per node, the computation time

differ significantly. These graphs verify the O(n) complexity of the algorithm and show that

changing the number of connections per node changes the execution time exponentially.

3.4 IMPLEMENTATION DETAIL

Although the algorithm was fully explained in Section 3.2 the implementation of the algorithm

still has a lot of detaill. The complete code can be found online in the GitHub repository

with full descriptions of the whole algorithm as implemented [22]. The DPT library guide is

attached in Appendix A.

3.5 CONCLUSION

In this chapter the author developed a new algorithm for the Discrete Pulse Transform

called the Roadmakers Pavage. The Roadmakers Pavage is implemented to provide a more

intuitive way of working with pulses and also provide faster execution times for the DPT in n-

dimensional space. The algorithm is provided in the form of a library, the DPT Library [22],

which is there to facilitate future research in the Discrete Pulse Transform domain.

In the next chapters we consider applications of the DPT. We first look at resolving an issued

called leakage within the DPT domain. This is followed by looking at the potential of the

DPT in image segmentation. All the following chapters utilises the DPT library.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

49

CHAPTER 4

PULSE REFORMATION

Pulse Reformation is the proposed framework in which we solve the leakage problem within

the Discrete Pulse Transform. We revisit the concept of connectivity in more depth in which

we discuss what the leakage problem is and how others have attempted to solve it. We also

give some experimental results using the Pulse Reformation framework.

Mathematical Morphology is the manipulation of geometrical structures in set theory and

lattice theory. The concept of connectivity was introduced by Serra and Matheron [13].

Following a more general concept of connectivity one can say that a topological set is discon-

nected if it is equal to the union of two disjoint nonempty open sets [27]. In discrete spaces

every element is an open set, thus creates a dilemma in conjunction to the fact that elements

in a lattice of higher order than 1 forms only a partially ordered set. Let xi ∈ Z then it is

easy to say that [xi, xj] for some i < j forms a connected set as all xk ∈ [xi, xj] for i ≤ k ≤ j

because Z is a total order. In Z it is evident that for xi ∈ Z has two neighbours xi−1 and

xi+1. If we extend the space to Zd it becomes difficult to specify a connected set if each

element’s neighbours are not identifiable as an ordered space.

Given a universal set E the collection of subsets of E is denoted by P(E). We can then say

that X ∈ P(E) or X ⊆ E . We use the axiomatic connectivity defined in Definition 20. In

image analysis the most obvious connectivity to make use of is 4- or 8-connectivity which are

graph connectivities with neighbourhood relations defined.

Chapter 4 Pulse Reformation

4.1 THE LEAKAGE PROBLEM

The leakage problem informally is when a space has for example two disconnected sets. After

a certain operation on the space, these two sets become connected as a by-product of the

operator. Usually one of the by-products of the operator is the creation of a new connected

set which is connected to the two previously disconnected sets, which now form a connected

set. This phenomena can be seen in Figure 4.1, illustrating leakage between the ball and the

seal where actually their are two different objects but appear as one connected set.

Figure 4.1: Leakage illustrated between the seal and the ball.

In image processing leakage can result from various occurrences. A good philosophy of why

leakage occur in images is given by O’Callaghan and Bull [28]. According to them leakage

occurs due to the existence of weak points in the gradient of object boundaries. These weak

boundaries does not stop the segments from flowing into the background or other significant

partitions.

Leakage is also interpreted as over segmentation. Li and Wilson [29] proposed the usage

of multi-resolution techniques in conjunction with Markov random processes when doing

texture segmentation to stop leakage. Image segmentation with partitioning of connected

components based on openings is prone to over segmentation. A proposed solution is to treat

all singletons generated by the operator as elements from larger connected components [30].

The larger connected components refer to connectivity classes in higher dimensional space

which are extensions of the normally defined connectivity classes in mathematical morpho-

logy [31].

Other attempts at creating solutions to the leakage problem are by redefining existing con-

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

52

Chapter 4 Pulse Reformation

nectivities. Salembier and Oliveras [32] defined a pseudo-connectivity which either increases

or decreases the number of neighbourhood relations which allow them to solve leakage in

certain cases. A more successful adaptation of the connectivity definition was done by Tza-

festas and Maragos [33] by using a multiscale connectivity and a generalized connectivity

measure with which they determine to what degree the leaking set must be connected. Some

second generation connectivity was also defined for general leakage reduction on any filter

that operate on connected components called connected filters [34]. Another attempt at re-

ducing leakage is the definition of stopping criteria in morphological opening and opening by

reconstruction [35].

Leakage exist in other image processing spaces such as the active-contour model where pos-

sible reduction in leakage is to estimate the position of possible edges in the image by minimal

weighted local variance [36]. Graham et al [37] used adaptive parameters within the active-

contour model to possibly stop estimated leakage.

Leakage can then more formally be defined as:

Definition 26. Let Φ : Zd → Zd be an arbitrary operator. If there exists{
Xi ∈ Zd, i ∈ I,Xi ∈ C

}
with ∩i∈IXi = ∅ such that ∪i∈IΦ (Xi) ∈ C then Φ is said to have

caused leakage.

An operator Φ may of course satisfy Definition 26 in different mannerisms. Consider Fig-

ure 4.2 for images.

X1 X2

Φ(X1)
Φ(X2)

(a)

X1

X2

Φ(X1)

Φ(X2)

(b)

Figure 4.2: Different kinds of leakage.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

53

Chapter 4 Pulse Reformation

In Figure 4.2a the leakage is clearly undesired as X1 and X2 should be two separate objects.

However, in Figure 4.2b the operator has likely connected two objects which should be one

in cases such when smoothing is applied to an image. We thus define a measure of leakage

as follows.

Definition 27. The strength of a leakage is measured as card(AStrength) where:

AStrength = {{xi, xj} : {xi, xj} ∈ C, xi ∈ Φ(Xi), xj ∈ Φ(Xj), i 6= j, ij ∈ I} (4.1)

The larger the strength of the leakage the larger the undesired effect is on the image. It is

clear than in the case of a good smoother desired leakage will occur.

(a) (b)

(c) (d)

(e) Combined objects

Figure 4.3: Synthetic Objects in an image

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

54

Chapter 4 Pulse Reformation

A synthetic example can be created to clearly demonstrate the leakage problem. We use four

separate objects with varying internal intensities shown in Figure 4.3 and combine them into

one image. We would like to extract the four objects.

To extract the different objects we can use connected components to indicate individual

objects. A set consisting of connected components will then denote one object. Two simplistic

methods can be used. The first is the use of thresholding. The synthetic image can be

thresholded at three different levels as the image only consist of four discrete grey levels. The

thresholded images are shown in Figure 4.4.

(a) (b)

(c)

Figure 4.4: Synthetic image thresholded at 3 different levels.

In Figure 4.4 it is clear that no threshold will yield 4 connected sets which will cohere with

the four original objects. Another way, is to use the LULU scale-space and threshold different

pulse sizes. We choose four different pulse ranges which are shown in Figure 4.5.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

55

Chapter 4 Pulse Reformation

(a) 0 ≤ n < 400 (b) 400 ≤ n < 3600

(c) 3600 ≤ n < 6400 (d) 6400 ≤ n < 21800

Figure 4.5: Synthetic images thresholded for different pulse ranges.

Even by using the DPT scale space it is not possible to extract four connected components

that will yield the required connected sets. In Figure 4.4 and Figure 4.5 leakage is evident in

most of the thresholded images. Although technically there exist many other ways to possibly

extract the objects, this problem was only used to illustrate leakage in simple connected

component and DPT framework. In the next section we describe a proposed method to

eliminate leakage within the DPT framework.

4.2 THE PROPOSED FRAMEWORK

Leakage occurs in the Discrete Pulse Transform domain. To explain the proposed framework

we can visualise the leakage problem as a box of brittle magnets. The task is to successfully

remove all the magnets from the box and place the individuals in a row. The problem then

lies in identifying individual magnets. Two or more individual magnets can be stuck together

which must be pulled apart. However an individual magnet can only be separated by breaking

it. By looking at structural cues we can separate these magnets, such as if two balls are stuck

together they most probably must be separated. If two cubes, unaligned, are stuck together

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

56

Chapter 4 Pulse Reformation

we can assume they must be separate. If a sphere and a pyramid are stuck together they

must probably be separated. We can thus continue in this fashion for all kinds of known

shapes and say with high probability that these different structures do not fit together.

The DPT extracts pulses at various scales (refer to Section 2.2.3). In Figure 4.6 we demon-

strate the decomposition of a simple image into its various pulses.

(a) DPT input image (b) DPT output pulse

Figure 4.6: A DPT example decomposition. The pulses do not show any variation in height.

The difference between the various luminosities in (a) are identical.

The scales from the DPT can be stacked from largest to smallest scale forming the LULU

scale-space. A visual demonstration is shown in Figure 4.7. The pulses in Figure 4.7 are said

to form a stack defined by the scale-space neighbourhood relation given below in Definition 28

and Definition 29.

Definition 28. Two arbitrary DPT pulses, ψns2 and ψms1 with n < m, are called scale-

space neighbours if ψns2 ⊂ ψms1 and for any other DPT pulse ψps3, n < p < m we have

ψps3 ∩ ψns2 = ∅.

Where the strength of the scale-space neighbour relation is measured as the inverse of the

difference in cardinality of the two pulses φns2 and φms1 , naturally 1
m−n .

Definition 29. A collection of DPT pulses are said to form a stack if they are each scale-

space neighbours of at least one other pulse in the collection.

In Figure 4.7 the pulses illustrated form a stack. The Pulse Reformation algorithm will obtain

the true pulses Rns21 , Rns22 and Rns23 .

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

57

Chapter 4 Pulse Reformation

ψms1 → Rms1

Rns23

ψns2 =
3⋃
i=1
Rns2i

Rns21
Rns22

Figure 4.7: A DPT pulses stacked in different scale

By using this definition we can say that every pulse consists of regions ψns =
p⋃
i=1
Rnsk . This

is demonstrated in Figure 4.8. Assume that Figure 4.8 is an image of two separate balls,

thus two individual objects. Inspecting Figure 4.8, only one object is observed, the full pulse

ψns2 . The two objects are linked by a third region. The third object is then referred to as a

leakage region, which on its own can possibly also be an object or only noise.

Leakage

ψns2 =
3⋃
i=1
Rns2i

Rns21
Rns22 Rns23

Figure 4.8: A pulse extracted by the DPT showing the possible regions which the pulse

consists of.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

58

Chapter 4 Pulse Reformation

If we want to eliminate leakage we need to estimate the true regions Rns21 , Rns22 and

Rns23 .

Although we have defined leakage more formally above it is largely a subjective matter in

the literature. We aim to, in the LULU scale-space, objectively eliminate leakage. In case of

the magnet box we aim at finding all the rigid shapes with the most probable shape having

the least amount of edges. We can then objectively eliminate leakage.

The proposed framework will be developed using circular probes, although other shapes can

also used within the framework. The LULU scale-space will be transformed in such a way

that circular objects will form the strongest joined stack. A joined stack is formed when a

group of scale-space neighbours forming a stack also cohere to an additional requirement. The

additional requirement involves a principle point R̃nsk for each region Rnsk . For development

of the framework we will define our aim as the identification of circular objects in the scale-

space.

The principle point needs to somehow capture the core structure of the region. In case of

circular objects, the center point at the arithmetic mean in terms of the x-position and the

y-position, is always surrounded by edges and lies within itself. By using this reasoning we

can assume that the center of a circle will capture the core purpose of circular objects. The

circular object can also be reconstructed from the principle point by iteratively increasing

the radius of the circle centred at the principle point. In general if using any shaped probe,

the principle point R̃nsk should be:

• Scale Invariant

• Translation invariant

• Rotation invariant

• Affine invariant

A few examples are shown in Figure 4.9. The red dot shows the principle point and the

dark blue shows elements part of the geometrical set. The circle’s principle point has been

discussed above. The principle point of the doughnut shape in Figure 4.9 can be defined as

the center of a circle which is not contained within the set but is surrounded by a continuous

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

59

Chapter 4 Pulse Reformation

edge. The principle point of a concave mirror shape should lie at the focal point of the

concave side of the set. The principle point of a triangle should lie in the middle of the

shortest edge. From all of these principle points the objects can be reconstructed by knowing

one extra parameter such as the radius or distance of a corner or edge in the set.

Figure 4.9: Examples of possible principle points denoted by the red dot.

To estimate a region’s principle point, iteratively erode the pulse until the next erosion yields

an empty set. Figure 4.10 illustrates this. The last non-empty erosion will represent the

principle point. The region can then be reconstructed by dilating the principle point until

the defined energy function Ens below is minimised.

Original
After 1st erosion
After 2nd erosion
After 3rd erosion
After 4th erosion

ψns

R̃ns2

R̃ns1

Figure 4.10: Example of finding the principle points in a pulse.

Each region Rnsk will have a principle point. Therefore each pulse can contain multiple

principle points. The regions must adhere to the boundary conditions of the DPT scale-

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

60

Chapter 4 Pulse Reformation

space thus:

Rnsk = (Rnsk ∩ ψns) /
⋃
k 6=i

(Rnsi). (4.2)

The regions within a pulse can only consist of unique elements thus every element in a pulse

can only be assigned to one region. From the principle point each region is reconstructed

by minimizing the energy function Ens. For the circular probes we can define an energy

function:

Ens =
p∑

k=1

κ(sk)∑
t=1

card{ζ(t− 1, R̃nsk)}
|card{ζ(t, R̃nsk)} − card{ζ(t− 1, R̃nsk)}|

(4.3)

where ζ(t, R̃nsk) denotes a set containing all the elements within a circle of radius t centred

at R̃nsk , the tth dilation of the circular set centred at the principle point, while staying within

the boundary of the pulse; where p is the number of regions; and κ(sk) the appropriate t

number of dilations where t is a geometrical parameter. The energy function determines

the best circles centred at the principle points associating each pulse element to a region,

restricted to the boundary conditions in Equation 4.2.

We have created regions within each pulse and founded a principle point for each region. Next

we need to relate regions at different scales to one another. Each region has the apparent same

defining principle point which should then be positioned at a known position between scales.

Specifically for circular objects all the principle points should be at the same geometrical

position. We can thus say that two or more regions form a joined stack if the principle points

are joined and the regions form a stack defined in Definition 29. The definition of joined

principle points is given in Definition 30 where the definition of a joined stack is given in

Definition 31

Definition 30. Two scale-space neighbours ψns and ψms with n < m containing regions

Rnsj and Rmsi with geometrical parameters rj, ri and principle points R̃nsj , R̃msi. The

principle points are said to be joined if J(R̃nsj , R̃msi) < ε = N (R̃nsj , R̃msi , ri, rj) where J is

the joining function and N is a noise function.

The joining function J provides a relation between the two principle points and can be

any type of polygon or line. The noise function N provides a measure of how similar the

two regions are based on the expected relative position of the principle points. For the

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

61

Chapter 4 Pulse Reformation

circular case we define rj = κ(sj), ri = κ(si) and J(R̃nsj , R̃msi) = ‖R̃nsj , R̃msi‖ with ‖·, ·‖

giving the euclidean distance between the two points. We also define our noise function

N (R̃nsj , R̃msi , κ(si), κ(sj)) = c ∗ (card{Rnsi}/card{Rmsj}) ∗ (κ(si)/κ(sj)).

Definition 31. Two regions Rnsj and Rmsi with n < m form a joined stack if their principle

points are joined and Rnsj ⊆ Rmsi.

This definition is visually shown in Figure 4.11 where J(R̃nsj , R̃msi) = a. The ε can be

interpreted as a noise canceller within the LULU scale-space. If a perfect scale-space was

constructed all the pulses forming joinings belong to the same object and will have aligned

principle points. In Figure 4.11 the large coloured dots denote the principle point in each

region.

ri

Rmsi

Rnsj
rja

a

Figure 4.11: The joining of two arbitrary pulses

The strength of the joining of the two regions can be measured as the strength of a scale-

space neighbour. The smaller the difference in cardinality of the two regions, the stronger

the joining becomes. An additional strength measure can be added such as the variation of

the principle points from the expected distance.

We have now shown that we can estimate regions from pulses. We estimate a region from

the first estimated principle point and then re-estimate the principle point using the region.

This process can be repeated until the principle point moves less than the noise function N

and Ens is minimized.

The estimation of the regions within pulses can be represented by a four corner model. The

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

62

Chapter 4 Pulse Reformation

four nodes are the Principle Point node, the Pulse node, the Joining node and the Regions

node. The nodes are shown in Figure 4.12. Each node’s name is self-evident of the represented

data at the node. The arrows present the process that needs to be executed to transform one

set of data to another.

Figure 4.12: Region based Pulse Reformation Model.

The Pulse node can be used to estimate the Principle Points node. The Principle Points node

is used to estimate the Regions and to determine joining with other scale-space neighbour

regions. The Joining node can be used to also estimate the Regions node. The Regions node

can estimate the Principle Points as well as the Pulse node. This whole process follows an

iterative nature.

To create a more robust estimation of the regions we need to estimate each region by including

the structure of the complete LULU scale-space. The Pulse Reformation framework uses an

iterative approach to first estimate an initial principle point which is used to estimate the

regions within each pulse. The principle points that form a joined stack can be used to

adjust principle points and re-estimate the regions until all energy functions Ens and all

joining functions J(·) have been minimized. This combined iterative model is represented in

Figure 4.13.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

63

Chapter 4 Pulse Reformation

Figure 4.13: Region based Pulse Reformation Model.

After the Pulse Reformation framework has been applied the LULU scale-space consists of

various joined stacks. Each joined stack will have a joined stack strength which is calculated

by the sum of the strength of the scale-space neighbours within the joined stack divided by

the number of regions contained in the joined stack. The strongest joined stacks will then

present the most salient objects.

To be able to use the Pulse Reformation framework four main things need to be defined:

1. The Principle Point Estimator R̃nsk .

2. The Energy function Ens which needs to be minimized.

3. The joining function J(·).

4. The noise function or principle point alignment ε = f(·).

Each of these functions have already been defined for the case of circular objects. We use the

Pulse Reformation framework to develop Algorithm 15 for circular objects.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

64

Chapter 4 Pulse Reformation

Algorithm 15 Pulse Reformation for circular object
1: Estimate principle points and regions for each pulse in the DPT scale-space.

2: repeat

3: from the smallest region upto the largest region.

4: if region’s principle point forms a joining then

5: Move the principle point such that J(·) = 0.

6: if the energy function is not reduced then

7: Move the principle point back.

8: if region is joined to a region on a larger scale then

9: Recalculate the energy function.

10: - Restrict current region to region on larger scale.

11: else

12: for every principle point in pulse of current region do

13: Move the principle point towards another principle point.

14: - Chosen principle points must be part of a scale-space neighbour.

15: - Move distance is equal to the equivalent noise function.

16: if the energy function is not reduced then

17: Move principle point back.

18: end for

19: endif

20: until no principle points can move.

We can now apply the Pulse Reformation framework to the synthetic image created in Fig-

ure 4.3. In Figure 4.14 the output of the framework is shown. Four different objects were

extracted each coinciding with a synthetic object. Each extracted object shows protrusion

where leakage occurred. This is where the framework has an uncertainty as to which principle

point the region elements belong.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

65

Chapter 4 Pulse Reformation

(a) (b)

(c) (d)

Figure 4.14: The Pulse Reformation of the synthetic image.

The extracted objects can easily be thresholded just above zero to provide four discrete con-

nected sets which then coincide with the original objects. The Pulse Reformation framework

can now be tested on a real world image.

4.3 EXPERIMENTAL EVALUATION

4.3.1 Leakage reduction

The results of this section are published in the paper [6].

The Pulse Reformation framework will be applied to the LULU scale-space and the strongest

joined stacks will be extracted. The experimental image to be used is shown in Figure 4.15.

It contains 6 distinct blood cells. A blood cell image has a large amount of object leakage,

such that certain blood cells may touch one another.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

66

Chapter 4 Pulse Reformation

Figure 4.15: Test Image of blood cells.

The 6 strongest objects extracted with the Pulse Reformation algorithm is shown in Fig-

ure 4.16 including the original image. As we can see all 6 blood cells are extracted as

separate objects.

(a)

(b) (c) (d)

(e) (f) (g)

Figure 4.16: The Pulse Reformation of a blood cell image.

Before we discuss the results of the Pulse Reformation framework we can compare the res-

ults to another technique which is used to combat leakage in an equivalent case. The λ-

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

67

Chapter 4 Pulse Reformation

connected components method [38] will be used in conjunction with a thresholding method,

namely Otsu’s method [39]. The λ-connected components are those in which the center of

a disk structuring element of radius λ can be moved along a continuous path throughout

the connected component such that the entire disk stays within the domain of the connected

component. The results of the λ-connected components are shown in Figure 4.17.

(a) λ = 1 (b) λ = 1 Otsu (c) λ = 4 (d) λ = 4 Otsu

(e) λ = 6 (f) λ = 6 Otsu (g) λ = 9 (h) λ = 9 Otsu

Figure 4.17: λ-connected components with and without thresholding.

As we can see only λ = 1 with thresholding almost provides six discrete connected sets

which coincide with the 6 blood cells. Figure 4.17 (c)-(h) don’t extract any meaningful

objects.

As in the tested synthetic image the blood cells in Figure 4.16 show the effect of leakage

resolved. The resulting protrusions and cavities indicate positions of leakage. In some of the

objects the cavities are severe.

The implementation of the Pulse Reformation framework can be implemented with more

complicated energy functions, noise functions and shape probes to increase accuracy. The

experiment does supply valid information that the new proposed framework, Pulse Reform-

ation, does carry merit and can be implemented to combat leakage.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

68

Chapter 4 Pulse Reformation

4.3.2 Object Detection

The Pulse Reformation framework can also be used for spot detection. We can not only

extract the strongest joined stacks but only the joined stack who’s bottom region or top

region is within a certain range. For spot detection the bottom region of the joined stack

must be smaller or equal to the largest expected spot.

Fixed cell imaging of individual mRNA molecules is accomplished by using 48 or more singly

labelled oligonucleotide probes [40]. By utilizing fluorescent microscopy the mRNA becomes

computationally identifiable fluorescent spots. There can be hundreds of mRNA in a cell.

An effective spot detector and spot counter is thus required.

A current spot detector exists which uses thresholding of a difference of two Gaussians [40].

The Difference of Gaussian (DoG) is a method where the DoG image is created by taking the

difference of two images where each image was convolved with a different Gaussian function.

The DoG is known to be important in biological visual processing [41]. The DoG spot detector

has three different parameters which can be modified: the range of the Gaussian window,

the variance of the Gaussian and the specific threshold. In depth the method actually has

5 parameters as both the Gaussians must be selected, each with a window and a variance.

Usually one Gaussian is assumed to be the original image.

Our spot detector will only use the joined stacks with a bottom pulse cardinality smaller

than a set size. These joined stacks are then thresholded by the joined stack strength to

remove the very weak joined stacks. The Pulse Reformation spot detector then only uses 2

parameters: the expected size of the objects and the threshold value.

For the experiment we created our own ground truth. The ground truth was not evaluated

by an expert in mRNA thus we can not measure the algorithms true performance but only

the relative performance. The DoG spot detector was confirmed to be an accurate detector

but was not quantified [40]. The two test images and their ground truths are shown in

Figure 4.18.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

69

Chapter 4 Pulse Reformation

(a) Images of mRNA [40] (b) Ground truths: Detected mRNA

Figure 4.18: Fluorescent microscopy images of mRNA.

The two algorithms will be evaluated by using precision-recall graphs discussed in Sec-

tion 5.5.2. The precision and recall is calculated with:

Precision = tp

tp+ fp
(4.4)

Recall = tp

tp+ fn
(4.5)

where the f -measure is calculated with:

F -measure = 2 · Precision · RecallPrecision + Recall . (4.6)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

70

Chapter 4 Pulse Reformation

The true positives, tp, are measured by taking the number of correctly detected spots. Thus

the detected spots that coincide with the ground truth. The false positives, fp, are measured

by all the spots that do not coincide with ground truth. If two spots are detected close

together and both coincide with one spot on the ground truth, one is taken as correct and

the other is then a false positive. The false negatives, fn, are calculated as all the spots in

the ground truth that were not detected by the spot detection algorithm.

(a) Test Image

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Recall

Pr
ec
isi
on

f = 0.964 DoG
f = 0.956 DPT

(b) Test Results

Figure 4.19: The first Precision-Recall graph for the DPT and DoG spot detectors.

In Figure 4.19(b) and Figure 4.20(b) the f -measures are plotted for increasing threshold

values. The maximum f -measures are indicated on the graphs.

Both the algorithms perform very well. The Pulse Reformation spot detector using the DPT

is only slightly less accurate than the DoG method. Taking into account that the DPT

method has 3 less parameters to tune than the DoG method and is less sensitive to its

parameters, the DPT method is superior to the DoG method. The sensitivity of the DoG

method to the chosen variance parameter is very high, as the chosen variance propagates to

each pixel in the image. Choosing the correct variance for a Gaussian function is also not a

trivial matter. The DPT method is not very sensitive to the expected size of the spot as long

as the expected size is greater than the actual size of the spot. The expected size of the spot

is easily measured by looking at the number of pixels within the spot.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

71

Chapter 4 Pulse Reformation

(a) Test Image

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Recall
Pr

ec
isi
on

f = 0.909 DoG
f = 0.893 DPT

(b) Test Results

Figure 4.20: The second Precision-Recall graph for the DPT and DoG spot detectors.

4.4 CONCLUSION

We have provided an effective algorithm to deal with leakage in images and have applied the

technique to salient object detection and a more specific application in spot detection. In

the next chapter we investigate the potential of the LULU scale-space for image segmenta-

tion.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

72

CHAPTER 5

IMAGE SEGMENTATION

The division of an image into meaningful regions, also known as image segmentation is an

essential step in image analysis. Image segmentation is the independent partitioning of an

image into disjoint regions. These regions are visually different, homogeneous and meaningful

with respect to certain specific characteristics. These characteristics or properties enable

image analysis and can be grey levels, colour, texture or any other specific properties.

The Discrete Pulse Transform is a mathematical tool. Before much time can be invested

in developing the mathematical tool for a specific purpose the tool must be able to show

potential in the field. This chapter is aimed at determining whether the DPT has any

potential in image segmentation.

5.1 SEGMENTATION TECHNIQUES

Image segmentation can be accomplished in various ways. A basic property accompanying

all image segmentation techniques can be defined [42].

Definition 32. Let L be a lattice. An image f(I) ⊂ L with grid I ⊂ Z2 is successfully

segmented if I is divided into n unique subsets Si ⊂ I for i = 1, 2, ..., n such that I =
⋃n
i=1 Si

and Si ∩ Sj = ∅ for i 6= j. A group of subsets with specific characteristics form a class.

For an image f segmented as P1(f) = {S1i}i or P2(f) = {S2j}j for i = 1, 2, ..., n and

j = 1, 2, ...,m where P1 and P2 are two different segmentation algorithms, segment S1i is

more coarse than segment S2j if S2j ⊂ S1i. A coarse segment can also be referred to as a

segment at larger scale thus a finer segment is defined as a segment on a smaller scale.

Chapter 5 Image Segmentation

Within the literature we can divide image segmentation into six main categories namely;

threshold based segmentations, histogram based segmentations, edge detection based seg-

mentation, region based segmentation, watershed transformation segmentation and graph

partitioning segmentation.

Threshold based segmentation is one of the fundamental image segmentation techniques. The

techniques usually have two different classes, namely the foreground and the background. A

certain grey level is chosen where all pixels above the specific level are classified as foreground

and all the others are classified as background. More complex threshold segmentation tech-

niques can be created such as adaptive thresholding and mutli-level thresholding to obtain

more classes [43].

Histogram-based techniques are focused on estimating different probability distributions

within the histograms formed from color channels or grey scale levels. These estimated

distributions are used to assign classes and segment the image [44].

A common approach to segmentation is using edge detection algorithms to create separate

regions. The first and second order derivatives of an image are usually used for edge detection,

which is followed with thresholding and algorithms that link broken edges. Edge detection

algorithms such as the Canny edge detector [45] and Sobel edge detector [46] have had wide

application in segmentation algorithms [47].

Region growing is also known as pixel based image segmentation. It is highly dependent on

the selection of initial seeding points which are used to iteratively decide whether the pixel

neighbours of a seed point should form part of the class [48]. This type of segmentation is

good for interactive image segmentation [49]. Region growing also includes techniques which

arbitrarily split an image into small regions and then recombine and split the regions based

on specific criteria [50].

The watershed transformation is a well established image segmentation method which uses the

concept of a topographic relief where basins are filled with water and each basin determines

the different class. The typographic domain can be determined by intensity levels or grey

levels [51]. A more advanced watershed concept is called active contour models. The active

contour model uses an energy function defined on the typographic layout of the image. The

energy function is minimized in accordance to the contour defined in the image [52].

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

74

Chapter 5 Image Segmentation

The last category is graph partitioning segmentation. An image is modelled as a weighted

undirected graph where each pixel is a node in a graph and the connectivity is presented by

the edges between neighbouring pixels. The weights of the edges in the graph are calculated

by using a similarity measure between pixels. A common method to partition the graph is to

do a minimum cut of the graph [53]. A minimum graph cut is realized by removing the edges

that give the lowest sum of weights to separate the graph into two new graphs. Each new

graph can be cut an arbitrary number of times to create more refined segmentations.

5.2 QUANTITATIVE EVALUATION METHOD

The evaluation of image processing tasks in a quantitative fashion are very important. It is

necessary to be able to compare different concepts and algorithms and build on the most suc-

cessful concepts. There are mainly two different philosophies in evaluating image processing

tasks. One such philosophy is evaluating machine vision tasks in context of a particular task.

The latter is in evaluating the algorithms with regards to a pre-defined ground truth with

suitable metrics.

Evaluating an algorithm with regard to a specific task can be useful when tailoring a specific

solution. Newly developed algorithms can be benchmarked on the task but the performance

will be unknown for any other task. A philosophy for task specific evaluation is given by Borra

and Sarkar [54]. They define performance measures for grouping objects based on object

recognition performed in context of constrained search and indexing. Other more general

performance measures for image segmentation focussing on task specific performance are the

Probabilistic Rand Index (PRI) [55] and Variation Of Information (VOI) measure [56].

Image segmentation techniques can be evaluated by either detected contours or by clustered

sets of pixels. Detected contours can be converted to pixel clusters by using pixel information

enclosed by the contour from the original image and clustered pixels can be converted to

contours. If all contours are detected correctly the corresponding pixels in the original image

within each contour can be clustered to classify each region enclosed by a contour [57]. If

contours extracted have different confidence intervals, clusters of different importance can be

extracted and thus segmentations at different scales can be achieved.

Figure 5.1 shows a synthetic example of image segmentation using contour detection and clus-

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

75

Chapter 5 Image Segmentation

tering at different segmentation scales. Figure 5.1b is a high scale segmentation and you can

see every piece of information is segmented. Figure 5.1c is a medium scale segmentation show-

ing you can see foreground, two different mid-grounds and a background. Figure 5.1d shows a

low scale segmentation with only a background and a foreground. This example clearly shows

the interchangeability of clustering and contour detection. After contour detection each set

encircled can be classified to produce a clustered version of image segmentation.

(a) Input Image (b) High scale segmentation

(c) Medium scale segmentation (d) Low scale segmentation

Figure 5.1: Segmentation at different scales with contour detection and clustering.

Contour detection provides the core of image segmentation via preliminary image division. An

evaluation method testing contour detection as a fundamental property of image segmentation

would then help determine the potential of DPT in image segmentation. The use of precision-

recall graphs with F -measures introduced by David et al. [58] can be used. The Berkley

Segmentation Database (BSD) [26] is used for evaluating image segmentation algorithms

utilizing the precision-recall graphs as introduced by David et al.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

76

Chapter 5 Image Segmentation

5.2.1 The Berkley Segmentation Database

The Berkley Segmentation Database [26] was originally developed to gather statistics on

natural images and later to support the evaluation of image segmentation algorithms. The

dataset consists of 300 color images with constant size of 481 x 321 pixels. The set is divided

into 200 training images and 100 testing images on which the image segmentation algorithms

performance can be measured. Some sample images can be seen in Figure 5.2.

Figure 5.2: Berkley Segmentation Database sample images

The ground truth for image segmentation in this case is in the form of boundaries created

from between 4 to 8 human segmentations. The human segmentations were acquired by

a human candidate using a computer program which allows the user to trace boundaries.

The human candidates were mostly undergraduates presented with random images from the

database with no prior knowledge of the final outcome. The segmentations of the same

image from different candidates were combined into a confidence map. A confidence map for

a specific natural image is created by adding every human segmentation to a specific image

and normalizing it to the number of images added. White will present the highest confidence

and black will be the lowest confidence in the gray scale image. An example of a created

ground truth with its segmentation is shown in Figure 5.3.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

77

Chapter 5 Image Segmentation

(a) Original image

(b) Human segmented images

(c) Confidence map

Figure 5.3: Creation of a ground truth image with human segmentations for the BSD

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

78

Chapter 5 Image Segmentation

5.2.2 Evaluation Metrics

A way to evaluate a contour detection is to measure the mutual information in a specific

segment S of the ground truth segmentation and a specific segment Ŝ of the algorithm

segmentation [59].

To calculate the mutual information the ground truth and algorithm output can be modelled

as a binary map such that Sx ∈ {0, 1} and Ŝy ∈ {0, 1} where Sx ∈ S, Ŝy ∈ Ŝ. The joint

probability distribution is given by p(x, y) = P (Sx = x, Ŝy = y) and the mutual information

is given by

I(S, Ŝ) =
∑
y

∑
x

p(x, y) log p(x, y)
p(x)p(y) . (5.1)

The mutual information can also be calculated for a segmentation with a confidence map,

that is Ŝy ∈ [0, 1]. The joint distribution p(x, y) can be calculated by using the confidence

interval to fill the bins. As an example, in the binary case, the number of elements which are

0 in S and 1 in Ŝ divided by the total number of elements in S will give p(0, 1). This can be

repeated for p(0, 0), p(1, 0) and p(1, 1), by using joint distribution values p(x) and p(y) can

be calculated. This measure is not very intuitive and it does not provide information about

the quality of segmentation. It also does not account for small segmentation shifts within the

image thus other measures are required.

The variation of image segmentation can be seen as an ill-posed problem. Image segmentation

is ill-posed as there exists no unique solution and changing of initial conditions does not

necessarily change the segmented image thus an image segmentation algorithm needs to be

evaluated in different ways. In accordance with the BSD a strong regional based measure

(GCE and LCE metric) and a strong statistical method (precision-recall graphs) will be used

and is discussed below [26].

5.2.2.1 The GCE and LCE metric

Image segmentation as an ill-posed problem does seem to be solved consistently by human

segmentation but with varying detail. The scale at which an image is observed differs for each

human observer but the main boundaries for images stay the same. Martin et al. [26] use

this consistency to propose two metrics to evaluate segmentations. The metrics are designed

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

79

Chapter 5 Image Segmentation

to be tolerant to scale changes and thus manage region refinement at different scales. Let

S1 = {S1i} be the ground truth segmentation and S2 = {S2j} be the segmentation produced

by the algorithm. To measure the consistency, a measure for each pixel pk is required and

can be defined as:

E(S1, S2, pk) = |R(S1, pk)\R(S2, pk)|
|R(S1, pk)|

(5.2)

where R(S, pk) is the segmentation set Sm ∈ S which contains the pixel pk. The equation

represents operations on sets thus \ is set differences and | · | is the cardinality of the set

within. Evaluating the measure one can see that when all the pixels in S1 are contained

in S2 the measure outputs 0. The measure is not symmetrical thus for each pixel, both

E(S1, S2, pk) and E(S2, S1, pk) must be calculated.

To get useful information regarding the segments, a summation of the errors within the

segments must be calculated. Assuming that either all segments S2j in S2 are courser refine-

ments of all segments in S1 or vice versa the Global Consistency Error (GCE) can be defined

as

GCE(S1, S2) = 1
n

min
{∑

k

E(S1, S2, pk),
∑
k

E(S2, S1, pk)
}

(5.3)

where n is the total number of pixels. It’s possible that refinements can occur in both

directions thus another measure called the Local Consistency Error (LCE) is given as

LCE(S1, S2) = 1
n

∑
k

min {E(S1, S2, pk), E(S2, S1, pk)}. (5.4)

The GCE looks at the minimum consistency measured over the whole segment where the

LCE does not make the same assumption as the GCE and chooses the minimum consistency

per pixel thus calculate the minimum possible consistency of the segmentation. These two

measures can be shown to be low for human segmentations of the same image and high

between random segmentations of the same image. It is also evident that LCE ≤ GCE.

These two measures can be further investigated by testing them at two extremes, over seg-

mentation and no segmentation. Over segmentation is obtained when each pixel in an image

receives its own label. This will result in LCE and GCE being equal to zero. No segmentation

can be evaluated when all pixels in the image have the same label which will also result in

LCE and GCE equal to zero. A measure which permit refinement to such a degree will not

suffice for a benchmark.

The LCE metric can be made more strict by penalizing dissimilar segmentations with a

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

80

Chapter 5 Image Segmentation

region overlap. This improved LCE is called the Bidirectional Consistency Error (BCE) and

is defined as

BCE(S1, S2) = 1
n

∑
k

max {E(S1, S2, pk), E(S2, S1, pk)}. (5.5)

The BCE can now be seen as taking the maximum consistency of each pixel and will penalize

a large amount of dissimilarity. The segmentation of an image is subjective to the viewer

thus if multiple ground truths {S(b)
1 } exist for an image, each created segment S2j must be

evaluated against each ground truth segment, thus the BCE can be extended to

B̃CE(S2) = 1
n

∑
k

min
{S(b)

1 }

{
max

{
E(S2, S

(b)
1 , pk), E(S(b)

1 , S2, pk)
}}
. (5.6)

The equation above shows that the sum of any segment in all the ground truths producing the

minimum consistency is taken while still compensating for refinements. The B̃CE measure

captures the consistency of the complete image segmentation. The measure can thus be used

as a benchmark metric.

5.2.2.2 Precision and Recall Curves

Precision-Recall graphs and Receiver Operating Characteristic (ROC) graphs are stand-

ard evaluation methods in information retrieval. The Precision-Recall Graphs have two

axes called precision and recall where the ROC graphs have two axes called fallout and

recall [60].

Precision, the positive prediction value, is the percentage of relevant detected units which

are correct, thus the ratio of correctly detected relevant units to the total number of relevant

detected units. Recall, the true positive rate, is the percentage of how many of the relevant

units that exist have been detected, thus the ratio of correctly detected relevant units to the

true existing number of relevant units. Fallout, the false positive rate, is the percentage of

non-relevant units which are correct, thus the ratio of correctly detected non-relevant units

to the total number of detected units. Relevant pixels are the pixels which the algorithm is

aiming to detect.

precision = correctly detected relevant units
total number of retrieved units (5.7)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

81

Chapter 5 Image Segmentation

recall = correctly detected relevant units
total number of existing relevant units (5.8)

These three performance measures can be evaluated in terms of boundary evaluation. Pre-

cision gives the percentage of boundary pixels in the segmentation that correspond to the

boundary pixels in the ground truth. Recall gives the percentage of boundary pixels in

the ground truth that were successfully detected. Fallout gives the percentage of pixels of

non-boundary pixels in the segmentation that correspond to the non-boundary pixels in the

ground truth.

As fallout uses all pixels in the image it is not suitable for segmentation evaluation as it’s

heavily dependant on the image size. The dependency of fallout on the image size can be

explained by using boundary line thickness. If we increase the image size, the boundary will

remain a thickness of 1 pixel but detection algorithms keep detecting a proportionate thick

line. Increasing the image width proportional by n pixels, the total number of pixels in the

image increases by n2 but as the boundary has a thickness of 1 pixel the number of true

positives will grow by a factor of n where the number of true negatives grow by n2. By

using this argument fallout will decline with the rate 1/n. Precision on the other hand does

not have this problem as it is normalized. ROC graphs can thus not be used for boundary

evaluation and image segmentation as fallout is not suitable.

To get a better understanding of the precision-recall metrics we can use a binary classifier.

A classification model using only two classes, thus a binary classifier, can assign two labels,

positive or negative. There are four possible outcomes. If the classifier labelled a positive

sample as positive it is called a true positive (tp). If a classifier labelled a negative sample as

positive it is called a false positive (fp). If a classifier labelled a positive sample as negative

it is called a false negative (fn). If a classifier labelled a negative sample as negative it is

called a true negative (tn). Using these labelling methods we can readily define recall and

precision [61]

Precision = tp

tp+ fp
, (5.9)

Recall = tp

tp+ fn
. (5.10)

It is difficult to evaluate two measures simultaneously thus we can use the harmonic mean

of precision and recall. It is traditionally known as the balanced f -measure or the f1 meas-

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

82

Chapter 5 Image Segmentation

ure [61]

f -measure = 2 · Precision · RecallPrecision + Recall . (5.11)

To calculate precision and recall graphs for a segmented image we need to be able to match

the algorithm generated segmentation and the ground truth. To achieve this we need to

match each edge pixel to an edge pixel in the ground truth image. Each boundary pixel pk in

the segmented image has a position (xk, yk) within the image plane. Each pixel also has an

orientation θk measured with regards to the positive x-axis. The orientation θk is given by

the direction of the normal vector to the boundary line at the position of pixel pk. A pixel

pk can then be described by (xk, yk, θk).

To match the boundary pixels a bipartite graph can be set up by creating two disjoint sets,

the pixels of the ground truth S1 and the pixels of the segmented image S2. Each pixel pk1

is then connected with an edge with weight wpk1→pk2
to every pixel pk2 . The weight function

provides a cost function to match two pixels, by measuring the similarity of the two pixels in

the segmentation and ground truth respectively,

wpk1→pk2
=
√

(xk1 − xk2)2 + (yk1 − yk2)2 + α
|θk1 − θk2 |

π/2 . (5.12)

The cost function uses the euclidean distance and a scaled orientation function. The orient-

ation function is added to aid in the matching of edges. The scaling parameter α is set to

α = 1/dmax where dmax is 0.01 times the number of pixels in the diagonal of the image [58].

This weight function allows the construction of a matched bipartite graph between all pixels

in the two segmentations being compared. The precision and recall graphs for boundary prob-

lems are then finding the minimum cost matching between two boundary segments.

One practical difficulty for this cost function is that the cardinality of the two sets in the

bipartite graph will differ. This can be solved by padding the set with the lowest cardinality

with outlier nodes thus creating high valued weights. Whenever a node is matched to an

outlier node the match is assumed to be unmatched as the outlier node is only virtual.

Solving the bipartite graph becomes a minimum cost maximum flow problem. This problem

can be readily solved by Andrew Goldberg’s Cost Scaling Algorithm (CSA) package [62].

One threshold is added to the bipartite graph: if a node is matched to another node with

euclidean distance greater than dmax the node is rematched to an outlier node and called

unmatched.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

83

Chapter 5 Image Segmentation

The precision and recall can be calculated from the matched bipartite graph where S2 is the

segmented image and S1 is the ground truth. The error is given by the nodes matched to

outlier nodes, which are also called unmatched nodes. We will get two error measurements,

one from S2 matched to outliers and another from S1 matched to outliers. Precision is the

fraction that is equivalent to the ground truth, thus the percentage matched edges in S2 to

S1. Recall is the percentage of ground truth within the segmented image, thus the percentage

of edges matched in S1 to S2.

Precision = card{matched(Ŝ)}
card{Ŝ}

(5.13)

Recall = card{matched(S)}
card{S}

(5.14)

One important factor of the precision-recall graphs are that the measure is not refinement

tolerant. Two images can be exact refinements of one another but can have a f -measure of

zero. It is important to have the exact same image sizes when executing a f -measure.

The precision-recall graphs can be interpreted by using the precision, recall, f -measure and

the shape of the graph itself. A high precision and high recall will yield a high f -measure

which is then a good apparent segmentation.

A precision-recall graph can be constructed by creating segmentations at different refinements

with the same algorithm. Each refinement level will provide one point on the graph with a

recall value, precision value and an f -measure. At a coarse refinement one should have high

precision and low recall whereas at a fine refinement the precision should be low and the recall

high. This will indicate a correctly operating segmentation algorithm. Precision quantifies

the amount of noise in the output detector. A low precision then indicates over segmentation.

Recall quantifies the amount of ground truth detected in the output thus a very low recall

score indicates under segmentation. The f -measure can be computed for every point on

the graph but the point on the graph providing the highest f -measure would provide the

best trade-off between precision and recall and also show the best possible result for the

algorithm.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

84

Chapter 5 Image Segmentation

5.3 SEGMENTATION USING THE DPT

The Discrete Pulse Transform forms the LULU-scale space and provides a large number of

features per pixel within the image. Each pixel at location (x, y) can be described by a vector

called the Discrete Pulse Vector [24],

p(x,y) = [h1 h2 h3 ... hN]T (5.15)

where hn represents the height of the pulse of scale n which coincide with pixel (x, y). Note

most of the hn’s will have a zero value as each scale is not present in every pixel. The

human visual system is a large driving force for image segmentation algorithms and it has

been shown that using clustering in a scale-space can simulate the human visual system [63].

Fabris-Rotelli [24] [9] has also shown with a qualitative approach that clustering in the LULU

scale-space can be used for segmentation, which will be the basis from which we will build our

basic image segmentation method. Therein using scale-space life time, that is, the number

of non-zero hn’s, the longest living pixels are those more salient. The Gaussian scale-space

also makes use of this concept [64]. For simplicity we will reduce the number of features by

combining different ranges of features. It has been shown that image content can be well

summarised with [24] [9]

fb(x, y) =
b2∑

n=b1

|hn|, b = 1, ..., d (5.16)

where fb(x, y) is the feature range of pixel (x, y) starting at pulse scale b1 and up to pulse

scale b2. The d-dimensional feature vector for pixel (x, y) is created by choosing d different

feature ranges and is given by

fx,y = [f1(x, y) f2(x, y) ... fd(x, y)]. (5.17)

We now require a clustering algorithm. Clustering algorithms usually need to be determined

experimentally to find the most suitable algorithm, as no algorithm works well for all kinds

of data [65]. The k-means clustering algorithm in conjunction with an Iterated Conditional

Mode (ICM) algorithm has been shown to work well in image segmentation [66].

The k-means algorithm has an interesting property. It segments a data space into a Voronoi

diagram [67]. A Voronoi diagram is a way to divide a space into a number of regions with

pre-specified region points or seed points. The k-means algorithm acts by shifting these

seed points to provide optimal regions. The regions created within the Voronoi diagram are

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

85

Chapter 5 Image Segmentation

related to the distance metric used within the space. Although we can segment the features

into regions using the k-means algorithm, we have not yet made use of the spatial information

of the image.

To use the spatial information we require an initial labelling of the image, with the label

pertaining to the region in which the k-means have divided it. We will first discuss the

clustering algorithm using the k-means and ICM followed by the creation of a confidence

map.

5.3.1 The Clustering Algorithm

Given an image with N pixels yields a set of N vectors in a d-dimensional space

{x1,x2, ...,xN} where xi is a d-tuple, each vector xi relates to one pixel. The k-means

algorithm minimizes the within-cluster sum-of-squares using k clusters S = {S1, S2, ..., Sk}

where each cluster Si has a mean centroid ci. The set of clusters that minimizes the within-

cluster sum-of-squares S is obtained by the convergence of the algorithm and provide centroids

for each cluster, that is,

arg min
S

k∑
i=1

∑
(x,y)∈Si

‖fx,y − ci‖2. (5.18)

The centroids obtained by the k-means algorithm are used as initial conditions for the Iterated

Conditional Modes algorithm. Let the clusters for the initialization step α = 0 be c(0)
i for

i = 1, 2, ..., k. Each pixel is assigned to a cluster using the ICM cluster criteria, the centroids

are then recalculated and the pixels reassigned to the new clusters. The process is repeated

until there is little or no change in the position of the centroids, thus the algorithm converges.

The following two steps must be repeated until the algorithm converges:

1. For N number of pixels assign pixel (x, y) to cluster k for which the following equation

is minimum:

(fx,y − c(α)
k)T (fx,y − c(α)

k)− βv(α)N (α)
x,y (k) (5.19)

where

• β is spatial penalisation suggested as 1.5 [68],

• v(α) = 1
N

∑N
k=1

∑
(x,y)∈S(α)

k

(fx,y − c(α)
k)T (fx,y − c(α)

k) is the within cluster variance

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

86

Chapter 5 Image Segmentation

• and N
(α)
x,y (k) is the number of neighbours of pixel (x, y) currently classified in

cluster k at iteration α.

2. Recalculate centroids with

c(α)
k = 1

N
(α)
k

∑
(x,y)∈S(α)

k

fx,y, (5.20)

where N (α)
k is the number of elements within the class c(α)

k . After the convergence of the ICM

algorithm, all pixels are assigned to a specific segment which coincide with the centroid. A

contour image can be created by using the boundaries of the different segments to which the

pixels were assigned to. An example of the ICM segmented image is shown in Figure 5.4b.

The final ICM segmented image is a binary image containing only the boundaries of the

segments and is shown in Figure 5.4c.

(a) Original image (b) ICM segmented image with 6 clusters

(c) Edges of ICM segmented image

Figure 5.4: ICM segmentation example

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

87

Chapter 5 Image Segmentation

5.3.2 The Confidence Map

Using the ICM segmentation method directly creates a problem as the segmentation is heavily

dependant on two parameter sets namely the number of clusters and the number of features

with their related pulse ranges. Choosing these parameters incorrectly will segment the image

into senseless segments as can be seen in Figure 5.5 where 3 clusters and 5 features with ranges

0− 50, 51− 500, 501− 5000, 5001− 50000 and 50001− 100000 were chosen.

Figure 5.5: ICM segmentation resulting from badly chosen parameters.

To decrease the image segmentation sensitivity to these parameters a confidence map can

be constructed using a range of discrete parameters within the algorithm. For every change

in a parameter a segmentation image will be created. Each different parameter set will

segment the image differently, with different refinements and focus on different textures. The

main segmentation contours will appear in most of the images and will thus contribute high

confidence to these contours. The confidence map adds another parameter to the algorithm.

This parameter defines how the different images are combined to create the confidence map

and is explained in detail later in this section. An example of segmentations and the combined

confidence map are shown in Figure 5.6. The confidence map is created from the final

segmented image with all parameters.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

88

Chapter 5 Image Segmentation

(a) Original (b) Confidence map

Figure 5.6: Created confidence map example

The three parameters sets, namely the number of clusters in the k-means algorithm, the

features used to create the feature space and the creation of the confidence map needs to be

addressed and logically evaluated. The number of clusters will clearly define the refinement

of the segmentation, thus more clusters in the k-means algorithm will provide a more refined

segmentation.

The feature space is defined by the number of features chosen and how the features are

extracted. As defined earlier we will linearly combine a range of pulse sizes by heights. We

can choose a number of features d and calculate the pulse ranges by using a formula. Each

feature is given by

fi(x, y) =
bi(x,y)∑

n=bi−1(x,y)

|hn| (5.21)

where i = 1, 2, ..., d, where bd(x, y) = N . By example we can choose four features d = 4 and

use a linear formula such as bi(x, y) = bi−1(x, y) + 9 where b0(x, y) = 0 to calculate the value

of each feature. We will call this formula the feature formula. The first feature is given by

fi(x, y) =
∑9
n=0 |hn|, the second feature is given by fi(x, y) =

∑18
n=10 |hn| and so forth thus

the feature vector is given by,

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

89

Chapter 5 Image Segmentation

fx,y =
[9∑
n=0
|hn|

18∑
n=10

|hn|
27∑

n=19
|hn|

N∑
n=28

|hn|
]
. (5.22)

To choose the pulse ranges, we need an idea of in what scale range most of the information

lies, thus we can create a few histograms containing the number of pulses in each scale. These

histograms can be seen in Figure 5.7.

By observing these histograms we can see that most of the pulses extracted with the DPT

lies within the first 100 scales. Although this is dependent on the size of the image for most

images the first one hundred scales contains most of the pulses. Whenever the feature formula

is constructed it must contain most of these pulses and the larger scales must not be excluded

either as they also contain information [69].

We now have two main parameters which can be varied to obtain a set of segmented images.

This is the number of classes and the number of features in each feature vector. We can also

change the feature formula but it is not directly a parameter and will also be dependant on

the number of features selected and the scale capture range. If we have p discrete parameter

values, such as p different clusters or p different values for d, p different segmentation sets Sj
will be created where j = 1, 2, ..., p. From each segmentation set a binary contour image Lj
is created containing the outlines of the segments in Sj .

The confidence map can be created using a set of line images and combining them to create

a grey scale image C which represents the confidence map. The first way to combine the

binary images into the confidence map is by cascading them linearly thus,

C(x, y) = Imax
p

p∑
j=1

Lj(x, y) ∀ pixels (x, y), (5.23)

where Imax is the maximum grey level in the image, C(x, y) the confidence map for pixel

(x, y) and Lj(x, y) the line image of segmentation Sj at pixel (x, y). This method shows that

if a specific segment is always present in all the segmentations it will have the highest grey

level thus Imax. If a pixel is never part of a line, that pixel will have a zero value in the

confidence map.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

90

Chapter 5 Image Segmentation

100 101 102 103 104 105

100

101

102

103

104

100 101 102 103 104 105

100

101

102

103

104

100 101 102 103 104 105

100

101

102

103

104

Figure 5.7: Histograms plotted on log-log plots with number of pulses (y-axis) against pulse

scale (x-axis)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

91

Chapter 5 Image Segmentation

Another way to combine the various segmentations is by giving preference to one parameter,

by example increasing the number of clusters result in more refined segmentations. Two

clusters will provide the most significant segmentations followed by 3 clusters and so forth.

The two kernel segmentation has priority over the other segmentations. Assuming that 2

clusters cohere with the first segmentation j = 1, the confidence map can be constructed

as

C(x, y) = Imax · max
j=1,...,p

{
p+ 1− j

p
Lj(x, y)

}
. (5.24)

It is instinct to assume that choosing two clusters for the algorithm will provide a back-

ground and a foreground. This is not the case. The algorithm will create two distribution

which best present all the pixels in the feature space. Choosing more clusters gives better

distinction to dense feature space and also outliers. A high number of clusters will provide

a highly segmented image but a low number of clusters will not specifically give a sparse

segmentation.

5.3.3 The Image segmentation algorithm

The complete image segmentation algorithm using the DPT can be summarized as:

1. Start with iteration t = 0.

2. Obtain the Discrete Pulse Vector for each (x, y) by executing the DPT on the image,

p(x,y) = [h1 h2 h3 ... hN]T . (5.25)

3. Choose the number of features d.

4. Choose your feature formula to calculate the pulse size ranges, for example

bi(x, y) = 5 ∗ bi−1(x, y) with b0 = 0, b1 = 5, bd = N and i = 1, 2, ..., d. (5.26)

5. Create a feature vector fxy for each pixel (x, y) such that

fxy = [f1(x, y) f2(x, y) ... fd(x, y)]T , (5.27)

and where

fi(x, y) =
bi(x,y)∑

n=bi−1(x,y)
|hn| for i = 1, 2, ..., d. (5.28)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

92

Chapter 5 Image Segmentation

6. Choose the number of clusters k.

7. Execute the k-means algorithm to obtain k initial centroids c(0)
j for j = 1, 2, ..., k.

8. Execute the ICM algorithm with centroids c(0)
j for j = 1, 2, ..., k as initialization to

obtain segmentation.

9. Create a contour image Lt by using the segments obtained from the ICM algorithm,

where t is the current number of iterations performed for the algorithm.

10. Increase the number of iterations t and repeat steps 3 to 10 p times while changing

the variable parameters as required. The variable parameters are either the number of

features d or the number of clusters k.

11. Create the final segmented image C, also called the confidence map by

C(x, y) = Imax
p

p∑
j=1

Lj(x, y), (5.29)

or

C(x, y) = Imax · max
j=1,...,p

{
p+ 1− j

p
Lj(x, y)

}
. (5.30)

5.4 IMAGE SEGMENTATION EVALUATION

5.4.1 Preparation

The image segmentation algorithm using the DPT needs to be evaluated to determine its

potential. This can only be evaluated by comparing it to another set of image segmentation

algorithms. An ideal comparison will be image segmentations that use scale-space and edges

to segment the image. It is preferable that the image segmentation algorithm should not use

any kind of training.

The Gaussian scale-space can be used for image segmentation and fits the criteria discussed

above. It is a well known practice to take the difference of Gaussian to detect edges in

an image. Lindeberg has shown that image segmentation can be done using the Gaussian

scale-space [70]. A basic implementation of such image segmentation is the Canny edge

detector [45].

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

93

Chapter 5 Image Segmentation

There exist various other more complex usages of the Gaussian scale-space for image seg-

mentation but we want to compare the basic concept of the Gaussian scale-space to the

LULU scale-space. As both these methods can be classified as edge detectors we will also

look at the direct usage of the Laplacian operator (second derivative) and Sobel operator

(first derivative) [71] with a threshold to see whether more advanced edge detectors do have

any benefit.

The Canny segmentation is summarized as:

• Apply a small Gaussian filter to reduce reduce noise in the image.

• Take the partial derivative, by utilizing the Sobel operator, of the image in the x and

y direction with which a gradient vector at each pixel can be calculated.

• Apply non-maxima suppression for 8 directions.

• Apply hysteresis thresholding with edge tracing.

• Repeat the process for various thresholds to create a confidence map by adding them

linearly together.

The Sobel segmentation is achieved by taking the first order partial derivative, by utilizing

the Sobel operator, in the x and y direction with which the amplitude of the gradient vector

is calculated for each pixel. These values are used directly in the confidence map. The

confidence map for the Laplace segmentation is created in the same manner but utilizes the

second derivative, the Laplace operator.

The precision-recall graph shown in Figure 5.8 contains the evaluation on the BSD of the

Canny segmentation, Laplace segmentation and the Sobel segmentation. A fourth function

containing the human segmentation for the test images from the BSD are also shown on

the figure. Each function is provided with its best f -measure donated with a dot on the

graph.

After an image is segmented by an algorithm a confidence map is calculated for where edges

are most probable. To translate the confidence map into regions, a threshold must be selected

to acquire a binary image with the regions then bounded by lines. For an ideal image

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

94

Chapter 5 Image Segmentation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

Pr
ec
isi
on

f = 0.79 Human
f = 0.56 Canny
f = 0.44 Laplace
f = 0.42 Sobel

Figure 5.8: Precision-Recall graph for Canny edge detector, Laplace segmentation and

Sobel segmentation

segmentation the threshold can be interpreted as selecting the amount of refinement for the

regions. A large threshold should provide the boundaries for only the large objects, such

as the foreground, middle-ground and background. Lowering the threshold increases the

amount of detail thus including more specific objects. The continuous graphs in Figure 5.8

are generated by starting at the lowest threshold ending at the highest possible threshold

which will then have no edges. The graphs do not indicate the thresholds used as it has no

relevance in comparing the algorithms.

The human segmentations have been obtained in the same fashion, creating a confidence map

from a set of images which are thresholded. The confidence map for the human segmentations

were created by adding the different segmentations linearly together. Each human segment-

ation was tested on the created ground truth. As each human only segments the image with

hundred percent certainty, each segment creates only a point on the precision-recall graph.

The average f -measure of all human segmentations gives a 0.79 score. In Figure 5.8 it is clear

that the Canny edge detector achieves the closest results to the human segmentations, thus

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

95

Chapter 5 Image Segmentation

we will use the Canny detector to benchmark our own segmentation algorithm.

5.4.2 Experimentation

The three parameter sets still have unknown effects on how they influence the image segment-

ation. Firstly the number of features will be investigated. We require a simplistic feature

formula and will use bi(x, y) = bi−1(x, y) + range where b0(x, y) = 0. After a few test runs

using only two clusters, it was determined that creating pulse size ranges of 5 works in general

the best, thus range = 5. This value might differ for using a different number of clusters.

A more non-linear feature formula was also tested bi(x, y) = 2 ∗ bi−1(x, y) with b0(x, y) = 0,

b1(x, y) = 5, b2(x, y) = 25, bd(x, y) = N and i = 3, 4, ..., d. The number of features d

were varied from 2 to 20 and both feature formulas are shown in Figure 5.9 using 5 clusters

each.

2 4 6 8 10 12 14 16 18 200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of features d

f-m
ea
su
re

Linear feature formula: Max = 0.51
Nonlinear feature formula: Max = 0.54

Figure 5.9: Image segmentation with variable features showing best f -measure against

number of features used.

We can now perform the same experiment by varying the number of clusters and keeping

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

96

Chapter 5 Image Segmentation

the number of features constant. The number of clusters was varied between 2 and 20.

The confidence map was created by providing preference to the segmentation with the least

number of clusters. The non-linear feature formula is used. The f -measure results of the

variable clusters with constant features are shown in Figure 5.10.

2 4 6 8 10 12 14 16 18 200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of clusters k

f-m
ea
su
re

Linear feature formula: Max = 0.55
Nonlinear feature formula: Max = 0.58

Figure 5.10: Image segmentation with variable clusters showing best f-measure against

number of clusters used.

In Figure 5.10 we observe that using 6 clusters with the non-linear feature formula provide

the best f -measure score. To compare the DPT ICM segmentation to the Canny detector we

use the parameters giving the best results as determined by the experimentation. We use 6

clusters, 5 features and the non-linear feature formula. The overall performance is discussed

in the next section.

5.4.3 Analysis

Analysing the precision-recall graph in Figure 5.11 we can see that both methods performs

equally well. The DPT segmentation seems to oversegment the images fairly quickly which

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

97

Chapter 5 Image Segmentation

is indicated by the movement of the graph towards a zero precision. While the DPT un-

dersegments the image the precision is fairly high indicating that the segments that do get

extracted are correct. It also has the maximum f -measure score between the two methods.

The Canny segmentation does not have zero precision at an almost one recall, neither a high

precision at low recall.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

Pr
ec
isi
on

f = 0.79 Human
f = 0.56 Canny
f = 0.58 DPT ICM

Figure 5.11: Precision-Recall graph for the Canny edge detector and DPT image segment-

ation

We can plot the average f -measure for each threshold value used to test the segmentations,

which is shown in Figure 5.12. Looking at Figure 5.12 we can see that the Canny segmentation

has a very good average f -measure and never drops below f = 0.36.

Figure 5.12 shows a step like function for the DPT algorithm. This step like function is due

to the low number of clusters used which only introduce 20 different levels in the confidence

map that can be thresholded. In contrast the Canny edge detector produces a confidence

map with 255 different levels and thus plots more continuous.

The high peak of the DPT algorithm in Figure 5.12 gives you the ability to segment the

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

98

Chapter 5 Image Segmentation

0 25 50 75 100 125 150 175 200 225 2500

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold

Av
er
ag

e
f-m

ea
su
re

f = 0.79 Human
f = 0.56 Canny
f = 0.58 DPT ICM

Figure 5.12: A plot showing the average f -measure for a specific threshold.

image with a specific purpose much easier. Selecting the incorrect threshold will immediately

give you senseless information. Classification algorithms can then detect nothing at all but

when selecting the correct threshold, all objects will be apparent. The Canny algorithm has

a very good average which desensitizes the segmentation algorithm to the chosen threshold

value. Although this sounds like a very good quality it creates difficulty in the sense that

one might think the current threshold is the best as you are able to classify objects, where

in reality it is not the best achievable and some objects might be missed.

The DPT ICM segmentation algorithm has a large amount of work left and a large number

of studies can be done. A study on the different clustering algorithms which can be used and

which are most suitable for the DPT features may reveal that the k-means and ICM method

might not be perfect. A study on the influence of the pulse ranges chosen for features have

on the performance of the segmentation algorithm and whether there exist a set of features

that are invariant to the clustering algorithm can be investigated. A study on different

methods on creating the confidence map and whether one method is invariant over the range

of parameters should also be done. It should be possible by using the results of these three

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

99

Chapter 5 Image Segmentation

studies to create a good stable DPT image segmentation algorithm.

The DPT image segmentation algorithm shows high potential for more advanced segment-

ation possibilities. One such possibility is to add different descriptors for the individual

pulses such as eccentricity and convexity and add it to the feature vector used [72]. A neural

network or machine learning method can also be employed to use all the features to seg-

ment the image. This image segmentation study opened up a large number of new research

opportunities.

5.5 CONCLUSION

In this chapter we showed that the DPT can be used for image segmentation at a more

elementary level. Therefore, a boundary detection algorithm was developed. The algorithm

extracted features from the DPT for each pixel, clustering each pixel into a class using Iterated

Conditional Modes initialized with a k-means algorithm. The boundaries of each class was

traced in the image producing the segmentation. By varying the number of features, feature

construction and number of clusters, different segmentations of the same image were created,

which were used to create the confidence map. The confidence map consisted of grey scale

boundaries presenting different confidences of each boundary.

We used precision-recall graphs as our quantitative measure in the subjective field of image

segmentation. The precision-recall graphs were used to compare the Canny edge detector to

the DPT boundary detection. The Canny edge detector was chosen as it uses a scale-space

and form the basis for a large number of advanced image segmentation techniques. The

precision-recall graphs showed that the DPT contour detector performed better than the

Canny edge detector.

The chapter introduced new possibilities for researchers to pursue ideas such as using machine

learning techniques for contour detection and clustering for image segmentation, as we showed

the DPT has potential for image segmentation. We also added image segmentation to the

possible applications for the DPT and the LULU scale-space. In the next chapter the thesis

will be concluded as a whole, summarising what has been done.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

100

CHAPTER 6

CONCLUSION

In the dissertation an introduction to the Discrete Pulse Transform (DPT) was presented.

The DPT was extended as a mathematical tool, by developing a library containing an efficient

implementation of the DPT in n-dimensions. The Pulse Reformation framework was proposed

as a solution to the leakage problem, which arises for connected operators, such as the LULU

operators. The Pulse Reformation framework was used in bioengineering applications, such

as isolation of red blood cells and spot detection, specifically counting mRNA. Furthermore, it

was established that the DPT shows potential in image segmentation. The DPT ICM image

segmentation algorithm was compared to other relevant image segmentation algorithms by

utilizing precision-recall graphs.

The following new research outputs have been contributed to the research domain of LULU

operators and the Discrete Pulse Transform:

• A new graph-based algorithm for the DPT, called the Roadmaker’s Pavage, was de-

veloped. The Roadmaker’s Pavage stores the extracted pulses in an easily accessible

manner while providing an intuitive presentation of the DPT decomposition. It is also

valid for implementation in any dimension.

• A library, called the DPT Library, is available online [22]. The implemented Road-

maker’s Pavage is currently the fastest available code of the DPT decomposition for

n-dimensions.

• A framework to combat leakage, called Pulse Reformation, was developed. It was

shown that the Pulse Reformation framework outperforms other proposed methods for

Chapter 6 Conclusion

connected operators, such as λ-connected components. The framework was illustrated

in biomedical engineering for isolating and counting red blood cells.

• The Pulse Reformation framework was applied to counting mRNA in fluorescence mi-

croscopy images. It was shown that Pulse Reformation can be used for spot detection.

The spot detection capability is comparable to other spot detectors and uses fewer

tuning parameters.

• The potential of the DPT in image segmentation was shown by means of a quantified

evaluation. For the first time, the DPT’s performance was compared to other image

segmentation algorithms and was shown to be proficient.

Some limitations exist in the research conducted within the dissertation. The Pulse Reforma-

tion framework was implemented only for circular probes and gives the probability of relative

circular objects within the domain. However, the circular probe can easily be replaced with

various other basic shapes to extract a set of probable shapes within the domain. This set

can then be used in generic object detection algorithms. The red blood cell extraction ex-

amples don’t show obvious limitations, but the algorithm is expected to fail when two cells

are overlapping and when one cell is highly rotated in the z-plane touching another red blood

cell.

The image segmentation algorithm, using the DPT, is highly limited in its direct applica-

tion to object segmentation. The algorithm provides an image which consists of probability

borders, when segmenting objects there are no uncertainty in the outlines of the segmented

objects. The algorithm thus provides fuzziness in the outlines of objects where a more ad-

vanced algorithm must be used to determine the real borders of the objects. The generated

probability map can thus be used as a pre-segmentation for more complex algorithms.

Future work for the DPT includes continual algorithm improvement, the continual devel-

opment of the Pulse Reformation framework, image segmentation and application in data

communication. The implementation of the DPT can be optimised and also developed for

parallel processing. With the Roadmaker’s Pavage, the DPT can be applied to video se-

quences where further applications can be developed. Different probes for the Pulse Reform-

ation framework can be implemented, and testing can be done in other application areas.

The theory and application of the Pulse Reformation framework can be extended to general

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

102

Chapter 6 Conclusion

connected operators. Image segmentation with the DPT can be further investigated by using

more advanced classifiers and different feature vectors. The DPT lends itself to applications

in data communication as it is inherently discrete, where comparing the DPT with noise

reduction methods such as higher order statistics will be a good start.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

103

REFERENCES

[1] D. Laurie, “The Roadmaker’s Algorithm for the Discrete Pulse Transform,” Image

Processing, IEEE Transactions on, vol. 20, no. 2, pp. 361 –371, Feb 2011. [Online].

Available: http://dip.sun.ac.za/~laurie/DPT/

[2] P. Salembier and A. Oliveras, “Practical extensions of connected operators,” in Mathem-

atical Morphology and its applications to image and signal processing. Springer, 1996,

pp. 97–110.

[3] R. Anguelov and I. Fabris-Rotelli, “LULU operators and Discrete Pulse Transform for

multidimensional arrays,” Image Processing, IEEE Transactions on, vol. 19, no. 11, pp.

3012–3023, 2010.

[4] E. W. Uys, “Image compression using the one-dimensional discrete pulse transform,”

Ph.D. dissertation, Stellenbosch: University of Stellenbosch, 2011.

[5] R. Rahmat, A. S. Malik, and N. Kamel, “3-d content generation using optical passive

reflective techniques,” in Consumer Electronics (ISCE), 2011 IEEE 15th International

Symposium on. IEEE, 2011, pp. 639–642.

[6] I. Fabris-Rotelli and G. Stoltz, “On the leakage problem with the Discrete Pulse Trans-

form decomposition,” in Proceedings of the 23rd Annual Symposium of the Pattern Recog-

nition Association of South Africa, A. de Waal, Ed., 29-30 November 2012, pp. 179–186.

[7] C. Rohwer, Nonlinear Smoothers and Multiresolution Analysis. Birkhauser, 2005.

[8] M. Rohwer, C.H.; Wild, “LULU theory, idempotent stack filters and the mathematics of

vision of Marr,” Advances in Imaging and Electron physics, vol. 146, pp. 57–162, 2007.

References

[9] I. N. Fabris-Rotelli, “Discrete Pulse Transform of images and applications,” Ph.D. dis-

sertation, University of Pretoria, 2012.

[10] G. Grätzer, General lattice theory. Springer, 2003.

[11] G. Hellman, “Mathematical constructivism in spacetime,” The British Journal for the

Philosophy of Science, vol. 49, no. 3, pp. 425–450, 1998.

[12] C. Rohwer and M. Wild, “Natural alternatives for one dimensional median filtering,”

Quaestiones Mathematicae, vol. 25, no. 2, pp. 135–162, 2002.

[13] J. Serra, “Image Analysis and Mathematical Morphology. Vol I, and Image Analysis and

Mathematical Morphology. Vol II: Theoretical Advances,” 1982.

[14] C. L. Mallows, “Some theory of nonlinear smoothers,” The Annals of Statistics, vol. 8,

no. 4, pp. 695–715, 1980.

[15] C. Rohwer, “Idempotent one-sided approximation of median smoothers,” Journal of

Approximation Theory, vol. 58, no. 2, pp. 151–163, 1989.

[16] C. Rohwer, “Projections and separators,” Quaestiones Mathematicae, vol. 22, no. 2, pp.

219–230, 1999.

[17] C. Rohwer, “Variation reduction and LULU-smoothing,” Quaestiones Mathematicae,

vol. 25, no. 2, pp. 163–176, 2002.

[18] C. Rohwer and M. Wild, “LULU theory, idempotent stack filters, and the mathematics

of vision of marr,” Advances in Imaging and Electron Physics, vol. 146, pp. 57–162, 2007.

[19] C. Rohwer and L. Toerien, “Locally monotone robust approximation of sequences,”

Journal of Computational and Applied Mathematics, vol. 36, no. 3, pp. 399–408, 1991.

[20] E. Malkowsky and C. Rohwer, “The LULU-semigroup for envelopes of functions,” Quaes-

tiones Mathematicae, vol. 27, no. 1, pp. 89–97, 2004.

[21] C. Rohwer and D. Laurie, “The Discrete Pulse Transform,” SIAM Journal on Mathem-

atical Analysis, vol. 38, no. 3, pp. 1012–1034, 2006.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

106

References

[22] G. Stoltz, “The DPT Library,” https://github.com/genetica/DPT_Library, 2013.

[23] D. P. Laurie and C. H. Rohwer, “Fast implementation of the discrete pulse transform,”

in Proc. Int. Conf. Numer. Anal. Appl. Math. Weinheim, Germany, 2006, pp. 15–19.

[24] I. Fabris-Rotelli and S. J. Van der Walt, “The Discrete Pulse Transform in two

dimensions,” in Proceedings of the 20th Annual Symposium of the Pattern Recognition

Association of South Africa, 2009. [Online]. Available: http://dip.sun.ac.za/~stefan/dpt/

[25] R. Barrett, Templates for the solution of linear systems: building blocks for iterative

methods. Siam, 1994, no. 43.

[26] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human segmented natural

images and its application to evaluating segmentation algorithms and measuring ecolo-

gical statistics,” in Computer Vision, 2001. Proceedings of Eighth IEEE International

Conference on, vol. 2. IEEE, 2001, pp. 416–423.

[27] G. Simmons, Introduction to Topology and Modern Analysis, ser. International Series in

Pure and Applied Mathematics. Krieger Publishing Company, 1963.

[28] R. J. O’Callaghan and D. R. Bull, “Combined morphological-spectral unsupervised im-

age segmentation,” Image Processing, IEEE Transactions on, vol. 14, no. 1, pp. 49–62,

2005.

[29] C.-T. Li and R. Wilson, “Image segmentation based on a multiresolution bayesian frame-

work,” in Image Processing, 1998. Proceedings of International Conference on. IEEE,

1998, pp. 761–765.

[30] G. K. Ouzounis and M. H. Wilkinson, “Countering oversegmentation in partitioning-

based connectivities,” in Image Processing, 2005. IEEE International Conference on,

vol. 3. IEEE, 2005, pp. III–844.

[31] M. Wilkinson, “Attribute-space connected filters,” in Mathematical Morphology: 40

Years On, ser. Computational Imaging and Vision, C. Ronse, L. Najman, and E. Decen-

ciÃĺre, Eds. Springer Netherlands, 2005, vol. 30, pp. 85–94.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

107

References

[32] J. Goutsias, L. Vincent, and D. S. Bloomberg, Mathematical morphology and its applic-

ations to image and signal processing. Springer, 2000, vol. 18, ch. Practical extensions

of connected operators, pp. 97–110.

[33] C. S. Tzafestas and P. Maragos, “Shape connectivity: multiscale analysis and application

to generalized granulometries,” Journal of Mathematical Imaging and Vision, vol. 17,

no. 2, pp. 109–129, 2002.

[34] M. H. Wilkinson, “Connected filtering by reconstruction: Basis and new advances,”

in Image Processing, 2008. 15th IEEE International Conference on. IEEE, 2008, pp.

2180–2183.

[35] I. R. Terol-Villalobos, J. D. Mendiola-Santibáñez, and S. L. Canchola-Magdaleno, “Im-

age segmentation and filtering based on transformations with reconstruction criteria,”

Journal of Visual Communication and Image Representation, vol. 17, no. 1, pp. 107–130,

2006.

[36] W. Law and A. C. Chung, “Minimal weighted local variance as edge detector for active

contour models,” in Computer Vision–ACCV 2006. Springer, 2006, pp. 622–632.

[37] M. W. Graham, J. D. Gibbs, and W. E. Higgins, “Robust system for human airway-tree

segmentation,” in Medical Imaging. International Society for Optics and Photonics,

2008, pp. 69 141J–69 141J.

[38] I. Santillán, A. M. Herrera-Navarro, J. D. Mendiola-Santibáñez, and I. R. Terol-

Villalobos, “Morphological connected filtering on viscous lattices,” Journal of Math-

ematical Imaging and Vision, vol. 36, no. 3, pp. 254–269, 2010.

[39] N. Otsu, “A threshold selection method from gray-level histograms,” Automatica, vol. 11,

no. 285-296, pp. 23–27, 1975.

[40] A. Raj, P. van den Bogaard, S. A. Rifkin, A. van Oudenaarden, and S. Tyagi, “Imaging

individual mrna molecules using multiple singly labeled probes,” Nature Methods, vol. 5,

no. 10, pp. 877–879, 2008.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

108

References

[41] D. Marr and A. Vision, “Vision: A computational investigation into the human rep-

resentation and processing of visual information,” WH San Francisco: Freeman and

Company, 1982.

[42] J. Serra, “A lattice approach to image segmentation,” Journal of Mathematical Imaging

and Vision, vol. 24, no. 1, pp. 83–130, 2006.

[43] R. C. Gonzalez and E. Richard, “Digital image processing,” ed: Prentice Hall Press,

ISBN 0-201-18075-8, 2002.

[44] J. R. Beveridge, J. Griffith, R. R. Kohler, A. R. Hanson, and E. M. Riseman, “Seg-

menting images using localized histograms and region merging,” International Journal

of Computer Vision, vol. 2, no. 3, pp. 311–347, 1989.

[45] J. Canny, “A computational approach to edge detection,” Pattern Analysis and Machine

Intelligence, IEEE Transactions on, no. 6, pp. 679–698, 1986.

[46] N. R. Pal and S. K. Pal, “A review on image segmentation techniques,” Pattern Recog-

nition, vol. 26, no. 9, pp. 1277–1294, 1993.

[47] W.-Y. Ma and B. Manjunath, “Edge flow: a framework of boundary detection and image

segmentation,” in Computer Vision and Pattern Recognition, 1997. Proceedings of IEEE

Computer Society Conference on. IEEE, 1997, pp. 744–749.

[48] C. Revol and M. Jourlin, “A new minimum variance region growing algorithm for image

segmentation,” Pattern Recognition Letters, vol. 18, no. 3, pp. 249–258, 1997.

[49] R. Adams and L. Bischof, “Seeded region growing,” Pattern Analysis and Machine In-

telligence, IEEE Transactions on, vol. 16, no. 6, pp. 641–647, 1994.

[50] R. Ohlander, K. Price, and D. R. Reddy, “Picture segmentation using a recursive region

splitting method,” Computer Graphics and Image Processing, vol. 8, no. 3, pp. 313–333,

1978.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

109

References

[51] L. Vincent and P. Soille, “Watersheds in digital spaces: an efficient algorithm based on

immersion simulations,” Pattern Analysis and Machine Intelligence, IEEE Transactions

on, vol. 13, no. 6, pp. 583–598, 1991.

[52] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour models,” International

Journal of Computer Vision, vol. 1, no. 4, pp. 321–331, 1988.

[53] J. Shi and J. Malik, “Normalized cuts and image segmentation,” Pattern Analysis and

Machine Intelligence, IEEE Transactions on, vol. 22, no. 8, pp. 888–905, 2000.

[54] S. Borra and S. Sarkar, “A framework for performance characterization of intermediate-

level grouping modules,” Pattern Analysis and Machine Intelligence, IEEE Transactions

on, vol. 19, no. 11, pp. 1306–1312, 1997.

[55] W. M. Rand, “Objective criteria for the evaluation of clustering methods,” Journal of

the American Statistical Association, vol. 66, no. 336, pp. 846–850, 1971.

[56] M. Meilǎ, “Comparing clusterings: an axiomatic view,” in Proceedings of the 22nd In-

ternational Conference on Machine Learning. ACM, 2005, pp. 577–584.

[57] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, “From contours to regions: An empirical

evaluation,” in Computer Vision and Pattern Recognition, 2009. IEEE Conference on.

IEEE, 2009, pp. 2294–2301.

[58] D. R. Martin, C. C. Fowlkes, and J. Malik, “Learning to detect natural image bound-

aries using local brightness, color, and texture cues,” Pattern Analysis and Machine

Intelligence, IEEE Transactions on, vol. 26, no. 5, pp. 530–549, 2004.

[59] C. Fowlkes, D. Martin, and J. Malik, “Learning affinity functions for image segmenta-

tion: Combining patch-based and gradient-based approaches,” in Computer Vision and

Pattern Recognition, 2003. Proceedings of the IEEE Computer Society Conference on,

vol. 2. IEEE, 2003, pp. II–54.

[60] J. Davis and M. Goadrich, “The relationship between precision-recall and roc curves,”

in Proceedings of the 23rd International Conference on Machine learning. ACM, 2006,

pp. 233–240.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

110

References

[61] D. M. Powers, “Evaluation: from precision, recall and f-measure to roc, informedness,

markedness & correlation,” Journal of Machine Learning Technologies, vol. 2, no. 1, pp.

37–63, 2011.

[62] A. V. Goldberg and R. Kennedy, “An efficient cost scaling algorithm for the assignment

problem,” Mathematical Programming, vol. 71, no. 2, pp. 153–177, 1995.

[63] M. G. Ramos, S. S. Hemami, and M. A. Tamburro, “Psychovisually-based multiresol-

ution image segmentation,” in Image Processing, Proceedings of the International Con-

ference on, vol. 3. IEEE, 1997, pp. 66–69.

[64] T. Lindeberg, “Scale-space for discrete signals,” Pattern Analysis and Machine Intelli-

gence, IEEE Transactions on, vol. 12, no. 3, pp. 234–254, 1990.

[65] V. Estivill-Castro, “Why so many clustering algorithms: a position paper,” ACM

SIGKDD Explorations Newsletter, vol. 4, no. 1, pp. 65–75, 2002.

[66] P. Debba, A. Stein, F. van der Merwe, E. Carranza, and A. Lucieer, “Field sampling from

a segmented image,” in Proceedings of the International Conference on Computational

Science and its Applications, Part I Annual Symposium on Computational Geometry.

Springer-Verlag, 2008, pp. 756–768.

[67] M. Inaba, N. Katoh, and H. Imai, “Applications of weighted voronoi diagrams and ran-

domization to variance-based k-clustering,” in Proceedings of the 10th Annual Symposium

on Computational Geometry. ACM, 1994, pp. 332–339.

[68] J. Besag, “On the statistical analysis of dirty pictures,” Journal of the Royal Statistical

Society. Series B (Methodological), pp. 259–302, 1986.

[69] S. J. Van der Walt, “Super-resolution imaging,” Ph.D. dissertation, Stellenbosch: Uni-

versity of Stellenbosch, 2010.

[70] T. Lindeberg, “Edge detection and ridge detection with automatic scale selection,” In-

ternational Journal of Computer Vision, vol. 30, no. 2, pp. 117–156, 1998.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

111

Appendix References

[71] L. S. Davis, “A survey of edge detection techniques,” Computer Graphics and Image

Processing, vol. 4, no. 3, pp. 248–270, 1975.

[72] I. Fabris-Rotelli, “The discrete pulse transform for images with entropy-based feature

detection,” in Proceedings of the 22nd Annual Symposium of the Pattern Recognition

Association of South Africa, 2011, pp. 22–25.

[73] G. G. P. License, “Mingw - minimalist gnu for windows,” this is an electronic webpage.

Date of publication: [Date unavailable]. Date retrieved: September 7, 2013. Date last

modified: May 25, 2012. [Online]. Available: http://www.mingw.org/

[74] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2000.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

112

APPENDIX A

THE DPT LIBRARY GUIDE

The work done on creating a sufficient algorithm does not add to the body of knowledge if

other researchers can not use it. A library called The DPT Library was created which other

researchers can access and utilize to facilitate research on the Discrete Pulse Transform. A

code library requires the easy use of the functions it contain. This sections contains the

library guide on how to use the DPT Library Code. The library is provided on Github [22] .

The guide is given in full:

A.1 DPT LIBRARY GUIDE INDEX

The DPT Library Guide contains the following topics:

Overview

How to use DPT.h

DPT2PGraph

ReconstructGraph

data_structure

connectivity

DPT_Graph - The Integer Structure

The Future

Example

Appendix A The DPT Library Guide

A.2 OVERVIEW

This library implements the Discrete Pulse Transform in n-dimensions. It is written in C++

but can easily be changed to a C library by exchanging all the reference-pointers and the

"new" commands with relative C commands (a step required for the library). It consist of

two main commands, the transform and the reconstruction.

A.3 HOW TO USE DPT.H

The header file DPT.h must be included into your programming code while DPT.cpp must

be available in the compiler directory. The code must be compiled with the -O3 flag. The

library was tested with Mingw32 [73]. There exist two main functions DPT2PGraph and

ReconstructGraph.

• The DPT2PGraph function are used to perform the DPT with the supplied input data.

• The ReconstructGraph function is used to reconstruct the dataset using specified

criteria.

A.4 DPT2GRAPH

The DPT2Graph is the main library function which applies the DPT to the supplied data.

The function requires three inputs which consists of the required connectivity for the data,

the data on which the DPT must be performed and a place to store the DPT graph. The

function then saves the DPT in the supplied memory block and also gives an indication on

how many pulses were extracted throughout the algorithm.

int DPT2Graph(int ∗&connec t i v i ty ,

int ∗&data_structure ,

PGraphNode ∗&DPT_Graph) ;

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

114

Appendix A The DPT Library Guide

Inputs:

connectivity This is an integer pointer to the connectivity

vector

data_structure This is an integer pointer to the data vector on

which the DPT must be performed

DPT_Graph This is a pointer to the special data structure

PGraphNode which will contain the DPT.

Output: The function outputs an integer which denotes

the number of pulses which were created in the

DPT graph.

A.5 RECONSTRUCTGRAPH

The ReconstructGraph is a basic function which can be used to manipulate the various

pulses extracted from user supplied data. The function have five inputs which includes the

Pulse Graph and the range of pulses which needs to be extracted. Some advance features

includes specifying a variable range of pulses and also a possible offset on the output for

presentation purposes. Pulses can have negative values thus if your output data structure

can not handle negative values offset can be added to all the answers.

int ∗ReconstructGraph (int n_nodes ,

PGraphNode ∗&DPT_Graph,

int ∗pulseRange ,

int s ize_pulseRange ,

int o f f s e t) ;

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

115

Appendix A The DPT Library Guide

Inputs:

n_nodes This is an integer which provides the number of

pulses in the DPT graph

DPT_Graph This is a pointer to the special data structure

PGraphNode which contains the DPT.

pulseRange This is a vector containing the ranges of pulses

which needs to be used for reconstruction.

size_pulseRange This is the number of elements within the

pulseRange vector.

offset This is the default value for all data points in

the data set.

Output: The function outputs the reconstructed data

structure where each element relates to a spe-

cific data point in the original data set.

The input variable pulseRange must have an even value. The first element is a lower bound

where the second element is an upper bound, the third element is then again a lower bound

etc. By example:

1. Reconstruct all the pulses which have size from 5 to 10 and a size from 20 to 30.

size_pulseRange = 4;

pulseRange[0] = 5;

pulseRange[1] = 10;

pulseRange[2] = 20;

pulseRange[3] = 30;

2. Reconstruct all the pulses which have a size of 12.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

116

Appendix A The DPT Library Guide

size_pulseRange = 2;

pulseRange[0] = 12;

pulseRange[1] = 12;

sdata_structure

The data_structure variable is used to pass the data points itself and must consist of

an element for each d-tuple thus using n-dimensions where each dimension dk has a range

[0, dkmax) then the vector would have the following format:

data_structure

[0] = data point at (0, 0, ..., 0)

[1] = data point at (1, 0, ..., 0)
...

[d1max − 1] = data point at (d1max − 1, 0, ..., 0)

[d1max − 1 + 1] = data point at (0, 1, ..., 0)

[d1max − 1 + 2] = data point at (0, 2, ..., 0)
...

[d1max ∗ d2max ∗ .. ∗ dnmax − 1] = data point at (d1max − 1, d2max − 1, ..,

dnmax − 1).

The data_structure relates the position(n-tuple) of the data point x = (d1, d2, ..., dn) to

an index, this index i in the vector data_structure[i] can be calculated with:

i = d1 + d2 ∗ d1max + d3 ∗ (d2max ∗ d1max) + ..+

dn ∗ (d(n−1)max ∗ d(n−2)max ∗ .. ∗ d1max)
(A.1)

This can be illustrated by using an example:

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

117

Appendix A The DPT Library Guide

Assuming a 3-dimensional structure of size 3× 2× 4, thus dimension one ranges from [0, 3],

dimension two ranges from [0, 2] and dimension three ranges from [0, 4]. The data set has a

cardinality of 24. The data_structure that needs to be created for the DPT decomposition

will then require 24 elements in the vector and will look as follow:

data_structure[0] = element (0, 0, 0)

data_structure[1] = element (1, 0, 0)

data_structure[2] = element (2, 0, 0)

data_structure[3] = element (0, 1, 0)

data_structure[4] = element (1, 1, 0)

data_structure[5] = element (2, 1, 0)

data_structure[6] = element (0, 0, 1)

data_structure[7] = element (1, 0, 1)

data_structure[8] = element (2, 0, 1)

data_structure[9] = element (0, 1, 1)

data_structure[10] = element (1, 1, 1)

data_structure[11] = element (2, 1, 1)

data_structure[12] = element (0, 0, 2)

data_structure[13] = element (1, 0, 2)

data_structure[14] = element (2, 0, 2)

data_structure[15] = element (0, 1, 2)

data_structure[16] = element (1, 1, 2)

data_structure[17] = element (2, 1, 2)

data_structure[18] = element (0, 0, 3)

data_structure[19] = element (1, 0, 3)

data_structure[20] = element (2, 0, 3)

data_structure[21] = element (0, 1, 3)

data_structure[22] = element (1, 1, 3)

data_structure[23] = element (2, 1, 3)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

118

Appendix A The DPT Library Guide

A.6 CONNECTIVITY

The connectivity variable is used to pass information regarding the data_structure,

such as the dimension n of the data, each dimensions range and the connectivity of the data.

The connectivity can either be structured such as 4-connectivity, k-connectivity or each data

point can have its own unique connection. The connection is specified by taking the change

in the current position to the connected data point. The connectivity vector first contains

the number of dimensions followed with each dimension’s range, the number of connections

per data point and then the change in dimension to specify the connected data point. The

structure is as follow:

connectivity

[0] = n Amount of dimensions in data structure

[1] = d1max d1 ranges from [0, d1max]
...

[n] = dnmax dn ranges from [0, dnmax]

[n+ 1] = k Amount of connections per node.

[n+ 1 + 0 ∗ n+ 1] = δd1,1 Change in dimension 1 for connection 1.

[n+ 1 + 0 ∗ n+ 2] = δd2,1 Change in dimension 2 for connection 1.
...

[n+ 1 + 0 ∗ n+ n] = δdn,1 Change in dimension n for connection 1.

[n+ 1 + 1 ∗ n+ 1] = δd1,2 Change in dimension 1 for connection 2.
...

[n+ 1 + (k − 1) ∗ n+ n] = δdn,k Change in dimension n for connection k.

This can be illustrated by using an example. Assume an image of two dimensions of size

121× 153 and 4 connectivity then:

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

119

Appendix A The DPT Library Guide

connectivity[0] = 2

connectivity[1] = 121

connectivity[2] = 153

connectivity[3] = 4

connectivity[4] = 1

connectivity[5] = 0

connectivity[6] = −1

connectivity[7] = 0

connectivity[8] = 0

connectivity[9] = 1

connectivity[10] = 0

connectivity[11] = −1

A.7 DPT_GRAPH - THE INTSTRUCT

The DPT_Graph is output into a type of tree represented by the PGraphNode struct which

can be found in DPT.h. This struct can be converted into an array of vectors which uses the

index of the array to represent edges between various nodes. Each node is represented by a

vector.

The following notation is equivalent:

vector[i] = [v1 v2 v3 v4] ⇐⇒ vector[i][0] = v1

vector[i][1] = v2

vector[i][2] = v3

vector[i][3] = v4

Each vector at index i has the following structure:

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

120

Appendix A The DPT Library Guide

IntStruct

[i][0] The cardinality of the vector.

[i][1] The size of the represented node.

[i][2] The height of the represented node.

[i][3] The index of the parent node.

[i][4] The number of children c the represented node have.

[i][4 + 1] The index of the first child.
...

[i][4 + c]

The index of child c.

Every node which has a height equal to zero, has no children and the index of this node relates

to the n-tuple of the data point as discussed in data_structure section. The node with a

connected pulse equal to minus one has no parent and is thus the root of the tree.

Assuming we use a 1-dimensional signal with 4 data points such that x = [5 8 4 4]. The

DPT will then yield effectively four pulses where the fourth pulse is the zero pulse which will

form the root of the tree:

Pulse 1 p1 = [0 3 0 0]

Pulse 2 p2 = [1 1 0 0]

Pulse 3 p3 = [4 4 4 4]

Pulse 4 p4 = [0 0 0 0]

These pulses can then effectively be stored in the IntStruct format which will represent

these pulses as a tree:

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

121

Appendix A The DPT Library Guide

IntStruct[0] = [5 1 0 5 0]

IntStruct[1] = [5 1 0 4 0]

IntStruct[2] = [5 1 0 6 0]

IntStruct[3] = [5 1 0 6 0]

IntStruct[4] = [6 1 3 5 1 1]

IntStruct[5] = [7 2 1 6 2 4 0]

IntStruct[6] = [8 4 4 7 3 2 3 5]

IntStruct[7] = [6 4 0 − 1 1 6]

A.8 THE FUTURE

No library is ever complete thus there is still a lot of work that can be done on the library.

Currently the library is doing the basic functions concerning the DPT, more advanced func-

tions can still be developed. One important aspect is that the code must be ported to be

ANSI C compliant.

A very important aspect of the library is to increase the ease of use thus supplying direct

interfaces to commonly used data sets such as images, video and hyper spectral data.

A.9 EXAMPLE

A simple example in using the library for image processing is given in this section while

utilizing OpenCV [74] as the image processing toolbox. Firstly two functions needs to be

created to convert between the IplImage and the IntStruct. IplImage is OpenCV’s

specified struct for storing images. The conversion shown in Listing A.1 converts IplImage

to an array of integer and returns an integer pointer to the beginning of the array.

Listing A.1: Convert from IplImage to IntStruct

int ∗ Ip l Image2s t ruc t (IplImage ∗&img) {

int ∗ img_struct = 0 ;

img_struct = new int [img−>width∗ img−>he ight] ;

for (int y = 0 ; y < img−>he ight ; ++y)

{

uchar ∗ptr = (uchar ∗) (img−>imageData + y∗ img−>widthStep) ;

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

122

Appendix A The DPT Library Guide

for (int x = 0 ; x < img−>width ; ++x)

{

img_struct [y∗ img−>width + x] = ptr [x] ;

}

}

return img_struct ;

}

Listing A.2 show how to convert the IntStruct to an IplImage. This is required if

we want to reconstruct the DPT with specified pulses and display the image created. The

function returns a pointer to the beginning of the image data.

Listing A.2: Convert from IntStruct to IplImage

IplImage ∗ s t ruc t2 Ip l Image (int ∗&data_struct ,

int width , int height , int depth) {

IplImage ∗ img = 0 ;

img = cvCreateImage (cvS i ze (width , he ight) , depth , 1) ;

for (int y = 0 ; y < img−>he ight ; ++y)

{

uchar ∗ptr = (uchar ∗) (img−>imageData + y∗ img−>widthStep) ;

for (int x = 0 ; x < img−>width ; ++x)

{

ptr [x] = data_struct [y∗ img−>width + x] ;

}

}

return img ;

}

Before we can perform the DPT we still need to define the connectivity vector which is

shown in Listing A.3. We will be using 4-connectivity and count the number of data points

in the data set. We directly add the file name of the image we are loading.

Listing A.3: Create the connectivity vector array

int CreateDataStructureOpenCV (int ∗&connec t i v i ty ,

int ∗&data_structure ,

char ∗ f i l ename) {

int n_nodes = 0 ;

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

123

Appendix A The DPT Library Guide

IplImage ∗ img = cvLoadImage (f i l ename , 0) ;

int width = img−>width ;

int he ight = img−>he ight ;

// count number o f data p o i n t s

n_nodes = width∗ he ight ;

data_structure = Ip l Image2s t ruc t (img) ;

// use four c o n n e c t i v i t y

c onne c t i v i t y = new int [1 2] ;

c onne c t i v i t y [0] = 2 ; // dimensions

c onne c t i v i t y [1] = img−>width ; // x − dim [1] − s i z e

c onne c t i v i t y [2] = img−>he ight ; //y − dim [2] − s i z e

c onne c t i v i t y [3] = 4 ; // graph connec t ions

// r i g h t

c onne c t i v i t y [4] = 1 ; // connect ion [1] change in dim [1]

c onne c t i v i t y [5] = 0 ; // connect ion [1] change in dim [2]

// l e f t

c onne c t i v i t y [6] = −1; // connect ion [1] change in dim [1]

c onne c t i v i t y [7] = 0 ; // connect ion [1] change in dim [2]

// bottom

c onne c t i v i t y [8] = 0 ; // e t c .

c onne c t i v i t y [9] = 1 ;

// top

c onne c t i v i t y [1 0] = 0 ;

c onne c t i v i t y [1 1] = −1;

return n_nodes ;

}

The complete process can then be completed in the final function. We will reconstruct only

all the pulses of size 25 and give the final result an offset of 128. The amount of offset is

related to the 8-bit grayscale images that we use. We need to add the offset as we are working

with unsigned 8-bit integers. Listing A.4 first creates the integer structure followed with the

connectivity vector, the DPT decomposition and also a reconstruction.

Listing A.4: DPT Library Example

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

124

Appendix A The DPT Library Guide

void DPTexample (char ∗data_fi lename) {

int ∗ c onne c t i v i t y ;

int ∗ data_structure ;

// the t o t a l number o f nodes

int n_nodes = 0 ;

int n_pulses ;

// The DPT decomposi t ion v a r i a b l e

PGraphNode ∗DPT_Graph ;

// Create Data Struc ture , OpenCV s p e c i f i c

n_nodes = CreateDataStructureOpenCV (connec t i v i ty ,

data_structure ,

data_fi lename) ;

// DPT decomposi t ion

n_pulses = DPT2PGraph(connec t i v i ty ,

data_structure ,

DPT_Graph) ;

// Get o r i g i n a l image s i z e s

IplImage ∗ img = cvLoadImage (data_fi lename , 0) ;

int ∗ i n t S t ru c t ;

int o f f s e t = 0 ;

int s ize_pulseRange = 2 ;

int ∗pulseRange ;

pulseRange = new int [s ize_pulseRange] ;

pulseRange [0] = 25 ;

pulseRange [1] = 25 ;

// Get da ta_st ruc ture r e c o n s t r u c t i o n

i n t S t ru c t = ReconstructGraph (n_nodes , DPT_Graph, pulseRange ,

s ize_pulseRange , o f f s e t) ;

// conver t i n t S t r u c t to an Ip l Image o f OPENCV

IplImage ∗ image = st ruc t2 Ip l Image (in tSt ruc t ,

img−>width , img−>he ight) ;

cvShowImage (" Al l ␣ pu l s e s ␣ o f ␣ s i z e ␣50 " , image) ;

cvWaitKey (0) ;

}

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

125

