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Abstract 

This dissertation tackles the current life insurance industry challenge to price and hedge 

minimum rate of return guarantees (MRRG) embedded in recurring-contribution life 

insurance contracts in a practical manner. The key contribution to the literature is to outline a 

practical approach to quantify and project the impact of dynamic hedging strategies for such 

options. MRRGs are typically very long-dated and as a result the validity of using typical 

financial economics options pricing models under incomplete market conditions remains a 

debate. However, life insurers need robust, practical solutions to assist them to manage 

market risk exposures for day-to-day solvency and income statement management. Literature 

specific to the topic of MRRG pricing and hedging over recurring-contribution life insurance 

products is sparse but Schrager and Pelssers’ significant contribution (Schrager and Pelsser 

2004) provided a basis on which this dissertation was built. Schrager and Pelsser show these 

options to be analogous to Asian options written over a stochastically-weighted average of 

the underlying unit fund price. This dissertation demonstrates the effects of stochastic interest 

rates on MRRGs increase with maturity, as shown by Schrager and Pelsser. Consequentially, 

users should be aware of the effect and limitations of their choice of interest rate model when 

pricing MRRGs. Sensitivities for the various maturity terms of MRRG benefits are shown 

and provide readers with insight into the factors driving the dynamics of such options. A 

simple dynamic hedging program is outlined and projected under real-world evolutions on a 

daily basis, thus allowing the effectiveness of the hedging program to be tested. 
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1 The challenge to price and hedge minimum rate of return guarantees 

(MRRG) embedded in life insurance contracts 

1.1 Embedded guarantees and options are common features in life insurers’ 

products 

“Traditionally regarded by the Street as behind the times in terms of product innovation, US 

life companies have emerged as major equity derivatives shops. They are now writers of 

equity options in all but name, at a scale and sophistication that would leave many dealers in 

their wake.” Patel 2006 

Life insurance companies have, for many decades, sold investment products which contain 

some form of minimum investment return guarantee. These investment guarantees provide 

for clients needs both in terms of accumulation phase build-up guarantees as well as 

decumulation phase retirement income guarantees. 

These guarantees are typically termed variable annuities (or equity-index annuities) in the 

United States. In the United Kingdom and Europe they typically go by the name of 

guaranteed unit-linked contracts, and in Canada they are often called segregated fund 

guarantees. 

1.2 Embedded investment return guarantees take a range of forms 

Typical life insurance minimum investment return guarantees consist of a basket of 

underlying unit-linked investment funds where the client has the choice of a variety of 

guarantees (often called riders) to attach to the contract.  

These guarantee benefits can generally be broken down into four broad groups. The general 

terminology when describing variable annuity products follows these classifications (Table 

1). 

Table 1: Classification of the four broad types of variable annuities sold 

A Guaranteed Minimum Accumulation Benefit offers clients the certainty that they will achieve some minimum 

guaranteed investment return despite the actual performance of their chosen investment fund/s.  
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The Guaranteed Minimum Income Benefit offers a guarantee which entitles the policyholder to convert a lump 

sum into a retirement income through an annuity at a pre-specified amount. 

A Guaranteed Minimum Death Benefit guarantees to typically pay the greater of a pre-specified guaranteed 

amount and the client’s fund value on the policyholder’s death.  

A Guaranteed Minimum Withdrawal Benefit is a complex form of guarantee whereby the policyholder is 

entitled to continue withdrawing a specified percentage of notional from a fund account or in some cases until 

death irrespective of investment market performance on their underlying fund choice. 

Source: Milliman 

 

1.3 Fair value accounting and risk-based solvency measures have highlighted 

risks  

“Historically, many of these options were included in the contract without explicitly being 

priced. Many of the options were thought to be conservatively designed and would rarely, if 

ever, come into play. However, the recent low interest rate period has certainly proven that 

theory wrong.” Hill, Visser et al. 2008 

For insurers and regulators the challenge is that embedded options guarantees are sufficiently 

understood, priced correctly and the risks are managed so that the solvency of the insurer is 

maintained. While these requirements go without saying for any insurance or investment 

product, the drive towards fair value accounting, market-consistent liabilities and economic 

capital calculations has brought the management of embedded options and guarantees to the 

fore. 

To ensure ongoing solvency and profitability insurers will need to charge sufficiently for 

these guarantees and options so that the actuarial insurance risks, market risks as well as the 

interaction between the two are allowed for. 

This dissertation focuses exclusively on the case of the Minimum Rate of Return Guarantee 

(MRRG). This guarantee is also commonly referred to as the Guarantee Minimum 

Accumulation Benefit (as referred to in Table 1).  More specifically, the case of the MRRG 

written over recurring contribution (or premium) savings contracts are analysed for pricing 

and hedging purposes. 
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1.4 Single contribution MRRG cases have a closed form solution 

For the single-premium case of a unit-linked investment guarantee closed-form solutions can 

often be found. The basis of these solutions is similar, if not identical, to that of the Black 

Scholes European put option pricing solution (Black and Scholes 1973). Further detail on the 

application of these methods to life insurance can be found in the following papers: Brennan 

and Schwartz 1976, Bacinello and Ortu 1993, Nielsen and Sandmann 1995, Nielsen and 

Sandmann 1996 and Nielsen and Sandmann 2002. Finding an exact closed form solution for 

the value of a guarantee or embedded option is an ideal scenario for an insurer but 

unfortunately the guarantees and embedded options sold by insurers today are often far too 

complex for analytical solutions to be found (Finkelstein, McWilliam et al. 2003). This is 

because the bulk of savings products sold by the insurance industry are regular contribution, 

rather than single contribution, committed savings contracts. 

1.5 Investment guarantees on regular contribution savings contracts exhibit 

path-dependent payoffs 

As an introduction to the complexity of a recurring contribution MRRG We introduce an 

example. We take the case of a simple 3-year regular annual premium savings product with a 

minimum return of contribution guarantee (0% minimum rate of return guarantee). Figure 1 

shows the value of the client’s investment fund units compared to his or her R1000 per 

annum of notional guarantee build-up at each of the three year periods ending 1 January 1999 

to 1 January 2012. 

If a life insurance company were to have sold a minimum of return of contribution guarantee 

on an investment fund earning the JSE All Share Total Return Index over each of these 3-

year periods then it would have had to top-up the clients fund value at the guarantee maturity 

date by R355 on 1 January 1999 and by R46 on 1 January 2009.  

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



- 22 - 

Figure 1: Guarantee top-up requirements for cohorts of 3-year policies of R1000 p.a. paid annually in advance 

accruing the total return of the JSE All Share Total Return Index for periods ending 1 January 1999 to 1 January 

2012 with 0% rate of return guarantees 

 

Source: Inet data, own calculations 

Figure 2 shows detail of the annual rates of return achieved on the investment fund in the 3-

year periods prior to each contract maturity. In the case of 1 January 2009 top-up the return is 

on the three prior calendar years were 41%, 19% and -24% in 2006, 2007 and 2008 

respectively. This equates to a 3-year annualised return of positive 9% per annum. Despite 

this, the 0% per annum MRRG bites and a top-up is required on 1 January 2009. 

Figure 2: Illustration of guarantee top-up requirement on 1 January 2009 despite a positive 3-year time-weighted 

annualised return of 9% per annum having been achieved on the JSE All Share Total Return Index 

 

Source: Inet data, own calculations 
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A guarantee top-up is required because the MRRG, which is written over a recurring 

contribution product, is the return achieved on the money-weighted average of the returns 

over the period and not on the time-weighted cumulative return achieved over the period. 

Table 2 shows that the average return on the JSE All Share Total Return Index performance 

weighted on the three contributions was c.-1.5% despite the JSE All Share Total Return Index 

having increased over the period. If the index returns are now modified, such that the index 

level achieved at 1 January 2008 is achieved at 1 January 2007, as in Table 3, then the 

contribution weighted average return drops even further to c.-6.3%. This is because the return 

on the second contribution to maturity now drops, as can be seen in Table 3.  

Table 2: Actual realised return on contributions to 1 

January 2009 maturity 

Date Fund  

index  

(J200T) 

Return on  

contribution  

to maturity 

Contribution  

weighted 

02/01/06 1673.83 28.1% 33.3% 

01/01/07 2358.35 -9.1% 33.3% 

01/01/08 2805.72 -23.6% 33.3% 

01/01/09 2144.23 n/a n/a 

Average return -1.5% 100.0% 

Source: Inet data, own calculations 

 Table 3: Demonstration of path-dependency via 

accelerating the 2007 index performance to 2006 

Date Fund  

index  

(J200T) 

Return on  

contribution  

to maturity 

Contribution  

weighted 

02/01/06 1673.83 28.1% 33.3% 

01/01/07 2805.72 -23.6% 33.3% 

01/01/08 2805.72 -23.6% 33.3% 

01/01/09 2144.23 n/a n/a 

Average return -6.3% 100.0% 

Source: Inet data, own calculations 

Figure 3 illustrates the effect of the of the index level being achieved one year earlier, as was 

the case in Table 3. The top-up at 1 January 2009 now needs to be R190 (rather than R46 

previously). MRRG benefits written over recurring contribution contracts are therefore 

affected by the index level (or fund unit price) at each contribution date and are therefore 

path-dependent. 
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Figure 3: Illustration of the increase in guarantee payoff resulting from bringing forward the actual returns achieved 

in 2008 by one year 

 

Source: Inet data, own calculations 

 

1.6 Regular contribution MRRG benefits can be interpreted as put options 

based on a stochastically-weighted average of the underlying 

This dissertation will draw extensively from the detailed work of Schrager and Pelsser 

(Schrager and Pelsser 2004) to outline a formulaic expression for the case of a recurring 

contribution (or premium) investment contract with a MRRG. In doing so, I adopt Schrager 

and Pelssers’ notation (Schrager and Pelsser 2004). 

Schrager and Pelsser let St be the underlying risky asset price at time t. An example of this 

underlying risky asset may be the underlying unit-linked fund price (or an index level). 

Schrager and Pelsser setup a contract where the first investment premium (contribution) is 

paid at time 0 and subsequent investment premium payments be made at time i, where i = 0, 

1, ... n – 1 and denote these premium payments as Pi. Then assume that at t0 the balance of 

the client’s fund is zero in our initial workings. i.e. construct a new recurring-premium 

contract. By not applying any premium deductions or charges and adopt the simplification 

that the full investment premium is allocated to the client’s chosen investment fund account 

when payment is made. The number of units purchased with each premium Pi is thus equal to 

Pi / Si . Similar to Schrager and Pelsser, let T = tn  be the time at which the policy expires and 

the guarantee payment is made. The unit price at time T  is denoted as ST .  
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Then, as shown by Schrager and Pelsser (Schrager and Pelsser 2004), the client’s fund value 

at the policy expiry, at time T, is given by FVn where FV denotes the fund value, as in 

Equation 1. 

Equation 1 

FV	 =����� ���⁄ �	��
��  

Using Schrager and Pelssers’ notation, K, to denote the minimum maturity payment offered 

by the guarantee. The resulting contract maturity payoff is given by Equation 2 (Schrager and 

Pelsser 2004). 

Equation 2 

max�FV	, �� = max� � �����
	��
��
, �! = 	 � �����

	��
��
	+ 	�� −	 � �����

	��
��
!
%

 

The insurer’s payoff is therefore a function of the client’s accumulated fund value, at contract 

expiry, plus a put option on  � &'&(�
	��
�� . This can be interpreted as a put option  based on a 

stochastically weighted average of the underlying fund unit prices over the duration of the 

contact at expiry (Schrager and Pelsser 2004).  

For the purposes of this dissertation I setup the guarantee, K, to be the guaranteed fund value 

given by accumulating the client’s invested contributions at a rate of return guarantee. K is 

therefore given by Equation 3 where R denotes the continuous form of the annual guaranteed 

rate of return guarantee.  

Equation 3 

� =��)*������	��
��  

Schrager and Pelsser extend the above notation to allow for the likely characteristics of 

typical regular premium investment contacts. For example, they extend to include an early 

death guarantee payment and premium fee deductions (deterministic deduction for expenses 
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and/or mortality changes). They also demonstrate proofs of the independence of mortality on 

early payment as well as on premium fee deductions. The consequence of their proofs being 

that I can ignore such independent items as these demographic policy factors can be “pulled 

out” of the payoff formula outlined in Equation 2 (Schrager and Pelsser 2004).  

1.7 Recurring contribution MRRG benefits are analogous with Asian options 

The result of the structure of Equation 2 is that of the guarantee is dependent on the 

underlying unit fund (or index level) prices at different time points. This, as discussed by 

Schrager and Pelsser leads to the analogy with Asian options (Schrager and Pelsser 2004). 

Under a few simplifying assumptions for the return volatility and the short rate processes, 

Schrager and Pelsser’s analogy with Asian options leads to an insightful introduction to the 

mathematical characteristics of the recurring contribution MRRG payoff. 

In order to prove this analogy, Schrager and Pelsser setup a case of market completeness and 

no arbitrage. Further to this they setup a simple Black-Scholes process for the underlying 

equity index/unit fund price, denoted ��� . In addition, they assume the stock price return 

volatility, σs, and the short rate, r, are both constant over time (Schrager and Pelsser 2004).  

Under these assumptions Schrager and Pelsser setup a recurring contribution savings policy 

where the premium invested are a level amount, Pi, where Pi equals 1 -�.⁄  of the initial equity 

index / unit fund price level, So (Schrager and Pelsser 2004). Under these assumptions they 

prove the equality between the price of an average price Asian Put and a MRRG (both with 

the same guarantee level, K). i.e. They prove Equation 4 (Schrager and Pelsser 2004). 

Equation 4 

e�0�12 3	4� −	1-����	�� 5
%	6 	= 	 e�0�12 788

9	�� −	 � �����
	��
��
!
%
	:;;
<
 

Their approach is to prove this equality by showing that the first two moments of 
�	� ���	
��  

and  � &'&(�
	��
��  are equal under the risk-neutral measure, Q. Demonstrating equality of the 

first two moments alone is sufficient to conclude the proof as, by assumption, the processes 
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are lognormal random variables and therefore specified fully by the first two moments 

(Schrager and Pelsser 2004).  

Schrager and Pelsser’s work shows us that under Black-Scholes assumptions a similar level 

of randomness exists in each premium payment period (Schrager and Pelsser 2004). Schrager 

and Pelsser go on to conclude that this equality will still hold under a generalised case which 

allow for other forms of stationary stochastic volatility (Schrager and Pelsser 2004). 

1.8 MRRG prices are sensitive to the stochastic interest rates 

However, the same is not true with regards to interest rate risk (Schrager and Pelsser 2004). 

The Asian option (given by the term denoted on the left in Equation 4) is sensitive to 

stochastic interest rates from time zero until each of the Asian average calculation dates i.e. 

[0,ti] for i = 1,2, ...,n (Schrager and Pelsser 2004). However, the unit-linked guarantee (given 

by the term denoted on the right in Equation 4) is sensitive to interest rates from the date of 

payment until maturity i.e. over the interval [ti,T] for i = 0,1, ...,n – 1 (Schrager and Pelsser 

2004). The implications of this are that one cannot generalise the results calculated under 

Schrager and Pelsser’s assumptions to allow for stochastic interest rate properties or for any 

form of time period dependence with non-stationary features in the equity index / unit fund 

volatility (Schrager and Pelsser 2004).  

Schrager and Pelsser interpret this as the risk in, ST / ���, being split into interest rate (or 

forward bond price) risk, from time zero to time i, ti, and equity (or forward stock price) risk 

from time ti to maturity time, T (Schrager and Pelsser 2004). They concluded that this outline 

of the unit-linked guarantees mathematical characteristics provides us with insight as to 

potentially appropriate hedging approaches. What this means is that the risk changes over the 

time the contract is in force. For example, early in the contracts term the risk is mainly related 

to interest rate sensitivity but as the contract approaches maturity the underlying equity index 

/ unit fund price risks dominate (Schrager and Pelsser 2004). Therefore, early in a contracts 

life interest rate hedges such as caps and floors may be appropriate while stock options 

(forward starting put options, for example) may have the characteristics of being good hedges 

later as the contract approaches maturity (Schrager and Pelsser 2004). 
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1.9 Quantification and projection of dynamic hedging strategies is a key 

challenge 

The Society of Actuaries 2007 Survey on variable Annuity Hedging Programs for Life 

Insurance Companies (Gilbert, Ravindran et al. 2007) outlines relative levels of difficulty of 

the potential implementation challenges (Table 4). The quantification and projection of the 

impact of dynamic hedging strategies under various assumptions bases remains a key 

industry challenge. With this as a backdrop, this dissertation aims to outline a practical 

approach to price and hedge MRRG products in the more complex path-dependent case of the 

recurring contribution life insurance contract. 

Table 4: Rankings of the difficulty of the potential variable annuity hedging program implementation challenges 

Rank Description of Implementation Challenge 
Extremely 

Difficult 

Somewhat 

Difficult 

Relatively 

Easy 

1 Attribution analysis 3 12 1 

2 
Quantification and projection of impact of specific 

dynamic hedging strategies on an economic basis 
6 8 4 

3 
Quantification and projection of impact of specific 

dynamic hedging strategies under FAS 133 
5 9 4 

4 Personal acquisition and retention 4 11 3 

5 Calibrating models 4 12 3 

6 Analysis of various risk management strategies 1 16 1 

7 
Development and/or acquisition of requisite 

software and technology 
2 14 2 

8 Formulating specific hedging strategies 0 17 1 

Source: Gilbert, Ravindran et al. 2007 

 

1.10 Research objective: To outline a practical approach to price and hedge 

MRRG embedded in recurring contribution life insurance contracts 

“Due to the rapid growth of equity-linked business, it is important to address the question of 

‘correct’ pricing of equity-linked products in general. From the perspective of the insurance 

industry, the effects of failing to adopt adequate pricing and risk management models can be 

devastating. Clearly, some of the events causing large losses to insurance companies cannot 

be predicted (natural disasters, terrorist activities, etc.). However, fluctuations in the prices 
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of risky assets and mortality patterns can be analyzed quantitatively and qualitatively to help 

build proper pricing tools for insurance firms. Thus the question of finding hedging 

methodologies that can assess and value financial and insurance risks, and provide 

appropriate risk management strategies, is of great interest and significance from both 

theoretical and practical perspectives.” Melnikov and Romanyuk 2006 

Chapter 1 introduces the practical and mathematical challenges faced when quantifying a fair 

price for MRRGs embedded in recurring contribution life insurance contracts. Chapter 2 

provides a literature review of the various approaches currently adopted when pricing 

embedded rate of return guarantees. Chapter 3 continues the literature review with a 

particular emphasis on the mathematical relationships between the recurring contribution rate 

of return guarantees price and the stochastic processes for the underlying market variables 

being modelled. I demonstrate the pricing of a typical life insurance policy minimum rate of 

return guarantee in Chapter 4. This pricing is performed under the Black-Scholes Hull-White 

model. Sensitivities are shown as to how the calculated price of the MRRG changes under 

different market input variables as well under different policy characteristics. For example, 

these include different guarantee levels and contract maturity terms. Chapter 5 draws from 

the literature in discussing current market practice for the hedging of such guarantees. A 

simple hedging program is outlined. In Chapter 6 I draw from the literature on real-world 

economic variable simulation. A method is calibrated to the South African market and 

applied to the quantification and projection of a dynamic hedging program under a simple 

daily hedging program. In Chapter 7 I summarise the outline of a practical pricing and 

hedging approach and show its effectiveness. This concludes this dissertation by meeting the 

research objective. Chapter 8 outlines the limitations of this analysis and discusses areas of 

potential future research. Chapter 9 contains various technical appendices and Chapter 10 

provides a list of references used.  
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2 Literature Review: Various approaches adopted to price embedded 

rate of return guarantees 

2.1 Deterministic pricing of embedded guarantees is inappropriate 

The vast majority of products sold with embedded options and guarantees of some form 

represent an aggregate risk to the insurer in that a significant portion of their exposure is 

likely to experience payout at a similar point in time.  

This is different to the case of mortality (with the exception of catastrophic mortality risk), 

where a higher number of policies would diversify the risk to the insurer across its pool of 

lives (Boyle, Hardy et al. 2007). This principle is due to the law of large numbers where the 

experience will tend to the mean and from the Central Limit Theorem the distribution of 

claims will tend to the normal distribution in the case where the variances are finite (Boyle, 

Hardy et al. 2007). 

The major shortcoming of the deterministic approach is that it fails to account for variability 

of the potential future outcome of risky asset returns. Therefore by pricing on expectation 

alone, via the use of deterministic assumptions, the probability and size of potential fund 

shortfall payment on the guarantee contracts which expire in the money is not captured. The 

use of deterministic pricing for diversifiable risks is discussed in Boyle and Schwartz 1977, 

Lin and Tan 2003 and Boyle, Hardy et al. 2007 

To compensate for these shortcomings a margin is often added. For example, Dahl 2004, 

states: “insurance firms have traditionally calculated premiums and reserves based on 

deterministic mortality and interest rates, and to compensate for this, have overpriced 

financial and insurance risks”. The product being that this approach results in higher 

premiums than necessary (on average) and thus leave room for error between charged and 

expected mortality experience and interest rates.  

Deterministic pricing therefore lacks a robust approach to incorporate the variability (or 

volatility) of potential parameter outcomes.  
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2.2 The probability of ruin concept gives an indication of the potential real-

world payoff 

An understanding of this fundamental difference in treatment of diversifiable and non-

diversifiable risk gave rise to considerable concern for the actuarial community in the 1970’s. 

In response to this the Institute and Faculty of Actuaries (UK) commissioned a report by the 

Maturity Guarantees Working Party over three decades ago. The Working Party report 

(Benjamin, Ford et al. 1980) found that the traditional valuation methods in life insurance 

were deterministic (or expected value) pricing in nature with prudence margins incorporated 

implicitly in the basis. The Working Party report also found that these methods were 

appropriate for the case of independent risks, such as mortality, where large numbers of 

independent lives were exposed to risks resulting in low variability of claims. However, 

investment contracts with guarantees were not independent of one another as the external 

market events which drive payoffs would affect all policies at the same time. As a result of 

this effect the variability in the insurers’ claims is in fact far greater (Benjamin, Ford et al. 

1980). 

The Working Party (Benjamin, Ford et al. 1980) aimed to find a distribution for unit prices 

over time and suggested that simulating returns under appropriate model assumptions should 

be the basis for reserving for maturity guarantees. This method of stochastic simulation 

would recognize the variability of potential investment returns and associated guarantee 

claim costs (Benjamin, Ford et al. 1980).  

This approach requires a distribution assumption for the range of potential outcomes for the 

random variable in question (in our case the fund value at maturity). The insurer could then 

setup a reserve such that they would hold sufficient reserves for 99% of the time, say. This 

concept of the “probability of ruin” would give the insurer comfort that they were holding 

sufficient reserves to cover almost all future events that could lead to both significant over 

estimation of guarantee costs as well as prove to be insufficient in extreme events (Benjamin, 

Ford et al. 1980). The method does not, however, give any indication as the manner in which 

assets backing reserves should be invested. i.e. the probability of ruin approach merely gives 

an indication of how much a insurers liability may be within a given degree of confidence 

(Benjamin, Ford et al. 1980). This method does not provide an outline of the behaviour of the 
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price for such a guarantee under different forecasts and thus falls short of providing the user 

with insights into potential immunisation or hedging strategies (Benjamin, Ford et al. 1980). 

The approach therefore only lends itself to a passive strategy of simply holding what is 

believed to be a sufficient amount of assets to meet its obligations with a chosen high level of 

probability. It does not, however, remove the risk the insurer will have to pay out more than 

the reserve held or find itself holding too much reserve for the expected payment x% of the 

time. This “over reserving” is inefficient in that it would lead to a cost to the insurer on all but 

the few occasions that the guarantee payment would need to be met. 

2.3 Financial economics approaches are increasingly being applied 

2.3.1 Introduction to typical financial economics options pricing approaches 

The advent of Black and Scholes research papers on the pricing of options and corporate 

liabilities (Black and Scholes 1973) laid the foundations for much of the last four decades of 

work on the topic of option pricing. For insurers, the theory was considered soon thereafter 

by Brennan and Schwartz (Brennan and Schwartz 1976; Brennan and Schwartz 1979). These 

papers, along with the various literature items, which followed, further developed the 

thinking that maturity guarantees could be viewed as similar, or in some cases identical, to 

put options. In the two decades that followed a number of authors investigated how financial 

economics approaches could be used to price single premium life insurance contracts. Some 

of these authors are: Boyle and Schwartz 1977; Bacinello and Ortu 1993; Bacinello and Ortu 

1993; Nielsen and Sandmann 1996; Boyle and Hardy 1997. 

The publications by Brennan and Schwartz and by Boyle and Schwartz, amongst others, 

suggested that an answer to the question of how to price the single premium case of an 

embedded option was found. The Maturity Guarantees Working Party (Benjamin, Ford et al. 

1980) considered this point when it investigated Fagen’s publication (Fagen 1977) which 

suggested that in the case of savings contracts with maturity guarantees, the risks could be 

reduced or even mitigated entirely via an appropriate immunization strategy. This type of 

strategy would typically suggest that a lower number of underlying fund units should be 

purchased to maintain an immunized position (Fagen 1977). Under this approach the pricing 

(and potential hedging) of the embedded options and guarantees were performed under the 

equivalent martingale measure (Fagen 1977). 
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The Working Party, at the time, investigated the Black and Scholes paper (Black and Scholes 

1973) but concluded that the theory was based on complex mathematics and there were still 

varying degrees of confidence that the mathematics were indeed sound (Benjamin, Ford et al. 

1980). They also noted that the theory was reliant on several underlying assumptions which 

would not easily hold in practice, and in particular in the context of insurer’s exposures. The 

Working Party (Benjamin, Ford et al. 1980) suggested that at that point in time it was not 

clear that following immunization strategies could conclusively be shown to reduce maturity 

guarantee requirements but it did conclude that the subject warranted further investigation.  

Despite financial economics principles having resided in the financial engineering literature 

for some time,  the application of these principles to insurance has largely evolved over the 

past ten to fifteen years (Boyle, Hardy et al. 2007). This is in part due to the fact that the 

majority of the financial economics literature has focussed on short-rate models for relative 

pricing of short-term traded derivatives (Boyle, Hardy et al. 2007). Boyle, Hardy, et al. state 

that the direct application of this research to the case of the non-relative pricing (or absolute 

pricing) of long-term guarantees and options is not necessarily appropriate (Boyle, Hardy et 

al. 2007).  

Boyle and Hardy, in their paper titled Reserving for maturity guarantees: Two approaches 

(Boyle and Hardy 1997), describe the stochastic simulation approach suggested by the 

Working Party (Benjamin, Ford et al. 1980) and option pricing methods discussed above then 

go on to compare the two approaches. They point out that the potential financial economics 

approach provides the insurer with insight into actively managing the risk through 

dynamically adjusting its investment strategy on an ongoing basis (Boyle and Hardy 1997).  

They state that the Black and Scholes option price model is underpinned by a simple 

geometric Brownian motion model for the equity returns and comment that while this may be 

appropriate for its original intention it may not be the case for the long-dated options written 

by insurers. Under the Black Scholes assumptions equity returns are assumed to be 

independent and identically distributed with a constant mean and variance and this is seen to 

be unrealistic in the context of longer-term options (Boyle and Hardy 1997).  

The arbitrage theory developed by Black and Scholes (Black and Scholes 1973) takes the 

price dynamics of certain economic variables (equity, rates, etc) and tries to calculate the 

prices of other derivatives of those underlying (contingent claims) through arbitrage 
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considerations alone. What this means is that by adopting this approach for pricing a 

derivative implies that no opportunities for arbitrage should exist (Harrison and Kreps 1979).  

This arbitrage-free pricing of contingent claims has been extensively researched in: Merton 

1973; Ross 1976; Merton 1977. This modelling approach is called modelling in the risk-

neutral measure. The risk-neutral measure is built on the concept of a market price of risk 

(Hull 2003). The traditional risk-neutral world assumes that all market prices of risk are zero. 

In other words, investors do not require risk premiums to invest (Hull 2003). Using the risk 

neutral model does not necessarily require that investors are indeed risk neutral in behaviour 

but it is merely a convenient method for calculating option prices in a market-consistent 

manner (Hull 2003). Under the risk-neutral probability measure, the expected return on all 

assets is equal to the risk free rate (Hull 2003). 

Under the practical implementation of this approach the yield curve (swap or bond) is used 

alongside assumptions for market-implied volatility for the interest rate process and 

underlying risky assets to calibrate an economic scenario generator under so as to generate a 

series of market-consistent risk-neutral simulations. This requires an economic scenario 

generator, which in turn requires some form of parametric term structure model to specify its 

dynamics.  

2.3.2 Incomplete market dynamics bring the validity of the option pricing theory 

approaches into question 

“The main assumptions of the option pricing theory, i.e., no-arbitrage, dynamic hedging, and 

market completeness. Of these three hypotheses, the least realistic one is that of market 

completeness, namely, it is possible to replicate the payoff of any claim in the market by 

means of a self-financing strategy”. Consiglio and Giovanni 2007 

Consiglio and Giovanni give a number of motivations as to why investment return options 

typically sold by insurance companies seldom satisfy the requirement for market 

completeness (Consiglio and Giovanni 2007). For example, they state that the underlying 

stochastic processes often exhibit jumps in the real world, underlying assets sometimes 

exhibit heteroscedasticity, discrete hedging is expensive and market frictions such as trading 

costs and limited short sales ability exist (Consiglio and Giovanni 2007).  
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Other authors have investigated the pricing of options under incomplete market assumptions 

further, for example: Follmer and Sondermann 1986; Follmer and Schweizer 1991; 

Schweizer 1996; Moeller 1998; Moeller 2001 all discuss various aspects of financial 

economics approaches in the context of life insurance guarantees.  

Nyholm and Rebonato (Nyholm and Rebonato 2007) describe the two sub-classes of such 

risk-neutral model approaches. They state that a number of relative-pricing models are 

available for the yield curve evolution over the user’s choice of time horizon but split these 

into two sub-classes with distinguishing characteristics (Nyholm and Rebonato 2007).  

Nyholm and Rebonato firstly describe fundamental models which use a joint specification of 

the risk premia and the real-world dynamics. These models describe a process for the driving 

factors of the yield curve and hence the risk aversion of the market participants. Models such 

as Vasicěk (Vasicek 1977), Cox, Ingersoll, Ross (Cox, Ingersoll et al. 1985) and Longstaff 

and Schwartz (Longstaff and Schwartz 1992) fall into this category (Nyholm and Rebonato 

2007). They too state that the translation from the risk-neutral to real-world drift can be 

accommodated by adjusting for the markets risk aversion characteristics via the drift factors 

(Nyholm and Rebonato 2007). However, while all of these models do offer users modelling 

ability none of them can reproduce exactly today’s yield curve nor its evolution over time 

(Rebonato, Mahal et al. 2005). 

Nyholm and Rebonato state that the fundamental problem with these fundamental model 

approaches is that their parametric form has limited factors and thus yield curve movements 

are limited. This is particularly a problem in the context of MRRG pricing where is has been 

shown the term structure of the yield curve is a significant determinant of the price as will be 

shown later (Nyholm and Rebonato 2007). 

Secondly they describe, reduced-form approaches, such as Rebonato, Mahal et al. (Rebonato, 

Mahal et al. 2005) such as Ho and Lee (Ho and Lee 1986), Hull and White (Hull and White 

1990) and Heath, Jarrow and Morton (Heath, Jarrow et al. 1989) and note that these are also 

being constructed for the purpose of relative pricing and therefore only contain drift terms 

governed by no arbitrage conditions. While this is also appropriate for relative pricing this is 

inappropriate for modelling long-term real-world yield curve evolutions in that the evolutions 

arising are dictated by the no-arbitrage drift term and therefore do not resemble reality 

(Nyholm and Rebonato 2007). 
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Rebonato et al. states that these short-rate models prescribe curve evolution to replicate the 

interest-rate derivatives with no arbitrage so while these models are based on the Girsanov 

transformation (Girsanov 1960) between real-world and pricing measure the restrictions on 

this transformation are absolute continuity and equivalence between the real-world and 

pricing measure (Rebonato, Mahal et al. 2005). They note that if perfect replication is not 

possible, through incompleteness, there exists a variety of pricing measures consistent with 

the absence of arbitrage and therefore there exists a variety of drifts to avoid arbitrage 

(Rebonato, Mahal et al. 2005). 

As a result of this it has been suggested by Rebonato et al. (Rebonato, Mahal et al. 2005) that 

semi-parametric interest-rate model approaches are appropriate for assessing hedging 

program performance, asset/liability investment mismatch strategies and for economic-capital 

calculations. All of these applications, are of interest to life insurers writing long-term 

products, as they require the evolutions of the yield curve to forecast for lengthy time periods 

(often many decades) as well as that they must accurately represent the potential population 

of future yield curves (Rebonato, Mahal et al. 2005).  

2.4 The concept of the “fair price” of a MRRG remains a debate 

2.4.1 Market consistency can’t be achieved for such long-dated guarantees 

At the core of the challenge of finding a “fair price” for a MRRG lies the question: How will 

risky underlying assets, such as equity, perform over the next few decades? It is fair to 

acknowledge that major economic trends, the nature of corporate earnings and governments 

interaction, demographic shifts, politics and technological change will play their part in future 

risky asset returns. To quantify how these, and other factors, will affect expected returns 

(firstly), and the variability of these returns (secondly) seems extremely ambitious, at best.  

The market does not provide us with a price for this long-term risky asset return risk. Traded 

equity options in South Africa seldom have maturities beyond three years, let alone as far out 

as thirty years. And in addition, the range of moneyness levels traded decreases rapidly as 

tenors stretch out into the future.  

Further, the interrelated nature of long-term risky asset returns and risk-free asset returns 

becomes more central to the problem as the effects of discounting start to play a greater role 
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in the determination of present value pricing. Against this backdrop, true market consistent 

pricing is a challenge and simplification is almost always required. 

2.4.2 Acknowledging this, and moving to find a pragmatic model and associated hedge 

recipe is of value for life insurers 

This difficulty should not stop insurers from taking pragmatic decisions to manage key risks 

embedded in such long-dated MRRGs. The argument behind this statement is that it would be 

better to have a robust, uncomplicated, model for the reasonable cost of such a guarantee than 

none at all. Putting such a model in place would facilitate the testing of guarantee price 

changes under stressed market conditions and allow management to act to protect the 

insurance company’s balance sheet against key market risks.  

The remainder of this dissertation acknowledges this practical reality and aims to provide a 

robust, reasonable, basis for the day-to-day management of the key risks emanating from 

such MRRG products in the case of the recurring contribution life insurance contracts. 

2.4.3 Insurers day-to-day income statement and solvency management objectives are 

likely to be driven by local accounting measures and/or regulatory solvency 

“There is still divergence in approaches to the pricing and hedging of life insurance 

guarantees. Proponents of the risk-neutral approach will advocate for the application of 

those methodologies on the basis that it provides a no arbitrage price for the option but 

critics comment that the onerous assumptions underlying no arbitrage models and argue that 

these assumptions as inappropriate for use in the modelling of the behaviour of the option, 

and consequentially the hedge behaviour over the life of the option in the real world.” 

Haastrecht, Lord et al. 2008 

The practical reality is that the pricing approach adopted will likely be driven by the desire to 

meet some commercial goal. This is likely to be either income statement volatility 

management or economic capital management (or both). 
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2.4.4 The Black Scholes Hull White model provides a robust, mathematically tractable 

basis  

I choose to use the Black Scholes Hull White (BSHW) basis for pricing. Some of the positive 

features of this model are that the model has high mathematical tractability, secondly it can 

be calibrated directly to the market yield curve (which has benefits for market consistent 

yield curve pricing) and it allows for the correlations between short rates and the risk 

underlying equity process.  

Thus the model provides flexibility, but is not overly complex and requires multiple instances 

of manual calibration. Given the limited availability of traded market instruments to infer the 

market price of risk for variables such as correlations between equity and rates, or across the 

rates curve, extensions beyond this model would start to become spurious in the South 

African context. 

2.5 Introducing the hybrid approach and explaining why real-world and risk-

neutral simulations will both be required for assessing a hedging program 

Boyle and Hardy also outline the issues life insurers have faced in introducing dynamic 

hedging approaches. They describe the long-term nature of the benefits, the fact that options 

are struck far out of the money, the practical issues of discreet hedging and transaction costs 

as well as the fact that mortality means that the time to pay out is often random to a degree 

(Boyle, Hardy et al. 2007). They suggest the hybrid approach of combining both real-world 

stochastic simulations and the risk-neutral approach in which options are priced under the 

risk neutral measure but that the cost quantification of a hedging strategy is performed under 

real world projections. 

This approach allows users to estimate the hedged liability arising from discreet hedging, the 

associated transaction costs and the model error. Practically this approach is performed by  

using the real-world measure to project the behaviour of various asset classes over time so 

that the  value of the hedging portfolio can be compared  to the new risk-neutral price of the 

MRRG under the projection of the real-world value of each of the economic inputs. Users can 

thus infer the unhedged liability and then quantify the cost of re-hedging the position at that 

time. This process can then be repeated over the course of a number of time-steps and by 

discounting these costs the cost of the hedging program (by way of the gaps arising from non-
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continuous hedging as well as transaction cost) can be found  (Boyle, Hardy et al. 2007). 

Boyle and Hardy point out that the hybrid approach to risk management is permitted for 

Canadian insurers writing equity-linked contracts with guarantees (Boyle, Hardy et al. 2007). 

Accordingly, I adopt this approach when outlining a simple approach to project and quantify 

hedge program effectiveness in the real-world.  
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3 Literature Review: Outlining the relationships between a recurring 

contribution MRRG price and the underlying stochastic processes 

3.1 Recapping the basics – the essence of the pricing problem is to find the fair 

price of a MRRG written over an stochastic equity path 

In section 1.5 I showed that the case of a MRRG written over a recurring contribution life 

insurance contract is path dependent. The consequence of this path-dependency on pricing is 

that Monte Carlo simulation methods need to be employed. 

3.2 Demonstration of the effects of stochastic interest rates 

Schrager and Pelsser (Schrager and Pelsser 2004) use the Levy approximation (Levy 1992) to 

analyse the effects of stochastic interest rates on the MRRG price. They show that this 

amounts to approximating the distribution of the fund value (the weighted average of sum of 

the fund unit prices) at maturity,  � &'&(�
	��
�� , with a lognormal distribution with the same 

mean and variance (Schrager and Pelsser 2004). This is because under the assumption of log-

normality the first two moments fully specify the distribution of the fund value outcomes, and 

in turn the associated guarantee (Schrager and Pelsser 2004). Schrager and Pelsser compute 

the first two moments of the fund value process under the T-forward measure to show this.  

They demonstrate that the benefit of making the lognormal approximation assumption is that 

we can analyse the effects of the stochastic interest rates via analyzing only the first two 

moments (Schrager and Pelsser 2004). What Schrager and Pelsser find is that the first 

moment doesn’t show the effects of stochastic interest rates and therefore, by implication, the 

full effect of stochastic interest rates is captured in the second moment alone (under the 

lognormal assumption for the fund value at maturity process). This results from the 

assumption that the expectation, under the T-forward measure, for the return on the 

underlying unit funds’ from ti to T is given by the continuously compound forward rate for 

the period (Schrager and Pelsser 2004). 

The formulaic breakdown of the second moment, is therefore key to understanding the impact 

of stochastic interest rates on the guarantee payoff. To calculate the second moment, 

however, assumptions about the dynamics of the price of the underlying risky asset (unit fund 
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price or stock price index) are needed. Schrager and Pelsser parameterize their model on the 

assumption of lognormal stock prices and a Gaussian interest rate model (Schrager and 

Pelsser 2004). This assumption implies that the volatility of forward unit fund prices and 

bond prices are deterministic functions of time (Schrager and Pelsser 2004). This setup, using 

Schrager and Pelssers’ notation (Schrager and Pelsser 2004), amounts to the T-forward unit 

fund price, FT, and the T-forward bond price, D
T
(t,S), following the price process dynamics of 

Equation 5 and Equation 6 respectively. 

Equation 5 =>�� = ?@�A�	>��	=B�� 
Equation 6 

=C� �A, �� = ?DE'�A�	C�	�A, ��	=B�&� 
Here, B�� and B�&� are standard Brownian motions under the T-forward measure and ?@  and ?DE' are deterministic functions of time (Schrager and Pelsser 2004). Schrager and Pelsser 

assume that the correlation between the two Brownian motions are given by Equation 7 and 

Equation 8. 

Equation 7 =B��=B�&� = F	@'	DE' 
Equation 8 =B�&�=B�G� = F	DE'	DH' 
 

Schrager and Pelsser compute the formulaic breakdown of the second moment in their paper 

(Schrager and Pelsser 2004) and arrive at the expression given by Equation 9. In this 

expression time ti represents the time at which the i
th

 contribution is made and tj is some later 

date. Note that tj can be set to the maturity time. 
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Equation 9 

For A	 ≤ 	 A ≤ AJ	, by the Change of Numeraire Theorem, which allows the measure of worth 

which is used to price an asset to be changed, the second moment is given by (Schrager and 

Pelsser 2004): 

1�2( 	K	L � �����
	
��

MN	O 	= �� �N	1�2( PQ�����R
NS	��

��
	+ 		2U��JV �J 1�2( PQ �������WR

NS
	�N

��
 

 

Equation 9 allows Schrager and Pelsser to provide an insightful explanation as to the effects 

of stochastic interest rates and underlying stock price volatility affect the MRRG price. The 

first term of Equation 9 is independent of both the assumed stock price and bond price 

volatility and therefore does not give rise to any volatility (Schrager and Pelsser 2004).  

The three integrals in the second term of Equation 9 quantify the instantaneous covariance’s 

of ln(ST / ���) and ln(ST / ��X) for the relevant time intervals (Schrager and Pelsser 2004). 

Schrager and Pelsser describe these three integrals as: 

• The first integral (before ti, i.e. from t to ti) describes the correlation between 

normalised bonds with maturity ti and tj (Schrager and Pelsser 2004). This is because 

the uncertainty relates to the T-forward bond price processes. This integral can 

therefore be interpreted as the quadratic covariance between the forward bond 

processes. Practically, this means  that the risk from outset until a contribution is 

invested is only related to interest rates (Schrager and Pelsser 2004). 

• The second integral (interval between ti and tj) describes the covariance between the 

forward equity index / unit fund and D(t,tj) / D(t,T) (Schrager and Pelsser 2004). Thus 

the uncertainty relates to the quadratic covariance of the forward equity / unit fund 

and forward bond price processes. This is because after ti , ��� is now known and the 

risk remaining in ST / ��� is accounted for by the T-forward asset price (Schrager and 

Pelsser 2004). 

• The third integral (after tj, i.e. ranging from tj to T) relates only to forward stock price 

risk (Schrager and Pelsser 2004). This risk is described by the implied equity index / 

unit fund volatility of a forward start stock option (Schrager and Pelsser 2004). The 
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lack of interest rate risk results from, after tj  the unit fund prices, ��� 	and	��X would be 

known constants (Schrager and Pelsser 2004).  

Schrager and Pelsser’s interpretation of the second moment demonstrates the effect of 

stochastic interest rates on the price of our recurring premium MRRG. Their findings show 

that, when interest rates are set at expected value (or deterministic), there is no interest rate 

risk from time zero to ti and thus the first and second integral equal zero (Schrager and 

Pelsser 2004). This is because, when interest rates are deterministic then the forward bond 

price volatility will be zero. 

What this means is that under the assumption of log-normality, the effect of stochastic 

interest rates on the volatility of the fund value at maturity, and hence the guarantee value, is 

given by the quadratic covariance between the two forward bond price processes and between 

the forward bond price process and the forward unit fund price process (Schrager and Pelsser 

2004).  

3.3 A more sophisticated model to better reflect the interrelationship between 

the movement of yields at different maturities is needed 

Schrager and Pelssers’ analysis of recurring contribution MRRG’s shows us that we require a 

model that is sophisticated enough to capture the interrelationships between different points 

in the interest rate term structure.  

Fortunately, models for the term structure of interest rates can be quite complex and many 

models would be able to satisfy this requirement. This is because the behaviour of the entire 

(zero-coupon bond) yield curve is required, volatilities along the yield curve may be different 

and interest rates are used for discounting as well as for defining the payoff (Hull 2003). 

3.4 Equilibrium term structure models don’t always allow for market-

consistent pricing... a key requirement for insurance liability valuation 

The Vasicek Model (Vasicek 1977) is one model of a family of one-factor equilibrium 

models. By virtue of its parametric form the Vasicek Model, along with other one-factor 

equilibrium models have only one source of uncertainty – that being the short-rate process. 

The specification of the Vasicek Model is that the instantaneous drift and the instantaneous 

standard deviation are functions of the short-rate but are both independent of time (Vasicek 
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1977). The Vasicek Model, like other one-factor models, has the restriction that all rates 

move in the same direction over a short time interval (Hull 2003). The Vasicek Model takes 

the form: dr = a(b-r)dt + σ.dz where a, b and σ are all constants. In essence, the Vasicek 

Model is mean-reverting in that the short-rate (r) reverts to level (b) at a reversion rate given 

by parameter (a) (Hull 2003). The key drawback of equilibrium models, such as the Vasicek 

Model, is that they do not automatically fit the current term structure (Hull 2003). The result 

of this is that insurance companies would not be able to calculate their liability valuation 

under the current market yield curve as required by fair value accounting and actuarial 

guidance. This is seen as a major shortcoming. 

3.5 No arbitrage term structure models can calibrate to the current yield curve 

No arbitrage models are designed to calibrate exactly to the current yield curve (Hull 2003). 

Hull attributes the essential difference between equilibrium models and no arbitrage models 

to the fact that the term structure of interest rates is an output in the case of the former, while 

it is an input in the case of the later model type (Hull 2003). One of the extensions to the 

Vasicek Model by Hull and White (Hull and White 1990) can be used to provide an exact fit 

to the initial yield curve. The model can be characterized as the Vasicek model with a time-

dependent reversion level (Hull 2003). The extension is now more commonly known as the 

Hull-White model takes the following parametric form: dr = [θ(t) – ar]dt + σ.dz where a and 

σ are constants and θ(t) is time-dependent (Hull and White 1990). 

The Hull-White model of the term structure of interest rates is popular as it is analytically 

tractable while being non-trivial. I therefore choose to model under the Hull-White approach 

to outline a practical approach for pricing and hedging MRRG benefits.  

In the Black-Scholes Hull-White framework stock price indices (or in our case unit fund 

prices) have constant volatility and the short-rate follows the Hull-White process in the risk-

neutral measure. The Hull-White model is based on the stochastic process of the 

instantaneous short rate. The model assumes that the short rate process is normal and mean-

reverting. i.e. Equation 10 holds. 

Equation 10 =[� = �\�−	][��	dA +			σ0dBN,� 
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where [� is the short rate, ?0  is the short rate volatility, a is the mean-reversion strength and \� is the deterministic drift function (Hull 2003).  

The instantaneous forward rate volatility, at time T, is v(t,t+T) = σ.exp[-a.T] (Hull 2003). 

What this means, is as T decreases to zero the volatility of the short rate reduces to σ. A 

drawback of the Hull-White Model is its Gaussian property in that since its short rate is 

normally distributed there is a chance that the short rate is negative at all times t (Hull 2003). 

3.5.1 Modelling the Black Scholes process for the risky equity underlying component 

Schrager and Pelsser (Schrager and Pelsser 2004) make the assumption that the 

(instantaneous) correlation between the stock price and the short rate is constant, given by _`[[)a2b=�ln���; 	=[�e = 	F	=A . Thus, in the Black-Scholes Hull-White model all equity 

volatilities are deterministic functions (of time). This assumption is then represented by the 

processes, =��, for the stock (unit price) as in Equation 11 (Schrager and Pelsser 2004). 

Equation 11 

=�� = [� 	��	dA +	f1 −	FN	?&	��	dB�,� + 	ρσhSjdBN,� 
3.5.2 Demonstrating that stochastic interest rates under Hull-White lead to complex 

guarantee pricing formulae 

Under the Hull-White dynamics it is typical to define the term, k�A, l� = 	 �1 ]m �	n1 −)�o�����e, so as to simplify notation (Hull 2003). In the case of the BSHW model the 

volatilities are deterministic functions of time i.e. constant stock volatility and a fixed 

correlation, F, between the changes in the stock and the short-rate. The implication of this is 

that under these price dynamics , Schrager and Pelsser derive the price dynamics of the T-

forward stock (unit price), >�  and T-forward bond price as in Equation 12 and Equation 13 

(Schrager and Pelsser 2004).  

Equation 12 =C��A, �� = −σ0bk�A, �� − k�A, l�eC��A, ��dBN,��  

Equation 13 

=>�� =	f1 −	FN	?&	>��	dB�,�� + 	ρσh>��dBN,�� + σ0k�A, l�>��dBN,��  
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or equivalently 

=>�� =	p?qN 	+ 	2ρσhσrk�A, l� + ?0N�k�A, l��N 	>��ds�� 
B�,�� ,BN,�� 	and	s�� are standard Brownian motions in the T-forward measure. What this means 

is that users no longer need to infer interest rate volatility from market data, but rather can 

calibrate by parameterisation to the formulae above. This form makes the volatility of the 

forward asset price explicit. i.e. the component of confined to the square root. Schrager and 

Pelsser derive the instantaneous covariance of >�� and C��A, �� to be Equation 14. 

Equation 14 

F@,&�A�?@�A�?&�A� = −	ρσhσrbk�A, �� − k�A, l�e	+	?0N�k�A, l��N − ?0Nk�A, ��k�A, l� 
Schrager and Pelsser parameterise Equation 12 and Equation 13 can be parameterised to 

resemble Equation 5 and Equation 6. In this case Schrager and Pelsser (Schrager and Pelsser 

2004) show that Equation 15 holds. This shows the volatility of interest rates, or the forward 

bond volatility. 

Equation 15 

1�2( 	tu σ�s�dB&�
� u σJ�s�dB&J�

� 	w
= Q+	?0Nu bk�x, l� − k�x, A�e��

� nk�x, l� − k�A, AJ�ydxR
+ Q−F	?& 	?0 u k�x, AJ� − k�x, l��X

�� dx + 	?0Nu �k�x, l��N − k�x, l�k�x, AJ���
� dxR

+	4	?0N�l − AJ� + 2F	?& 	?0 u k�x, l�dx�
�X + 	?0Nu �k�x, l��Ndx�

�X 5 
Schrager and Pelsser (Schrager and Pelsser 2004) breakdown Equation 15 expression into 

three parts for explanation purposes. These parts correspond to the procedure followed in 

breaking down Equation 9: 

• The first term, 	?0N z bk�x, l� − k�x, A�e��� nk�x, l� − k�A, AJ�ydx  corresponds to 

z FJ�x�?�x�?J�x�dx���  (in Equation 9). This term represents the correlation between 

the bonds with maturity A  and AJ . This follows from, for a one factor model, the 

correlation between forward bond prices equalling one (Schrager and Pelsser 2004).  
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• The second term, −F	?& 	?0 z k�x, AJ� − k�x, l��X�� dx + 	?0N z �k�x, l��N −���k�x, l�k�x, AJ� dx, corresponds to z F@,J�x�?@�x�?J�x�dx�X��  (in Equation 9). This term 

represents the covariance between the forward asset price and D(t, 	AJ )/ D(t, 	A� ) 
(Schrager and Pelsser 2004). 

• The final term, 	?0N�l − AJ� + 2F	?& 	?0 z k�x, l�dx��X + 	?0N z �k�x, l��Ndx��X  

corresponds to z ?@N�{�d{��X  (in Equation 9). This term represents the implied 

volatility of a forward start option on a risky asset (Schrager and Pelsser 2004).  

Schrager and Pelsser’s breakdown gives an idea as to the drivers of volatility of the MRRG 

and therefore what potential hedging instruments may be used to capture some of these 

characteristics. Aspects of the MRRG formulae suggest forward starting equity options could 

act as potential hedges (Schrager and Pelsser 2004).  
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4 Demonstration of the pricing of a recurring premium rate of return 

guarantee under Black Scholes Hull White assumptions 

4.1 Calibrating the BSHW model 

4.1.1 The Hull-White term structure model has high analytical tractability  

In the Hull-White model, at time t the short rate reverts to θ(t)/a at a rate a (Hull 2003). θ(t) 

can be calculated off the initial term structure of interest rates, using Equation 16 (Hull 2003). 

Often, however the last term is simply ignored and the resulting equation implies that, on 

average, the short rate follows the initial slope of the instantaneous forward rate curve. When 

the curve deviates from the initial forward curve it reverts back to it at rate a (Hull 2003). 

Equation 16 

\�A� = >��0, A� + 	]>�0, A� + ?N2] �1 − )�No�� 
F(0,t) is the instantaneous forward rate and Ft(0,t) is the change in F(0,t). What this means is 

that P(0,t), the price of a zero-coupon bond maturating at time t, valued at time 0, must be a 

twice differentiable function. As the Nelson-Siegel (Nelson and Siegel 1987) yield curve 

fitting approach satisfies this requirement it is a logical choice. 

4.1.1.1 Using observable swap rates as input traded yields 

Observed traded swap rates are used as market-consistent inputs for the pricing of the MRRG 

benefits in this dissertation. The time period October 2001 to September 2010 was used in the 

historic data analysis, as shown in Figure 4. 

Figure 4: Historic data of the South African swap rates from October 2001 to September 2010 
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Source: Bloomberg, own calculations 

4.1.1.2 Application of the Nelson-Siegel approach to fit traded market swap rates 

The Nelson-Siegel approach for fitting a yield curve ensures the interpolation approach is 

twice differentiable. This is due to the Nelson-Siegel (Nelson and Siegel 1987) formulae 

taking the form shown in Equation 17 where }�, }�,}N		and	τ represent the yield curve level, 

short-term components, medium-term components and the decay speed. 

Equation 17 

��A� = }� + }� t1 − e�j/�t/τ w +	}N t1 − e�j/�t/τ −	e�j/�w 
Calibration of a term-structure model requires choosing the model parameters, }�, }�,}N		and	τ, so as to fit the traded prices as closely as possible. This would involve some 

form of goodness-of-fit measure such as � �� −��N	��  where � is the market price for 

the calibrating instrument and � is the price calculated for the calibrating instrument from 

the model (Hull 2003). Naturally, the number of parameters to be found must be less than the 

number of calibrating instruments. The resulting parameters are shown in Figure 62 and 

Figure 63 in the appendix. The twice differentiable nature of the fitted Nelson-Siegel yield 

curve is shown in Figure 5. 
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Figure 5: Demonstration of the twice differentiable nature of the fitted Nelson-Siegel yield curve 

 

Source: Bloomberg , Own calculations 

4.1.1.3 Simple formulae describe the volatility of the term structure of interest rates under 

the Hull-White model 

The volatility structure of the Hull-White model is determined by both σ and a (Hull 2003). 

Firstly, the volatility at time t of the price of a zero-coupon bond maturing at time T is given 

by Equation 18 (Hull 2003). 

Equation 18 ?] �1 − )�o������ 
Secondly, the instantaneous standard deviation at time t of the zero-coupon interest rate 

maturing at time T is given by Equation 19 (Hull 2003): 

Equation 19 ?]�l − A� �1 − )�o������ 
Thirdly, the instantaneous standard deviation of the T-maturity instantaneous forward rate is 

given by Equation 20 (Hull 2003): 

Equation 20 
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Hull’s conclusions can be seen directly from these functions. The parameter ? determines the 

short rate’s instantaneous standard deviation (Hull 2003). The reversion rate parameter, a, 

determines the rate at which bond price volatilities increase with maturity and the rate at 

which interest rate (forward rate) standard deviations decrease with maturity (Hull 2003).  

4.1.1.4 Setting reasonable interest volatility parameters to calibrate the Hull-White model 

In calibrating the Hull-White model the following steps were taken. Firstly, as suggested by 

Hull and White (Hull and White 1990) the σ parameter should be calibrated to the modellers 

view of the future volatility of the short rate. Typically, to achieve market consistency the 

implied volatility of swaptions or caps are used. My approach has been to choose a sigma that 

represents the historic realised standard deviations of continuously compound forward rates. 

The average of the standard deviations of the forward rates at different maturities on the yield 

curve is taken as the choice of sigma, σ, parameter. 

I set our choice of sigma to: ? = √252	A��)x	Aℎ)	xA]-=][=	=)��]A�`-	`�	�−a-�1 +[�0,1�� over the preceding 181 trading days up to 30 September 2010. This results in a 

setting ? = 0.05 . Thus underlying historic data for the continuous compound short rate 

standard deviation is shown in Figure 6. 

Figure 6: Continuously compounded short rate standard deviation (annual basis) from September 2001 to September 

2010 

 

Source: Bloomberg , Own calculations 
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It can also be seen that fixing a = 0 sets the zero-coupon bond price volatilities as linear 

functions of maturity and the instantaneous standard deviations of the forward rates being 

constant (Hull 2003). The effect of various choices of a on the instantaneous standard 

deviations for the T-maturity instantaneous forward rate can be seen inFigure 7. For the Hull-

White model, a choice of reversion rate “a” is required, such that the future instantaneous 

standard deviations for the T-maturity forward rates are reasonable. 

Figure 7: Instantaneous standard deviations for the T-maturity instantaneous forward for a range of a parameter 

choices under the Hull-White model 

 

Source: Bloomberg , Own calculations, assumptions: σ = 0.05 

 

4.1.1.5 Calibrating the Hull-White model to traded swap rates 

In the Hull-White Model zero coupon bond prices are given by Equation 21 (Hull 2003): 

Equation 21 

��A, l� = ��A, l�)����,��0���	�ℎ)[) 	
��A, l� = ��0, l���0, A� )����,�����,���	���o�������(����,����		

k�A, l� = 	 1] n1 − )�o�����y 
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What this allows us to do is solve for a based on our calibration of σ. In doing so, least 

squares minimisation of the square of the difference between the market and model bond 

price is applied (Equation 8).  

Table 5: Demonstration of how the Hull-White model fits to a choice of alpha “a” 

Description P(0,1) P(0,2) P(0,5) P(0,10) P(0,15) P(0,20) P(0,25) P(0,30) Sum 

Market 0.944 0.885 0.711 0.487 0.339 0.241 0.174 0.127 

Model 0.944 0.885 0.711 0.487 0.339 0.241 0.174 0.127 

B(0,t) 0.929 1.728 3.518 5.179 5.964 6.335 6.510 6.593 

A(0,t) 0.993 0.972 0.862 0.646 0.469 0.341 0.249 0.182 

r(0) 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 

Difference model  

to market 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Difference model 

to market ^2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Source: Own calculations 

θ(t) follows directly from Equation 16. The choice of a, the reversion rate, determines how 

closely θ(t)/a tracks the forward rates given by the initial calibrated yield curve. Thus if the 

choice of a is large, then we are effectively setting the strength of the force to revert to the 

forward rate, while a small a would not pull back to the initial forward rates as quickly. This 

can be seen in Figure 8. 

Figure 8: Reversion of theta(t)/a to the forward rates implied by the initial curve at time t 

 

Source: Own calculations 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 Years

a = 0.1

a = 0.15

a = 0.2

a = 0.35

a = 0.7

f(0,T)

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



- 54 - 

4.2 Calibrating the BSHW model to equity market inputs 

Next, calibration of the Black Scholes process to describe the risky equity assets behavior is 

required. A calibration process is followed to reflect the equity parameters in a market 

consistent manner, where possible. When pricing in the risk neutral measure we do not make 

any allowance for equity risk premiums. 

4.2.1 Analyzing equity market volatility 

The historic 180-day annualized standard deviation of JSE Shareholder-weighted Top40 

Index returns for the period September 2001 to September 2010 averaged c.23%. I calculate 

this as daily JSE Shareholder-weighted Top40 Index returns and annualize by multiplying by √252.  As shown in Figure 9, realized standard deviations have, at times, been high. These 

market volatility spikes tend to pass and standard deviations tend to drift lower towards the 

c.20% mark. 

Figure 9: 180-day annualised standard deviation of JSE Top40 index daily returns - June 2001 to September 2010 

 

Source: Bloomberg data, Own calculations 
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ten years and, under above-average investment returns now exceed the current minimum rate 

of return guarantee. In this instance this policy’s guarantee is far out of the money. It is 

therefore appropriate to consider this on calibration to equity market volatility when 

calculating the MRRG price for each specific policy.  

The topic of the estimation of the appropriate mathematical form and parameterization of the 

term structure of equity volatility is one in itself. In general, South African insurance 

companies choose to calibrate, as far as appropriate and possible, to the near-term traded 

equity options and taper the estimated volatility parameters out to some long-term value. The 

implicit assumption in these approaches being that equity market volatility is mean-reverting, 

in the long-term. There exists a significant volume of literature on various volatility term 

structure fitting. As these topics are significantly beyond the scope of this dissertation, I have 

chosen to set the equity standard deviation parameter at 25% p.a. at all future time points, i.e. 

σE = 25% 

4.2.2 Analyzing the correlation structure between equity returns and interest rates 

The Black Scholes Hull White model requires an estimate of the correlation between 

movements in the short rate process and the risky asset (equity) return process. This single 

parameter is then used in each time period to capture the effects of the relationship between 

the two independent input processes. These being the Hull-White short rate process and the 

Black Scholes process. 

4.2.2.1 Correlations between equity returns and interest rates tend to be cyclical 

Historically, the correlation between equity returns and various swap rate movement changes 

have followed a cyclical behavior. This can be observed in Figure 10, where changes in swap 

rates tended to be positively correlated with equity returns between 2001 and 2005, while the 

reverse is true from 2006 to 2010.  

Figure 10: Historic annualised correlation between JSE Shareholder-weighted Top40 Index and changes in various 

swap rates over the 180-days prior to the yield curve calibration date 
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Source: Bloomberg, own calculations 

As a result of this cyclical behavior, the overall correlation between interest rate changes and 

equity index returns in the sample is close to zero. A full set of the correlations between 

equity index returns and different swap rates is shown in Figure 11.  

Figure 11: Correlation between daily JSE Top40 moves and changes in various swap rates 

Correlation between daily moves in the South African JSE Top40 Index and the changes in various swap rates 

(between October 2000 and September 2010) 
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Source: Bloomberg, own calculations 

4.2.2.2 Setting the “��,��" correlation parameter 

As a result of the cyclical nature of the correlation between changes in interest rates and 

equity index returns I have chosen to set the base case correlation at 0%, i.e. ��,�� = 0%. The 

effect is that our model of future equity returns, under the Black Scholes process, will be 

independent from the Hull White short rate process in our base case model. Sensitivities 

around this base case assumption are shown later. 
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4.3 Outlining practical BSHW simulation generation in a spreadsheet 

4.3.1 BSHW simulations in a spreadsheet requires discretization 

In practice, Monte Carlo implementations of short rate models, such as the Hull-White 

model, requires discretization of the stochastic process. Hill, Visser et al. state the one 

common approach is to use the BGM formulation. Under this method discrete rates are used 

and the volatility term structure is replaced by a step function (Hill, Visser et al. 2008). I 

write Equation 10 in its Euler form in Equation 22. 

Equation 22 

[�A%�� = [�A� +	b\�A� − 	][�A�e. ∆l + 	?BN,�√∆l�  

Discretizing Equation 11  leads to the derivation given by Equation 23 

Equation 23 

��A%�� = 	��A�	exp����A� − 1 2m σ&N� Δl� +	 p1 Δlm� . ?& . �f1 −	FN		B�,� + 	ρBN,��   

Where W1,t and W2,t are defined as before. i.e. the standard normal random variables relating 

to the underlying equity process, St  and the short rate respectively. 

4.3.2 Outline of a spreadsheet-based model structure 

The spreadsheets built to facilitate the calibration; economic scenario generation and MRRG 

price calculation are described in the Appendix. In addition, an outline of how the various 

spreadsheet models relate to one another is also shown in the Appendix for reference. 

4.4 Demonstration of the simulations generated by the BSHW model 

4.4.1 Demonstration of the Hull-White simulations 

The date used for the initial base case pricing of a minimum rate of return guarantee was 30 

September 2010. As outlined in section 4.1.1.2 the swap rates at 30 September 2010 were 

used to calibrate a Nelson-Siegel curve off which forward rates could be found. In section 

4.1.1.5 I showed the choice of short-term interest rate volatility set at 0.05. The choice of a 
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determines the strength with which the future deviations away from the initial calibrated 

market rate revert in the Hull-White model.  

In section 4.2.1.1 I concluded that an equity market standard deviation of 25% is an 

appropriate simplifying choice for future equity volatility. I used a 0% correlation between 

the underlying risky asset (or equity) process and the short-rate in the pricing of the base case 

guarantee. This assumption was set in section 4.2.2.2. 

1000 simulations were generated and an illustration of the first 20 of these simulations for the 

short rate and the equity index modeled for a time period of 30 quarters (or 7.5 years). The 

short rate simulations are shown in Figure 12 while these simulations of the underlying equity 

index are shown in Figure 13. 

Figure 12: Illustration of first 20 Hull-White simulations over a 5-year period shown in 130 fortnightly time steps 

 

Source: Own calculations 

4.4.2 Testing the reasonability of the Hull-White short rate simulations by pricing a 

bond 

Reasonability check is: ��0,30� = �N���∑ )£¤¥−∑ 0.25��A,J��N�J�� ¦N�����  where j represents the 

120 quarterly time intervals in a 30 year period, and i represents the 1000 simulations. In our 

model for 30 September 2010, P(0,30) = 0.13 which implied that r(0,30) = 7.03%. This was 

comparable to the 30-year swap rate source data input of 7.13%. 
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4.4.3 Demonstrating the BSHW simulations for the underlying risky asset  

I set out base case market input assumptions at 30 September 2010 for the correlation of the 

short rate process and the equity index return process at 0%, i.e. ��,�� = 0%, and the volatility 

of the risky underlying asset process by σE = 25%. 

Figure 13: Illustration of first 20 BSHW simulations over a 5-year period shown in 130 fortnightly time steps 

 

Source: Own calculations 

4.4.4 Reasonability checking the Black Scholes equity simulations via a Martingale 

test 

A check that the equity simulations generated under the BSHW process satisfy the condition 

that the average of the discounted value of our simulated equity index process across the 

simulations approximately equals 1. This is a necessary requirement for our simulations to be 

a martingale. That is 
�N���∑ ��0,30�. ��0,30� = 0.996… 	≅ 1N�����  

4.5 Pricing a MRRG guarantee under BSHW 

4.5.1 Introduction to the pricing of a typical MRRG 

Commence the pricing of a MRRG under BSHW by setting some basic policy assumptions. I 

assume that the premium contributions to the underlying savings product are paid quarterly, 

at a rate of R1000 per quarter. At first I assume the series of contributions to be made over 

the products life are constant over time (i.e. 0% p.a. contribution escalation). A 5% p.a. 
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MRRG has been assumed to be the typical product offered. These typical (or base case) 

product demographic characteristics are shown in Table 6 below. 

Table 6: Basic demographic assumptions for typical (base case) MRRG products 

Premium, product and guarantee inputs   

Quarterly contribution R 1000 

Annual Contribution increase 0.00% 

Guarantee percentage (annually) 5.00% 

Source: Own calculations 

In our initial pricing, the product being priced and analysed is assumed to be a new product. 

Therefore there is no initial fund value built up at the start of the policy and as there are no 

past paid premiums there is also no guarantee at the start of the policy. Later in our analysis 

an initial fund value balance and initial guarantee is assumed. This will allow the effect of the 

moneyness level of the fund value relative to the guarantee to be analysed. 

The initial market value inputs used in pricing the base case MRRG are shown in Table 7. 

These market values and assumptions represent the traded South African swap rates on 30 

September 2010 and the associated BSHW parameters derived in Chapter 4.1. 

Table 7: Basic economic assumptions for typical (base case) MRRG products 

5 

Year 

swap 

10 

Year 

swap 

15 

Year 

swap 

20 

Year 

swap 

25 

Year 

swap 

30 

Year 

swap 

Standard 

Deviation 

Hull-

White 

- 

Alpha 

Hull-

White 

- 

Sigma 

Underlying 

process 

volatility 

Correlation 

of 

underlying 

and short-

rate  

7.06 7.49 7.46 7.36 7.24 7.13 0.00316 0.15 0.05 0.25 0.00 

Source: Bloomberg, own calculations 

Contract terms of 5, 10, 15, 20, 25 and 30 years have been considered. Table 8 shows the 

outcome of the MRRG price calculations. For the case of the 5-year MRRG product the 

nominal quarterly contributions total R20000. These contributions have a discounted value of 

R16595 under the base yield curve generated. The calculated MRRG cost for a 5-year term 

product is R1465. This expected guarantee cost equates to 8.83% of the discounted value of 

the contributions expected on the product. As can be seen in Table 8 the cost of the MRRG 

(expressed as percentage of discounted contributions) decreases as the term of the guaranteed 

products increases. 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



- 61 - 

Table 8: MRRG absolute price and price relative to contributions for various MRRG terms 

Type of output 
5-year 

MRRG 

10-year 

MRRG 

15-year 

MRRG 

20-year 

MRRG 

25-year 

MRRG 

30-year 

MRRG 

Total nominal contributions  20 000 40 000 60 000 80 000 100 000 120 000 

Discounted value of the 

contributions 
16 595 27 108 33 415 37 177 39 432 40 776 

Minimum Rate of Return 

Guarantee price 
1 465 2 330 2 367 1 999 1 545 1 312 

Guarantee price as a percentage 

of the PV of total contributions 
8.83% 8.60% 7.08% 5.38% 3.92% 3.22% 

Source: Own calculations 

 

4.5.1.1 Variation in the minimum rate of return guaranteed, the annual contribution 

increases and the term of the MRRG contract  

Table 9 demonstrates the extent to which changes in the demographic assumptions of the 

contract affect the MRRG price.  

Firstly, comparison is made between a 0% annual contribution increase (ACI) and a 10% 

ACI. It can be seen that the MRRG price of the 10 % ACI (expressed as a percentage of 

discounted contributions) is slightly lower for short terms but higher than that of the 0% ACI 

as the term extends. This is because in the case of the 10% ACI the weighted average of the 

contributions is longer, and therefore means that on average the cash flows are invested for a 

shorter period of time until the maturity date. The guarantee cost therefore rises as the effect 

of the MRRG term seen in Table 8 takes effect.  

Secondly,  the calculations show that the cost of a 0% guarantee tapers quickly to well within 

1% of the present value of contributions as terms stretch beyond 20 years. For this reason I 

have elected to demonstrate the costs of a 5% p.a. MRRG option in the sensitivity analysis 

that follows. This will allow analysis of various sensitivities under a more financially 

significant guarantee cost. 

Table 9: Demonstration of the effects of different demographic assumptions on the price of a range of MRRG terms 

ACI % Guar.. 

%  

p.a. 

Type of output 5- 

year  

MRRG 

10-

year  

MRRG 

15-

year  

MRRG 

20-

year  

MRRG 

25-

year  

MRRG 

30-

year  

MRRG 
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0% 0% Nominal contributions  
20000 40000 60000 80000 100000 120000 

    PV of the contributions 
16595 27107 33414 37176 39432 40776 

    MRRG price 
775 868 621 395 192 135 

    Price as % of PV contributions 
4.7% 3.2% 1.9% 1.1% 0.5% 0.3% 

0% 5% Nominal contributions  
20000 40000 60000 80000 100000 120000 

    PV of the contributions 
16595 27107 33414 37176 39432 40776 

    MRRG price 
1466 2330 2367 1999 1545 1312 

    Price as % of PV contributions 
8.8% 8.6% 7.1% 5.4% 3.9% 3.2% 

10% 0% Nominal contributions  
24420 63750 127090 229100 393388 657976 

    PV of the contributions 
19949 40237 59820 78640 96809 114239 

    MRRG price 
902 1261 1195 989 669 774 

    Price as % of PV contributions 
4.5% 3.1% 2.0% 1.3% 0.7% 0.7% 

10% 5% Nominal contributions  
24420 63750 127090 229100 393388 657976 

    PV of the contributions 
19949 40237 59820 78640 96809 114239 

    MRRG price 
1678 3210 3898 3976 3843 4272 

    Price as % of PV contributions 
8.4% 8.0% 6.5% 5.1% 4.0% 3.7% 

Source: Own calculations 

The same random seed has been used when comparing the MRRG price under different 

scenarios. This stops further random fluctuations being introduced and allows for easier 

comparison in the sections which follow. This decision was taken in the context of the pricing 

only being performed on a limited number of simulations due to run-time constraints. Ideally 

a sufficient number of simulations would have been run to ensure convergence of the pricing 

problem. If this were the case then the choice of seed for the simulation generation would no 

longer influence results. 

4.5.1.2 Parallel yield curve shifts 

The first economic parameter sensitivities analysed are those to changes in swap rate inputs. 

This tells us how the market consistent cost of the MRRG changes under different parallel 

swap rate shifts. Table 10 shows how the discounted value of the future contributions and the 

MRRG price changes under a 10bps upward and downward shift in all swap rate inputs.  
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The cost of the MRRG increases as swap rates drop, all else equal. That change in the price 

increases as the term of the option increases.  

Table 10: Sensitivity to parallel up and down shifts in the base swap rates on the price of a 5% p.a. MRRG  

Parallel shifts in the swap inputs 

5-year 

MRRG 

10-year 

MRRG 

15-year 

MRRG 

20-year 

MRRG 

25-year 

MRRG 

30-year 

MRRG 

All durations - 10bps 16624 27183 33532 37329 39610 40974 

Base swap rates 16595 27109 33414 37176 39431 40776 

All durations + 10bps 16567 27034 33296 37023 39252 40577 

Minimum Rate of Return Guarantee price 

5-year 

MRRG 

10-year 

MRRG 

15-year 

MRRG 

20-year 

MRRG 

25-year 

MRRG 

30-year 

MRRG 

All durations - 10bps 1435 2154 2151 1821 1345 1154 

Base swap rates 1421 2125 2113 1780 1306 1119 

All durations + 10bps 1408 2096 2075 1739 1269 1086 

Change in MRRG price 

5-year 

MRRG 

10-year 

MRRG 

15-year 

MRRG 

20-year 

MRRG 

25-year 

MRRG 

30-year 

MRRG 

All durations - 10bps 0.94% 1.35% 1.82% 2.32% 2.92% 3.06% 

Base swap rates 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

All durations + 10bps -0.94% -1.35% -1.81% -2.30% -2.87% -2.97% 

Source: Own calculations 

The analysis has been furthered to a wider range of parallel yield curve stress tests. To do so, 

a range of 50bps increment stresses were made, both upward and downward. These are 

shown in Figure 14. 

Figure 14: Illustration of the yield curves fitted under a range of parallel swap rate stresses 

 

Source: Own calculations 
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In that case of a 5% p.a. MRRG guarantee (with 0% p.a. ACI), there is a more pronounced 

relative increase in the price of the MRRG cost as swap rates fall compared to when they 

increase. This is observed in Table 11 where the nominal change in the MRRG price is larger 

for decreasing parallel movements in the yield curve as opposed to increases in the yield 

curve. For example, the 30-year MRRG price will decrease by R538 if swap rates rise by 

200bps but increase by R896 if swap rates fall by 200bps. 

Table 11: Outline of the relative increases (decreases) in the MRRG price under the stressed parallel curve inputs 

Guarantee price as a percentage  

of the PV of total contributions 

5-year 

MRRG 

10-year 

MRRG 

15-year 

MRRG 

20-year 

MRRG 

25-year 

MRRG 

30-year 

MRRG 

Base +200bps 7.20% 6.24% 4.62% 3.23% 2.01% 1.58% 

Base +150bps 7.55% 6.62% 5.02% 3.58% 2.28% 1.83% 

Base +100bps 7.90% 7.02% 5.43% 3.95% 2.58% 2.11% 

Base +50bps 8.23% 7.42% 5.87% 4.35% 2.92% 2.42% 

Base curve 8.56% 7.84% 6.32% 4.79% 3.31% 2.75% 

Base -50bps 8.89% 8.26% 6.79% 5.26% 3.73% 3.12% 

Base -100bps 9.22% 8.69% 7.25% 5.77% 4.16% 3.54% 

Base -150bps 9.53% 9.13% 7.72% 6.30% 4.62% 3.99% 

Base -200bps 9.82% 9.57% 8.20% 6.85% 5.10% 4.51% 

Minimum Rate of Return Guarantee price 

5-year 

MRRG 

10-year 

MRRG 

15-year 

MRRG 

20-year 

MRRG 

25-year 

MRRG 

30-year 

MRRG 

Base +200bps 1153 1594 1431 1101 722 581 

Base +150bps 1220 1720 1587 1248 838 693 

Base +100bps 1287 1849 1750 1409 970 820 

Base +50bps 1355 1985 1926 1583 1126 962 

Base curve 1421 2125 2113 1780 1306 1119 

Base -50bps 1489 2271 2308 1995 1503 1305 

Base -100bps 1555 2420 2508 2231 1716 1513 

Base -150bps 1619 2572 2713 2482 1945 1747 

Base -200bps 1681 2728 2924 2747 2188 2015 

Change in Minimum Rate of  

Return Guarantee price 

5-year 

MRRG 

10-year 

MRRG 

15-year 

MRRG 

20-year 

MRRG 

25-year 

MRRG 

30-year 

MRRG 

Base +200bps -268 -531 -681 -678 -585 -538 

Base +150bps -201 -406 -526 -532 -468 -426 

Base +100bps -134 -276 -362 -370 -336 -300 

Base +50bps -67 -141 -187 -196 -180 -157 

Base curve 0 0 0 0 0 0 

Base -50bps 67 146 195 215 196 185 

Base -100bps 134 295 395 451 410 394 

Base -150bps 198 447 600 703 638 628 

Base -200bps 260 603 811 967 882 896 
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Source: Own calculations 

A graphic illustration of this interest rate sensitivity is shown in Figure 15. Therefore the 

MRRG price has positive interest rate convexity. 

Figure 15: Illustration of positive convexity of the MRRG to parallel yield curve changes 

 

Source: Own calculations 

To accurately quantify this positive interest rate convexity one would need to calculate the 

second partial derivatives, or “gammas”, for the eight swap rate input instruments in our 

model. While this would be of interest it goes beyond the scope of current industry intest rate 

hedging practice as discussed in section 5.1.  

4.5.1.3 Different yield curve shapes 

Five different sets of swap rate inputs have been chosen to test the sensitivity of the MRRG 

price to changes in the shape of the yield curve. These swap rates were chosen manually to 

capture the effect of flat, downward sloping, upward sloping, positively humped and 

negatively humped yield curves. Table 12 outlines these manually setup swap rates.  

Table 12: Swap rate scenario input assumptions for different yield curve shapes 

Swap rate inputs 

1 Year  

Swap 

2 Year  

Swap 

5 Year  

Swap 

10 

Year  

Swap 

15 

Year  

Swap 

20 

Year  

Swap 

25 

Year  

Swap 

30 

Year  

Swap 

Base yield curve 5.97 6.27 7.06 7.49 7.46 7.36 7.24 7.13 

Flat yield curve 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 

Downward sloping yield curve 5.97 5.72 5.47 5.22 4.97 4.72 4.47 4.22 

Upward sloping yield curve 5.97 6.22 6.47 6.72 6.97 7.22 7.47 7.72 
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Positively humped yield curve 7.00 7.25 7.50 8.00 8.50 8.00 7.50 7.00 

Negatively humped yield curve 7.00 6.75 6.50 6.00 5.50 6.00 6.50 7.00 

Source: Own calculations 

A graphic illustration of the Nelson-Siegel yield curve fit calculated for each of the sets of 

swap rate inputs is shown in Figure 16. 

Figure 16: Graphic illustration of resulting yield curve scenarios 

 

Source: Own calculations 

The BSHW model assumptions, other than the swap rate inputs shown above, were kept 

constant at the base run parameters outlined in Table 7 above. These parameters are shown 

again in Table 13. 

Table 13: Base run BSHW parameters used under interest rate sensitivity tests 

Standard Deviation 

Cont. Comp. 

Hull-White 

Parameters 

Underlying "equity" process 

parameters 

Correlation between  

the risky underlying and the 

short-rate 

Short rate a sigma Drift Volatility Correlation 

0.0032 0.15 0.0503 0.00% 25.00% 0.00% 

Source: Own calculations 

The market consistent price of the MRRG’s under different yield curve shapes is shown in 

Table 14. These results are shown for the case of the 5% p.a. MRRG guarantee and 0% p.a. 

ACI. This shows that the downward sloping yield curve gives rise to far higher MRRG costs 

(expressed as a % of the PV of contributions). This is seen in that the 30-year MRRG cost is 

c.6.0% under a downward sloping yield curve whereas the cost of a 30-year MRRG costs 
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c.1.9% under an upward sloping yield curve. This is consistent with our findings above that 

lower yield curves increase the market consistent cost the MRRG, all else equal.  

Similar effects can be seen when the humped curves are analyzed. If the base yield curve is 

adjusted to reflect a positively-humped yield curve shape then it can be seen that MRRG’s 

with terms shorter than the point at which the positive hump peaks drop in price. However, 

MRRG’s with longer terms experience increases in price. This can be seen in Table 14 where 

the 25-year and 30-year MRRG cost increase to c.3.4% and c.3.3% of discounted 

contributions compared to c.3.3% and c.2.7% of discounted contributions as under the base 

yield curve. The opposite effect is true for the case of the negatively humped swap rate 

inputs. 

Table 14 Result of various swap rate scenarios on the MRRG price for various terms 

Discounted value of the 

contributions still to be paid 

5-year 

MRRG 

10-year 

MRRG 

15-year 

MRRG 

20-year 

MRRG 

25-year 

MRRG 

30-year 

MRRG 

Base yield curve 16595 27108 33415 37177 39432 40776 

Flat yield curve 16553 27299 33851 37762 40084 41449 

Downward sloping yield curve 16970 28533 35984 40760 43847 45839 

Upward sloping yield curve 16721 27613 34191 38011 40188 41403 

Positively humped yield curve 16447 26686 32634 36139 38289 39646 

Negatively humped yield curve 16656 27898 35077 39416 41899 43239 

Minimum Rate of Return 

Guarantee price 

5-year 

MRRG 

10-year 

MRRG 

15-year 

MRRG 

20-year 

MRRG 

25-year 

MRRG 

30-year 

MRRG 

Base yield curve 1421 2126 2114 1780 1306 1118 

Flat yield curve 1486 2349 2331 1907 1352 1112 

Downward sloping yield curve 1729 3009 3364 3327 2820 2755 

Upward sloping yield curve 1536 2383 2239 1664 1052 783 

Positively humped yield curve 1376 1895 1778 1559 1283 1310 

Negatively humped yield curve 1596 2879 2986 2310 1366 855 

Guarantee price as a percentage of  

the PV of total contributions 

5-year 

MRRG 

10-year 

MRRG 

15-year 

MRRG 

20-year 

MRRG 

25-year 

MRRG 

30-year 

MRRG 

Base yield curve 8.6% 7.8% 6.3% 4.8% 3.3% 2.7% 

Flat yield curve 9.0% 8.6% 6.9% 5.1% 3.4% 2.7% 

Downward sloping yield curve 10.2% 10.5% 9.3% 8.2% 6.4% 6.0% 

Upward sloping yield curve 9.2% 8.6% 6.5% 4.4% 2.6% 1.9% 

Positively humped yield curve 8.4% 7.1% 5.4% 4.3% 3.4% 3.3% 

Negatively humped yield curve 9.6% 10.3% 8.5% 5.9% 3.3% 2.0% 

Source: Own calculations 
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A graphic illustration of the calculated cost of the MRRG price of different terms under the 

various yield curve shapes is shown in Figure 17 below. It can be seen that a negatively 

sloping yield curve environment has the greatest increase in the price of the MRRG. 

Figure 17 Illustration of a MRRG price as a percentage of discounted contributions under different yield curves 

 

Source: Own calculations 

 

4.5.1.4 Variation in the modeled short rate volatility 

4.5.1.4.1 Changes in the “a” parameter in the Hull-White model 

The purpose of the analysis is to better understand how changes in the variability of the yield 

curve simulations affect the MRRG price. To do this I analyse how changes in the Hull White 

“a” reversion parameter affect our pricing.  Figure 18 to Figure 21 show the effect of the 

choice of “a” reversion parameter in the Hull-White model has on the first 20 simulation 

outcomes. The same random seed was used in all cases. Under a choice of “a” = 0.01 the 

reversion is very weak and simulations spread widely. This can be compared to the case 

where “a” is set to 0.25 and the resulting simulations are far more clustered.  
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Figure 18: Short rate simulations under Hull-White “a” 

= 0.01 

 

 Figure 19: Short rate simulations under Hull-White “a” 

= 0.075 

 

Source: Own calculations  Source: Own calculations 

   

Figure 20 Short rate simulations under Hull-White “a” 

= 0.15 

 

 Figure 21: Short rate simulations under Hull-White “a” 

= 0.25 

 

Source: Own calculations  Source: Own calculations 

The impact of changes in the “a” Hull-White parameter are shown for the case of the 5% p.a. 

MRRG in Table 15. It can be seen is that as the “a” parameter drops so too does the price of 

the MRRG. This is explained by a lower “a” parameter indicating a lower reversion strength 

and as a result forward rate simulations which tend to drift higher.  

Table 15: Effect of the choice of “a” reversion parameter in the Hull-White model on MRRG pricing 

Change in Hull White  

"a" parameter 

5-year 

MRRG 

10-year 

MRRG 

15-year 

MRRG 

20-year 

MRRG 

25-year 

MRRG 

30-year 

MRRG 

a = 0.01 16461 26011 30370 31868 32230 32289 

a = 0.075 16530 26611 32087 34863 36208 36831 

a = 0.15 16595 27108 33415 37177 39432 40776 
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a = 0.25 16663 27562 34529 39042 42003 43948 

Minimum Rate of  

Return Guarantee price 

5-year 

MRRG 

10-year 

MRRG 

15-year 

MRRG 

20-year 

MRRG 

25-year 

MRRG 

30-year 

MRRG 

a = 0.01 1286 1209 420 59 7 0 

a = 0.075 1356 1689 1214 667 287 139 

a = 0.15 1421 2126 2114 1780 1306 1118 

a = 0.25 1492 2569 3024 3133 2855 2955 

Guarantee price as a percentage 

of the PV of total contributions 

5-year 

MRRG 

10-year 

MRRG 

15-year 

MRRG 

20-year 

MRRG 

25-year 

MRRG 

30-year 

MRRG 

a = 0.01 7.8% 4.6% 1.4% 0.2% 0.0% 0.0% 

a = 0.075 8.2% 6.3% 3.8% 1.9% 0.8% 0.4% 

a = 0.15 8.6% 7.8% 6.3% 4.8% 3.3% 2.7% 

a = 0.25 9.0% 9.3% 8.8% 8.0% 6.8% 6.7% 

Source: Own calculations 

 

What is evident is that the choice of “a” has a significant effect on the ultimate price of the 

MRRG thus small arising from manual calibration processes are likely to give rise to spurious 

accuracy. Demonstration of the process to project and test a hedging program relies on our 

ability to accurately measure differences in MRRG prices under changing input assumptions 

and therefore I have chosen to keep the stochastic volatility parameters constant in 

forecasting in the later sections.  

4.5.1.4.2 Changes in “sigma” parameter in the Hull-White model 

The “sigma” parameter in the Hull-White model drives the volatility of the deviations in the 

short rate process. The lower the “sigma” term the smaller these deviations are. This effect 

can be seen for different choices of “sigma” in Figure 18 to Figure 21. What this shows us is 

that for higher “sigma” inputs the higher the short rate process simulations are on average.  
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Figure 22: Short rate simulations under Hull-White 

“sigma” = 0.0251 

 

 Figure 23: Short rate simulations under Hull-White 

“sigma” = 0.0377 

 

Source: Own calculations  Source: Own calculations 

   

Figure 24 Short rate simulations under Hull-White 

“sigma” = 0.0503 

 

 Figure 25: Short rate simulations under Hull-White 

“sigma” = 0.0629 

 

Source: Own calculations  Source: Own calculations 

 

What is also worth noting is that choices of “sigma” also directly affect the equity process 

simulations in the BSHW model. This effect can be seen in Figure 26 to Figure 29 where it is 

evident that the higher the choice of “sigma” the greater spread of simulations in the equity 

index price process. On closer inspection of these figures it is also apparent that a higher 

choice of “sigma” leads to a slightly higher equity index level all else equal. 
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Figure 26: Equity simulations under Hull-White 

“sigma” = 0.0251 

 

 Figure 27: Equity simulations under Hull-White 

“sigma” = 0.0377 

 

Source: Own calculations  Source: Own calculations 

   

Figure 28 Equity simulations under Hull-White 

“sigma” = 0.0503 

 

 Figure 29: Equity simulations under Hull-White 

“sigma” = 0.0629 

 

Source: Own calculations  Source: Own calculations 

 

Under higher “sigma” inputs the MRRG discounting would be under a higher yield curve, on 

average, which would reduce the discounted price as well as make the guarantee level bite on 

fewer occasions due to the generally higher equity index level relative to the fixed rand 

guarantee. These two effects would both work to reduce the MRRG price. 

This effect is quantified in Table 16. The effect of increased Hull-White process volatility, as 

represented by higher “sigma” inputs has a significant effect on the MRRG price.  
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Table 16: Effect of the choice of “sigma” parameter in the Hull-White model on MRRG pricing 

Change in Hull White  

"sigma" parameter 

5-year 

MRRG 

10-year 

MRRG 

15-year 

MRRG 

20-year 

MRRG 

25-year 

MRRG 

30-year 

MRRG 

sigma = 0.0251 16883 28508 36463 41988 45880 48630 

sigma = 0.0377 16792 28001 35266 39989 43088 45118 

sigma = 0.0503 16595 27109 33414 37176 39431 40776 

sigma = 0.0629 16335 26051 31388 34278 35844 36685 

Minimum Rate of Return 

 Guarantee price 

5-year 

MRRG 

10-year 

MRRG 

15-year 

MRRG 

20-year 

MRRG 

25-year 

MRRG 

30-year 

MRRG 

sigma = 0.0251 1693 3399 4438 5328 5645 6181 

sigma = 0.0377 1590 2826 3303 3402 3025 3016 

sigma = 0.0503 1421 2125 2113 1780 1306 1119 

sigma = 0.0629 1234 1552 1255 859 513 346 

Guarantee price as a  

percentage of the PV of 

 total contributions 

5-year 

MRRG 

10-year 

MRRG 

15-year 

MRRG 

20-year 

MRRG 

25-year 

MRRG 

30-year 

MRRG 

sigma = 0.0251 10.0% 11.9% 12.2% 12.7% 12.3% 12.7% 

sigma = 0.0377 9.5% 10.1% 9.4% 8.5% 7.0% 6.7% 

sigma = 0.0503 8.6% 7.8% 6.3% 4.8% 3.3% 2.7% 

sigma = 0.0629 7.6% 6.0% 4.0% 2.5% 1.4% 0.9% 

Source: Own calculations  

 

4.5.1.5 Equity market input parameters 

4.5.1.5.1 A range of equity market volatility inputs 

The assessment of the relationship between equity volatility assumptions and the MRRG 

price is shown in Table 17. For the case of the 5% p.a. MRRG the price calculations suggests 

that increased equity volatility leads to sharp increases in the MRRG price. Considering the 

case of 35%p.a. equity volatility the price of a 5-year MRRG is c.2.5x greater than under a 

25%p.a. equity volatility assumption. As the duration of the MRRG increases the sensitivity 

to equity volatility assumptions also increases. By comparison the price of a 30-year MRRG 

increases c.5x when equity volatilities are assumed to be 35% p.a. rather than 25% p.a. Note 

that changes in equity volatility has no effect on the discounted value of the MRRG 

contributions, as expected. 

Table 17: Demonstration of the effect of increases in the equity volatility on the price of the MRRG 

Change in Equity  5-year 10-year 15-year 20-year 25-year 30-year 
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Volatility parameter MRRG MRRG MRRG MRRG MRRG MRRG 

Equity volatility = 15% 16595 27109 33414 37176 39431 40776 

Equity volatility = 25% 16595 27109 33414 37176 39431 40776 

Equity volatility = 35% 16595 27109 33414 37176 39431 40776 

Minimum Rate of  

Return Guarantee price 

5-year 

MRRG 

10-year 

MRRG 

15-year 

MRRG 

20-year 

MRRG 

25-year 

MRRG 

30-year 

MRRG 

Equity volatility = 15% 106 121 64 27 2 1 

Equity volatility = 25% 847 859 483 328 136 93 

Equity volatility = 35% 2190 2299 1649 1104 644 451 

Guarantee price as a percentage  

of the PV of total contributions 

5-year 

MRRG 

10-year 

MRRG 

15-year 

MRRG 

20-year 

MRRG 

25-year 

MRRG 

30-year 

MRRG 

Equity volatility = 15% 0.6% 0.4% 0.2% 0.1% 0.0% 0.0% 

Equity volatility = 25% 5.1% 3.2% 1.4% 0.9% 0.3% 0.2% 

Equity volatility = 35% 13.2% 8.5% 4.9% 3.0% 1.6% 1.1% 

Source: Own calculations 

This suggests that MRRG’s are highly sensitive to equity volatility assumptions and poses an 

interesting predicament for insurers as to how to price the long-dated MRRGs being sold. 

This results from term limitations in the traded equity market in South Africa (as well as to a 

lesser extent in other international markets) and therefore medium- and long-term equity 

option implied volatilities are not observable. In practice, South African life insurers follow 

the approach to mark to model. 

4.5.1.5.2 Variation in the correlation between equities and interest rates 

The effect of the correlation between equity returns and the short rate is shown in Table 18. 

What this shows is that the negative correlation between equity returns and the short rate 

process lowers the cost of the MRRG.  

This suggests that if the underlying assets, over which the MRRG is written, tend to rise in 

value as interest rates fall then this effect will dampen, or even offset, the effect of falling 

interest rates. Therefore, all else being equal, writing MRRGs over funds with negative 

correlations with interest rate movements will be cheaper. 

Table 18: Calculations of the effect of correlations between short rates and equity processes on the MRRG price 

Correlation between equity returns  

and the short rate 

5-year 

MRRG 

10-year 

MRRG 

15-year 

MRRG 

20-year 

MRRG 

25-year 

MRRG 

30-year 

MRRG 

Correlation of -20% 16595 27109 33414 37176 39431 40776 

Correlation of 0% 16595 27108 33415 37177 39432 40776 
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Correlation of +20% 16597 27116 33425 37189 39444 40788 

Minimum Rate of Return Guarantee price 

5-year 

MRRG 

10-year 

MRRG 

15-year 

MRRG 

20-year 

MRRG 

25-year 

MRRG 

30-year 

MRRG 

Correlation of -20% 1365 1940 1840 1544 1080 901 

Correlation of 0% 1421 2126 2114 1780 1306 1118 

Correlation of +20% 1468 2333 2367 1998 1544 1313 

Guarantee price as a percentage of  

the PV of total contributions 

5-year 

MRRG 

10-year 

MRRG 

15-year 

MRRG 

20-year 

MRRG 

25-year 

MRRG 

30-year 

MRRG 

Correlation of -20% 8.2% 7.2% 5.5% 4.2% 2.7% 2.2% 

Correlation of 0% 8.6% 7.8% 6.3% 4.8% 3.3% 2.7% 

Correlation of +20% 8.8% 8.6% 7.1% 5.4% 3.9% 3.2% 

Source: Own calculations  

 

4.5.1.5.3 Variation in moneyness due to instantaneous changes in the underlying 

equity index 

Up until this point the MRRG pricing and sensitivity analysis shown has only considered new 

products. Therefore there has been no fund value at the start of the contract and all MRRG 

pricing related to future expected cash flows under the product. This section introduces an 

initial fund balance and considers the pricing of the MRRG part way through the products life 

on the insurers’ books. This is of interest to life insurance companies as many of them have 

large in-force books of business on which MRRG’s have existed for some years.  

This analysis also serves as an indication of how the market-consistent MRRG price changes 

over the time in-force as equity markets and yield curves fluctuate. In this section the 

moneyness of the MRRG is used as an additional initial input. The moneyness represents the 

percentage by which the current actual fund balance exceeds the guaranteed fund balance at a 

point in time. 

As in Table 19, I have set the initial fund value to 20 times the initial quarterly contribution. 

This equates to five years worth of contributions having been invested at the date the MRRG 

price was calculated. 
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Table 19: BSHW and initial moneyness level assumptions 

Standard 

Deviation 

Cont. 

Comp. 

Hull-White 

Parameters - 

alpha 

Hull-White 

Parameters - 

sigma 

Underlying 

"equity" 

process 

parameters - 

Drift 

Underlying 

"equity" 

process 

parameters - 

Volatility 

Correlation 

between the 

risky 

underlying 

and the 

short-rate 

Initial fund 

value as 

multiple of 

initial 

quarterly 

contribution 

0.003168 0.15 0.05 0.00 0.25 0.00 2000% 

Source: Own calculations  

 

The results of this analysis are shown in Table 20. As expected, moneyness does not have an 

effect on the discounted value of the future expected contributions of the MRRG product. 

However, there is a strong inverse relationship between the MRRG price and initial 

moneyness. For example, in the case of a 5-year MRRG, if the initial moneyness is 200% 

then the price is c.0.9% of discounted contributions but if the moneyness is 50% then the 

price rises to c.37% of discounted contributions. This makes sense as if the fund value is half 

the guarantee value then the charge required over the next five years needs to represent the 

high chance of the fund value still being in shortfall of its guarantee at maturity. As a result 

the price reflects this higher required charge. The opposite is true in that if the fund value far 

exceeds the guarantee level to date then the fair price for the MRRG in the coming five years 

should reflect the reduced likelihood of the guarantee paying out at maturity. 

The sensitivity to moneyness decreases as the term of the MRRG increases. This is explained 

by the fact that, the initial moneyness level becomes less relevant as the proportion of future 

expected cash flows increases. For example, even if the fund value is only half that of the 

guarantee value (i.e. moneyness is 50%) then the price of a 30-year MRRG only increases to 

c.1.2% of discounted contributions as opposed to c.1.0% under a 100% moneyness. 

Table 20: Demonstration of the sensitivity of the MRRG price to changes in the initial moneyness 

Change in initial moneyness 

5-year 

MRRG 

10-year 

MRRG 

15-year 

MRRG 

20-year 

MRRG 

25-year 

MRRG 

30-year 

MRRG 

Moneyness = 200% 16595 27109 33414 37176 39431 40776 

Moneyness = 150% 16595 27109 33414 37176 39431 40776 

Moneyness = 100% 16595 27109 33414 37176 39431 40776 

Moneyness = 75% 16595 27109 33414 37176 39431 40776 

Moneyness = 50% 16595 27109 33414 37176 39431 40776 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



- 77 - 

Minimum Rate of  

Return Guarantee price 

5-year 

MRRG 

10-year 

MRRG 

15-year 

MRRG 

20-year 

MRRG 

25-year 

MRRG 

30-year 

MRRG 

Moneyness = 200% 154 519 523 532 286 254 

Moneyness = 150% 556 959 812 711 386 314 

Moneyness = 100% 1953 1832 1320 950 539 391 

Moneyness = 75% 3539 2541 1703 1126 639 441 

Moneyness = 50% 6161 3570 2214 1366 769 506 

Guarantee price as a percentage 

 of the PV of total contributions 

5-year 

MRRG 

10-year 

MRRG 

15-year 

MRRG 

20-year 

MRRG 

25-year 

MRRG 

30-year 

MRRG 

Moneyness = 200% 0.9% 1.9% 1.6% 1.4% 0.7% 0.6% 

Moneyness = 150% 3.3% 3.5% 2.4% 1.9% 1.0% 0.8% 

Moneyness = 100% 11.8% 6.8% 3.9% 2.6% 1.4% 1.0% 

Moneyness = 75% 21.3% 9.4% 5.1% 3.0% 1.6% 1.1% 

Moneyness = 50% 37.1% 13.2% 6.6% 3.7% 1.9% 1.2% 

Source: Own calculations  

 

What this analysis suggests is that moneyness levels have greater effect on the MRRG price 

the closer one gets to expiry. This suggests that hedging of the underlying fund units becomes 

more important the closer one gets to the maturity date of the MRRG. 

4.5.2 Showing the effect of stochastic interest rates on the volatility of the equity fund 

value at maturity 

I model the volatility of the simulated fund value at maturity under the BSHW model to show 

the effect of changes in the input assumptions. Pelsser and Schrager state that since the mean 

of the fund value is independent of the parameters of the model that all volatility in the fund 

value must be attributable to the volatility of the Black Scholes lognormal approximation for 

the equity process (Schrager and Pelsser 2004). Pelsser and Schrager also state that the effect 

of stochastic interest rates on the fund value volatility increases with maturity and they call 

this effect the convexity correction effect (Schrager and Pelsser 2004). 

The analysis indicates that there is an increased volatility of fund value at maturity as 

maturity term increases. I illustrate this in Figure 30 where the standard deviation of the 

equity fund value simulations divided by the mean of the equity fund value simulations 

increases at an increasing rate with maturity.  
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Figure 30: Standard deviation of the equity fund value simulations divided by the mean of the equity fund value 

simulations in the case of Hull-White sigma = 0.0503 

 

Source: Own calculations  

 

The same effect can be seen in Figure 31, but for changes in the Hull-White interest rate 

volatility parameter “sigma”. Here, changes in “sigma”, while holding the reversion 

parameter “a” constant, show that there is a positive relationship between stochastic short 

rates and the volatility of the equity fund value at maturity. i.e. the higher the short rate 

volatility, the higher the volatility of the equity fund value at maturity. The impact of this is 

that the choice of the stochastic short rate model and the required parameter choices impacts 

the equity fund value simulation output and therefore has a direct impact on the ultimate price 

of the MRRG. 
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Figure 31: Standard deviation of the equity fund value sim

simulations for various choices of Hull-White sigma 

Source: Own calculations  
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: Standard deviation of the equity fund value simulations divided by the mean of the equity fund value 

White sigma parameters 

Pelsser and Schrager attribute this maturity “time effect” to the increasing number of cross 

) between the contribution dates at longer maturity terms 

This finding leads Pelsser and Schrager to further investigate comparisons of alternative 

rate models, for example, the Libor Market Model (LMM). They reach the conclusion that 

rates, in the case of long-term recurring-contribution MRRGs, 

(Schrager and Pelsser 2004). The implication is that the Hull

representation of stochastic volatility differs from other short rate models and 

would suggest that the choice of short rate model has a material effect on the price of the 

The effect on the MRRG prices can be seen in Figure 32 where the lower the sigma input the 

higher the MRRG price, all else equal. 
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Figure 32: MRRG prices under various sigma parameter

Source: Own calculations  
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5 Practical hedging of a MRRG 

5.1 Current industry practice for hedging MRRG 

In 2007 the Society of Actuaries’ Committee on Finance Research, along with the ALM 

Institute, conducted a survey on the various approaches and practical implementation 

techniques to manage variable annuities. This survey considered the hedging practice of 50 of 

the largest North American life insurance companies (Gilbert, Ravindran et al. 2007). 

Responses were received from 20 variable annuity guarantee writers in North America. 17 

out of the 20 respondents were issuing Guaranteed Maturity Accumulation Benefits 

(comparable to MRRG benefits). While six of the 17 were not hedging, nine were using 

equity futures, seven were using equity options, seven were using interest-rate futures and 

swap but zero were using interest-rate options (Gilbert, Ravindran et al. 2007).  

This shows us that a number of major life insurance companies are managing variable 

annuity guarantee risk via some form of hedging program. It appears that the most common 

hedging techniques deal with equity market movements. These changes being in the 

underlying equity market price as well as in the equity volatility. Interest rate hedging 

appears to only be used to a lesser extent – with interest rate volatility risk not seeming to be 

managed in many instances.  

In this Chapter, I introduce typical hedging approaches for the four key market input 

sensitivities. Thereafter, practical examples of each of these hedging approaches is shown and 

the limitations of such approaches discussed in the context of our BSHW model. 

5.2 Introduction to typical equity and interest rate risk hedging techniques 

5.2.1 Typical approaches to manage changes in swap rates 

The hedging of interest rate derivatives begins with understanding the sensitivity to 

movements in the yield curve. These sensitivity effects are split into first partial derivative 

effects, called deltas, second partial derivative effects, called gammas, etc. Hull describes the 

simplest delta sensitivity as the impact of a small (typically one-basis-point) parallel shift in 

the entire yield curve (Hull 2003). The preferred delta sensitivity approach, according to Hull 

(Hull 2003), is to calculate the impacts of small changes in each of the underlying 
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instruments used to contrast the yield curve. Hull argues that in practice the only way the 

yield curve can change is via changes in one or more of the quoted instruments. Therefore 

focussing sensitivity analysis to exposures arising from changes in the underlying instruments 

is preferred. In our case this means hedging changes in the eight swap rate inputs. 

Hull also state that the number of Gamma sensitivities increases rapidly with the increasing 

number of input instruments. This is because Gamma sensitivities pick up the cross-gamma 

sensitivities between changes at two different points along the yield curve, for example Hull 

states that in the case of ten input instruments there would be 55 different gamma measures 

(Hull 2003). These cross-gamma sensitivities would typically be ignored and only the second 

partial derivative of each input instruments would be considered.  

5.2.2 Outlining a program to manage changes in swap rates 

5.2.2.1 Common hedging approaches use PV01 stresses of the underlying swap rates 

The common approach to test interest rate sensitivity is to stress the input swap rates 

independently and then to assess the change in the price of the option post the stress. Table 21 

illustrates the 10bps stresses made to each of the input swap rates independently and 

simultaneously. 

Table 21: 10bps stresses to each input swap rate comprising our base yield curve 

Swap rate inputs 

1 Year  

Swap 

2 Year  

Swap 

5 Year  

Swap 

10 Year  

Swap 

15 Year  

Swap 

20 Year  

Swap 

25 

Year  

Swap 

30 

Year  

Swap 

Base yield curve 5.97 6.27 7.06 7.49 7.46 7.36 7.24 7.13 

1 Year  Swap -10bps 5.87 6.27 7.06 7.49 7.46 7.36 7.24 7.13 

2 Year  Swap -10bps 5.97 6.17 7.06 7.49 7.46 7.36 7.24 7.13 

5 Year  Swap -10bps 5.97 6.27 6.96 7.49 7.46 7.36 7.24 7.13 

10 Year  Swap -10bps 5.97 6.27 7.06 7.39 7.46 7.36 7.24 7.13 

15 Year  Swap -10bps 5.97 6.27 7.06 7.49 7.36 7.36 7.24 7.13 

20 Year  Swap -10bps 5.97 6.27 7.06 7.49 7.46 7.26 7.24 7.13 

25 Year  Swap -10bps 5.97 6.27 7.06 7.49 7.46 7.36 7.14 7.13 

30 Year  Swap -10bps 5.97 6.27 7.06 7.49 7.46 7.36 7.24 7.03 

All durations -10bps 5.87 6.17 6.96 7.39 7.36 7.26 7.14 7.03 

Source: Own calculations 
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Figure 33 shows the resulting Nelson-Siegel fitted curves which are generated under each of 

these independent and simultaneous swap rates stresses. As can be seen the fitted curves 

remain smooth.  

Figure 33: Illustration of resulting Nelson-Siegel yield curve fits under each 10bps yield curve stress 

 

Source: Own calculations 

 

On closer inspection, Figure 34 shows that the changes in the fitted Nelson-Sigel yield curve 

do not actually capture the independent stresses of each swap rate that well. This can be seen 

in that a reduction in one area of the yield curve is offset somewhat by an increase in another 

region of the curve. This effect can be explained by the limited number of Nelson-Siegel 

fitting parameters. The only fitted yield curve which closely represents the intended stresses 

is that of the simultaneous stress of all swap rate inputs. 
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Figure 34: Illustration of the resulting Nelson-Siegel fitted yield curve changes under each swap rate input stress 

 

Source: Own calculations 

 

The consequence of the limitations of the Nelson-Sigel fitting approach can be seen in the 

“noisy” results of the changes in the MRRG price. Table 22 shows the calculated price of the 

MRRG under each swap rate input stress as well as the change in the MRRG relative to the 

base yield curve price under each stress. What can be seen is that due to the smooth yield 

curve fit brought about by the Nelson-Siegel yield curve fitting the changes in the MRRG can 

be counter intuitive.  For example, in the case of a 10bps reduction in the 5-year swap rate 

input the cost of MRRG’s of all durations (5-years and above) should increase. However, as 

seen in Table 22 the cost of the 5-year MRRG does increase but as the duration of the 

MRRG’s priced increases the change in the price starts in increase by a lesser amount and 

post the 20-year duration the cost starts to decrease.  

 

Table 22: Output of the calculation of the MRRG price under each swap rate input stress 

Minimum Rate of Return 

 Guarantee price 

5-year 

MRRG 

10-year 

MRRG 

15-year 

MRRG 

20-year 

MRRG 

25-year 

MRRG 

30-year 

MRRG 

Base yield curve 1421 2126 2114 1780 1306 1118 

1 Year  Swap -10bps 1419 2119 2109 1780 1309 1123 

2 Year  Swap -10bps 1422 2125 2112 1778 1305 1117 

5 Year  Swap -10bps 1426 2135 2118 1777 1298 1108 

10 Year  Swap -10bps 1427 2139 2123 1780 1299 1108 

15 Year  Swap -10bps 1425 2136 2123 1785 1307 1117 
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20 Year  Swap -10bps 1423 2132 2123 1790 1316 1127 

25 Year  Swap -10bps 1420 2127 2122 1795 1323 1136 

30 Year  Swap -10bps 1418 2124 2121 1799 1330 1144 

All durations -10bps 1434 2155 2153 1822 1344 1152 

Change in Minimum Rate  

of Return Guarantee price 

5-year 

MRRG 

10-year 

MRRG 

15-year 

MRRG 

20-year 

MRRG 

25-year 

MRRG 

30-year 

MRRG 

Base yield curve 0.00 0.00 0.00 0.00 0.00 0.00 

1 Year  Swap -10bps -1.78 -7.21 -5.59 -0.77 2.64 4.77 

2 Year  Swap -10bps 0.79 -1.40 -2.18 -2.00 -1.43 -0.95 

5 Year  Swap -10bps 5.32 9.08 4.35 -3.49 -7.91 -10.33 

10 Year  Swap -10bps 6.52 13.11 8.44 -0.84 -6.61 -9.96 

15 Year  Swap -10bps 4.50 10.31 9.12 4.46 0.90 -1.41 

20 Year  Swap -10bps 1.71 5.70 8.69 10.06 9.62 8.80 

25 Year  Swap -10bps -0.83 1.37 8.02 14.78 17.19 17.80 

30 Year  Swap -10bps -3.02 -2.41 7.34 18.71 23.63 25.50 

All durations -10bps 13.37 28.70 38.45 41.24 38.19 34.23 

Sum of stresses to each swap rate 13.21 28.55 38.19 40.90 38.02 34.23 

Source: Own calculations 

 

The same pattern can be seen for the 5-year swap rate decrease stress in Table 23. Here, the 

percentage changes in the MRRG price are shown. I attribute this dynamic to the limited 

manner in which the Nelson-Sigel curve fitting approach captures small swap rates stresses. 

Therefore, caution should be applied when trying to test the MRRG price’s sensitivity to 

small swap rate input changes as the limitations of yield curve fitting approaches has an 

influence of the validity of results.  

Table 23 shows us that under a 10bps reduction in all swap rate inputs the price of the MRRG 

increases by c.1% in the case of a 5-year MRRG but as much as c.3% in the case of a 30-year 

MRRG. Thus it is apparent that MRRG benefits with longer maturity terms are more 

sensitive to changes in the input swap rates. This suggests that one should place greater 

emphasis on managing interest rate risks in the longer term MRRG maturities than under 

short-term contracts.  

Table 23: Percentage changes in the MRRG price under swap rate input stresses 

Change in MRRG price  

under each swap rate  

input stress 

5-year 

MRRG 

10-year 

MRRG 

15-year 

MRRG 

20-year 

MRRG 

25-year 

MRRG 

30-year 

MRRG 

Base yield curve 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 
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1 Year  Swap -10bps -0.13% -0.34% -0.26% -0.04% 0.20% 0.43% 

2 Year  Swap -10bps 0.06% -0.07% -0.10% -0.11% -0.11% -0.08% 

5 Year  Swap -10bps 0.37% 0.43% 0.21% -0.20% -0.61% -0.92% 

10 Year  Swap -10bps 0.46% 0.62% 0.40% -0.05% -0.51% -0.89% 

15 Year  Swap -10bps 0.32% 0.48% 0.43% 0.25% 0.07% -0.13% 

20 Year  Swap -10bps 0.12% 0.27% 0.41% 0.56% 0.74% 0.79% 

25 Year  Swap -10bps -0.06% 0.06% 0.38% 0.83% 1.32% 1.59% 

30 Year  Swap -10bps -0.21% -0.11% 0.35% 1.05% 1.81% 2.28% 

All durations -10bps 0.94% 1.35% 1.82% 2.32% 2.92% 3.06% 

Source: Own calculations 

 

5.2.2.2 Limitations of stressing swap rate inputs to generate PV01’s under Hull-White 

Two limitations with regards to swap rate hedging in the BSHW setting are apparent. Firstly, 

due to the limited number of parameters used in fitting smooth Nelson-Siegel yield curve the 

stress tests on the individual swap rates cannot be isolated from broader moves in the yield 

curve. 

Therefore, practically, the swap rate sensitivities for individual swap rates should be used 

with caution. What this means is that under BSHW the inability to accurately unpack the 

sensitivity of the MRRG price to individual swap rates means that hedging would need to 

make some form of assumption as to the term structure sensitivity of the MRRG. 

Secondly, the effect of positive convexity, seen in Figure 15, suggests that either hedging 

instruments with similar positive interest rate convexity should be purchased or continual 

delta hedging of the interest rate exposures would be required. 

5.2.2.3 Demonstration of a simple interest rate hedging program 

A practical hedging approach to manage swap rate sensitivity would be to buy or sell interest 

rate sensitive instruments of appropriate duration. Table 22 shows that a 10bps drop in 

interest rates at all durations would add between R13.37 and R41.24 to the MRRG price 

depending on the MRRG maturity term. A simple approach would be to purchase zero 

coupon bonds which offset the increase in the MRRG price under a 10bps parallel decrease in 

all swap rates.  
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Table 24 shows the calculated rand per point sensitivity of a basic R1million nominal value 

zero coupon bond contract of maturity 5, 10, 15, 20, 25 and 30 years. 

Table 24: Rand per point sensitivity of a zero coupon bond contract of various maturities.  

PV01 of Zero Coupon Bond Contract (R 1m notional)   

5-year Zero 

Coupon Bond 

10-year Zero 

Coupon Bond 

15-year Zero 

Coupon Bond 

20-year Zero 

Coupon Bond 

25-year Zero 

Coupon Bond 

30-year Zero 

Coupon Bond 

-332 -452 -474 -451 -407 -355 

Source: Own calculations 

 

Therefore, selling 0.004, 0.0063, 0.008, 0.0091, 0.0093 and 0.0096 Zero Coupon Bond 

contracts of each of the 5, 10, 15, 20, 25 and 30 year terms respectively will provide some 

protection to offset the change in the MRRG price as small changes in swap rates occur 

(Table 25). 

Table 25: Calculation of the number of Zero Coupon Bond contracts required to hedge parallel moves in swap rates 

5-year Zero 

Coupon 

Bond 

10-year 

Zero 

Coupon 

Bond 

15-year 

Zero 

Coupon 

Bond 

20-year 

Zero 

Coupon 

Bond 

25-year 

Zero 

Coupon 

Bond 

30-year 

Zero 

Coupon 

Bond 

PV01 of Zero Coupon 

Bond Contract -332 -452 -474 -451 -407 -355 

PV10 of MRRG 13.21 28.55 38.19 40.90 38.02 34.23 

PV01 of MRRG 1.32 2.85 3.82 4.09 3.80 3.42 

Number of Zero 

Coupon Bond 

Contracts to hedge -0.0040 -0.0063 -0.0080 -0.0091 -0.0093 -0.0096 

Source: Own calculations 

 

Due to the limitations of the BSHW model being used as well as the fact that I are only 

constructing a hedge against the first derivative with respect to changes in the swap rates the 

hedge will not be perfect.  
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5.2.3 Outlining a practical approach to manage changes in interest rate volatility 

inputs 

5.2.3.1 Estimating the sensitivity of the MRRG to changes in interest rate volatility 

In Section 4.5.1.4 the analysis of the effect of changes in the “a” and “sigma” parameters in 

the Hull-White model on the MRRG’s prices was performed. This analysis showed that the 

higher the volatility of interest rate inputs the lower the resulting price of the MRRG. 

5.2.3.2 Limitations of hedging interest rate volatility under Hull White 

The BSHW model used has limitations in terms of the numbers of parameters with which 

users can set the volatility of all future interest rates. This has the drawback that the full term 

structure of market implied interest rate volatility cannot be captured in the model. A 

simplified approximation is therefore required, and in doing so the amount of information we 

can draw from the MRRG interest rate sensitivity stress is reduced.  

However, there is a more fundamental point with regards to Hull-White interest rate 

sensitivity. Figure 7 showed that the choice of the reversion parameter “a” has significant 

effect on the T-maturity instantaneous forward in the Hull-White model.  

It can also be seen that fixing a = 0 sets the zero-coupon bond price volatilities as linear 

functions of maturity and the instantaneous standard deviations of the forward rates being 

constant (Hull 2003). The effect of various choices of a on the instantaneous standard 

deviations for the T-maturity instantaneous forward rate were seen above. The Hull-White 

model, requires the choice of reversion rate “a” such that the future instantaneous standard 

deviations for the T-maturity forward rates are reasonable. 

5.2.4 Outlining a practical approach to manage changes in the underlying equity 

market price 

As shown in Section 4.5.1.5.3 there is an inverse relationship between the moneyness of a 

MRRG and its price. Figure 35 provides an illustration of the prices of the MRRGs of various 

terms under different moneyness levels. What this shows us is that the shorter term MRRG 

prices are more sensitive to moneyness level than the longer termed MRRG. This is 

consistent with the analysis shown in section 4.5.1.5.3 and suggests that management of the 
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underlying equity market price risk becomes more important the closer the MRRG benefit 

gets to the maturity date. 

Figure 35: Inverse relationship between the prices of the MRRG and the moneyness levels 

 

Source: Own calculations 

 

5.2.4.1 Practical approaches to hedging changes in the underlying equity price 

Managing the sensitivity to changes in the price of the underlying risky asset over which the 

MRRG is written can be done by shorting the underlying asset (Fagen 1977). The quantum to 

which the underlying asset should be shorted is calculated to offset the changes in the price of 

the MRRG when underlying asset prices change.  

Table 26 shows that changes in the price of a MRRG for each 2.5% change in the underlying 

risky equity index over which the MRRG was written. What this table shows us is, like seen 

in Table 20, short-term MRRGs are far more sensitive to changes in the underlying asset 

price. This is evident from the price of the 5-year MRRG increasing sharply from R3934 to 

R5166 while the 30-year MRRG price only increased from R1588 to R1676 when the 

underlying equity index price decreased by c.20.4% in both cases. 

Table 26: Changes in the price of the MRRG for changes in the underlying equity (shown in 2.5% increments 

compounded) 

Initial moneyness level 

5-year 

MRRG 

10-year 

MRRG 

15-year 

MRRG 

20-year 

MRRG 

25-year 

MRRG 

30-year 

MRRG 

Equity index level stress of 0% 3934 4147 3535 2784 1933 1588 

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

5-year 

MRRG

10-year 

MRRG

15-year 

MRRG

20-year 

MRRG

25-year 

MRRG

30-year 

MRRG

Moneyness = 200%

Moneyness = 150%

Moneyness = 100%

Moneyness = 75%

Moneyness = 50%
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Equity index level stress of -2.5% 4069 4218 3580 2812 1949 1599 

Equity index level stress of -4.9% 4205 4289 3624 2840 1964 1609 

Equity index level stress of -7.3% 4341 4361 3667 2867 1979 1619 

Equity index level stress of -9.6% 4479 4435 3710 2893 1994 1629 

Equity index level stress of -11.9% 4615 4507 3753 2918 2008 1639 

Equity index level stress of -14.1% 4752 4580 3796 2944 2022 1648 

Equity index level stress of -16.2% 4890 4655 3838 2970 2036 1658 

Equity index level stress of -18.3% 5027 4729 3880 2995 2050 1667 

Equity index level stress of -20.4% 5166 4802 3921 3020 2064 1676 

              

Change in Minimum Rate of Return 

 Guarantee price 

5-year 

MRRG 

10-year 

MRRG 

15-year 

MRRG 

20-year 

MRRG 

25-year 

MRRG 

30-year 

MRRG 

Equity index level stress of 0% 0 0 0 0 0 0 

Equity index level stress of -2.5% 135 71 44 28 16 10 

Equity index level stress of -4.9% 271 143 88 55 31 21 

Equity index level stress of -7.3% 407 215 132 82 46 30 

Equity index level stress of -9.6% 545 288 175 108 61 40 

Equity index level stress of -11.9% 681 361 218 134 75 50 

Equity index level stress of -14.1% 818 434 260 160 89 60 

Equity index level stress of -16.2% 956 508 302 186 103 69 

Equity index level stress of -18.3% 1093 582 344 211 117 79 

Equity index level stress of -20.4% 1232 656 386 236 131 88 

Source: Own calculations 

 

To hedge against such changes life insurance comanies should sell/short the appropriate 

number of equities (or the underlying fund units) to offset this sensitivity. Table 27 shows the 

short equity (or unit fund) exposure required to hedge against a small decrease in the 

underlying equity index (or unit fund) price in the case of each MRRG. This short exposure 

was calculated by taking the increase in the MRRG price under a 2.5% decrease in the 

underlying equity index and dividing this by -2.5%. An alternative approximation would be 

to take the exposure implied by the average of a small increase and a small decrease in the 

underlying equity index (or unit fund) price. 

Table 27: Calculations of the short exposure required to hedge against a small decrease in the underlying risky asset 

Description of item 

5-year 

MRRG 

10-year 

MRRG 

15-year 

MRRG 

20-year 

MRRG 

25-year 

MRRG 

30-year 

MRRG 

Equity index level stress of -2.5% 135 71 44 28 16 10 

Offsetting change in equity  

index required -135 -71 -44 -28 -16 -10 

Equity exposure required to 

 achieve offsetting change -5411 -2851 -1776 -1118 -623 -415 
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Source: Own calculations 

 

5.2.4.2 Limitations to hedging the sensitivity to underlying equity deltas under BSHW 

Table 20 showedthe increase in the MRRG price is greater for a 50% reduction in the 

underlying equity index price than as opposed to the decrease in the underlying equity index 

increased by 50%. This was seen, for example, in the case of the 5-year MRRG, where a 50% 

increase in the equity index would reduce the price by R1397 (from R1953 to R556) but a 

50% reduction in the equity index sees the price increase by R4208 (from R1953 to R6161). 

Thus, due to the non-linear sensitivity of changes in the underlying equity fund process there 

is a need to monitor equity delta exposures and rebalance hedges on an ongoing basis. 

5.2.5 Outlining a practical approach to manage changes in the market’s price of 

equity volatility in the future 

5.2.5.1 Showing equity volatility sensitivity 

Figure 36 shows the effect of different equity volatility inputs on the price of the MRRG. As 

was seen in Section 4.5.1.5.1 the MRRGs with shorter maturity terms are more sensitive to 

changes in the equity volatility input parameters.  

Figure 36: Illustration of the effect of equity volatility inputs on MRRG prices 

 

Source: Own calculations 
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5.2.5.2 Limitations to hedging the equity market volatility under BSHW 

Table 17 showed the changes in the MRRG price as equity volatility reduced from 25% to 

15% as well as increased from 25% to 35%. It is worth noting that it is unlikely that traded 

equity options of sufficient term can be purchased to protect against these equity volatility 

changes. It is therefore likely that a practical blend of short-term equity options will be 

purchased to “generally” hedge against changes in the short-term MRRGs prices but the long 

term MRRG’s will generally be left unhedged. As the MRRG’s age and the term to maturity 

decreases the sensitivity to the underlying equity volatility will increase. Thus as the 

MRRG’s approach maturity the importance of equity volatility sensitivity monitoring will 

increase. Thus a practical compromise may be to consider hedging the equity volatility once 

the option has less than 5 years to run until maturity, say. 
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6 Quantifying and projecting the impact of a specific dynamic hedging 

program 

6.1 Real-world simulations are required to forecast the evolution of the MRRG 

and the hedging instruments 

In Chapter 5 the sensitivities of a range of MRRGs to changes in economic assumption inputs 

was shown. However, these sensitivities were all at an instantaneous point in time. Projecting 

potential sensitivities over time requires projections of how the various economic input 

variables evolve over time. To do this a credible real-world evolution model is required. This 

chapter outlines an approach to implement a real-world evolution model that I can quantify 

and project the impact of a dynamic hedging program. 

6.2 Introducing semi-parametric yield curve evolution approaches 

In this chapter the semi-parametric approaches to evolving the yield curve in the real-world 

measure are applied. The methods of Rebonato, Mahal, Joshi, Bucholz and Nyholm 

(Rebonato, Mahal et al. 2005) are outlined and later applied in the context of the South 

African market in recent years. According to Nyholm and Rebonato, the application of the 

methods suggested allows for the coherent modelling of the cash flows from assets and 

liabilities over long time periods in a consistent manner (Nyholm and Rebonato 2007). They 

also state that few models produce multi-factor evolutions of the entire yield curve under the 

real-world measure and over forecasting horizons relevant for long-term financial decision 

making as typically seen in life insurance (Nyholm and Rebonato 2007). Throughout this 

dissertation the Rebonato, Mahal, Joshi, Bucholz and Nyholm method will be abbreviated as 

RMJBN. 

The RMJBN is intuitive in that the model is based on semi-parametric approach which re-

samples to capture historic changes in yields to generate a yield curve evolution. The only 

‘structural’ feature (as is termed in Nyholm and Rebonato 2007) is the spring functions which 

are introduced to model the behaviours of arbitragers in the market.  

Rebonato, Mahal, Joshi, Bucholz and Nyholm (Rebonato, Mahal et al. 2005) state that their 

proposed model exhibits a number of positive features while still remaining simple and 

intuitive. Some of these positive features are that it reproduces the unconditional variance 
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asymptotically, the skewness and the kurtosis of the one-day changes in all the reference 

rates. They note that it also recovers approximately the distribution of yield curve curvatures, 

the unconditional variance and the serial autocorrelation for many-day changes in the traded 

swap yield inputs. Finally, and most importantly, they state that the most significant model 

parameters introduced (the “spring constants”) are financially motivated as they represent the 

activities of arbitragers (Rebonato, Mahal et al. 2005). 

Importantly the RMJBN model does not need to make any assumptions about a driving 

stochastic process nor does it assume that the innovations are independent or identically 

distributed (Rebonato, Mahal et al. 2005). 

6.3 Implementing a real-world scenario generator for South African yield curve 

data 

In this chapter I apply the same data analysis methods to the South African market as those 

applied by Rebonato, Mahal et al. (Rebonato, Mahal et al. 2005) in their work. The purpose 

of this is to describe the features of the South African interest rate environment and to 

motivate for the use of the RJMBN model as a method of capturing the features exhibited. 

6.3.1 Description of past data for the South Africa yield curve 

It is advisable to work with yields rather than forward rates (or other) curve information as 

the traded yields can be directly observed in a model-free way (Rebonato, Mahal et al. 2005). 

The empirical data used in this historical collection of South African swap rates (1-, 2-, 5-, 

10-, 15-, 20-, 25- and 30-year) has been sourced from Bloomberg. The dates included in this 

analysis were October 2000 to September 2010. What this data set shows is that the shorter-

term interest rates are more volatile than the long-term interest rates (Figure 37).  RMBJN’s 

choice to work with swap rates was due to the ability to observe these inputs directly in the 

market (in a model-independent way). 

Figure 37: Historic data from October 2001 to September 2010 for the South African swap rates 
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Source: Bloomberg, own calculations 

 

It is clear that yields have not only moved in parallel over the sample period. In fact, there 

have been instances where the difference between the 30 year and 1 year swap rate has 

changed by more than 5% within the space of one year. These extreme changes in differences 

can be seen in Figure 38 between January 2003 and January 2004, and to a lesser extent 

between January 2009 and January 2010. 

Figure 38: Empirical data of the percentage difference between longer-term swap rates and short-term (1-year) rates 

over the period of October 2000 to September 2010 

 

Source: Bloomberg, own calculations 
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Rebonato, Mahal et al. suggest that the changes in the swap rates are more informative than 

the level of the swap rates themselves and thus derive descriptive statistics for these changes 

(Rebonato, Mahal et al. 2005). I have calculated the same descriptive statistics for the South 

African yield curve data as seen in Figure 37. The mean of the changes is -0.02% (for all 

swap rates included in the dataset). This is reasonable given the general reduction in swap 

rates over the period. Standard deviations of the changes in daily swap rates increase slightly 

with the tenor of the swap.  

Figure 39: Descriptive statistics for the changes in each swap rate duration over the period of October 2000 to 

September 2010 

Changes in swap 

rate 

1 Year  

Swap 

2 Year  

Swap 

5 Year  

Swap 

10 Year  

Swap 

15 Year  

Swap 

20 Year  

Swap 

25 Year  

Swap 

30 Year  

Swap 

Minimum -7.43% -13.13% -8.57% -7.97% -11.45% -11.57% -11.53% -11.60% 

Maximum 12.16% 13.10% 12.76% 10.94% 10.93% 11.24% 11.99% 12.39% 

Average -0.02% -0.02% -0.02% -0.02% -0.02% -0.02% -0.02% -0.02% 

Standard Deviation 0.84% 0.96% 0.91% 0.90% 0.99% 1.06% 1.12% 1.08% 

Variance 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 

Skewness 1.11 0.52 0.82 0.67 0.04 0.07 0.27 0.33 

Kurtosis 35.10 39.55 24.84 18.23 18.89 17.38 20.57 15.36 

Source: Bloomberg, own calculations 

 

6.3.2 Unconditional variances 

RMBJM uses a concept they call unconditional variances to test independence of increments 

across time. They do this by calculating the variance of non-overlapping changes in the 

period s of length m-days (Rebonato, Mahal et al. 2005). For our South African dataset for 

the period October 2000 to September 2010 the total number of observations was 2000 days. 

Thus, where m= 50, there would be 40 non-overlapping 50-day periods. 

This methodology allows RMBJM to conclusion that the series (one for each swap rate) are 

not independent and that the variances also lack independence across time horizons 

(Rebonato, Mahal et al. 2005). A comparable investigation is completed for the South 

African market over the period October 2000 to September 2010. The straight line in Figure 

40 to Figure 45 represents the extension of the one-day change variances. i.e. �][	« =�. �][�   where i denotes the number of the swap-rate series in question. As RMBJM explain, 

if the serial variances of each of the swap-rate series were independent and identically 
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distributed (i.i.d.) then the calculated serial variances would fall on the straight lines shown in 

the respective figures.  

This is, however, not the case in RMBJN’s finding and similarly in the South African data 

over the time period October 2000 to September 2010.  Like RMBJN’s study, it is observed 

that there are definite deviations away from the extensions of the one-day variances 

(Rebonato, Mahal et al. 2005). In particular, as the length of the non-overlapping periods 

increases, the short maturity rates (1-year, 2-year and 5-year) exhibit higher variances than 

would otherwise be expected if the rates were i.i.d. (Rebonato, Mahal et al. 2005). For long 

maturities (20-year and 30-year), the variances increase less than linearly, as the non-

overlapping period lengths increase (Rebonato, Mahal et al. 2005).  

RMBJN note that a “less-than-linear” increase in the m-day variances could be compatible 

with positive autocorrelation and/or mean reversion. The key observation from our analysis is 

that there is a definite lack of independence of the variances (Rebonato, Mahal et al. 2005). 

Figure 40: Historic serial variance: 1-year rate 

 

 Figure 41: Historic serial variance: 2-year rate 

 

Source: Bloomberg, own calculations  Source: Bloomberg, own calculations 
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Figure 42: Historic serial variance: 5-year rate 

 

 Figure 43: Historic serial variance: 10-year rate 

 

Source: Bloomberg, own calculations  Source: Bloomberg, own calculations 

   

Figure 44: Historic serial variance: 20-year rate 

 

Source: Bloomberg, own calculations 

 Figure 45: Historic serial variance: 30-year rate 

 

 Source: Bloomberg, own calculations 

 

6.3.3 Curvatures 

RMBJM analyse the yield curve curvatures, ¬	, at a time point  where  = ��®¯�	���¯N 	 , � =2,3, … ,7. By defining the curvatures between three successive points on the yield curve as 

Equation 24 an approximation of a second derivative can be found (Rebonato, Mahal et al. 

2005). The advantage of this approach is that RMBJN are able to observe the curvatures in 

the actual market data and not have to make any interpolation assumptions (Rebonato, Mahal 

et al. 2005). 
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Equation 24 

¬ =	 ±�®¯�	±�'�®¯�	'�		�		±��	±��¯'��	'��¯'�®¯	®		'�� 		�		'�	®	'�®¯�   

Figure 46 demonstrations my calculations of the curvatures of the South African swap rates 

from October 2000 to September 2010, when calculated in the same manner as by RMBJN 

(Rebonato, Mahal et al. 2005). What this shows is that the curvatures of the near-term swap 

rates (such as 1Y to 5Y, say) are significantly more volatile than those between longer-term 

rates (such as 20Y to 30Y, say).  

Figure 46: Curvatures from October 2000 to September 2010 under various approximate maturities 

 

Source: Bloomberg, own calculations 

 

This effect can also be seen in the density of the curvatures between successive swap rates in 

Figure 47. Here, similar to the findings by RMBJN, the density of the curvatures between the 

shorter-term swap yields is far more spread than the density of the curvatures of the longer-

term swap rates (Rebonato, Mahal et al. 2005). 
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Figure 47: Frequency of the distribution of curvatures between different swap rate points 

 

Source: Bloomberg, own calculations 

 

The result of this feature of observed swap rate behaviour is summarised in Figure 48 where 

the standard deviation of the curvatures (as functions of approximate maturity) are shown 

(Rebonato, Mahal et al. 2005). This feature, which both RMBJM and I find, shows that the 

swap rate data suggests the long end of the yield curve should be less twisted (or curved) at 

longer maturities. Rebonato, Mahal et al. therefore motivate that real-world simulations 

should reflect this, and thereby introduce spring mechanisms into their swap rate forecast 

formulae (Rebonato, Mahal et al. 2005). 

Figure 48: Standard Deviation of curvatures for each duration bucket 
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Source: Bloomberg, own calculations 

 

6.3.4 Serial Autocorrelations 

RMBJN also calculate the serial autocorrelations of non-overlapping n-day changes in the 

various swap rates (Rebonato, Mahal et al. 2005). Figure 49 shows these autocorrelations 

between the non-overlapping n-day changes for the various swap curve maturities. 

(Rebonato, Mahal et al. 2005) state that for all maturities they observe a positive serial 

autocorrelation that increase as a function of n (Rebonato, Mahal et al. 2005). In my analysis 

of the autocorrelations of the n-day changes in the swap rates the effects of autocorrelation 

are less pronounced for longer-term swaps but still evident. What this analysis means is that, 

as was the case in RMBJN’s findings, there exists a strong positive correlation between the n-

day changes in swap rates, in particular in the short-term rates. Thus from a modelling 

perspective it is inadequate to assume independence of changes in swap rates from one period 

to the next (Rebonato, Mahal et al. 2005). Rather, as described by RMBJN this analysis 

demonstrates the fact that monetary authorities tend to act in a loosening or tightening cycle 

(Rebonato, Mahal et al. 2005).  

Figure 49: Lag 1 autocorrelations 

 

Source: Bloomberg, own calculations 
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6.4 RMBJM’s proposed model for real-world swap rate forecasting 

The method proposed by RMBJN also includes the effects of less kinked/straighter yield 

curves at longer maturities but not at short-term rates. I have adopted this same approach in 

my forecasting of the South African market yield curve evolution. This effect is captured in 

the third term of RMBJN’s proposed model in Equation 25.  The value of the ith swap rate M 

days after today is given by Equation 25 (Rebonato, Mahal et al. 2005): 

Equation 25 

�²%³ = �² +	 � ∆�G´0��,³ +	 � µ¬²%0 		for	� = 2,3, …7, and	0��,³  

	�²%³ = �² +	∑ ∆�G´0��,³ +	∑ ℎ��	 − �²%0�					for	� = 1	and	80��,³ 	   
 

6.5 Demonstration of forecast future yield curve evolutions 

Figure 50 to Figure 55 show six of the potential swap rate evolutions generated by the 

RMBJN model when calibrated to the South African swap rates at September 2010. 

Figure 50: Real-world scenario example 1 

 

 Figure 51: Real-world scenario example 2 

 

Source: Own calculations  Source: Own calculations 
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Figure 52: Real-world scenario example 3 

 

 Figure 53: Real-world scenario example 4 

 

Source: Own calculations  Source: Own calculations 

   

Figure 54: Real-world scenario example 5 

 

Source: Own calculations 

 Figure 55: Real-world scenario example 6 

 

Source: Own calculations 
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Figure 56: Forecast swap rates example used in modelling forecasts 

 

Source: Bloomberg, own calculations 

 

6.6 Demonstration of the effectiveness of periodic rebalancing of a hedge 

position 

This section shows the effectiveness of periodic dynamic hedging on the net of hedge profit 

and loss position over a 20-day period. Real-world simulations generated in by RMBJN’s 

approach are used to forecast the real-world evolution of traded swap rates and a Black 

Scholes geometric Brownian motion approach is used to simulate daily equity movements 

(Rebonato, Mahal et al. 2005). The real-world scenarios simulated in Figure 56 are used over 

a 20-day forecast period. 

Figure 57 shows the evolution of the real-world swap rates over the 20-day forecast period. 

This shows that this particular scenario models a general decrease in long-term swap rates 

over the 20-day period. 
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Figure 57: Illustration of the test scenario of real-world evolution of traded swap rates over the 20 day period 

 

Source: Own calculations 

 

Figure 58 illustrates the forecast equity index level over the same 20-day period. The scenario 

used captures a c.6% fall in equities over the first 7 days and generally flat equity index levels 

for the remainder of the period. 

Figure 58: Illustration of the test scenario of the forecast equity index level over the 20-day period 

 

Source: Own calculations 
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The scenario used results in increasing MRRG prices over the 20-day period. This is to be 

expected given the falling equity and swap rate yields. The prices of the various terms of 

MRRG are shown in Figure 59. 

Figure 59: Calculations of the prices of the MRRG over the coming 20 days 

 

Source: Own calculations 

 

Table 28 shows the nominal change in the price of each of the various MRRG products under 

the 20-day forecast period. It can be seen the all terms of MRRG increase in price (this is 

evident by the losses shown) but the medium- and longer-term MRRG products prices 

increase more than the 5-year MRRG. The medium- and longer-term MRRG large price 

changes are proportionately more than in the case of the short term MRRG products.  

Table 28: Change in value of the MRRG’s of various terms under the 20-day forecast period 

Day 5-year MRRG 10-year MRRG 15-year MRRG 20-year MRRG 25-year MRRG 30-year MRRG 

1 0 0 0 0 0 0 

2 -3 -6 -7 -7 -6 -5 

3 2 3 4 5 5 4 

4 3 5 5 4 3 2 

5 3 4 6 6 5 5 

6 -3 -4 -4 -5 -4 -3 

7 0 0 0 1 0 1 
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11 1 2 3 3 3 3 

12 -1 -4 -5 -6 -5 -5 

13 -3 -7 -9 -10 -8 -8 

14 0 0 0 0 0 0 

15 -3 -6 -8 -8 -6 -6 

16 -2 -4 -6 -6 -6 -6 

17 -1 -2 -2 -3 -2 -2 

18 0 -1 -2 -3 -3 -3 

19 -3 -7 -9 -8 -7 -6 

20 -3 -7 -9 -11 -10 -10 

Total -19 -42 -53 -55 -47 -45 

Source: Own calculations 

 

6.6.1 Only hedging interest rate deltas 

Hull states that it may be common practice to assume simpler one-factor models for pricing 

but not only one factor is assumed when hedging (Hull 2003). Hull explains that typical delta 

(or gamma) sensitivities allow for many yield curve movements, and not just those possible 

under the chosen model (Hull 2003). This standard practice of testing for changes not 

allowed by the model’s parametric form is called outside model hedging (Hull 2003). Hull 

makes the point that, in reality, a relatively simple one-factor model usually gives a 

reasonable price if used carefully but a good hedging scheme must explicitly or implicitly 

assume many factors (Hull 2003). 

Table 29 shows the sensitivities of the MRRG prices of various durations under a 1bps 

decrease in swap rates.  

Table 29: Calculations of the -PV01 sensitivities for MRRGs with various terms over the 20-day forecast period 

Day 5-year MRRG 10-year MRRG 15-year MRRG 20-year MRRG 25-year MRRG 30-year MRRG 

1 -0.42 -0.59 -0.67 -0.66 -0.54 -0.50 

2 -0.42 -0.60 -0.68 -0.67 -0.55 -0.51 

3 -0.42 -0.59 -0.67 -0.66 -0.54 -0.50 

4 -0.42 -0.59 -0.67 -0.65 -0.53 -0.49 

5 -0.42 -0.58 -0.66 -0.64 -0.52 -0.48 

6 -0.42 -0.58 -0.66 -0.65 -0.53 -0.49 

7 -0.42 -0.58 -0.66 -0.65 -0.53 -0.49 

8 -0.41 -0.58 -0.66 -0.65 -0.53 -0.49 

9 -0.42 -0.59 -0.67 -0.65 -0.53 -0.49 

10 -0.42 -0.59 -0.67 -0.66 -0.54 -0.50 
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11 -0.42 -0.59 -0.67 -0.65 -0.54 -0.49 

12 -0.42 -0.60 -0.68 -0.67 -0.55 -0.51 

13 -0.42 -0.60 -0.69 -0.68 -0.57 -0.53 

14 -0.42 -0.61 -0.69 -0.68 -0.57 -0.53 

15 -0.42 -0.62 -0.70 -0.70 -0.58 -0.54 

16 -0.43 -0.62 -0.71 -0.71 -0.60 -0.56 

17 -0.43 -0.63 -0.72 -0.72 -0.61 -0.56 

18 -0.43 -0.63 -0.73 -0.72 -0.62 -0.57 

19 -0.43 -0.64 -0.74 -0.74 -0.64 -0.59 

20 -0.44 -0.65 -0.76 -0.76 -0.67 -0.62 

Source: Own calculations 

 

Table 30 shows calculations of the sensitivities of zero-coupon bonds (ZCB) to 1bps 

reductions in swap rates. The PV01’s shown indicate the change in the price of a ZCB (of 

each term) for a 1bps point change in the swap rates of each term. The ZCB changes shown 

are in the context of a ZCB which pays R1 nominal face value at maturity. 

Table 30: Calculation of the PV01 sensitivity of Zero Coupon Bonds with terms matching the MRRG maturities 

Day 5-year MRRG 10-year MRRG 15-year MRRG 20-year MRRG 25-year MRRG 30-year MRRG 

1 -0.000332 -0.000452 -0.000474 -0.000451 -0.000407 -0.000355 

2 -0.000334 -0.000457 -0.000480 -0.000457 -0.000419 -0.000368 

3 -0.000333 -0.000455 -0.000478 -0.000456 -0.000412 -0.000361 

4 -0.000332 -0.000452 -0.000475 -0.000449 -0.000409 -0.000358 

5 -0.000331 -0.000449 -0.000473 -0.000446 -0.000402 -0.000349 

6 -0.000332 -0.000452 -0.000475 -0.000453 -0.000408 -0.000357 

7 -0.000332 -0.000452 -0.000476 -0.000453 -0.000408 -0.000357 

8 -0.000332 -0.000451 -0.000474 -0.000452 -0.000408 -0.000360 

9 -0.000333 -0.000456 -0.000481 -0.000460 -0.000417 -0.000366 

10 -0.000334 -0.000459 -0.000487 -0.000467 -0.000425 -0.000374 

11 -0.000333 -0.000457 -0.000485 -0.000462 -0.000418 -0.000368 

12 -0.000334 -0.000459 -0.000489 -0.000467 -0.000424 -0.000373 

13 -0.000335 -0.000463 -0.000494 -0.000476 -0.000435 -0.000385 

14 -0.000334 -0.000463 -0.000493 -0.000474 -0.000432 -0.000381 

15 -0.000335 -0.000465 -0.000499 -0.000481 -0.000439 -0.000388 

16 -0.000336 -0.000468 -0.000501 -0.000484 -0.000445 -0.000394 

17 -0.000335 -0.000467 -0.000500 -0.000485 -0.000444 -0.000392 

18 -0.000335 -0.000466 -0.000498 -0.000481 -0.000442 -0.000390 

19 -0.000336 -0.000468 -0.000504 -0.000484 -0.000445 -0.000393 

20 -0.000336 -0.000469 -0.000504 -0.000489 -0.000450 -0.000397 

Source: Own calculations 
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In order to hedge against these changes in swap rates the life insurance company should buy 

(or sell) the appropriate number of ZCB hedge assets to offset the changes in the MRRG 

prices when swap rates change. Figure 60 shows that the life insurance company is required 

to hold between c.900 and c.1300 ZCBs (nominal face value of R1) depending on the term of 

the MRRG in order to hedge the interest rate sensitivity of the MRRGs.  

Figure 60: Number of Zero Coupon Bond contracts required to hedge the PV01 at each of the 20 days  

 

Source: Own calculations 

 

If these interest rate hedges are put in place (and rebalanced to these positions each day) then 

for profit and losses shown in Table 31 would likely be experienced as these ZCB’s revalue 

under the changes in swap rates. What can be seen is that as interest rates fall the hedges 

increase in value and this assists in offsetting the losses incurred as the prices of the MRRGs 

increase under decreasing interest rates.  

Table 31: Changes in the value of the portfolio of interest rate hedges over the 20-day forecast period 

Day 5-year MRRG 10-year MRRG 15-year MRRG 20-year MRRG 25-year MRRG 30-year MRRG 

1 0 0 0 0 0 0 

2 4 5 3 3 5 5 

3 -2 -2 -1 -1 -3 -3 

4 -2 -2 -2 -3 -1 -1 

5 -3 -3 -1 -2 -3 -3 
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6 3 3 1 3 3 3 

7 0 0 0 0 0 0 

8 -1 -1 -1 0 0 1 

9 4 5 4 4 3 3 

10 2 2 3 3 4 3 

11 -2 -1 -1 -2 -3 -2 

12 0 1 2 2 2 2 

13 2 4 3 4 4 4 

14 -1 0 -1 -1 -1 -2 

15 2 2 3 3 3 3 

16 1 2 1 2 2 2 

17 0 0 0 0 0 -1 

18 -1 -1 -1 -2 -1 -1 

19 2 2 3 1 1 1 

20 1 2 0 2 2 2 

Total 10 16 17 18 18 17 

Source: Own calculations 

 

The net effect of the change in the MRRG price and the ZCB interest rate hedge instruments 

held is shown in Table 32. It can be seen that by holding a range of ZCBs the net effect on the 

profit and loss due to changes in interest rates is dampened.  

Table 32: Change in MRRG price net of interest rate hedge portfolio changes over the 20-day period 

Day 5-year MRRG 10-year MRRG 15-year MRRG 20-year MRRG 25-year MRRG 30-year MRRG 

1 0 0 0 0 0 0 

2 0 -1 -4 -4 0 0 

3 0 1 4 4 2 2 

4 1 3 3 1 1 1 

5 0 1 5 4 2 2 

6 0 -1 -3 -1 -1 0 

7 0 0 1 1 0 1 

8 1 1 0 0 0 0 

9 0 -2 -2 -1 0 1 

10 0 -2 -2 -2 -1 -1 

11 -1 1 2 1 1 1 

12 -1 -2 -3 -4 -3 -3 

13 -1 -3 -6 -5 -4 -3 

14 -1 -1 -1 -1 -1 -1 

15 -1 -4 -4 -5 -3 -3 

16 -1 -2 -5 -5 -3 -3 

17 -1 -2 -3 -2 -2 -3 
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18 -1 -2 -3 -4 -4 -4 

19 -2 -6 -5 -7 -5 -5 

20 -2 -5 -10 -8 -8 -8 

Total -9 -26 -36 -37 -29 -28 

Source: Own calculations 

 

6.6.2 Equity underlying deltas 

Similarly, the sensitivity of the MRRG prices to changes in equity prices is shown in Table 

33. This shows that the life insurer (the MRRG writer) would experience losses (decreasing 

as the term of the MRRG increases) when equities fell by 10% instantaneously.  

Table 33: Calculation of the change in the MRRG prices from a 10% down shock in equities on each of the days of 

the 20-day forecast period 

Day 5-year MRRG 10-year MRRG 15-year MRRG 20-year MRRG 25-year MRRG 30-year MRRG 

1 -57.64 -30.53 -18.40 -11.27 -6.32 -4.23 

2 -57.90 -30.94 -18.66 -11.41 -6.38 -4.37 

3 -57.77 -30.70 -18.47 -11.30 -6.32 -4.24 

4 -57.56 -30.37 -18.25 -11.24 -6.28 -4.20 

5 -57.37 -30.06 -18.02 -11.24 -6.19 -4.12 

6 -57.56 -30.33 -18.18 -11.24 -6.24 -4.16 

7 -57.55 -30.32 -18.15 -11.24 -6.23 -4.15 

8 -57.43 -30.15 -18.11 -11.24 -6.25 -4.17 

9 -57.75 -30.59 -18.38 -11.26 -6.28 -4.22 

10 -57.90 -30.85 -18.58 -11.36 -6.35 -4.32 

11 -57.83 -30.74 -18.47 -11.28 -6.30 -4.23 

12 -57.95 -31.02 -18.69 -11.42 -6.38 -4.37 

13 -58.24 -31.60 -19.06 -11.69 -6.48 -4.48 

14 -58.24 -31.66 -19.07 -11.69 -6.48 -4.48 

15 -58.51 -32.16 -19.33 -11.93 -6.63 -4.66 

16 -58.69 -32.51 -19.51 -12.22 -6.94 -4.75 

17 -58.76 -32.68 -19.61 -12.32 -7.09 -4.75 

18 -58.77 -32.74 -19.68 -12.44 -7.27 -4.81 

19 -59.08 -33.28 -20.04 -12.71 -7.68 -5.06 

20 -59.34 -33.82 -20.42 -12.95 -8.13 -5.22 

Source: Own calculations 

This exposure is equivalent to holding a long position in equities 10 times greater than this 

amount. Table 34 shows the equity positions required to offset changes in equity market 

moves on the price of the MRRG. For example, as the 5-year MRRG price decreases by 
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c.R57.64 if equities drop by 10% on day 1 this is loss would be equivalent to holding a 

c.R576.40 long position in equities. Therefore, to hedge this position the life insurance 

company would be required to hold a short position in equities to the same amount, as is 

shown in Table 34. 

Table 34: Equity exposure required at each of the 20 days so that the underlying equity delta is matched 

Day 5-year MRRG 10-year MRRG 15-year MRRG 20-year MRRG 25-year MRRG 30-year MRRG 

1 -576.41 -305.31 -183.96 -112.72 -63.17 -42.29 

2 -579.04 -309.37 -186.56 -114.12 -63.81 -43.74 

3 -577.72 -307.00 -184.69 -112.97 -63.18 -42.42 

4 -575.63 -303.74 -182.50 -112.41 -62.82 -41.97 

5 -573.67 -300.64 -180.21 -112.37 -61.91 -41.24 

6 -575.58 -303.30 -181.75 -112.41 -62.40 -41.59 

7 -575.54 -303.15 -181.53 -112.40 -62.32 -41.50 

8 -574.26 -301.50 -181.09 -112.43 -62.47 -41.71 

9 -577.45 -305.91 -183.81 -112.61 -62.83 -42.16 

10 -578.97 -308.50 -185.78 -113.57 -63.48 -43.24 

11 -578.27 -307.42 -184.69 -112.84 -62.95 -42.31 

12 -579.53 -310.19 -186.93 -114.23 -63.77 -43.69 

13 -582.35 -316.04 -190.56 -116.90 -64.83 -44.75 

14 -582.39 -316.57 -190.73 -116.95 -64.80 -44.76 

15 -585.12 -321.59 -193.28 -119.34 -66.32 -46.57 

16 -586.91 -325.12 -195.12 -122.17 -69.45 -47.45 

17 -587.63 -326.77 -196.11 -123.18 -70.94 -47.53 

18 -587.74 -327.39 -196.79 -124.37 -72.65 -48.10 

19 -590.83 -332.78 -200.44 -127.14 -76.83 -50.64 

20 -593.38 -338.22 -204.21 -129.53 -81.26 -52.22 

Source: Own calculations 

If such short equity positions are held on each day then the profits and losses on the equity 

hedge assets held are as shown in Table 35. What this shows is that as equities drop the short 

positions in equities held as hedges increase in value.  

Table 35: Change in the value of the equity hedge portfolio in each day of the 20-day forecast period 

Day 5-year MRRG 10-year MRRG 15-year MRRG 20-year MRRG 25-year MRRG 30-year MRRG 

1 0 0 0 0 0 0 

2 3 1 1 1 0 0 

3 3 2 1 1 0 0 

4 6 3 2 1 1 0 

5 3 2 1 1 0 0 

6 8 4 2 2 1 1 

7 5 3 2 1 1 0 
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8 -4 -2 -1 -1 0 0 

9 0 0 0 0 0 0 

10 5 2 1 1 1 0 

11 -8 -4 -3 -2 -1 -1 

12 1 1 0 0 0 0 

13 4 2 1 1 0 0 

14 -3 -1 -1 -1 0 0 

15 -6 -3 -2 -1 -1 0 

16 4 2 1 1 0 0 

17 -6 -3 -2 -1 -1 0 

18 8 4 3 2 1 1 

19 -3 -2 -1 -1 0 0 

20 -4 -2 -1 -1 -1 0 

Total 16 8 5 3 2 1 

Source: Own calculations 

The net effect of holding equity hedges and the MRRG change is shown in Table 36. This 

table shows that net of hedge profit and loss is dampened compared to the not holding equity 

hedges.  

Table 36: Change in MRRG price net of equity hedge portfolio changes over the 20-day period 

Day 5-year MRRG 10-year MRRG 15-year MRRG 20-year MRRG 25-year MRRG 30-year MRRG 

1 0 0 0 0 0 0 

2 -1 -5 -6 -6 -5 -5 

3 5 5 5 6 5 5 

4 9 8 7 5 3 2 

5 6 6 7 7 6 5 

6 5 0 -2 -3 -3 -3 

7 5 3 2 2 1 1 

8 -2 0 0 -1 -1 -1 

9 -4 -7 -6 -5 -3 -2 

10 3 -1 -3 -4 -4 -4 

11 -7 -3 0 2 2 3 

12 0 -3 -5 -5 -5 -5 

13 1 -5 -8 -9 -8 -7 

14 -3 -2 -1 -1 0 0 

15 -9 -9 -9 -9 -7 -6 

16 2 -2 -5 -6 -5 -5 

17 -7 -5 -4 -4 -3 -2 

18 8 4 1 -1 -2 -2 

19 -7 -9 -10 -9 -7 -6 

20 -7 -9 -11 -12 -10 -10 

Total -2 -33 -48 -52 -46 -43 
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Source: Own calculations 

6.6.3 Overall effectiveness of both interest rate delta and equity delta hedging 

The aggregate effect of the change in the MRRG price, the change in the interest rate hedge 

instruments prices and the change in the equity hedge instruments prices are shown in Table 

37.  

Table 37: Change in the MRRG price net of interest rate and equity hedge portfolio changes over the 20-day period 

Day 5-year MRRG 10-year MRRG 15-year MRRG 20-year MRRG 25-year MRRG 30-year MRRG 

1 0 0 0 0 0 0 

2 3 0 -3 -3 0 1 

3 2 3 5 5 2 2 

4 7 6 5 2 2 1 

5 3 3 6 5 3 2 

6 8 4 -1 0 0 0 

7 5 3 2 2 1 1 

8 -4 -1 -1 -1 -1 0 

9 0 -2 -2 -1 0 1 

10 4 1 0 -1 0 -1 

11 -9 -4 -1 0 0 0 

12 0 -1 -3 -3 -2 -3 

13 3 -1 -5 -4 -3 -3 

14 -4 -2 -2 -2 -2 -2 

15 -7 -7 -6 -6 -4 -4 

16 3 0 -3 -4 -3 -3 

17 -7 -5 -5 -3 -3 -3 

18 7 2 0 -3 -3 -3 

19 -5 -7 -7 -8 -6 -5 

20 -6 -8 -11 -9 -9 -9 

Total 7 -18 -31 -34 -28 -27 

Source: Own calculations 

Figure 61 shows this aggregate effect graphically. This demonstrates that by purchasing 

appropriate interest rate and equity hedge assets the profit and losses incurred as MRRG 

prices change can be dampened.  
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Figure 61: Cumulative effect of changes in the net of hedge profit and loss over the 20-day period 

 

Source: Own calculations 
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7 Research conclusion 

This dissertation has tackled the current life insurance industry challenge to price and hedge 

minimum rate of return guarantees (MRRG) embedded in recurring-contribution life 

insurance contracts in a practical manner. As the quantification and projection of the impact 

of dynamic hedging strategies appears to remain one of the top implementation challenges I 

focused the analysis on developing the literature on this area.  

Chapter 1 introduced the concept of the MRRG benefit and showed that the price of the 

MRRG written over a recurring-contribution life insurance contract is path dependent with a 

payoff based on a stochastically-weighted average of the prices of the underlying unit-linked 

investment fund at different time points. These characteristics make the pricing problem 

somewhat more complex in that Monte Carlo simulation techniques are required in order to 

find a solution. The literature specific to the recurring contribution MRRG case is limited but 

the significant contribution of Schrager and Pelsser was apparent and their work formed the 

basis of much of the analysis which followed. In Chapter 2 I concluded that ongoing debate 

as to the appropriate approaches to value long-term guarantees remains active. A 

chronological analysis of the fast four decades showed that the industry and the professional 

bodies which work in it have, at times, had strong differences of opinion as to the 

appropriateness of various assumptions and modelling approaches. Increasingly, financial 

economics approaches are used to price complex life insurance options and guarantees but 

still some question the validity of the assumptions behind these relative pricing tools when 

used to calculate the market-consistent price of very long-dated life insurance guarantees in 

incomplete market conditions. The life insurance industry is required to look beyond this 

debate and explore practical approaches to manage the keys risks embedded in such products, 

and in turn meet likely corporate objectives, such as income statement volatility management.  

Schrager and Pelsser’s analysis of the variability of the underlying fund value at maturity, 

over which the MRRG is written, are shown in Chapter 3. Their conclusions provide clear 

explanations for the sources of volatility in the MRRG prices and therefore assist us in 

considering what hedging assets many be appropriate. They conclude that from the valuation 

date and up until the time a contribution is invested into the fund the volatility is confined to 

only interest rate risk. From the time the contributions are invested until the maturity the 

variation in the MRRG price is described by the quadratic covariance between the forward 
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stock and forward bond prices. And finally, the volatility in the price between the 

contribution date and some later time point is confined to forward stock price risk, as at this 

later time point the past unit prices are all known. This suggested that early in the contracts 

term, when the majority of contributions were yet to be received, that interest rate risk would 

drive the MRRG price. On the other hand, as the MRRG contracts approached the benefit 

maturity date equity pure equity price risk associated to the past contributions already 

invested in equity would dominate the MRRG price changes. What this showed us is that no 

one hedging strategy is appropriate for the entire MRRG term, rather the significance of 

different hedging activities will change over the term of the MRRG. 

To move forward and better quantify the sensitivity of the MRRG prices to both the forward 

bond and forward equity process a practical model to capture these effects was required. The 

Black Scholes Hull-White (BSHW) model was therefore used as it is complex enough to 

capture these items, while remaining mathematically tractable and can be calibrated, exactly, 

to the yield curve and therefore achieves market-consistent yield curve pricing (Chapter 4).  

Sensitivity runs performed under the BSHW approach showed that MRRG prices increase as 

swap rates fall with the effect being more pronounced in the case of longer MRRG terms. As 

interest rate volatility increased the cost of the MRRGs decreased. As equity volatility 

increased the cost of MRRGs increased and there is an inverse relationship between 

moneyness level and MRRG price. Pelsser and Schrager showed that the effect of stochastic 

interest rates on the fund value volatility increases with maturity (Schrager and Pelsser 2004). 

This was an important finding in their work as it suggested that the choice of interest rate 

model, and more specifically the manner in which cross correlations between different time 

points on the yield curve were dealt with, could have material effect on the MRRG price 

calculated. This is of particular importance in due to the very long terms associated with 

typical life insurance MRRGs. 

In Chapter 5 I discussed the current state of hedging activity amongst the largest North 

American life insurers. In reality, not all life insurers are hedging, and those that are focussed 

on the key first order interest rate and equity underlying risks. In this context and with the 

objective of addressing the industry challenge of projection and quantification of the 

effectiveness of specific dynamic hedging approaches the focus remained on outlining a 

simple approach under a robust model while recognising its limitations. By performing a 
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batch of sensitivity runs on the MRRG prices allowed us to calculate the exposure of the 

MRRG’s to small changes in the underlying economic variables and in turn it allows us to 

calculate the number of each hedge instrument needed to try offset profit and losses arising 

from revaluation of the MRRG price each day. Real-world models for the evolution of the 

term structure of interest rates are required to quantify and project the impact of dynamic 

hedging programs.  

Chapter 6 showed that, under a real-world evolution model, relatively simple dynamic 

hedging of swap rate changes with zero-coupon bonds and by shorting equity underlying 

units can dampen the volatility of the profit and loss effects of movements in the MRRG 

prices over time. Thus, this dissertation has shown that it is possible to outline a practical 

approach to price and hedge the minimum rate of return guarantees embedded in recurring 

contribution life insurance contracts.  
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8 Limitations and areas for future research 

8.1.1 Difficulty in unpacking the term structure of interest rate risk 

The use of the Nelson-Siegel yield curve fitting method is a key limiting factor in 

understanding the nuances of the term structure of the interest rate risk our the MRRG 

benefits. This is because the Nelson-Siegel method focuses on smooth yield curve 

calibrations and has limited degrees of freedom with which small changes in the yield curve 

can be captured. As a result we have had to apply judgement as to which interest rate stresses 

can be interpreted as accurate rather than spurious accuracy emanating from yield curve 

fitting methods.  

8.1.2 Limitations on the interest rate volatility captured in the Hull-White Model 

The trade off of the mathematical tractability of the Hull White model is that the model can 

only capture a limited range of interest rate volatilities. As Schrager and Pelsser showed, the 

effects of stochastic interest rates have a material effect on the calculated price of the MRRG. 

It is therefore important to bear in mind the limitations of the Hull-White model when 

interpreting results. A key finding in Schrager and Pelssers’ research was that the effects of 

stochastic interest rates on the volatility of the simulated underlying fund value increase with 

the time to maturity of the MRRG. Thus, different interest rate models, with different abilities 

to model stochastic interest rates are likely to lead to different simulated fund values, and in 

turn, MRRG prices.  

Another limitation to BSHW approach is the difficulty in calibrating the Hull-White Model to 

observed interest rate options. In practice much of this calibration would be an “eye-balling” 

of the general characteristics of the stochastic interest rate volatility implied by market traded 

instruments. In the Libor Market Model (LMM) for example, calibration to traded 

instruments is direct, thus removing the noise introduced by “eye-balling” processes. This is 

of great value if users are to understand the sensitivity of the MRRG prices to small changes 

in interest rate volatility as, under LMM, the extent of calibration noise will be greatly 

reduced.  

A key area of potential future research is to reproduce the analysis above on alternative 

choices of interest rate models and the LMM in particular. 
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8.1.3 Focussed on simple first-order hedging 

This dissertation showed that MRRG prices exhibit positive convexity to interest rates and 

increased sensitivity to the underlying unit fund price as unit fund prices fall. In short, MRRG 

are non-linear to their key underlying economic risks. However, I have acknowledged these 

risks but only structured a simple hedging program to address the key first-order risks to 

interest rate and underlying unit fund prices. This has been done in the context of the majority 

of the North American life insurance industry only concentrating hedge activity on such 

practice and to keep focus on the research objective to project and quantify a hedge programs 

effectiveness. An extension to the analysis would be to include a portfolio of appropriately 

sensitive interest rate and equity options with low tracking error to the underlying fund units 

so as to attempt to better manage these non-linear dynamics.  

Other areas of future potential research focus on the optimisation of hedging program design 

decisions. This dissertation has not delved into the relative merits of: move-based or time-

based rebalancing; cost benefit analysis or any practical considerations such as borrowing 

costs and regulatory rules on short-selling of underlying unit funds, etc.  

8.1.4 Not considering the interaction between policyholder behaviour and economic 

market variables.  

In practice MRRG’s are sold to individuals as rider benefits to their medium- and long-term 

savings policies. These individuals will take decisions whether to keep these products or 

surrender them depending on their own financial circumstances as well as on the value they 

see in them. There is an argument to state that policyholders are less likely to surrender 

guaranteed products (such as MRRG benefits) if they believe they are likely to claim from 

the benefit, for example of equity returns have been poor and the guarantee is in the money. 

While I treated policyholder behaviour as independent in this analysis, a potential area of 

future research could be to assess the additional cost associated to the life insurer if behaviour 

was linked to economic conditions. 
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9 Appendices:  

 

9.1 Detailed calculations of 3-year policy fund value and guarantee build-up 

Table 38: Detailed calculation of 3-year policy fund value and 0% rate of return guarantee value build-up from 1999 to 2011 

Date Fund 

index 

(J200T) 

Guarantee 

return 

index 

Rand 

contribution 

to fund 

Fund 

units 

purchased 

Fund 

units held 

Value of 

fund units 

at end of 

3-year 

terms 

Guarantee 

fund units 

purchased 

Guarantee 

fund units 

held 

Value of 

guarantee 

fund units 

at end of 

3-year 

terms 

Guarantee 

payment 

top-up 

Fund 

annual 

return 

Fund 3-

year 

rolling 

annualized 

return 

01/01/96 411.38 100.00 1000.00 2.43     10.00           

01/01/97 447.12 100.00 1000.00 2.24     10.00       8.7%   

01/01/98 398.97 100.00 1000.00 2.51     10.00       -10.8%   

01/01/99 368.73 100.00 1000.00 2.71 7.17 2645.20 10.00 30.00 3000.00 354.80 -7.6% -4% 

03/01/00 660.65 100.00 1000.00 1.51 7.45 4925.14 10.00 30.00 3000.00 0.00 79.2% 14% 

01/01/01 682.79 100.00 1000.00 1.46 6.73 4596.62 10.00 30.00 3000.00 0.00 3.4% 20% 

01/01/02 909.65 100.00 1000.00 1.10 5.69 5176.14 10.00 30.00 3000.00 0.00 33.2% 35% 

01/01/03 807.06 100.00 1000.00 1.24 4.08 3290.83 10.00 30.00 3000.00 0.00 -11.3% 7% 

01/01/04 914.46 100.00 1000.00 1.09 3.80 3477.66 10.00 30.00 3000.00 0.00 13.3% 10% 

03/01/05 1143.51 100.00 1000.00 0.87 3.43 3924.45 10.00 30.00 3000.00 0.00 25.0% 8% 

02/01/06 1673.83 100.00 1000.00 0.60 3.21 5368.15 10.00 30.00 3000.00 0.00 46.4% 28% 

01/01/07 2358.35 100.00 1000.00 0.42 2.57 6050.29 10.00 30.00 3000.00 0.00 40.9% 37% 

01/01/08 2805.72 100.00 1000.00 0.36 1.90 5319.53 10.00 30.00 3000.00 0.00 19.0% 35% 

01/01/09 2144.23 100.00 1000.00 0.47 1.38 2954.48 10.00 30.00 3000.00 45.52 -23.6% 9% 

01/01/10 2824.62 100.00 1000.00 0.35 1.25 3521.76 10.00 30.00 3000.00 0.00 31.7% 6% 

03/01/11 3333.02 100.00 1000.00 0.30 1.18 3922.34 10.00 30.00 3000.00 0.00 18.0% 6% 
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Source: Inet, own calculations 

9.2 Nelson-Siegel yield curve fitting 

Figure 62: Nelson-Siegel parameter solution for fitting eight bond yields 

Long-run levels of interest rates ββββ0    6.4%  

Short-run component β1 -0.9%  

Medium-term component β2 5.6%  

Decay parameter 1 τ1        9.941   

Decay parameter 2 τ2        5.766   

    

Components of the Nelson Siegel Spot Rate spot rate   

 Component 1 6.358% β0 

 Component 2 -0.857% β1*((1-EXP(-m/τ1))/(m/τ1)) 

 Component 3 0.435% β2*((1-EXP(-m/τ2))/(m/τ2)-EXP(-m/τ2)) 

Source: Own calculations 

Figure 63: Calculations of the least squares minimisation process for fitting a Nelson-Siegel yield curve 

 1 Year  

Swap 

2 Year  

Swap 

5 Year  

Swap 

10 Year  

Swap 

15 Year  

Swap 

20 Year  

Swap 

25 Year  

Swap 

30 Year  

Swap 

 

 Y1 Y2 Y5 Y10 Y15 Y20 Y25 Y30  

Swap rate 5.97 6.27 7.06 7.49 7.46 7.36 7.24 7.13  

P(0,t) market 0.94366 0.88556 0.71099 0.48565 0.33986 0.24185 0.17442 0.12685  

P(0,t) model 0.94397 0.88468 0.71142 0.48670 0.33907 0.24141 0.17444 0.12712  

Spot rate model 0.05935 0.06318 0.07047 0.07467 0.07477 0.07365 0.07234 0.07117  

Difference model to 

market 

-0.03488 0.05288 -0.01303 -0.02336 0.01654 0.00990 -0.00053 -0.00761 Least squares minimize 

cell J11 
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Difference model to 

market ^2 

0.00122 0.00280 0.00017 0.00055 0.00027 0.00010 0.00000 0.00006 0.00516 

Source: Own calculations 
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9.3 Outline of scenario and simulation looping allowing for comparison 

between different demographic and economic scenarios  

Figure 64: Economic and demographic scenario looping with simulations 

 

Source: Own calculations 
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9.4 Explanation of the Excel models used 

9.4.1 Excel file 1: RB Rice MSc Random Normal Distribution Generator.xlsm 

This sheet is used to generate two sets of independent Normally distributed random variables 

for each required future time step. These random variables are used in the simulation of the 

forward rate and underlying risky equity return processes respectively. 

It contains MACRO 1: Generate two independent sets of Normally distributed random 

variables for quarterly and fortnightly time steps. The outputs sheets are dN(ti,n) forward 

rates and dN(ti,n) for the equity underlying. The outputs are provided in fortnightly and 

quarterly time steps. 

9.4.2 Excel file 2: RB Rice MSc Simulations – BSHW.xlsm 

This file generates Black Scholes Hull-White (BSHW) simulation outputs for a given set of 

input assumptions.  

The sheet runs under MACRO 2: Copy the two sets of independent standard normally 

distributed random numbers and paste these as values. What this macro does is copies the 

data generated in the separate random number generation file (Excel file 1) and pastes these 

as values. This step was done to enhance the overall speed of calculation as well as to hold 

allow randomness to be held constant between while a further calculations were being 

performed. 

In order for the BSHW simulations to be calculated a range of input assumptions are 

required. These are: 

1. The bootstrapped yield curve until a 30-year duration.  

2. The calibration parameters for the Hull-White Model. These are given by two 

parameters, alpha and sigma, and time-dependent parameter theta(t). 

3. A representation of volatility for the underlying (equity return) process 

4. An assumption as to the time-dependent drift parameters applicable to the equity 

return process. 

5. The correlation parameter between the equity return and forward rate process. 
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All five of these input assumptions are sourced from Excel File 3, the GMAB Cashflow 

Valuation Spreadsheet. They are captured on the “Input information” sheet in Excel File 2. 

The quarterly and fortnightly time step outputs generated in this sheet are shown on the two 

output sheets: Forwards(ti,n) and Underlying returns (ti,n). 2000 simulations are shown. 

9.4.3 Excel file 3: RB Rice MSc GMAB Cashflow Valuation Spreadsheet 

This file calculates cash flows in the future time periods across the input number of 

simulations. The maximum number of simulations is set at 2000 so as to allow for the lengthy 

times with which cash flow generation takes. The simulation source file is Excel file 2, 

Simulations – BSHW. 

These cash flows are calculated under asset of economic and demographic scenarios. The 

purpose of this structure is two-fold.  

Firstly, it allows for recalculation of cash flows under a range of stressed economic scenarios 

for the same set of simulations. For example, I use a base economic scenario under the 

current fitted yield curve and then I use another economic scenario to recalculate cash flows 

under an input yield curve of 100 basis points lower. 

Secondly, a range of different demographic variables can be tested. For example, by entering 

a number of demographic scenarios users can price different return guarantee percentages 

(such as 0% p.a., 3% p.a. and 5% p.a., say) simultaneously. Other key demographic factors 

which can be flexed are contract term, recurring premium escalation rates and monthly 

contribution size. 

The manner in which the Excel file manages these inputs is by way of input fields which 

limit which Economic Scenario’s, which Demographic Scenarios should be run. 

Excel file 3 also allows the cashflow forecasts calculations to be calculated on multiple days 

in the future. This procedure allows the user to calculate a new set of cash flows off which to 

price the option at future dates.  

To perform this function the cash flow generation file looks up the real-world simulation of 

the traded swap rates based on the number of days into the future the calculation relates to. 

These swap rates are then used to fit another Nelson-Siegel curve and calibrated Hull-White 
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parameters for the future date in question. To do this the Nelson-Siegel and Hull-White 

fitting and calibration process is built into Excel file 3.  

The processing of the functions in this sheet is controlled by MACRO 4: Run all Economic 

Scenarios for each demographic model point input and capture the output in the "Scen - 

Output Table for all demographics file". 

9.4.4 Excel file 4: RB Rice MSc Market Data hard coded 

This is an output of the Rebonato method application to South Africa for real world swap rate 

forecasting. The reason this sheet has hard-coded values is to all the use of the same set of 

future real-world yield curves. 

  

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



- 128 - 

10 References 

Bacinello, A. R. and F. Ortu (1993). "Pricing equity-linked life insurance with endogenous minimum 

guarantee." Insurance: Mathematics and Economics 12: 245-257. 

Bacinello, A. R. and F. Ortu (1993). "Pricing equity-linked life insurance with endogenous minimum 

guarantees: A corrigendum." Insurance Mathematics and Economics 13: 303-304. 

Benjamin, S., A. Ford, et al. (1980). "Maturity Guarantees Working Party (MGWP)." Journal of the 

Institute of Actuaries 107: 103-209. 

Black, F. and M. J. Scholes (1973). "The Pricing of Options and Corporate Liabilities." Journal of 

Political Economy 81: 637-654. 

Boyle, P., M. Hardy, et al. (2007). Chapter 18 Financial Engineering: Applications in Insurance. 

Handbooks in Operations Research and Management Science, Elsevier. Volume 15: 763-786. 

Boyle, P. and E. S. Schwartz (1977). "Equilibrium prices of guarantess under equity-linked contracts." 

Journal of Risk and Insurance 44 (4): 639-660. 

Boyle, P. P. and M. R. Hardy (1997). "Reserving for maturity guarantees: Two approaches." 

Insurance: Mathematics and Economics 21(2): 113-127. 

Brennan, M. J. and E. S. Schwartz (1976). "The pricing of equity-linked life insurance policies with an 

asset value guarantee." Journal of Financial Economics 3: 195-213. 

Brennan, M. J. and E. S. Schwartz (1979). Pricing and Investment Strategies for Guaranteed Equity-

Linked Life Insurance, The S.S. Huebner Foundation for Insurance Education, Wharton 

School, University of Pennsylvania. 

Chan, T. (1999). "Pricing contingent claims on stocks driven by Levy processes." The Annals of 

Applied Probability 9(2): 504-528. 

Coleman, T. F., Y. Li, et al. (2006). "Hedging guarantees in variable annuities under both equity and 

interest rate risks." Insurance: Mathematics and Economics 38(2): 215-228. 

Consiglio, A. and D. Giovanni (2007). "Evaluation of insurance products with guarantee in incomplete 

markets." Insurance: Mathematics and Economics 42: 332-342. 

Cox, J., J. E. Ingersoll, et al. (1985). "A Theory of the Term Structure of Interest Rates." Econometrica 

53: 385-407. 

Dahl, M. (2004). "Stochastic Mortality in Life Insurance: Market Reserves and Mortality-Linked 

Insurance Contracts." Insurance Mathematics and Economics 35: 113-136. 

Fagen, J. C. (1977). Maturity Guarantees under Investment-Linked Contracts, Presented to the 

Society of Actuaries in Ireland. 

Finkelstein, G., E. McWilliam, et al. (2003). Guarantee and embedded options, Ernst & Young. 

Follmer, H. and Schweizer, Eds. (1991). Hedging of contingent claims under incomplete markets. 

Applied Stochastic Analysis, Stochastic Monographs. New York, London, Gordon and Breach. 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



- 129 - 

Follmer, H. and D. Sondermann, Eds. (1986). Hedging of non-redundant contingent claims. In: 

Contributions to Mathematical Finance., North-Holland. 

Gilbert, C. L., K. Ravindran, et al. (2007). Results of the survey on variable annuity hedging programs 

for life insurance companies, Society of Actuaries, ALM Institute. 

Girsanov, I. (1960). "On transforming a certain class of stochastic process by absolutely continuous 

substitution of measures." Theory of Probability Applications 5(285-301). 

Haastrecht, A. v., R. Lord, et al. (2008). Pricing long-maturity equity and FX derivatives with 

stochastic interest rates and stochastic volatility. 

Harrison, M. J. and D. M. Kreps (1979). "Martingales and Arbitrage in Multiperiod Securities 

Markets." Journal of Economic Theory 20: 381-408. 

Heath, D., R. A. Jarrow, et al. (1989). Bond pricing and the term structure of interest rates: a new 

methodology., Cornell University. 

Hill, T., D. Visser, et al. (2008). Stochastic Pricing for Embedded Options in Life Insurance and Annuity 

Products, Milliman, Inc Society of Actuaries. 

Ho, T. S. Y. and S. B. Lee (1986). "Term structure movements and pricing interest rate contingent 

claims." Journal of Finance 41: 1011-28. 

Hughston, L. and D. C. Brody (2000). Modern theory of interest rates, with extensions to foreign 

exchange, inflation and credit, Kings College. 

Hull, J. and A. White (1990). "Pricing interest rate securities." Review of Financial Studies 3: 573-92. 

Hull, J. a. W., A. (2000). "Forward Rate Volatilities, Swap Rate Volatilities and the implementation of 

the LIBOR Market Model." Journal of Fixed Income 10(3): 46-62. 

Hull, J. C. (2003). Options, Futures, and Other Derivatives, Prentice Hall. 

Jaimungal, S. and V. R. Young (2005). "Pricing equity-linked pure endowements with risky assets that 

follow Levy processes." Insurance: Mathematics and Economics 36: 329-346. 

Levy, E (1992). "Pricing European average currency options." Journal of International Money Finance 

11: 474-491 

Lin, X. and K. S. Tan (2003). "Valuation of equity-indexed annuities under stohastic interest rate." 

North American Actuarial Journal 7 (4): 72-91. 

Longstaff, F. A. and E. S. Schwartz (1992). "Interest Rate Volatility and the Term Stucture: A Two-

Factor General Equilibrium Model." Journal of Finance (47): 1259-1282. 

Mahayni, A. B. and K. Sandmann (2006). Return Guarantees with Delayed Payment. 

Melnikov, A. and Y. Romanyuk (2006). Efficient Hedging and Pricing of Equity-Linked Life Insurance 

Contracts on Several Risky Assets, Bank of Canada. 

Merton, R. (1973). "Theory of rational option pricing." Bell Journal of Economic Management Science 

4: 141-183. 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



- 130 - 

Merton, R. (1977). "On the pricing of contingent caims and the Modigliani-Miller theorem." Journal 

of Financial Economics 5: 241-249. 

Miltersen, K. R. and S.-A. Persson (1999). "Pricing rate of return guarantees in a Heath-Jarrow-

Morton framework." Insurance: Mathematics and Economics 25(3): 307-325. 

Moeller, T. (1998). "Risk minimizing hedging strategies for unit-linked life insurance contracts." 

ASTIN Bulletin 28: 17-47. 

Moeller, T. (2001). "Risk minimizing hedging strategies for insurance payment processes." Finance 

and Stochastics 5(4): 419-446. 

Nelson, C.R. and Siegel, A.F. (1987). "Parsimonious Modeling of Yield Curves" Journal of Business 60: 

473-489 

Nielsen, A. J. and K. Sandmann (1995). "Equity-linked life insurance: A model with stochastic interest 

rates." Insurance: Mathematics and Economics 16(3): 225-253. 

Nielsen, J. A. and K. Sandmann (1996). "Uniqueness of the fair premium for equity-linked life 

insurance contracts." Geneva Papers Risk Insurance Theory 21: 65-102. 

Nielsen, J. A. and K. Sandmann (2002). "The fair premium of an equity-linked life and pension 

insurance." Schonbucher, P., Sandmann, K (Eds.), Advances in Finance and Stochastics: 

Essays in Honor of Dieter Sondermann. Springer Verlag, Heidelberg. 

Nyholm, K. and R. Rebonato (2007). "Long-Horizon Yield Curve Forecasts: Comparison of Semi-

Parametric and Parametric Approaches." 

Patel, N. (2006). Life's perilous journey; Difficulty of hedging guaranteed variable annuity products. 

Risk. March 2006: 23-26. 

Rebonato, R., S. Mahal, et al. (2005). "Evolving Yield Curves in the Real-World Measure: a Semi-

Parametric Approach." Journal of Risk. 

Riesner, M. (2006). "Hedging life insurance contracts in a Levy process financial market." Insurance: 

Mathematics and Economics 38: 599-608. 

Ross, S. A. (1976). "The arbitrage theory of capital asset pricing." Journal of Economic Theory 13: 

341-360. 

Schrager, D. F. and A. A. J. Pelsser (2004). "Pricing Rate of Return Guarantees in Regular Premium 

Unit Linked Insurance." Insurance: Mathematics and Economics 35(2): 369-398. 

Schweizer, M. (1996). "Approximation pricing and the variance-optimal Martingale measure." Annals 

of Probability 24: 206-236. 

Vanmaele, M. and N. Vandaele (2008). "A locally risk-minimizing hedging strategy for unit-linked life 

insurance contracts in a Levy process financial market." Insurance: Mathematics and 

Economics 42: 1128-1137. 

Vasicek, O. (1977). "An Equilibrium Characterization of the Term Structure." Journal of Financial 

Economics  5: 177-188. 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



- 131 - 

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 


