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Summary

In this thesis different situations are considered in which the preliminary test estimator is applied and
the performance of the preliminary test estimator under different proposed loss functions, namely
the reflected normal , linear exponential (LINEX) and bounded LINEX (BLINEX) loss functions is
evaluated. In order to motivate the use of the BLINEX loss function rather than the reflected
normal loss or the LINEX loss function, the risk for the preliminary test estimator and its component
estimators derived under BLINEX loss is compared to the risk of the preliminary test estimator and
its components estimators derived under both reflected normal loss and LINEX loss analytically (in
some sections) and computationally. It is shown that both the risk under reflected normal loss and
the risk under LINEX loss is higher than the risk under BLINEX loss. The key focus point under
consideration is the estimation of the regression coefficients of a multiple regression model under two
conditions, namely the presence of multicollinearity and linear restrictions imposed on the regression
coefficients.  In order to address the multicollinearity problem, the regression coefficients were
adjusted by making use of Hoerl and Kennard's (1970) approach in ridge regression. Furthermore,
in situations where under- or overestimation exist, symmetric loss functions will not give optimal
results and it was necessary to consider asymmetric loss functions. In the economic application,
it was shown that a loss function which is both asymmetric and bounded to ensure a maximum
upper bound for the loss, is the most appropriate function to use. In order to evaluate the effect
that different ridge parameters have on the estimation, the risk values were calculated for all three
ridge regression estimators under different conditions, namely an increase in variance, an increase
in the level of multicollinearity, an increase in the number of parameters to be estimated in the
regression model and an increase in the sample size. These results were compared to each other
and summarised for all the proposed estimators and proposed loss functions. The comparison of the
three proposed ridge regression estimators under all the proposed loss functions was also summarised
for an increase in the sample size and an increase in variance.

Keywords: Block bootstrapping; Bounded LINEX loss function; Feasible Bayes estimator; LINEX
loss function; Preliminary test estimator; Reflected normal loss function; Restricted estimator; Ridge
regression;Risk function; Unrestricted estimator.
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Preface

In problems of statistical inference, one may use the sample information available in a random sample
for the estimation of some or all the population parameters of interest. Sometimes some non-sample
information is also available about the unknown population parameters. This information can be
used and interpreted as restrictions or constraints imposed on the model and can therefore be used
to develop better estimators (Tabatabaey, 1995).

This source of prior information usually comes from previous studies or expert opinions and beliefs
(prior information via introspection).  Applications for these proposed restrictions can be found
in Don (1982), Sengupta and Jammalamadaka (2003) and Xu and Yang (2012). In a number of
econometric applications, preliminary tests are used to firstly evaluate the accuracy of the restrictions
placed on the population parameters and secondly to justify the relevance of the restrictions.

In 1944, Bancroft proposed the preliminary test estimator as a suitable combination of sample and
non-sample information which he used to obtain an estimator with better performance, which implies
that this proposed estimator has lower risk than other standard estimators.

The estimates obtained in any estimation problem will improve if it can be ensured that the proposed
estimator exhibits good performance, which implies lower risk. The choice of the specific loss function
will play a deterministic role in improving the performance of the estimators. In order to choose the
appropriate loss function it is necessary to take practical and reasonable losses into account.

In situations where under- or overestimation exist, symmetric loss functions do not give optimal re-
sults and it is necessitates consideration of asymmetric loss functions. In some econometric problems
it is necessary to use loss functions which are both asymmetric and bounded to ensure a maximum
upper bound for the loss.

The research problem in essence is to consider different situations in which the preliminary test
estimator is applicable and to evaluate the performance of the preliminary test estimator under
different loss functions, namely the reflected normal loss function, linear exponential (LINEX) and
bounded LINEX (BLINEX) loss functions.

A huge amount of research is available on the idea of testing a hypothesis of specific parameters
and pre-testing is used to make the correct decision on the hypothesis. Therefore the results of the
preliminary test procedure will give an indication of what the correct decision or action should be
regarding the parameter. For an extensive overview and detailed discussion on the preliminary test
estimator (PTE) see Saleh (2006) and his references.

In this thesis, situations will be considered for which there is known prior information available about
an unknown population parameter that could be used in the form of a constraint.

Furthermore, situations where a model is specified under uncertainty will be considered where specific
stochastic model assumptions must be tested before the appropriate statistical model can be speci-
fied. The outcome of the test will have an impact on the model specification and the performance
of the preliminary test estimator.

© University of Pretoria



(02$r~

The main objectives addressed in this study are

e To compare the performance of the preliminary test estimator to other known and commonly
used estimators in terms of the risk functions associated with each estimator for different
choices of loss functions.

e To examine the performance of the estimators using both the classical approach as well as the
Bayesian approach.

e To compare the specific loss functions (reflected normal loss, LINEX loss and BLINEX loss)
and to propose the preferred loss function based on some analytical and computational results.

One of the proposed problems under investigation is the estimation of a location parameter for a
normal model. In order to add value to an existing problem, different possible estimators are defined
or derived as possible estimators for the location parameter, namely the restricted maximum likeli-
hood estimator (RMLE), the unrestricted maximum likelihood estimator (UMLE), the preliminary
test estimator (PTE) and Bayes estimators.

In the case of the Bayes estimator(s) it was not possible to derive estimators under specific asym-
metric loss functions (due to the complexity of the functions) and new methods were developed to
obtain feasible Bayes estimators. The performance of the estimators was evaluated by determining
and comparing the risk functions of the estimators under LINEX and BLINEX loss functions. In
situations where there is no known method available to determine the exact risk functions, new
methods were developed to obtain approximated risk functions or conditional risk functions.

The performance of the different estimators was compared in various ways, namely

e The risk functions of the different classical estimators (UMLE, RMLE and PTE) calculated
under the same loss function were compared to each other both analytically and computation-

ally.

e The risk function of a specific classical estimator (e.g. PTE) calculated under different loss
functions (e.g. PTE under LINEX loss versus PTE under BLINEX loss) was computationally
compared to each other.

e The risk function of the classical PTE calculated under BLINEX loss was computationally
compared to the risk function of the Bayes PTE calculated under BLINEX loss.

e The previous result was extended to examining the performance of classical estimators versus
Bayes estimators under different loss functions.

New and improved preliminary test estimators were considered under different loss functions. These
estimators were used in a relevant practical application in order to show that the proposed estimators
exhibit superior characteristics under specific conditions.  The practical application which was
considered is the estimation of the regression coefficients of a multiple regression model under two
conditions.  Firstly the estimation of the coefficients will take place under the assumption that
multicollinearity is present in the data and secondly linear restrictions will be imposed on the
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regression coefficients. In order to correct for the multicollinearity the coefficients will be adjusted
by making use of the ridge regression approach of Hoerl and Kennard (1970). This problem will
be illustrated in a practical context where the Cobb-Douglas production function will be considered.
The two explanatory variables in the analysis, namely labour input and capital input are closely related
to each other in practice and therefore multicollinearity is a problem which should be addressed. The
presence of multicollinearity between the two explanatory variables in the Cobb-Douglas production
function has been one of the criticisms of the production function by Fraser (2002). The interested
reader may refer to Akdeniz and Erol (2003), Akdeniz and Kaciranlar (1995), Akdeniz and Tabakan
(2009), Akdeniz and Akdeniz (2012), Kibria (1996, 2003, 2012), Kibria and Saleh (2012), Kristofer,
Kibria and Shukur (2012), Saleh and Kibria (2011) for more related contributions in the field of
multicollinearity. Furthermore a linear restriction will be imposed on the model coefficients where
it is assumed that constant return to scale is present. The different estimators considered under
these two conditions were the unrestricted ridge regression estimator (URRE), the restricted ridge
regression estimator (RRRE) and the preliminary test ridge regression estimator (PTRRE).

The use of asymmetric and bounded loss function for econometric modelling has been discussed by
Granger (1999) where he gives different examples of the advantage of penalising over- or underesti-
mation of estimators, depending on which one of the two is the most serious. In the example of the
Cobb-Douglas production function it can be deemed that the loss/cost of overestimating production
response to capital and labour input is more serious than underestimating production response and
therefore overestimation should be penalised more heavily.  The three loss functions which were
considered in this study were therefore the reflected normal loss function (bounded, not necessarily
asymmetric), the LINEX loss function (asymmetric but not bounded) and the BLINEX loss function
(both asymmetric and bounded). Therefore the performance of the different estimators in the
context of the practical example will be compared in various ways, namely

e The risk functions of the different classical estimators (URRE, RRRE and PTRRE) calculated
under the same loss function will be derived and then compared to each other computationally.

e The risk function of a specific classical estimator (e.g. PTRRE) calculated under different loss
functions (e.g. PTRRE under reflected normal loss, PTRRE under LINEX loss versus PTRRE
under BLINEX loss) will be computationally compared to each other.

In the context of the above-mentioned scenario, it is apparent that in any inference regarding the
Cobb-Douglas production function, the following issues should be addressed:

1. Hyperspace restrictions
2. Bounded asymmetric loss functions

3. Multicollinearity
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There is therefore a need to consider a situation that fulfills all the above conditions. The main
goal of this study is to accommodate all the above-mentioned issues in one model and to consider
the performance of the related estimators. Further research could still be done in the evaluation of
the risk performance of Stein-type and its positive part shrinkage estimators which falls outside the
scope of this study.

In section 1.1 of Chapter 1 a brief literature review is given, in section 1.2 all the univariate and
multivariate distributions of importance in this thesis are discussed together with their properties.
Section 1.3 covers all the models and proposed estimators to be considered in the thesis and in section
1.4 all the important theorems which are extensively used in this thesis, together with important
results are given. In Chapter 2 the discussion of the reflected normal loss function, its properties and
the derivation of the risk functions for each of the proposed ridge regression estimators are given,
therefore the risk of the preliminary ridge regression estimator and its two component estimators
(URRE and RRRE) are derived under reflected normal loss. In section 2.5 the simulation study
procedure is discussed. As part of the simulation study, different ridge parameters are defined and
used in order to determine the effect of the specific choice of ridge parameter on the performance
of the estimator. For all three ridge regression estimators (URRE, RRRE and PTRRE) the risk
values are calculated under different conditions, namely an increase in variance, an increase in the
level of multicollinearity, an increase in the number of parameters to be estimated in the regression
model and an increase in the sample size. The last part of the simulation study focussed on the
comparison of the three proposed ridge regression estimators under the reflected normal loss function
for an increase in the sample size and an increase in the variance.

In Chapter 3 the linear exponential (LINEX) loss function is discussed, together with its properties.
The risk function of the three proposed ridge regression estimators (preliminary test ridge regression
estimator and its two component estimators) is derived in sections 3.2 - 3.4 and in section 3.5
a similar simulation study was conducted as in Chapter 2 in order to evaluate the effect of the
different proposed ridge parameters on the estimators under the four conditions mentioned above.
The comparison of the performance of the three proposed ridge regression estimators to each other
under LINEX loss for an increase in the sample size and an increase in variance is also discussed at
the end of this section.

In Chapter 4 the focus is on the bounded linear exponential (BLINEX) loss function and its properties.
In section 4.2 the focus is on an application where the classical non-ridge preliminary test estimator
is defined, together with its two component estimators (UMLE and RMLE). The risk functions
of the three proposed estimators are derived under BLINEX loss and at the end of the section
are compared to each other analytically and computationally. In section 4.3 the classical ridge
preliminary test estimator (PTRRE) is considered under BLINEX loss and the risk functions of the
preliminary test estimator and its two component estimators (URRE and RRRE) are derived. The
same simulation study as in Chapters 2 and 3 was conducted at the end of this section under
BLINEX loss in order to establish the effect of the different ridge parameters on the performance of
the different estimators and also to compare the performance of the three estimators under BLINEX
loss for an increase in the sample size and an increase in the variance. Section 4.4 the Bayes
preliminary test estimator is discussed, where two feasible Bayes estimators are proposed and the
feasible Bayes preliminary test estimator is defined. At the end of this section the results based on
a simulation study are discussed, where the performance of the classical preliminary test estimator
is compared to performance of the feasible Bayes preliminary test estimator.
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In Chapter 5 an economic application for the classical ridge preliminary test estimator is considered.
The Cobb-Douglas production function is considered under the economic restriction of constant
return to scale. In this application it will become clear that the two explanatory variables in the
model are highly negatively correlated with each other. Therefore the problem of multicollinearity
also has to be addressed in the estimation of the parameters of the model. Making use of a South
African data set of the manufacturing sector for the sample period 1985 to 2012, the Cobb-Douglas
production function is estimated for all three proposed ridge regression estimators and the results
are given and discussed in this chapter. Another simulation study is also conducted, by making
use of the block bootstrapping technique due to the fact that the data is time dependent. The
empirical distributions of the three proposed ridge regression estimators are determined under all the
proposed ridge parameters and are graphically represented and discussed at the end of the chapter.
The sampling properties of these estimators are not well known and some of these properties were
studied. The practical application of preliminary test estimators for economic indices were studied
and comparisons will be drawn between the relevant proposed estimators.

In Chapter 6 conclusions and summaries of results obtained in the work as discussed in Chapters
2 to 4, are provided. An alternative method to derive the risk functions for the proposed ridge
regression estimators under reflected normal loss, LINEX loss and BLINEX loss is given and future
directions for possible research in this field are also addressed. All the simulation programs, data
sets, a glossary and a complete list of references are provided in Appendices A to E at the back of the
thesis. The data set used in Chapter 5 is obtained from the South African Reserve bank's website
(http://www.resbank.co.za/pages/default.aspx), which is an open data source for public use.

A list of research outputs, papers and conferences attended related to this thesis is given below.

e Coetsee, J., Bekker, A. and Millard, S. (2012). Preliminary-test and Bayes Estimation of a
Location Parameter Under BLINEX loss, Accepted in 2012 for publication in Communications
in Statistics - Theory and Methods.

e Coetsee, J., Bekker, A. and Millard, S. (2012). "Comparison of test estimators for location
parameter of normal model under BLINEX loss with focus on preliminary test estimation".
8th World Congress on Probability and Statistics, Istanbul, Turkey.

e Coetsee, J., Bekker, A. and Millard, S. (2012). “Estimation of a location parameter for a
normal model with special reference to preliminary test estimators under BLINEX and LINEX
loss”. Annual conference of the South African Statistical Association, Port Elizabeth, South
Africa.

e Kleyn, J., Arashi, M., Bekker, A. and Millard, S. (2013). Preliminary testing of the Cobb-
Douglas production function and related inferential issues, Submitted in Communications in
Statistics - Simulation and Computations.

Note: My maiden name is Coetsee and my current surname is Kleyn.

© University of Pretoria



| would firstly like to thank my two supervisors, Professor Arashi and Professor Bekker for their
support during the past two years. Their suggestions, patience and encouragement meant a lot
to me and | was inspired by their enthusiasm for research and working with students. | would
also like to thank Professor Balakrishnan of the McMaster University for his insightful suggestions
to research problems we faced and Mr Sollie Millard and Mr Samuel Nakale for their willingness
to always help out with IML programming. | would also like to acknowledge STATOMET, the
Faculty of Natural and Agricultural Science and the National Research Foundation (NRF) for their
financial support. Without this support | would not have been able to attend both international
and national conferences in order to present my work. Finally | would like to thank Prof Burton,
the Vice Principal of Research and Postgraduate Education for awarding me the Vice-Chancellor's
Academic Development Grant. This grant allowed me to work continuously on my PhD during the
time that Prof Arashi was in South Africa, which helped tremendously with my progress. Thanks
to my family and friends who supported me throughout my studies and never stopped believing in
me. To my loving husband, Thys Kleyn, thank you for all your love, support and understanding
throughout this process.

Note: This work is based on the research supported in part by the National Research Foundation of
South Africa for the grant TTK1206151317. Any opinion, finding and conclusion or recommendation
expressed in this material is that of the author(s) and the NRF does not accept any liability in this
regard.

© University of Pretoria



Acronyms

Throughout this thesis all matrices are denoted by capital bold letters, vectors are denoted by small
bold letters and scalars are denoted by small letters. When random variables are defined, the random
variable is denoted by an uppercase letter and its value by the corresponding lowercase letter. The
following notation will be used in this thesis:

RP

R+
I4(F)
Ap><n
A/

|A
trA
Al

A2

v (X)
N (p,0%)

Xv
17
Fkl,k2

B (a,b)

3 3
~—
x5
N

3

NS
N o~
=

N 3
S

@ @ @ @ D

3

—
=y

~—

fip

~(1
vy

~(2
i

HFrBP
arg min f ()

arg max f ()

p- dimensional real space

Set of positive real numbers

Indicator function of set A, thatis [, (F)=1if Fe€ Aand I, (F)=0if FF ¢ A

p X n matrix

Transpose of A
Determinant of A

Trace of a square matrix A

Norm of a square matrix A, defined as \/afl +ad, + ...

Root of a semi positive definite A such that A2Az = A
p X p dimensional identity matrix

Borel measurable function of the random variable X
Normal distribution with mean p and variance o
Chi-square distribution with v degrees of freedom
Student ¢ distribution with k& degrees of freedom

F distribution with k; and k5 degrees of freedom
Gamma function at point a

Beta function at points a and b

Unrestricted regression estimator

Unrestricted ridge regression estimator

Restricted regression estimator

Restricted ridge regression estimator
Preliminary test regression estimator

Preliminary test ridge regression estimator

Bayes estimator of the location parameter
First feasible Bayes estimator of the location parameter

Second feasible Bayes estimator of the location parameter

2
+a;,

Feasible Bayes Preliminary test estimator of the location parameter

Argument of the minimum, i.e. the set of points of the given argument

for which the given function attains its minimum value.

Argument of the maximum (see above)
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BLINEX
EL

FB
FBPTE
LINEX
PTE
PTRRE
RMLE
RN
RRE
RRRE
UMLE
URE
URRE

10

Bounded linear exponential

Expected loss

Feasible Bayes

Feasible Bayes preliminary test estimator
Linear exponential

Preliminary test estimator

Preliminary test ridge regression estimator
Restricted maximum likelihood estimator
Reflected normal

Restricted regression estimator

Restricted ridge regression estimator
Unrestricted maximum likelihood estimator
Unrestricted regression estimator
Unrestricted ridge regression estimator
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Chapter 1

Preliminaries

1.1 Introduction and literature review

The first preliminary test procedures were studied by Bancroft in 1944, Mosteller (1948), Kitawaga
(1963), Huntsberger (1955), Bancroft (1964), Larson and Bancroft (1963a, 1963b) and Ashar
(1970). This work mainly focussed on the properties of sample statistics in terms of their means
and mean square errors.

More recently a number of papers have been published on the preliminary test estimators using
different proposed loss structures, namely Giles and Giles (1996), Giles (2002), Ohtani et al. (1997),
Kibria (2003), Kibria and Saleh (2006), Saleh (2006), Arashi et al (2008) to name a few. In the
papers by Parsian and Kirmani (2002), Porosifiski and Kaminska (2009), Arashi (2010) and Arashi
and Tabatabaey (2010) the properties of the LINEX loss function, which were first proposed by
Varian (1975), are presented together with results of estimation under LINEX loss for a number of
probability distributions.

In a paper by Wen and Levy (2001) a new parametric family of bounded and asymmetric loss
functions, called the BLINEX loss function was developed and the mathematical properties of the
BLINEX loss function were discussed in the paper. The BLINEX function is the bounded alternative
to the LINEX loss function and therefore it doesn’t have the same limitations as the LINEX loss
function.

One of the limitations of the LINEX loss function is that it exhibits a huge increase in expected loss
which limits the application of this loss function in practice. The BLINEX function is therefore both
bounded and asymmetric, which allows the same flexibility as exhibited by the LINEX loss function
but it also has the added advantage of being bounded. Wen and Levy (2004) developed algorithms
for fitting BLINEX loss parameters, which can be applied under certain conditions. Wen et al (2009)
considered an application of the Bayes estimator under BLINEX loss and Kaminska (2010) showed
that a unique Bayes estimator exists under BLINEX loss, but no explicit formula was proposed.
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In the field of econometrics it is assumed that when an econometric model is correctly specified,
known statistical tests can be used to estimate unknown parameters. Researchers in this field are
mainly restricted to non-experimental data, therefore it is never clear which theoretical constraints
should be imposed on the model and it is also unclear which statistical model would be the most
appropriate to use.

The choice of both the economic and the statistical model can be influenced by a number of factors
ranging from

the number of variables to be included in the economic model

the stochastic assumptions underlying the statistical model

the algebraic form of the economic model

e and many more.

Researchers start building econometric models based on a set of specifications and have to adapt
their models by making use of hypothesis testing procedures. The final model specification therefore
depends on the outcome of these tests and this process of using hypothesis testing to determine the
model specification is known as preliminary testing and in the process preliminary test estimators
are obtained.

An application in which some work has been done is a situation commonly found in econometric
modelling. One of the stochastic statistical assumptions underlying a statistical model is that the
stochastic error terms are independently distributed. In econometrics the researcher usually works
with non-experimental data and therefore this assumption is easily violated and should be tested.

There are a number of procedures available for testing for serial correlation in the error terms, namely
the Durbin-Watson procedure, the method of generalised least squares, the Cochrane-Orcutt two-
stage procedure etc. Studies have been conducted by Rao and Griliches (1969), Berenblutt and
Webb (1974), L'Esperance and Taylor (1975) and Judge and Bock (1978) on the relative power
properties for serial correlation and preliminary test risk. The choice of testing procedure applied,
level of significance chosen and the outcome of these tests will have an impact on the performance
of the preliminary test estimators and has already been considered under squared error loss. In the
work done by Nakale (2013) this work was revisited and re-evaluated under different (asymmetric)
loss functions, namely LINEX and BLINEX loss functions. In his work he extended the work of
Simons (1988), King and Giles (1984) and Judge and Bock (1978) on serial correlation preliminary
test estimation of first order autoregressive error models. These studies investigated the finite
sample risk performances of the various feasible generalised least square estimators used in models
with serially correlated error terms and their corresponding preliminary test estimators, relative to
the squared error loss function. The literature was expanded by investigating the impact of the
asymmetric loss functions, namely LINEX and BLINEX loss functions, on the established results
based on squared error loss as provided in the literature. Furthermore the followed work done by
Simons (1988) in order to compare the risk performance of the classical serial correlation preliminary
test estimator and the Bayesian preliminary test estimator to one another. By making use of
bootstrap techniques Nakale (2013) was able to establish some aspects of the sampling distributions
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of the classical serial correlation preliminary test estimator and Bayesian preliminary test estimator
in order to approximate probability distributions.

In a paper by Ruge-Murcia (2002), which is an extension of the monetary policy model of Barro
and Gordon (1983), it is shown that in a situation of unexpected inflation, unnatural low levels of
unemployment can be produced if a government or central bank has a preference for either inflation
or unemployment, it will not be able to formulate or decide on an optimal monetary policy.

The approach followed by Ruge-Murcia is to allow the central banker’s preferences to be asymmetric
around the optimal inflation rate. Therefore different weights are allocated to positive or negative
deviations from the inflation target. When inflation is below the optimal rate it could be an indication
for deflation bias and if inflation is above the optimal rate it could be an indication of inflation bias.

If inflation bias is present the central banker has asymmetric unemployment preferences, which will
aim to reduce unemployment below its natural rate. Positive unemployment deviations from its
natural rate are therefore weighted more severely than negative deviations in the loss function.

In the work of Ruge-Murcia the LINEX loss function was used, which is an asymmetric loss func-
tion, but this work can be extended to the BLINEX loss function, where a maximum loss can be
specified. One of the first papers to use LINEX, first proposed by Varian (1975), in monetary policy
specification, was a paper by Nobay and Peel (1998).

1.2 Some results from distribution theory

The following results can be found in any text book on inferential statistics. We refer to Muirhead
(2005) and Johnson, Kotz and Balakrishnan (1994, 1995) for more detail.

1.2.1 Normal distribution

The probability density function (pdf) of the normal distribution, denoted by N (u,0?), is given by

1 1 /z—u\| .
T, 0) = expl —= with 7,1 € R and 0 € RT
@i 0) = —0= p{2<0)} p

where 11 is the mean and o2 is the variance of the random variable X .
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Properties:

X —
1. If X is N (u,0?), then Z = P is a standard normal variable, denoted by N (0,1) and

o
the probability density function is given by

1 1
2:0,1) = —=exp{ —=2%} withzeR, pu=0and 0 =1
Fe0.0) = = e {52 !
2. If X1, X5, ....., X,, are n independent N (u, %) random variables, then the sample mean,

The p-dimensional normal pdf for the random vector X' = (X7, Xs, ....., X)) has the form

(S]] —_

F ) = e {= (= ) =7 (x - ) /2)

(27m) %]

where X' = (21,29, ....,2,), —00 < x; < 00,7 = 1,2,....p, X is a symmetric positive definite
variance-covariance matrix, p the mean vector. The p-dimensional normal pdf will be denoted by
NP (u» E) :

1.2.2 Chi-squared distribution

If X is N (0,1), then X? has the central chi-square distribution with one degree of freedom, denoted
by X%Lo)- The pdf of the central chi-square distribution with v degrees of freedom is given by:

@/2)-1 _ >
_— <X%1,0)> e *ao/
X(v,0) ov/2T (%)
when 2 is a positive integer, I' (g) = (% — 1)!, when £ is a complex number with a real positive

part, I’ (%) is defined via a convergent improper integral

r <Z> = fx%_le_xdx.
2 0

where v is the mean and 2v is the variance of the random variable X2 with v degrees of freedom.
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When X is N (i, 0?) then X? has a noncentral chi-square distribution, denoted by x> , with

(1347)

2
1
= §A2. The pdf of a noncentral chi-square

202

variable with v degrees of freedom and noncentrality parameter §A2 is given by

one degree of freedom and noncentrality parameter —

1 1
e =0 (539 40 ) 1 Dol

where h |y

ol (l'

Further the hypergeometric function of matrix argument is defined by

] is the pdf of the central chi-square distribution with 1 degrees of freedom and

2

(1302)

2

(1347)

MH "

) is the hypergeometric function of the argument iAQX

B (@1 eeey G b o b S) = li > %11)) ((c;:)n Oﬁk(!S) |

where a;,i = 1,.....,m;b;, 7 = 1, .....,n are arbitrary complex numbers, S, is a complex symmetric
matrix, Y . denotes summation over all partitions x and C,, (.S) is a zonal polynomial. Refer to Gupta

and Nagar (2000).

1.2.3 t-distribution

If Z; is a standard normal random variable i.e. Z; ~ N (0,1) and Z, follows the chi-square
distribution with k& degrees of freedom and is independent of Z;, then the variable defined as

Zy

Za/k

follows the Student’s ¢ distribution with k degrees of freedom. The pdf of the univariate ¢ distribution
with &k degrees of freedom is given by

r (4

fz; k) = \/EF()§)< k) T,xeR
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1.2.4 F-distribution

If Z1 and Z, are independently distributed chi-square random variables with k; and ky degrees of
freedom respectively, then the variable

AL

F=
Zo ks

~ Fkl,k2

has the F' distribution with k; and ky degrees of freedom, where k; is known as the numerator
degrees of freedom and k; the denominator degrees of freedom.

The square of the Student's ¢ variable with k degrees of freedom, has an F’ distribution with k; = 1
degrees of freedom and ks = k degrees of freedom, i.e.

ti - Fl,k

The pdf of the univariate F' distribution with k; and ky degrees of freedom is given by
3%

2

1 kl) k_1_1< kl )(k12 2) .
ik, ko) = ——r— | — x2 1+ —x ,r €R
stk =5 (i E

2

with k1 ks > 0 and B (%, %) is the Beta function given by

If Y7 is the noncentral x? random variable with noncentrality parameter A and v/; degrees of freedom;
Y, is the central x? random variable with v, degrees of freedom and statistically independent of
Y1, then F* = % is the noncentral F' distributed random variable. The pdf of the noncentral F'
distribution is given by

with v1,v5 >0, A > 0.
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1.3 Estimators under study

1.3.1 Model

In this thesis the well-known multiple regression model was studied under both conditions of well
and ill conditioned design matrices.

Multiple regression model

Consider the multiple regression model (MRM)

Y =X3+¢€

where Y, ,; is the vector of response variables, X, ,, is regarded as the non-stochastic design matrix
of full column rank (p < n) and B : p x 1 is the vector of unknown regression parameters. Also €
is the vector of random error terms with the assumption that € ~ N,, (0,0%L,), where o € R* is
unknown.

1.3.2 Proposed estimators

In this part some well-known estimators are proposed.

Ordinary least squares estimators

Unrestricted regression estimator (URE) For the MRM the URE of 3 under least squares and
maximum likelihood estimation, is defined as:

B,=(C)'XY, C=XX (1.1)

with

B, ~ N, (8,0°C™) (1.2)

and the unrestricted unbiased estimator of o2 is given by

-1 (Y- Xﬁn)/ (v -x5,)

m

with m =n —pand n =n; +ny + ... + ny.
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Restricted regression estimator (RRE) For the MRM the RRE of 3 is defined as:
Bn:Bn—C+%ruﬂ34Hq*(HBn—h> (1.3)

with H and h, defined in the following linear restriction, which will be placed on the regression
parameters in the form of the following hypotheses:

Hy:HB=h (1.4)

for a given known matrix H,, of rank ¢ (¢ < p) and a pre-specified h.1, will be tested against

Hi:HB#h

where ¢ represents the number of linear restrictions placed on the model.

Preliminary test regression estimator (PTRE) For the MRM, the PTRE of 3 is defined as:

~PT

B, =B, (B.—B.) Inu(F) (L5)

The indicator function of PTRE of the regression coefficients is defined below:

INg (F)=1(£, < Fym(a)) when the null hypothesis is not rejected

1
0 otherwise
Ip(F)=1(£,> F,m(a)) when the null hypothesis is rejected

1
0 otherwise

with £, the likelihood ratio test statistic for testing H, against H 4 given by

i%::(HBn—h)(ch;{)1<Hﬁn—h> .

where F,,,, (a) is the critical value of the central F-distribution with ¢ and m degrees of freedom
and « is the level of significance.
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Under H,4 the likelihood ratio test statistic has a noncentral F-distribution with ¢ and m degrees

of freedom and noncentrality parameter %2

where .
(HB—h) (HC'H')  (HB—h)

2

A% =

(1.7)

o

The distribution of URE and RRE are independent of the distribution of

Ridge regression The original interpretation of multicollinearity was the existence of a perfect
linear relationship between some or all of the explanatory variables in the model which are illustrated
below for a p-variable regression model:

Cle + CQXQ + ...+ Cpo =0

where ¢y, ¢a, ..., ¢, are constants which are not all simultaneously equal to zero.

Today's interpretation of multicollinearity is viewed in a less restrictive sense which include perfect
multicollinearity as well as the case where variables are intercorrelated, but not necessarily perfectly
correlated:

Cle —|— CQXQ —|— —I— Cpo —f- vV, = O

where v; is a stochastic error term.

In the presence of perfect multicollinearity C = X'X is not of full rank and therefore cannot
be inverted which implies that the parameter estimates cannot be calculated. In the case of
nearly perfect multicollinearity it is possible to calculate the inverse of X’X. The inverse will be ill-
conditioned and therefore the inverse will be very sensitive to variation in the data and can provide
very inaccurate results, which will lead to very large sampling variances for this estimator. Hoerl
and Kennard (1970) suggested the following correction:

C(k) = X'X + /{/‘Ip

where k£ > 0 is known as the ridge parameter.

© University of Pretoria



13

Unrestricted ridge regression estimator (URRE) For the MRM, the URRE of 3 is defined as:

B, (k) = (X'X+kI,) " X'Y = C}X'Y
_ (Ip s (X’X)‘1> T xX) XY
= R(k) B,
(1.8)
with
R (k)= (I, +£(X%) ") (1.9)
The distribution of URRE is given by
B, (k) ~ N, (B.0°R (k) C'R (k)) = N, (R (K) 8,55 ,)) (1.10)

Restricted ridge regression estimator (RRRE) For the MRM, the RRRE of 3 is defined as:

B. (k) =R (%) B, (1.11)

The distribution of RRRE is

B, (k) ~ N, (R (k) 8,0*R.(k) AR (k)) = N, (R (k) B, zan(k)> (1.12)

where
A=C'-C'H (HC'H) 'HC

Preliminary test ridge regression estimators (PTRRE) For the MRM, the PTRRE is defined
as:

~PT ~PT

B, (k)=R(k)B, (1.13)

The derivation and details of these results can be found in Saleh (2006).
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1.4 Theorems

The following results and theorems were repeatedly used throughout this thesis.

Results based on the proposed estimators

Consider a matrix of the form F = C 2 H’ (HC_IH’)71 HC 2 which is a symmetric idempotent
matrix of rank ¢ < p and therefore there always exists an orthogonal matrix Q such that

QFQ = QC :H (HC'H)  HC :Q (1.14)
1L 0
= [d o]
where C = X'X and H is defined as in (1.4) and

_1

QC iR (o iq = [ gt B2 ]

D21 D22 - D (115)
with R (k) is defined as in (1.9).
Result 1

1

QC :H' (HC'H') " 'HC 'R/ (k) R (k) C 3 Q’
= QC H' (HC 'H) "HC :Q'QC :R/ (k)R (k) C:Q
= (QFQ) (QCIR* () C1Q)

[l 8718 B - (% B (B Be [ 8- (B &)

L0 21 Do 0 0 D21 Do Dy O
(1.16)
and in a similar way as above it was found that
QC *H (HC'H)) 'HC 'R/ (k)R (k) C'H (HC'H) 'HC :Q'
o Iq 0 D11 D12 Iq 0 . Dll 0
_[ 0][]321 D22][0 0}_[0 0}
(1.17)
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The matrices Dq; and Doy are of order ¢ and ¢ — p respectively.

Define the random variable w as

1

w=QC:8,-QC *H (HC'H') 'h (1.18)
Using (1.2), the distribution of w is given as w ~ N, (n,0°1,)
where
n=FE(w)=QC:8-QC *H (HC'H) 'h (1.19)
therefore
w-n=QC* (B, - 8) (1.20)

and the distribution of w — 7 is given as (w — ) ~ N, (0,0%L,).

By partitioning the vector w = (w/,w)) and n = (1}, n5)" the independent sub-vectors of order ¢
and p — q is obtained, namely w; ~ N, (ny,0%L,) and wy ~ N, (05, 0%L,_,) .

In the last part of this section necessary relations between the estimators according to the above
given definitions is proposed. In this section extensive use is made of the results of Saleh (2006).
For specific consideration detailed referencing is provided.

Lemma 1 Let 3, be the estimator of B according to (1.1). Then

(8.-8)=CiQw-mn) (1.21)
where w = QC38,—~QC *H' (HC'H') 'h,n = QC:8 - QC:H' (HC 'H') 'h, Qisan

orthogonal matrix obtained from the factorisation QFQ’ and F = C:H (HC’IH’)f1 HC : is
a symmetric idempotent matrix of rank ¢ < p.
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Lemma 2 Let Bn be an estimator of 3 according to (1.1) and Bn be an estimator of 3 according
to (1.3), then

(Zan - Bn) — C'H/ (HC'H) ™ (Hf-in - h) (1.22)
by premultiplying (1.18) by HC_%Q’ the following expression was obtained
HC :Qw = (Hfan . h> (1.23)
Therefore

(B.-B.) =c W (HC'H) 'HCQuw (1.24)

Lemma 3 Let Bn be one estimator of 3 according to (1.1) and Bn be another estimator of 3
according to (1.3), then

Bn —B=C:Q (w—mn)—- C'H (HC'H) TTHCQw (1.25)
Proof. Subtracting 3 on both sides of (1.3) the following expression was obtained
B,-B=(B,—B8)—C'H (HCT'H) ' (HB, - h)

Substituting (1.21) and (1.23) into this expression completes the proof. =

Theorem 1 Let Bn — B be given by (1.21) and Bn — Bn be given by (1.24) then

(B’n - 5>/ R? (k) (Bn - Bn) = (w1—n,) Djw; + (wa—ny) Dajw; (1.26)

Proof. By substituting (1.21) and (1.24) into the left hand side of (1.26) the following expression
was obtained

(Bn - B)’ R? (k) (Bn - Bn)
= (ciQ(w-m) R*()C'H (HC'H) 'HC iQuw
= (w-n)/QCIR*(k)C :QQC iH (HC'H) 'HC iQuw
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by using (1.14) and (1.15) the following expression was obtained
Dy; D w
((wi—m)" (wa—ms)" ) I D; D;; ] QFQ’ ( w; )
Dy, D I, O w
= () ) [ o 2] [d 0 ](E])
Dy O w
= ((wi=m) (w2-my)") I D; 0 ] ( w; )
= (w1—m,)' Dpw; + (we—n,) Darws
which completes the proof. m
Theorem 2 Let 3, — Bn be given by (1.24) then
2 _a YR 2 7 /
(B.~B.) B2 (k) (B, - B.) = wiDuw: (1.27)

Proof. By substituting (1.24) into the left hand side of (1.27) the following expression was obtained

(B.~B.) R (1) (B, - B,)
= (C—lﬂ’ (HC'H') ™ HC%Q’w)' R?(k)C™'H (HC™'H') ' HC :Qw
— W'QC:H (HC'H') " HC'R?(k)C™'H' (HC 'H) 'HC :Qw
= W'QCTIH' (HC'H') 'HC:Q'QC:R’ (k) C*Q'QC:H' (HC™'H') 'HC :Quw

by using (1.14) and (1.15) the following expression was obtained

(8,-B.) R (1) (B~ B,) = «'QFQDQFQw
- (e[ o] [oy o] [d 0] (21)
= (b W) [ ] ()

!
= wlDle

which completes the proof. m
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Result 2 Given R (k) — I, = —k‘C(_kl) where C(;;) = C + kL,

Proof Since R (k) = (I, + kC~!)"" and therefore R~ (k) = I, + kC~* by multiplying both sided
with R (k) we obtain I, = R (k) + kR (k) C~' and by rearranging terms

R (k) —T, = —kR (k) C™' = —k (I, + kC™!) ' C™' = =k (C + kL,) ' = —kC}
(1.28)

Lemma 4 (Judge and Bock, 1978, p320). Let w be a non-central chi-square random variable with
g degrees of freedom and non-centrality parameter 0, let © (-) be a Borel measurable function and
let n be any real value such that n > =2, then

) e 0™ [Tk (g + 2n + 2m)
E(w'p (w)) =2") ml [Fé(ng?m)] |

m=0

E ¢ (X{sront2m)]

Theorem 3 (Judge and Bock, 1978, p321) Ifw is a (p x 1) normally distributed random vector
with mean m vector and covariance lep, ¢ (.) be any Borel measurable function, then

2le(53) 7] =22l (i)

o o0/ 0O

Result 3.1 For ¢ <;/§> =1 then

E [f} _ (1.29)
o o
!/
Result 3.2 For ¢ (f E) =1 then
oo
E [3 - ﬂ} ~0 (1.30)
o o
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w'w .
Result 3.3 (Saleh, 2006, p353) For ¢ (; ;) = Ing(F) = I (£, < Fym () the following

expectations are defined

E [90 (X%p+2,§))] = b <‘p <%>f+-zj>>
= B (£0 < Fyn ()] = E{I (Fpran-pe < 75F0m (@) ) |

with £ = ;%7 the noncentrality parameter and F,,, () the critical value of the F-distribution with
q and m degrees of freedom and « is the level of significance, then

1222 ()

Result 3.4 For ¢ (%;) = Inp(F) = (£, < Eym (a)) since B E - g] — 0,then
ple(22)(5-2)] =0 (132

Theorem 4 (Judge and Bock, 1978, p322). If w is a (p x 1) normally distributed random vector
with mean m vector and covariance o1, ,D is any positive definite symmetric matrix and ¢ (.) be
any Borel measurable function, then

B¢ (%;) %ng} —E Lp (X?M%))} trD+E [<p (Xz(p+4 M))} 77’(277

2 1552

Result 4.1 For ¢ (2,2) =1 then
oo
w! B n'Dn
E [; D;} =D+ (1.33)
/
Result 4.2 For ¢ (f E) =1land FE [E — Q] = 0 then
oo o 0o
/
E|(2-2)p(2-2)| o (134)
o o o o
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Result 4.3 (Saleh, 2006, p353) For ¢ (;g) = Ing(F) = I (£, < Fym () the following
expectations are defined

E 2 - E n—pXgs2.&
P\ Xot29) | = E\P U7 32,

= B (£n < Fym ()] = E{T (Frszn-pe < 75Fym (@) } and

I
&
~
&y
3
A
s
3
2
Il

E {] (Fq+4,n—p,£ < q_qu4Fq,m (O‘>> }

with £ = ’27%’ the noncentrality parameter and F,,, («) the critical value of the F-distribution with
q and m degrees of freedom and « is the level of significance, therefore

Pl (59) 508 =2 [ (a8 o ()| T2 059

2

w'w) =Ing(F)=1(£, < Fym(a)), since E [f - Q] = 0, then

g o

D) 60D - ()0 00

Result 4.4 For (

g 0

Theorem 5 (Judge and Bock, 1978, p323). If the (p x 1) vector w is distributed normally with
mean vector 1 and covariance o1, and ¢ (.) be any Borel measurable function, then

oo (2 22) =5 s ()] 2 [ ()] 2

20

Result 5.1 For ¢ (2,2) =1 then

g 0

(1.37)

!/
Result 5.2 For ¢ (f f) =1, since £ [E - ﬂ] = 0 then

o 0 o o

o[- E-2)] - as
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Result 5.3 (Saleh, 2006, p353) For ¢ (;g) = Ing(F) = I (£, < Fym () the following
expectations are defined

E 2 - E n—pXgs2.&
P\ Xot29) | = E\P U7 32,

= B (£ < Fym ()] = E{T (Fyizn e < 75 Fum (a)) band

Ele ()] =7 (¢ (53))
= B (£4 < Fyn (@) = {1 (Franpe < 353 Fum (@) }

with § = ’27%’ the noncentrality parameter and F,,, («) the critical value of the F-distribution with
q and m degrees of freedom and « is the level of significance, therefore

L e R (A SR | L S A ) )

) = Ing (F) = 1 (£, < Fyp (@), since |~ — 1| — 0, then

g o

/
Result 5.4 For ¢ (“’ d

B G- DG D] () |p 0w

Lemma 5 (Arashi, 2008) Assume that the random variable X, has a X%p) distribution. Then
for every Borel measurable function ¢ , then

| = 2208 b (X))

L [90 (X(p)) X(kp) T (g)

Proof. Using the probability density function of Xf, the following result was obtained

dx

25T (Qk%) ¢ (7) g gReE
2k

PHT ()T (g

=
AS)
—
IS
3
SN—
e
o=
8
bl
AS)
o |2
=l o
— |
RS | R
v/‘\
N8
SN—"
s
L
QL
S
I

2

) 2k+p
2kT (k:—i—g)/gp(x)x 7 le3 2kT (k:—l—ﬂ)
= %tp dx: 2 E (2 X( )
T ) (B ey e

which completes the proof. m
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Lemma 6 (Arashi, 2008). Assume that the random variable W is distributed as N (u,1). Then
for every Borel measurable function p, then

E | (W?) (W2)2] =3E [0 (X)) ] + 612 [¢ (X72)) | + 1 E [0 (X9 2)]

where X(k’lﬂ) ~ X?k’ug).

Proof. From W2 ~ x2 . and the definition of the non-central chi-square the following result was
b X(1p2)
obtaine

B o W) (W] = B o (Xaum) X3 ,2)] = 2T Y o (Xas29) Xy
Using Lemma 5 for k = 2 and p = 1 + 27, then

E [‘P (Xav25) X(21+2j)i| =(1+2j))B3+2))FE [90 (X(5+2j))}

8

(ﬂ{)j 5 (142§) (3 +2))

- I (] + 1) E [90 (X(5+2j))]

where A =
0 7=1
and
9 —1 2
= (%) <7 NSO
B= ; T(j+1) B [90 (X(5+2J))] - (%) ; T(j) E [‘P (X(5+2g))}

Substituting u =7 — 1 and t = u — 1, then

A= ( 5 ) ZWE [@ (X(7+2u ( 2 ) Z T (j) K [90 (X(5+2j))}

u—0 7=1
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_ (%)2E [ (X(o12n))] + A

Putting all these terms together completes the proof. m

Theorem 6 (Arashi, 2008). If w is a (p x 1) normally distributed random vector with mean n
vector and covariance o*1, and D is any positive definite symmetric matrix, and ¢ (.) be any Borel
measurable function, then

oGP EPR) =900 [ ()| [ ()

Proof. Suppose P is an orthogonal matrix such that PDP = A =
)\p

where A is a diagonal matrix and \; > 0,7 = 1,2, ...., p is the eigenvalues of D. Define the random
variable Z = Pw with Z ~ N, (Pn,L,).

Using Lemma 6 the following result was obtained

E {d, (£'2) (B’Dzﬂ — E[p(2'2) (ZAZ)?]

o 0 (2 g

+6(Pm)°E

Zij#i

- Zp:)\iE {E
=1

p (Zf + ZZ?> 4

i

o)+ 22

} where P/ is the i row of P.

 (Koiwar) * 57

? (o)) + 57

= zp:)\i {3E
i=1

+(Pim)'E
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Furthermore
P P 5 P 4 1 2\ 2 1 \2
= tr (D). L\ (Pin)* = m'Dr and L (Pin)* = 3= (A (Pin)*) = (nDin)
Therefore we conclude that
wwy (W w\? n'Dn
E —— ) (—D— =3trDE 2 , E 2 )
o(F9) (Fo2) | 0mr o ()| +07 [o (pn))
/Dl 2
n:zxn 2
*( = ) 8o <X<M>ﬂ "
!/
Result 6.1 For ¢ (E E) =1, then
oo
w! w2 nDn  (nDin)’
E (— D—) = 3trD+6 + (1.41)
o o o2 o2
/
Result 6.2 For ¢ (E E) =1land E [E — ﬂ] =0, then
oo o o
w n\’ w ] .
E ((0 - U) D(U - 0)) = 3trD (1.42)

/
Result 6.3 (Saleh, 2006, p353) For ¢ <w d

expectations are defined

Bl (Voao) = 2 (2 (52352))

= B[l (£ < Fym ()] = E{I (Frean e < 75 Fym (@) }

n—pXoyi6.&
Bl (Grse)| = B (0 (22%25))

= B (£n < Fym ()] = E{T (Faon-pe < 755Fum (@) } and

n—pXoig
E [Qp (X?p+8,€))] =k <(p <Tp );;fp ))

= Bl (£, < Fyn ()] = E{1 (Fprsnpe < 75Fom (@)}

) = Ing (F) = I (£, < F,,, (a)) the following

O O

with £ = ;]ZTZ the noncentrality parameter and F,,, (c) the critical value of the F-distribution with

q and m degrees of freedom and « is the level of significance
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therefore
w/w\ (W w\? n'Dn
E (——)(—D—) —3uDE [p (2 6=E o (2,
lgp oo/ \o o " 7 A p+4,§’g—3) + o? 7 X(p+6,§’0—3)
n'Din)’
E 2 ,
" ( 7 ) l*” (Xw u>)1
(1.43)
!/
Result 6.4 For ¢ (2 f) =Ing(F)=1(£, < Fym(a)), since E [f - Q] = 0, then
g O g g

E

NG D) | -wwrle ()] e

Theorem 7 (Stein’s identity) If w is N, (n,0°1,)and if a function ¢ (w) is partially differentiable,

that is
‘(%" M‘ <oo, i=1,2, ... p
(%JZ-
and ¢ (w) is a continuous function of w; for all vectors wy) = (w1 wWa,.....,w;—1 Wi41,...w,) then
L 0¢; (w)
B (1o @) (w-m} = o2 | £

provided that E ||¢ (w)||* < co where ||.||* is the squared norm of the function.

Result 7.1 £ [(w — 1) D (w — 1) (w — )] = F [(w'Dw — 2w'Dn + n'Dn) (w — n)’]

= F [w'Dw (w —n)’]

(1.45)
—2E [w'Dn (w — n)]

(1.46)
+n'DnE (w —n)

(1.47)
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Expectation (1.45): Using theorem 7 and taking ¢ (w') = w'Dw the following expressio

obtained

Ow'Dw
ow

F|w'Dw (w —n)] = o*E { } = 20°E [w'D] = 20*F [w'] D =20%n'D.

Expectation (1.46): Using theorem 7 and taking ¢ (w') = w'Dn

Oow'Dn
Ow

—2F [w'Dn(w—n)] = —20%E { } =o’n'D.

Expectation (1.47): Since E (w —n) =0

n'DnE (w—n) =0

26

n was

Combining the simplified expressions of (1.45) - (1.47) the following expression was obtained:

E [(WDw — 2w'Dn +1'Dn) (w — n)'] = 20*°n'D-20*n'D = 0.

Result 7.2 E [(w —1)'D (w — 1) Iy (F) (w —1)']

= E [(w'Dw — 2w'Dn + n'Dn) (w — 1) Ing (F)]

=F [W’DQ}[NR (F) (w — 'l’])/]

—2E [w'Dnlyg (F) (w —n)]

+n'DnE (w —n) Ink (F))'
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Expectation (1.49): Using theorem 7 and taking ¢ (w') = w'Dw the following expression was
obtained

8&)’DWINR (F)
Ow

¥ <X2(q+27%> )

Expectation (1.50): Using theorem 7 and taking ¢ (w') = w'Dnlyg (F)

B [wDw (w—n)] = °E | | - 202B i un (P D)

= 202E [w' Iy (F)]| D =202n'D.E

8W’D77[NR (F)
Ow

—2F [w'Dnlyg (F) (w—n)] = —20%E [ } = —20’0'DE [Iyg (F)].

Expectation (1.51): Since F (w —n) =0’
N'DnE ((w—mn)Ivr(F) =0

Combining the simplified expressions of (1.49) - (1.51) the following expression was obtained:

E [(w'Dwlyg (F) —2w'Dnlyg (F) +0'Dnlyg (F)) (w —n)']

= 20’n'DFE 2 , —20’n'DE 2 ) =0
n 4 (X(q+27%))] n ¥ <X<q+27%>
(1.52)
Cauchy-Schwarz inequality Let z; x9, ...., 2, and y1 ¥o,....., Y, be nonnegative numbers, then
1 1
n n 2 n 2
> Ty < ( %2) (ny) (1.53)
i=1 i=1 i=1
Furthermore, the equality holds if and only if [z;.......7,,] and [y;.......y,]  are linearly dependent.
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1.5 Algorithm
The following algorithm is used in the simulation exercises in section 2.5, section 3.5 and section
4.3.4:

1. p + 1 standardised normal random variables are generated, namely

Zzie~N(0,1) i=1,2,....nandk=1,2,..p+1

2. p multicollinear explanatory variables are computed by using the technique described by McDonald
and Galarneau (1975), namely

1

zij=(1-7%)% 25+ v2ipey  i=1,2,..,nand j=1,2,...p
where 7 is chosen in such a way that the correlation between any two explanatory variables are given
by 2.

3. The explanatory variables generated in the previous step are standardised in order to ensure that
X'X is in correlation form.

4. The true B vector is calculated as the normalised eigenvector corresponding to the largest
eigenvalue of the X’X matrix, subject to the constraint that 3’3 = 1.

5. Error terms, ¢;, are generated from a N (0, 0?) distribution.

6. The dependent variable,y;, is generated using 3 and ¢; :

Yi = Bo + By + BaTia + B3z + ByTia + ..+ i=1,2,....n

7. Seven different ridge parameters, k, are calculated based on the definitions on pages 110 and
111 of the thesis.

8. The three proposed estimators, namely URRE, RRRE and PTRRE are each calculated seven
times, using the different ridge parameters in the previous step.

9. The three loss functions, namely reflected normal loss, LINEX loss and BLINEX loss (as defined
on pages 28, 118 and 134) are calculated for each proposed estimator calculated in the previous
step.

10. This process is repeated 2000 times for every proposed estimator under each for the three loss
functions and the risk values (expected or average loss) for each proposed estimator are calculated
and tabulated.

11. This process is also repeated by changing specific parameters, namely the variance, o2, the level
of multicollinearity present, v, the number of parameters to be estimated,p, and the sample size, n.
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Chapter 2

Performance of the preliminary test ridge
regression estimator using reflected
normal loss

2.1 Reflected normal loss function

In order to evaluate the performance of the preliminary test estimator under the reflected normal
loss the risk functions of the three estimators, namely the unrestricted ridge regression estimator,
the restricted ridge regression estimator and the preliminary test ridge regression estimator were
derived. The reflected normal loss function, which is based on the reflection of the normal density
function, was first proposed by Taguchi (1986) where he motivated the use of this loss function in
practical applications in quality engineering. The function is of practical use since it is a bounded
loss function and can be customised in order to allow the practitioner to set the maximum allowable
loss depending on his/her requirements. Ghari et al. (2009) considered the estimation of the mean
vector of a multivariate normal model under the reflected normal loss function. Assume 3% isa px1
vector containing regression coefficient estimators and 3 is a p x 1 vector of unknown regression
coefficient parameters. The multivariate reflected normal loss function is given by

(8" — ﬁ)';?; (8" — ﬂ))}

Lrn (5*75) =cC {1 — exXp (‘

where ¢ is the maximum loss for the function, ~ is a shape parameter and W is a matrix containing
weights. The loss function can also be transformed into an asymmetric loss function, by specifying
different maximum loss values and different scaling parameters to the left and right of 3 which is
referred to the extended reflected normal loss function by Spiring (1993). The shape parameter
v = % can be used to change the general form of the loss function, where A* represents the
distance from 3 to the point where the maximum loss ¢ occurs for the first time, therefore at

BrA*.

29
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The following panel of sketches illustrate the effect of different values of ¢ and v on the reflected

normal loss function for p = 2:

Loss

00440

00293

0.083C

00537

00147 00232 ‘—‘—\_\_7_
15 / 15
05 /ﬂf
0.0000 ﬁliﬁ 0.000C 1617‘K
13 0E 15 // 3
o 0 V%

c=05,v=5

c=1,v=5

Figure 2.1: The effect of ¢ and ~ on the reflected normal loss function.

The increase in ¢, the bounding parameter of the reflected normal loss function will result in an
increase in allowable loss. The scale parameter v influences the shape of the loss function. The
sketches above illustrate that as 7 decreases the curve is flatter compared to larger v values. The
scale parameter can be used to transform the reflected normal loss function from a symmetric to
asymmetric loss function, known as the extended reflected normal loss function.

The risk function under reflected normal loss is defined as:

(B —B)W (B —B))}

Rrn (B",8) =k [1 — €Xp (_ 272

In order to evaluate all the estimators on the same scale, the weight matrix W was consistently
chosen as the identity matrix of order p, namely I,.
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vvvvvvvvvvvvvvvvvvvvvvv
uuuuuuuuuuuuuuuuuuuu

2.2 Risk function of the URRE

Theorem 8 Ignoring the terms of order 3, the approximate risk function of the URRE under reflected

normal loss is given by:
(.- ) (B0 -5)]
1 @7

2.

r=1

E [['RN <Bn (k) 76)] ~—ck

» (0*trD + +k°B'C ;) 8)
_272
(304t7"D + 2k DB'C3B + 4k*0*B' C SR (k) C'R! (k) CiB + K (B'C ) )

84

Proof By choosing W = I, it follows that the risk function for fi’n (k) under reflected normal loss

function is:
Ren (5n (k) aﬁ) =F [ERN (/Bn (k) aﬁ)] =cE |1 —exp ( _>27<2 )
and from the Taylor expansion
22
ele—l—ﬁ—l—g—FO(x?’)
the risk function reduces to
| (3.0 -8) (.1 -5),
ST e
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The first term of the expansion (2.1) namely
2| (B.0)-8) (3.1 -5)]
—c 2
will now be considered.
The expectation in the numerator namely
2| (3.0 -8) (5.0 )] 22)
can be simplified by adding and subtracting R (k) B within each bracket:
=2 [((B.0) - RWB) + RDB-) ((B.10)-R()B) + R (0B -9)]
= |2 (B. 0 - R ) (5.0~ R(1) )
+2 (B0~ RO B) (R(B~ 5) + (R(5)6 - B) (R()6 - )]
= 2| (B.10) - R(8) (3,10 - R(1)8),
(2.3)
+2F [(B (k) ~R (k) B) (R(k)B - ﬂ)]
(2.4)
+E [(R(K) B - B) (R (k) B - B)]
(2.5)

~ £ |(B.-8) R0 (3. 5)]
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Using the results (1.21) and (1.15) the following result was obtained
E [(Bn -8) R (1) (B, - ﬂ)] = B |(w-n) QCTIR? () C3Q' (w — )|
=E[(w-n)D(w-n)]
os(2-2)n (-2)
By using (1.34) it was found that
e[ p (1) <o
Expression (2.4): From (1.8) and from the fact that E [(fﬁ'n — B)] =0
26 | (B, ()~ R (1) 8) (R 5 - )] =26 (B, 1) - R (1) 8) | R ()5 - )
=28 [(R(1)B, - R(K)8)| (R(})B-B)
—2R (k) E[(B, - B8)] R(K)B-B) =0
Expression (2.5): Using (1.28) the following is obtained
E[R(k)8—-p) (R(k)B-PB)] = R(Kk)B-B) R(K)B-p)
=B (R(k) —Ip) (R (k) —1p) B
e

(2.6)

By combining the simplified expressions of (2.3), (2.4) and (2.5) an expression for the numerator
(2.2) was obtained:

B[ (3.0~ ) (3.0 - 8)| —orm 4 2Cz0
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The second term of the expansion (2.1) namely
' 2
E [(ﬁn (k)= 8) (B (k) ﬁ)]
- 2 o o2
(=17 (29?)"2!
will now be considered.
The expectation in the numerator
o 2
E [(ﬂn (k)= B) (B (k) 6)] (2.8)

can be simplified by adding and subtracting R (k) 3 in both brackets:

. MB” (]) ~R(#)B) + R(#)B-B)) ((B. (k) ~R (1)) + R (k)5 - B))F

2

#2 (B, (0) - R(5)8) (R(5)S - ) + (R()5 - B (R(1)6 - )]

Using the definition of (1.8) and (1.21) and simplifying the expectation it was found that:

2

— @/ Dw =) +2(CHQ ) R (0 (R ~1,) B+ (R ()6 - 6) (R (55 - )
Multiplying the brackets out if was found that:

—E[(w-n'Dw-n) (@-n)Dw-n)

+4((w—n)'D(w ) ((C%Q’ (w=m) R0 (R () ~1,) )

+2 ((w —n)' )’ ) (R(k)B—B) (R(K)B-B))
i ((Cra@-m) Rm®EH-1)8) ((C3Q w-n) R () R -1,)5)
+ ( (C3Q @) R0 R ~1,)8) (R(:)5-B) (R(H)6 )

R(K)B-B) (R(K)B-B)) (R(K)B-B) R(K)B-B))
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Taking the expectation of each term in the bracket resulted in
—E[((w-n/D(w-mn)’]
(2.9)
B [(w = 1)/ D (w — ) (@ —1)] (QC R (1) (R (K) - 1,) B)
(2.10)
+2B |((@—n'D(w—n)'| (R(K)B-B) R(})B-B))
(2.11)
48 (R (0~ LR E| (03 - m) (€HQ w-m) | R () (R (1) -1,
(2.12)
#4803 (=) | (R () (R 1) =1, 8) (R ()5~ B (R ()8 - )
(2.13)
+E [((R (k)B—B) R (k) B-B)) (R(K)B-B) (R(k)B— 6))]
(2.14)

Expression (2.9): Using (1.42) resulted in

Gk (g_g)f] 30D

Expression (2.10): Using (1.48) it was found that

E [((w —n)'D(w— 77))2} =o'F

1B [(w = m)' D (w — 1) (@ = n)] (QCTIR (k) (R (k) ~ T,) B) =0
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Expression (2.11): Using (1.34) and (1.28) it was found that
28 |((@ =)D (@—m)'| (R(K)B-B) R(K)B-B)
—2E |((w=n)D(w-m)'| B (R (k) ~Tp) (R (k) - Ip) B = 2k**rDFC2A
Expression (2.12):
18 (R() -1,/ RIDE | (CHQ ) (020 (w=m) | R0 (R -1,
=48 (R (k) - L) R (k) C2QE [(w —n) (w —n)] QC*R/ (k) (R (k) - 1,) B
This expression can be simplified by noting that £ [(w — 1) (w — n)'] = 0*E [6—3) <§—g”

Using (1.38) resulted in
Elw-m(w-n)] = o1,

Therefore expression (2.12) is equal to
18/ (R (k) ~ L) R (k) C3QE [ —n) (w — )] QC IR (k) (R () — 1,) 8
— 4028 (R (k) - I,) R(k) C 3 QL,QC 3R/ (k) (R (k) — 1,) B

= 40°8' (R(k) - L) R (k) C2QQC 2R/ (k) (R (k) — 1,) 8

since Q is an orthogonal matrix it follows that Q'Q = I, therefore

4028 (R.(k) — L) R (k) C2QQC R/ (k) (R (k) — I,) B

= 40°6 (R (k) — L) R(k)C2C 2R/ (k) (R(k) - L,) B

=40’8' (R (k) - L) R (k) C'R/ (k) (R (k) — I,,) B

Finally using (1.28) resulted in

40°0' (R (k) — L) R (k) CT'R/ (k) (R (k) — I,) B

= 4k20*B'C )R (k) C'R! (k) C) 8
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Expression (2.13): Using (1.30) it was found that

1| (C2Q (w—m) | (R (0 (R (5 ~1,) 8) (R.(1) B~ 8) (R (1) 6 - )
— 48 [(w — )] QT (R () (R(K) ~1,) B) (R (k) B~ ) (R(k) 3 )
— 0

Expression (2.14): Using (1.28) this expression reduces to

E[(R(K)B-B) R(K)B-B) (R(K)B-8) R(K)S-H)

=R (k)B-p) (R(k)B-B) (R(k)B-B) R(k)B-B)

=1 (8o 8)

o 2
Combining all the simplified expression of (2.9) to (2.14) it follows that & [(Bn (k) — B) <ﬂn (k) — 5)]

2
= 30'trD + 2k20%rDB'C2B + 4k20*B'C R (k) C'R (k) C;)8 + k* <,6’C(‘,f)ﬁ)

(2.15)

Substituting (2.7) and (2.15) into (2.1) completes the proof.l
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2.3 Risk function of the RRRE

Theorem 9 Ignoring the terms of order 3, the approximate risk function of the RRRE under reflected
normal loss is given by:

E {LRN (Bn (k) ,ﬂ)} ~ 2—; [0*trD — o*trDy; + 1y D11m,y

—2kn'QC 2 H' (Hc—lH')‘1 HC 'R/ (k) C(*,j)ﬂ + k%/C(,f)ﬂ}

Cc

3 [3oitrD — 120%trDy; — 8o*trD}, — 4do*trDaygtrDyy + 60*trDyy + 20%trDyy (7, D1imy)

+2021r Dy [0rDyy + 1y Duymy] + 4kotrDy QC™*H' (HC™'H') ' HC™'R/ (k) C}) 8
1 2

12k%02rD (,6’0;,35) +120%rDyy + 240%,Duin, + 4 (n’lD%m)

441, D11 [0°1, + 1,0} D11m, — 1600} D11 D11y — 8 [0?trDyy + 1Duin,| (n}D11m,)

+40%trD* — 120%rDy; — 240°n,Dy1n, — 4 (nlDl%l'rh)2 + 80?n|D1; D111y
+4 [0%trDyy + 1\D11my] 7,D11m; + 8ka*n| [Di1ji + Diajo)

—8ka?trDy1mjt — 8ka’n|Dy1ji — 8ka?trDi1mbj}

—8kn D2 [0°L,— + mamb) 35 + 8k (nD1amy) mbis — 4k%0*trDuB'C 30
+304trDy; + 60’0 Dyiny + ("7/1D1%1"71)2 — 8ka?n|Dy1ji + 8ko*nDy1j}
—dko? [trDyy + 0\ Duny| (mj7) + 4k [0*trDiy + n Dy | b5

+212 [o*0rDuy + miDumy] (B'C38) + 42> CHR (k) C'R! () O 8
—8k2B'C )R (k) C Q' [0°L, + 1] QC™*H/ (HC™'H') ' HC™'R! (k) C ;)8
+8k2B'CIR (k) C2Qmn'QC*H' (HC™'H') " HC 'R/ (k) C;}8

+ [4k2ﬁ’C(‘kl)R (k) C'H' (HC'H) " HC Q' [0°1, + 1]

xQC™iH (HC™'H') ' HC'R' (k) C}8|

+45* (1'QCHH (HC'H) ' HC 'R/ (k) C48) (B'C28) + 1 (8'C20) 2}
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with j,x1 = QC’%R’ (k) C@%B = ( j; > where j;:gx land js: (p—q) x 1,

jia = QC *H' (HC'H/) 'HC 'R’ (k) C;}8 = ( I ) where j7 : ¢ x 1 and j3 : (p — q) x 1,
D* =Dy, [U2Iq +m,1] D12 and D}, = D5, Dj,

Proof. By choosing W =1, it follows that the risk function for Bn (k) under reflected normal loss
function is:

s (3.10.8)] = 12O B2

and using Taylor's expansion the risk function reduced to

| (B.w =) (B0 -6)|
& ey

+ 0 (2% (2.16)

The first term in the expansion (2.16) above namely

will now be considered.

The expectation in the numerator namely

£|(B.0)-8) (3.1 -5)]
can be simplified by adding and subtracting R (k) B within each bracket.

= |((Bu (- R W 8) + R (18- 1) (B, 1)~ R(4IB) + (RS- )
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_E [(Bn ()~ R (4) 8) (B, ()~ R.(h ﬂ)]

(217)
+26 | (B, (0~ R()B) (R(5)5 - 9)

(218)
+E[R(k)B-B) (R(K) B - B)]

(219)

Expression (2.17): Using (1.11) and (1.25) it was found that

~

B|(B.0)-RW)B) (B, (1)~ RWG)| = £ | (R0B, - R (1) 8) (R0, ~R (1) )]

= |(B,-8) R (IR0 (B, - )|

= r|(ciQ @ -n)-C'H (HC'H) HC%Q’w)' R (k)

xR (k) (c—%Qf (w—n)—C'H (HC 1) ™" HC‘%Q’wﬂ

- p|(c @ -m) RORG (CHQ w-n)]

Y [(C—lH’ (HC W)~ Hc—%Q'w)' R ()R (k) (CQ (w - n))}

+E [(CIH' (HC ') 'HC QW) R/ ()R (k) (CH (HCH) ! HC%Q’w)}

— B |(w—n) QCTIR () R (k) C#Q' (w — )|
Y [w’QC*%H/ (HC'H') 'HC'R/ (k)R (k) C 3 Q' (w — n)}

+E [w'QC—%H' (HC™'H') '"HC™'R’ (k)R (k) C"'H' (HC™'H') ' HC:Qw

© University of Pretoria



Using (1.15), (1.16) and (1.17) the above three expectations reduces to

=E[(w—n)D(w-n)]

Expectation (2.20): Using (1.34) the following was obtained
E[(w—n)D(w-mn)] =d*rD
Expectation (2.21)

el §][B: B

21 22

= —2F [wiDy; (wi—1n,) + wiDi2 (wa—n,)]

= —2F (wDyjw) + 2F (WD) ny — 2E (WiD1ws) + 2E (W) D121my)

41

(2.20)

(2.21)

(2.22)

since F (w|Djsws) = E{E (w)Djows|ws)} by using double expectations, it was found that

—2F (U.J’lDle) +217/1D11771 —2F {E (w’1D12w2|w2)} +277,1D127’]2

using (1.33) and £ {E (w|Djows|ws)} = ) Djswy resulted in

= —20°trDy; — 21\ Dy1m+2n/Dyimy — 2E (0 Diaw,) 421, D12n,

= —20'2tTD11
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= o%trDq; + 0} Dumn,

Combining the results of (2.20) - (2.22) a simplified expression for (2.17) was obtained

~

B|(RB, - R1)6) (RW)B, ~R(0)5)]

= O'2t7’D — O'2t7’D11 —+ 77’1D11771

Expression (2.18): Using (1.11), (1.25) and (1.28) this expression simplifies to

!/

28| (Bu(0) - R(B) (R() 8- 9] =26 | (R (DB, - R()B) (R(1)5 - )
— 26| (B, B) R (1) (R(1) - 1, 5]

_op | C3Q (w—-1n)—-C'H (HC'H) 'HC iQw) R (k) C}| 3
( @

— 9kE -<C%Q’ (w— n))/ R’ (k) C(,j)] B—2kE [(C‘lH’ (HC'H') ™ Hc—%Q’w)' R’ (k) C;L

=2kQC 2 [(w — )] R (K) Cj8 — 2kE () QCT*H! (HC'H') " HC 'R/ () €8

using (1.29) and (1.30) it was found that
—2kn'QC*H' (HC™'H') ' HC™'R/ (k) C;}8
Expression (2.19): Using (2.6) resulted in

E[R(k)B~-B)(R(k)B-PB)]=R(K)B~-B) (R(KkB-B)
- 1B OB
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By combining the simplified expressions of (2.17), (2.18) and (2.19) the following expression was
obtained

B| (3.0 -8) (B, (- 8),

= 0’rD — o*trDy, +n;Dumy — 2kn'QC*H (HC'H') 'HC 'R/ (k) C )8

+Hﬂcﬁﬂ
(2.23)

The second term of the expansion (2.16) namely

£ | (3.0 -8) (B. (1 —ﬁ)r
(27)* 2!

—c (2.24)

will now be considered.

The expectation in the numerator

IR 2
£| (3.0 -8) (B, (- 5),
can be simplified by adding and subtracting R (k) 3 in each bracket

—F ((Z—}n (k) =R (1) B) + R (5 B-B)) (B, (F) ~R (1) B) + (R(k)ﬁ_ﬂ)>r

using (1.11) it was found that

_p l(R(l{:) B.-R(18) (R(K)B, - R (K B)

2

o~

+2(R(9B, ~ R(0)) (RS- 5) + (R (18- B) (R() - 5)
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can be extended to the following form by using (1.25)
—E|((w-n)/QCHR (MR () CHQ (w - )

—2w'QC:H' (HC™'H) ' HC™ 'R/ (k) R (k) C2Q' (w — 1)

+w'QC IH (HC'H') 'HC 'R/ (k)R (k) C'H' (HC'H) ' HC :Qw
+2(w — ) QCT2R/ (k) (R (k) B - B)

—2w/'QC™:H' (HC™'H') "HC 'R/ (k) (R (k) B - 8)

+(R(k)B-B) R(K)B-B))’]

Using (1.14), (1.15), (1.16) and (1.17) the expectation reduces to
—E[(w-nDw-m-2 [ B Jw-m+o [ e
+2(w —n) QC2R/ (k) (R (k) B - B) — 22/QC*H' (HC™'H))  HC'R/ (k) (R (k) 8 - B)
+(R(k)B-B) R(K)B-B))’]

By multiplying the brackets out resulted in

_E [((w — ) D (w - n)ﬂ

4 [((w ) (e el [T T ][ ])]

25 (- m) (ler @[55 o ][&])]

48 | ((w m) ((w=n) QCHR (k) R (k) 8- B))]

4B (@ n) («'QC H (HC'H) ' HC 'R/ (k) (R () 5 - )]

128 [((w —m)' D (w — ) (R(K) B~ B) (R(K) B - B)]
(e e B e [a D) (et e[ R ) [2])]

(e e[ B e[ D) (et e[ 8] [22])]
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s | (1wn @ [T B ] [emm ) (@ -n) Qo iR ) (R(k)ﬁ—ﬂ))]

e | (1o o] [T T ] [9m ]) (wao i (o) HO R () (R( 8 - 8))

e |(ler e ][5 Bl lemm ) (mRws-s) ® <k>ﬁ—ﬂ>)]

+B (Lot w1 [T 0] [2]) (e w1 [T G][E0])
vE ([ w [ By 9] :Z;:)'((w—n)’Qc—%R'(fc)(R(k)ﬁ—ﬂ))}
o on

—4E _<[ Wi w10t 0| ws —>I (WQC‘%H’ (HC™'H') " HC™'R' () (R (k)ﬁ—ﬂ))}

1L W2 |

ve|(ler vl [ 8] ]) (rRws-sy <R<km—ﬁ>>}
#48 | (@ =)/ QC IR ) (R (8- 9) (@) QTR () (R(1) 8- 9))]
_SE -((w —n) QCTIR (k) (R (k) B — 5))' (w/QC*%H’ (HC™'H') "HC 'R/ (k) (R (k) B — B))}

#48 | ((@ =) QCHR (1) (R (16 - 9)) (R(0)5 - 8) (R4 5 - 9)]

+48 | (wQC 3 (HC ) HC R () (R (15 - 6)
x (w’QC’%H’ (HCT'H') "HC'R’ (k) (R (k) B — ﬁ))}
—4E [(w’QC‘%H’ (HC™'H') "' HC 'R/ (k) (R (k) B — ﬁ))' (R(k)B-B)R(K)B-P))

+E[(R(K)B-B) (R(K)B—B) R(K)B—-B) (R(K)B-B))]
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Using (1.28) and (1.30) this expression reduces to

—E[((w-n'Dw-n)]

—4E [((w -n)D(w-mn)) ([ Wi Wy | [ o ] [ o) m

+23[((w—n)’D(w—n))/([ W wlz][DOll 8“%])}

—4kE [ ((w - )/ D (w =)' ((w—n))| QR (k) C;}8

+4RE [((w = m)' D (w - m))' ()] QC I (HC™'H) " HC™'R' (k) C}3

+2k*F [((w —n)'D(w - ”7))/} BCuP

AE {([ W W) ] [ D011 13012 ] [ﬁ;:g; ]), ([ W, W] [ DOn DO12 } [ 5?2;

et [ B R [8 ) e
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(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)
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D,y D — ! 1 _
+8kE {([ W) wh ] [ 011 012 ] [ z;_Z; ]) ((w —77),)] QC =R/ (k) C(kl)ﬂ
(2.33)

—8kE {([ W) wh ] [ DOM Dy, } [ wi1—1 ]),w’} QCféH/ (HCle/)fl HC'R/ (k) C(_k]}ﬂ

0 | | womm,

(2.34)
e [(len w1 [ By Be][omm )] eous

(2.35)
+E [(wiDuw:)’]

(2.36)
—~4kE |(@;Duen) (=) QCHR! (k) (C18) )|

(2.37)
+4kE [(@Dnw) ()] QCTHH (HC™'H) " HC'R' (k) (C48)

(2.38)
+21E [(wiDuw)] (BC30)

(2.39)
+4R2B'CIRCE (M) QE [(w - n) (w —m)] QC3R! (k) C )8

(2.40)
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—~8k*E [((w - ) QC IR (1) CiB) («'QC H (HC'H) 'HC 'R (k) c(,;)gﬂ
(2.41)

+4K2E {(w’QC%H’ (HC ') 'HC 'R/ (K) Clp) (w'QC +H (HC 'H) ' HC 'R/ (1) C(—,j)ﬁ)]

(2.42)
4R (n’QC’%H’ (HC™'H') 'HC 'R/ (k) C(‘,j)ﬂ)/ (6’0(}%5)

(2.43)
+it (B’C(‘,f)ﬂ)Q

(2.44)

In order to simplify these expressions, each one of the above expressions has to be considered
separately:

Expression (2.25): Using (1.42) it was found that

(&-2p(e-1)

E [((w —n)D(w— n))ﬂ =o'F

= 3c*trD

Expression (2.26):

—4E [((w -n)D(w-n)) ([ W) wy | [ o ] [ o) m
= —4F :((w —n)D(w-n)) ([ wiDi wiDiz | [ sy D]

Wo—T)y

— —4F |((w =)' D (@ — 1)) (D11 (@1-m,)) + wiDiz (wa—11p))]

[ Dy D —
=48 |((@i-n) (w-m.)' )| DY DE || i | @D (wi—m,) + wiDiz (wr—m,))]
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= —4F [( (w1=11)' D1y + (wa—1,) Doy (w1—m;) D1z + (w3—1,) Das ) (
X (WD11 (w1—my) + W D1z (wa—mn,))]

= —4E [[(wi—m) Du (wi—m) + (w2—n,) Doy (w1—n,)

+ (‘-"1_"71)/ Dy (wa—m,) + ("’2_772),]322 (wa—m)

xw Dy (wW1—n;) + WDz (wa—n,)]]

= —4F [(w1—7n;) D1y (w1—ny) [w) D11 (w1—m) + w D1 (wa—1n5)]]

—4FE [(w2—15) Dot (w1—n,) [w| D11 (w1—1,) + @) D1y (wa—1y)]]

—4E [(w1—n,) D1z (wa—1;) [wi D11 (w1—1,) + Wi D1y (wa—1,)]]

—4E [(wa—n,) Doy (wa—1;) [w D11 (wi—1,) + Wi D1y (wa—15)]]

= —4F [(wl—nl),Dn (w1—m,) (W Dn (wl_nl)]]

—4FE [(w1—n;) Dyy (wi—n,) [w)D1a (wo—n,)]]

—4FE [(wa—n,) Doy (wi1—n,) [w) D11 (w1—n,)]]

—4FE [(wa—n5,) Doy (w1—n,) [w)D1a (wo—n,)]]

—4FE [(w1—m,) D12 (we—1,) [w) D11 (w1—n4)]]

—4F [(wl—’l?l)l Dy (w2—m,) [wiDig (“’2_772>]]

© University of Pretoria
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(2.45)

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)



o, TR R
50
—4F [(UJQ—TIQ)I Da; (wa—m,) [w D1y (wl—"h)]]
(2.51)
—4F [(WQ_TIQ)/ Dy (wa—m,) Wi D1y <w2_772)]
(2.52)

Expectation (2.45): Using (1.42) and (1.48) it was found that

—4E [(w1—ny) Di (wi—m) [wi D11 (wi—my)]]

= —AE [(wi—m1) D11 (w1—ny) [(wi—n,) Duwi]]

= —4E [(wi—m) Dy (wi—my) ((w1—m) Dus ((wi—my) +m))]

= —4E |((@1=m) Dut (w1-m,))"| = 4E [(@i=m,)' Dus (@1-m,) (w1—m,)'] Dum,
= —120*rD;

Expectation (2.46):

—4E [(wi—my) D1 (wi—m) [wiD1a (wa—1,)]]

= —4E{E [(w1—n,) D11 (w1—1,) [WD1s (wa—my)]| w1] }

= —4E [(wi—n,) Di1 (w1—m) [wiD12E [(w2—ny)]]] = 0 since E [(wy—m,)] =0
Expectation (2.47):

—4E [(w2=n5) Doy (wi—m) [wi D11 (w1—my)]]

= —4E{E [(w2=1,) D21 (w1—my) [wiDuy (wi—my)]| wi] }

= —4E [E [(wy=5)"| Doy (w1—n,) (Wi D11 (w1—my)]| wi] = 0 since E [(wy—1n,)'] = 0/
Expectation (2.48):

—4E [(wo—13) Dor (w1—m) [wiD1a (wa—1,)]]

= —4E [(w1—m,) Dy (w2—1,) (w2—1,) Dy ]

= —AE{E [(w1—m) Dhy (w2—1,) (w2—1,) Dipw:|wi] }

= —4F [(wl_'r]l),D,QlE [("’2_772) (""2_772)/] Dll?""’l]
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using (1.38) resulted in

E [(w2—n,) (wa—n,)"] = 021, therefore

—4E [(w1—m) Dy E [(wa—n5) (wa—1,)] Diywi]

= —40’E [(wl_nl)/DélD/mwl]

= —40’FE [(wl_”h)/ D5, DY, ((w1—my) + "71)}

= —40°E [(w1—n,) Dy DYy (wi—my)] — 40°E [(wi—m,) Dy Digmy |
with D%, D}, = D7, it was found that

= —40°E [(w1—m;)' DY (wi—m)] — 40°E [(w1—ny) Dumny]
using (1.30) and (1.34) it was found that

= —40ttrD?,

Expectation (2.49):

—4E [(w1—m,) D1a (wo—n,) [wiD1y (w1—m,)]] =0

(see simplification of (2.46))

Expectation (2.50):

—4L [(‘-"1_771)/ D1z (wo—1,) [wiD12 (w2 —my)]] = —4o*trDY,
(see simplification of (2.48))

Expectation (2.51): Using (1.34) resulted in

—4E [(w—15) Daa (wa—15) [w D11 (w1 —my)]]

= —4E {E [(wa—m,) D2y (wa—m,) [wi D (w1—my)]| wi] }
= —4E [E [(wa—1,) D2z (wa—1,)] wiD1 (wi—m)]

= —4E [E [(wa—1,) Das (wa—1,)] [wi D11 (w1—n,)]]

= —40%rDo F [wDy; (w1—1,)]

= —402tTD22 [E [w’lDle] - E [wllDllnl]]
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using (1.29) and (1.33) resulted in
—40’2t7“D22 [0'2tT'D11 + 77/1D117]1 — T]llDHTh] = —40’4t7’D22tTD11
Expectation (2.52):
—4E [(w2—1,) Daa (w2—15,) wi D12 (wa—1,)]
= —4F [<w2_n2),D22 ((.02—?']2) (w2—772),D12w1:|
= —AE {E [(wa—m,) Das (w2—15) (wa—m,) Disw: | wi] }
= —4E [E [(wa—1,) D2z (wa—1,) (wa—1,)'] Diawi]
using (1.48) it was found that E [(wz—1,) D22 (wo—1,) (wa—n,)'] =0’
Therefore
= —4E [E [(wa—1,) Das (wa—1,) (wa—1,)'] Digw1] = 0
By combining (2.45) - (2.52) an expression for (2.26) was obtained
—120%rD;; — 8U4tTDf1 — 40*trDostrDqy
Expression (2.27):
Dy O w

28 |(w-m'Diw-m) ([« w51 6" o][or])]
= 2E [[(w1—m,) D11 (wi=m;) + (w2—m,) Doy (w1—1,)
+ (w1—1,) D1z (w2—1,) + (w2—n,) Doz (wa—15)] (w)Dyywi)]
=2F [(w1—n,) D11 (w1—m,) (W D11wy)]

(2.53)
+2E [(w2—15) D1 (wi1—m,) (w{Diiwy)]

(2.54)
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+2F [(wl—’r[l)l Dy (w2—m,) (wllDllwlﬂ
(2.55)
+2F [(UJQ—'UQ)I Dy (w2—m,) (wllDllwlﬂ
(2.56)

Expectation (2.53):
[ w1—1,) D11 (w1—7,) (w’lDle)}
=2F [(wi—m1) Dus (wi—ny) (w1 = m1) + 1) Dua (w1 — 0y) +m1)) ]

= 2F [((wl_nl),Dll (wl—m)ﬂ +4E [(wi—m) Du (wi—m,) (w1 — ) Dumy]
+2E [(w1—m,) D1 (w1—ny) 71 Dumy |

since E [(w1—m;) D1y (w1—ny) (w1 —1;) Diimy ] = 0 as shown in (1.48) it was found that

2 [(w1—m) D1y (w1—m,) (@ Dyiws)]
—9F [((wl—m)/Du (wl—m)ﬂ + 2E [(w1—m,) D1y (w1—n,)] i Dum,

using (1.34) and (1.42) it was found that

2E [(wi—m) Du (wi—m) (Wi Duwi)] = 60*trDyy + 20%trDyy (n;Dumy)

Expectation (2.54):
2F [(UJQ—"]2>, Dy (w1—my) (""llDllwl)}
=F {E [(wg—ng)/ Dy; (w1—m;) (‘-‘-’llDll""l)} ""1} }

= E [E [(ws—n,)'] Da1 (w1—m;) (WiDyjwy)] = 0 since E (wy—n,) =0

Expectation (2.55):
In a similar way to (2.54) it can be shown that

2F [(wl—nl)'Dlg (wo—m5) (w’lDllwl)} = 0 since F (wy—m,) =0
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Expectation (2.56): Using (1.33) and ((1.34) it was found that
2F [(wa—m,) Daz (w2—s) (WiDnwy)]
= 2E {E [(w2—n5)' D2z (w2—1s) (Wi Dyyw1)| wi] }
=2F [E [(w2—m,) Dy (w2—15)] (wiD1yw:)]
= 202tTD22E [(w’anwl)]
= 202trDay [0*trDy; + 1) D11m,]
Combining (2.53) - (2.56) an expression for (2.27) was obtained:
= 6O4tTD11 + 202trD11 (7’]/1]:)11"71) + 2U2t’l“D22 [0’2t7‘D11 + ’I]/lDll’l’h]
Expression (2.28):
—4kE [((w —n)'D(w-n) (w- n)’)} QC R/ (k) Cy8 =0
as shown in (1.48).
Expression (2.29):
AkE [((w ) D(w-mn) (w')} QC *H' (HC™'H') 'HC 'R’ (k) C}3
— 4kE [((w —n)D(w-n) [(w-n)+ n’}] QC :H' (HC'H')" HC 'R/ (k) CB
/ / / JE - _ N —1 _ ’ _

— 4kE [((w — ) D(w-1n)) (w- n)] QC *H (HC 'H') 'HC 'R’ (k) C,)3

(2.57)

I Ly S AN -1/ -

AkE [((w —n)'D(w—n)) n] QC *H' (HC'H) 'HC 'R’ (k) C8

(2.58)
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Expectation (2.57): Using (1.48) it was found that
4kE [(w—n)'D (w—n) (w—n)] QC*H' (HC™'H') " HC™'R/ (k) C;}8 =0
Expectation (2.58): Using result (1.34) it was found that
4kE [(w—n)' D (w —n)| QC™*H (HC'H') ' HC™'R’ (k) C;}8
= 4ko*trDn'QC™*H' (HC™'H') ' HC™'R! (k) C)8
By combining (2.57) and (2.58) an expression for (2.29) was obtained:
4ko*rDn/QC™*H' (HC™'H') ' HC™'R! (k) C)3
Expression (2.30): Using (1.34) resulted in
2k*E [(w—n)'D (w —n)] (B’C(ﬁ;ﬁ)
— 2k%0%D (B8'C38)
Expression (2.31):
(e e [T el [ ]) (e e [T S (8 ])
=4E [(wiD1 (wi=m) + wiD1a (w2 —15)) (WD (wi=1y) + wiD1a (w2—15))]
= 4E (@, Dy (w1—m,))]
(2.59)
+4F [(w’lDu (wg—n2))2]
(2.60)
+8E [(wi D1y (w1—my)) (Wi D12 (w2—y))]
(2.61)
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Expectation (2.59):
4E [(@; D11 (w1—m))?] = 4E [(wiDnwi—wiDuim,)’]

— 4 [(w|Dyw))’] +4E [(wiD11m,)°’] = 8E[(wiDyws) (@i D1amy)]

=4F [(wg_anlﬂ

(2.62)
+4m\ D11 E (w1w)) D11y

(2.63)
—8E [(w;Dyw:) ((wy —m) +m;) Duamy)]

(2.64)

Expectation (2.62): Using (1.41) it was found that

1 2
AF [(w’lDllwl)ﬂ = 120*rDy; + 240%n,Dyin; + 4 ("7’1D121"71)

Expectation (2.63): Using (1.37) it was found that
4\ D11 E (w1w}) Duamy = 477 D1y (071, + mymy ] Duamy
Expectation (2.64): Using (1.33) and the final result of (1.45) it was found that

—8E [(wDuw1) (w1 —my) +m,) D1uam,) |

= —8E [(wiDnw1) (w1 — 1) Dumy) — 8F [(w Duiw:) 1) D1amy]
= —160°n\ D1 Dun; — 8[0*trDyy + 0\ Duiny| (nD11my) and

Combining (2.62) - (2.64) an expression for (2.59) was obtained:
1 2
120%trDyy + 240*m;Dun, +4 (ninml) + 41 D1y [0°I; + mymy] Duamy

—160°n;D1iDuiny — 8 [o?trDiy + myDumy ] (i D1iny)
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Expectation (2.60): Using result (1.37) it was found that

4E (D12 (wa=,)) (WiD1z (w2 =1p))] = 4E [(w2=1,)' D1 Dz (wz—11,)]
= 4E [E [(w2—ny) Djpw1w;Dis (wa—1n;) |ws]]

=4F [(wo—1n,) D}, E (wiw}) D1 (wa—1n,)]

=4E [(w2_772)/ D1, [UQIq + 1,11 D12 (‘-"2_"72)}

Assuming that D* = D/, [¢%1, + 1,1;] D12 is a symmetric positive definite matrix, thus using
(1.34) resulted in

=4E [(w2_772)/ D~ (w2_"72)}
= 40%trD*
Expectation (2.61):

8E [(wD11 (wi—m;)) (wiDig (w2—m,))] = 8E [E [(w) D11 (wi—m)) (wiD12 (wa—m,)) |wi]]

= F[(wD11 (wi—m)) (Wi D12 F [(wa—m5)])] = 0 since E[(wy—1,)] =0

By combining (2.59) - (2.61) an expression for (2.31) was obtained:
1 2
120%rDyy + 240*m;Dun, + 4 (n&Dfml) + 41\ D1 (0?1, + mymy ] D1amy

—16027],1D11D117]1 -8 [O'ZtTDH + T]/lDHTh] (n’lDllnl) + 40'2t7'D*

Expression (2.32):

;o1 Dn D - '
—4F |:<[ Wi Wy ] [ 011 012 } [ z;_z; ]) (wllDllwl):|
= —4E [[wiD11 (wi—m,) + wiDiz (wa—,)] [w)D1iwi]]

= —4F [w’lDH (wl—’fh) w’anwl]

(2.65)

—4F [wllDlg (UJQ—T]Q) w’anwl]

(2.66)
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Expectation (2.65):
—4F [w)Dq; (w1—my) W Djjw;] = —4FE [(W|D1w; — w|D11my) (W D1iw)]
= —4F [(w}Dyw:)’] + 4F [(wiDyw:) (w;Diimy))]
where E [(wDyw;)?] = 30%trDyy + 6020, D1, + ("71D1%1771)2 using (1.41)

E[(wDpw)) (wiDun,)| = E [(wllDllwl) (((wl —ny) + 771)/D11771)]

= E [(wDywy) (w1 —ny)'] Duny + E[(wDyiw:)] 7/ D1in,
using (1.33) and (1.45) it was found that

20%1m,D1uD1in, + [0*trDiy + miDumy miDum,

Combining these results an expression for (2.65) was obtained:

AF [(w’lDllwl)Q] +4F [(wiD11w1) (W D11m,)]
1 2
= —120%rDy; — 2402771[)11"71 — ("71D121771>

+80*n D11D111; + 4 [0*trDyy + 1y D11my ] i\ D11,y

Expectation (2.66):
—4E [ D12 (w2—n,) @i Dnwi] = —4E [E [wiDy; (w2 —1;) wiDiyws |wi]]
= —4F [WD2F (wy—1n,) wD1iwi] = 0 since E (ws—n,) = 0.

Combining (2.65) and (2.66) an expression for (2.32) was obtained:

1 2
—120%*rDy; — 2402771]311771 — 1 ("71D121"71>

+80?n D11 D111, + 4 [0*trDyy + 1iD11my ] ni D11y

Expression (2.33):

see|((wr w1 [T 2] [S10m ]) (@) @o i ol

Wwo—T)q

Defining jox1 = QC:R/ (k) 0@1),3 = ( :}; ) where j; : ¢ x 1 and ja: (p—¢) x 1.
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Therefore this expression reduces to
— 8LE [(w'lDu (Wi—1,) + W Do (wa—m,)) ( wi—1; wa—1n, ) ( j; ﬂ
=8kE [(w’lDH (w1—m;) + w D12 (wWa—1,))’ ((wl_nl),jl + (""2_"72),j2)]
= 8KE [(w; D1y (wi—m,)) (wi—m,) j1)]

(2.67)
+8KE [(wiDn (wi—m)) (w2—12)"j2)]

(2.68)
+8kE [(w\ D12 (w2—1)) ((wi—my)'ju)]

(2.69)
+8KE [(wiDia (wa—1,)) ((w2—12)"j2)]

(2.70)

Expectation (2.67)

8kE [(wllDll (w1—m)) ((wl_nl),jl)}

= 84 (w1 — ) + 1) Dt (r-7) (@i, i)

= 8kE [(w1 — 1) Dut (wi—my) (w1=my) §1] + 8KE [0\ D1y (wi—my) (wi—m,) ji]

Since E [(w1 — 1) D11 (w1—my) (w1—m;)"j1] = 0 as shown in (1.48)

and

E [n\Dy (w1—n,) (wi—m,)"j1] = /D E [(wi—n,) (wi—m,)'] j1 using (1.38) it was found that
= nD110°Lj

Combining these results an expression for (2.67) was obtained

8kE [(wiD11 (w1—m1)) ((wi—m) j1)] = 8k niDuijy
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Expectation (2.68)

8kE [(w| D1 (wi—my)) (w2—m,)'32)]

= 8kE [E [(w| Dy (w1—m,)) (wa—m)'jo) |w1]]

= 8kE [(wiD11 (w1—my)) E (wa—my) o] = 0 since E (wa—m,) = 0’
Expectation (2.69)

8k [(w; D1z (wa—,)) (wi—m) )]

= 8kE [E [(w, D12 (w2—1,)) (wi—1,) j1) |w1]]

= 8kE [(w’lDuE (wo—m5)) (wl—nl)'jl] =0 since F (wy—1,) =0’
Expectation (2.70)

8k [(wi D1z (wa—,)) ((w2—15)'j2)]

= 8kE [E [(w\Dis (wa—1,)) (w2—15)"3s) |w1]]

= 8kE [\ D12 [(wr—1y) (w2—n,)"] jo]

using (1.38) it was found that

8k E [wiD1a [02I,-4] jo]

= 8ko’n| Diajs

Combining (2.67) - (2.70) an expression for (2.33) was obtained:
8ka’n|D11j1 + 8ko?n | Diajo = 8ko?n [D11j1 + Diajo]

Expression (2.34):

—81{:E{<[ wi o ][ [i;:g;]),w’} QC *H' (HC™'H) 'HC'R/ (k) C

Define ji,., = QC*H' (HC'H') ' HC™'R’ (k) ;)8 = ( j;

N———

where ji:gx 1and j;: (p—q) x 1.
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This expression reduces to
—8kE [(w’lDu (w1=my) + wiDiz (wa—m,)) (W] Wy ) ( E ﬂ
= —8kE [(w D11 (wi—n;) + D1z (wo—ms)) (Wi + whis)]
= —8kE [w|Dy; (w1—1,) ']
(2.71)
—8kE [wi D11 (w1—m) whjs]
(2.72)
—8kE [w)D1s (wa—ny) Wi
(2.73)
—8kE [wiD1s (wa—ny) whis)]
(2.74)
Expectation (2.71):
—~8kE [w; D1 (wi—n,) wiji] = 8KE [((w1 = my) +m,) Dus (wi—m,) (w1 = m,) + ) ]
= —8EE [(((w1 — 1) + 1) Dy (wi—m)) (w1 — ) 55 + m57)]
= —8kE [((w1 — ) D11 (wi—m) + 71 D11 (wi—my)) (w1 — 1) 35 + 1) ]
= —8kE [(w1 — 1) Du1 (wi—my) (w1 — 1) ji]
(2.75)
—8kE [(w1 — ;) D (wi—ny) 747
(2.76)
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—8kE [0\ D11 (wi—m) (w1 — 1) 3]

(2.77)

—8kE [my D11 (w1—my) n1j7]

(2.78)
Expectation (2.75):
—8kE [(w1 — 1) D1y (w1—ny) (w1 — 1) ji] = 0 as shown in (1.48)
Expectation (2.76):
—8kE [(w1 — 1) D11 (wi—my) mj;] = —8ko*trDyinj;, using (1.34)
Expectation (2.77):
—8kE [\ D1 (wi—m1) (w1 — 1) Ji] = —8kmDu B [(wi—m) (w1 —m1)'] §i
= —8ko?nDy11,j; = —8ko?n|D11j} using (1.38)
Expectation (2.78):
—8kE [ D11 (w1—ny) mji] = 0 using (1.30)
Combining (2.75) - (2.78) an expression for (2.71) was obtained
—8kao?trD11mji — 8ko?n D11j;
Expectation (2.72): Using (1.29) and (1.33) it was found that
—8kE [wiD1y (w1—m,) whjs] = —8kE [E [wi D1 (wi—n;) whjs|w]]

= —8kE [w) D11 (w1—m) M3j3] = —8kE [(wiDniwi — wiD1iny) 175j3)
= —8kE [(w)D1iw1) nhj5] + 8EE [(wiD11m;) 15j3)
= —8k [0*trDy1 + 1y, D1uiny| nbjs + 8k (n\Duimy ) mbjs

= —8ka2trD11n’2j§
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Expectation (2.73):

—8kE [ D13 (wa—n,) wiji] = —8kE [E [w) D12 (wa—n5) wiji|wi]]
= —8kE [w|D1sF (we—n,) wiji] = 0 since F (wa—n,) = 0.
Expectation (2.74): Using (1.29) and (1.37) resulted in

—8kE [w)D1g (wa—1my) whjs] = —8kE [E [w)Dis (wa—1m,) whjs|wa]]
= —8kE [0 D12 (wa—1,) whijs)

= —8kE [ D12 (wawhjs)] + 8k E [0 D1anywhis]

= —8kn| D1 B (waws) j5 + 8kmDian, B (w)) j

= —8kn D12 [0°L,—¢ + mym5] §5 + 8k (11 D1amy) 1555

Combining (2.71) - (2.74) an expression for (2.34) was obtained:

—8ka?trDy1mj;—8ko’n D11j;—8ka*trDy1mbjs—8kn D1, [02Ip—q + 1M 35+8k (M D12amy) M55

Expression (2.35):
D11 D12 wi—n ' -2
—4k*E K[ wi Wwh ] [ 0 0 } [ wr 1, D ] FCuwh
= —4k*E [wiD11 (w1—m,) + @i Diz (w2—1,)] B'C ;38
= —4k*E [w D1 (wi1—m,)] 5/0@2)5_%257 Wi D12 (wa—,)] B/C@z)ﬂ
= —4k?E (W Dyjw; — wiDyiny] 5/0(}2)5

(2.79)

—4k%F (WiD12 (wW2—ny)] ﬂ'C(f)ﬁ

(2.80)
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Expectation (2.79): Using (1.29) and (1.33) resulted in

—4k*F [wDyw; — wDyny] B’C(’,f)ﬁ

= —4k’E [(wiDuw1)] B'CB+4kE [wDuin,| B'C5B

= —4k* [0*trDuy +mDuny) B'C B+4k> (m;Dun,) B'C3 06
= —4k202trD11ﬁ'C@Q)B

Expectation (2.80):

—4k*E [ Dz (wa—1,)] B'C3B = —4kE [E [wiD1s (w2 =) lw1]] B'C36
= —4k?F [w|D1oF (we—1n,)] B C, B =0 since F (wy—1n,) =0
Combining (2.79) - (2.80) an expression for (2.35) was obtained
—41{:202757“D11[3'C(_,€2)6

Expression (2.36): Using (1.41) it was found that

E [(w’lDllwl)z}

= 30*rDy; + 60?1\ Dyin, + <77’1D1%1171>2

Expression (2.37):

—AkE [(waDuwu’ ((w -n) QCTIR (k) (C8) )|

i~ Q€100 (39) - (

N———

where j; : g x 1 and jo : (p —q) x 1.

Therefore expression (2.37) reduces to

—4kE [(wllDllwl ( (wi—m)" (w2—my) ) (ji >>]
= —4kE [(w\Dnw:) (@i—m) ji + (we—1,)'js)]
)

= —4kE [(wlDllwl (wi—m)'J }

(2.81)

—4kE [(wDniw) (w2—1,) o]

(2.82)
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Expectation (2.81): Using (1.45) the following was obtained
—4kE [(WDyiw) (wi—m,) ji1]
= —8ko*n D11ji
Expectation (2.82)
—4kE [(wDnw) (wa—m,) jo] = —4kE [E [(wiD1iw:) (we—n5) jo|wi]]
= —4kE [(w|Dyw1) E [(wa—ny)'] j2] = 0since E [(wo—m,)] =0’
Combining (2.81) - (2.82) an expression for (2.37) was obtained:
—8]€O2’I’]/1D11j1
Expression (2.38):
UEE [(}Dyw,) («')] QCHH (HC™'H)) " HC 'R/ (k) (Cﬁﬁ)
Define j*,, = QC 2H' (HC*H')*1 HC 'R/ (k) (C—lﬁ) = (ji ) where ji : g X 1
px1 (k) J5 1

and j5: (p—q) x L.
Therefore expression (2.38) reduces to
4B [(;Duen) (w) w))] (1)
= 4kE [(w)Dywy) (Whj] + whi3)]
= 4kE [(wiDniw1) wiji]

(2.83)
AKE [(wiDnw:) whjs]

(2.84)

Expectation (2.83): Using (1.33) and (1.45) it was found that
4kE [(wDyw:) wiji]

AkE [(w)Dywy) wi] ji = 4kE [(w)Dyw:) (wy —my) +m)'] 33
= 4kE [(wiDnuw:) (w1 —my)']Ji + 4k E [(wiDuws)] mji

= 8ko®n;D11j; — +4ko? [trDiy + D1y (n137)

© University of Pretoria



66

Expectation (2.84): Using (1.33) resulted in

AkE [(w1Duiw) whjs] = 4k E [E [(wiDiiw) whjs|wi]]

= 4k E [(wiD1iw:) i3]

= 4k [0*trDi1 + 71 Duny myis

Combining (2.83) - (2.84) an expression for (2.38) was obtained:

8ko*m Dy + 4ko? [trDiy + miDumy] (myji) + 4k [o*trDuy + 01 Duamy | mhj;

Expression (2.39): Using (1.33) resulted in

221 [(w,Dinwn)] (BC20)

= 202 [0%rDyy + 7 Darmy] (8'C26)

Expression (2.40): Using (1.38) it was found that

1B CIRCE (k) QE [(w—n) (w —1)] QCER! (k) C) 8

= 4k?B'C IR (k) C3Q' (0°L,) QC =R/ (k) C;) B

= 4k?0*FCR (k) C2QQC =R/ (k) C;\ 8

= 4k202B'C )R (k) CT'R! (k) C)8

Expression (2.41):

_8k2E l((w — 1) QC IR/ (k) C(,j)ﬁ)' (w'Qc—%H' (HC'H') " HC 'R/ (k) C(kl)ﬂﬂ

= —8K26'Cy)R (k) CHQE [(w — )| QC7H' (HC™'H)) ' HC'R' (k) Cj8

= —SKF'CGJR (k) C 3 QE [ww' —nw/| QCH (HC™'H') ' HC'R! (k) C}8

= —8K?B'C R (k) C3QE [ww'] QCEH (HC™'H') 'HC™'R/ (k) C;\8
(2.85)
+8k2F'C R (k) CT3Q'E [nw'| QC*H (HC™'H')  HC™'R/ (k) C) 8

(k)

(2.86)
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Expectation (2.85): Using (1.37) it was found that
—8k2'C}R (k) C 3 Q'E [ww] QC™*H' (HC™'H') ' HC™'R/ (k) C;}8

'V 1y ’ —Ley e AN —17 -
= —8K2B'C IR (k) C3Q'[0°L, + 7] QC *H' (HC'H') "' HC 'R/ (k) C,}8
Expectation (2.86): Using (1.29) it was found that
8k28'CAR (k) C 3 Q'E [nw'] QC™*H! (HC'H') ' HC™'R/ (k) C;}8
=8k26'C iR (k) C 2 Qnn'QC *H' (HC'H') ' HC'R/ (k) C}8
Combining (2.85) - (2.86) an expression for (2.41) was obtained
~8k*6'C )R (k) C Q' [0°1, + n/| QC *H' (HC'H)) 'HC 'R’ (k) C)8
+8k2B'CIR (k) C 2 Qmn'QC*H' (HC™'H') " HC'R/ (k) C;}8
Expression (2.42): Using result (1.37) the following was obtained

/ —1rm s AN —1p7 - !
4K2E [(w QC#H' (HC™'H') ' HC 'R/ (k) C)8)

/ —1rp S AN -1 —
x («'QCTHH' (HC™'H) ' HC™'R! (k) C8) |
= 4k?B'C}R (k) CT'H' (HC™'H') ' HC*Q'E [ww/| QC*H' (HC™'H') ' HC™'R/ (k) C;}3
= 4k*B'C)R (k) C™'H (HC™'H') " HC™: Q' [0°I, + /| QC™*H' (HC™'H') " HC™'R! (k) C}8
Expression (2.43):
/ Lo — n—1 — / — ! ! ~—
1* (W QCHH (HC™'H') " HC™'R! (k) C8) (8'C38)
Expression (2.44):
k4 ﬁ/szﬂ 2
(k)

Combining the final expressions of (2.25) to (2.44) a final expression for (2.8) was obtained

(2.87)

Substituting (2.23) and (2.87) into (2.16) completes the proof.l
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2.4 Risk function of the PTRRE

Theorem 10 Ignoring the terms of order 3, the approximate risk function of the PTRRE under
reflected normal loss is given by:

E [L‘,RN (BfT (k) 5)} ~ 2_; [a2tTD +20°E

¥ <X2<q+27%3:71>>] trDy
2 X2 ’ 2 X2 /
( (q+4,%)> ( (q+2,”2—1;’21>>

F2(R ()8~ AR () [0 (HOH) " HOHQ] B | (Xg(pw%)ﬂ

+20, D, | E ~E +k28'C28

+0’F 2 , trD; + E 2 , "D
i (X(q+277;1021)> ! v (X(q+47n21£1>> n 11771]
c
—— |3¢*rD — 126*rD1 FE 2 , —40°FE 2 , trD*
5" ol (X (—))] ’ (X (w,—’;l;;l))]
—40%F

¥ <X2<q+27%) ) ] trDy;

o | x2 , trD* — 4d0*trDyy E
(q+2,%’})

+20°trD (R (k) B-B8) (R (k) B—3))

@ (X?:(pw,% )>
2 <X2(q+ 471;2;;;1 ))

7 (Xz(qw,"z/l:zl))] rbut

+40% (R (k) B—B) R (k) C"'R/ (k) (R (k) B—B)

2 , D — 802vyDoym E
¢<X(q+27nlgl>>] 17 2 217

20

—402rDE nQC :H (HC'H')” HR' (k) (R (k) 3-0)

2 /D
i (X(pw,"z{,?))] i

' <X2<q+4 ,,/1,;1))] 77/1D11"71]
’ 20
2 <X2(q+27 nz’l(:;l)>]

0 (XQ(M )>] (R (k) B-B) R (k) G2 Q'st80°n

? 2052

—|—60'4t7"D11E + 202tTD11E

+20%trDoy |02 E

/

—802F
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"‘120’4t7’D11E +4O’2T],1D11E

¥ <X2(q+27,,2/10,;1)>] Dumny

o (x’”’(q+47n2/1021)>] n’lD*m]

—402%FE | Xz(q+2 n’lm) trDy; (R (k) B-8) (R (k) B-3))

¢ (X(HM .

@ <X2(q+2’ﬁ% ) ] Dy v3*

2 "D
4 (X(q+27"2llagl>> mPum

Dy + K (50338

+40?

+80'2E @ X2( tTDll’I’]/lVT*—f-SO'zT]/lDHIqE

trDymyvy* + 80°n\ E

+802%E | | X3
(

—1204t7“D11E

2 42
202

@ (X2(q+27 772’107;1 ) >

~4 (R0 B=0) (R(1) 5-3))' (R (5) A=) R (5 ¢ (O 1) " HO A o (17, )]

el U (X(;))] S (X(+;)>] mD”m]
i (X2(q+2,323§}1>> v (X2(q+47%3%>>] ”7177/1] vi—80°n\E |¢ <X2(q+2’%3%>>] Dyyvi
o <x2(q+27%,%)>] trDuy + E | (xg(q%%))] mDyn,

with vi% . = (R (k) B—8) R (k) C:Q = (v Vi) wherevi:1xqand vy :1x (p—q),

—80'277/1D11E

o’FE

+vi |o*E I, +FE

—4 |o2E Ny

1 2
+30'trDy, B +60°m Dum E +(771Df1m) E

*k

Vi, = QCTTH' (HC™'H)) " HC 'R’ (k) (R (k) 8-8) = ( yi ) where vi*: g x 1 and vi" -

px1 Vs
(p—q) x1

D* = 6°D,,Dyand s = QC:H' (HC'H') ' HC 'R/ (k) (R (k) B—0) with's a p x 1 vector
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~PT
Proof. The risk function for 3, (k) under reflected normal loss and choosing W = I, can be
written as

E [»CRN (E:T (k) aﬁ)] =cE |1 —exp <

using

B, (k) =B, (k) = (B, (k) = B, (k)) Lvr (F) (2.8)

and the Taylor's expansion the risk function can be written as:

Bk -8) (BT k) -8)  —222|
E[ERN@:T(/@,[?)} = ¢—cFE Z[< )< ) 7}

r=0 r!

= —cF é = (272)T7"' + O (mS)
(2.89)
The first term of the expansion (2.89)
o {(ﬂn (k) - B8) (B, (k) - 6)} o0

will now be considered.
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The expectation in the numerator of the first term can be simplified by using (1.5) and (1.13)

~PT ~PT

B| (B w-8) (8" ()-8),

~

—E [((R(k)fan . 5) ~R(k) (B’n - Bn) Ing (F))/

< ((R(K) B, ~B) ~R (k) (B, B, ) Iva(F))]

By adding and subtracting R (k) 3 in both brackets resulted in

= 2| ((R0IB,~ R (1) 8) + (R (1) B~ B) ~ R (k) (B, ~ B,) L ()

< ((R(K)B, —R(K)B) + (R () 8= B) — R (K) (B, — B,) In (F))]

5 [(R(k) 3. —R(k) 5)’ (R(k)Bn —R(k) 6)1

126 | (R(9B, - R(0)5) (R (56 - )]
_2E {(R (k) B, — R (k) 5) (R (k) (Bn - Bn) Ing (F))l

+E[(R(k)B—B) (R(k)B - )]

28 (R (k) B~ B) (R (k) (B, ~ B,) Inr ()]
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Expression (2.91): Using (1.21), (1.15) and (1.34) it was found that

r {(R(k)gn—R(k)ﬂ)/(R(k)Bn_R(k)ﬁﬂ
[ ) (8. ﬂ)]

E{ ) (8. ﬂ)}
[(w n)]

E

=F|(

= o2trD

Expression (2.92):

28 {(Raf) B.—R(K)B) RS- m]

~ 22| (RWB, ~ R 8) | RS- )

-y {(Bn - ﬂ)'] R' (k) (R(K) B — ) = 0 since E {(Bn - /3)’] -
Expression (2.93): Using result (1.26) resulted in

2 | (R (9B, ~ R0 8) (R(4) (B~ B.) Tvn ()

212 | (B, ~ 8) B2 1) (B, ~ B.) e ()

2F [((wl—nl)' anl =+ ((.412—772), Dglwl) ]NR (F):|

=F [2w/1D11w1]NR (F) — 2’]’]/1D11L«.J1]NR (F) + 2w/2D21w1INR (F) —

277/2D21w1[NR (F)]

=2F [w’lDllwllNR (F)] — (217/1D11 + 2"’]’2D21) FE [wllNR (F)] + 2F [w’QDglwl]NR (F)]

= 2E {wllDle[NR (F)]

—2(n\ D11 +1yDay) E [wilng (F)]
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+2E [w/2D21w1]NR (F)]

(2.99)

Expectation (2.97): Using (1.35) it was found that

2E [w’lDleINR (F)]

2 , trDy; +2F 2 , 1D
¥ (X <q+2, i ) ) ] 11 ¥ X(q+47,,21;;1) mPum

Expectation (2.98): Using (1.31) resulted in

= 20%F

—2(n D11 +14Day) E [wilng (F)]

(ot

Expectation (2.99): Using (1.29) and (1.31) the following was obtained

= —2(n\D1 +n4Do) m E

2F [wlnglwleR (F)] =2F {wéDglE [wlfNR (F)] |(.|J2}

(ot
(ot
a+2,53 )

Combining (2.97) - (2.99) an expression for (2.93) was obtained:
2 trDqy + 2F 2
’ (’%#))] el ("(H)

o <X2(q+27"§§)>

2
v (X(q+27"2,1;;1)>]
2 , trDy+27D
¥ <X<q+27 ,,210,;1)>] 111 D1ty

2 2
gp X /! QO X !
( (q+47 nQIUgl ) ) ( (Q+27 n21o:’;l ) > ] ]
Expression (2.94): Using (1.28) it was found that

E[R(k)8-p) (R(k)B-B)] = R(k)B-B) (R(Kk)8-p)
=fFR(F)-L) Rk -T,)8
=80

=2F wIQDgl’f]lE

= 2’)’]’2D21’I’]1E

— 20%F 71 D1ny

-2 (myD11 + n4Day) m E + 2nLDoyym B

= 20%E E - F
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Expression (2.95): Using (1.24) and (1.31) resulted in
28 (R (k) 8~ B (R() (B, — B,) Inn (F))]

—2(R(k) B — B) R (k) [c—lﬂf (HC'H') ™ Hc—%Qf} Ewlyg (F)]

=2(R(k)B—B)R(k) [C*lH’ (HC'H)) ™ Hc—%Q/} nE [gp (X%pwﬁ)ﬂ .

Expression (2.96): Since Ing (F) X Ing (F) = Ing (F) it was found that
B[ (R0 (B, B.) 1va(P) (R (1) (B~ B.) 1w ()]
:E[(Zan—ﬁn)'m) ()(ﬁ ~B,) Ina(F >}

Using result (1.27) and (1.35) the following was obtained

B| (B, B.) 2 (1) (B, ~ B.) tn ()] = £l i (1)

2 , trDy; + F 2 , 'D
2 <X <q+27,,210,,21 ) ) ] 1 12 X(q+47 ,,210,;1) mPum

By combining (2.91) - (2.96) an expression for the numerator of (2.90) was obtained:

o <X2(q+27%>)] trDy+21n1D1iny ' <X2( " ’71’71)>

+2FC3B+2(R (k) 8- B) R (k) [CTH (HCT'H) 'HC 3 Q| nE {9" <X2 M)ﬂ

(p+2720_2
2
i’ (X(qw,L; ’9))] S (X(qﬂ,%’;l))] P

=o’F

o’trD+20°FE E —F

+0’FE

(2.100)
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The second term of the expansion (2.89) namely

B (B w-8) (B - B)r
(27?)* 2!

(2.101)

—c
will be now be considered.

The expected value in the numerator of the previous term

B[ w-0) (37 w-s)|

can be simplified as follows:

~PT

2[(B" k)~ 8) (B 1) - 8)]|

(2.102)

In order to simplify this term, firstly the focus will be on the simplification of

~ ~ ~

(R(K)B, - B) ~R (k) (B, - B,) Inr (F)
Adding and subtracting R (k) 3 then
(R(K)B, - R(k)B+R (k) B-B) ~ R(K) (B, -~ B,) Lva (F)
— (R(8) (B, ~ B) + (R (k) 8-B)) — R(K) (B, — B,) In (F)
Using (1.21) and (1.24) resulted in
(R(K)B, - B) —R (k) (B, - B, ) Inr (F)

= (R(H)CHQ (@~ )+ (R(})-)) ~ R (k) CH (HC'H') " HC } QI (F)
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The simplification continues and therefore
(R#)B, - 8) ~R () (B, - B.) 1vn(F)) ((R()B, = 8) ~R (k) (B, B, ) Iva (F))
= (R())CHQ (@~ )+ (R () f-F) ~ R () C'H (HC'H) ' HC *Qwlyn (F))

% (R (k) CTHQ ( —m) + (R (k) B-B) - R (k) C'H' (HCT'H') ' HC ™} QI (F))

/ /

— (R CHQ (w-n) (RBCHQ (@ -m) +2(R(E) CHQ (@ —n) R (K 8-B)
2 <R () C3Q (w — n))l <R (k) CTH (HC'H') "' HC > Qwlynp (F)>
F(R(K) B-8) (R() 8-B) — 2 (R (k) 8-8) (R (k) C'H (HC™'H) " HCH QU (F))

+ (R (b C B (HC'H) " HC $Quwlya (F)) (R(K) C'H (HC'H) ' HC #Qulve (F))

= (w—1) QCIR () R (k) C3Q (w —n) + 2 (w — 1) QC =R/ (k) (R (k) B—B)
—2(w-n) QC IR/ (k)R (k) C'H' (HC™'H') " HC :Qwlyg (F)

+ (R (k) B-B) (R(k) B-B) — 2(R (k) B-B) (R (k) C'H (HCT'H') ' HC ¥ Qwlyn (F))
+w'QCIH (HC'H') 'HC 'R/ (k) (R (k) C'H' (HC'H') ' HC :Qwlyp (F)>

since in the last term of the previous expression it is known that Iy (F) is a constant and Iy p (F) X
Inr (F) = Ing (F).

= (w-n)'QCIR? (k) C3Q (w — ) + 2 (w — 1) QC R/ (k) (R (k) B-B)
—2(w-1n) QC 3R2 (k) C"'H' (HC'H) " HC :Qwlyy (F)
+ (R(K) B-B) (R (k) 8-8) —2 (R (k) 8-8) (R (k) C'H' (HC™'H') ' HC ™3 Qe (F))

+ [ (QC#H (HC'H) THO3Q) (QC R (k) C Q)

x (QC—%H' (HC'H) ™' HC—%Q') wixg (F)}
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Using (1.15) and (1.14) it was found that

= (W-n)D(w-n)+2(w-n)QC R (k) (R (k) B-B)

~2(w —n) QC?R? (k) C'H' (HC'H') ' HC *Qwlyg (F) + (R (k) 8-8) (R (k) B-B)
“2(R (k) B-B) (R (k) C'H! (HC'H') ' HC } Qwlyn (F)) + WQFQ'DQFQ'wIiyy (F)

Finally,

(R~ 8) + R (B, B.) 1sn(P)) (RWIB, - 8) + R b (B, B) 1o ()]
— [ =)' D(w—n)+2(w-n) QCTIR (k) (R (k) B-B)

~2(w—n) QC*R?(k) C'H' (HC'H') 'HC >Qwlyx (F) + (R (k) B-8) (R (k) -B)
~2(R (k) B-0) (R (k) C'H (HC'H)) ' HC#Qulys (F)) + «'QFQDQFQwIyp (F)]'
X |(w=m)D(w=-n)+2(w-n)QC?R (k) (R (k) 8-B)

~2(w—n) QCT*R? (k) C'H (HC™'H') " HC :Qwlyg (F) + (R (k) B—B) (R (k) B—B)

~2(R (k) 8-0) (R (k) C'H' (HC'H') ' HC }Qwlyp (F)) + w'QFQ'DQFQ W (F)]

— (w=m)D(w-n) (w=m)'D(w-mn)

+4 ((w = m)'D (w —m) ((w—n) QCIR! (k) (R (k) B-B))

~4((w =)D w-m) ((w-nQC IR (k) C'H' (HC™'H') ' HCFQwlya (F))
+2 ((w —n)'D(w —m) (R(k) B-B) (R (k) B-P))

~4((w =)D (w-m) (R (K B-B) (R(k)CH (HC'H) ' HC I Quwlyr (F)))
+2 1)’ (W'QFQDQFQ'w) Iy (F)

((w
+4<w n)' QC™IR! (k) (R (k) B~ B)) ((w—n) QCTR! (k) (R (k) B-B))
=8| (@@ Qe IR ) (R4 5-))

X ((w — 1) QC*R2 (k) C'H (HC'H') ' HC Qwlyn (F))]
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=5 | ((w =/ QC IR () (R (1) 5-0)

X ((R (k) B—B) (R (k) C'H (HC'H') ' HC # Qwlyp (F)m

+4((w ) QC IR/ (1) (R (K) 8-P)) («'QFQDQFQwIy, (F))

+4{ w—n) QCIR? (k) C'H (HC'H) ' HC i Qwlyp (F))’

X ((w — 1) QCR2 (k) C'H (HC'H') 'HC *Qwlyp (F))]

~4((w=n) QC IR (k) C'H (HC'H) ' HC #Qulya (F)) (R (k) B-B) (R (k) 5-5))
+8 [((w — 1) QC*R2 (k) C~'H' (HC'H') ' HC :Qwlyp (F))'

x ((R (k) B—B) (R (k) CTH (HC'H') ' HC $ Qwlynp (F)))}

—4 <(w —n) QC IR (k) C'H' (HC'H') ' HC :Qwlyg (F))Iw/QFQ’DQFQ’wINR (F)
+((R (k) B-B)' (R (k) -B))' (R (k) B-B) (R (k) B-0))

~4((R (k) B-B) (R (k) 8-8))' (R (k) 8-B) (R (k) C"'H (HCT'H)) ' HC#Qulyn (F)) )
+2 (R (k) B—P) (R (k) B-P)) («'QFQDQFQ'wlyr (F))

+4 [((R (k) B—B) (R (k) C~'H' (HC™'H') ' HC*Qwlyp (F)))'

X ((R (k) B—B) (R (k) CT1H (HC'H') "' HC * Qwlynp (F)m

4 (® (k) 8-8) (R (W) C'H (HC'H) ' HC 1 Quwlva (F)) ) (w'QFQDQFQwyr (F))
+ (W' QFQDQFQwIys (F)) (w'QFQDQFQwIyr (F))
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Which finally leads to solving the following expression in order to obtain the numerator of (2.101):
E [((R (5) B, —8) + R () (B, — B.) Iva (F)) ((R(1)B, - B) +R(8) (B, —B,) Inn (F’>r
= B[((w-n)D(w-m) (@ -n'Dw-n)

(2.103)
+4E [ ((w-n)'D(w-m) ((w-n) QC*R (k) (R (k) B-9))]

(2.104)
~4E [((w =)D (w -m) ((w-n) QC*R? (k) C'H (HC'H') ' HC Qulyy (F))]

(2.105)
28 [((w —n)'D (@ =) (R (k) 5-B) (R () B-B))]

(2.106)

~4E [((w=n)D(w-n) (R (K #-8) (R (k) C'H (HC'H) 'HC }Qulyp (F)))]

(2.107)
+2E [((w =)' D (@ — ) («'QFQDQFQw) Lz (F))

(2.108)
#8 |((w = ) QIR (9 (R(1) 5-9)) ((w — ) QTR () (R (1) 5-9))

(2.109)
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58 |((w =)' QC 1R (1) (R (1) 5-5)
x (w—n) QC R (k) C~'H' (HC'H') " HC *Q'wlyp (F)}

(2.110)
AR {((w — 1) QC 2R/ (k) (R (k) B—B))/ (R (k) B-B) R (k) B—ﬂ))]

(2.111)
58| ((w - n) QCHR (1) (R (1) 5-5)
x ((R (k) B—B) (R (k) C'H' (HC'H') 'HC *Qwlyg (F)m

(2.112)
+4E [((w —n) QC IR (k) (R (k) B—B))/ (W'QFQ'DQFQ'wiyg <F))}

(2.113)
AR {((w — 1) QC*R? (k) C™'H' (HC'H') ' HC *Qwlyn (F)>/
x (w—mn) QC*R? (k) C~'H' (HC™'H') ' HC* Qwlyn (F)}

(2.114)

4R {((w — 1) QC*R? (k) C'H' (HC™'H') 'HC > Qwlyp (F))' (R (k) B—B) (R (k) B—B))
(2.115)
+8E [((w —n) QC iR (k) C'H' (HC'H') ' HC :Qwlyp (F))'

« (R (k) B—B) (R (k) C~'H' (HC™'H') ' HC*Qwlyp (F))]

(2.116)
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4B [((w — 1) QC*R2 (k) C~'H' (HC'H') ' HC *Qwlyp (F))'w'QFQ’DQFQ'wJNR (F)
(2.117)
+E (R (k) B-8) (R (k) 8-8))' (R (k) B-B) (R (k) B-B)) |
(2.118)

4B (R (k) B-B) (R (k) B-B))' (R (k) 8-B) (R () C"'H' (HC™'H') ' HC 3 Qwiva (F)) )]

(2.119)
+2E [ (R (k) B-8) (R (k) 8-B))' («'QFQDQFQ'w Iz (F))|

(2.120)
+AE [((R (k) B—B) (R (k) C'H (Hc—lH')*1 HC :Quwlyg (F))>,
« (R (k) B—B) (R (k) C~H (HC'H') ' HC* Qwlynp (F))]

(2.121)

_AE {((R (k) B—B)’ (R (k) C'H' (HC'H') 'HC *Qwlyp (F)))' (W QFQ'DQFQ'wIyx (F))
(2.122)
+E [(w'QFQDQFQwiyg (F)) (W' QFQDQFQwlyg (F))]

(2.123)
Expression (2.103): Using (1.42) resulted in
E|((w=n'D(w-m) ((w=-n'Dw-mn)]

- E [((w -n)D(w— 17))2} = 3o'trD
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Expression (2.104): Since we know that E [((w —1)'D(w-n) (w-— n)'] = 0’ from (1.48)
it was found that

18 [((@ = n) D (@ -m)' (@ - 1) QC IR (k) (R (k) 6-0) )]

= 1B [((w -/ D(w-n) (@ -] QIR (k) (R (k) 5-0)

=0

Expression (2.105): Using (1.14), (1.15) and (1.16) the following was obtained

4B [((w —n)'D(w—n)) ((w — 1) QC*R2 (k) C'H (HC'H') ' HC :Qwlyn (F))]
= —4F [((w —n)'D(w— n))/ ((w — 77)/) [ Dy 0 } wing (F)}

— a8 [(wr-n) o)) [ B B ] (Sm)

22

< ((@=m) (@r-m) ) [ D ] (&) Ivn ()]

By multiplying the matrices out one obtains

= —4AE [((wi—n) Dur (wi—1m1) (wi—1y) Duws) Ing (F)]

(2.124)
—4E [(w1—my) D11 (wi—m) (w2—n,) DaywiIng (F)]

(2.125)
—4E [(w3—1,) Dar (w1—m,) (w1—m,) Duwi Ing (F))]

(2.126)
—4E [(w3=1,) Da1 (w1—m,) (w2 —12) Dawwi Ing (F))]

(2.127)
—4E [(w1=m) Diz (wo =) (w1—m,) DuwiIyg (F))]

(2.128)
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—4F [(w1—n,)' Dia (w2—ns) (w2—n,) DarwiIvg (F)]

—4F [(w2—n,) Doy (w2—ny) (w1—ny) Duwilvg (F)]

—4F [(w2—n,) Doy (w2—ns) (w2—n,) DarwiIvg (F)]

Expectation (2.124):

—4E [((‘-‘-’1—771), Dy (wi—m;) (wl_nl),Dllwl) Ingr (F)]

= —4E [((wi=m) D11 (w1 =) (w1—m) Dus (wi—m3+m1)) Inr (F)]

= —4F [((w1—n,) D11 (w1—m,) (wi—m,) D11 (w1—m,)) Ivg (F)]

—4E [((wl—"h)/ Dy1 (w1—my) (‘*’l_nl)lDllnl) INg (F)}

ST

—4E [((w1—m,) D11 (w1—ny) Ing (F) (wi—n,) Duny) Ing (F)]

Expectation (2.132): Using (1.44) it was found that

—AE [((wl—m)/Dn (wi=m))" Ivn (F)}

(i)

Expectation (2.133): Using (1.52) resulted in
—4F [((w1—n,) D11 (w1—m,) Ing (F) (wi—n,) Dun,) |
= —4E [((w1—n,) D11 (w1—n,) Ing (F) (w1—n,)")] Dumy

= OIDHTh = O

= —1204t7”D11E
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(2.129)

(2.130)

(2.131)

(2.132)

(2.133)



By combining (2.132) and (2.133) an expression for (2.124) was obtained:

(s

Expectation (2.125):

—120’4t7”D11E

—4E [(wi=m,) D (w1—1;) (wa—1,) DarwiIng (F)]

= —4F {E [(wl—nl)' Dy (wi—n,) (wa—1,) Dywilyg (F)‘ wl]}
= —4F [(wl—nl)'DH (wi—n,) E [(wg—nQ)'] Doywilyg (F)}
since E [(w2—m,)'] = 0’ it was found that

—4F [(wl—nl)'Dn (wi—my) E [(wg—ng)'] Doiwilng (F)] =0
Expectation (2.126):

—4F [(w2—m,) Doy (w1—m,) (w1—1,) Duwilng (F)]

= —4E{E [(wa—m,) Da1 (wi—my) (wi—m;) Duwilng (F)|wi] }
= —4F [E [(Q}Q—'f]2)/] Dy (w1—m,) (w1—n,) DiiwiIyg (F)}
since E [(w2—m,)’] = 0 it was found that

—4E [E [(w2=n3)"] D1 (wi—m1) (wi—my) DnwiIvg (F)] =0
Expectation (2.127): Using (1.38) it was found that

—4L [(""2_”72)I Dy (wi—m;) (w2_n2)/D21w1]NR (F)]

= —4E [(w1—n;) Dy (wa—15) (w2—n,) DawiIng (F)]

= —4E{E [(w1—m,) Dy (w2=ns) (wa—n,) Dawilyg (F)|wi] }
= —4E [(w1—m,) Dy E [(w2—ny) (w2=n,)"] Dnwilng (F)]

= —4F [(w1—n,) DY0%L, DajwiIyg (F)]

assuming that D* = 02D,,Dy; is a positive definite symmetric matrix, it was found that
—4F [(w1—n,) D*wiIyg (F)]

= —4E [(wi—n,) D* (w1 — 0y +ny) Ing (F)]

= —4EK [(‘-‘-’1_771),]3* (w1 —m) Inr (F)} —4E [(Wl_Th)IINR (F)} D*n,
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using (1.32) and (1.36) it was found that

© (X?qﬁ%,% )>] trD*

Expectation (2.128): Similar to the simplification of (2.125) and (2.126) it was found

= —40°F

—4E [(w1=m) D1z (w2—1,) (w1—m1) DuwiIyg (F)]
=0
Expectation (2.129): Similar to the simplification of (2.127) it was found that

—4F [(w1—n,)' Dia (w2—ns) (w2—n,) DarwiIvg (F)]

© ()(2(%2722%i )>] trD*

assuming that D* = 02D,y is a positive definite symmetric matrix.

= —40°F

Expectation (2.130): Using (1.34) resulted in

—4E [(wa—n;) Dag (we—1s) (wi—n,) DywiIyg (F)]

= —4E{E [(w2—1,) Daz (w2—s) (w1—m,) Duwilyg (F)|wi] }

= —4F [E [(wa—1,) Do (wa—1,)] (w1—1;) Duwilng (F)]

= —4F [0%trDa; (w1—1,) Dywilng (F)]
)

( /
= —4F [O’zt’FDQZ ((4)1—’]’]1 ,Dll ((4)1—’]’]1 + ’l’]l) ]NR (F)]

= —4F [U2tTD22 (wl—’fh), D11 (wl—’fh) INR (F):| —4F [02tTD22 (wl—nl)' ]NR (F) DHTIJ
= —40’2tTD22E [(wl—’l'h), Dll (wl—’l'h) INR (F):| — 40'2tTD22E [(wl—’l’h)l INR (F)} Dll’r]l

using (1.32) and (1.36) the following was obtained

2 <X2(q+27,,2/1:;1>>] trDqy

Expectation (2.131):

—4U4tTD22E

—4F [(w2—n,) Doy (w2—ns) (w2—n,) DarwiIvg (F)]
= —4E {E [(w2—n,) Doy (wa—my) (w2—n,) Daywi Iy (F)| wi] }

= —4E [E [(w2—ny) Da (wa—ny) (w2—n)'| Danwi g (F)]
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using (1.48) it was found that

E [(‘-‘-’2_772),])22 (wa—m5) ("’2_772),} =0

and therefore

—4F [E [(wg—m)' Dy (wo—n,) (wQ—ng)'] Dyywilng (F)] =0

Combining (2.124) - (2.131) an expression for (2.105) was obtained

2 2 2 %
ol x , —40°E |p | x , trD
(o)) =472 (s

2 * 4 2
@ (X )] trD 4o t?"DggE (2 <X <q+277’2::;1 ) )] tTDll

!
mm
(q+2’ 20_2 )

—120'4tTD11E

—40%F

Expression (2.106): Using (1.34) resulted in
28 [((w )/ D (w ) (R(k) 8-8) (R (k) 3-B))]
—2E | ((w =)D (w-m)'| (R (k) B-B) (R (k) B-3))

= 20%trD (R (k) B-B)' (R (k) B-1))
Expression (2.107):

~4E |((w =m)'D(w -n) (R (k) 8-8) (R (k) C'H (HCT'H) " HC Qv (F)))]
= —4E [(w - )/ D (w - n) ' Lyx (F) QC#H' (HC™'H) ' HR' (k) (R (k) 8-5)]

= —4F (w —n)D(w—-n)(w-—n+n)Iyg(F) QC :H (HC_lH,)_l HR' (k) (R (k) 5—5)]

= —4F :(w —n)D(w-n)(w-n)Iyg(F) QC:H' (HC—1H')*1 HR’ (k) (R (k) B—B)}
(2.134)
4B |(w = n)' D (w — ) Iyg (F) ' QC™3H' (HC™'H') " HR' (k) (R (k) 8-B)|

(2.135)
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Expectation (2.134):

~4E [(w =)' D (w =) (w = ) Iyn (F) QC™#H (HC™'H) " HR' (k) (R (k) 8-B)]
= —4E |(w =)' D (@ —n) Iyx (F) (@ —n) QCT¥H' (HC™'H') " HR' (k) (R (k) 8-)]
using (1.52) it was found that

~4E [(w =)' D (w =) Iy (F) (@ — n) QC#H' (HC™'H) " HR/ (k) (R (k) 8-B)]
— 0'QC :H' (HC'H) 'HR' (k) (R (k) B—8) = 0

Expectation (2.135)

~4E |(w =)' D (@ = n) Lyn (F) /'QC™*H' (HC ') HR' (k) (R (k) 8-0)]

using (1.36) the following was found

4B [(w ~n)' D (w ~ ) Iy (F) 7/ QC¥H (HC'H') " HR' (k) (R (k) 8- )

v (xg(p%n;;l))

Expression (2.108): Using (1.17) it was found that

— —40*rDE nQC :H (HC'H')” HR' (k) (R (k) B8-0)

2B [((w = n)'D (@ - ) («'QFQDQFQw) Ix (F)]

D;; D wi—n Dy O w
=2F [( (wi—m,)" (wo—my)" ) [ [); D;; ] ( ‘*’;_TI; > (W) wy) [ 011 0 } < w; )INR (F)}
by multiplying the matrices out it was found that

2F [(w1—m,) D (w1—n,) @iDnwilyg (F)]

(2.136)
+2E [(wy—ny) Doy (w1—n,) Wi DywiIng (F)]

(2.137)
+2F [(w1—n,) D12 (wa—n,) w|Dywi Ing (F)]

(2.138)
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+2E [(wa—15) Doz (wa—15) wiDyywiIyg (F)]

Expectation (2.136):

2F [(wi—m,) Du1 (w1—n;) wiDuwi vk (F)]

= 2F [(w1—n,)' D11 (w1—ny) (wi—ny + 1) Duy (wi1—m; + 1) Ing (F)]

88

(2.139)

= 2F [(w1—ny) D11 (w1—my) [(w1—m;) D1y (wi—my) + 2 (w1—1,) Dy + 01Dy ] Ing (F)]

=2F [((wl—nl),Dn (w1_771))2 Ing (F)}
+4F [(wl—nl)/ DH (wl—'rh) ((.dl_'rh), D117]1]NR (F)}
=2F [(wl—nl)' D11 (wi—m) miDuny Inrg (F)}

Expectation (2.140): Using (1.44) resulted in

oF [((w1—771), Dy (wi—m))° Ing (F)}

(et

Expectation (2.141): Using (1.52) it was found that
1E [(wl_"h)/ Dy (wi—m;) (""1_771)/ DyimyIng (F)}
AE [[(wi=m) Dy (wi—=my), Ing (F) (wi—n,)'] Dun) = 0'Dyyn =0.

Expectation (2.142): Using (1.36) the following was obtained

= 60'4t7’D11E

2E [(w1—n,) D11 (w1—n,) 0\ Duny Ing (F)]

=2E [(w1—ny) Dut (wi—ny) Ing (F)] mDun,
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= 20'2t7’D11E

2 "D
2 (X(erZn;GZl))] mPum

By combining (2.140) - (2.142) an expression for (2.136) was obtained:

2 <X2(q+4,"2/1;;1)) ¥ (XQ(er?,nzll(,Zl))] mDumy

Expectation (2.137):

60'4t7"D11E + 202tTD11E

2F [(wa—1,) Day (w1—1;) wiDiiwi vk (F)]

=2F {E [(w2—772)' Dy (wi1—my) W Dyiwilyg (F)} wl} }

=2F [E [(wa—1,)"] Doy (w1—ny) wiDnwiIng (F)]

since E [(w2—m,)’] = 0 it was found that

2F [E [(wg—nQ)’] Dy (w1—my) W Dpiwilyg (F)} =0

Expectation (2.138): In a similar way to the simplification of (2.137) it was found that
2E [(w1—n,) Dia (wo—n,) wiDuwilyg (F)] =0

/
Expectation (2.139): Using (1.34) and (1.35) resulted in
/

(
)
(
2F [(wa—m,) Doz (wy—n,) wiDnwilyg (F)]

=2E {E [(wa—m,) Do (w2—1,) wiDnwilng (F)|wi] }
= 2F [E [(wa—n,) Dy (wa—m,)] wiDyiwiIyg (F)]

= 2F [02trDosw Dy1wi Ing (F)]

= 20'2t7’D22E [wllDllwllNR (F)]

2 , trDy; + F 2 , "D
SO(X<Q+27%)>] 11 2 X(q+47%> mPum

By combining (2.136) - (2.139) an expression for (2.108) was obtained:

6otrD1 E 2 , 2 , "D
11 _<P (X(q%,,;a_,;l)) 2 (X(p+2,%) mbun

+20%trDoy |02 E % % X2 / mD1im,y
(w0782
q+4’ 202

= 20'2t7°D22 O'2E

+ 202tTD11E
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Expression (2.109): Using (1.38) it was found that

4B {((w 1) QC IR (k) (R (k) 8-B)) ((w ) QCHR! (k) (R (k) ﬂ—ﬁ))]
— 4B [(R (k) B-B8) R (k) C#Q (w — ) (w —n) QC IR (k) (R (k) B-B)|

= 4(R (k) B—B) R(k) C2QE [(w —n) (w — 1)] QC*R/ (k) (R (k) B-0)

= 4(R (k) B-B) R (k) C2Q'0°L,QC =R/ (k) (R (k) B—0)

= 402 (R (k) B—B)' R (k) C2Q'QC R/ (k) (R (k) B—0)

= 40® (R (k) B—B)' R (k) C™'R/ (k) (R (k) B-B)

Expression (2.110): Using (1.16) the following was found

_8E R(w —n) QC IR (k) R (1) 8-8)) ((w—n) [ DI § |wlva (F)ﬂ

:_8E[(R(k)ﬁ—,6)’R() Q (w—n) (w ”IY[B; 8}‘*’1”(”}

Define v/, = (R (k) B—B)R(k)C2Q = ( vi v§ ) where v : 1 x gand v : 1 x (p —q)
it was found that

_8E [( ViV ) (w - ) (w n)’[Dm g]wINR(F)]

e wi— D;; O w
=8B [(vi vy ) (ST ) (wi-m) (@) ) [ DY o | (6]) Iva ()]
By multiplying the matrices out resulted in

—8E [V;.* (wi—my) (wl—"h)/ Dywilng (F)}

(2.143)

—8E [v[" (w1—1) (wo—) Dow: Ing (F)]

(2.144)
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—8E [V (wa—y) (wi—m,) Duwi g (F)]
—8E [v5 (wy—m,) (w2—1,) DarwiIng (F)]

Expectation (2.143):
—8E [Vll* (w1—ny) (w1—m,) DuwiIyg (F)]
= —8E [Vll* (wi—m) (w1—n1) D1y (w1 — my) + 1) Inrg (F)]

= —8E [vy" (wi—m) (wi—m,) Du1 (w1 — my) Iy (F)]
—8E [Vll* (w1—my) (wl_"h)/DllnleR (F)]

Expectation (2.147): Using (1.52) it was found that

—8E [v)" (wi—m1) (w1—m1) Duy (w1 — ) Ing (F)]

= —8E [(w1—n,) D11 (w1 — 1y) Ing (F) (wi—n,) V7]
=0vi=0

Expectation (2.148): Using (1.40) the following was obtained
—8E [v{" (wi—my) (w1—m) Dumy Ing (F)]

= -8 [Vll*E [(wl—m) (Wl—nl)/INR (F)} D11771}

2 . 1D = —80V*E
@(X(QH%%))] DV11m 1

!
= —80?v{'E

© (x?ﬁz%))] D1y
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Combining (2.147) and (2.148) an expression for (2.143) was obtained:

v (X(;))] Pum

Expectation (2.144): Since E [(wa—n,)'] = 0’ it was found that

!

—8E [v{" (wi—my) (w2—1,) DarwiIvg (F)]

= —8E{E [v{" (w1—m) (wa—1,) Doy Ing (F)|wi] }

= —8F [v)" (w1—m,) E [(w2—7,)'] DarwiIng (F)] =0

Expectation (2.145): This expectation can be simplified in a similar way to (2.144)
—8E [V (wa—ms) (wi—n,) Dnwilyg (F)] =0

Expectation (2.146): Using (1.31) and (1.38) resulted in

—8E [V (wa—1s) (wa—1,) DarwiIng (F)]

= —8F {E [v’z* (wo—ms) (w2—772)' DoiwiIng (F)‘ wl]}

= —8E [v5' E [(w2—y) (wa—m,)'| Darwilng (F)]

= —80?E [v5 1, ,DayjwiIyg (F)]

= —80’2V,2*D21E {wleR (F)]

(i)

Combining (2.143) - (2.146) an expression for (2.110) was obtained:

90 (XQ(M’ s ) ) @ <X2<q+2’ i ) ) ]

Expression (2.111): Since £ [(w —n)] = 0 it was found that

= —80'2V,2*D21?']1E

—80'2V,1*E D11?71 — 80'2V,2*D21T[1E

15 | ((w ) QCHR (1) (R0 5-9)) (R (5)8-5) (R(1) 5-9)]

=4(R (k) B-B) R (k) C:QE [(w —n)] (R (k) B-B) (R (k) B—B)) =0
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Expression (2.112):
-8B {((w —n) QTR () (R (k) B-B))
« (R (k) B—B)’ (R (k) C-H' (HC'H') ' HC 3 Qwlynp (F))]
— -8B (R (k) B-B) R (k) C3Q' (w — )
x W'Iyp (F)QC*H' (HC'H') " HC 'R/ (k) (R (k) [3—5)}
— -8B (R (k) B-B) R (k) C3Q (w — )
x (w—n+n)Iys(F)QC*H (HC™'H) ' HC 'R’ (k) (R (k) 5_@)}
Let QC™H' (HC'H') ' HC 'R/ (k) (R (k) B—8) = s where s is a p x 1 vector
— —8(R (k) B-B) R (k) C2QE [(w—n) (w—mn) Iz (F)] s

(2.149)
~8(R (k) B—B) R (k) C2QE [(w —n) Iyr (F)]n's

(2.150)

Expectation (2.149): Using using (1.40) it was found that

~8(R (k) B—B)R (k) C2QE [(w—n) (w—n) Ixz (F)]s

= —80°F

P || R(F)B=B)R(K)C:Q's
(i)

Expectation (2.150): Using (1.32) resulted in
—8(R (k) B—B)' R (k) C2Q'E[(w —n) Iyr (F)]n's =0
Combining (2.149) and (2.150) an expression for (2.112) was obtained:

¥ <X2(P+2 nym ) >] (R (k) B—B) R (k) C_%QIS

2052

—80%F
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Expression (2.113): Using (1.27) it was found that
AE [((w —n) QC IR (k) (R (k) B—B))/ (w'QFQ'DQFQ'wiyg <F))}
— AE [(w —n) QC IR/ (k) (R (k) B—8) (wDypwiIng (F ))]
=48 |(wiDuwi I (F) (@ —n) QC™IR' (k) (R (k) 3-B)|

p

Define v*, , = QC :R/ (k) (R (k) B—PB) = ( g ) where vi : ¢ x 1 and v} : (p — ¢) x 1 resulted

4B [wﬁDllwllNR (F) ((wi=m1)" (w2=m3)" ) ( g )]
= 4F [ Dyywilyg (F) ((wi—m) vi + (wa—n,) v5)]
= 4F [\ Dnwilyg (F) (wi—n;) vi]
(2.151)

AFE [w’lDllwlfNR (F) (wy—m5) vg}

(2.152)
Expectation (2.151): Using (1.49) and (1.31) it was found that
AE [w'Dywilyg (F) (wi—n,) vi]

= 802E [wg_INR (F) Dll] VT

(el

Expectation (2.152):

=80’ E

AE [wiDnwiIng (F) (wa—ny) V3]

= 4E{E [W\Dywilyg (F) (we—n,) vi| wi] }
=4 [wiDywiIng (F) E [(we—m,)'] v3]
since E [(w2—7,)'] = 0’ we obtain

AE [wDyw Iy (F) E [(wa—n,)' ] v3] =0
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9%
By combining (2.151) and (2.152) an expression for (2.113) was obtained:

’ (X(H)] o

Expression (2.114): Using (1.16) it was found that

80*n\E

AE [((w —n) QC IR (k) C'H' (HC'H') ' HC :Qwlyp (F))'

x (w—n) QCTIR? (k) C'H (HC™'H') " HC ™ Qulyn (F)|

< ([ B 8 otntn) (e o[ B §Jetncr)]

— AE [(( (wi—m,)" (w2—m,)" ) [ B; 8

D;; O w
<(Cwrmm) @e=n)) [ B3} o | (&) 1o (D))
Multiplying the brackets out it resulted in
AE [wDyy (w1—my) (wi—m,) Dnwi Ik (F)]
(2.153)

4L [""/1D11 (wi—m) (w2—772)/ Dywilng (F)]

(2.154)

+4F [wi D}, (wa—mn,) (w1—n,) DuwiIng (F)]

(2.155)

+4E [w] DY (wa—mn,) (wa—15) DaywiIng (F)]

(2.156)
Expectation (2.153):
4F [wi D (wi—m,) (wi—ny) Dunwilyg (F)]
=45 [((w1=my) +m1) Dy (wi—m1) (wi=m1) Dux (Wi —11) + ) Invg (F)]

= 4E [((w1—m,) D1y (wi—m,) + 71Dy (wi—m,)) ((w1—ny) Dy (wi—m,) + 71Dy (w1—m,)) Ing (F)]
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= 4F [((wl—nl)'Du (wl—Th))2 Ing (F)}

(2.157)
+8F [(wl—nl)' Dy (wi=n;) mDu (wi—m4) Inr (F)]

(2.158)
+HAE [(m, D11 (wi—m))? Ing (F)]

(2.159)

Expectation (2.157): Using (1.44) it was found that

4F [((wl—’lh),Dn <w1_771))2 Ing (F)}

(et

Expectation (2.158): Using (1.52) resulted in

= 120’4tTD11E

8E [(w1—ny) Dut (wi—ny) mDu (wi—m1) Ing (F)]

=8E [(wi—m,)' Dut (wi—m) Ing (F) (w1—1;)' | Dun, =0
Expectation (2.159): Using (1.40) the following was obtained
AE [(miD11 (w1—m,))” Ing (F)]

= 4B [7,Dy1 (wi—m) (wi—m,) Duny Ing (F)]

= 4n\ D, E [(wi—my) (wi—n,) Ing (F)] Dumy

v (X2(q+27 "i:;l ) )

By combining (2.157) - (2.159) an expression for (2.153) was obtained:

()]0t (oo

= 40'277/1D11E Dllnl

1204tTD11E —|—40'2T[/1D11E
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Expectation (2.154): Since E [(wa—1,)'] = 0’ it was found that
4F [w’an (w1—1,) (Wa—ny) DajwiIng (F)}

=4F {E [w/lDll (w1—n,) (Wa—n,) DojwiIng (F)} wl} }
=4F [w’lDll (wi—my) E [(wg—ng)'] Dyiwilng (F)] =0
Expectation (2.155): In a similar way to the simplification of (2.154) resulted in
AE [w’lD’21 (wa—ms) (wl—nl)' Dywilng (F)} =0

Expectation (2.156): Using (1.38) the following was obtained
4E [w\ Dy (w2—1,) (w2—1,) DarwiIg (F)]

=4E {E |w DYy (wa—ny) (w2—15) Darwilng (F)|wi] }

= 4E [wi DYy E [(wa—n) (wa—1,) | DanwiIng (F)]

= 4F [ DYy,0%1, ;DywiIng (F))

= 4F [w| 02D} Dojw Ing (F)]

Assuming that D* = 02D}, Dy, is a positive definite symmetric matrix and making use of (1.35)
resulted in

AR e AT

Combining (2.153) - (2.156) an expression for (2.114) was obtained:
2 2
/ , D
i (X(q+4,32{%1>> i (X(q+2,121:71>>] nh
2 , trD*+ E 2 ) 'D*
7 (X(q+2,"2{:£1)>] 7 <X<q+4,”;:£1)>] " 771]

Expression (2.115): Using (1.16) it was found that

=4 |o’FE

120’4tTD11E + 40277/1D11E

+40? |*’F

—4E [((w — 1) QCTER? (k) C'H' (HC™'H') HC:Qwlyg (F))' (R (k) B-B) (R (k) B-B))

Dll

=B [w-m [ P! § @l (F)] (RK)B-B) R (k) B-B)

— 1B [((wi-m) (@) ) [ B 0] (&) 1xr(P)] (R (1) B-8) (R (k) 5-8))
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= —4E [(w1—n,) Duwi g (F) + (wa—n,) DawiIvg (F)] (R (k) B-8) (R (k) B-03))

= —4F [(wl—nl)/ Dyywilng (Fﬂ ((R (k) 6_13)/ (R (k) B_B))

—4E [(wa—m,) Darwrlvg (F)] (R (k) B-B) (R (k) B-B))

Expectation (2.160):
—4E [(w1—m) DuwiIvg (F)] (R (k) B-8) (R (k) B-B))
= —4E [(w1—n,)' Du (wi—my) +m) Ivr (F)] (R (k) B-B)' (R (k) B-B))

= —4E [(wi—m) Du (wi—m) Ing (F)] (R (k) B-8)' (R (k) B-0))

—4E [(w1=m) DumyIyr (F)] (R (k) 8-8) (R (k) B-B))

Expectation (2.162): Using (1.36) it was found that

—4E [(w1—m,) D11 (wi—ny) Inr (F)] (R (k) B-8)' (R (k) B—8))

= —40°F

A% i trDy; ((R (k) B—B) (R (k) ﬁ‘ﬂ))
(o)

Expectation (2.163): Using (1.32) resulted in

—4E [(wi—ny) DunyIng (F)] (R (k) B-8) (R (k) B-0))

= —4E [(w1—n,) Ing (F)] Dun, (R (k) B-8) (R (k) B-8)) =0
Combining (2.162) and (2.163) an expression for (2.160) was obtained:

2 <X2(q+2 M))] trDy ((R(k) 5—5)/ <R<k> ﬂ—ﬁ»

© University of Pretoria
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Expectation (2.161): Since E [(wa—1,)'] = 0’ it was found that

—4F [(WQ_TIQ)/ Dyiwilnr (F)} ((R (k) /6_6)/ (R (k) ,3—[‘3))

= —4E{E [ (wo=1) Darwilng (F)|wi] } (R (k) B-B) (R (k) B-B))
= —4F [ ] DglwlfNR (F)] =0

Combining (2.160) and (2.161) an expression for (2.115) was obtained:

—40%F |

% (o )>] Dy (R (k) B-8) (R (k) B—0B))

Expression (2.116): Using (1.16) it was found that

8E {((w —n) QC3R2(k) C'H' (HC™'H') " HC:Qwlyy (F)>/
« (R (k) B—B)’ (R (k) C-'H' (HC'H') ' HC 3 Qwlynp (F))]
=8B [( (wi-m) @) ) [ DY 0] (& 1vn(F))

x (@) wh)QCTIH (HCT'H) ™ HC™'R' (k) (R (k) B-0)|

Define v;7,, = QC#H' (HC™'H') ' HC™'R' (k) (R () -8) = ( Xi: ) where vi*: g x 1 and

vy*: (p—q) X 1 resulted in
S [(wi=m) wamm)) [By 6] (&) i) (ot ) (31))]
=8E [((w1—n,) Duwilng (F) + (wo—n,) DawiIng (F)) (Wivis + whvs®)]

=8F [(wl—’l’ll) Dllwlwllvf*INR (F)}

(2.164)
+8F [(wl—nl)' Dywwhvs*Ing (F)]

(2.165)
+8F [(wQ—nQ)' Dyjw 1w vi*Ing (F)]

(2.166)
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+8F [(UJQ—T]Q)I Dglwlw%VS*INR (Fﬂ

(2.167)

Expectation (2.164)

8E [(w1—n,) Duwiw)vi*Ing (F)]
= 8E [(wi—m,)' Du1 (w1 = my) + 1) (w1 —my) +m1) vi*Ine (F)]
=8F [((‘-‘-’1_771) Dy (w1 —my) + (w1_7h),D11”h) ((wl =)' Vi*Ing (F) +mvi*Ing (F))]
= 8E [(wi—n,)' Du1 (w1 — ;) (w1 —my) vi*Ing (F)]

(2.168)
+8E [(wi—m,) Dy (w1 — 1) mivi*Ing (F)]

(2.169)
+8E [(wi—ny) Duny (w1 —m) vi*Ing (F)]

(2.170)
+8E [(wi—m,) Dumynivi*Ing (F))

(2.171)

Expectation (2.168): Using (1.52) it was found that

8E [(w1—m,)' Diy (w1 —my) (w1 — 1) vi*Iyg (F))

= 8E [(wi—m1) Dui (w1 —my) Ing (F) (w1 —ny) ] vi* =0
Expectation (2.169): Using (1.36) resulted in

8E [(wi—m) D1 (w1 = 0) myvi*Lve (F)]

= 8E [(w1—ny) D11 (w1 — my) Ing (F)] myvy*

2 , t’l"D IV**
2 (X(Q+27%]:Tl)>] 1111V

= 80%F
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Expectation (2.170): Using (1.40) the following was obtained
8E [(w1—7h)/ Dyiny (wr — nl),VI*INR (Fﬂ

=80\ D11 E [(wi—ny) (w1 — my) Ing (F)] vi*

g (X(;)ﬂ W

Expectation (2.171): Using (1.32) it was found that

= 80'277/1D111qE

8E [(w1—my) Dumymyvi*Ing (F)]
=8E [(w1—m,) Ing (F)] Dunymyvis =0

Combining (2.168) - (2.171) an expression for (2.164) was obtained:

i (x?q% i) ) ] Vi

8c%FE

2 *k 2
2 (X(q+2 M))] trDunvi* + 8o 77’1D111qE

Expectation (2.165)
) Dy

8K [(wl—nl 1w1w’2v§*INR (Fﬂ

=8E [(wl—m)' Dywi ((we — 1) +15) V5 Ing (F)}
= 8E [(wi—m,) Dnw: (wy — 1) v Ing (F)]

(2.172)
+8E [(wi—my) Diwimyvy Ivg (F)]

(2.173)

Expectation (2.172): Since E [(w; — 1,)'] = 0’ it was found that
8E [(wi—ny) Duwi (w2 — n,)" v3*Ing (F)]
=8F {E [(wl—nl)' Dywi (wy — 1) vitIng (F)} wl} }

=8F [(wl—nl)' D jw E [(wg - 772)/] vi*Ing (F)} =0
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Expectation (2.173):

8E [(wi—ny) Duwinyvs* Ing (F)]

= 8E [(w1—ny) Dut (w1 —my) + m1) 75v3™ Ing (F)]
=8F [(w1—ny) Dui (w1 — m1) 0yv3* Ing (F)]

+8E [(wi—mny) Dumymyvy Ivg (F)]

= 8E [(w1—n,) D11 (w1 — my) Ing (F)] nhvs*
+8E [(wi—m) Ing (F)] Dyymymhpvs™

Using (1.32)

2 , t?”D /V**
2 <X<q+2,121:71)>] 1172V2

Combining (2.172) and (2.173) an expression for (2.165) was obtained:

2 , t’I“D /V**
2 (X(q+27%>>] 1172V4

Expectation (2.166): Since E [(ws—n,)'] = 0’ it was found that
)/

= 80%F

802F

8F [(wa—1,) Dajwiwvi*Iyg (F)]

=8E {E [(wa—n,) Doywwvi*Ing (F)|wi] }
=8F [E [(wQ—nz)'] Doyw 1w vi*Ing (F)] =0
Expectation (2.167):

8E [(wQ—nQ)' Dojwiwhvi*Ing (Fﬂ

= 8E [w) Dy, (wo—m,) whv3 Ivg (F)]

=8LK [""IlD/m (wa—my) (w2 —my) + 1) V3 Ik (F)}
= 8F [w Dy, (wa—13) (wo — 12)' V5" Ing (F)]

(2.174)

+8E [w) DYy (w2—=,) myv5" Ing (F)]

(2.175)
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Expectation (2.174): Using (1.31) and (1.38) the following was obtained
8E [wiDhy (wa—m,) (w2 — ny) V3" Ivr (F)]

= 8E{E [w\Djy (wa—m,) (w2 — 0y) V5" Ing (F)| w1] }

= 8E [w\ Dy, E [(wa—ny) (w2 — m,)'] v3*Ing (F)]

= 80°F [w Dy 1, v Ing (F))

= 802E [w’llNR (F)] Délvg*

2 ) D/ V**
¥ <X<q+27,,21:21)>] 21V2

Expectation (2.175): Since E [(w2—n,)] = 0 it was found that

= 80’n\F

8L [wiDy) (wa—my) N5V Ing (F)]
= 8L {E WD} (wa—m,) myv3* Ing (F)| w1}
= 8E [wDy E [(wa—n,)] myVs* Ing (F)] =0

Combining (2.174) and (2.175) an expression for (2.167) was obtained:

2 ) D/ V**
¥ (X(q+27n210,,21)>] 21V2

Combining (2.164) - (2.167) an expression for (2.116) was obtained:

¥ (X?quZ ni,?))] Vit

2 , Dl V**
¢<X(q+27%)>] 21V2

80’n,E

80?FE

202

2 *% 2
2 (X(q+2 n'ﬂn))] trDun|vi* + 80 Dul E

+802%F

© <X2(q+2,%>>] trDnhvs* + 80’n\ B
Expression (2.117):

—4F {((w —n) QC:R2 (k) C'H' (HC™'H') " HC :Qwlyy (F))'w’QFQ’DQFQ'wINR (F)
using (1.16) and (1.17) it was found that

_ 4B [( (wi—m) (wa—m,)" ) [ B; 8 } < $; ) (W Dyw1) Ing (F)]
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Multiplying the brackets out resulted in
—4F [((w1—ny) Duw + (wa—n,) Daw) (W Duw:) Ing (F)]
= —4F [(wl—nl)/ Dllwl (w’lDllwl) [NR (Fﬂ

(2.176)
—4E [(U.)Q—’l’]z)l D21w1 (w’lDllwl) INR (F)]

(2.177)
Expectation (2.176):
—4F [(wl—nl)/ D11w1 (w’anwl) INR (F)]
= —4F [(w1—m1) D11 (w1 —m1) +m) (w1 —m1) + 1) D (w1 — ) +m1)) Ivg (F)]
= —4FE [(("’1_771),]311 (Wi —m) + (""1_”71)/D11"71)
X (w1 —m1) Dy (w1 — 1) +2 (w1 —1my) Dy + 0 Dumy) Ing (F)]
Multiplying the brackets out resulted in
= —4E |((@1=m) Duy (w1 = m))" Inw (F)]

(2.178)
—12F [(Wl_’rll)/Dll (w1 —my) (w1 — 771)/D11”71]NR (F)]

(2.179)
—4E [(w1—ny)' Duy (w1 —m1) mDuny Ing (F)]

(2.180)
—8E [(w1—m) Dumy (w1 — 1) DunyIvg (F)]

(2.181)
—4E [(w1—m) DunymiDun Ivg (F)]

(2.182)

© University of Pretoria



105

Expectation (2.178): using (1.44) it was found that

—4E [((wl—m)/Dn (w1 — 771))2[NR (F)}

@ <x2<q+47n2;:21)>]

Expectation (2.179): Using (1.52) the following was obtained

== —1204t’l"D11E

—12F [(wl_’rll)/Dll (w1 —my) (w1 — 771)/D11”71]NR (F)} =0

Expectation (2.180): Using (1.36) it was found that
—4E [(w1=m) D1 (w1 —ny) mDumny Ing (F)]

= —4E [(wi—m,) Dui (w1 = ny) Ing (F)] mDun,

2 /D
2 (X(qw,%ﬁ:?l))] nPum

Expectation (2.181): Using (1.40) resulted in
=8 [(wi—my) Dumy (w1 —m) DunyIng (F)]
)

= —8mDuE [(wi—my) (w1 — 1) Ing (F)] Dumy
2

’ (X(;))] P
2

@ <x<q+27,72/1_,,21)>] Dymy

Expectation (2.182): Using (1.32) it was found that

= —402tTD11E

= —80'21’]/1D111QE

= —8c*mDnFE

—4E [(‘*’1_"71)ID11"71"7,1D11"71[NR (Fﬂ
= —4F [(Wl_nl)/[NR (F)} DiimymDun, =0

Combining (2.178) - (2.182) we obtain an expression for (2.176)

—120*rD E o | X2 o —40*trD E o | 12 o n,Dum,
<q+4’ 210'2 ) (q+2’ 2102 )
—802n, D1 E 2 , D
1V %2 (X(quQ,%l:Tl)) 11"
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Expectation (2.177): Since E [(wa—1n,)'] = 0’ it was found that
—4F [(wg—m)' Dyjw; (W)D1jw1) Ing (F)]

= —4F {E [(wg—nz)' Dsjw; (wiD1w1) Ing (F)’ wl} }

= —4F [E [(wg—ng)'] Dojw; (w)Dyywi) Ing (F)} =0

Combining (2.176) and (2.177) an expression for (2.117) was obtained:

(2 2 , —4U2t7D FE (2 2 ’ ”,D n
<X<q 477’21:21>>] B (X(q 2’7121;’21))] 1 o
(‘0 2 D ',

(X(q 277’2(:;1>> o

Expression (2.118): Using (1.28) resulted in

—120'4tTD11E

—80°n\ D E

!/

B (R (k) 8-B) (R (k) B-B)) (R (k) B-B) (R (k) B-B))]

!/

= ((R(k) B-B) (R (k) B-B))' (R (k) B-B)' (R.(k) B-B))

= (8 R (k) -TL,) (R(k) -1L)B) (8 (R(*) -L) (R(k) —L,) B

- (k%’C(jf)B) (k%'c;,f)ﬂ)

- (seize)

Expression (2.119): Using (1.31) the following was obtained

4B [((R (k) B-B) (R (k) 8-B))' (R (k) 8-B) (R () C"'H' (HC™'H') ' HC 3 Qwiva (F)) ]
= —4((R(k) B-B) (R (k) B—B)) (R (k) B—0) R(k) C"'H' (HC'H') ' HC *QE [wiyr (F)]

1

— —4[((R (k) B-B) (R (k) B-B)) (R (k) B—B) R (k) C"'H' (HCT'H')~

B A8 o (g ) |
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Expression (2.120): Using (1.17) and (1.35) it was found that

2F [((R (k) B-B) (R (k) B-B)) (w' QFQDQFQ'wIyp <F))]

=2 ((R(k) B-B) (R (k) B-B)) E[(w'QFQDQFQwIyg (F))]

=2(R (k) B-B) R (M B-A) E[(w, wi)[ 4 0] (&) Iva(P)]
=2 ((R (k) B-B) (R (k) B-B))' E [wDnwi v (F)]

()] 72

=2 ((R (k) B—B) (R (k) B-B))" |o*E

2 (X2(q+4,3ﬁ’;1> ) ] 77’1D11771]

Expression (2.121):
AR [((R (k) B—B) (R (k) CTH' (HC'H') ' HC 3 Qwlynp (F)))'

( ) (R k) C'H (HC™'H') " HC *Qwlyp (F)m
E

(R (k) 8-8) (R (k) CQQCH (HC™'H) " HC#Qwiyx (F))

x w'Iyr (F)QC™H' (HCT'H) ' HC I QQC R’ (k) (R (k) 8-9)|
o4 0](2)

I

(W wh)| d o | Ive(F)QCTIR! (k) (R (k) B-B)]

I
&
E
=
b
)
&
=
@
Nl

Definev;ﬂ:QCf%R’( J(R(k)B-08) = < i ) where vi:gxland vi:(p—¢q) x 1
= E[viwiw vilyg (F)]
= VII*E [wlw’llNR (F)] VT

using (1.39) resulted in

E [wlw’llNR (F)] = 02E

Therefore

Vi E [wiwiIng (F)]vi = V]
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Expression (2.122): Using (1.17) resulted in
2 {((R (k) 8-B) (R (k) C~'H' (HC'H) ' HC 3 Quwiva (F) ) ) («'QFQDQFQwyr <F>>]
— ~4E |(R(k) 8-8)' (R (k) C'H' (HC™'H') ' HC 1 Qwlyp (F)) (w'QFQDQFQwlyy (F))|
- 15 (R B-BYRICHQ[§ 0] (&)

(et e [T 0] (8) b))
— —AE [V}w; (W, Dyywy) Ing (F)]

= —AE (W, Dyw;) W viIvg (F)]

= —AB [(@iDnwy) Ing (F) (w1 — 1) +m,)' vi]

= —4F [(WiD1w1) Ing (F) (w1 — 1) V3]

(2.183)

—4F [(wDyw1) Ik (F) 0, vi]

(2.184)

Expectation (2.183): Using (1.49) and (1.31) the following was obtained
—4E [(wiDnw:) Ing (F) (w1 —my)' vi]
= —4F [(wiDnw1) Ing (F) (w1 —m)'] vi

8LUI1D11W1]NR (F)
3(.01

i’ (X())] P

Expectation (2.184): Using (1.35) it was found that

= —40%E { } vi = —80%E (W) Ing (F) Dy v}

= —8c’n\FE

—4F [(wiDnwi) Ing (F) 0\ vi] = —4E [(W|Dnwy) Ing (F)] myvi

2 trDy; + E z D v
¥ (X(q+2, n;[,’;l))] 11 ¥ X<q+47,,210,;1) Pum | Vi

= —4 |0%F
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Combining (2.183) and (2.184) an expression for (2.122) was obtained:

2 *
' (X(%QLg 21))] P
’ 2 / ! ¥
4 (X(q+2 "&ﬂl))] t’l“Dll + F 2 (X(q+4 ,,7/1,,71)>] 'r]lDll'fh] MV
’ 202 5532

Expression (2.123): Using (1.27) and (1.43) it was found that
E [(w’QFQ’DQFQ’wINR (F)) (W' QFQ'DQFQwiyr (F))]

=F [(w’lDllwllNR (F))/ (w’lDllwl) [NR (F)} =F [(W&Dllwl)2 [NR (F)}

@ (XQ(M i ) ) © <x2<q+6, i ) ) ]
2 <X2<q+8, n2’10n21 ) > ]

By combining the final expressions for (2.103) - (2.123) an expression for the numerator of expression
(2.101) was obtained:

—8o?n\ E

—4 |o?FE

= 3o'tr (D) E + 60’y Dy E

1 2
+ (771D121771> E

(2.185)

Substituting (2.100) into (2.90) and (2.185) into (2.101) and then adding (2.90) to (2.101) com-
pletes the proof.l

It is clear that the risk functions under reflected normal loss are extremely complicated and cannot
be compared to each other analytically. Therefore a simulation study will be conducted in the next
section in order to compare the performance of the different ridge estimators under reflected normal
loss with each other computationally.
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2.5 Simulations

Kibria(2003), Gisela and Kibria (2009) and Najarian et al. (2013) extensively discussed the perfor-
mance of ridge estimators for different ridge parameters. They only considered the squared error loss
function as a measure of the performance of the proposed estimators. In this section a numerical
study of ridge estimators are provided by using different ridge parameters under reflected normal
loss. In Chapters 3 and 4 similar results will be discussed under LINEX and BLINEX loss functions
respectively. The simulation technique adopted is similar to the technique described in McDonald
and Galarneau (1975) and Gibbons (1981). For the detailed description of the simulation tech-
nique see section 1.5 page 28 of the thesis. For completeness the a short version of the simulation
technique is given again.

The p = 4 multicollinear explanatory variables are computed by

1
Tij = (1 — 72)2 zij + Yz 1=1,2,....,nand 7 =1,2,...4

with z;; ~ N (0,1) random variables and  chosen in such a way that the correlation between any
two explanatory variables are given by 2. The explanatory variables are standardised in order to
ensure that X’X is in correlation form.

In order to generate the dependent variable y;, the true 3 vector is needed when using the following
equation:

Yi = By + Br1xi + BoTio + Byis + Byria €, 1=1,2,....n (2.186)

with ¢; ~ N (0,0%) and 8, = 0. The (3 vector is determined as the normalised eigenvector
corresponding to the largest eigenvalue of the X’X matrix, which is subject to the constraint that
3’3 =1 as suggested by Newhouse and Oman (1971).

These regression coefficients were introduced into (2.186) in order to generate the dependent variable
in the analysis. These simulated dependent and explanatory variables were then used to estimate the
values of 3, using the three proposed estimators in the thesis, namely URRE, RRRE and PTRRE.
The performance of each estimator is then determined by evaluating the performance under the
reflected normal loss function. The performance is evaluated by calculating the risk (average loss)
values for each estimator for all the different parameter values. In order to calculate the risk values
the process was repeated 2000 times (2000 iterations).
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The different ridge regression estimators were further evaluated by introducing different ridge re-
gression estimators (k) into the estimators. The different ridge regression estimators used as briefly
discussed below:

Hoerl and Kennard (1970) (kyx or HK):

kHK =

2l

o~
where 5% = 26 (
n J—

the residual mean square error) , a = I'3 = (a3, ag, a3) and T represents the

eigenvectors of X’X. a? will be replaced by o2, , the maximum squared element of c.

Hoerl, Kennard and Baldwin (1975) (kyxp or HKB):

2
kukp = ===
ao

Lawless and Wang (1976) (/k\LW or LW):

o = A2
T a X Xa

~ 1.» 52
kam = =3 .=
Pi=10;

Kibria (2003) (/k\:GM or GM): This represents the geometric mean of kg .

~2

P
~2
i=1

kav =

B =
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Kibria (2003) (/k\:MED or MED) for p > 3: This represents the median of k.

~2
kyep = Median (%) , 1=1,2,...p

%

The following simulation results evaluate the performance of the different proposed ridge parameters.
By keeping specific parameters fixed in the simulation process and varying only one parameter at
a time, the behaviour of the risk values can be evaluated. The ridge parameters were calculated
as proposed at the beginning of this section and all the estimators (URRE, RRRE and PTRRE)
were repeatedly calculated using all the proposed ridge parameters. All three proposed estimators
(URRE, RRRE and PTRRE) were considered under the reflected normal loss function. In order
to calculate the risk values, the average loss was calculated for each estimator calculated with the
different ridge parameter. In the first table in each section only the error variance varied while
the second table represents the risk values over different levels of multicollinearity. The third table
represents the effect of an increase in the number of parameters that needs to be estimated and
the fourth table represents the effect of an increase in the sample size. The SAS program for these
simulations is available in Appendix A.

Unrestricted ridge regression estimator under reflected normal loss, comparing the effect
of a change in the variance(c?).

Table 2.1: Effect of an increase in the variance on the risk of the URRE under reflected normal
loss and across different ridge parameters:

[ i n=30p=4andy=0.38

|
| &M [ MED |

l o] HK | HKB | Lw | HSL | AM
0.01 ] 0.0000169 | 0.0000169 | 0.0000169 | 0.0000169 | 0.0004497 | 0.0000169 | 0.0000169
0.1 | 0.0016183 | 0.0016099 | 0.001623 | 0.0016165 | 0.0066346 | 0.0015784 | 0.0015922
0.25 ][ 0.0102039 | 0.0099029 | 0.0103973 | 0.0I01278 | 0.025I1271 | 0.0089392 | 0.0089621
0.5 | 0.0374972 | 0.0341275 | 0.0401476 | 0.0365041 [ 0.0597485 | 0.0266543 | 0.0270407
1 0.1159532 | 0.0972911 | 0.1452599 | 0.1081491 [ 0.1049873 | 0.0570376 | 0.0587568
4 ] 0.2659404 | 0.4535828 | 0.7620413 | 0.2332226 | 0.2814325 | 0.219202 | 0.2179398
9 | 0.2802593 | 0.7565972 | 0.95252/9 | 0.2/49/721 | 0.3589985 | 0.3352665 | 0.3343223
20 | 0.3371624 | 0.908707 | 0.9946903 | 0.3445348 | 0.3860661 | 0.3802397 | 0.3800933

(see Figure E1 panel (a) in Appendix E for all results based on the URRE)
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Unrestricted ridge regression estimator under reflected normal loss, comparing the effect
of a change in the level of multicollinearity(v).

Table 2.2: Effect of an increase in the level of multicollinearity on the risk of the URRE under
reflected normal loss and across different ridge parameters:

n=30p=4ando =1 |

Lo [ Hxk [ HEL [ LW || HSL || AM | GM | MED |
0.7 ] 0-0910835 | 0.0791547 | 0.1092779 | 0.0016944 | 0.1177358 | 0.0586821 | 0.0617445
0.8 || 0-1144414 | 0.0961581 | 0.1438745 | 0.1072252 | 0.109294 | 0.0578618 | 0.0584121
0.9 || 0-1585982 | 0.1334387 | 0.2299965 | 0.1142642 | 0.0952602 | 0.0522485 | 0.0549788
0.95 || 0.2031011 | 0.1931234 | 0.3601067 | 0.1061584 | 0.0965546 | 0.0482935 | 0.0518413
0.99 || 0.1976727 | 0.4260104 | 0.7057415 | 0.0700818 | 0.0806708 | 0.0268449 | 0.0291966

Unrestricted ridge regression estimator under reflected normal loss, comparing the effect
of a change in the number of parameters (p)

Table 2.3: Effect of an increase in the number of parameters that needs to be estimated on the
risk of the URRE under reflected normal loss and across different ridge parameters:

n=30,y=08ando =1

Lp]

HEK

OKB |

LW 1

HSL |

AM

GM

MED ||

4

0.1144414

0.0961581

0.1438745

0.1072252

0.109294

0.0578618

0.0584121

10

0.2657388

0.2203197

0.4324877

0.2381448

0.1622041

0.0493141

0.0646302

20

0.3900201

0.4806742

0.848574

0.32/8158

0.193024

0.0425016

0.0600911

25

0.4576327

0.7140402

0.963327

0.3838384

0.206854

0.05795

0.0838016

Unrestricted ridge regression estimator under reflected normal loss, comparing the effect

of a change in the sample size (n)

Table 2.4: Effect of an increase in the sample size on the risk of the URRE under reflected normal

loss and across different ridge parameters:

y=08p=4ando =1

I n | HK [ HKB [ IW [ HSL | AM [ GM [ MED
T5 || 0.180749 | 0.1604742 | 0.2622493 | 0.1601003 | 0.1380418 | 0.084708 | 0.0879856
30 || 0.1144414 [ 0.0961581 | 0.1438745 | 0.1072252 | 0.109294 | 0.0578618 | 0.0584121
50 || 0.0772754 | 0.0668003 | 0.0896149 | 0.0737845 | 0.0815214 | 0.0449302 | 0.046489
100 || 0.0400969 | 0.0363409 | 0.0433226 | 0.0391661 | 0.0605349 | 0.0281894 | 0.0284955
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Restricted ridge regression estimator under reflected normal loss, comparing the effect
of a change in the variance(c?).

Table 2.5: Effect of an increase in the variance on the risk of the RRRE under reflected normal
loss and across different ridge parameters:

n=30p=4and y =038 |

[ o2 | HEK HKDB LW HSL AM GM | MED
0.01 || 0.000017 | 0.0000169 | 0.000017 | 0.000017 | 0.0004488 | 0.0000169 | 0.0000169
0.1 | 0.0015539 | 0.0015452 | 0.0015587 | 0.0015521 | 0.0065587 | 0.0015123 [ 0.0015249
0.25 [ 0.0097425 | 0.0094416 | 0.0099338 | 0.009668 | 0.0247232 | 0.008493 | 0.0022096
05 | 0.0359275 [ 0.0325296 | 0.0385642 | 0.0349448 | 0.0587512 | 0.0252099 | 0.0256165
T |/ 0.1106823 | 0.0915612 | 0.1399216 | 0.1020762 | 0.1016887 | 0.0524852 | 0.0542029
1 [[0.2234999 | 0.4115349 | 0.7368753 | 0.1948009 | 0.2771398 | 0.2104379 | 0.208772
9 [ 0.2357076 | 0.7048577 | 0.937174 | 0.2422777 | 0.3582475 | 0.3338246 | 0.333387
20 | 0.3292381 [ 0.8602704 | 0.9907287 | 0.339335 | 0.3855637 | 0.3798181 | 0.3797286

(see Figure E2 panel (a) in Appendix E for all results based on the RRRE)

Restricted ridge regression estimator under reflected normal loss, comparing the effect

of a change in the level of multicollinearity(7).

Table 2.6: Effect on an increase in the level of multicollinearity on the risk of RRRE under reflected

normal loss and across different ridge parameters:

n=30p=4ando =1

L

HEK

HKD

LW

HSL

AM

GM

[ MED

0.0853514

0.0720441

0.1023917

0.0851229

0.1148721

0.0542194

0.0727785

0.1089415

0.0902539

0.1382052

0.1018291

0.1062525

0.0536277

0.0542765

0.1539642

0.1284592

0.2254633

0.1097708

0.0919092

0.04836b5

0.0510171

0.1994402

0.1892551

0.3569338

0.1021805

0.0936924

0.044836

0.0482893

22994
@Cﬂ@ooﬂ

0.1943711

0.4235415

0.7043764

0.0664903

0.0778187

0.0233205

0.025528

Restricted ridge regression estimator under reflected normal loss, comparing the effect
of a change in the number of parameters (p)

Table 2.7: Effect on an increase in the number of parameters to be estimated on the risk of the

RRRE under reflected normal loss and across different ridge parameters:

n=30,y=08and o =1

Lo

HK ]

HKB |

LW

HSL |

AM ]

GM ]

MED |

4

0.1089415

0.0902539

0.1382052

0.1018291

0.1062525

0.0536277

0.0542765

10

0.3416348

0.2911386

0.5175468

0.3115058

0.2265265

0.1289673

0.1406642

20

0.6185015

0.7045859

0.9813425

0.5303648

0.2691035

0.1616054

0.1810673

25

0.6739893

0.9027447

0.9997857

0.5751968

0.2619219

0.1511962

0.182771
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Restricted ridge regression estimator under reflected normal loss, comparing the effect
of a change in the sample size (n)

Table 2.8: Effect on an increase in the sample size on the risk of the RRRE under reflected normal

loss and across different ridge parameters:

y=08p=4ando =1

T n | HK HKB W HSL AT G MED
T5 [ 0.1687555 | U.1471631 | 0.2484981 | 0.1484680 | 0.1344370 | 0.0771563 | 0.0807604
30 || 0.1089415 | 0.0902539 | 0.1382052 | 0.1018291 | 0.1062525 | 0.0536277 | 0.0542765
50 || 0.074138 | 0.0634703 | 0.0864373 | 0.0706513 | 0.0798865 | 0.0421587 | 0.0430043
100 || 0.0383618 | 0.0345535 | 0.0415664 | 0.0374354 | 0.0592498 | 0.0265544 | 0.026925

Preliminary test ridge regression estimator under reflected normal loss, comparing the

effect of a change in the variance(o?).

Table 2.9: Effect of an increase in the variance on the risk of the PTRRE under reflected normal

loss and across different ridge parameters:

n=30p=4and y=0.8

[ o2 | HK HKB LW HSL AM GM MED
0.01 ]| 0.0000166 | 0.0000165 | 0.0000166 | 0.0000166 | 0.0001784 | 0.0000165 | 0.0000165
0.1 || 0.0016471 | 0.0016381 | 0.0016521 | 0.0016451 | 0.0062737 | 0.0016031 | 0.0016003
0.25 || 0.0100036 | 0.0096968 | 0.0101984 | 0.0099354 | 0.0239456 | 0.008751 | 0.0087633
0.5 || 0.0365188 | 0.0330048 | 0.0392042 | 0.035486 | 0.0543462 | 0.0252808 | 0.0254319
T | 0.1112168 | 0.0922945 | 0.1409591 | 0.1033731 [ 0.1100183 | 0.05524 | 0.0555483
1 | 0.236488 | 0.4258012 | 0.7412300 | 0.2028267 | 0.2731629 | 0.208132 | 0.2093742
O [[0.2451612 [ 0.6871811 | 0.9364953 | 0.2488641 | 0.3597922 | 0.3350045 | 0.3348930
20 [[0.3307011 | 0.8714112 | 0.984512 | 0.3392821 | 0.3856343 | 0.3794501 | 0.3793543

(see Figure E3 panel (a) in Appendix E for all results based on the PTRRE)

Preliminary test ridge regression estimator under reflected normal loss, comparing the
effect of a change in the level of multicollinearity(y).

Table 2.10: Effect of an increase in the level of multicollinearity on the risk of the PTRRE under
reflected normal loss and across different ridge parameters:

n=30p=4ando =1

[~ K HKB W HSL AT G MED
0.7 [ 0.0893581 | 0.0762784 | 0.1069666 | 0.0888034 | 0.1149501 | 0.0543776 | 0.0593886
0.8 | 0.11061 [ 0.0924855 | 0.1301345 | 0.1029873 | 0.1089375 | 0.056623 | 0.0586928
0.9 | 0.1615028 | 0.1368722 | 0.2369163 | 0.1164266 | 0.100637 | 0.0525923 [ 0.0562409
0.95 | 0.1978958 | 0.1894625 | 0.3563428 | 0.1011977 | 0.0880028 | 0.0445128 | 0.0430834
0.99 [ 0.1900256 | 0.3979498 | 0.679225 | 0.0621754 [ 0.0757749 | 0.0224531 | 0.0251799
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Preliminary test ridge regression estimator under reflected normal loss, comparing the
effect of a change in the number of parameters (p)

Table 2.11: Effect of an increase in the number of parameters to be estimated on the risk of the

PTRRE under reflected normal loss and across different ridge parameters:

n=230,y=08and o =1

lp | HE || HEB | LW || HSL [ AM | GM || MED |
1 [ _0.11061 ] 0.0924855 | 0.1391345 | 0.1029873 | 0.1089375 | 0.056623_| 0.0586928
10 || 0.2607062 | 0.2138464 | 0.427464 | 0.231376 | 0.1719465 | 0.0471389 | 0.0617497
20 [ 0.3898779 | 0.4835283 | 0.8590115 | 0.3209366 | 0.1951895 | 0.0423395 | 0.0583444
25 || 04711574 | 0.7300629 | 0.9663871 | 0.3864171 | 0.1997036 | 0.0581011 | 0.0839177

Preliminary test ridge regression estimator under reflected normal loss, comparing the

effect of a change in the sample size (n)

Table 2.12: Effect of an increase in the sample size on the risk of the PTRRE under reflected

normal loss and across different ridge parameters:

y=08p=4ando =1

T n | HEK | HKB | LW | HSL || AM | GM | MED
T5 || 0.1871001 | 0.1688037 | 0.2767531 | 0.1605017 | 0.1475324 | 0.0826207 | 0.0835350
30 | 0.11061 | 0.0924855 | 0.1391345 | 0.1029873 | 0.1089375 | 0.056623 | 0.0586028
50 | 0.0724991 | 0.0618931 | 0.0844816 | 0.0691327 | 0.0901583 | 0.0409087 | 0.0422614
100 || 0.0412222 [ 0.0371160 | 0.044615 | 0.0403039 | 0.0624968 | 0.0274219 | 0.0278773

In order to summarise the results in tables 2.1 to 2.12, Figures E1 to E3 in Appendix E, panel (a) was
used. For all three estimators, namely URRE, RRRE and PTRRE it was found that for relative small
values of g i.e. 0.01 < o < 4, the GM and MED ridge parameters lead to the lowest risk, whereas
for o > 4 the risk for all estimators are relatively small when using the HK and HSL ridge parameter.
In all cases the LW ridge parameter performed the worst. For all three estimators, namely URRE,
RRRE and PTRRE it was found that over all the tested levels of multicollinearity, the GM and MED
ridge parameters performed the best and the LW ridge parameter performed the worst. For all
three estimators, namely URRE, RRRE and PTRRE it was found that for an increasing number of
parameters to be estimated, the GM and MED ridge parameters performed the best and the LW
ridge parameter performed the worst. For all three estimators, namely URRE, RRRE and PTRRE
it was found that when the sample size increases, the GM and MED ridge parameters performed
the best and the LW ridge parameter performed the worst, except for cases where the sample size
is above 50, it seems as if the AM ridge parameter performs the worst.
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2.5.1 Evaluating the performance of the estimators relative to each other
under reflected normal loss

The risk of RRRE, URRE and PTRRE calculated under reflected normal loss are computationally
compared to one another in order to determine the performance of the estimators relative to each
other. In Figure 2.2 the dashed (blue) line represents the risk of the RRRE, the solid (red) line
represents the risk of the URRE and the dashed-dot (green) line represents the risk of the PTRRE.
The panel of sketches in this section will be discussed in two ways, firstly by keeping o constant
and allowing the sample size, n to increase (across the rows of the panel sketches) and secondly
by keeping n constant and allowing o to increase (across the columns of the panel sketches). All
the risk functions are represented as a function of 6 = H3 — h . In the practical application in
Chapter 5 only one linear restriction is placed on the estimators of the multiple regression model
and therefore § was regarded as a scalar in this simulation exercise. In these graphs the range of ¢
considered were —1 < § < 1, on the horizontal axis. For other ranges of § the results did not differ
substantially. For cases where § is not a scalar, the norm of § can be considered on the horizontal
axis. The SAS program used for these simulations is in Appendix B.

Risk functions of RRRE, URRE and PTRRE under reflected normal loss
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Figure 2.2 : Comparison of URRE, RRRE and PTRRE across different values of o and n, under
reflected normal loss.
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For the case where ¢ = 1, it is clear that as the sample size increases for this choice of o, the

risk of PTRRE tends towards the risk of URRE as § — 4o0. It is well-known that URRE is the

most efficient estimator as the sample size increases, since the variance of URRE, i.e. 3, (k) is
2

o’R (k) C™'R/ (k) and ¢% = 2 It is clear that as the sample size increases the variance of

n J—

URRE will tend to zero. Therefore as the sample size increases, PTRRE becomes as efficient as
the URRE. It can also be seen that as the sample size increases the risk associated with all the
estimators decreases. Similar results are obtained for different values of o.

When o increases for a specific sample size, it can be seen that in the interval near the origin, the
interval in which the PTRRE has lower risk relative to the URRE, becomes larger. Therefore when
working with a specific sample size and if the variance of the sample is relatively high, the PTRRE
is a more efficient estimator compared to the URRE.
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Chapter 3

Performance of the preliminary test ridge
regression estimator using LINEX loss

3.1 Linear exponential loss function (LINEX loss function)

In this chapter the performance of the preliminary test ridge regression estimator is considered under
LINEX loss, but it is again necessary to compare the performance of the preliminary test ridge
regression estimator to that of its component estimators, namely the unrestricted ridge regression
estimator and the restricted ridge regression estimator. It is therefore necessary to derive the risk
functions of all three estimators under LINEX loss. In the papers by Parsian and Kirmani (2002),
Porosinski and Kaminska (2009), Arashi (2010) and Arashi and Tabatabaey (2010) the properties
of the LINEX function, which was first proposed by Varian (1975) are presented together with results
of estimation under LINEX loss for a number of probability distributions. One of the disadvantages
of the LINEX loss function is that it exhibits a huge increase in expected loss as the estimator error
namely B — 3 increases, which limits the application of the loss function in practice. Assume 3"
is a vector p x 1 containing regression coefficient estimators and 3 is a p x 1 vector of unknown
regression coefficient parameters. The multivariate LINEX loss function is given by:

Lrinex (B%,8) =dexp(a’ (8" —B)) —a’ (8" - 8) — 1]

where d is referred to as the scale parameter and a is a vector containing shape parameters. When
the values of a is close to zero, the LINEX loss function tends to be more symmetric compared to
larger positive or negative values of a. As mentioned before, estimation error vector in the loss
function is given by 3* — 3, therefore if a contains negative values it suggests that negative errors
(underestimation) are penalised and when a contains positive values it suggests that positive errors
(overestimation) are penalised.

119
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The following panel of sketches illustrate the effect of a on the LINEX loss function for p = 2:
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Figure 3.1 : The effect of a on the LINEX loss function.

It is clear that as the a; values increase in absolute value, the higher the level of asymmetry of the

LINEX loss function. The vector norm, namely ||a|| =

a3 + a3 + ... + a2 can also be considered

to evaluate the degree of asymmetry. As the value of ||al| increases it indicates a higher degree of
asymmetry as indicated in the sketches above. The only aspect to consider when using this measure
is that the measure doesn't reflect the direction of the asymmetry. The flexibility of the LINEX loss
function is also easily seen by penalising positive and negative errors in the same model.

The risk function under LINEX loss is therefore given by:

© University of Pretoria
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3.2 Risk function of the URRE
Theorem 11 The risk function of the URRE under LINEX loss is given by:
B |Crivex (B, (0).8)] = d [exp (~Ba+ BR (k) a+la'S; ya) —a [R (k)8 - A] -1
When R (k) = 1, the risk function reduces to the risk function of the URE under LINEX loss.
E [ﬁLINEX (Bwﬁ)] =d [exp( 2~ (k)& ) - 1}
Proof. The risk function for 3, (k) under the LINEX loss function is defined as:
E [ﬁLINEX (Bn (k) ,Bﬂ
= 4 [exp (&' (B, (1) - 8) ) = ' (B () - 8) 1]
by adding and subtracting R (k) 3 the expression reduces to
—dE [exp (2 (B, (k) — B) ) —a (B, (k) ~R(K) B+R (k) B~ B) 1]
_ dE [exp (a ( 5))} _da'E (B [ (k) — R(k)ﬁ] —dAER(K) BB —d
= dexp [~ B exp (B, (k) a) |

(3.1)
~da'E |, (k) ~ R (k) 8]

(3.2)
—da’'E[R (k) 8 — 8] —

(3.3)
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Expression (3.1):

Since the moment generating function of the multivariate normal distribution (see 1.10) is defined
as

MGFB;UC) (a)=F [exp <B; (k) a)}

o0 o

= [ [exp (B; (k)a)

—00 —00

e (<4 (Bu 0~ R(8) 551, (B0 - R (1) 8) ) dB, (k)]

D
(2m)% (zén(k

= exp <B'R/ (k) a—}—%a’Egn(k)a)

therefore,

dexp|[—(@'al E [exp (B; (k) a)] = dexp (—B'a + B8R/ (k) a+%a’25n(k)a>
Expression (3.2): Since £ {Bn — B] =0

—~da'E |8, (k) ~ R (k) 8]

— —da'E [R (k) B, — R (k) 5}

— _daR (k) E [Bn . 5}

= —da’0 =0

Expression (3.3):

—da'E[R (k) B— 8] —d = —da' (R (k) B—B) —d

Combining the final expressions of (3.1) - (3.3) completes the proof.l
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3.3 Risk function of the RRRE

Theorem 12 The risk function of the RRRE under LINEX loss is given by:
B |Coivex (B, (k). B)| = d |exp (~Ba+ BR (k) a+ia'S5 ya) —a [R (k) B — 6] - 1

When R (k) = 1, the risk function reduces to the risk function of the URE under LINEX loss.

Proof. The proof is similar to the proof of Theorem 11. m

3.4 Risk function of the PTRRE

Theorem 13 Ignoring the terms of order 3, the approximate risk function of the PTRRE under
LINEX loss is given by:

B[ Lomex (B ().8)] = 5 ldo"aR () CR! (5)

—2d02E[ ( (re229) 1 C'H (HC'H)'HC 'R/ (k)a

o

+da' (R (k) 8 —B)a' (R (k)8 —B)

+2da’ (R (k) 8 — B)a'R (k) C"'H' (HC'H') ' HC :Q'nE [“0 ( X(p2. M))}

1952

+d [a’R(k) C™'H (HC'H) 'HC :Q laQE [go (X?pﬂ ”)ﬂ I, +FE {gp <>< - —)ﬂ nn’]

7202 1952
x QCTHH' (HC™'H) ' HC 'R (k)a| |

When R (k) = 1, the risk function reduces to the risk function of the URE under LINEX loss.
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Proof. In order to derive the risk function of the preliminary test ridge regression estimator

under LINEX loss, B:T (k), it is necessary to write the estimator in terms of the expressions
(1.21 and 1.24). From (1.5) and (1.13) it is known that

B, (k) =B, (k) = (B, (k) = B, () Ir (F)

and by subtracting 3 on both sides of the equation (,@:T (k) — B) resulted in

= (B (0= B) = (B (5) = B () Inn (F)

(B. (k) ~ R (k) B+ R (k) 8~ B) ~R(K) (B, — B) In (F)

R(k) (B, —B) + R(K)B~B) —R () (B, —B,) Inn (F)
using results (1.21) and (1.24) it was found that

=R(k)C3Q (w—n)+ (R(k)8—B) —R(k)C'H (HC'H) 'HC :Quwlyg (F)

(3.5)
The risk function for 3 (k) under LINEX loss is defined as:
Revex (B, (k). 8) = dE [exp [a (B, () - 8)| —a' (B, (k) B8) —1]
Using the Taylor expansion, then
~PT 2
o~ dE a’ n (k) - B
Rrivex <5:T (k) 75) = [ ( 51 )} +0 (x3) (3.6)

The expectation in the numerator

el (B, k) -8)]

can be simplified by substituting (3.5) into the expectation:

B 2R (k) CHQ (w —m) +a (R (k) 8~ B) — R (k) C'H (HC'H)) " HC QI (F) 2

—F [(a'R (k) C2Q (w — n))l <a’R (k) C2Q (w — n))}
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(3.7)
+28 | (VR (O = m) @ (R (1) 8- 9))
(3.8)
28| (¥R () CHQ (@ - ) ((R( € H (HCH) ' HC i Qulyn(F)|
(3.9)
+E[(a' (R(k) B - B)) (a (R(k) B — B))]
(3.10)
8- (om0 ) Va6
(3.11)
B [(a’R () CH (HC'H) " HC QT (1))
x (a’R (k) C™'H (HC™'H') 'HC ?Qwlyg <F))]
(312)

Expression (3.7):

B| (R0 - ) (WRICIQ @ -n)]
— B [aR (k) C1Q (@~ n)aR (k) C Q' (w - n)|

— B [aR (k) C1Q (@~ n) (w —n) QC R () a

=aR(k)C:QE [(w—n)(w-n)] QCIR/ (k) a
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using (1.38) it was found that

a'R (k) C:Q (61,) QC 3R/ (k) a
— 2R (k) C:Q'QC :R (k) a
= o?a’'R (k) C"'R/ (k) a

Expression (3.8): Since £ [(w — n)] = O the following was obtained

2F {(a'R (k) C2Q (w — n))/ (@' (R(k)B— ﬂ))}
= 2F [a’R (k)C3Q (w—mn) (' (R (k)8 — B))]

=2aR (k) C2QE[(w—n)](a (R(k)B-B)) =0

Expression (3.9):

2F [(a’R (k) C3Q (w — n))l (a'R (k) C'H' (HC'H') ' HC  Qwlyp (F))]
— 9F [a'R (k) C73Q (w — ) w'Iyr (F)QC*H (HC™'H') ' HC 'R/ (k) a}

— —2aR (k) C2QE [(w — ) W' Iyg (F)] QC :H (HC'H') ' HC 'R/ (k) a

= —2aR(k)C:QE [(w=n)(w—n)+n)Ing (F)] QC zH’ (HC’lH’)_1 HC 'R/ (k)a

= —2aR (k) C2QE [(w — 1) (w —n) Ivz (F)] QC:H (HC'H) " HC 'R/ (k) a

(3.13)

—2a'R. (k) C2Q'E [(w — n) 'Ing (F)) QC:H (HC'H) " HC 'R/ (k) a

(3.14)
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Expectation (3.13): Using (1.40) it was found that
—2a'R (k) C3QE [(w—n) (w —n) Iyz (F)] QC*H' (HC'H) " HC 'R/ (k)a

— —2a'R (k) C3Q) <U2E [go (XQ )] Ip> QC :H' (HC'H')'HC 'R/ (k)a

n'n
<p+27 20_2 )

— _90%FE {(p <X2(P+2 ))] aR(k)C:QQC :H (HC'H) 'HC 'R/ (k)a

= —20%F {gp (><2<p+2 _>)] aR (k) C'H (HC'H') " HC 'R/ (k)a

Expectation (3.14): Since FE [(w —n)n'Ingr (F)] = E|(w —n) Ing (F)]n' and using (1.32) re-
sulted in

—2a'R. (k) C 2 QE[(w — n)n'Iyr (F)] QC:H (HC™'H)) " HC 'R/ (k) a =0
Combining (3.13) and (3.14) an expression for (3.9) was obtained:

9202 [gp (X%pﬁ’%)ﬂ a'R (k) C~'H' (HC'H') 'HC 'R/ (k)a

Expression (3.10):

E (@ (R (k)B-B)) (@ R (k)8 - B))]

=a' (R(k)B-pB)a (R(k)B~-B)
Expression (3.11): Using (1.31) it was found that

2K [(a' (R (k)8 - B)) <a’R (k) C~H (HC'H') ™' HC > Qwlynp (F))}
—2F [a’ (R(k)B— B)a'R (k) C~'H' (HC'H') " HC *Qwlyp (F)]

—2a' (R (k) B8 — B) @R (k) C'H' (HC™'H') ' HC 2 Q'E [wlyy (F)]

—2a' (R (k) 8 — B) @R (k) C"'H' (HC'H') ' HC :Q'nE {(p <X2(p+2,g;_g))]
Expression (3.12): Using (1.39) the following was obtained

E [(a’R (k) C~'H (HC'H') ' HC > Qwlynp (F))'

x (2R (k) C'H (HC'H') " HC 5 Qwlvp (F))|

—E [a’R (k) C'H' (HC™'H') ' HC :Qww'Iyz (F) QC*H' (HC'H') ' HC 'R/ (k) a
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— 2R (k)C™'H (HC™'H') ' HC 2Q'E [ww'Iyk (F)] QC3H' (HC'H') ' HC™'R’ (k) a

with F [ww'Iyg (F)] = 0®F {gp (X%pw,ﬂ’%))} I, +FE {g@ <X2(p+4’ﬂ%l))} 1’ therefore,

aR (k) C'H (HC™'H') ' HC :QE [ww'Iyx (F)) QC *H' (HC'H)) 'HC 'R/ (k)a

— |aR (k) C'H (HC'H') 'HC : Q' [02}3 lgp (XQ(M M)ﬂ I, +E [(p (XQ(M M))} nn’]

x QC 3H' (HC™'H') ' HC 'R’ (k) a}

By combining (3.7) - (3.12) an expression for the numerator of (3.6) was obtained.

(3.15)
Substituting (3.15) into (3.6) completes the proof.l

3.5 Simulations

In this section the same simulation exercise was conducted as in Chapter 2 (for more detail see
section 1.5 page 28) and the results are given in a similar way.  All three proposed estimators
(URRE, RRRE and PTRRE) are considered under the LINEX loss function (a=1,d =1.) In the
first table in each section only the error variance varied, the second table represents the risk values
over different levels of multicollinearity. The third table represents the effect of an increase in the
number of parameters that needs to be estimated and the fourth table represents the effect of an
increase in the sample size. The SAS program for these simulations is available in Appendix A.

Unrestricted ridge regression estimator under LINEX loss, comparing the effect of a
change in the variance(o?).

Table 3.1: Effect of an increase in the variance on the risk of the URRE under LINEX loss and
across different ridge parameters:

n=30p=4and y=0.8 |

| o | HK | HKB | LW | HSL | AM | GM | MED |

0.01 [ 2.49E-00 | 2.49E-06 | 2.49E-06 | 2.49E-06 | 0.0013919 | 2.49E-06 | 2.51E-06
0.1 || 0.000222 | 0.0002229 | 0.0002218 | 0.0002221 | 0.0164399 | 0.0002523 | 0.0003237
0.25 | 0.0015779 | 0.0015911 | 0.0015855 | 0.0015775 | 0.0573444 | 0.0019879 | 0.0022404
0.5 || 0.0060267 | 0.0062432 | 0.0061068 | 0.0060221 | 0.136/345 | 0.0130565 | 0.0137515

1 0.0228799 | 0.0256124 | 0.0237123 | 0.0227/638 | 0.2548971 | 0.06190/5 | 0.0668131

4 1 0.2687104 | 0.3491463 | 0.4444086 | 0.2718964 | 0.8038869 | 0.6118955 | 0.6066501

9 | 0.6184285 | 2.3418732 | 4.1699215 | 0.6542804 | 1.0337162 | 0.9641137 | 0.9614041
20 | 0.9470142 | 331.14739 | 1639.8916 | 0.9783371 | 1.1125986 | 1.095838 | 1.0954383

(see Figure E1, panel (b) in Appendix E for all the results of URRE)
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Unrestricted ridge regression estimator under LINEX loss, comparing the effect of a
change in the level of multicollinearity(~).

Table 3.2: Effect of an increase in the level of multicollinearity on the risk of the URRE under

LINEX loss and across different ridge parameters:

n=30p=4ando =1

[0 | _AK [ HEB [ LW [ HSL [ AM ] GM ] MED
0.7 11 0.0272922 | 0.0307117 | 0.0287744 | 0.0272555 | 0.2889368 | 0.07/5849 | 0.0911682
0.8 [[ 0.0234975 | 0.0260209 | 0.0245722 | 0.0234705 | 0.263243 | 0.0625855 | 0.0618597
0.9 || 0.0195846 | 0.0212434 | 0.0200445 | 0.0202895 | 0.2263896 | 0.0472795 | 0.0506391
0.95 || 0.0180375 | 0.018881 | 0.0183726 | 0.0219692 | 0.2360793 | 0.0471423 | 0.0481491
0.99 || 0.0161885 | 0.0164978 | 0.0165378 | 0.0412554 | 0.2232969 | 0.0427467 | 0.0407/586

Unrestricted ridge regression estimator
change in the number of parameters (p)

Table 3.3: Effect of an increase in the number of parameters to be estimated on the risk of the

under LINEX loss, comparing the effect of a

URRE under LINEX loss and across different ridge parameters:

n=30,y=08ando =1

Lp]

HEK

OKB |

LW 1

HSL |

AM

GM

MED ||

4

0.0234975

0.0260209

0.0245722

0.0234705

0.263243

0.0625855

0.0618597

10

0.0257605

0.0272743

0.0271941

0.0258191

0.9396982

0.1236577

0.0933821

20

0.0281054

0.0289691

0.033652

0.0289419

1.855324

0.192965

0.1178431

25

0.0280919

0.0306888

0.0446579

0.029549

2.2721672

0.2069142

0.1172139

Unrestricted ridge regression estimator under LINEX loss, comparing the effect of a

change in the sample size (n)

Table 3.4: Effect of an increase in the sample size on the risk of the URRE under LINEX loss and

across different ridge parameters:

y=08p=4ando =1

I n | HK [ HKB [ IW [ HSL | AM [ GM [ MED
T5 [ 0.0503534 | 0.0571268 | 0.0546896 | 0.0510083 | 0.3484839 | 0.1371877 | 0.1518859
30 || 0.0234975 [ 0.0260200 [ 0.0245722 | 0.0234705 | 0.263243 | 0.0625855 | 0.0618507
50 || 0.0133175 | 0.0143882 | 0.0136717 | 0.0133472 | 0.1851107 | 0.0328133 | 0.0340046
100 || 0.0069222 | 0.0072964 | 0.0070231 [ 0.0069269 | 0.1379556 | 0.0143201 | 0.0146359

© University of Pretoria




130

Restricted ridge regression estimator under LINEX loss, comparing the effect of a change
in the variance(c?).

Table 3.5: Effect of an increase in the variance on the risk of the RRRE under LINEX loss and
across different ridge parameters:

n=30p=4and y=0.8

[ o> || HK | HKB | LW HSL AM GM | MED
0.01 | 2.20E-06 | 2.08E-06 | 2.00E-06 | 2.00E-06 | 0.0013686 | 2.04E-06 | 2.28E-06
0.1 | 1.76E-06 | 1.21E-06 | 2.I8E-06 | 1.65E-06 | 0.0161678 | 0.0000241 [ 0.0000929
0.25 | 1.43E-06 | 9.10E-06 | 2.04E-06 | 2.43E-06 | 0.0559977 | 0.0004596 | 0.0007365
0.5 | 0.0000271 [ 0.0001957 | 1.58E-06 | 0.000057 | 0.1332403 | 0.0077864 | 0.0086111
T |/ 0.0005445 [ 0.0025758 | 4.75E-06 | 0.0010233 | 0.2441713 | 0.0457966 | 0.0508376
1| 0.0820385 | 0.0565302 | 0.0005747 | 0.1195946 | 0.7930312 | 0.5896867 | 0.5632996
9 | 0.4632639 | 0.0864715 | 0.0017016 | 0.5479301 | 1.0308931 | 0.9587859 | 0.9574256
20 | 0.9077105 | 0.1002413 | 0.0018098 | 0.9497898 | 1.1107399 | 1.0937663 | 1.0935007

(see Figure E2, panel (b) in Appendix E for all the results of RRRE)

Restricted ridge regression estimator under LINEX loss, comparing the effect of a change

in the level of multicollinearity().

Table 3.6: Effect on an increase in the level of multicollinearity on the risk of the RRRE under

LINEX loss and across different ridge parameters:

n=30p=4ando =1

L~ OK | HKB [ IW ST AN GM || MED
0.7 || 0.000641 | 0.0036064 | 0.0000252 | 0.0006262 | 0.2792505 | 0.0605898 | 0.0764509
0.8 | 0.0005526 | 0.0025592 | 4.62E-06 | 0.0010242 | 0.2534618 | 0.0478898 | 0.047272
0.9 | 0.000452 | 0.0015232 | 9.99E-06 | 0.002338 | 0.2152412 | 0.0334304 | 0.0367768
0.95 | 0.0004049 | 0.0008783 | 0.0000193 | 0.0051408 | 0.2261691 | 0.0343994 | 0.0347464
0.99 | 0.0003628 | 0.0001872 | 0.0000452 | 0.0275562 | 0.2139202 | 0.0301837 | 0.0275512

Restricted ridge regression estimator under LINEX loss, comparing the effect of a change

in the number of parameters (p)

Table 3.7: Effect of an increase in the number of parameters to be estimated on the risk of the

RRRE under LINEX loss and across different ridge parameters:

n=230,y=08and o =1

Lp]

HK ]

HKB |

LW 1

HSL |

AM ]

GM ]

MED |

4

0.0005526

0.0025592

4.62E-06

0.0010242

0.2534618

0.04/8898

0.047272

10

0.4768643

0.484579

0.4720913

0.48050601

1.3172652

0.6584262

0.6107194

20

1.2659497

1.290517

1.4905098

1.2573528

2.5258614

1.4263526

1.3456467

25

1.1648705

1.3128668

1.8121345

1.1487571

2.8368007

1.3076337

1.2088602
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Restricted ridge regression estimator under LINEX loss, comparing the effect of a change
in the sample size (n)

Table 3.8: Effect of an increase in the sample size on the risk of the RRRE under LINEX loss and
across different ridge parameters:

7y=08p=4ando =1 |

Tn || HEK HKB W HST AT G MED
T5 || 0.0022472 | 0.0076932 | 0.0001033 | 0.0045034 | 0.3342832 | 0.1123380 | 0.1284607
30 | 0.0005526 | 0.0025592 | 4.62E-06 | 0.0010242 | 0.2534618 | 0.0478898 | 0.047272
50 || 0.0002117 | 0.0010701 | 4.94E-07 | 0.0003791 | 0.1796453 | 0.0229607 | 0.0247722
100 || 0.0000536 | 0.0003123 | 7.93E-08 | 0.0000006 | 0.1334878 | 0.0082621 | 0.0087817

Preliminary test ridge regression estimator under LINEX loss, comparing the effect of a
change in the variance(o?).

Table 3.9: Effect of an increase in the variance on the risk of the PTRRE under LINEX loss and
across different ridge parameters:

n=30p=4and v=0.8

T o2 | HK HKB W HSL AN G MED
0.0 | 2.17E-06 | 2.16E-06 | 2.17E-06 | 2.17E-06 | 0.0026249 | 2.14E-06 | 2.14E-06
0.1 |/ 0.0000739 | 0.0000738 | 0.0000741 | 0.0000739 | 0.0189713 | 0.0000813 | 0.0000859
0.25 || 0.0004638 | 0.0004687 | 0.0004687 | 0.0004645 | 0.0698066 | 0.0010349 | 0.0013247
0.5 [ 0.0016369 | 0.001814 | 0.0016404 | 0.0016554 | 0.1312955 | 0.0083023 | 0.0096624
T |/ 0.0067331 | 0.0088424 | 0.0066400 | 0.0070137 | 0.261523 | 0.0529673 | 0.049579
1 [ 0.1412467 | 0.1620255 | 0.1440023 | 0.1690607 | 0.7814624 | 0.5861453 | 0.5924365
0 |[0.5523396 | 2.4555379 | 4.2110122 | 0.6085024 | 1.0278617 | 0.9549981 | 0.9510714
20 || 0.9251724 | 238.50027 | 908.27665 | 0.9632687 | 1.1112048 | 1.0945344 | 1.0053171

(see Figure E3, panel (b) in Appendix E for all the results of PTRRE)

Preliminary test ridge regression estimator under LINEX loss, comparing the effect of a

change in the level of multicollinearity(~).

Table 3.10: Effect of an increase in the level of multicollinearity on the risk of the PTRRE under

LINEX loss and across different ridge parameters:

n=30p=4ando =1

[ HK OKB LW OSL AM GM MED
0.7 || 0.0098944 | 0.0129995 | 0.0102398 | 0.00988 | 0.2687538 | 0.0626524 | 0.0850684
0.8 || 0.0069031 | 0.0089518 | 0.0068472 | 0.0072279 | 0.2429004 | 0.0517412 | 0.0545445
0.9 || 0.0051672 | 0.0062399 | 0.0049448 | 0.0067154 | 0.241459 | 0.0395513 | 0.0385507
0.95 || 0.0057597 | 0.0063717 | 0.0055642 | 0.010398 | 0.2317894 | 0.0378313 | 0.0376763
0.99 || 0.0043706 | 0.0043111 | 0.004217 | 0.0304182 | 0.2345355 | 0.0352696 | 0.0362339
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Preliminary test ridge regression estimator under LINEX loss, comparing the effect of a
change in the number of parameters (p)

Table 3.11: Effect of an increase in the number of parameters to be estimated on the risk of the
PTRRE under LINEX loss and across different ridge parameters:

[
[p]

n=230,y=08and o =1 |
LW [ HSL [ AM | GM [ MED

HK | HKB |

4

0.0069031

0.0089518

0.0068472

0.0072279

0.2429004

0.0517412

0.0545445

10

0.0242353

0.0256523

0.0253732

0.024257

0.9554551

0.1265353

0.0920304

20

0.0273602

0.0278644

0.0319506

0.0283394

1.9363356

0.1954489

0.1140029

25

0.0278778

0.0310244

0.0459858

0.0294221

2.2549517

0.213404

0.1240177

Preliminary test ridge regression estimator under LINEX loss, comparing the effect of a

change in the sample size (n)

Table 3.12: Effect of an increase in the sample size on the risk of the PTRRE under LINEX loss

and across different ridge parameters:

y=08p=4ando =1

T n | HEK | HKB | LW | HSL || AM | GM | MED
T5 || 0.0161828 | 0.0218173 | 0.0154884 | 0.0182105 | 0.3658404 | 0.1106617 | 0.1238406
30 | 0.0069031 | 0.0089518 | 0.0068472 | 0.0072279 | 0.2429004 | 0.0517412 | 0.0545445
50 | 0.0042419 | 0.0052618 | 0.0041853 | 0.0043618 | 0.1863505 | 0.0263496 | 0.0284935
100 || 0.0020705 | 0.0023623 | 0.0020529 | 0.0020067 | 0.1345911 | 0.0007424 | 0.0097547

In order to summarise the results in tables 3.1 to 3.12, Figures E1 to E3 in Appendix E, panel (b)
was used. For URRE and PTRRE is was found that the risk is the lowest when using the HK and
HSL ridge parameters, whereas for RRRE the LW ridge parameter leads to the lowest risk. In all
cases the AM ridge parameter performed the worst. For all three estimators, namely URRE, RRRE
and PTRRE it was found that the HK, LW and HKB ridge parameters lead to the lowest risk over all
the tested levels of multicollinearity. For the HSL ridge parameter the risks are also low for v < 0.95
the AM ridge parameter performed the worst overall. For all three estimators, namely URRE, RRRE
and PTRRE is was found that the HK and HSL ridge parameters lead to the lowest risks over an
increasing number of parameters to be estimated. The HKB ridge parameter also performs well,
except for RRRE when p > 20 the AM ridge parameter performed the worst overall. For all the
estimators, namely URRE, RRRE and PTRRE it was found that the HK, HKB, LW and HSL ridge
parameters perform the best over different sample sizes and the AM ridge parameter performs the
worst overall.

© University of Pretoria



&
&

sssssssssssssssssssssss
@ UNIVERSITY OF PRETORIA
@Zp VUNIBESITHI YA PRETORIA

133

3.5.1 Evaluation the performance of the estimators relative to each other
under LINEX loss

The risk of RRRE, URRE and PTRRE calculated under LINEX loss are computationally compared
to each other in order to determine the performance of the estimators relative to each other. In
Figure 3.2 the dashed (blue) line represents the risk of the RRRE, the solid (red) line represents the
risk of the URRE and the dashed-dot (green) line represents the risk of the PTRRE. The panel of
sketches in this section will be discussed in two ways, firstly by keeping o constant and allowing the
sample size, n to increase (across the rows of the panel sketches) and secondly by keeping n constant
and allowing o to increase (across the columns of the panel sketches). All the risk functions are
represented as a function of § = HB — h (in this application J was a scalar as explained in section
2.5.1), where —1 < § < 1 on the horizontal axis. The SAS program used for these simulations is
in Appendix B.

Risk functions of RRRE, URRE and PTRRE under LINEX loss

06 07 0.8
05 06
04
034 N ! \ ’ 04
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06 05 07
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02 . \ 4 \ !
~ ‘. 015 ) 4 0z ’

01 ~ 4
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N 04 Ay

- 05 < 035 R
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............
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Figure 3.2 : Comparison of URRE, RRRE and PTRRE across different values of o and n under
LINEX loss.

© University of Pretoria



134

For the case where ¢ = 1, it is again clear that as the sample size increases for this choice of o,
the risk of PTRRE tends towards the risk of URRE as § — do0. It is well-known that URRE is
the most efficient estimator as the sample size increases, since the variance of URRE, i.e. 3, (k)

2

. €; . . .

is o?R (k) C"'R/ (k) and 0% = 26 It is clear that as the sample size increases the variance of
n —_—

URRE will tend to zero. Therefore as the sample size increases, PTRRE becomes equally efficient
as the URRE. It is clear that as the sample size increases the risk associated with all the estimators
decreases as shown in the previous section. Similar results are obtained for different values of o.

When o increases for a specific sample size, it can be seen that in the interval near the origin, the
interval in which the PTRRE has lower risk relative to the URRE, becomes larger. Therefore when
working with a specific sample size and if the variance of the sample is relatively high, the PTRRE
is a more efficient estimator compared to the URRE.
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Chapter 4

Performance of the preliminary test
estimator using BLINEX loss

4.1 Bounded linear exponential loss function (BLINEX loss
function)

In this chapter the performance of the preliminary test estimator under BLINEX loss is considered
and in all the sections in this chapter the performance of the preliminary test estimator is compared
to the performance of its component estimators. Therefore the risk functions of all three the
estimators are derived and compared to each other, either numerically or computationally. In a
paper by Wen and Levy (2001) a new parametric family of bounded and asymmetric loss functions,
called the BLINEX loss function, was developed and the mathematical properties of the BLINEX
loss function were discussed in the paper. The BLINEX function is the bounded alternative to the
LINEX loss function, therefore it doesn't have the same limitations as the LINEX loss function as
mentioned in the previous chapter. The BLINEX function is therefore both bounded and asymmetric,
which allowed the same flexibility as exhibited by the LINEX loss function but it also has the added
advantage of being bounded. The relationship between the BLINEX and LINEX loss functions will
be considered next.

Assume that 3" is an estimator of the unknown parameter 3 where the LINEX loss function is then
defined as follows:

Lrivex (87,8) = d (e =7 —a (8"~ B) — 1)

where a is the shape parameter and d is the scale parameter.
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The BLINEX loss function is derived from the LINEX loss function, let
d (e —a(p—B)—1)
L ) = :
prnex (T6) = TG a5 — p) - 1)
- Lrinex (8%, 58)
1L+ Xlprivex (8%, 5)

(4.1)

with b = \d.

There is a need to investigate the performance of the preliminary test estimator when a linear
restriction is placed on the regression model, working under a bounded loss function and also taking
into account the presence of multicollinearity. Assume 8" is a p X 1 vector containing regression
coefficient estimators and 3 is a p x 1 vector of unknown regression coefficient parameters.

The multivariate BLINEX loss function is given by:

1 1
3 T T @@ _f) 2@ -8 1

EBLINEX (/3*7 :6)

with b = A\d where d =the scale parameter of the LINEX loss function.

The BLINEX loss function depends on the selected values of three parameters, namely, the constant
vector a, the constants b and A, where each of these values plays a significant role in the shape
of the loss function. The bounding parameter )\, specifies the range of the loss which is bounded
between 0 and % The sign of the values in the constant vector a will determine the direction
of error penalisation, where negative values will penalise negative errors and a positive value will
penalise positive errors. This constant also influences the flatness of the curve. For small positive
values of the constant vector a, the curve will be flatter and large positive values will result in a
steeper curve. The constant b is an asymmetry parameter and it can be seen that for smaller values
of b the loss function is more asymmetric and for larger values of b the function is more symmetric.

The risk function under BLINEX loss is therefore given by:

1
1= I+blexp(a(B*—P0)) —a (B —pB) —1]

1
Rprivex (8%, 8) = XE
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The following panel of sketches shows the effect of different values of a and b on the BLINEX loss

function for p =2 :

Liss Loss

Less

o

0
‘5

86

Liss

200

bt 0

a= (0).A=Lb=2 a= )N =10=2 a= () A=Lb=2

Figure 4.2 : The effect of a and b on the BLINEX loss function.

The role of a is exactly the same as for the LINEX loss function. It can be seen that as the absolute
values of a; increases, the level of positive or negative error penalisation increases, where as the
value of b increases the loss function shows higher levels of symmetry in the loss functions.
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4.2 Classical non-ridge preliminary test estimator

In this section the performance the preliminary test estimator (PTE), restricted maximum likelihood
estimator (RMLE) and unrestricted maximum likelihood estimator (UMLE) are all considered under
the BLINEX loss function and the risk functions are compared to each other in order to determine
which estimator performs better compared to the rest. The multicollinearity assumption is not taken
into account to analyse the risk performance under both classical as well as the Bayes paradigms.
The proposed results are general and can be considered in ridge regression as well. A number
of papers have already been published on the preliminary test estimators using different proposed
loss structures by Bancroft (1944,1964), Giles and Giles (1996), Giles (2002), Ohtani et al. (1997)
Kibria and Saleh (1993, 2006), Saleh (2006), Arashi et al. (2008) to name a few.

The problem under study is to consider the estimation of a location parameter 1 from a normal
population with unknown variance in order to evaluate the finite-sample properties of the preliminary
test estimator in terms of its risk. Suppose that X; X5, ..., X,, is a random sample from N (p, 0%)
where both 11 € R and ¢ € R™ are unknown.

The outcome of a preliminary test on g will determine which of the estimators will be used to
estimate the population mean . The unrestricted maximum likelihood estimator, X = %i, will be
regarded as the estimator of i when nothing is a priori known about the parameter ji, whereas the
restricted maximum likelihood estimator will be chosen when some constraints are imposed to the
model as a null hypothesis. The standard t — test for the population mean will be the appropriate
test since the scale parameter ¢ is unknown.

Now consider the case where the following hypotheses is dealt with:

{Hoi,u:,uo
Ha:p# pg

Then it is well known that the test statistic is given as t = 2242 ~ ¢ (n — 1) with X ~ N <u, %)

_ v
(see section 1.2.3)

— 2
Alternatively the following statistic 1> = (X:f‘)) = F ~ F(1,n—1) (see section 1.2.4) can be

n

used.

In more general terms, the sampling distribution of the test statistic will be the noncentral F’ variate,
F~F(1,n—1,X") with \** = % known as the noncentrality parameter and the estimation error
is defined as 0 = gy — p. It is clear that when § = 0, the sampling distribution under the null
hypothesis will be the central F'(1,n — 1,0) distribution. Based on this proposal the unrestricted
maximum likelihood estimator(UMLE) is given by i; = X and the restricted maximum likelihood
estimator (RMLE) is equal to .

© University of Pretoria



139

Then, the PTE of u is defined as

ty = [Ir (F) % py] + [Ing (F) X ]

The null hypothesis will not be rejected when ' < c¢,, where ¢, is a critical value defined as
Fy1n—1+=0, where a is the level of significance.

4.2.1 Risk function of RMLE

The risk function of RMLE is defined and followed by an illustration of how the risk function behaves
for different choices of the parameters in the function.

The risk function of the RMLE is defined as follows:

Rprivex (po, 1) = £ {% {1 - m” - % [1 o 1+b(e“51a61):|

with § = py — p.

In the case where 0 = 0, Rprinvex (1, 1) = 0.

By examining the risk function it can be seen that when both a and § are negative values or when both
a and ¢ are positive, with J either tending to —oo or 0o, the risk of RMLE (Rprivex (1, 1)) tends
to +. When § tends to zero, the term b (e — ad — 1) tends to zero and therefore Rprrvex (1o, 1t)
tends to 0.

4.2.2 Risk function of UMLE

By definition the risk function of UMLE can be calculated as below:

*1 1
Rprivex (py, 1) = <

A {1 Tt b[enm —a(uy—p) —1]|F (11) dpy (4.2)

where p (p,) is the density of N (,u, %) .

Therefore by applying the binomial expansion to (1 — Z)~" where Z = b [a (g — ) — e®m=r) 4 1}

" )%foo 6—(u1—u)2(#)

Recivex (i) =3 =3 (352)" [ = 2di
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The risk function of the UMLE is not a function of the estimation error, § and is therefore also
constant with regard to the noncentrality parameter \**.

Monte Carlo simulations of risk of UMLE

The risk function of UMLE was also evaluated as a function of A and it was found that the risk
function is a decreasing function of both n and A. The following table gives the simulation results
where the function was evaluated for different values of a, b, o and n and using p = 1000 iterations.
The SAS program used for these simulations is in Appendix C.

Table 4.1: Risk of UMLE for specific choices of a,b, o, n and A = 1.

a=1b=01 =1 a=01b=1 =1 a=01b=01 =1
Samplesize | c=1|0c=2|0=5|oc=1|0c=2]0c=5|o0c=1] 0c=2 [oc=5
n=10 0.0047 | 0.0190 | 0.1077 | 0.0005 | 0.0019 | 0.0I13 ]| 0.0001 | 0.0002 | 0.0012

n = 30 0.0016 | 0.0065 | 0.0401 | 0.0002 | 0.0007 [ 0.0040 || 0.0000 | 0.0001 | 0.0004

n = 50 0.0011 | 0.0042 | 0.0263 | 0.0001 | 0.0004 | 0.0026 || 0.0000 | 0.0000 | 0.0003

n = 100 0.0005 | 0.0020 | 0.0128 | 0.0001 | 0.0002 [ 0.0013 ]| 0.00000 | 0.0000 | 0.0001

n = 1000 | 0.0001 | 0.0002 | 0.00I5 | 0.0000 | 0.0000 | 0.0001 || 0.00000 | 0.00000 | 0.0000

The results in table 4.1 confirm some of the expected characteristics of the risk function, namely
that the risk of UMLE is a decreasing function of both A and n, but the risk is an increasing function
of the variance for a specific choice of parameter.
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4.2.3 Risk of PTE

In this section, the null risk (risk under the null hypothesis) of the PTE is derived under BLINEX
loss.

Theorem 14 Ignoring the terms of order 3, the risk function of the preliminary test estimator using
the BLINEX loss function under Hy is given by

Rorivex (1) ~ 22 (1+e?) (%) ) mzzjo ﬂ*;'A**m g

(2 +2m)] «
(1+2m)]P 1 <

[SIE INTE

o 202 51" r+l
+3 o <w +0"P [Fy < ]
r=1
o () ] 5 Rl
4l )0) ] T By A <
202 a—=j
a?b (T>F(%) o : j [202] 2 AP F[% (2— J+2k] ok
~st | S apm < ) - 3 2] go Py P P < e

oo [ (202)3p(rs1
[ (2’(‘1’) <(n)27r( : )+5TP[F2<CZ*]
r=1

(r—4)
r ) , 2 T e,)\** soxg [ l(:|.+7"*j+2i) kkok
£ () 2] Sl <o)

=0

(n l)X 2+42m A ** ( )X 1. \** ( —1)X21 L ioi Ak
with ) = — 2XGezma) p 1 XAt g (L4r—j+2i30)
PTeRmng L, 00 X{n—1) 37 T2,

(n=1)xC5_jyap 2%
and Fy = ~(2_g 2k M)
4T TR,
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Proof. By applying the binomial expansion for Z = b [a (1, — 1) — eelm—n) 4 1] the risk function

P
is given by
Rprivex (//J;nﬂ) = K [['BLINEX (Mp’ M)] (4.4)
~ 5 [B@)+E(2)+0(7)]
where

Using the fact that

(y—1)" = (=) g (F) = " Ing (F)

where X% ) is a noncentral Chi-square random variable with 1 degree of freedom and a noncen-

trality parameter A** = 22 (see section 1.2.2).

— 202

Therefore,

, (r=3)

E(p,— 1) =E[(py — ) 14+0"E [Ing (F)]=) (&) (T> [0_2] L lINR (F) (X{ia=y) >
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Using Lemma 4 it was found that :

2l P ) (T—g]) B r 5j . 002 (T—;J) %) e ATE yrri F[%(l—i—r—j—i—Qi)]P F sk

NR( ) (X(l,/\**)) - J;O( ) (]) |:T:| Z;O il F[%(1+2i)] [ 3 < Ca ]
B(2) = b | S5 (Bln — ) + 5P R <
(r=j)
"y (1) [202] 7 A oAt g D2 (14r—j42i)] s

_;0 (&%) (;) [T} ;O () PF3 <

Consider the following expressions (see Zellner, 1971, p364-365)
. (B)re+)
E(pu, —p)™ 5 for r=1,2,3, ..
E(u - = 0 for r=1,2,3,...

an expression for £ (Z) was obtained:

E(Z)

o0 252 gr r+1
- [Z%‘ <( - )2—7r< 2 ygp [F2 <]
r=2
(r—j)
"oy (1) [202] 2 R ety D[ (14r—j420)] s
_J;() (53) (J) [T] 7;:20 g 21“[%(1+2i)] PIFs < ]>]
(4.5)

Furthermore,

E(Z?) = a®bE (p, — ,u)2 + 2abE (p, — pt) — 2abE [(Mp — 1) ea(“f’f")] —2F [ea(“ff“)]

0 [0 1

Since
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N

L 1
E [(”p — 1) ea(up_u)} =E(u —p) — (U?Q) ‘E [(X?A) " Ing (F) ea(“p—“)}
= [(Xl A**> [NR (F) ea(ul_U)]R(F)+G/(MO—M)]NR(F)‘|

(%) 1
<o—_n2> calio—i) |7 [(X“**> INR(F):|
(=

2 2 6) —/\ )\**m F[ (2+2m)]
) P

(1+2m)]

P[Fl < CZ]

3
N[= o]

otherwise F [(up — 1) e“(“P_“)] =0

Therefore £ (Z?) under Hy:

2‘22 F(é) 151 2O awr ek T[L (2 j42K)
E(2%) = % )y oP (B < ) — 253 (2) 7 S e i < )
1 1
o2 7 X 67)‘**)\**7” F[%(2+2m)] " a o2 53 X 7)\**)\ m F[%( +om ] .
—2ab (T) mZ::O -] 1"[%(1+2m)]P [F1 < ¢ )+2ab (e®) (27) mZ=:0 — I‘[%(1+2m)]P [Fy < ¢
00 202\ 2 (ri1
—~2b [2;{—7 (ﬁ—L IO L 5P <o)
r=1
r r—J) o ) e
. j r E:| P} 67)‘** )\**z F[%(I—FT—]-FQZ)] Kk
s a T %2 51—‘ Eg_l T
+b ;(27»!) <( />27r( )+6 P[F2<CZ*]
(r—3)
"oy (1) [202] 7 A oAt g D3 (14r—j42i)] .
_z_: (5j) (]) |:2T:| Z: 3! 2{‘[1(1+2i)] P [F3 < Ca ]
7=0 =0 2

Substituting (4.5) and (4.6) into (4.4) the result follows. m
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4.2.4 Comparison results

The risk of UMLE and PTE are analytically compared to each other and the result is given in the
following theorem.

Theorem 15 The PTE performs better than the UMLE in the sense of having smaller risk if the
following inequality holds:

1 LB 1= 2| 4 aB (, — ) +1

<z E et =Tl —P(F>c¢)|/P(F<c)

Proof. It is enough to show that Rprinex (,up,,u) < Rprivex (q, ).  Therefore it is known
that [1 — } < F [1 — %] , where z, =1+ [ea<“f“) —a(p,—p) — 1] and z,, =
M1 P

l‘up

Ty

1+b e~ —q(uy — p) — 1], knowing that E [1 — 1 ] is not a function of ¢.
Applying the inequality, 1 — % <x—1,V x> 0 to the expression above it is sufficient to prove that
Bla, —1 < B[1-2].

1‘“1

Simplifying the relevant term it yields

E [ea(up—u)} <

S =

Ell—i}ﬁ-aE(up—/ub)—l—l

xm
Setting %E {1 — ﬁ} +al (up — ,u) + 1 =@ it was found that
Eletv)] <@ (4.7)

The LHS of the above inequality can be written as

E [ea(up—u)] - B [ea(m—u)lR[FleaMNR[F}} (4.8)
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By applying the (1.53) and using (4.7) and (4.8) it was found that

E [ea(#r#)IR[F}eaMNR[F]] <FE [ea(#r#)IR[F]} E [eaMNR[F}]
Then it is enough to show that E [e*tn-mIrlF]] B [ INrlF]] < @
Therefore, from the fact that £ [ea(“I*“)IR[F]] > 0,

adIng([F) Q
B e < F it (49)

But the LHS of (4.9) can be written as

(4.10)

By making use of the expression in (4.9) and (4.10)

Q

ad
P (F > C) + P<F < C) e’ < B [ea(ul—u)IR[F}]

By simplifying and taking logs on both sides of the inequality the result follows. m
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The risk of RMLE, UMLE and PTE calculated under BLINEX loss are computationally compared to
each other in order to determine the performance of the estimators relative to one another. The
panel of sketches (see Figure 4.3) in this section will be discussed in two ways, firstly by keeping
o constant and allowing the sample size, n, to increase and secondly by keeping n constant and
allowing o to increase. The SAS program used for these simulations is in Appendix C.

rRisk functions of RMLE, UMLE and PTE under BLINEX loss
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Figure 4.3 : Comparison of UMLE, RMLE and PTE across different values of o and n under
BLINEX loss.

For the case where o = 1, as the sample size increases for this choice of o, the risk of PTE tends
towards the risk of UMLE as § — +o00. It is well-known that X (UMLE) is the most efficient
. . . . -~ 2 . .
estimator as the sample size increases, since Var (X) = 2. It is clear that as the sample size

increases the Var (X) will tend to zero. Therefore as the sample size increases, PTE becomes just
as efficient as the UMLE. Similar results are obtained for different values of o.

When o increases for a specific sample size, in the interval near the origin, the interval where the risk
of the of PTE is lower relative to the risk of the UMLE becomes larger. Therefore when working
with a specific sample size and if the variance of the sample is relatively high, the PTE is a more
efficient estimator compared to the UMLE.
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4.3 Classical preliminary test ridge regression estimator

In this section, the previous results are extended to the ridge regression model.

4.3.1 Risk function of the URRE

Theorem 16 Ignoring the terms of order 3, the approximated risk function for URRE under
BLINEX loss is given as

B Lounex (B (k).8)| ~ =3 [E[M] + E [M7]
——L[p[1+aR(K) BB - exp (-Ba+ AR () atia's; a)]
7l [35 4+ (R(K) B B) (R (k) 8- )| a
2 exp (—Ba+ BR (k) a+iaS; a) [ (R(K)B+3; ja) - aB-1]
+20%l [R (k) B — B] + 1 exp (~28'a+ 28R/ (k) a + 4S5 a) + 12|

Proof. The risk function for 3, (k) under BLINEX loss is defined as:

§)%BL]NEX (Bn (k) 7ﬁ> = F |:£BLINEX (/Bn (k> 7ﬁ>:|

N
S T S e (@ (B0 - 8)) —a (B - 8) 1]

By applying the binomial expansion (1 — M)™' =1+ M + M2 + O (M?)

where
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The risk function reduces to

E|Lonvex (B, (k). 8)] = %E[l—(1+M+M2+...)]
= —%E [M + M? + ..

— _§ [E[M]+E [M?]] +...

When calculating  [M] we make use of the final expressions of (3.1) - (3.3) and therefore:
E[M)=bE |a (B, (k) R (k) B+ R (k) 8- B) —exp (a (B, (k) -B) ) +1]

=0 [ (B, (k) ~R (k) B+ R (K) 8- 8)| —bE [exp (a (B, (k) -B) )| +0

— _bexp(—G'a)E [exp (B; (k) a)} b [R(K)B— ] +b

— _bexp (—B’a + @R (k) a+%a’25n(k)a> T [R(K)B— 8] +b

—b [1 L [R(k)B— 8] —exp (—B/a + @R (k) a+§a'zan(k)a)}

For the next expectation, namely E [M?], it is necessary to define M? :

=12 [t (B, (1)~ 8) (B )~ B) a| ~227a [ (B, 1) — ) exn (a' (B, (1) - 8))]
B! [Bn (k) — [3} _ o [exp <a’ (Bn (k) — 5))} 4P [eXp <2a’ (Bn (k) — 5))} 4B
Therefore E [M?] can be written as

v [at (B, - 8) (B (1) - ) |

(4.11)
ot [ (B, - 8) e (o (B, (- )

(4.12)

1o d'E [E;n (k) — ﬁ}

(4.13)
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o e (s (3,05

(414)
+7E [exp (22 (B, (k) - B) )| + ¥

(4.15)

Expression (4.11): By adding and subtracting R (k) 3 in both brackets it follows that

vE|at (B, - 8) (B, (0 - ) |
— e [((an (k) =R (k) 8) + (R (k) 8= B)) ((B. (1) ~R(K)B) + (R (k) B - ﬁ))] o

~ !/
by multiplying the brackets out and knowing that the E {(ﬁn (k) — R (k) ,6) (R(k)B — ,8)} =0
it follows that

v |at (B, - 8) (B, (1) - ) |
— 1B [a' (B (k) =R (k) B) (B, (k) — R (k) ﬂ)'a] + 2B [ (R (k) 8- B) (R (k) 8- ) al
(k) = R (k)

- (B, 8) (B, 00~ R (1)) | a7 [ (R(1) 5~ ) (R(1) B — B)'a
since E [(Bn (k)= R(k)8) (B, (k) ~ R (k) B) ] = 55 ) the expression reduces to

=t [aS5 a+a (R(K)B—B)(R(K)B-B) al

=1l [%5 )+ (R()B-B)(R(K)B-B)]a

Expression (4.12):

~2a [(B, () - B) exp (= (B, (1) - 8))]
= —2b?exp (—F'a)a'F |:/Bn (k) exp (a,Bn Uf))}

(4.16)
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Expectation (4.16):

—2b%exp (—@'a)a'E [Bn (k) exp (alﬁn (k))]

therefore from (1.10)

E [E}n (k) exp (a’f‘in (k))]
= J (Bn (k) exp (B, (k) a) PRTT

<o (=4 (B, (0 - R (4 8) %51, (B, (1)~ R (1) 8) ) aB, (1)

= oxp (Batia’S; wa) | [B, (k) F (B, () dB, ()

-0 o0

where the probability density function of f (Bn (k))

@ [2, |

151

(4.17)

conp (=8 (3,00 (R85 25,08)) 551 (30— (R0)835,8)) ) 3, 0)

Therefore

E B, (k)exp (aB, (k)] = exp (B (k) a+1a'S a) E |B, (k)
— exp <ﬁ’R’ () a—i—%a’ZBn(k)a) (R (k) B + Egn(k)a>

Expectation (4.17): Using (3.4) it was found that

2%2al BE [exp <a’ (Bn (k) — 5))]

= 20%a’Bexp (—B'a + B'R' (k) a—l—%a’EB (k)a)
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Combining (4.16) and (4.17) an expression for (4.12) was obtained:
— 9 exp (—Fa)aE [B (k )exp( 2B, (k ))} + 2024/ Bexp (—B’a+ AR (k)a+tia’S; ,a )
= —2b% exp (—B’a + B'R/ (k) a+%a’25n(k)a) a’ (R (k) B+ EB”(k)a)
12028/ B exp (—B’a+ AR (k)atiaS; a)
— 22 exp (—B’a+ AR/ (k)a+lia’s ) [a ( k) B+ 55 a ) _ a’B]
Expression (4.13):

220/ E [Bn (k) — ﬁ} = 20%a’ [R (k) B — 3]

Expression (4.14): Using (3.4) resulted in

B e ( (B, () )]

— 2 exp (—B’a + @R (k) a+%a’§]5n(k)a>

Expression (4.15): Using (3.4) the following was obtained

RE [eXp <2a’ (Bn (k) — 5))} + P

— Rexp (—2ﬂ’a + 28R (k)a + 4a’25n(k)a> T p?

Combining the final expressions of (4.11) - (4.15) an expression for £ [M?|was obtained:
— 12’ 5,y + (R(K) B - B) (R (k) B - B)] a

—2b% exp (—,B’a + B'R/ (k) a—i—%a’EBn(k)a) [a’ (R (k)B+ Zﬁn(k)a> - a’ﬁ—l]

1ob%al [R (k) B — B] + b* exp (—Q,B’a + 28R (k)a + 4a’25n(k)a> + B2

Combining all the results completes the proof. B
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4.3.2 Risk function of the RRRE

Theorem 17 Ignoring the terms of order 3, the approximated risk function for RRRE under BLINEX
loss is given as

E |:£BLINEX (Bn (k) ,B)] ~ —L[E[M]+ E[M?]

— -1 [b [1 +a'[R(k)B - B] —exp (—ﬁ'a +BR (k) a+ia’%; (k)aﬂ

n

2l [55 )+ (R(K) B - ) (R(K) B - B)] a
—2b% exp (—B'a + @R/ (k) a—l—%a’Eﬁn(k)a) [a/ (R (k) B+ E,@n(k)a> — a’ﬁ—l]
1op?a [R (k) B — B + b exp (—2B’a +28'R! (k) a+ 4a’2[§n(k)a> + b2]

Proof. The proof is similar to the proof of Theorem 16. m

4.3.3 Risk function of the PTRRE

Theorem 18 Ignoring the terms of order 2, the approximated risk function for RRRE under BLINEX
loss is given as

E [ﬁBuNEX (BfT (k) ﬁ)} ~ ;_Ab (2R (k) C'R’ (k) a

902 [¢ (X?pH%)ﬂ aR (k) C'H (HC'H') " HC 'R/ (k)a
+a’'(R(k)B—pB)a (R(k)B - B)
+2a (R (k) B — B)a'R (k) C"'H' (HC™'H') ' HC™$Q'nE [9" <X2p M)ﬂ

olrmaro e tne [ o (g )| b [ () |

x QCTHH' (HC™'H)) ' HC 'R (k)a| |
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Proof. The risk function for 37}7 (k) under BLINEX loss can be written as
~ 1
E[Lounex (B, (1),8)] = $E[1= (14 M+ M2 +0(M?))]
_ 1 2
= AE[MJFM + ..
= —i [E[M]+ E [M?]] + ...
with
M=bla (B, (k) B8)—ex(a (B, (h)-8))+1]
or
M==b[exp (2 (B, (k) -B)) -2 (B, (1)-8)-1]
Due to the complexity of the BLINEX loss function, the risk function will only be extended to
1
=S [E[M]+..]
EIM] = ~bE [exp (a (B, (k) - 8)) —a' (B, (0)-8) 1]
therefore
~ 2
Ela (B, (k) -8)]
E[M]=-b (4.18)

and the expectation

el (B, k) -8)]

This expectation was calculated in section 3.4 under LINEX loss as seen in (3.15). By substituting
this result into (4.18) an approximated risk function for the preliminary test ridge regression estimator
under BLINEX loss is obtained which completes the proof.ll
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4.3.4 Simulations

In this section the exact same simulation exercise was conducted as in Chapters 2 and 3 and the
results are presented in a similar way (for more detail see section 1.5, page 28). All three proposed
estimators (URRE, RRRE and PTRRE) were considered under the BLINEX loss function. In all the
simulations the parameters of the BLINEX function was fixed at A = b =1 and a = 1 respectively.
In the first table in each section only the error variance varied, the second table represents the risk
values over different levels of multicollinearity. The third table represents the effect of an increase
in the number of parameters that needs to be estimated and the fourth table represents the effect
of an increase in the sample size. The SAS program used for these simulations is in Appendix A.

Unrestricted ridge regression estimator under BLINEX loss, comparing the effect of a
change in the variance(o?).

Table 4.2: Effect of an increase in the variance on the risk of the URRE under BLINEX loss and
across different ridge parameters:

n=30p=4and y=0.8

|
| GM | MED |

| o] HK | HKB | Lw | HSL | AM

0.01 || 2.49E-06 | 2.49E-06 | 2.49E-06 | 2.49E-06 [ 0.0010707 | 2.49E-06 | 2.51E-06

0.1 |/ 0.0002218 | 0.0002228 | 0.0002217 | 0.000222 | 0.0109315 | 0.000252 | 0.0003204

0.25 || 0.0015712 | 0.0015843 | 0.0015788 | 0.0015709 | 0.0363489 | 0.0019744 | 0.0022096

0.5 || 0.0059318 | 0.0061442 | 0.0060081 | 0.005928 [ 0.0856562 | 0.0120154 | 0.0125617
1 0.0215563 | 0.0240307 | 0.0222496 | 0.0214666 | 0.1615253 | 0.0528128 | 0.0560122
4 1 0.1751268 | 0.1994822 [ 0.212875 | 0.1799516 | 0.4270138 | 0.3577132 | 0.3556461
9 | 0.3178539 | 0.4066363 | 0.4564228 | 0.3439198 | 0.5042928 | 0.4841858 | 0.4834418
20 || 0.4523026 | 0.597/6154 | 0.6560864 | 0.4700296 | 0.5259865 | 0.5215678 | 0.5214459

(see Figure E1, panel (c) in Appendix E for all the results of URRE)

Unrestricted ridge regression estimator under BLINEX loss, comparing the effect of a
change in the level of multicollinearity(~).

Table 4.3: Effect of an increase in the level of multicollinearity on the risk of the URRE under
BLINEX loss and across different ridge parameters:

n=30p=4ando =1 |

Loy [ H8 [ HEL J| LW || HoL [| AM || GM || MED |
0.7 || 0.0254274 | 0.0284393 | 0.0266898 | 0.0254013 | 0.1777523 | 0.063313 | 0.0727785
0.8 || 0.0220932 | 0.0243859 | 0.0229981 | 0.0220907 | 0.164138 | 0.0530384 | 0.0524669
0.9 || 0.0186432 | 0.0201741 | 0.0190362 | 0.0192973 | 0.1454451 | 0.0420804 | 0.0438371
0.95 | 0.0171629 | 0.0179473 | 0.0174455 | 0.0208226 | 0.1480076 | 0.0413856 | 0.0413403
0.99 || 0.0154786 | 0.0157537 | 0.0157828 | 0.0370948 | 0.1403219 | 0.0374711 | 0.0355819
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Unrestricted ridge regression estimator under BLINEX loss, comparing the effect of a
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change in the number of parameters (p).

Table 4.4: Effect of an increase in the number of parameters to be estimated on the risk of the

URRE under BLINEX loss and across different ridge parameters:

n=230,y=08and o =1

[p]

HK ]

HKB |

LW

HSL |

AM ]

GM ]

MED |

4

0.0220932

0.0243859

0.0229981

0.0220907

0.164138

0.0530384

0.0524669

10

0.0241123

0.0255239

0.0252804

0.0242387

0.4066395

0.0998795

0.0757541

20

0.0261123

0.0268236

0.0306112

0.0268788

0.5758074

0.1459182

0.0949289

25

0.0261692

0.0283196

0.0396431

0.0274805

0.6171153

0.1501062

0.0937188

Unrestricted ridge regression estimator under BLINEX loss, comparing the effect of a

change in the sample size (n).

Table 4.5: Effect on an increase in the sample size on the risk of the URRE under BLINEX loss

and across different ridge parameters:

y=08p=4ando =1

T n | HEK | HKB | LW | HSL || AM | GM | MED
T5 || U.0444846 | 0.0501060 | 0.0476796 | 0.0452737 | 0.2148647 | 0.1061582 | 0.1155797
30 | 0.0220932 | 0.0243859 | 0.0229981 | 0.0220907 | 0.164138 | 0.0530384 | 0.0524669
50 | 0.0128204 | 0.0138229 | 0.0131457 | 0.0128557 | 0.1171487 | 0.0287464 | 0.0204292
100 || 0.0067695 | 0.0071331 | 0.0068621 | 0.0067742 | 0.08703 | 0.0132359 | 0.0134058

Restricted ridge regression estimator under BLINEX loss, comparing the effect of a

change in the variance(c?).

Table 4.6: Effect on an increase in the variance on the risk of the RRRE under BLINEX loss and

across different ridge parameters:

n=30p=4and y=0.8

| o] HK | HKB | Lw | HSL | AM | GM | MED
0.01 [ 229E-00 | 2.28E-06 | 2.29E-06 | 2.29E-06 | 0.0010676 | 2.24E-06 | 2.28E-06
0.1 || 1.76E-06 | 1.21E-06 | 2.18E-06 | 1.65E-06 | 0.0106626 | 0.000024 | 0.0000899
0.25 [ 1.43E-06 | 9.19E-06 | 2.04E-06 | 2.43E-06 | 0.0351159 | 0.0004564 | 0.0007198
0.5 | 0.0000271 | 0.0001957 | 1.58E-06 | 0.000057 | 0.0824737 | 0.0069221 | 0.0075724
1 0.000544 | 0.0025669 | 4.75E-06 | 0.0010216 [ 0.154075 | 0.0393545 | 0.0426766
4 11 0.0747552 | 0.0490267 | 0.0005563 | 0.1042537 | 0.42935 [ 0.3605744 | 0.3577/684
9 1 0.3130289 | 0.0688724 | 0.0015839 | 0.349236 [ 0.5064233 | 0.4883548 | 0.4579562
20 || 0.4750527 | 0.0810547 | 0.0017288 | 0.4863195 | 0.5261745 | 0.5223268 | 0.5222596

(see Figure E2, panel (c) in Appendix E for all the results of RRRE)
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Restricted ridge regression estimator under BLINEX loss, comparing the effect of a
change in the level of multicollinearity(~).

Table 4.7: Effect of an increase in the level of multicollinearity on the risk of the RRRE under
BLINEX loss and across different ridge parameters:

n=30p=4ando =1 |

Lo [ Hx [ HEL [ LW || HSL || AM || GM | MED |
0.7 ]| 0-0006403 | 0.0035879 | 0.0000252 | 0.0006256 | 0.1703246 | 0.0500422 | 0.0608166
0.8 | 0-0005522 | 0.0025503 | 4.62E-06 | 0.0010226 | 0.1570133 | 0.0406039 | 0.0402203
0.9 || 0-0004517 | 0.0015199 | 9.99E-06 | 0.0023279 | 0.1367048 | 0.02977 | 0.0317504
0.95 || 0-0004046 | 0.0008769 | 0.0000193 | 0.0050786 | 0.1397372 | 0.0299106 | 0.0290612
0.99 | 0-0003626 | 0.0001871 | 0.0000451 | 0.0250294 | 0.1331218 | 0.0263292 | 0.0238209

Restricted ridge regression estimator under BLINEX loss, comparing the effect of a
change in the number of parameters (p).

Table 4.8: Effect of an increase in the number of parameters to be estimated on the risk of the
RRRE under BLINEX loss and across different ridge parameters:

L
[p]

n=30,y=08and o =1 |
LW T HSL [ AM [ GM | MED ]

OK || HKB |

4

0.0005522

0.0025503

4.62E-00

0.0010226

0.1570133

0.0406039

0.0402203

10

0.3227751

0.3262358

0.3206902

0.3244085

0.5450151

0.3939551

0.3758208

20

0.5544572

0.559757

0.5979607

0.5525225

0.7042255

0.5831416

0.5688081

25

0.5146786

0.5477095

0.6388293

0.5112429

0.7194949

0.5481884

0.5271954

Restricted ridge regression estimator
change in the sample size (n).

Table 4.9: Effect of an increase in the sample size on the risk of the RRRE under BLINEX loss and

across different ridge parameters:

under BLINEX loss, comparing the effect of a

y=08p=4ando =1

T n | HK [ HKB | IW [ HSL | AM [ GM [ MED
15 [ 0.0022388 | 0.0075825 | 0.0001032 | 0.0044595 | 0.2058656 | 0.0881903 | 0.0990456
30 || 0.0005522 | 0.0025503 | 4.62E-06 | 0.0010226 | 0.1570133 | 0.0406039 | 0.0402203
50 || 0.0002117 | 0.0010687 | 4.94E-07 | 0.0003789 | 0.1125626 | 0.0198642 | 0.020909
100 || 0.0000536 | 0.0003122 | 7.93E-08 | 0.0000906 | 0.0831591 | 0.0074833 | 0.0078169
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Preliminary test ridge regression estimator under BLINEX loss, comparing the effect of
a change in the variance(c?).

Table 4.10: Effect of an increase in the variance on the risk of the PTRRE under BLINEX loss and
across different ridge parameters:

n=30p=4and y=0.8

[ o> | HK | HKB LW HSL AM GM MED
0.01 | 2.00E-06 | 2.00E-06 | 2.00E-06 | 2.00E-06 | 0.0017563 | 2.20E-06 | 2.20E-06
0.1 | 0.0000653 | 0.000065 | 0.0000657 | 0.0000653 | 0.0122171 | 0.000092 | 0.0001423
0.25 [ 0.0004213 | 0.0004277 | 0.0004252 | 0.0004212 | 0.0389342 | 0.0009127 | 0.0008031
0.5 | 0.0009996 | 0.0011918 | 0.0009794 | 0.0010285 | 0.0808159 | 0.0075407 | 0.0077568
T |/ 0.0068635 | 0.0088707 | 0.0066511 | 0.0072474 | 0.1540832 | 0.0432259 | 0.0452642
1 [[0.0950263 | 0.0746971 | 0.032506 | 0.1232195 | 0.4236086 | 0.3551171 | 0.3550905
9 [[0.3285672 | 0.1142532 | 0.0519684 | 0.3542052 | 0.5069341 | 0.4882761 | 0.4875254
20 || 0.4704927 | 0.1365946 | 0.0561257 | 0.4820313 | 0.5257225 | 0521726 | 0.5216334

(see Figure E3, panel (c) in Appendix E for all the results of PTRRE)

Preliminary test ridge regression estimator under BLINEX loss, comparing the effect of

a change in the level of multicollinearity().

Table 4.11: Effect of an increase in the level of multicollinearity on the risk of the PTRRE under

BLINEX loss and across different ridge parameters:

n=30p=4ando =1

I 7 | HK | HKB W HSL AN G MED
0.7 [ 0.0083307 | 0.0114513 | 0.0082100 | 0.008318 | 0.1686848 | 0.0566555 | 0.0600406
0.8 | 0.0060882 | 0.0080786 | 0.0060507 | 0.0063681 | 0.152002 | 0.0424793 | 0.0453755
0.0 | 0.0044254 | 0.0054715 | 0.0041551 | 0.0061405 | 0.1435205 | 0.0334427 | 0.0340364
0.95 || 0.004267 | 0.0047627 | 0.0040002 | 0.0084174 [ 0.1452784 | 0.0324955 | 0.0312116
0.99 [ 0.0039417 [ 0.0038505 | 0.0037822 | 0.0272357 [ 0.1411934 | 0.0306878 | 0.0282437

Preliminary test ridge regression estimator under BLINEX loss, comparing the effect of

a change in the number of parameters (p).

Table 4.12: Effect of an increase in the number of parameters to be estimated on the risk of the

PTRRE under BLINEX loss and across different ridge parameters:

n=30,y=08and o =1

Lo

HK ]

OKB |

LW

HSL |

AM ]

GM ]

MED |

4

0.006565

0.0085628

0.0063321

0.0069623

0.1472063

0.0404024

0.0418997

10

0.0234876

0.0250226

0.0242882

0.0241134

0.4177921

0.1029818

0.0717673

20

0.0253094

0.0256043

0.0289253

0.0261733

0.6029301

0.1550401

0.0977558

25

0.0266363

0.029402

0.0401802

0.0277912

0.60990609

0.1510385

0.0957948
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Preliminary test ridge regression estimator under BLINEX loss, comparing the effect of
a change in the sample size (n).

Table 4.13: Effect of an increase in the sample size on the risk of the PTRRE under BLINEX loss
and across different ridge parameters:

y=08p=4ando =1 |

| n | HK || HKB | LW | HSL | AM | GM | MED |
15 ] 0.0150589 | 0.0203113 | 0.0136204 | 0.0174938 | 0.221718 | 0.0957336 | 0.1030331
30 || 0.006565 | 0.0085628 | 0.0063321 | 0.0069623 | 0.1472063 | 0.0404024 | 0.0418997
50 | 0.0045046 | 0.0055789 | 0.0043295 | 0.0046473 | 0.1373385 | 0.0276937 | 0.026425
100 || 0.0021742 | 0.0024503 | 0.0021468 | 0.0021968 | 0.0804973 | 0.0076744 | 0.0080379

In order to summarise the results in tables 4.2 to 4.13, Figures E1 to E3 in Appendix E, panel (c)
was used. For RRRE and PTRRE it was found that the LW ridge parameter performs the best,
whereas for URRE the HK and HSL ridge parameters performed the best over different values of
o. In all cases the AM ridge parameter performed the worst. For all three estimators, namely
URRE, RRRE and PTRRE it was found that the HK, LW and HKB ridge parameters lead to the
lowest risk over different levels of multicollinearity. For the HSL ridge parameter the risks are also
low for v < 0.95. the AM ridge parameter performed the worst overall. For all three estimators,
namely URRE, RRRE and PTRRE it was found that the HK, HKB and HSL perform the best over
an increasing number of parameters to be estimated. For the LW ridge parameter also performs
well, except for RRRE when p > 20 the AM ridge parameter performed the worst overall. For all
the estimators, namely URRE, RRRE and PTRRE it was found that the HK, HKB, LW and HSL
ridge parameters performs the best over different sample sizes and the AM ridge parameter perform
the worst overall.
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4.3.5 Evaluation the performance of the estimators relative to each other
under BLINEX loss

The risk of RRRE, URRE and PTRRE calculated under BLINEX loss are computationally compared
to each other in order to determine the performance of the estimators relative to each other. The
panel of sketches (see Figure 4.4) in this section will be discussed in two ways, firstly by keeping
o constant and allowing the sample size, n, to increase and secondly by keeping n constant and
allowing o to increase. The SAS program used for these simulations is in Appendix B.

Risk functions of RRRE, URRE and PTRRE under BLINEX loss
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Figure 4.4 : Comparison of URRE, RRRE and PTRRE across different values of o and n under
BLINEX loss.
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Similar to the other two loss functions for the case where o = 1, it is clear that as the sample size
increases for this choice of o, the risk of PTRRE tends towards the risk of URRE as § — +o00. Itis
well-known that URRE is the most efficient estimator as the sample size increases, since the variance

- >
of URRE, i.e. 3, (k) is c?R (k) C™'R/ (k) and 0% = e It is clear that as the sample size
n —_—

increases the variance of URRE will tend to zero. Therefore as the sample size increases, PTRRE
becomes equally as efficient as the URRE. As the sample size increases the risk associated with all
the estimators decreases as shown in the previous section. Similar results are obtained for different
values of o.

When ¢ increases for a specific sample size, it is clear that in the interval near the origin, the interval
in which the PTRRE has lower risk relative to the URRE, becomes larger. Therefore when working
with a specific sample size and if the variance of the sample is relatively high, the PTRRE is a more
efficient estimator compared to the URRE.

4.4 Bayes preliminary test estimator

In this section, only the Bayes PTE is considered in the context of the normal model, rather than a
regression model as these results can be extended to the regression model as in the previous sections.

4.4.1 Feasible Bayes Estimator

The Bayes estimator under BLINEX loss is derived in this section and due to the complex nature
of BLINEX loss function it was necessary to make use of alternative methods in order to propose
feasible estimators.

Suppose that X X5, ..., X,, is a sample from N (p,0?) where 1 € R and o € RT is assumed to
be known. For the case of o unknown, one may look at the work of Arashi (2010). The results

obtained in his paper are very complex. It is well-known that the conjugate prior for the unknown
D)

parameter 11 is N (u/,0") and the posterior of u|x is N (1", 0") where p" = *=——5-—— and
0_112 o 0.1202
T no'2+02°

To derive the Bayes estimator, the expected loss is equal to

EL:/ Lprivex (g, 1) p (plx) du

where p (u|x) is the posterior distribution of u|x and x = (x1, x2, ...., Ty,)

Then under the pre-specified assumptions it was found that

1 1. 1
XX T (et P —aluy — @)~ 1)

EL(pp) =
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(4.19)

Then the Bayes estimator of 1 denoted by iy is the one that minimises the posterior expectation
of the loss function, i.e.

lig =argmin EL(ug).
:]

Note that
E E aea(l"Bfﬂ) —a , _ 0
Opp A [ +b(eats=) — a(pp — p) — 1)

Take f, (pg —p) = ae® 5= — q; it can be seen that f, (ug —p) > 0 when pg > u and
fo (g —p) < 0 when g < . Also note that for a random variable X > 0, F (X) =0 implies
X =0 a.e. Therefore subject to the constraint pz > 1 the Bayes estimator is equal to

Iip = (4.20)

Now under the restriction pz < p, consider the following optimisation problem

argmax FL(ug)
kB

1
FE 4.21
s B | =T 420

Consider that g (g — p1) = |:1+b(€a(“3“)1a(uBu)1):| is an increasing function since ¢ (ug — p) >

0 when p1p < p. Also from the fact that e®“5=#) > a(uz — p) + 1 when pup < 1 it can be seen
that g (up — 1) > 0. There is no unique solution for (4.21), therefore (4.20) is a valid result.

The problem with the above solution (4.20) is that fij; is not a valid estimator, because 1 is unknown.
In this case a feasible estimator, denoted by jiy 5, can be obtained by substituting a proper estimator
of u into the solution to get

iy = 1

Another possible solution is to use two sets of available information contained in the prior distribution

for the unknown parameter p and the density function X| z, which contains the information of the
original sample.
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In this case define

N 2
L —
. ()

(g
A= L(p,0%).p(p) e 27T TR

Then taking the derivative with respect to u, equating to zero and substituting the final result into
(4.20) the feasible estimator is obtained

Ay =~ (4.22)
(72 +n)

Note that A is only a way to produce an estimator of 1+ and is totally independent of the loss
function. The result of A was substituted into (4.19), that was initiated from BLINEX loss and the
sketches were generated using simulation exercises based on (4.19). This feasible Bayes estimator
is exactly the same as the Bayes estimator under squared error loss.

The properties of ﬁ% are given below

1 [ o2
e ()

2
a
ﬁ—l-n

2
~ Zztn . —~ . .
if uw =y then E [,ug}g] = M = u, therefore under these circumstances ,u%g is an unbiased

o
-2 +n

estimator of .

no? nolo’

Var [ﬁ@)} = =
FB (;'_,22 + n)2 (02 + n0’2)2

2

if 02 = o’* then Var [ﬁ%é} = [L} o2, it can therefore be seen that when n — oo, Var [ﬁ%] —

0.
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4.4.2 A Feasible Bayes Preliminary Test estimator

Facing the same problem as in the introduction and using ﬁ% as the unrestricted estimator, the

feasible Bayes preliminary test estimator is defined by

prpp = |In(F) % | + [Iva (F) x pg

The performance of FBPTE will be explored under BLINEX loss in the following section.

Comparing PTE with FBPTE under BLINEX loss function

The risk functions for the PTE and FBPTE were calculated for specific choices of the parameters
involved and are compared to each other. In all the sketches (see Figure 4.5) the risk function of
the PTE is presented by the dashed line curve and the risk function of the FBPTE is given by the
solid line curve. Both risk functions of the estimators are functions of §, where —1 < § < 1. In
the calculation of the FBPTE only a fixed value for the prior mean, p/ = 13 and prior standard
deviation, o’ = 1 were considered and the performance of the estimators must still be evaluated for
different choices of parameters. For these choices it can be seen that depending on the value of 9,
o and n, the one estimator outperforms the other. The SAS program used for these simulations is
in Appendix C.

a=b=A=1,c0=1,n=100a=b=A=1,0=2n=100 |a=0=A=1,0 =5,n=100

Figure 4.5.: Comparison of PTE and FBPTE for different parameter values.
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The FBPTE was defined and the PTE was computationally compared to the FBPTE. For specific
choices of parameters and sample sizes both estimators perform well under specific conditions and
for specific values of §. Since the feasible Bayes estimator, given by (4.22) is nothing more than the
Bayes estimator under squared error loss, it cannot be expected that the risk of FBPTE has a special
form. It is still unclear how a Bayes estimator under BLINEX loss with stable risk performance can
be found, which leaves this problem open for further research. By examining the results obtained,
we found that the PTE performs better than FBPTE for some specific parameter choices and vice
versa.
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Chapter 5

Economic applications of the preliminary
test ridge regression estimator:
Cobb-Douglas production function

5.1 Introduction

The Cobb-Douglas production function dates back to the work done by Paul Douglas and Charles
Cobb in 1928, which relates production inputs and output for the U.S. manufacturing sector for
1899-1922. It has been noted by Brown (1966), Sandelin (1976) and Samuelson (1979) that Knut
Wicksell actually discovered this form in the 19th century and it was only empirically tested by Cobb
and Douglas in 1928. The Cobb-Douglas production function is still the most universal functional
form in both theoretical and empirical analyses of production growth.

The Cobb-Douglas production function can be defined as follows:

Vi = X X

where Y = Production output
X, = Labour input
X5 = Capital input
u = Stochastic error term

e = The base of the natural log.
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By making use of the double log transformation, the model can be written as

h'lY;' = 11’150 +51 lIlei—FﬁQlIngz‘ + u;

Due to the double log transformation, the regression coefficients 3, and (3, of the Cobb-Douglas
production function are interpreted as elasticities and the sum of the two coefficients represents the
return to scale. The first coefficient 3; measures the percentage change in production output for a
percentage increase in labour input, by keeping capital input constant (partial elasticity), 3, can be
interpreted in a similar way as the percentage change in production output for a percentage increase
in capital input, by keeping labour input constant. The sum of the two coefficients, namely /3, + 3,
measures the return to scale and can be interpreted as the typical response of production output to
a proportionate change in the two inputs.

When 3, + 8, = 1 it is an indication of constant return to scale which suggests that if the
inputs double the production output will double. For 3, + 35 > 1, increasing return to scale is
observed which suggests that when inputs double, production output will more than double and
when 3, 4+ 3, < 1, decreasing return to scale is observed which indicates that when inputs double,
production output will less than double. It is therefore evident that in order to test for constant
return to scale, the vector B = (5, 81, 35) should be subjected to a linear restriction.

The use of asymmetric loss functions for econometric modelling has been discussed by Waud (1976),
Kunstman (1984), Horowitz (1987) to name a few. Granger (1999) also discussed the importance
of using bounded loss function, where he gives different examples of the advantage of penalising
over or underestimation of estimators, depending on which of the two is the most serious. Zellner
(1986) showed that sample mean and least square regression coefficient estimators are inadmissible
relative to asymmetric LINEX loss proposed by Varian (1975). He suggested alternative estimators
that dominate in terms of their risk functions and Bayes risks.

Ruge-Murcia (2002) developed and estimated a theoretical model of inflation targeting, similar to
the Barro and Gordon model (1983) in which he suggested that the central banker's preferences
are asymmetric around the targeted inflation rate. It was further suggested that positive deviations
from the inflation target must be weighed more heavily compared to negative deviations in the loss
function used by the central banker. In his work he suggested the use of the LINEX loss function,
which is a more flexible loss function, but it is not a bounded loss function.

Christofferson and Diebold (1996) suggested that in the field of volatility forecasting, using squared
error loss is not the appropriate loss function to use and other approaches to volatility forecasting
should be considered.  Christofferson and Diebold (1997) examined LINEX forecasts under the
assumption that the process is normally distributed.

In the example of the Cobb-Douglas production function it can be deemed that the loss/cost of
overestimating production response to capital and labour input is generally more serious than un-
derestimating production response and therefore overestimation should be penalised more heavily.
The use of the BLINEX loss function can therefore be considered. Furthermore, the two exploratory
variables are deemed to be negatively correlated, which suggest that multicollinearity is a problem
that needs to be addressed by making use of ridge regression suggested by Hoerl and Kennard
(1970).
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5.2 Application

In this section the Cobb-Douglas production function will be considered under the restriction of
constant return to scale and the estimators will be calculated for all the possible estimators of the
ridge parameter.

The real data set which for all illustrations consists of following variables:

1) The South African manufacturing production output as measured by the Gross Domestic product
GDP in real prices) measured in R million in the manufacturing sector.

(
(
(2) Labour input as measured by employment figures within the manufacturing sector.

(3) Capital input as measured by fixed capital stock (in real prices) measured in R million in the
manufacturing sector.

The definitions of the variables are given below:

Gross Domestic Product: The total market value of all final goods and services produced in a country
in a given year, equal to total consumer, investment and government spending, plus the value of
exports, minus the value of imports.

Fixed capital stock:Fixed capital stock consists of buildings, installations, transmission devices, ma-
chinery, equipment, means of transport, tools, production and sales implements, draft animals, and
commercial livestock.

Employment figures:The number of employees employed within the manufacturing sector.

The manufacturing sector in South Africa provides a platform for stimulating the growth in services,
employment creation and economic empowerment. This presents an opportunity to significantly
increase the country's growth and development.

The manufacturing sector in South Africa is consists mainly of the following industries
(see www.southafrica.info/business/economy /sectors/manufacturing.htm):

Agriprocessing industry - In South Africa maize is most widely grown followed by wheat, oats, sugar
cane and sunflowers. The government is working to develop small-scale farming in efforts to create
more jobs in this sector. Citrus, locally produced wines and flowers are mainly exported.

Automotive industry -The automotive industry is one of South Africa’s most important industries.
The major multinationals use South Africa to source components and assemble vehicles for both
the local and international markets.

Chemical industry - The synthetic coal and natural gas-based liquid fuels and petrochemicals industry
is one of the most important industries with South Africa being world leader in coal-based synthesis
and gas-to-liquids (GTL) technologies.

ICT and electronics industry -The South African information technology (IT) industry growth is
higher than the world average. The country has an established and sophisticated information and
communications technology (ICT) and electronics sector which consists of more than 3 000 com-
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panies.  The three main sub-sectors in this industry are: telecommunications, electronics and
information technology.

Metals industry - South Africa has a well-developed metals industry, with numerous natural resources
and a good infrastructure. It consists of basic iron ore, steel, basic non-ferrous metals and metal
products. The iron and steel industries involve the manufacturing of primary iron and steel products
from smelting to semi-finished stages.

Textiles, clothing and footwear industry - The South African textile and clothing industry aims to
use all the natural, human and technological resources at its disposal to make South Africa the
preferred domestic and international supplier of South African manufactured textiles and clothing.

The data was obtained from the Reserve bank of South Africa, collected annually from 1985 to
2012. The following graph represents the relationship between the 3 variables:

Output vs Capital and Labour

145
. L-Il.‘..'-'lllll.'..““-...'-..

135 4
2
T W
..E 12 5 - == |n{Capital)
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17 - == n(Labour)
115 - InjOutput)
11
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S I S R R A A 'Lég}mﬁ*?w“

Year

Figure 5.1: Relationship between production output, capital and labour.

Figure 5.1 indicated that there has been a steady increase in production output over the period
1985 to 2012. The two explanatory variables in the analysis is capital input and labour input.
The graph illustrates that the manufacturing sector experiences a steady increase in capital input
and a steady decrease in labour input over the specified period. This is an indication of a capital
intensive market, where more fixed capital stock is used in manufacturing and less labour is used in
the production process.
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The linear restriction of constant return to scale 5, + 3, =1

(01 1>(§0)—1
)

where the restriction H3 = h holds with Hy,3 = (0 1 1 )and h;,; =1.

suggests a sub-space formulation

By using ordinary least squares (OLS) the following estimated regression equation is obtained:

—

InY, = 10.68 —0.541n X;; +0.721n Xy;
(8.36) (0.36) (0.27)
AdjR* = 077 r115=-090 VIF =5.52
cov (B, B,) = 0.0885 CI =9793.53

It is clear from the above model that a degree of multicollinearity is present in the data, since the
two explanatory variables are highly negatively correlated, the VI F' (Variance inflating factor) and
the condition index (CI) also indicates the presence of severe multicollinearity in the model. In
this example the HK ridge parameter was used to adjust for multicollinearity in the data.

When estimating using OLS, variances and covariances of 31 and 32 are given by

0.2

()= s

02

var (5,) = > (1 — 1)

and

—7”120'2

cov <51’62> - (1—rdy) \/m

therefore as |r12| tends to 1 the multicollinearity increases and the two variances and covariance will
increase accordingly. The V' IF' measures the speed at which the variances and covariances increase

and is given by

VIF = ——M—
(1_7”%2)
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This measure shows the extend to which the variance of an estimator is inflated due to the presence
of multicollinearity, as 73, — 1, VIF — co. In this sample, when estimating the parameter values
using OLS, the variances of the estimated parameters are 5.5 times higher than it would have been
if no multicollinearity was present.

Another condition that has not yet been taken into account is the fact that an economic restriction
needs to be placed on the model in order to determine whether constant return to scale is present
in the South African manufacturing sector for the sample period 1985 to 2012. In order to test
the linear economic restriction of 3; + 3, = 1 the unrestricted, restricted and preliminary test ridge
regression estimators as given by (1.8), (1.11) and (1.13) needs to be calculated.

The estimated regression equation for the unrestricted ridge regression estimators is given by:

—

(0.065) (0.063) (0.069)
AdjR?> = 0.73  cov (B, B,) = —0.0043

The estimated regression equation for the restricted ridge regression estimator is given by

—

InY; = 0.027 —0.0751n Xy; + 1.045In Xy;
(< 0.001) (0.063)  (0.069)
AdjR* = 0.75  cov (B, By) = —0.0043

Based on the likelihood ratio test given by (1.6) the estimated regression equation for the preliminary
test ridge regression estimator is given by:

—

In Yz

0.027 — 0.075In X1; 4+ 1.045In X5,
(< 0.001) (0.063)  (0.069)
AdjR*> = 0.75  cov (B, By) = —0.0043

therefore the null hypothesis (1.4) was not rejected at a 5% level of significance. It can therefore be
concluded that for this sample period under consideration, the South African manufacturing sector
from 1985 to 2012 experienced constant return to scale.
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The restriction of constant return to scale could not be rejected, which implies that by doubling
the input in the market will result in output doubling as well. Each of the slope coefficients
can be interpreted as partial elasticities. The coefficient —0.075 measures the partial elasticity of
production output to labour input, i.e. a 1% increase in the labour input, holding capital input
constant, will result in a 0.075% decrease in production output. Whereas the coefficient 1.045
measures the partial elasticity of production output to capital input, i.e. a 1% increase in capital
input, holding labour input constant, will result in a 1.045% increase in production output.

The following results are based on a simulation study where block bootstrapping was employed to
select samples from the original data set used in the above example. Block bootstrapping is the
appropriate technique to use when time series data is considered, since the data is more likely to
be time dependent. Lahiri (2003) gives a detailed discussion on bootstrapping techniques for time
dependent data. Nonoverlapping block bootstrapping was used in this analysis. This procedure
involves splitting the sample data into b blocks of size [. (see Santana and Allison, 2013). The
value of b is chosen in such a way that [b < T', where T is the sample size. In the case where b =T
this nonoverlapping block bootstrap method reduces to the standard bootstrapping procedure. The
SAS program used for the following simulations is in Appendix D.

In Figure 5.2 the two coefficients associated with labour and capital input were estimated using the
unrestricted ridge regression estimator and by using the different ridge parameters(k) first discussed
in section 2.5. For the LW and HKB ridge parameters it can be seen that the variation in the
estimates relative to the URRE's calculated under all the other ridge parameters is relatively high.

Unrestricted ridge regression estimator
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Figure 5.2 : Empirical distributions of slope coefficients of the unrestricted ridge regression estimator.

Table 5.1: Measures of risk performance for the unrestricted ridge regression estimator.

Ridge parameter HK HKB LW HSL AM GM MED
Parameter estimate 1 | -0.10 -0.42 -0.53 -0.10 -0.09 -0.10 -0.09
Standard error 0.060 0.181 0.347 0.060 0.059 0.059 0.059
Parameter estimate 2 | 1.07 0.84 0.76 1.07 1.06 1.06 1.06
Standard error 0.006 0.151 0.268 0.006 0.065 0.065 0.065
Cov(estl, est?) -0.0039 0.0188 0.0833 -0.0039 | -0.0038 | -0.0038 | -0.0038
Adj R-Square 0.73 0.78 0.79 0.73 0.71 0.72 0.71
Risk RNL 0.37 0.79 0.96 0.37 0.35 0.36 0.35
Risk LINEX 0.08 6.19E+19 | 1.84E+22 0.08 0.08 0.08 0.08
Risk BLINEX 0.07 0.63 0.87 0.07 0.08 0.08 0.08

It is very obvious that the risk associated with the unrestricted ridge regression estimators using
the HKB and LW ridge parameter is much higher compared to the risks associated with all the
other ridge parameters. When the risk is evaluated under LINEX loss, which is an unbounded loss
function it is very high due to the form of the LINEX loss function and the role of exponential term
in the loss function. This is one of the disadvantages of working with the LINEX loss function and
why a bounded loss function is more preferable.

In Figure 5.3 the two coefficients associated with labour and capital input were estimated using the
restricted ridge regression estimator and by using the different ridge parameters(k) first discussed
in section 2.5. It can be seen that under all the ridge parameters the empirical distributions of the
restricted ridge regression estimates are similar.
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Figure 5.3 : Empirical distributions of slope coefficients of the restricted ridge regression estimator.

Table 5.2: Measures of risk performance for the restricted ridge regression estimator.

Ridge parameter HK [HKBT] LW HSL AM GM MED
Parameter estimate 1 | -0.10 | -0.10 | -0.09 | -0.10 -0.09 -0.09 -0.09
Standard error 0.060 | 0.062 | 0.065 | 0.060 0.059 0.059 0.059
Parameter estimate 2 | 1.07 1.09 1.09 1.07 1.00 1.00 1.00
Standard error 0.066 | 0.066 | 0.065 | 0.066 0.065 0.065 0.065
Cov(est1,est2) -0.004 | -0.004 | -0.004 | -0.0039 | -0.0038 | -0.0038 | -0.0038
Adj R-Square 0.75 0.76 0.76 0.75 0.73 0.73 0.73
Risk RNL 0.36 0.39 0.43 0.36 0.35 0.35 0.35
Risk LINEX 0.09 0.17 0.27 0.09 0.09 0.09 0.09
Risk BLINEX 0.09 0.14 0.21 0.09 0.08 0.08 0.08
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In the Figure 5.4 the two coefficients associated with labour and capital input were estimated using
the preliminary test ridge regression estimator and by using the different ridge parameters(k) first
discussed in section 2.5. The preliminary test estimator depends on the results of the hypothesis test,
therefore the preliminary test estimator will be the appropriate combination of the two component
estimators, namely the unrestricted ridge regression estimator and the restricted ridge regression
estimator. The effect of the variation in the LW and HKB ridge parameter is therefore again
present in the preliminary test estimator, but not to the same extent as in the first figure.

Preliminary test ridge regression estimator
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Figure 5.4 : Empirical distributions of slope coefficients of the preliminary test ridge regression
estimator.
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Table 5.3: Measures of risk performance for the preliminary test ridge regression estimator.

Ridge parameter K OKDB LW HSL AM GM MED
Parameter estimate 1 | -0.10 -0.40 -0.45 -0.10 -0.09 -0.10 -0.09
Standard error 0.06 0.136 0.241 0.06 0.059 0.059 0.059
Parameter estimate 2 | 1.07 0.86 0.82 1.07 1.06 1.06 1.06
Standard error 0.066 0.119 0.192 0.066 0.065 0.065 0.065
Cov(estl, est?) -0.004 0.010 0.051 -0.0039 | -0.0038 | -0.0038 | -0.0038
Adj R-Square 0.73 0.78 0.79 0.73 0.72 0.72 0.71
Risk RNL 0.37 0.60 0.64 0.37 0.35 0.36 0.35
Risk LINEX 0.08 | 6.19E+19 | 1.84E+22 0.08 0.09 0.08 0.09
Risk BLINEX 0.07 0.43 0.49 0.07 0.08 0.08 0.08

By examining all these results it is clear that the risk associated with all the proposed estimators
(regardless of ridge parameter) was consistently the lowest under BLINEX loss, which shows that
the BLINEX loss function is the most preferable asymmetric loss function to work with.

Lastly, the following figure depicts the empirical distributions of the two parameter estimates of
the Cobb-Douglas production function for the preliminary test estimator separately and also the
empirical distribution of the restriction placed on the two slope parameters, namely 5, + 3, = 1.
In this example the HK ridge parameter was used to control for multicollinearity.
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Figure 5.5 : Empirical distribution of the slope parameters and the restriction for the preliminary

test estimator.

Table 5.4.: Risk performance of the preliminary test estimator and restriction.

Parameter estimate | -Standard error | R-square | Risk RNL | Risk LINEX | Risk BLINEX
-0.104 0.06 0.75 0.259 0.024 0.023
1.071 0.066
0.97 0.03

By examining the empirical distribution of the PTRRE for the restriction 3, + 8, = 1, Figure 5.5
clearly indicates the values are very closely distributed around the value of 1, with a standard error

of 0.03.

© University of Pretoria




Chapter 6

Conclusions

In this section some findings of the research are reviewed together with some new insight into future
research which could be conducted in this field.

6.1 Alternative approach

In this thesis, different situations in which the preliminary test estimator is applicable were considered
and the performance of the preliminary test estimator was evaluated under different proposed loss
functions, such as the reflected normal , linear exponential (LINEX) and bounded LINEX (BLINEX)
loss functions. The focus of the study was to estimate regression coefficients of a multiple regression
model under two conditions, namely multicollinearity and linear restrictions imposed on the regression
coefficients.  In order to address the multicollinearity problem, the coefficients were adjusted by
making use of Hoerl and Kennard's (1970) approach in ridge regression. The risk function for
the preliminary test estimator and its component estimators were derived under reflected normal
loss, LINEX loss and BLINEX loss. Chapters 2,3, and 4 showed that the derivation of the risk
functions was very cumbersome and therefore different numerical studies were used to compare the
performance of the estimators under study. However, in order to move into a theoretical environment
an alternative approach for deriving the risk function of the preliminary test estimator in particular
is proposed.
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The following property of double expectations is used to derive the risk function of the PTRRE:
EL]=E[E[L|T]

where L = Lry (B:T (k) ,B), the reflected normal loss function defined for the PTRRE , BfT (k)
and 7" = Result of the hypothesis test based on the linear restriction specified in (1.4).

The derivation of the suggested risk function for the PTRRE under reflected normal loss is given

below:
~PT ! ~PT
| exp ((Bn (k) B)ngn (k) B))]

—F {E [ﬁRN (B:T (k) ’5> ‘ T]} _E {E T <(BST(k)ﬂ)/(ZB:T(k)B>>

E [»CRN (B:T (k) 75)} =cb

T

}

k) —
1 —exp ( o - 727 ) ﬁ>> ‘ Hy not rejected | P (Hy not rejected)
k)— k)—
+cE |1 —exp ( ) 727 " ) B>) ‘ Hy rejected | P (Hy rejected)
(k)-B) :
=cF |1 —exp 7% P (Hy not rejected)
+cEl exp< Bu(h)— 727[’ k) >)] P (H, rejected)

—E [cRN (Bn (k) B)] P (Hy not rejected) + E [ﬁRN (Bn (k) B)] P (Hy rejected)

where both E [ERN (Bn (k) ,[3)] and E [ERN ([N‘in (k) ,B)] were calculated in sections 2.2 and
2.3.

With £,, the likelihood ratio test statistic for testing Hy against H4 as defined in (1.6), F,, ,, (a)
the critical value from the central F-distribution with ¢ and m degrees of freedom and « is the level
of significance. Therefore when £,, < F,, (o) the null hypothesis is not rejected, whereas when
£y, > Fy (o) the null hypothesis is rejected.

We now define L = Lrnpx (B:T (k) ,5), the LINEX loss function, the PTRRE , 3. (k) and
T = Result of the hypothesis test based on the linear restriction specified in (1.4).
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In a similar way the risk function of the PTRRE under LINEX loss is defined:
E [ELINEX (E‘ (k) aﬁ)] =dE [exp [ <5 (k?) - ﬂ)} —a’ (E:T (k?) - 5) - 1]
= {2 Lo (B 1).8)| 7]} = a2 {E [ [ (B, () - )] == (8" (1) - B) —1]| 7}
= |[exp [+ (B, (0= 8)] = o (B (1) - 8) 1]
+dE Hexp [a (BPT 6)} a’ (APT > ”HO rejected} P (Hj rejected)
|-

a2 oo o (3,1 5)

+dE Hexp [a ([Bn (k) — [3)} Y (Bn (k) — [3) - 1“ P (Hy rejected)

PT ~PT

Hy not rejected} P (Hy not rejected)
a’ ( ) 1” P (Hy not rejected)

)
=F [ELINEX ( B) P (Hy not rejected) + F [ELINEX (Bn (k) ,B)] P (Hy rejected)
(k

Rg
both [ﬁLINEX ([‘3 ), 0 } and [ELINEX (En (k) ,6)} were calculated sections 3.2 and 3.3.

Lastly L = Lorivex (Bn (k) ,5), the BLINEX loss function, the PTRRE, 3. (k) and T =
Result of the hypothesis test based on the linear restriction specified in (1.4).

The risk function of the PTRRE under BLINEX loss are defined:

~PT

E |:£BL]NEX <ﬂn

_ 1 1

(k) 76)} =5E [1 B 1+b[exp(a'(55T(’f)ﬁ))a'(ﬁiT(k)@1]]

1)y

— {E |:£BL]NEX </§:T (k) 7:6> ‘ T} } =5F {E [1 - 1+b[exp(a'(BfT(k)fﬁl))fa’(ﬁfT(k)fB)fl]

Hy not rejected} P (Hy not rejected)

1 _ 1
nE {1 Coofosn(a (B (0)-8)) = (B (-3 1]

1 _ 1 . '
+)\E {1 1+b[exp(a’ (B:T(k)—ﬁ>>—a’ (B:T(k)—ﬁ>—l] HO rejected:| P (H(] re_jected)
_ 1 B . .
= ,\E [1 1+b[exp(a/(ﬁn(k)_g))_a,(an(k)_ﬂ)_l]} P (Ho not reJected)

1 1 _ _ 1 _ .

B { 1 1+b[exp(a’(3n(k)_g))_a/(Bn(k)_ﬂ>_1]:| P (H, rejected)

—E [cBL,NEX (Bn (k) 5)} P (Hy not rejected) + E [ﬁBUNEX (Bn (k) 5)} P (Hy rejected)

both E [ﬁBLINEX <[A‘3n (k) ,B)] and F [ﬁBLINEX <[N‘3n (k) ,B)] were calculated in sections 4.3.1
and 4.3.2.
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In order to evaluate the effect that different ridge parameters will have on the estimation, the risk
functions wre calculated under different conditions, for all three ridge regression estimators, namely
an increase in variance, an increase in the level of multicollinearity, an increase in the number of
parameters to be estimated in the regression model and an increase in the sample size.
results were compared to each other and summarised for all the proposed estimators and proposed
loss functions in Table 6.1 (see the graphs in Appendix E). When choosing a specific loss function
one must also take into account which of the available ridge parameters will lead to least amount

of risk.

These

As expected for all estimators it was found the risk increased when the variance, level

of multicollinearity and number of parameters to be estimated increased and the risk of all the
estimators decreased when the sample size increased.

Table 6.1:

Comparison of estimators under the three proposed loss functions.

Parameter Reflected normal loss LINEX loss BLIMEX loss
Far all three estimators, namely | For URRE and PTRRE it was found that | For RRRE and PTRRE it was found
URRE, RRRE and PTRRE it was found | the riskisthe lowestwhen usingthe HK | that the LW ridge parameter
that for relative small values of o i.e. | and HEL ridge parameters, whereas for | performs the best, whereas for
0.01 <o <4, the GMWM =nd MED | RRRE the LW ridse parameter leadsto | URRE the HK =and HSL ridge
ridge parameters lead to the lowest | the lowest risk. In all cases the AWM | parameters performed the best
. risk, whereas for o > 4 the rsk for | ridge parameter performed the worst. | over different values of . In =l
zll estimstors is relatively small czses the AM ridge parameter
when using the HK and H5L ridge performed the worst.
parameter. In all casesthe LW ridge
parameter performed the worst.
Foar all three estimators, namely | For all three estimators, namely URRE, | For zall three estimators, namely
URRE, RRRE and PTRRE it was found | RRRE and PTRRE it was found that the | URRE, RRRE and PTRRE it was
that ower all the tested levels of | HE, LW and HEB ridge parameters lead | found that the HE, LW and HEB
multicallinearity, the GM and MED | to the lowest risk over all the tested | ridge parameters lesd to the
¥ ridge parameters performed the | levels of multicollinearity. For the HEL | lowest risk over different lavels of
best and the LV ridge parameter | ridge parameter the risks are slso low | multicollinearity. Forthe HEL ridss
perfarmed the waorst. for » < 0.95. The AM ridse parameter| parameter the risks are also low for
performed the worst oversll. ¥ = 0.85. The AM ridge parameter
performed the worst overall.
For =all threse estimstors, namely | For 2ll thres estimstors, namely URRE, | Far =ll three estimstors, namely
IURRE, RRRE and PTRRE it was found | RRRE and PTRRE it was found that the | URRE, RRRE and PTRRE it wwas
that for =n incressing number of | HK =nd HS5L ridge psrameters leasd to | found that the HE, HEB and HSL
parametersto be estimated, the GM | the lowest risks ower an increasing | perform the best owver an
- and MED ridge parametars | numberof parametersto be estimated. | increasing number of parameters
" performed the best and the LW ridse | The HEB ridge parametar also performs | to be estimated. For the LW ridge
parameter performed the worst. well, except for RRRE when p = 20.| parameter also performs well,
The AM ridge parameter performed the | except for RRRE whenp > 20. The
waorst overall. AM ridge parameter performed the
worst overall.
For =all threse estimsators, namely | For =ll the estimators, namely URRE, | Far all the estimators, namely
URRE, RRRE and PTRRE it was found | RRRE and PTRRE it was found that the | URRE, RRRE and PTRRE it was
thatwhen the sample size incresses, | HEK, HKB, LW and HEL ridge parameters | found that the HE, HEB, LW and
the GM and MED ridge parameters | perform the best over different sample | HEL ridge parameters perform the
n performed the best and the LW ridge | sizes =2nd the AM ridge parameter| best over different sample sizes
parametar performed the worst, | performs the waorst overall. and the AN ridge parameter
except for cases where the sample performs the worst oversll.
size is abowe 50 the AM ridge
parametar performs the waorst.
In order to motivate the use of the BLINEX loss function rather than the reflected normal loss or

the LINEX loss function, the risk for the preliminary test estimator and its component estimators
under BLINEX loss is compared to the risk of the preliminary test estimator and its components

estimators under both reflected normal loss and LINEX loss.
reflected normal loss and the risk under LINEX loss is higher than the risk under BLINEX loss.
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The reflected normal loss, BLINEX and LINEX risk functions are illustrated in the following sketches
(see Figures 6.1 to 6.2) for specific values of the bounding parameter, A, the asymmetry parameter b
and the shape parameter a which influences the direction of the penalisation of the error. In addition
to these parameters, different samples sizes were selected and the population variance was also
adjusted to determine the effect on the risk functions. The maximum loss, level of multicollinearity
and the number of parameters included in the model were kept fixed at c = 1,7 =0.8 and p =4
respectively. In each sketch the corresponding risk functions for reflected normal loss, BLINEX
and LINEX loss are compared to each other. The dashed (blue) line represents the risk under
reflected normal loss, the solid (red) line represents risk under LINEX loss and the dash-dot (green)
line represents risk under BLINEX loss. All the risk functions are represented as a function of
0 = HB — h (in this application § was a scalar), where —1 < § < 1. The first column of the panel
indicates the risk functions of the PTRRE under the three loss functions. In the second column the
risk functions of the RRRE under the three loss functions are given and in the last column reflects
the risk functions of the URRE under all three loss functions.
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Figure 6.1 : Risk functions under reflected normal, BLINEX and LINEX loss for different choices of
the scale parameter and n = 10.
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Figure 6.2 : Risk functions under reflected normal, BLINEX and LINEX loss for different choices of

the scale parameter and n = 30.

Even though only specific choices of the parameters a, b, A, ¢, o and n were investigated, it is clear
that the BLINEX risk functions represent lower risk than the corresponding LINEX risk function and
reflected normal risk functions across all estimators. These results can be used to motivate why the
BLINEX loss function should be used, rather than the other two loss functions, namely LINEX and
reflected normal loss function. The risk function of URRE is not a function of ¢, therefore the risk
is constant over the domain of §. As shown in Wen and Levy (2001), the BLINEX loss function has
the same flexibility as the LINEX, together with the added advantage of being a bounded function.
It is also shown that under BLINEX loss all the estimators performs better when compared to LINEX

loss.

Even though the reflected normal loss function is also a bounded loss function, it doesn't

perform as well as the BLINEX loss function under most circumstances.
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6.3 Future directions

Some developments in this research work will now be discussed. It is well-known that the PTE has
a discontinuous nature because of the indicator function. Another possible extension could be the
study of the Stein-type shrinkage estimator for the parameter 3 as

B =B+ (-ac,) (B-B). d>0

and its positive part, test statistic (£,) and the ridge counterparts.

Throughout this thesis the normality assumption for the error term was assumed. However, in most
practical situations this assumption is violated and the distribution departs from normality and heavy
tailed distributions can be adopted instead.

Only the multiple regression model was considered. However, the same analysis can be applied to
other models, such as seemingly unrelated regression, multivariate regression and semiparametric
regression.
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Appendix A Program 1
Note: Programs can be more streamlined, but that was not the purpose of the study.
proc iml;

n=100;

p=4;

newp=p-+1;

it=1000;

gamma=0.8;

sigma=1;
Z=j(n,newp,0);
X=j(n,p,0);
lambda=j(p,p,0);
urreRNLkhk=j(it,1,0);
urreRNLkhkb=j(it,1,0);
urreRNLklw=j(it,1,0);
urreRNLkhsl=j(it,1,0);
urreRNLkam=j(it,1,0);
urreRNLkgm=j(it,1,0);
urreRNLkgm1=j(it,1,0);
rrreRNLkhk=j(it,1,0);
rrreRNLkhkb=j(it,1,0);
rrreRNLklw=j(it,1,0);
rrreRNLkhsl=j(it,1,0);
rrreRNLkam=j(it,1,0);
rrreRNLkgm=j(it,1,0);
rrreRNLkgm1=j(it,1,0);

pteRNLkhk=j(it,1,0):
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pteRNLkhkb=j(it,1,0);
pteRNLKlw=j(it,1,0);
pteRNLkhsl=j(it,1,0);
pteRNLkam=j(it,1,0);
pteRNLkgm=j(it,1,0);
pteRNLkgm1=j(it,1,0);
urreLINEXkhk=j(it,1,0);
urreLINEXkhkb=j(it,1,0);
urreLINEXklw=j(it,1,0);
urreLINEXkhsl=j(it,1,0);
urreLINEXkam=j(it,1,0);
urreLINEXkgm=j(it,1,0);
urreLINEXkgm1=j(it,1,0);
rrreLINEXkhk=j(it,1,0);
rrreLINEXkhkb=j(it,1,0);
rrreLINEXklw=j(it,1,0);
rrreLINEXkhsl=j(it,1,0);
rrreLINEXkam=j(it,1,0);
rrreLINEXkgm=j(it,1,0);
rrreLINEXkgm1=j(it,1,0);
pteLINEXkhk=j(it,1,0);
pteLINEXkhkb=j(it,1,0);
pteLINEXklw=j(it,1,0);
pteLINEXkhsl=j(it,1,0);
pteLINEXkam=j(it,1,0);
pteLINEXkgm=j(it,1,0);

pteLINEXkgm1=j(it,1,0);
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urreBLINEXkhk=j(it,1,0);
urreBLINEXkhkb=j(it,1,0);
urreBLINEXklw=j(it,1,0);
urreBLINEXkhsl=j(it,1,0);
urreBLINEXkam=j(it,1,0);

urreBLINEXkgm=j(it,1,0);

urreBLINEXkgm1=j(it,1,0);

rrreBLINEXkhk=j(it,1,0);
rrreBLINEXkhkb=j(it,1,0);
rrreBLINEXklw=j(it,1,0);
rrreBLINEXkhsl=j(it,1,0);
rrreBLINEXkam=j(it,1,0);

rrreBLINEXkgm=j(it,1,0);

rrreBLINEXkgm1=j(it,1,0);

pteBLINEXkhk=j(it,1,0);
pteBLINEXkhkb=j(it,1,0);
pteBLINEXklw=j(it,1,0);
pteBLINEXkhs|=j(it,1,0);
pteBLINEXkam=j(it,1,0);
pteBLINEXkgm=j(it,1,0);
pteBLINEXkgm1=j(it,1,0);
een=j(n,1,1);
eenp=j(p,1,1);
eenit=j(it,1,1);

ld=I(n);

ldp=I(p);

std=j(p,1,0);
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stdz=j(newp,1,0);
standx=j(n,p,0);
standz=j(n,newp,0);
stdstand=j(n,p,0);
beta=j(p,1,0);
epsilon=j(n,1,0);
standeps=j(n,1,0);
e=j(n,1,0);
y=j(n,1,0);
H=j(Lp.1);

r=2;

a=j(p.1,1);
gammal=1;

m=n-p;

los=0.05;
Fcrit=Finv(1-los,q,m);
lamb=1;

b=lamb*d;

*print fcrit;

*Generate standard normal distributions;
do w=1 to it;

do i=1 to n;

do j=1 to newp;

Z[i,j]=normal(0);
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end;

end:;

*print z;

zbar=z'*een/n;
dub=(1/n)*een*een’;
varz=(1/(n-1))*z"*(id-dub)*z;
diagz=vecdiag(varz);

do k=1 to newp;
stdz[k]=sqrt(diagz[K]);

end;

*print zbar dub varz diagz stdz;
*Standardised z values;

do i=1 to n;

do j=1 to newp;
standz[i,j]=(z[i,j]-zbar][j]) /stdz[j];
end;

end;

*print standz;

*Generate the explanatory variables which are correlated with one another;

do i=1 to n;

do j=1 to p;

X[i,j]=sart(1-gamma**2)*standZ[i,j]+gamma*standZ[i,newp];

end;
end;

*print x;

*Calculate x-bar and standard deviation for every distribution;

xbar=x"*een/n;
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dub=(1/n)*een*een’;
var=(1/(n-1))*x'*(id-dub)*x;
diag=vecdiag(var);

do k=1 to p;
std[k]=sqrt(diagl[k]);

end;

*print xbar dub var diag std;
*Standardised X values;

do i=1 to n;

do j=1 to p;
standx[i,j]=(X[i,j]-xbar[j]) /std[j];
end;

end;

*print standx;

/*Check standardisation;*/
xbarstand=standx'*een /n;
dubl=(1/n)*een*een’;
varstand=(1/(n-1))*standx'*(id-dub)*standx;
diagstand=vecdiag(varstand);
do k=1 to p;
stdstand[k|=sqrt(diagstand[k]);
end;

*print xbarstand diagstand varstand stdstand;
XprimeX=standx'*standx;
invxpx=inv(XprimeX);

*print xprimex invxpx;

eigvector=eigvec(xprimex);
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eigvalue=eigval(xprimex);
*print eigvalue eigvector;
do i=1 to p;
lambdali,i]=eigvalueli];
end;

*print lambda;

do I=1 to p;
beta[l,1]=eigvector|l,1];
end;

*print beta;
normbet=sqrt(beta‘*beta);
*print normbet;
*Generate error terms;
do i=1 to n;
epsilon[i]=normal(0);
end;

*print epsilon;

*Calculate x-bar and standard deviation for epsilon;

xbarl=epsilon‘*een /n;

dub2=(1/n)*een*een’;

var2=(1/(n-1))*epsilon‘*(id-dub)*epsilon;

diag2=vecdiag(var2);

*print xbarl diag2;

*Standardised epsilon values;

do i=1 to n;

standeps|i]=(epsilon[i]-xbar1[1]) /sqrt(diag2[1]);

end;
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*print standeps;

*Calculate x-bar and standard deviation for standeps;
xbar3=standeps'*een/n;
dub3=(1/n)*een*een’;
var3=(1/(n-1))*standeps'*(id-dub)*standeps;
diag3=vecdiag(var3);

*print xbar3 diag3;
*Calculate e-terms;

do i=1 to n;
e[i]=0+sigma*standeps][i];
end;

*print e;

*Calculate y;
xbeta=standx*beta:

*print xbeta;

do i=1 to n;
yli]=xbeta[i]+¢][i];

end;

transeigvec=eigvector’;

*print y xbeta e;
alpha=eigvector*beta;
maxalpha=max(alpha);
alphasquare=alpha‘*alpha;
*print transeigvec beta alpha;
*alpha maxalpha;
betahat=invxpx*standx'*y:

betahatsquare=betahat'*betahat;
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*print betahat beta betahatsquare alphasquare;
yhat=standx*betahat;

*print yhat v;

ehat=y-yhat;

*print ehat;

ehatsquare=ehat'*ehat;

*print ehatsquare;
sigmasquarehat=ehatsquare/(n-p);
*print sigmasquarehat;
Khk=sigmasquarehat/(maxalpha**2);
*print Khk;
Khkb=sigmasquarehat*p/betahatsquare;
*print Khkb;
Klw=p*sigmasquarehat/(betahat'*lambda*betahat);
*print klw;

*print eigvalue alpha;
prodeigalpha=eigvalue#alpha;
prodeigalphasq=eigvalue#alpha#talpha;
*print prodeigalpha prodeigalphasq;
sqprodea=prodeigalpha#prodeigalpha;
numhsl=sqprodea‘*eenp;
denomhsl=(prodeigalphasq‘*eenp)**2;
Khsl=sigmasquarehat*numhsl /denomhsl;
*print sqprodea numhsl denomhsl khsl;
alpsg=alpha#alpha;
eenooralphasq=1/(alpha#alpha);

sumeenooralphasq=eenooralphasq‘*eenp;
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Kam=(1/p)*sigmasquarehat*sumeenooralphasg;
*print eenooralphasq sumeenooralphasq kam;
alphasq=alpha#alpha;

*print alphasq;

v=1;

do i=1 to p;

v=v*alphasq[i,1];

end;

*print v;

denomgm=v**(1/p);

*print denomgm;
kgm=sigmasquarehat/denomgm;

*print kgm denomgm;
sigdivalphasq=sigmasquarehat/alphasq;
*print sigdivalphasq;
kgml=median(sigdivalphasq);

*print kgm1 sigdivalphasq;

*Unrestricted ridge regression estimator;
Rkhk=inv(ldp-+khk*inv(xprimex));
Rkhkb=inv(ldp+khkb*inv(xprimex));
Rklw=inv(ldp+klw*inv(xprimex));
Rkhsl=inv(ldp+khsl*inv(xprimex));
Rkam=inv(ldp+kam*inv(xprimex));
Rkgm=inv(ldp+kgm*inv(xprimex));
Rkgml=inv(ldp+kgm1*inv(xprimex));

*print rkhk rkhkb rkiw rkhsl rkam rkgm rkgml;

URREkhk=Rkhk*betahat;
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URREkhkb=Rkhkb*betahat;
URREklw=Rklw*betahat;
URREkhsl=Rkhsl*betahat;
URREkam=Rkam*betahat;
URREkgm=Rkgm*betahat;

URREkgm1=Rkgm1*betahat;

*print beta betahat urrekhk urrekhkb urreklw urrekhsl urrekam urrekgm urrekgmi;

*RRRE estimators;
RRE=betahat-inv(xprimex)*H"*inv(H*inv(xprimex)*H")*(H*betahat-r);
*print rre;

RRREkhk=Rkhk*rre;

RRREkhkb=Rkhkb*rre;

RRREklw=Rklw*rre;

RRREkhs|=Rkhsl*rre;

RRREkam=Rkam*rre;

RRREkgm=Rkgm*rre;

RRREkgm1=Rkgm1*rre;

*s-squared;

ssq=(1/(m))*(y-standx*betahat)*(y-standx*betahat);

*print ssq;

*likelyhood ratio test ;
lkhd=((H*betahat-r)*inv(H*inv(xprimex)*H")*(H*betahat-r)) /(q*ssq);
if Ikhd<fcrit then INRF1=1;

if Ikhd>=fcrit then INRF1=0;

*PTE ridge estimators for different k;
ptel=betahat-(betahat-rre)*inrfl;

ptekhk=rkhk*ptel;
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ptekhkb=rkhkb*ptel;

pteklw=rklw*ptel;

ptekhsl=rkhs|*ptel;

ptekam=rkam*ptel;

ptekgm=rkgm*ptel;

ptekgml=rkgml*ptel;

*print beta ptekhk ptekhkb pteklw ptekhs| ptekam ptekgm ptekgml;

*Calculate reflected normal loss values for different k;
urreRNLkhk[w]=c*(1-exp((urrekhk-beta)'*(urrekhk-beta)/(-2*gammal**2)));
urreRNLkhkb[w]=c*(1-exp((urrekhkb-beta)'*(urrekhkb-beta) /(-2*gammal**2)));
urreRNLklw[w]=c*(1-exp((urreklw-beta)*(urreklw-beta) /(-2*gammal**2)));
urreRNLkhsl[w]=c*(1-exp((urrekhsl-beta)*(urrekhsl-beta) /(-2*gammal**2)));
urreRNLkam[w]=c*(1-exp((urrekam-beta)'*(urrekam-beta) /(-2*gammal**2)));
urreRNLkgm[w]=c*(1-exp((urrekgm-beta)*(urrekgm-beta) /(-2*gamma1**2)));
urreRNLkgm1[w]=c*(1-exp((urrekgml-beta)*(urrekgml-beta)/(-2*gammal**2)));
rrreRNLkhk[w]=c*(1-exp((rrrekhk-beta)*(rrrekhk-beta) /(-2*gammal**2)));
rrreRNLkhkb[w]=c*(1-exp((rrrekhkb-beta)*(rrrekhkb-beta) /(-2*gamma1**2)));
rrreRNLklw[w]=c*(1-exp((rrreklw-beta)*(rrreklw-beta) /(-2*gammal**2)));
rrreRNLkhsl[w]=c*(1-exp((rrrekhsl-beta)*(rrrekhsl-beta) /(-2*gamma1**2)));
rrreRNLkam[w]=c*(1-exp((rrrekam-beta)*(rrrekam-beta) /(-2*gammal**2)));
rrreRNLkgm|[w]=c*(1-exp((rrrekgm-beta)"*(rrrekgm-beta) /(-2*gammal**2)));
rrreRNLkgm1[w]=c*(1-exp((rrrekgml-beta)'*(rrrekgml-beta)/(-2*gammal**2)));
pteRNLkhk[w]=c*(1-exp((ptekhk-beta)*(ptekhk-beta)/(-2*gammal**2)));
pteRNLkhkb[w]=c*(1-exp((ptekhkb-beta)'*(ptekhkb-beta) /(-2*gammal**2)));
pteRNLklw[w]=c*(1-exp((pteklw-beta)*(pteklw-beta) /(-2*gammal**2)));
pteRNLkhsl[w]=c*(1-exp((ptekhsl-beta)*(ptekhsl-beta) /(-2*gamma1**2)));

pteRNLkam|[w]=c*(1-exp((ptekam-beta)*(ptekam-beta) /(-2*gammal**2)));
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pteRNLkgm[w]=c*(1-exp((ptekgm-beta)*(ptekgm-beta)/(-2*gammal**2)));
pteRNLkgm1[w]=c*(1-exp((ptekgm1-beta)*(ptekgml-beta)/(-2*gammal**2)));
*print urrernlkhk urrernlkhkb urrernlklw urrernlkhsl urrernlkam urrernlkgm urrernlkgmi;
*print rrrernlkhk rrrernlkhkb rrrernlklw rrrernlkhsl rrrernlkam rrrernlkgm rrrernlkgmi;
*print pternlkhk pternlkhkb pternlklw pternlkhsl pternlkam pternlkgm pternlkgm1;
*Calculate LINEX loss values for different k;
urreLINEXkhk[w]=d*(exp(a'*(urrekhk-beta))-a'*(urrekhk-beta)-1);
urreLINEXkhkb[w]=d*(exp(a'*(urrekhkb-beta))-a‘*(urrekhkb-beta)-1);
urreLINEXklw[w]=d*(exp(a‘*(urreklw-beta))-a‘*(urreklw-beta)-1);
urreLINEXkhsl[w]=d*(exp(a'*(urrekhsl-beta))-a'*(urrekhsl-beta)-1);
urreLINEXkam|[w]=d*(exp(a‘*(urrekam-beta))-a'*(urrekam-beta)-1);
urreLINEXkgm[w]=d*(exp(a'*(urrekgm-beta))-a'*(urrekgm-beta)-1);
urreLINEXkgm1[w]=d*(exp(a‘*(urrekgml-beta))-a‘*(urrekgml-beta)-1);
rrreLINEXkhk[w]=d*(exp(a‘*(rrrekhk-beta))-a‘*(rrrekhk-beta)-1);
rrreLINEXkhkb[w]=d*(exp(a‘*(rrrekhkb-beta))-a'*(rrrekhkb-beta)-1);
rrreLINEXklw|w]=d*(exp(a‘*(rrreklw-beta))-a'*(rrreklw-beta)-1);
rrreLINEXkhsl[w]=d*(exp(a"*(rrrekhsl-beta))-a"*(rrrekhsl-beta)-1);
rrreLINEXkam[w]=d*(exp(a'*(rrrekam-beta))-a**(rrrekam-beta)-1);
rrreLINEXkgm[w]=d*(exp(a'*(rrrekgm-beta))-a'*(rrrekgm-beta)-1);
rrreLINEXkgm1[w]=d*(exp(a'*(rrrekgm1-beta))-a‘*(rrrekgml-beta)-1);
pteLINEXkhk[w]=d*(exp(a'*(ptekhk-beta))-a'*(ptekhk-beta)-1);
pteLINEXkhkb[w]=d*(exp(a‘*(ptekhkb-beta))-a'*(ptekhkb-beta)-1);
pteLINEXklw|[w]=d*(exp(a'*(pteklw-beta))-a'*(pteklw-beta)-1);
pteLINEXkhsl[w]=d*(exp(a'*(ptekhsl-beta))-a"*(ptekhsl-beta)-1);
pteLINEXkam|[w]=d*(exp(a‘*(ptekam-beta))-a'*(ptekam-beta)-1);
pteLINEXkgm[w]=d*(exp(a‘*(ptekgm-beta))-a‘*(ptekgm-beta)-1);

pteLINEXkgm1[w]=d*(exp(a'*(ptekgm1-beta))-a‘*(ptekgml-beta)-1);
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*Calculate BLINEX loss for different k;
urreBLINEXkhk[w]=1/lamb*(1-1/(1+4b*(exp(a‘*(urrekhk-beta))-a‘*(urrekhk-beta)-1)));
urreBLINEXkhkb[w]=1/lamb*(1-1/(1+b*(exp(a'*(urrekhkb-beta))-a‘*(urrekhkb-beta)-1)));
urreBLINEXklw[w]=1/lamb*(1-1/(14b*(exp(a‘*(urreklw-beta))-a'*(urreklw-beta)-1)));
urreBLINEXkhsl[w]=1/lamb*(1-1/(1+b*(exp(a‘'*(urrekhsl-beta))-a‘*(urrekhsl-beta)-1)));
urreBLINEXkam[w]=1/lamb*(1-1/(1+4b*(exp(a'*(urrekam-beta))-a'*(urrekam-beta)-1)));
urreBLINEXkgm([w]=1/lamb*(1-1/(14b*(exp(a‘*(urrekgm-beta))-a‘*(urrekgm-beta)-1)));
urreBLINEXkgm1[w]=1/lamb*(1-1/(1+b*(exp(a'*(urrekgml-beta))-a"*(urrekgml-beta)-1)));
rrreBLINEXkhk[w]=1/lamb*(1-1/(14b*(exp(a‘*(rrrekhk-beta))-a'*(rrrekhk-beta)-1)));
rrreBLINEXkhkb[w]=1/lamb*(1-1/(1+b*(exp(a'*(rrrekhkb-beta))-a'*(rrrekhkb-beta)-1)));
rrreBLINEXklw[w]=1/lamb*(1-1/(1+b*(exp(a‘*(rrreklw-beta))-a'*(rrreklw-beta)-1)));
rrreBLINEXkhs|[w]=1/lamb*(1-1/(1+b*(exp(a‘*(rrrekhsl-beta))-a‘*(rrrekhsl-beta)-1)));
rrreBLINEXkam[w]=1/lamb*(1-1/(14+b*(exp(a‘*(rrrekam-beta))-a'*(rrrekam-beta)-1)));
rrreBLINEXkgm[w]=1/lamb*(1-1/(1+b*(exp(a'*(rrrekgm-beta))-a'*(rrrekgm-beta)-1)));
rrreBLINEXkgm1[w]=1/lamb*(1-1/(14b*(exp(a‘*(rrrekgm1-beta))-a‘*(rrrekgml-beta)-1)));
pteBLINEXkhk[w]=1/lamb*(1-1/(1+4b*(exp(a‘*(ptekhk-beta))-a**(ptekhk-beta)-1)));
pteBLINEXkhkb[w]=1/lamb*(1-1/(1+b*(exp(a'*(ptekhkb-beta))-a'*(ptekhkb-beta)-1)));
pteBLINEXklw[w]=1/lamb*(1-1/(1+b*(exp(a‘*(pteklw-beta))-a'*(pteklw-beta)-1)));
pteBLINEXkhsl[w]=1/lamb*(1-1/(14+b*(exp(a*(ptekhsl-beta))-a'*(ptekhsl-beta)-1)));
pteBLINEXkam[w]=1/lamb*(1-1/(1+4b*(exp(a'*(ptekam-beta))-a'*(ptekam-beta)-1)));
pteBLINEXkgm[w]=1/lamb*(1-1/(1+b*(exp(a"*(ptekgm-beta))-a'*(ptekgm-beta)-1)));
pteBLINEXkgm1[w]=1/lamb*(1-1/(1+b*(exp(a'*(ptekgml-beta))-a"*(ptekgml-beta)-1)));
end;

* Calculate risk functions;

riskurrernlkhk=eenit'*urrernlkhk/it;

riskurrernlkhkb=eenit ' *urrernlkhkb /it;

riskurrernlklw=eenit *urrernlklw/it;
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riskurrernlkhsl=eenit*urrernlkhsl /it;
riskurrernlkam=eenit *urrernlkam/it;
riskurrernlkgm=eenit *urrernlkgm /it;
riskurrernlkgml=eenit'*urrernlkgm1/it;
riskrrrernlkhk=eenit'*rrrernlkhk /it;
riskrrrernlkhkb=eenit *rrrernlkhkb /it;
riskrrrernlklw=eenit *rrrernlklw/it;
riskrrrernlkhsl=eenit*rrrernlkhsl /it;
riskrrrernlkam=eenit*rrrernlkam /it;
riskrrrernlkgm=eenit *rrrernlkgm/it;
riskrrrernlkgml=eenit'*rrrernlkgm1 /it;
riskpternlkhk=eenit*pternlkhk /it;
riskpternlkhkb=eenit'*pternlkhkb/it;
riskpternlklw=eenit *pternlklw/it;
riskpternlkhsl=eenit'*pternlkhsl/it;
riskpternlkam=eenit'*pternlkam /it;
riskpternlkgm=eenit*pternlkgm /it;
riskpternlkgml=eenit*pternlkgm1 /it;
riskurreLINEXkhk=eenit *urreLINEXkhk /it;
riskurreLINEXkhkb=eenit'*urreLINEXkhkb/it;
riskurreLINEXklw=eenit'*urreLINEXklw/it;
riskurreLINEXkhsl=eenit'*urreLINEXkhsl /it;
riskurreLINEXkam=eenit *urreLINEXkam//it;
riskurreLINEXkgm=eenit'*urreLINEXkgm /it;
riskurreLINEXkgm1=eenit *urreLINEXkgm1/it;
riskrrreLINEXkhk=eenit'*rrreLINEXkhk /it;

riskrrreLINEXkhkb=eenit'*rrreLINEXkhkb /it;
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riskrrreLINEXklw=eenit *rrreLINEXklw/it;
riskrrreLINEXkhsl=eenit*rrreLINEXkhsl /it;
riskrrreLINEXkam=eenit *rrreLINEXkam /it;
riskrrreLINEXkgm=eenit'*rrreLINEXkgm/it;
riskrrreLINEXkgm1=eenit'*rrreLINEXkgm1 /it;
riskpteLINEXkhk=eenit*pteLINEXkhk /it;
riskpteLINEXkhkb=eenit'*pteLINEXkhkb /it;
riskpteLINEXklw=eenit'*pteLINEXklw/it;
riskpteLINEXkhsl=eenit'*pteLINEXkhsl /it;
riskpteLINEXkam=eenit'*pteLINEXkam /it;
riskpteLINEXkgm=eenit*pteLINEXkgm/it;
riskpteLINEXkgm1=eenit'*pteLINEXkgm1 /it;
riskurreBLINEXkhk=eenit*urreBLINEXkhk/it;
riskurreBLINEXkhkb=eenit'*urreBLINEXkhkb /it;
riskurreBLINEXklw=eenit *urreBLINEXklw /it;
riskurreBLINEXkhsl=eenit *urreBLINEXkhsl /it;
riskurreBLINEXkam=eenit'*urreBLINEXkam /it;
riskurreBLINEXkgm=eenit*urreBLINEXkgm/it;
riskurreBLINEXkgm1=eenit*urreBLINEXkgm1/it;
riskrrreBLINEXkhk=eenit'*rrreBLINEXkhk/it;
riskrrreBLINEXkhkb=eenit'*rrreBLINEXkhkb/it;
riskrrreBLINEXklw=eenit'*rrreBLINEXklw/it;
riskrrreBLINEXkhsl=eenit'*rrreBLINEXkhs| /it;
riskrrreBLINEXkam=eenit'*rrreBLINEXkam //it;
riskrrreBLINEXkgm=eenit'*rrreBLINEXkgm /it;
riskrrreBLINEXkgm1=eenit*rrreBLINEXkgm1/it;

riskpteBLINEXkhk=eenit'*pteBLINEXkhk/it;
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riskpteBLINEXkhkb=eenit*pteBLINEXkhkb/it;
riskpteBLINEXklw=eenit*pteBLINEXklw/it;
riskpteBLINEXkhs|=eenit*pteBLINEXkhs| /it;
riskpteBLINEXkam=eenit'*pteBLINEXkam/it;
riskpteBLINEXkgm=eenit *pteBLINEXkgm //it;
riskpteBLINEXkgm1=eenit*pteBLINEXkgm1/it;

print riskurrernlkhk riskurrernlkhkb riskurrernlklw riskurrernlkhsl riskurrernlkam riskurrernlkgm riskur-
rernlkgm1;

print riskurrelinexkhk riskurrelinexkhkb riskurrelinexklw riskurrelinexkhsl| riskurrelinexkam riskurre-
linexkgm riskurrelinexkgm1,;

print riskurreblinexkhk riskurreblinexkhkb riskurreblinexklw riskurreblinexkhsl riskurreblinexkam riskur-
reblinexkgm riskurreblinexkgm1;

print riskrrrernlkhk riskrrrernlkhkb riskrrrernlklw riskrrrernlkhsl riskrrrernlkam riskrrrernlkgm  riskr-
rrernlkgm1;

print riskrrrelinexkhk riskrrrelinexkhkb riskrrrelinexklw riskrrrelinexkhsl riskrrrelinexkam riskrrrelinexkgm
riskrrrelinexkgm1;

print riskrrreblinexkhk riskrrreblinexkhkb riskrrreblinexklw riskrrreblinexkhsl riskrrreblinexkam riskr-
rreblinexkgm riskrrreblinexkgm1;

print riskpternlkhk riskpternlkhkb riskpternlklw riskpternlkhsl riskpternlkam riskpternlkgm riskptern-
lkgm1;

print riskptelinexkhk riskptelinexkhkb riskptelinexklw riskptelinexkhsl riskptelinexkam riskptelinexkgm
riskptelinexkgm1;

print riskpteblinexkhk riskpteblinexkhkb riskpteblinexklw riskpteblinexkhsl riskpteblinexkam riskpte-
blinexkgm riskpteblinexkgm1;
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Appendix B Program 2
Note: Programs can be more streamlined, but that was not the purpose of the study.
proc iml;

n=100;

p=4;

newp=p+1;

it=b500;

gamma=0.80;

sigma=>5;

Z=j(n,newp,0);
X=j(n,p.0);
lambda=j(p,p,0);

be=1 ;

en=3;

step=0.01 ;
dim=(en-be)/step+1 ;
urreRNLkhk=j(it,dim,0);
urreRNLkhkb=j(it,dim,0);
urreRNLklw=j(it,dim,0);
urreRNLkhsl=j(it,dim,0);
urreRNLkam=j(it,dim,0);
urreRNLkgm=j(it,dim,0);
urreRNLkgm1=j(it,dim,0);
rrreRNLkhk=j(it,dim,0);
rrreRNLkhkb=j(it,dim,0);
rrreRNLklw=j(it,dim,0);

rrreRNLkhsl=j(it,dim,0);
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rrreRNLkam=j(it,dim,0);
rrreRNLkgm=j(it,dim,0);
rrreRNLkgm1=j(it,dim,0);
pteRNLkhk=j(it,dim,0);
pteRNLkhkb=j(it,dim,0);
pteRNLklw=j(it,dim,0);
pteRNLkhsl=j(it,dim,0);
pteRNLkam=j(it,dim,0);
pteRNLkgm=j(it,dim,0);
pteRNLkgm1=j(it,dim,0);
urreLINEXkhk=j(it,dim,0);
urreLINEXkhkb=j(it,dim,0);
urreLINEXklw=j(it,dim,0);
urreLINEXkhsl=j(it,dim,0);
urreLINEXkam=j(it,dim,0);

urreLINEXkgm=j(it,dim,0);

urreLINEXkgm1=j(it,dim,0);

rrreLINEXkhk=j(it,dim,0);
rrreLINEXkhkb=j(it,dim,0);
rrreLINEXklw=j(it,dim,0);
rrreLINEXkhsl=j(it,dim,0);
rrreLINEXkam=j(it,dim,0);

rrreLINEXkgm=j(it,dim,0);

rrreLINEXkgm1=j(it,dim,0);

pteLINEXkhk=j(it,dim,0);
pteLINEXkhkb=j(it,dim,0);

pteLINEXklw=j(it,dim,0);
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pteLINEXkhsl=j(it,dim,0);
pteLINEXkam=j(it,dim,0);
pteLINEXkgm=j(it,dim,0);
pteLINEXkgm1=j(it,dim,0);
urreBLINEXkhk=j(it,dim,0);
urreBLINEXkhkb=j(it,dim,0);
urreBLINEXklw=j(it,dim,0);
urreBLINEXkhs|=j(it,dim,0);
urreBLINEXkam=j(it,dim,0);
urreBLINEXkgm=j(it,dim,0);
urreBLINEXkgm1=j(it,dim,0);
rrreBLINEXkhk=j(it,dim,0);
rrreBLINEXkhkb=j(it,dim,0);
rrreBLINEXklw=j(it,dim,0);
rrreBLINEXkhsl=j(it,dim,0);
rrreBLINEXkam=j(it,dim,0);
rrreBLINEXkgm=j(it,dim,0);
rrreBLINEXkgm1=j(it,dim,0);
pteBLINEXkhk=j(it,dim,0);
pteBLINEXkhkb=j(it,dim,0);
pteBLINEXklw=j(it,dim,0);
pteBLINEXkhs|=j(it,dim,0);
pteBLINEXkam=j(it,dim,0);
pteBLINEXkgm=j(it,dim,0);
pteBLINEXkgm1=j(it,dim,0);
een=j(n,1,1);

eenp=j(p,1,1);
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eenit=j(it,1,1);
ld=I(n);

ldp=I(p);
std=j(p,1,0);
stdz=j(newp,1,0);
standx=j(n,p,0);
standz=j(n,newp,0);
stdstand=j(n,p,0);
ctr=j(dim,1,0);
beta=j(p,1,0);
epsilon=j(n,1,0);
standeps=j(n,1,0);
e=j(n,1,0);
y=j(n.1,0);
H=j(Lp.1);

*r=2;

Q=1

c=1;

d=1,

a=j(p.1.1);
gammal=1;
m=n-p;

los=0.05;

Fcrit=Finv(1-los,q,m);

lamb=1;
b=lamb*d;

*print fcrit;
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*Generate standard normal distributions;
do w=1 to it;

do i=1 to n;

do j=1 to newp;
Z[i,j]=normal(0);

end;

end;

*print z;

zbar=z'*een/n;
dub=(1/n)*een*een’;
varz=(1/(n-1))*z'*(id-dub)*z;
diagz=vecdiag(varz);

do k=1 to newp;
stdz[k]=sqrt(diagz[k]);

end;

*print zbar dub varz diagz stdz;
*Standardised z values;

do i=1 to n;

do j=1 to newp;
standz[i,j]=(z[i,j]-zbar][j]) /stdz[j];
end;

end;

*print standz;

*Generate the explanatory variables which are correlated with one another;
do i=1 to n;

do j=1 to p;

X[i,j]=sqrt(1-gamma**2)*standZ][i,j]+gamma*standZ[i,newp];
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end;
end:;

*print x;

*Calculate x-bar and standard deviation for every distribution;

xbar=x"*een /n;
dub=(1/n)*een*een’;
var=(1/(n-1))*x'*(id-dub)*x;
diag=vecdiag(var);

do k=1 to p;
std[k]=sqrt(diag[k]);

end;

*print xbar dub var diag std;
*Standardised X values;

do i=1 to n;

do j=1 to p;
standx[i,j]=(X[i,j]-xbar[j]) /std[j];
end;

end;

*print standx;

/*Check standardisation;*/
xbarstand=standx'*een /n;
dubl=(1/n)*een*een’;
varstand=(1/(n-1))*standx'*(id-dub)*standx;
diagstand=vecdiag(varstand);
do k=1 to p;
stdstand[k]=sqrt(diagstand[k]);

end;
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*print xbarstand diagstand varstand stdstand;
XprimeX=standx'*standx;
invxpx=inv(XprimeX);

*print xprimex invxpx;
eigvector=eigvec(xprimex);
eigvalue=eigval(xprimex);

*print eigvalue eigvector;

do i=1 to p;

lambdali,i]=eigvalue[i];

end;

*print lambda;

do I=1 to p;

betall,1]=eigvector|l,1];

end;

*print beta;

normbet=sqrt(beta‘*beta);

*print normbet;

*Generate error terms;

do i=1 to n;

epsilon[i]=normal(0);

end;

*print epsilon;

*Calculate x-bar and standard deviation for epsilon;
xbarl=epsilon‘*een /n;
dub2=(1/n)*een*een’;
var2=(1/(n-1))*epsilon‘*(id-dub)*epsilon;

diag2=vecdiag(var2);
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*print xbarl diag2;

*Standardised epsilon values;

do i=1 to n;

standeps[i]=(epsilon[i]-xbar1[1]) /sqrt(diag2[1]);
end;

*print standeps;

*Calculate x-bar and standard deviation for standeps;
xbar3=standeps'*een/n;
dub3=(1/n)*een*een’;
var3=(1/(n-1))*standeps'*(id-dub)*standeps;
diag3=vecdiag(var3);

*print xbar3 diag3;

*Calculate e-terms;

do i=1 to n;

e[i]=0+sigma*standeps][i];

end;

*print e;

*Calculate y;

xbeta=standx*beta;

*print xbeta;

do i=1 to n;

yli]=xbetali]+€][i];

end;

transeigvec=eigvector’;

*print y xbeta e;

alpha=eigvector*beta;

maxalpha=max(alpha);
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alphasquare=alpha‘*alpha;

*print transeigvec beta alpha;

*alpha maxalpha;
betahat=invxpx*standx'*y;
betahatsquare=betahat'*betahat;

*print betahat beta betahatsquare alphasquare;
yhat=standx*betahat;

*print yhat y;

ehat=y-yhat;

*print ehat;

ehatsquare=ehat'*ehat;

*print ehatsquare;
sigmasquarehat=ehatsquare/(n-p);
*print sigmasquarehat;
Khk=sigmasquarehat/(maxalpha**2);
*print Khk;
Khkb=sigmasquarehat*p/betahatsquare;
*print Khkb;
Klw=p*sigmasquarehat/(betahat'*lambda*betahat);
*print klw;

*print eigvalue alpha;
prodeigalpha=eigvalue#alpha;
prodeigalphasq=eigvalue#alpha#alpha;
*print prodeigalpha prodeigalphasq;
sqprodea=prodeigalpha#prodeigalpha;
numhsl=sqprodea‘*eenp;

denomhsl=(prodeigalphasq‘*eenp)**2;
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Khsl=sigmasquarehat*numbhsl /denomhsl;
*print sqprodea numhs| denomhsl khsl;
alpsq=alpha#alpha;
eenooralphasq=1/(alpha#talpha);
sumeenooralphasq=eenooralphasq‘*eenp;
Kam=(1/p)*sigmasquarehat*sumeenooralphasq;
*print eenooralphasq sumeenooralphasq kam;
alphasq=alpha#alpha;

*print alphasq;

v=1;

do i=1 to p;

v=v*alphasq[i,1];

end;

*print v;

denomgm=v**(1/p);

*print denomgm;
kgm=sigmasquarehat/denomgm;

*print kgm denomgm;
sigdivalphasq=sigmasquarehat/alphasq;
*print sigdivalphasq;
kgml=median(sigdivalphasq);

*print kgm1 sigdivalphasq;

*Unrestricted ridge regression estimator;
Rkhk=inv(ldp+khk*inv(xprimex));
Rkhkb=inv(ldp+khkb*inv(xprimex));
Rklw=inv(ldp-+klw*inv(xprimex));

Rkhsl=inv(ldp+khsl*inv(xprimex));
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Rkam=inv(ldp+kam*inv(xprimex));
Rkgm=inv(Idp+kgm*inv(xprimex));
Rkgm1l=inv(ldp+kgm1*inv(xprimex));

*print rkhk rkhkb rklw rkhsl rkam rkgm rkgm1;
URREkhk=Rkhk*betahat;
URREkhkb=Rkhkb*betahat;
URREkIw=Rklw*betahat;
URREkhsl=Rkhsl*betahat;
URREkam=Rkam*betahat;
URREkgm=Rkgm*betahat;
URREkgm1=Rkgm1*betahat;

*print beta betahat urrekhk urrekhkb urreklw urrekhsl urrekam urrekgm urrekgmi;
*RRRE estimators;

ct=0;

do r=be to en by step;

ct=ct+1;

*print r ct;
RRE=betahat-inv(xprimex)*H"*inv(H*inv(xprimex)*H")*(H*betahat-r);
*print rre;

RRREkhk=Rkhk*rre;

RRREkhkb=Rkhkb*rre;

RRREklw=Rklw*rre;

RRREkhs|=Rkhsl*rre;

RRREkam=Rkam*rre;

RRREkgm=Rkgm*rre;
RRREkgm1=Rkgm1*rre;

*print beta betahat rrrekhk rrrekhkb rrreklw rrrekhs| rrrekam rrrekgm rrrekgmi;
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*s-squared |;

ssq=(1/(m))*(y-standx*betahat)'*(y-standx*betahat);

*likelyhood ratio test;

lkhd=((H*betahat-r) *inv(H*inv(xprimex)*H")*(H*betahat-r)) /(q*ssq);

if Ikhd<fcrit then INRF1=1;

if Ikhd>=fcrit then INRF1=0;

*print fcrit Ikhk inrf;

*PTE ridge estimator;

ptel=betahat-(betahat-rre)*inrf1;

ptekhk=rkhk*ptel;

ptekhkb=rkhkb*ptel;

pteklw=rklw*ptel;

ptekhsl=rkhs|*ptel;

ptekam=rkam*ptel;

ptekgm=rkgm*ptel;

ptekgml=rkgml*ptel;

*Calculate reflected normal loss values for different k;
urreRNLkhk|[w,ct]=c*(1-exp((urrekhk-beta)'*(urrekhk-beta) /(-2*gammal**2)));
urreRNLkhkb|w,ct]=c*(1-exp((urrekhkb-beta)'*(urrekhkb-beta) /(-2*gamma1**2)));
urreRNLklw[w,ct]=c*(1-exp((urreklw-beta)*(urreklw-beta) /(-2*gammal**2)));
urreRNLkhsl[w,ct]=c*(1-exp((urrekhsl-beta)*(urrekhsl-beta) /(-2*gammal**2)));
urreRNLkam[w,ct]=c*(1-exp((urrekam-beta)*(urrekam-beta) /(-2*gamma1**2)));
urreRNLkgm[w,ct]=c*(1-exp((urrekgm-beta)'*(urrekgm-beta) /(-2*gamma1**2)));
urreRNLkgm1[w,ct]=c*(1-exp((urrekgml-beta)*(urrekgml-beta)/(-2*gammal**2)));
rrreRNLkhk|[w,ct]=c*(1-exp((rrrekhk-beta)*(rrrekhk-beta) /(-2*gammal**2)));
rrreRNLkhkb[w,ct]=c*(1-exp((rrrekhkb-beta)*(rrrekhkb-beta) /(-2*gammal**2)));

rrreRNLklw[w,ct]=c*(1-exp((rrreklw-beta) *(rrreklw-beta) /(-2*gammal**2)));
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rrreRNLkhsl[w,ct]=c*(1-exp((rrrekhsl-beta)'*(rrrekhsl-beta) /(-2¥*gammal**2)));
rrreRNLkam[w,ct]=c*(1-exp((rrrekam-beta)*(rrrekam-beta) /(-2*gammal**2)));
rrreRNLkgm|[w,ct]=c*(1-exp((rrrekgm-beta)'*(rrrekgm-beta) /(-2*gammal**2)));
rrreRNLkgm1[w,ct]=c*(1-exp((rrrekgm1-beta)*(rrrekgm1-beta) /(-2*gammal**2)));
pteRNLkhk[w,ct]=c*(1-exp((ptekhk-beta)*(ptekhk-beta)/(-2*gammal**2)));
pteRNLkhkb[w,ct]=c*(1-exp((ptekhkb-beta)*(ptekhkb-beta)/(-2*gammal**2)));
pteRNLklw[w,ct]=c*(1-exp((pteklw-beta)*(pteklw-beta) /(-2*gammal**2)));
pteRNLkhsl|[w,ct]=c*(1-exp((ptekhsl-beta)'*(ptekhsl-beta) /(-2*gammal**2)));
pteRNLkam|w,ct]=c*(1-exp((ptekam-beta)'*(ptekam-beta)/(-2*gammal**2)));
pteRNLkgm[w,ct]=c*(1-exp((ptekgm-beta)'*(ptekgm-beta)/(-2*gammal**2)));
pteRNLkgm1[w,ct]=c*(1-exp((ptekgm1-beta)*(ptekgml-beta)/(-2*gammal**2)));
*Calculate LINEX loss values for different k;
urreLINEXkhk[w,ct]=d*(exp(a‘*(urrekhk-beta))-a‘*(urrekhk-beta)-1);
urreLINEXkhkb[w,ct]=d*(exp(a'*(urrekhkb-beta))-a‘*(urrekhkb-beta)-1);
urreLINEXklw[w,ct]=d*(exp(a‘*(urreklw-beta))-a**(urreklw-beta)-1);
urreLINEXkhsl|[w,ct]=d*(exp(a‘*(urrekhsl-beta))-a‘*(urrekhsl-beta)-1);
urreLINEXkam|w,ct]=d*(exp(a'*(urrekam-beta))-a'*(urrekam-beta)-1);
urreLINEXkgm[w,ct]=d*(exp(a'*(urrekgm-beta))-a'*(urrekgm-beta)-1);
urreLINEXkgm1[w,ct]=d*(exp(a‘*(urrekgm1-beta))-a‘*(urrekgm1-beta)-1);
rrreLINEXkhk|[w,ct]=d*(exp(a‘*(rrrekhk-beta))-a**(rrrekhk-beta)-1);
rrreLINEXkhkb|w,ct]=d*(exp(a‘*(rrrekhkb-beta))-a‘*(rrrekhkb-beta)-1);
rrreLINEXklw[w,ct]=d*(exp(a'*(rrreklw-beta))-a'*(rrreklw-beta)-1);
rrreLINEXkhsl[w,ct]=d*(exp(a‘*(rrrekhsl-beta))-a‘*(rrrekhsl-beta)-1);
rrreLINEXkam[w,ct]=d*(exp(a'*(rrrekam-beta))-a‘*(rrrekam-beta)-1);
rrreLINEXkgm[w,ct]=d*(exp(a'*(rrrekgm-beta))-a‘*(rrrekgm-beta)-1);
rrreLINEXkgm1[w,ct]=d*(exp(a"*(rrrekgml-beta))-a'*(rrrekgm1l-beta)-1);

pteLINEXkhk[w,ct]=d*(exp(a'*(ptekhk-beta))-a**(ptekhk-beta)-1);
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pteLINEXkhkb[w,ct]=d*(exp(a'*(ptekhkb-beta))-a‘*(ptekhkb-beta)-1);
pteLINEXklw[w,ct]=d*(exp(a'*(pteklw-beta))-a'*(pteklw-beta)-1);
pteLINEXkhsl[w,ct]=d*(exp(a‘*(ptekhsl-beta))-a'*(ptekhsl-beta)-1);
pteLINEXkam|w,ct]=d*(exp(a‘*(ptekam-beta))-a**(ptekam-beta)-1);
pteLINEXkgm[w,ct]=d*(exp(a'*(ptekgm-beta))-a**(ptekgm-beta)-1);
pteLINEXkgm1[w,ct]=d*(exp(a‘*(ptekgm1-beta))-a'*(ptekgm1-beta)-1);

*Calculate BLINEX loss for different k;
urreBLINEXkhk[w,ct]=1/lamb*(1-1/(14b*(exp(a'*(urrekhk-beta))-a**(urrekhk-beta)-1)));
urreBLINEXkhkb[w,ct]=1/lamb*(1-1/(1+4b*(exp(a‘*(urrekhkb-beta))-a‘*(urrekhkb-beta)-1)));
urreBLINEXklw[w,ct]=1/lamb*(1-1/(1+b*(exp(a‘*(urreklw-beta))-a'*(urreklw-beta)-1)));
urreBLINEXkhsl[w,ct]=1/lamb*(1-1/(14b*(exp(a‘*(urrekhsl-beta))-a'*(urrekhsl-beta)-1)));
urreBLINEXkam[w,ct]=1/lamb*(1-1/(1+b*(exp(a'*(urrekam-beta))-a‘*(urrekam-beta)-1)));
urreBLINEXkgm[w,ct]=1/lamb*(1-1/(1+4b*(exp(a'*(urrekgm-beta))-a**(urrekgm-beta)-1)));
urreBLINEXkgm1[w,ct]=1/lamb*(1-1/(1+b*(exp(a‘*(urrekgml-beta))-a'*(urrekgml-beta)-1)));
rrreBLINEXkhk[w,ct]=1/lamb*(1-1/(1+b*(exp(a‘*(rrrekhk-beta))-a‘*(rrrekhk-beta)-1)));
rrreBLINEXkhkb[w,ct]=1/lamb*(1-1/(1+b*(exp(a'*(rrrekhkb-beta))-a‘*(rrrekhkb-beta)-1)));
rrreBLINEXkIw[w,ct]=1/lamb*(1-1/(1+b*(exp(a'*(rrreklw-beta))-a'*(rrreklw-beta)-1)));
rrreBLINEXkhsl|[w,ct]=1/lamb*(1-1/(1+b*(exp(a‘*(rrrekhsl-beta))-a**(rrrekhsl-beta)-1)));
rrreBLINEXkam[w,ct]=1/lamb*(1-1/(1+b*(exp(a'*(rrrekam-beta))-a'*(rrrekam-beta)-1)));
rrreBLINEXkgm([w, ct]=1/lamb*(1-1/(1+b*(exp(a'*(rrrekgm-beta))-a‘*(rrrekgm-beta)-1)));
rrreBLINEXkgm1[w,ct]=1/lamb*(1-1/(14b*(exp(a‘*(rrrekgml-beta))-a*(rrrekgml-beta)-1)));
pteBLINEXkhk[w,ct]=1/lamb*(1-1/(1+b*(exp(a'*(ptekhk-beta))-a"*(ptekhk-beta)-1)));
pteBLINEXkhkb[w,ct]=1/lamb*(1-1/(1+b*(exp(a'*(ptekhkb-beta))-a'*(ptekhkb-beta)-1)));
pteBLINEXklw[w,ct]=1/lamb*(1-1/(1+b*(exp(a‘*(pteklw-beta))-a'*(pteklw-beta)-1)));
pteBLINEXkhsl[w,ct]=1/lamb*(1-1/(1+b*(exp(a‘*(ptekhsl-beta))-a**(ptekhsl-beta)-1)));
pteBLINEXkam[w,ct]=1/lamb*(1-1/(1+b*(exp(a‘*(ptekam-beta))-a'*(ptekam-beta)-1)));

pteBLINEXkgm|w,ct]=1/lamb*(1-1/(1+b*(exp(a‘*(ptekgm-beta))-a'*(ptekgm-beta)-1)));
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pteBLINEXkgm1[w,ct]=1/lamb*(1-1/(1+b*(exp(a‘*(ptekgml-beta))-a'*(ptekgm1l-beta)-1)));

riskrrrernlkgm=rrrernlkgm[:,] ;

riskrrrernlkgm1=riskrrrernlkgm’;
riskrrreLINEXkhk=rrreLINEXkhkK][:,];
riskrrreLINEXkhk1=riskrrreLINEXkhk';
riskrrreBLINEXkhk=rrreBLINEXkhk][:,];
riskrrreBLINEXkhk1=riskrrreBLINEXkhk";

ctrlct]=r;

end;

end;

Im=(ctr||riskrrrernlkhkl ||riskrrreLINEXkhk1 || riskrrreBLINEXkhk1);
*print Im;

nm1={"r" "riskrrrernlkhk" "riskrrreLINEXkhk" "riskrrreBLINEXkhk"};
create plotdata from Im[colname=nm1];

append from Im;

*print Im[colname=nm1];

quit;

symboll value=dot

height=.1;

proc gplot data=plotdata;

plot (riskrrrernlkhk riskrrreLINEXkhk riskrrreBLINEXkhk)*r/overlay;

run;
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Appendix C Program 3

Note: Programs can be more streamlined, but that was not the purpose of the study.

proc iml worksize=3000000;

lambda=1;
b=d*lambda;
sigma=D>;
priormu=13;
priorsigma=1;
n=100;
alpha=0.05;
mu=15;
p=10000;
df=n-1;
Z=j(n.p,0);
X=j(n.p.0);

een=j(n,1,1);

eenp=j(p,1,1);

ld=I(n);

varvec=j(p,1,0);
tstat=j(p,1,0);

tstatfb=j(p,1,0);

pte=j(p,1,0);

ptefb=j(p,1,0);
count=j(p,1,0);

denom=j(p,1,0);
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denomfb=j(p,1,0);
umleb=j(p,1,0);
rmleb=j(p,1,0);
umlel=j(p,1,0);
rmlel=j(p,1,0);
fbe=j(p,1,0);
stdfb=j(p,1,0);
std=j(p,1,0);
losspte=j(p,1,0);
lossptefb=j(p,1,0);
lossumle=j(p,1,0);
lossrmle=j(p,1,0);
lossumlel=j(p,1,0);
lossrmlel=j(p,1,0);
linex=j(p,1,0);
tinvi=tinv(alpha/2,df);
tinvr=tinv(1-(alpha/2),df);
*Generate standard normal distributions;
do i=1 to n;

do j=1 to p;
Z[i,j]=normal(10);

end;

end;

*Generate any normal distribution;
do i=1 to n;

do j=1 to p;

X[i,j]J=mu+sigma*Z[i,j];

© University of Pretoria



end;

end:;

*Calculate x-bar and standard deviation for every distribution;
xbar=x"*een/n;

dub=(1/n)*een*een’;

var=(1/(n-1))*x"*(id-dub)*x;

diag=vecdiag(var);

do k=1 to p;

std[k]=sqrt(diagl[k]);

end;

*Calculate feasible Bayes estimator and sit standard deviation;
do g=1 to p;
fbe[g]=(n*xbar[g]-+(priormu*sigma**2 /priorsigma**2)) /((sigma**2/priorsigma**2)-+n);
stdfb[g]=sqrt(n*std[g]**2/((std[g]**2/priorsigma**2)+n));
end;

*Calculate the t-test statistic for every distribution’;

do muo=14 to 16 by 0.001;

do I=1 to p;

tstat([l]=((xbar[l]-muo)*sqrt(n))/std[l];
tstatfb[l]=((fbe[l]-muo)*sqrt(n))/stdfb][l];

end;

*Determine in which cases the null hypothesis is rejected and calculate the classical and
feasible Bayes preliminary test estimators;

do m=1 to p;

if tstat[m]>=tinv(1-(alpha/2),df) then pte[m]=xbar[m];

if tstat[m]<=tinv(alpha/2,df) then pte[m]=xbar[m];

if tstat[m]>tinv(alpha/2,df) & tstat[m]<tinv(1-(alpha/2),df) then pte[m]=muo;
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if tstatfb[m]>=tinv(1-(alpha/2),df) then ptefb[m]=fbe[m];
if tstatfb[m]<=tinv(alpha/2,df) then ptefb[m]=fbe[m];

if tstatfb[m|>tinv(alpha/2,df) & tstat[m]<tinv(1-(alpha/2),df) then ptefb[m]=muo;
end:;

*Calculate all the loss functions’;

do t=1 to p;
denom([t]|=1+4b*(exp(a*(pte[t]-mu))-a*(pte[t]-mu)-1);
denomfb|t]=1+b*(exp(a*(ptefb[t]-mu))-a*(ptefb[t]-mu)-1);
linex[t]=d*(exp(a*(pte[t]-mu))-a*(pte[t]-mu)-1);
rmleb[t]=1-+b*(exp(a*(muo-mu))-a*(muo-mu)-1);
umleb[t]=1+4b*(exp(a*(xbar[t]-mu))-a*(xbar[t]-mu)-1);
rmlel[t]=d*(exp(a*(muo-mu))-a*(muo-mu)-1);
umlel[t]=d*(exp(a*(xbar[t]-mu))-a*(xbar[t]-mu)-1);

end;

do s=1 to p;

losspte[s]=(1/lambda)*(1-(1/denom[s]));
lossptefb[s]=(1/lambda)*(1-(1/denomfb][s]));
lossrmle[s]=(1/lambda)*(1-(1/rmleb][s]));
lossumle[s]=(1/lambda)*(1-(1/umlebls]));

*print losspte lossptefb;

end;

estblinexpte=losspte'*eenp;
estblinexptefb=lossptefb**eenp;

estlinexpte=linex'*eenp;

estumleb=lossumle'*eenp;

estrmleb=lossrmle'*eenp;

estrmlel=rmlel *eenp;
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estumlel=umlel *eenp;

*Calculate the average loss (risk function);
delta=muo-mu;
pteblinexrisk=estblinexpte/p;
ptelinexrisk=estlinexpte/p;
ptebriskfb=estblinexptefb/p;
umleriskb=estumleb /p;
rmleriskb=estrmleb/p;
umleriskl=estumlel/p;
rmleriskl=estrmlel /p;
Im=Im//(muo||delta||ptebriskfb||pteblinexrisk||ptelinexrisk||umleriskb||umleriskl||[rmleriskb||rmleriskl);
end;

nml={"muo" "delta" "ptebriskfb" "pteblinexrisk" "ptelinexrisk" "umleriskb" "umleriskl" "rmleriskb"
"rmlerisk|"};

create plotdata from Im[colname=nm1];
append from Im;

*print Im[colname=nm1];

quit;

symboll value=dot

height=.1;

proc gplot data=plotdata;

plot (pteblinexrisk ptelinexrisk)*delta/overlay;
plot (pteblinexrisk umleriskb rmleriskb)*delta /overlay;
plot (umleriskb umleriskl)*delta/overlay;

plot (rmleriskb rmleriskl)*delta/overlay;

run;
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Appendix D Program 4
Note: Programs can be more streamlined, but that was not the purpose of the study.
data cobbdouglas;

input output capital labour ;
datalines;

180852 294150 1467259.912
180556 287093 1490590.9
184537 277872 1535956.71
196545 275321 1591691.848
200217 282502 1594284.18
195717 296760 1599468.844
186776 307645 1563176.196
180651 314255 1522995.05
180322 321247 1491887.066
185135 328843 1503552.56
197156 340574 1512625.722
199882 352327 1456890.584
205293 362443 1395970.782
204794 369342 1350604.972
205974 373618 1315608.49
222666 375926 1296166
229698 378609 1262465.684
236133 377934 1254688.688
232581 377046 1250800.19
243965 381602 1248207.858
259101 388486 1185991.89

275782 399450 1297462.166
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290246 411555 1319496.988
297889 425733 1298758.332
267723 421818 1211915.21
282509 418402 1170437.898
292733 419091 1153587.74

299705 420081 1150995.408

data judy;

set cobbdouglas;

logout=log(output);

logcap=log(capital);

loglab=log(labour);

/¥

proc reg data=judy outest=b ridge=0 to 1 by 0.01;
model logout=logcap loglab/ vif;

run;

*/
FHFAAAAAAKFAAAAAAAK || | HHRHAAHFAAAAAAFAAAAAAKAAK
proc iml;

use judy;

read all into xy;

n=nrow(xy);

x=j(n,1,1)||xy[.5]|xy[.6];

y=xy[.4];

T=n;

id=I(3);

H1={0 1 1};
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m=nrow(x)-ncol(x);
p=ncol(x);
beta=j(p,1,0);
eenp=j(p,1,1);
eenn=j(n,1,1);

eigenvector=j(p,p,0);

lambda=j(p,p,0);

Ferit=Finv(1-los,q,m);

lamb=1;

d=1;

b=d*lamb;

a=j(p.11);

*print los g m ferit H3;

start estimation;

logoutput= yb;

loginput= xb;

loginputl= xbl;

ybar=(eenn'*logoutput)/n;
betat=inv(loginput‘*loginput)*loginput'*logoutput;
e h=logoutput - loginput* betat;
samsigma=1/m*(e_h'*e h);

XprimeX=loginput‘*loginput;
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eigenvector=eigvec(xprimex);
eigvalue=eigval(xprimex);

do i=1 to p;

lambdali,i]=eigvalueli];

end;

do I=1 to p;

beta[l,1]=eigenvector]l,1];

end;

FRRRRRRRRRIRKAAR (e parameters®FRRRRRRkR Rk kKR kR,
alpha=eigenvector*beta;
maxalpha=max(alpha);
khk=samsigma/(maxalpha**2);
alphasquare=alpha‘*alpha;
betahatsquare=betat'*betat;
ehatsquare=e_h'*e_h;
sigmasquarehat=ehatsquare/(n-p);
Khkb=sigmasquarehat*p/betahatsquare;
Klw=p*sigmasquarehat/(betat'*lambda*betat);
prodeigalpha=eigvalue#alpha;
prodeigalphasq=eigvalue#alpha#alpha;
sqprodea=prodeigalpha#prodeigalpha;
numhsl=sqprodea‘*eenp;
denomhsl=(prodeigalphasq‘*eenp)**2;
Khsl=sigmasquarehat*numbhsl /denomhsl;
alpsg=alpha#alpha;
eenooralphasq=1/(alpha#alpha);

sumeenooralphasq=eenooralphasq‘*eenp;
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Kam=(1/p)*sigmasquarehat*sumeenooralphasg;

alphasg=alpha#alpha;

v=1;

do i=1 to p;

v=v*alphasq[i,1];

end;

denomgm=v**(1/p);

kgm=sigmasquarehat/denomgm;

sigdivalphasq=sigmasquarehat/alphasq;

kgml=median(sigdivalphasq);

FRRHARK | RREFHHHFFHF

URREkhk=inv(id+khk*inv(loginput'*loginput))*betat;
URREkhkb=inv(id+khkb*inv(loginput‘*loginput))*betat;
URREklw=inv(id+klw*inv(loginput'*loginput))*betat;
URREkhsl=inv(id+khsl*inv(loginput*loginput))*betat;
URREkam=inv(id+kam*inv(loginput'*loginput))*betat;
URREkgm=inv(id+kgm*inv(loginput'*loginput))*betat;
URREkgm1=inv(id+kgm1*inv(loginput'*loginput))*betat;

RsqURREkhk=(urrekhk *loginput'*logoutput-n*ybar**2) /(logoutput'*logoutput-n*ybar**2);
adjkhk=1-(1-rsqurrekhk)*(n-1)/(n-p);
RsqURREkhkb=(urrekhkb'*loginput‘*logoutput-n*ybar**2) /(logoutput‘*logoutput-n*ybar**2);
adjkhkb=1-(1-rsqurrekhkb)*(n-1)/(n-p);
RsqURREklw=(urreklw'*loginput‘*logoutput-n*ybar**2) /(logoutput'*logoutput-n*ybar**2);
adjklw=1-(1-rsqurreklw)*(n-1)/(n-p);
RsqURREkhsl=(urrekhsl'*loginput'*logoutput-n*ybar**2) /(logoutput ' *logoutput-n*ybar**2);
adjkhsl=1-(1-rsqurrekhsl)*(n-1)/(n-p);

RsqURREkam=(urrekam'*loginput'*logoutput-n*ybar**2) /(logoutput'*logoutput-n*ybar**2);
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adjkam=1-(1-rsqurrekam)*(n-1)/(n-p);
RsqURREkgm=(urrekgm*loginput'*logoutput-n*ybar**2) /(logoutput'*logoutput-n*ybar**2);
adjkgm=1-(1-rsqurrekgm)*(n-1)/(n-p);
RsqURREkgm1=(urrekgm1‘*loginput'*logoutput-n*ybar**2) /(logoutput'*logoutput-n*ybar**2);
adjkgm1=1-(1-rsqurrekgm1)*(n-1)/(n-p);

Rkhk=inv(id+khk*inv(loginput‘*loginput));

Rkhkb=inv(id+khkb*inv(loginput*loginput));

Rklw=inv(id+klw*inv(loginput‘*loginput));

Rkhsl=inv(id+khsl*inv(loginput'*loginput));

Rkam=inv(id+kam*inv(loginput'*loginput));

Rkgm=inv(id+kgm*inv(loginput'*loginput));

Rkgm1l=inv(id+kgm1*inv(loginput*loginput));
A=inv(loginput*loginput)-inv(loginput'*loginput)*H1’
*inv(H1*inv(loginput*loginput)*H1')*H1*inv(loginput *loginput);
varUrrekhk=samsigma*Rkhk*inv(loginput'*loginput)*Rkhk’;
varUrrekhkb=samsigma*Rkhkb*inv(loginput'*loginput)*Rkhkb";
varUrreklw=samsigma*Rklw*inv(loginput*loginput)*Rklw';
varUrrekhsl=samsigma*Rkhs|*inv(loginput'*loginput)*Rkhsl’;
varUrrekam=samsigma*Rkam*inv(loginput'*loginput)*Rkam’;
varUrrekgm=samsigma*Rkgm*inv(loginput'*loginput)*Rkgm";
varUrrekgml=samsigma*Rkgm1*inv(loginput‘*loginput)*Rkgm1";
e
betah=betat-inv(loginput'*loginput)*H1*inv(H1*inv(loginput'*loginput)*H1"')*(H1*betat-h2);
RRREkhk=inv(id+khk*inv(loginput*loginput))*betah;

FRHRRHRRFFR AR R DT ERRR Rk R R KRR Rk R R R AR KRR KRR
|=((H1*betat-h2)"*inv(H1*inv(loginput *loginput)*H1"')*(H1*betat-h2)) /samsigma;

Rrkpkkkkxkkx*code to calculate the critical value¥¥*¥¥k¥dkxkkiokxkok.
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if I<fcrit then INRF=1;

if [>=fcrit then INRF=0;

FRHRRRRR R RR RO R

betapte=betat-(betat-betah)*INRF;
PTRREkhk=inv(id+khk*inv(loginput'*loginput))*betapte;

*/

Rlokrkkdkokkdkokkkx**| oss functions for estimators******.
urrekhkRNL=c*(1-exp((urrekhk-beta)*(urrekhk-beta)/(-2*gammal**2)));
urrekhkbRNL=c*(1-exp((urrekhkb-beta)*(urrekhkb-beta) /(-2*gammal**2)));
urreklWRNL=c*(1-exp((urreklw-beta)*(urreklw-beta) /(-2*gammal**2)));
urrekhslRNL=c*(1-exp((urrekhsl-beta)'*(urrekhsl-beta) /(-2*gammal**2)));
urrekamRNL=c*(1-exp((urrekam-beta)"*(urrekam-beta) /(-2*gammal**2)));
urrekgmRNL=c*(1-exp((urrekgm-beta)*(urrekgm-beta)/(-2*gammal**2)));
urrekgm1RNL=c*(1-exp((urrekgml-beta)*(urrekgml-beta)/(-2*gammal**2)));
urrekhkLINEXa=d*(exp(a‘*(urrekhk-beta))-a'*(urrekhk-beta)-1);
urrekhkbLINEXa=d*(exp(a‘*(urrekhkb-beta))-a'*(urrekhkb-beta)-1);
urreklIwLINEX=d*(exp(a'*(urreklw-beta))-a**(urreklw-beta)-1);
urrekhsILINEX=d*(exp(a'*(urrekhsl-beta))-a'*(urrekhsl-beta)-1);
urrekamLINEX=d*(exp(a'*(urrekam-beta))-a'*(urrekam-beta)-1);
urrekgmLINEX=d*(exp(a‘*(urrekgm-beta))-a'*(urrekgm-beta)-1);
urrekgm1LINEX=d*(exp(a‘*(urrekgml-beta))-a"*(urrekgml-beta)-1);
urrekhkBLINEX=1/lamb*(1-1/(1+b*(exp(a‘*(urrekhk-beta))-a‘*(urrekhk-beta)-1)));
urrekhkbBLINEX=1/lamb*(1-1/(1+b*(exp(a‘*(urrekhkb-beta))-a‘*(urrekhkb-beta)-1)));
urreklwBLINEX=1/lamb*(1-1/(1+b*(exp(a‘*(urreklw-beta))-a'*(urreklw-beta)-1)));
urrekhsIBLINEX=1/lamb*(1-1/(1+b*(exp(a'*(urrekhsl-beta))-a'*(urrekhsl-beta)-1)));
urrekamBLINEX=1/lamb*(1-1/(1-+b*(exp(a'*(urrekam-beta))-a"*(urrekam-beta)-1)));

urrekgmBLINEX=1/lamb*(1-1/(1+b*(exp(a‘*(urrekgm-beta))-a'*(urrekgm-beta)-1)));
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urrekgm1BLINEX=1/lamb*(1-1/(14b*(exp(a‘*(urrekgm1-beta))-a'*(urrekgm1-beta)-1)));
*rrrekhkBLINEX=1/lamb*(1-1/(1+b*(exp(a‘*(rrrekhk-beta))-a‘*(rrrekhk-beta)-1)));
*ptrrekhkBLINEX=1/lamb*(1-1/(1+b*(exp(a'*(ptrrekhk-beta))-a‘*(ptrrekhk-beta)-1)));
finish estimation;

************BIOCkS Bootstrap (non_overlapping)*********************;
length=4; *read on optimal length selection;

blocks=int(n*1/length);

start bootstrap;

pp=int(uniform(j(blocks,1,999))#blocks)+1;

xbt=j(n,2,9999999999);

ybt=j(n,1,9999999999);

do NBB=1 to blocks;
xbx=x[(pp[NBB,])*length-length-+1:(pp[NBB,])*length,2:3];
xbt[nbb*length-length+1:NBB*length,1:2]=xbx;
yby=y[(pp[NBB,])*length-length+1:(pp[NBB,])*length,];
ybt[nbb*length-length+1:NBB*length,1]=yby;

end;

finish bootstrap;

bs=1000;

xbb=j(n,bs,.);

xbb2=j(n,bs,.);

ybb=j(n,bs,.);

do boot=1 to bs;

call bootstrap;

xbb[,boot]=xbt[,1];

xbb2[,boot]=xbt[,2];
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ybb[,boot]=ybt;
xb=j(n,1,1)||xbb[,boot]||xbb2[,boot];
xb1=xbb][,boot]||xbb2[,boot];

yb=ybb[,boot];

call estimation;
URREkhk2=URREkhk2//URREkhk|2,];
URREkhkb2=URREkhkb2//URREkhkb|2,];
URREkIw2=URREkIw2//URREkIw][2,];
URREkhsI2=URREkhsI2//URREkhsl[2,];
URREkam2=URREkam2//URREkam|2,];
URREkgm2=URREkgm2//URREkgm|[2 ];
URREkgm12=URREkgm12//URREkgm1[2,];
RsqURREkhkv=RsqURREkhkv//RsqURREKhK[L,];
RsqURREkhkbv=RsqURREkhkbv//RsqURREkhkb[1,];
RsqURREKIwv=RsqURREKlwv//RsqURREKIW]L ];
RsqURREkhslv=RsqURREkhslv/ /RsqURREKhsI[L,];
RsqURREkamv=RsqURREkamv//RsqURREkam[1,];
RsqURREkgmv=RsqURREkgmv//RsqURREkgm[1,];
RsqURREkgm1v=RsqURREkgm1lv//RsqURREkgm1|[1,];
adjkhkv=adjkhkv / /adjkhk[L,];
adjkhkbv=adjkhkbv//adjkhkb[1,];
adjklwv=adjklwv//adjklw[1,];
adjkhslv=adjkhslv//adjkhsl[1,];
adjkamv=adjkamv//adjkam[1,];
adjkgmv=adjkgmv//adjkgm][1,];
adjkgmlv=adjkgmlv//adjkgm1[1];

URREkhkRNLv=URREkhkRNLv//URREkhkRNL][1,];
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URREkhkbRNLv=URREkhkbRNLv//URREkhkbRNL[1,];
URREkIwRNLv=URREkIwRNLv//URREKIWRNL[1,];
URREkhsIRNLv=URREkhsIRNLv//URREkhsIRNL[L,];
URREkamRNLv=URREkamRNLv//URREkamRNL[L,];
URREkgmRNLv=URREkgmRNLv//URREkgmRNL[L];
URREkgm1RNLv=URREkgm1RNLv//URREkgm1RNLIL];
URREKhKLINEXva=URREKhkLINEXva//URREKhkLINEXa[1,];
URREkhkbLINEXva=URREkhkbLINEXva//URREKhkbLINEXa[1,];
URREKIWLINEXv=URREKIWLINEXv//URREKIWLINEX|1,];
URREkhsILINEXv=URREkhsILINEXv//URREKhsILINEX]1,];
URREkamLINEXv=URREkamLINEXv//URREkamLINEX|1,];
URREkgmLINEXv=URREkgmLINEXv//URREkgmLINEX]1,];
URREkgm1LINEXv=URREkgm1LINEXv//URREkgm1LINEX|L,];
URREKhkBLINEXv=URREkhkBLINEXv//URREKhkBLINEX]1,];
URREkhkbBLINEXv=URREkhkbBLINEXv//URREkhkbBLINEX]1,];
URREKIWBLINEXv=URREKIWBLINEXv//URREkIwBLINEX|L,];
URREkhsIBLINEXv=URREkhsIBLINEXv//URREkhsIBLINEX[1,];
URREkamBLINEXv=URREkamBLINEXv//URREkamBLINEX|L,];
URREkgmBLINEXv=URREkgmBLINEXv//URREkgmBLINEX[L,];
URREkgm1BLINEXv=URREkgm1BLINEXv//URREkgm1BLINEX]1,];
varurrevkhk=varurrevkhk//varurrekhk[2,3];
varurrevkhkb=varurrevkhkb/ /varurrekhkb[2,3];
varurrevklw=varurrevklw/ /varurreklw|2,3];
varurrevkhsl=varurrevkhsl/ /varurrekhsl[2,3];
varurrevkam=varurrevkam/ /varurrekam[2,3];
varurrevkgm=varurrevkgm/ /varurrekgm|2,3];

varurrevkgml=varurrevkgm1//varurrekgm1[2,3];
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end;

ng=20; *number of groups;
width1=(max(URREkhk2)-min(URREKhk2))/ng;
width2=(max(URREkhkb2)-min(URREkhkb2))/ng;

width3

width4

(

(
max(URREkIw2)-min(URREkIw2))/ng;
max(URREkhs|2)-min(URREkhsI2)) /ng;
(

widthb

(
(
(
(max(URREkam2)-min(URREkam2))/ng;
width6=(max(URREkgm2)-min(URREkgm2))/ng;
width7=(max(URREkgm12)-min(URREkgm12))/ng;
do i=0 to bs;

iil=min(URREkhk2)+width1*i;
ii2=min(URREkhkb2)+width2*i;
ii3=min(URREkIw2)+width3*i;
ii4=min(URREKkhs|2)+width4*i;
ii5=min(URREkam2)-+width5*i;
ii6=min(URREkgm2)+width6*i;
ii7=min(URREkgm12)+width7*i;

empl=empl//iil;

emp2=emp2//ii2;

emp3=emp3//ii3;

empd=emp4/ /ii4;

empb=emp5//ii5;

empb=emp6//ii6;

emp7=emp7//ii7,

end;

nm=nrow(empl);

Frequency URREkhk2=j(nm,1,.);
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Frequency URREkhkb2=j(nm,1,.);
Frequency URREkIw2=j(nm,1,.);
Frequency URREkhsI2=j(nm,1,.);
Frequency  URREkam2=j(nm,1,.);
Frequency  URREkgm2=j(nm,1,.);
Frequency  URREkgm12=j(nm,1,.);

do j=2 to nm;

ckhk=0;

ckhk1=0;

ckhkb=0;

ckhkb1=0;

cklw=0;

cklwl=0;

ckhs|=0;

ckhsl1=0;

ckam=0;

ckam1=0;

ckgm=0;

ckgm1=0;

ckgmla=0;

ckgmlla=0;

do k=1 to bs;

if URREkhk2[k,]<=empl[1,] then ckhkl=ckhk1+1,;
Frequency URREkhk2[1,]=ckhk1/bs;

if URREkhkb2[k,]<=emp2[1,] then ckhkbl=ckhkbl+1;
Frequency URREkhkb2[1,]=ckhkb1 /bs;

if URREKIw2[k,]<=emp3[L,] then ckiwl=cklwl+1;
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Frequency URREkIw2[1,]=cklwl/bs;

if URREkhsI2[k ]<=emp4[L,] then ckhsll=ckhsl1+1;

Frequency URREkhsI|2[1,]=ckhsl1/bs;

if URREkam2[k,]<=empb5[1,] then ckaml=ckam1+1;

Frequency  URREkam2[1,]=ckaml/bs;

if URREkgm2[k,|]<=emp6[1,] then ckgml=ckgml+1;

Frequency  URREkgm2[1,]=ckgm1/bs;

if URREkgm12[k,|]<=emp7[1,] then ckgmlla=ckgmlla+1;

Frequency  URREkgm12[1,]=ckgm1la/bs;

if empl1[j-1,]<URREkhk2[k,] & URREkhk2[k,|]<=empl[j,] then ckhk=ckhk-+1;
Frequency URREkhk2[j,|=ckhk/bs;

if emp2[j-1,]<URREkhkb2[k,] & URREkhkb2[k,]<=emp2[j,] then ckhkb=ckhkb+1;
Frequency URREkhkb2[j,|=ckhkb/bs;

if emp3[j-1,]<URREkIw2[k,] & URREkIw2[k,]<=emp3[j,] then cklw=cklw+1;
Frequency URREkIwW2[j,|=cklw/bs;

if emp4[j-1,]< URREkhsI2[k,] & URREKhsI2[k,]<=emp4]j,] then ckhsl=ckhs|-+1;
Frequency URREkhsI2[j,|]=ckhsl /bs;

if emp5[j-1,]<URREkam2[k,] & URREkam2[k,|]<=emp5][j,] then ckam=ckam+1;
Frequency  URREkam2[j,]=ckam/bs;

if emp6[j-1,] <URREkgm2[k,] & URREkgm2[k,]<=emp6][j,] then ckgm=ckgm+1;
Frequency URREkgm2[j,|=ckgm/bs;

if emp7[j-1,]<URREkgm12[k,] & URREkgm12[k,]<=emp7[j,] then ckgmla=ckgmla-+1;
Frequency  URREkgm12[j,]=ckgm11la/bs;

end;

end;

qqq=empl[l:ng+1,]||frequency URREkhk2[1:ng+1,]||emp2[1l:ng+1,]||frequency URREkhkb2[1:ng+1,]

|lemp3[1:ng+1,]||frequency URREkIw2[1:ng+1,]||lemp4[1:ng+1,]

frequency URREkhsI2[1:ng+1,]
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|lemp5[1:ng+1,]||frequency  URREkam2[1:ng+1,]||emp6[1:ng+1,]||frequency URREkgm2[l:ng+1,]
|lemp7[1:ng+1,]||frequency URREkgm12[1:ng+1,];

*print qqq;

qqql=adjkhkv||adjkhkbv||adjkiwv||adjkhslv||adjkamv||adjkgmv||adjkgm1y;
qdq2=URREkhkRNLv||URREkhkbRNLv||URREKIWRNLv||URREkhsIRNLv||URREkamRNLv
||URREkgmRNLv||URREkgm1RNLv
||URREkhKLINEXva||URREkhkbLINEXva||URREKIWLINEXv||URREkhsILINEXv||URREkamLINEXv
||URREkgmLINEXv||URREkgm1LINEXv
||URREkhkBLINEXv||URREkhkbBLINEXv||URREKIWBLINEXv||URREkhsIBLINEXv
||URREkamBLINEXv||URREkgmBLINEXv||URREkgm1BLINEXv;
qqq3=URREkhk2||URREkhkb2||URREKIw2|| URREkhs|2||URREkam2||URREkgm2|| URREkgm12;
qqqé=varurrevkhk||varurrevkhkb||varurrevklw||varurrevkhsl||varurrevkam||varurrevkgm||varurrevkgm1;
create gogo from qqq[colname= {'URREkhk2' 'relativefreq’ 'URREkhkb2' 'freq2’ 'URREkIw2’ 'freq3’
'URREkhsI2' 'freq4’ 'URREkam?2' 'freq5’ 'URREkgm?2' 'freq6’ "URREkgm12' 'freq7’ 'RsqURREkhk'}];
append from qqgq;

create gogol from qqql[colname= {'RsqURREkhk’ 'RsqURREkhkb’ 'RsqURREkIw' 'RsqURREkhs|'
'RsqURREkam’

'RsqURREkgm’ 'RsqURREkgm1'};
append from qqql,;

create gogo3 from qqqg3[colname= {'URREkhk2' 'URREkhkb2' 'URREklw2" 'URREkhsl2' 'UR-
REkam2' '"URREkgm?2' "URREkgm12'}];

append from qqq3;

create gogo2 from qqq2[colname= {'"URREKhkRNL" 'URREkhkbRNL" "URREkIWRNL'" 'URREkhsIRNL'
'URREkamRNL" "URREkgmRNL" "URREkgm1RNL'

'URREKhKLINEXa" "URREkhkbLINEXa" "URREKIWLINEX' "URREkhsILINEX' 'URREkamLINEX'
'URREkgmLINEX" "URREkgm1LINEX'

'URREKhkBLINEX' "URREkhkbBLINEX' 'URREkIWBLINEX" "URREkhsIBLINEX' 'URREkamBLINEX'

'URREkgmBLINEX' "URREkgm1BLINEX'}];
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append from qqq2;

create gogo4 from qqqé{colname= {'URREvarkhk' 'URREvarkhkb' "URREvarklw' "URREvarkhsl’
'URREvarkam’ "URREvarkgm' '"URREvarkgm1'}|;
append from qqq4;

quit;

goptions i=spline;

axisl label=(angle=90 'f( Coefficient)’) ;

axis2 label=("Coefficient') ;

legendl label=("Empirical distributions’)
value=("HK' '"HKB' 'LW’ 'HSL' 'AM’ 'GM' '"MED’ );
symboll color=black |=3;

symbol2 color=blue |=46;

symbol3 color=red 1=1;

symbol4 color=green |=5;

symbol5 color=yellow 1=10;

symbol6 color=orange 1=13;

symbol7 color=pink 1=20;

proc gplot data=gogo;

plot relativefreqg* URREkhk2 freq2*URREkhkb2 freq3* URREkIw2 freq4*URREkhsI2 freq5* URREkam?2
freq6*URREkgm?2 freq7*URREkgm12/ overlay legend=legend1

vaxis=axisl haxis=axis2;

run;

proc means data=gogo3 mean stderr min max;

var URREkhk2 URREkhkb2 URREkIw2 URREkhs|2 URREkam2 URREkgm2 URREkgm12;
run;

proc means data=gogol mean stderr min max;

var rsqURREkhk rsqURREkhkb rsqURREklw rsqURREkhs| rsqURREkam rsqURREkgm rsqURREkgm1;
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run;
proc means data=gogo2 mean stderr min max;

var URREkhkRNI URREkhkbRNL URREKIWRNL URREkhsIRNL URREkamRNL URREkgmRNL UR-
REkgm1RNL

URREkhKLINEXa URREkhkbLINEXa URREKIWLINEX URREkhsILINEX URREkamLINEX URREkgm-
LINEX URREkgm1LINEX

URREkhkBLINEX URREkhkbBLINEX URREkIWBLINEX URREkhsIBLINEX URREkamBLINEX UR-
REkgmBLINEX URREkgm1BLINEX;

run;
proc means data=gogo4 mean n;
var urrevarkhk urrevarkhkb urrevarklw urrevarkhsl urrevarkam urrevarkgm urrevarkgml;

run;
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Figure E1 : The performance of the URRE under the three proposed loss function.
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Figure E2.: The performance of the RRRE under the three proposed loss function.
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Figure E3 : The performance of the PTRRE under the three proposed loss functions.
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