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ABSTRACT 

This study deals with a numerical investigation on the 

melting process of a PCM in a rectangular enclosure 

differentially heated. A FEM-based code is used in order to 

solve Navier-Stokes and energy equations in the considered 

system. Adopting the enthalpy formulation, one single equation 

is used to solve transient conduction and convection heat 

transfer in both the solid and liquid phase. The liquid flow 

patterns during the melting process have been captured and the 

instantaneous marching of the liquid-solid interface is 

presented. In addition, the temperature distributions in the 

phase change material are reported. A successfully comparison 

between obtained numerical results with experimental ones 

found in literature is presented. 

 

 

INTRODUCTION 
Melting and solidification phenomena involve in several 

industrial processes, such as materials processing, metallurgy, 

purification of metals, growth of pure crystals from melts and 

solutions, solidification of casting and ingots, welding, 

electroslag melting, zone melting, thermal energy storage using 

phase change materials (PCM), and so forth. A complete 

understanding of the phase change phenomenon involves an 

analysis of the various processes that accompany it. The most 

important of these processes, from a macroscopic point of view, 

is the heat transfer process. This is complicated by the release, 

or absorption, of the latent heat of fusion at the “moving” 

solid–liquid interface [1]. The literature on phase change 

thermal problems, their formulation, solution, models and 

results is extremely rich [2-3]. Highlighting a key aspect 

connected to the present study, the research works realized by 

Sparrow et al. [4] and Kemink and Sparrow [5] clearly 

indicated the importance of natural convection during the 

solidification process, resulting in increasing of the 

solidification time of the PCM. From a modelling point of 

view, heat transfer in a PCM storage is a transient, non-linear 

phenomenon with a moving solid-liquid interface, generally 

referred to as a “moving boundary” problem. Non-linearity is 

the source of the difficulties when solving numerically moving 

boundary problems. In order to ride out this inconvenience, 

some numerical methods have been proposed [6-8] and applied. 

Rao and Sastri [9] proposed an efficient numerical method that 

isolates the non-linearity associated with the moving interface 

and accurately tracks the interface movement. Voller [10] 

proposed an alternative discretization scheme for the enthalpy 

formulation which was based on separating the sensible and 

latent heat terms. This approach also resulted in a non-linear 

system of equations but with the non-linearity isolated as a 

source term of nodal latent heat. Kim and Kaviany [11] 

developed a highly accurate and efficient finite difference 

method for phase change problems with multiple moving 

boundaries of irregular shape by employing a coordinate 

transformation to immobilize moving boundaries and preserve 

the conservation form of the basic equations. A stable ADI 

method for simulating multi-dimensional solidification 

problems was proposed by Mampaey [12]. He substituted the 

explicit temperature calculation by an implicit one which was 

employed on a limited number of adjacent elements. Voller 

[13] presented a rapid implicit solution technique for the 

enthalpy formulation of the conduction controlled phase change 

problems. He examined three implicit schemes and proposed a 

new enthalpy solution scheme requiring no under or over 

relaxation. Lee and Tzong [14] proposed an enthalpy 

formulation for a phase change material having a distinct 

freezing temperature. Raw and Lee [15] reported a numerical 

formulation based on the weighting function scheme for 

convection-conduction phase change problems in which the 

solid phase is regarded as a liquid having an infinite viscosity. 

Rabin and Korin [16] presented a simple numerical technique 

for solving transient multi-dimensional heat transfer problems 

with melting or solidification processes. Clavier et al. [17] 

reported a fixed grid method using an updating iterative 

implicit scheme to solve one-dimensional phase change 
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problems. More recently, Lamberg [18] proposed an 

approximate analytical model for two-phase solidification 

problem in a finned phase-change material storage. Ismail et al. 

[19] studied the thermal performance of a PCM storage unit. In 

spite of the copious literature concerning the numerical 

simulation of the PCM melting process, few numerical 

contributions take into account the natural convection effect 

occurring in the liquid phase, that enhances heat transfer at the 

solid-liquid interface. In order to contribute to this subject, the 

present study is devoted to the validation of a numerical FEM 

based model for simulating the melting process of a paraffin. 

Numerical results, carried-out by a convection-conduction heat 

transfer model, are compared with experimental ones 

previously published [20]. 

 

NOMENCLATURE 
 
Symbol 

   
C [J/(kg K)] Specific heat at constant pressure 

g [m/s2] Acceleration of gravity 

H [J/m3] Specific enthalpy 
k [W/(m K)] Thermal conductivity 

p [Pa] Pressure 

U [m/s] Velocity vector 
t [s] Time 

T [K] Temperature 

   
Greek symbols 

   

 [1/K] Coefficient of thermal expansion 

 [Pa s] Dynamic viscosity 

 [J/(K m3)] Thermal capacity 

 [kg/m3] Density 

   
Subscripts 

   

L  Liquid 
S 

SL 
 

Solid 

Solid-Liquid 

   

 

PROBLEM FORMULATION 
Because of natural convection effect in the liquid phase, the 

governing equations for transient analyses of the PCM melting 

process include the Navier-Stokes equations, the continuity 

equation, and the energy equation. Under assumption of 

laminar and incompressible flow, invoking the Boussinesq 

approximation in modelling the buoyancy force, the governing 

equations can be written as follows: 
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For the solid phase no convection effect have to be 

considered, so that heat transfer can be expressed by the 

following transient conduction equation: 
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In the solid-liquid interface the net amount of heat, which 

achieves the solid-liquid interface in a time unit, moves the 

distance of the phase change interface, which depends on the 

latent heat of the material. The energy balance for the solid-

liquid interface can be expressed as: 
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where h is the convection heat transfer coefficient in the 

solid-liquid interface and ΔTn is the temperature difference 

between the “moving” solid-liquid interface and the boundary 

in the normal direction of the solid-liquid interface. One of the 

most used techniques for formulation and consequent solution 

of phase change problems is the enthalpy method [7]. In the 

enthalpy method, one single equation is used to solve both the 

solid and liquid domains of the problem. The method is based 

under the assumption that phase change happens with a small 

temperature variation, therefore T = TL-TS, where TS is the 

temperature of the solid phase when the fusion process begins, 

while TL is the temperature of the liquid phase once the 

medium is fully melted. This assumption can be considered as 

realistic for a large number of media employed for thermal 

storage. Let consider the specific enthalpy function during a 

global transformation involving solid state heating, melting 

process and liquid state superheating: 
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By defining the thermal capacity as: 
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From Eq. (6) and (7), we can write: 
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Being SL and CSL evaluated as the average value of density 

and specific heat respectively between the solid and the liquid 

phase. Hence, one single equation can be used for solving 

temperature field both in solid and liquid phase, that reads as 

follows: 
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Where the thermal conductivity kSL is the average solid-

liquid value computed as defined above. From this formulation, 

it appears that Eq. (4) does not need to be solved for monitoring 

solid-liquid interface, that is just located in correspondence of 

the isothermal line defining the phase change temperature Tm = 

(TL+TS)/2. 

  

NUMERICAL MODEL 
Equations (1), (2) and (9) are numerically solved by using 

the FEM based software Comsol Multiphysics v3.5a [21]. 

Because of the main goal of the present work consists in 

validating the adopted numerical approach, the considered 

physical system corresponds to that used by Wang et al. [20] in 

their experimental research. As a consequence, a rectangular 

enclosure with dimensions of 153 mm in width and 103 mm in 

height is considered filled by polyethylene glycol 900 

(PEG900), whose geometry and applied boundary conditions 

are shown in Figure 1 and physical properties are reported in 

Table 1, both for solid and liquid phase. 

153 [mm]

1
0
3
 [

m
m

]

U = 0

T = Tc
T = Th(t)

Q = 0

Q = 0

 
 

Figure 1 Outline of geometry for physical system and 

indication of applied boundary conditions. 

 
 Solid Liquid 

Density [kg m-3] 1100 1120 

Specific heat  at constant pressure [J kg-1 K-1] 2260 2260 

Thermal conductivity [W m-1 K-1] 0.188 0.188 

Coefficient of thermal expansion [K-1] - 7.6E-4 

 

Table I Physical properties for PCM. 

 

Momentum equations are solved overall the computational 

domain by adopting a smoothed Heaviside step function to 

locally define the viscosity value: for temperature higher than 

the melting temperature (liquid phase), the step function 

assumes values characterizing the real physical viscosity for the 

liquid; otherwise (solid phase), it assumes a chosen very high 

value (1E+6), determining motion impossibility for the medium 

with respect to the load conditions. The same strategy of 

implementation is adopted in order to define density and 

thermal  capacity as functions of the temperature. For thermal 

capacity definition, a two-steps function is applied in order to 

take into account the contribution of the latent heat of fusion, 

exchanged throughout the solid-liquid interface, spatially 

identified by the local thermal conditions (TS < T < TL with TL-

TS = 0.01 °C). The continuous and derivable Heaviside 

functions used for simulations are graphically reported in 

Figure 2. As for the experimental apparatus used by Wang et al. 

[20], the cavity is differentially heated: the right vertical wall is 

kept at the constant temperature of 22°C, while heating is 

imposed at the hot left wall, applying a time-dependent 

temperature function. Horizontal walls are considered 

adiabatic. Five boundary heating conditions are simulated, 

using different time evolutions of temperature on the hot wall, 

as graphically reported in Figure 3. The melting temperature for 

the considered PCM is 34 °C and the latent heat of fusion is 

150.5 kJ/kg. From fluid-dynamical point of view, adherence 

conditions are applied at all boundaries. For all test-cases 

analysed (Q1, .., Q5), at the initial conditions the system is at 

the rest and kept in solid state at the temperature of 22 °C. 

Continuous equations are discretized by a finite elements 

method on a no-structured and no-uniform computational mesh 

made of triangular Lagrange elements of order 2. Influence of 

spatial discretization has been preliminary checked, in order to 

assure mesh-independent results. Finally, a computational grid 

made of about 30,000 elements has been retained for 

computations. Time-marching is performed by adopting an 

Implicit Differential-Algebraic (IDA) solver [22], based on a 

variable-order and variable-step-size Backward Differentiation 

Formulas (BDF). Because the time-marching scheme is 

implicit, a nonlinear system of equations is solved each time 

step by applying a modified Newton algorithm. Algebraic 

systems of equations coming from differential operators 

discretization have been solved by a PARDISO package, a 

direct solver particularly efficient in order to solve 

unsymmetrical sparse matrixes by a LU decomposition 

technique. 

 

 
 

Figure 2 Smoothed Heaviside step functions used for define 

viscosity (dashed line), thermal capacity (continuous line) and 

density (dashed-dotted line)  as a function of the local 

temperature. 
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Figure 3 Time-dependent boundary condition applied at the hot 

left wall for test-run  labelled as Q1, Q2, Q3, Q4, Q5. 

RESULTS 
As claimed by Wang et al. [20], in a rectangular enclosure with 

one of its vertical walls suddenly elevated to a higher 

temperature, a thin melt layer forms adjacent to the heated 

surface at the initial stage, indicating that conduction is the 

dominant mode of heat transfer. As time progresses, the 

buoyancy induces a flow due to temperature gradient causing 

the melt volume at the top to recede at a faster rate compared to 

the bottom of the enclosure. The onset of natural convection 

causes the liquid-solid interface to curve, thus augmenting the 

melting process. What above discussed finds good comparison 

in simulations’ results obtained in the present study, as 

illustrated in Figures 4. For several time instants, Figures 3 

report the portion of the volume occupied by the liquid and 

solid phase respectively, the velocity vectors and the 

temperature distribution inside the cavity. Results refer to the 

Q5 heating conditions. A post-processing logical function, 

labelled as B (if T<Tm then B=0 else B=1) is expressed in order 

to visualize the portion of the cavity where the PCM is at liquid 

or solid state respectively. Maps of B function values stand on 

the left side of Figures 4, highlighting by a red/green filling the 

liquid/solid phase. In these maps the white arrows identify 

vectors of the velocity field. As time is increased, fluid is 

propelled up by the thermal buoyancy, determining the onset of 

a convection roll in the left portion of the cavity. The 

convective structure grows with time and involves the solid-

liquid interface to deform from its original almost vertical 

lying.  The thermal transport induced by fluid motion is well 

appreciable from reported temperature fields in the right side of 

Figures 4. At the beginning of the process, isotherms appear 

almost vertical, indicating the conduction as the predominant 

mechanism in heat transfer. While melting progresses, the 

liquid motion induces a strong isotherms deformation, that 

assume a global shape similar to the well-known one 

characterizing natural convection of a single phase fluid in a 

rectangular enclosure. The motion field enhances heat transfer 

in top left region of the cavity, that induces an oblique lying of 

the moving solid-liquid interface. By exploiting the results 

presented by Wang et al. in their paper [20], we also 

quantitatively compared our numerical results with 

experimental ones gathered by the reference, in terms of 

temperature distribution along chosen horizontal planes for a 

chosen time instant and referring to the different time-wise 

heating imposed (Q1-Q5).  

 

 

 

 

 

 

Figure 4 Melting process for Q5 at several time instants (1800; 

3600; 5400; 7200; 9000; 12000 [s]).  On the left side: solid   

(green) and liquid (red) phase, velocity vectors (in white). On 

the right side: Thermal map on coloured scale. 

 

Figures 5 and 6 report an extract of these comparisons: for 

instance, they refers to the Q3 test and report temperature 

values recorded each hour (the heating time was six hours) 

along the top (Figure 5) and the bottom (Figure 6) wall of the 
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cavity. Diagrams globally show a good agreement of simulated 

temperature values with experimental ones. It appears that 

curves referring to the top wall better fit with reference results 

then those describing thermal levels in correspondence of the 

bottom boundary. The numerical model highlights a large 

almost isothermal portion of the volume at the melting 

temperature.  

 

  
 

  
 

  
 

Figure 5 Comparison between present study results (Num) and 

reference [20]  results (Exp): Temperature distribution along 

the top wall at several time steps. 

 

  
 

     
 

  
 

Figure 6 Comparison between present study results (Num) and 

reference [20]  results (Exp): Temperature distribution along 

the bottom wall at several time steps. 

 

As a consequence, temperature distribution along the horizontal 

line lying on the bottom wall present evident discontinuities 

that have not been recorded by experimental acquisitions 

performed by Wang et al.. However, shaped curves comparable 

with ours are presented by Pal and Yoshi [23] in their work 

concerning an experimental and numerical analysis of the 

melting process in a side heated tall enclosure. Solid-liquid 

interface locations referring to test Q5 are also presented for 

different time and compared with Wang et al. results in Figure 

7. The numerical curve refers to the 34 °C isothermal line. 

Comparison globally shows a good agreement. 

 

CONCLUSION  
 

The melting process of a paraffin in a differentially heated 

rectangular enclosure is numerically simulated in this study. 

The enthalpy method is adopted for modelling heat transfer and 

the solid phase is regarded as a liquid having an almost infinite 

viscosity.  The solid-liquid interface location and the thermal 

maps obtained for several transient heating conditions well 

highlight the natural convection effect, enhancing heat transfer 

in the top portion of the cavity. The results carried-out by 

simulations are successfully compared with experimental data 

previously published in literature and concerning an analogue 

system. The shapes of the melt front obtained at various times 

from computations well fit with experiments. Also, 

quantitatively comparison between numerical and experimental 

results show good agreement. From comparisons, the proposed 

numerical approach appears validated and suitable for use in 

the pre-design of PCM storage systems. 

 

  
 

     
 

  
 

Figure 7 Comparison between present study results (Num) and 

reference [20]  results (Exp): Solid-liquid interface location at 

several time steps.. 
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