PARASITES OF DOMESTIC AND WILD ANIMALS IN SOUTH AFRICA. XXIV. ARTHROPOD PARASITES OF BUSHBUCK AND COMMON DUIKER IN THE WEZA STATE FOREST, NATAL

I. G. HORAK(1), M. E. KEEP(2), A. M. SPICKETT(3) and J. BOOMKER(4)

ABSTRACT

One bushbuck, Tragelaphus scriptus, and 1 common duiker, Sylvicapra grimmia, were shot each month from May 1983 to May 1984 in the Weza State Forest, Natal, i.e. a total of 13 animals of each species. The bushbuck were infested with 8 ixodid tick species, 2 louse species and a louse-fly species. The common duiker harboured 7 tick species and 2 louse species.

Ticks of the genus Ixodes were the most numerous and prevalent on both antelope species, but no pattern of seasonal abundance was evident. Although only small numbers were recovered, adult Haemaphysalis aciculifer were present from September to February, nymphs of Rhipicephalus appendiculatus from May to September, and adult Rhipicephalus lunulatus from December to March. The louse-fly, Lipoptena paradona, was recovered from some of the bushbuck from October to May.

INTRODUCTION

The distribution, habitats, habits and food preferences of bushbuck, Tragelaphus scriptus, and of common duiker, Sylvicapra grimmia, have been summarized and commented upon by Boomker, Keep & Horak (1987) and Boomker, Du Plessis & Boomker (1983) respectively.

The ixodid ticks of these animals in countries outside the Republic of South Africa have been recorded by Theiler (1962), Yeoman & Walker (1967) and Walker (1974). Those occurring in South Africa are listed by Theiler (1962) and Baket & Keep (1970), while Horak, Poigtier, Walker, De Vos & Boomker (1983) and Boomker et al. (1983) have determined the actual tick burdens of both species in the Transvaal.

The lice recovered from bushbuck and common duiker have been listed by Ledger (1980) and the flies by Haeselbarth, Segerman & Zumpt (1966). The louse and louse-fly burdens of common duiker have been determined by Boomker et al. (1983).

Allen-Rowlandson (1986) required freshly-killed bushbuck and common duiker for his study of these species within the Weza forest area of Natal. During the later part of his project, material for parasitological investigation was collected and the present paper records the arthropod parasite burdens of 13 animals of each species. The helminth burdens of these animals have been reported in a separate paper (Boomker et al., 1987).

MATERIALS AND METHODS

Study site

The physiography of the Weza State Forest (30° 35’ S; 24° 45’ E), Alfred District of Natal, in which the animals were collected, has been described by Boomker et al. (1987).

Survey animals

One bushbuck and 1 common duiker were shot at night each month for 13 consecutive months from May 1983 to May 1984. Eleven adults and 2 sub-adults of each species were shot. These comprised 7 male and 6 female bushbuck and 8 male and 5 female duiker.

Parasite recovery

Immediately after slaughter the skins of the animals were processed for arthropod parasite recovery as described by Horak, Meltzer & De Vos (1982). The ectoparasite burdens of the animals were determined as described by Horak et al. (1983).

RESULTS

Bushbuck

The total numbers of arthropod parasites recovered from the 13 animals examined are summarized in Table 1.

The bushbuck were infested with 8 ixodid tick species, 2 louse species and a louse-fly species. Small numbers of adult Haemaphysalis aciculifer were recovered from each animal examined from September 1983 to February 1984. Ticks of the genus Ixodes were the most numerous and all animals were infested, but no pattern of seasonal abundance was evident. Three of the 5 antelope examined between December 1983 and April 1984 each harboured 2 adult Rhipicephalus jollis, while the 3 animals examined between December and February were each infested with adult Rhipicephalus lunulatus. Six of the 8 antelope examined between October 1983 and May 1984 harboured the louse-fly Lipoptena paradona.

Common Duiker

Table 2 summarizes the total numbers of arthropod parasites recovered from the 13 antelope examined.

The duiker harboured 7 ixodid tick species and 2 species of lice. The 3 animals examined between November 1983 and January 1984 were each infested with adult H. aciculifer. Although ticks of the genus Ixodes were the most numerous no pattern of seasonal abundance was evident. Each of the animals examined from May to September 1983 was infested with 2–4 nymphs of Rhipicephalus appendiculatus. Only the animal shot during March 1984 was infested with adult R. lunulatus.

DISCUSSION

Ixodid ticks

The bushbuck harboured more ticks of each species than did the duikers. In total they carried approximately 8 times more larvae, twice as many nymphs and 10 times...
more adults. MacLeod, Colbo, Madbouly & Mwanaumo (1977) have stated that the larger the host the more adult ticks it seems likely to carry. This is confirmed by the observations of Horak & Knight (1986) and Horak, Sheppey, Knight & Beuthin (1986). They determined the total tick burdens of various sympatric host species and found that, with some exceptions, the larger the animal species the better host it is, particularly for the adults.

Boophilus decoloratus

Horak et al. (1983) found that in habitats in which *B. decoloratus* abounds, such as the Kruger National Park, bushbuck are good hosts of this tick. The small number of ticks recovered from these animals in the present survey therefore probably indicates an unfavourable habitat. *B. decoloratus* prefers open grassland or savanna with an annual rainfall above 380 mm (Howell, Walker & Nevill, 1978), whereas the study area comprises mountain grassland (27 %), indigenous forest (19 %) and plantations of exotic trees (54 %) (Boomker et al., 1987). The bushbuck and duiker examined in this study were shot in forested regions with variable grass cover depending upon the size of the trees. However, as only small numbers of *B. decoloratus* have been recovered from common duiker examined in a habitat suitable for the blue tick (Boomker et al., 1983), duiker are in any event probably not good hosts for this species.

Haemaphysalis aciculifer

Hoogstraal & El Kammah (1972) have recorded bushbuck as a host of this tick in Uganda, Kenya and Tanzania and common duiker in Kenya. Walker (1974) also lists bushbuck and common duiker as hosts in Kenya. Its recovery from these animals in the Weza State Forest confirms the observation of Horak et al. (1986) that it has a wider distribution in South Africa than is given by Theiler (1962). Norval (1985) notes that the 7 collections made in Zimbabwe were all from animals in woodland or wooded grassland habitats on the high rainfall, highveld plateau. These collections, which consisted only of adults, were all made from November to January. In the south-western Cape Province Horak et al. (1986) recovered small numbers of adult ticks from grey rhebuck (*Pelea capreolus*) and bontebok (*Damaliscus dorcas dorcas*) from August to February. In the present survey adults were recovered from September to February.

Ixodes pilosus

We have assumed that the immature stages of this tick and those of the other *Ixodes* species recovered are indistinguishable, hence they are lumped under *Ixodes* spp. in the tables. *I. pilosus* is found in souveld areas along the coast from Port Shepstone in Natal to Cape Town in the western Cape Province (Howell et al., 1978). A total of 29 males and 102 females (a ratio of...
1:3.5) were recovered by Norval (1974) from bushbuck and duiker in the eastern Cape Province. Horak, Jacot Guillarmod, Moolman & De Vos (1987) recovered 38 males and 130 females (a ratio of 1:3.4) from dogs and only 1 male and 39 females from caracals (Felis caracal) in the same region, while Horak et al. (1986) recovered 63 males and 205 females (a ratio of 1:3.3) from bontebok, grey rhebuck and scrub hares (Lepus saxatilis) in the south-western Cape Province. The animals from the Weza forest harboured a total of 233 males and 1 102 females (a ratio of 1:4.7). Norval (1974) suggests that these ratios indicate that mating may occur either on the host or on the ground.

Although no pattern of seasonal abundance was obvious in the present survey, Horak et al. (1986, 1987) found that in the south-western and eastern Cape Province the larvae peak in June and the nymphs in August, while the adults may peak from October to December or January to May. They suggested that only one life cycle was completed annually.

Ixodes sp.

These ticks resemble *I. pilosus*, but show definite palpal, coxal and setal differences and they probably represent a new species. One of us (A.M.S.) examined the *Ixodes* sp. collected from 2 blue duikers (*Cephalophus monticolus*) during the National Tick Survey in Zimbabwe (Norval, Spickett & Clifford, 1987) and considers them to be identical to those collected in the present survey. No pattern of seasonal abundance is evident and the ratio of males to females is 1:12.5.

Rhipicephalus appendiculatus

Horak et al. (1983) and Boomker et al. (1983) recovered fair numbers of larvae and nymphs, but few adults, from bushbuck and common duiker examined in the Transvaal. None of those bushbuck were examined during late summer, the season of peak adult abundance, while some of the duikers were. The infestation at Weza was possibly maintained by cattle and goats which occasionally stray into the forest from surrounding farms (Boomker et al., 1987). The period during which the nymphs were present (May–September) was slightly shorter than that of the peak nymphal abundance (April–October) observed by Knight & Rechav (1978) and Rechav (1982) on kudu (*Tragelaphus strepsiceros*), goats and cattle in the eastern Cape Province.

Rhipicephalus evertsi evertsi

Although no adult ticks were recovered this species was probably maintained by the mules and horses used as transport animals in the forest (Boomker et al., 1987). Equids are the preferred hosts of this tick (Hoogstraal, 1956; Norval, 1981).

Rhipicephalus follicus

The description of the male of *R. follicus* by Theiler (1947) and the original illustrations by Dönitz (1910) were used to identify this species. The descriptions given under this name by Theiler & Robinson (1953) and the accompanying illustrations by D. Pringle are now thought to refer to another species. Theiler (1947) suggests that domestic stock are hosts of this tick. Although only very small numbers of adult ticks were recovered from the bushbuck these were present from December to April.

Rhipicephalus lunulatus

There has been considerable confusion in the past between this species and *Rhipicephalus ricinus* (Walker, Keirans, Pegram & Clifford, 1988), but these authors have recently published redescriptions of both species, listed their host associations and illustrated their geographic distributions.

Norval & Tebele (1983) state that *R. lunulatus* is widely distributed in Zimbabwe in woodland or woodland/savanna habitats which receive 550–1 200 mm of rain per annum. Amongst the collections of adult ticks in that country, the majority of which were made from November to January, there is one from a common duiker. Colborne (1985) recovered adults from cattle in Zimbabwe from November to May. The preferred sites of attachment were the legs and tail. In the present study adult ticks were present from December to March and all but 2 were recovered from the lower legs of the bushbuck or duiker.

Lice

Both *Damalinia natalensis* and *Linognathus pana­mensis* are specific parasites of bushbuck (Ledger, 1980). The *Damalinia* sp. on the duiker could not be specifically identified, while the *Linognathus* sp. on this host belonged to the *Linognathus breviceps-complex* as discussed by Ferris (1932). Boomker et al. (1983) have recovered small numbers of *Damalinia lerouxi, L. breviceps* and *Linognathus zumptii zumptii* from common duikers in the central Transvaal. The lice burdens were never large on either of the antelope species and no patterns of seasonal abundance could be ascertained.

Flies

The louse-fly, *L. paradoxus*, has a wide host range among the antelope and many species that browse are infested (Haeseleibath et al., 1966). Although some of the bushbuck in the present survey were infested none of the duikers were. This contrasts with the findings of Boomker et al. (1983), who recovered *L. paradoxus* from 12 of the 16 duikers they examined. In the present survey the flies were only recovered from October to May and then not from all the bushbuck examined during this period.

ACKNOWLEDGEMENTS

We wish to thank the Directorate of Forestry, Department of Environmental Affairs, for placing the animals at our disposal. We are also grateful to Dr T. S. Allen-Rowlandson, during whose project the animals were collected and who also assisted with the collection of parasites. The technical assistance of Mrs Valerie A. Horak of the lice. We are also indebted to Dr Jane B. Walker for confirming the identities of *R. follicus* and *R. lunulatus* and for supplying the appropriate references and to Dr E. M. Nevill for confirming that of *L. paradoxus* and assisting with the identification of the lice.

This research was funded by the Council for Scientific and Industrial Research, the Meat Board and Rhodes University.

REFERENCES

