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ABSTRACT 
Steady laminar free convection in air from a row of parallel 

circular cylinders, is studied numerically. SIMPLE-C algorithm 
is used for the solution of the mass, momentum, and energy 
transfer governing equations. Simulations are performed for 10-
cylinder assemblies with inter-cylinder spacings from 0.6 to 5 
cylinder-diameters and Rayleigh numbers from 101 to 105. It is 
found that the thermal performance of the whole assembly 
increases as the Rayleigh number increases, and has a peak at 
an optimum separation distance among the cylinders which 
decreases with increasing the Rayleigh number. 
 
INTRODUCTION 

Natural convection heat and momentum transfer from 
groups of horizontal cylinders set in free space side by side, i.e., 
arranged in a row, has received not so much attention in the 
past. In fact, besides a first experimental work conducted by 
Liebermann and Gebhart [1], who investigated the thermal 
behavior of an array of ten widely-spaced, long wires at a very 
low Grashof number, only two other papers on this topic were 
found in the literature. However, both studies, which were 
performed numerically by Farouk and Guceri [2], and by Bello-
Ochende and Bejan [3], were related to an infinite number of 
parallel cylinders. Thus, in the absence of data on tube-arrays 
consisting of a finite number of elements, a short knowledge on 
both the physical aspects and the actual limits of applicability 
of the results available for infinite rows of cylinders to real 
situations, comes out.  

In this framework, the aim of the present paper is to 
investigate free convection in air from a horizontal tube-array 
consisting of a finite number of horizontal circular cylinders set 
parallel to one another. The study is conducted numerically 
under the assumption of isothermal cylinder-surfaces, and two-
dimensional steady laminar flow. Simulations are performed for 
a 10-cylinder assembly with inter-cylinder spacings in the range 
between 0.6 and 5 cylinder-diameters, and Rayleigh numbers in 
the range between 101 and 105. The effects of any independent 
variable on the flow pattern, the temperature distribution, and 

the heat transfer rates from any individual cylinder and from 
the whole assembly, are analyzed and discussed.  
 
PROBLEM STATEMENT 

A row consisting of 10 horizontal circular cylinders set 
parallel to one another, is considered. The diameter D of the 
cylinders, and the inter-cylinder spacing S, are assigned. Heat is 
transferred by free convection from each cylinder surface, kept 
at uniform temperature tw, to the surrounding undisturbed fluid 
reservoir, assumed at uniform temperature t∞.  

The buoyancy-induced flow is considered to be steady, two-
dimensional, and laminar. The fluid is assumed incompressible, 
with constant physical properties and negligible viscous 
dissipation and pressure work. Buoyancy effects on momentum 
transfer are taken into account through the Boussinesq 
approximation.  
 
Governing equations 

Once the above assumptions are employed in the 
conservation equations of mass, momentum, and energy, the 
following set of dimensionless governing equations is obtained: 

0=⋅∇ V               (1) 
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where V is the velocity vector having dimensionless velocity 
components (U,V) normalized with (ν/D), T is the dimension-
less temperature excess over the uniform temperature of the 
undisturbed fluid reservoir normalized with the temperature 
difference (tw − t∞), p is the dimensionless pressure normalized 
with (ρ∞ν2/D2), Ra is the Rayleigh number based on the 
cylinder-diameter, g is the gravity vector, and Pr is the Prandtl 
number.  
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Figure 1 – Geometry, coordinate systems and integration domain 
 

The related boundary conditions are T = 1 and V = 0 at any 
cylinder surface, and T = 0 and V = 0 at very large distance 
from the cylinders.  
 
Computational domain and discretization grid system 

The finite-difference solution of equations (1)−(3) with the 
boundary conditions stated above requires that a discretization 
grid system is established across the whole two-dimensional 
integration domain. Since the flow is symmetric about the 
vertical midplane of the row, the integration domain is taken as 
a rectangle which includes only one-half of the row, i.e., only 
five cylinders, and extends from the vertical symmetry midline 
up to a pseudo-boundary set sufficiently far from the cylinders. 
A cylindrical polar grid is employed in the proximity of any 
cylinder, while a Cartesian grid is used to fill the remainder of 
the integration domain, as sketched in Fig. 1, where the (r, θ) 
and (X, Y) coordinate systems adopted are also represented. 
The cylinders are denoted by ordinal numbers N1 to N5, where 
N1 indicates the inner cylinder, and N5 the outer cylinder. In the 
polar systems, U is the radial velocity component, and V is the 
tangential velocity component. In the Cartesian system, whose 
origin is taken at the bottom left corner of the integration 
domain, U is the vertical velocity component, and V is the 
horizontal velocity component. According to the discretization 
scheme originally proposed by Launder and Massey [4], the 
cylindrical polar grids and the Cartesian grid, which are entirely 
independent of one another, overlap with no attempt of node-
matching. Their connection is provided by two sets of false 
nodes, one for each neighboring grid, located beyond their 
intersection, as recently described in details by Corcione [5]. 
 
Boundary conditions 

The boundary conditions required for the numerical solution 
of the governing equations (1)−(3) have to be specified at any 
cylinder surface, at the symmetry line and at the boundary lines 
which enclose the two-dimensional integration domain defined 
above. In particular, once the pseudo-boundary lines are placed 
sufficiently far from the cylinders, the motion of the fluid 
entering or leaving the computational domain may reasonably 
be assumed to occur normally to them. The entering fluid is 
assumed at the undisturbed free field temperature. As far as the 
leaving fluid is concerned, whose temperature is not known a 

priori, a zero temperature gradient normal to the boundary line 
is assumed. 

The following boundary conditions are then applied: 
a) at any cylinder surface 

0=U , 0=V , 1=T             (4) 

b) at the bottom boundary line A−B  

0=
∂
∂
X
U , 0=V , T = 0  if  U ≥ 0  or 0=

∂
∂
X
T  if  U < 0     (5) 

c) at the right boundary line B−C  

0=U , 0=
∂
∂
Y
V , T = 0  if  V < 0  or 0=

∂
∂
Y
T  if  V ≥ 0     (6) 

d) at the top boundary line C−D  

0=
∂
∂
X
U , 0=V ,  T = 0  if  U < 0  or 0=

∂
∂
X
T  if  U ≥ 0    (7) 

e) at the left symmetry line A−D  

0=
∂
∂
Y
U , 0=V , 0=

∂
∂
Y
T            (8) 

As far as the intersections between polar and Cartesian grids 
are concerned, the value of each of the dependent variables at 
any false node of one of the two neighbouring grids is obtained 
by a linear interpolation of the values of the same variable at 
the four surrounding real nodes of the other grid.  

Solution algorithm 
The set of equations (1)−(3) with the b.c.’s (4)−(8) is solved 

through a control-volume formulation of the finite-difference 
method. The pressure-velocity coupling is handled by the 
SIMPLE−C algorithm by Van Doormaal and Raithby [6]. The 
advection fluxes across the surfaces of the control volumes are 
evaluated by the QUICK discretization scheme by Leonard [7]. 

Fine uniform mesh-spacings are used for the discretization 
of both the polar grid regions and the Cartesian grid region. 
Starting from assigned first-approximation fields of the 
dependent variables, the discretized governing equations are 
solved iteratively through a line-by-line application of the 
Thomas algorithm, enforcing under-relaxation to ensure 
convergence. The solution is considered to be converged when 
the maximum absolute values of both the mass source and the 
percent changes of the dependent variables at any grid-node 
from iteration to iteration are smaller than prescribed values, 
i.e., 10-4 and 10-6, respectively.  

After convergence is attained, the local and average Nusselt 
numbers Nui(θ) and Nui for the i-th cylinder in the row are 
calculated: 
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Table 1 - Comparison of the present results with the benchmark solutions of Saitoh et al. 

                  Nu0(θ)  
                        Ra  θ = 0° 30° 60° 90° 120° 150° 180° Nu0 
                    103 Present 3.789 3.755 3.640 3.376 2.841 1.958 1.210 3.023 
 Saitoh et al. [8] 3.813 3.772 3.640 3.374 2.866 1.975 1.218 3.024 
          104 Present 5.986 5.931 5.756 5.406 4.716 3.293 1.532 4.819 
 Saitoh et al. [8] 5.995 5.935 5.750 5.410 4.764 3.308 1.534 4.826 
          105 Present 9.694 9.595 9.297 8.749 7.871 5.848 1.989 7.886 
 Saitoh et al. [8] 9.675 9.577 9.278 8.765 7.946 5.891 1.987 7.898 
           

where q is the heat flux and Q is the heat transfer rate. The 
temperature gradients at any cylinder surface are evaluated by 
assuming a second-order temperature profile among each wall-
node and the next two fluid-nodes. The integrals are 
approximated by the trapezoid rule. The average Nusselt 
number of the whole assembly Nu is then obtained as the 
arithmetic mean value of the average Nusselt numbers Nui of 
the individual cylinders. 

Validation of the numerical procedure 
Tests on the dependence of the results obtained on the 

mesh-spacing of both the polar and the Cartesian discretization 
grids, as well as on the thickness of the polar grid regions, and 
on the extent of the whole computational domain, have been 
performed for several combinations of values of S/D and Ra. In 
particular, the optimal grid-size values, and the optimal 
positions of the polar/Cartesian interfaces and the pseudo-
boundary lines used for computations (representing a good 
compromise between solution accuracy and computational 
time), are such that further grid refinements or boundary 
displacements do not yield for noticeable modifications neither 
in the heat transfer rates not in the flow field, that is, the percent 
changes of Nui(θ) and Nui, and the percent changes of the 
maximum value of the tangential velocity components at θ = 
90° and 270° for any cylinder, are smaller than prescribed 
accuracy values, i.e., 1% and 2%, respectively. Typical features 
of the integration domain may be summarized as follows: (a) 
the number of nodal points (r×θ) of the polar discretization 
grids lies in the range between 45×72 and 135×90, (b) the 
thickness of the polar grid regions varies between one-fifth and 
two times the cylinder-diameter, and (c) the extent of the whole 
integration flow-domain ranges between 4 and 20 diameters 
upwards, between 2 and 4 diameters downwards, and between 
3 and 8 diameters sidewards, depending on the Rayleigh 
number and the cylinder-spacing. 

As far as the validation of both the numerical code and the 
meshing procedure is specifically concerned, a comparison 
between the local and average Nusselt numbers Nu0(θ) and Nu0 
obtained for a single cylinder at several Rayleigh numbers and 
the corresponding benchmark results by Saitoh et al. [8], is 
reported in Table 1. Moreover, in order to test the reliability of 
the composite polar/Cartesian grid system at close cylinder-
spacing, a comparison between the overall results obtained for 

a 2-cylinder vertical array and the corresponding experimental 
data by Tokura et al. [9], are reported in Table 2. Many more 
details on the code validation are available in reference [5]. 
 
RESULTS AND DISCUSSION  

Numerical simulations are performed for Pr = 0.71, which 
corresponds to air, and for different values of (a) the Rayleigh 
number Ra from 101 to 105, and (b) the dimensionless inter-
cylinder spacing S/D in the range between 0.6 and 5.  

Local results are presented in terms of isotherm contours in 
Figs. 2−4, for Ra = 103 and S/D=1, 3, and 5, respectively, and 
in Figs. 5−7, for S/D=2 and Ra = 101, 103, and 105, respectively. 

It may be seen that the mutual interactions occurring among 
the cylinders give rise to a “suction effect” which causes the 
rotation of the warm plume spawned by any cylinder towards 
the center of the row, and, in most cases, their merging. Thus, 
the lower and upper stagnation points of any cylinder are no 
longer located at θ = 0° and θ = 180°, respectively, as shown in 
Fig. 8, where the polar distributions of the local Nusselt number 
for any cylinder of the right half of the row are reported for Ra 
= 103 and S/D = 1. As for the plume, the more the cylinder is 
located towards the end of the row, the more the stagnation 
points rotate with respect to the vertical. 

The effects of S/D and Ra on the heat transfer rate from any 
cylinder are pointed out in Figs. 9 and 10, where the results are 
expressed through the ratio Nui/Nu0, so as to highlight in what 
measure the interactions among the cylinders either enhance or 
degrade the heat transfer performance of the i-th cylinder with 
respect to that of a single cylinder at same Rayleigh number.  

Table 2 - Comparison with the experimental data of Tokura et al. 

Nu / Nu0  for a 2-cylinder vertical array at Gr = 1.2 × 105 
                  S/D =    1.1 1.3 1.5 2 
                  Present   0.908 0.965 0.996 1.008 Bottom  
cylinder Tokura et al. [9]   0.890 0.940 1.000 1.010 
      Present   0.614 0.661 0.726 0.853 Top  
cylinder Tokura et al. [9]   0.610 0.680 0.740 0.870 
      Present   0.761 0.813 0.861 0.930 Whole  
array Tokura et al. [9]   0.750 0.810 0.870 0.940 



    

 

 
Figure 2 – Isotherm contour plot for Ra = 103 and S/D = 1 

 
 

 
Figure 3 – Isotherm contour plot for Ra = 103 and S/D = 3 

 
 

 
Figure 4 – Isotherm contour plot for Ra = 103 and S/D = 5 

 



    

 
Figure 5 – Isotherm contour plot for Ra = 101 and S/D = 2 

 
 

 
Figure 6 – Isotherm contour plot for Ra = 103 and S/D = 2 

 

 
Figure 7 – Isotherm contour plot for Ra = 105 and S/D = 2 
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Figure 8 – Nui(θ) vs. θ for Ra = 103 and S/D = 1 
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Figure 9 – Nui/Nu0 for Ra = 103 and different values of S/D 
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Figure 10 – Nui/Nu0 for S/D = 1 and different values of Ra 

 

It is worth noticing that when either Ra or S/D increases, 
the effects are quite similar, which may be easily pointed out 
by comparing the distributions of the isotherm lines reported in 
Figs. 2−4 and in Figs. 5−7. It may be observed that for small 
values of S/D and/or Ra the behavior of the row resembles that 
of a horizontal plate, whereas for larger values of S/D and/or 
Ra the plumes spawned by the cylinders tend to retain their 
individuality. Also the distributions of Nui/Nu0 vs. Ni evolve 

following similar paths as S/D and/or Ra increase, as shown in 
Figs. 9 and 10, where it may be clearly seen that the more the 
cylinders are located towards the middle of the row, the higher 
is the amount of heat exchanged at their surface, owing to the 
suction effect induced by the whole assembly.  

What may then be concluded is that both Ra and S/D play 
roles of the same type. Actually, the temperature field, and thus 
the amount of heat exchanged at any cylinder surface, depend 
on how much any cylinder in the row interacts with the 
neighboring cylinders, which, in its turn, depends substantially 
on the ratio S/δ between the inter-cylinder spacing and the 
thickness of the boundary layer. Three different situations may 
be distinguished: (a) for values of S/δ much larger than unity, 
the thermal behavior of any cylinder tends to approach that for 
a single cylinder; (b) for values of S/δ of the order of unity, the 
interactions occurring between the boundary layers which 
develop around any cylinder in the row give rise to a kind of 
chimney-effect with a more or less pronounced increase in the 
heat transfer rate relative to that for a single cylinder; and (c) 
for values of S/δ much smaller than unity, the merging of such 
boundary layers causes a dramatic decrease in the mass flow 
rate through the cylinders, and then in the amount of heat 
transferred at their surface. Currently, as the thickness δ of the 
boundary layer decreases with increasing Ra, it follows that S/δ 
increases as either S/D or Ra increases, and vice versa. Of 
course, the thermal behavior of the cylinders located at both 
ends of the row tends to differ from that of the inner cylinders. 
In fact, as the outer sides of the end-cylinders which face the 
free space are not involved in any type of interactions, the heat 
transfer rate at the end-cylinders is either above or below that 
for the inner cylinders, according as S/δ is smaller than unity or 
of the order of unity.  

The effects of Ra and S/D on the heat transfer performance 
of the whole assembly relative to that of a single cylinder 
Nu/Nu0, are shown in Figs. 11 and 12. 
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Figure 11 – Nu/Nu0 vs. Ra for different values of S/D 

 
Figure 11 points out that the value of Ra at which Nu/Nu0 

becomes higher than unity increases as the inter-cylinder 
spacing decreases. In fact, since the through-flow resistance 
increases with decreasing S/D, a larger buoyancy force is 
required to obtain the same heat transfer performance.  
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Figure 12 – Nu/Nu0 vs. S/D for different values of Ra 

 
On the other hand, Figure 12 shows that the positive impact 

of the convective interactions which occur when the adjacent 
boundary layers comes in touch is higher at higher values of 
the Rayleigh number, and that the value of S/D corresponding 
to the maximum for the average Nusselt number of the whole 
assembly decreases with increasing the Rayleigh number.  
 
CONCLUSIONS 

Free convection in air from a row of 10 circular cylinders, 
has been studied numerically for inter-cylinder spacings in the 
range between 0.6 and 5 cylinder-diameters, and Rayleigh 
numbers from 101 to 105. It has been found that when the inter-
cylinder spacing and/or the Rayleigh number are such that the 
interactions occurring among the cylinders enhance the heat 
transfer performance of any cylinder relative to that of a single 
cylinder, the degree of enhancement for the cylinders located in 
the middle of the row is higher, due to the suction effect 
induced by the whole assembly. As far as the overall behavior 
of the tube-row is concerned, it has been found that the thermal 
performance of the whole assembly increases as the Rayleigh 
number increases, and has a peak at an optimum separation 
distance among the cylinders which decreases with increasing 
the Rayleigh number. 
 
NOMENCLATURE 
D diameter of the cylinders  
g gravity vector  
g gravitational acceleration 
k thermal conductivity of the fluid 
Nu average Nusselt number of the row of cylinders 
Nui average Nusselt number of the i-th cylinder  
Nui(θ) local Nusselt number of the i-th cylinder  
Nu0 average Nusselt number of the single cylinder 
p dimensionless pressure 
 
 
 
 
 

Pr Prandtl number = ν/α 
Q heat transfer rate 
q heat flux 
r dimensionless radial coordinate normalized with D 
Ra Rayleigh number based on the cylinder diameter =  
 = gβ(tw – t∞)D3/αν 
S inter-cylinder spacing 
T dimensionless temperature  
t temperature 
U dimensionless radial or X-wise velocity component  
V dimensionless velocity vector 
V dimensionless tangential or Y-wise velocity component  
X, Y dimensionless Cartesian coordinates normalized with D 

Greek symbols 
α thermal diffusivity of the fluid 
β coefficient of volumetric thermal expansion of the fluid 
ν kinematic viscosity of the fluid 
θ dimensionless polar coordinate 
ρ density of the fluid 

Subscripts 
i i-th cylinder in the row 
w cylinder surface 
∞ undisturbed fluid 
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