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ABSTRACT 
This paper extends the concept of generating the multi-scale 
structure for a finite-size flow system to three-dimensional heat-
generating plates with maximum heat transfer rate density. The 
fluid is forced through a given volume containing the heat 
generating plates by an applied pressure difference (ΔP). The 
heat-generating plates are arranged in a stack. This work consists 
of numerical simulation in a large number of flow 
configurations, one differing slightly from the next to determine 
the optimum plate spacing and maximum heat transfer rate 
density. The heat transfer rate density is further increased by 
inserting smaller three-dimensional plates between the bigger 
larger plates and optimising the whole structure. The effects of 
plate thickness and dimensionless pressure drop number on the 
resulting multi-scale structure are reported.  The numerical 
results are found to be in good agreement with predicted results. 

NOMENCLATURE 
Be [-] Dimensionless pressure number 
d [m] Spacing between two-dimensional parallel plates 
D0 [m] Spacing between two plates 
D1 [m] Spacing between the L0 and L1  plates when L1 plate is 

inserted 
H [m] Stack height 
k [W/mK] Thermal conductivity 
Lu [m] Length of control volume before the plate 
L0 [m] Plate length in the flow direction 
L1 [m] Flow length of the first plate insert 
Ld [m] Length of control volume after the plate 
m [-] Number of new inserted plates 
n [-] Number of plates 
P [N/m2] Pressure 
Pr [-] Prandtl number 
Re [-] Reynold number 
q [ W] Heat transfer 

q~  [-] Dimensionless heat transfer, Eq. (13) 
t [m] Plate thickness 
T [K] Temperature 
Tw [K] Temperature 
T∞ [K] Free-stream temperature 
u [m/s] Velocity component 
v [m/s] Velocity component 
w [m/s] Velocity component 

U∞ [m/s] Free-stream velocity 
W [m] Plate breadth 
x [m] Cartesian axis direction  
y [m] Cartesian axis direction  
z [m] Cartesian axis direction  
 
Special characters 
α [m2/s] Thermal diffusivity 
μ [kg/s m] Viscosity 
ν [m2/s] Kinematic viscosity 
γ [-] Convergence criterion 
δ [m] Boundary layer thickness 
 
Subscripts 
d  Downstream 
L0  Length 
m  Maximum 
opt  Optimum 
u  Upstream 
wall,w  Wall 
∞  Free-stream 
Superscript 
~  Dimensionless 
 
INTRODUCTION 
Compactness and miniaturisation are driven by the need to 
install more and more heat transfer into a given volume.  The 
figure of merit is heat transfer density.  A recent trend in heat 
transfer research has been the focus on the generation of 
optimal flow architecture, as a mechanism by which the 
system achieves its maximal density objective under 
constraints [1].  The strategy is to endow the flow 
configuration with the freedom to morph, and to examine 
systematically many of the eligible design configurations.  
Strategy and systematic search mean that architectural features 
that have been found to be beneficial in the past can be refined 
and incorporated into more complex systems of the present. A 
similar idea has also been pursued and implemented by Dirker 
et al. [2] in the cooling of power electronics by embedded 
solids. 
 One class of flow features that aid the achievement of 
high-heat transfer density is the optimal spacings that have 
been reported for forced convection [3-6].  The progress in 
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this area has been reviewed in [1, 7]:  Optimal spacings have 
been determined for parallel plate channels, cylinders in cross-
flow, staggered parallel plates, and pin fin arrays with impinging 
flow.  In each configuration, the optimal spacing is a single-
length scale that is distributed throughout the available volume. 
 The optimal spacing idea was taken theoretically and 
numerically one step further in [8-10], where the flow structure 
had not one but several optimal-length scales.  These were 
distributed non-uniformly through the flow space, more, 
numerous and smaller in the entrance region of the available 
volume. The reason is that the boundary layers were thinner and 
more plates could be fitted together optimally. 
 In this paper, we evaluated this design approach 
numerically, by considering forced convection cooling of a 
volume filled by stacks of three-dimensional parallel plates that 
generate heat. This represents the actual geometry in space and 
the limitation of the result obtained using two-dimensional 
parallel plates [8] is eliminated.  The flow and heat transfer are 
simulated numerically for a wide variety of flow configurations.  
Each numerical simulation shows that the entrance region of 
every parallel plate channel has a core of unused (isothermal) 
fluid.  In this wedge-shaped region, we progressively inserted 
smaller heat-generating plates, and then we optimised the multi-
scale assembly.  The maximisation of heat transfer density is 
pursued geometrically, by varying more and more degrees of 
freedom.  The result is a class of progressively better flow 
structures with multiple-length scales that are distributed non-
uniformly through the flow system. 
 

 
Figure 1 Three-dimensional stacks of parallel plate channels. 
 
 
PHYSICAL MODEL 

Consider a stack of three-dimensional heat-generating  
parallel plates in space as shown in Figure 1, the plates are 
modelled as isothermal with temperature T = Twall.  A stream of 
coolant with temperature T = T∞ is forced through the channels 
in a fixed volume. The problem consists of maximising the heat 
transfer rate between the coolant and the heat-generating plates.  

The problem is ruled by the conservation of mass, 
momentum and energy equations. They are simplified in 
accordance with the assumptions of three-dimensional 
incompressible steady-state laminar flow with constant 
properties for a Newtonian flow. The governing equations in the 
dimensionless forms are: 

 

 
(2a) 

 
 

 
(2b) 
Figure 2a,b Computational domains for a three-dimensional 
parallel plate channel. 
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Where 2222222 z~/y~/x~/ ∂∂+∂∂+∂∂=∇ , and the variables 
are defined as, 
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In Eq. (7), Be is the dimensionless pressure drop number [11], 
and Pr the Prandtl number. There is no flow in the fraction of 
the volume occupied by the solid plates and, therefore, only 
the energy equations need to be solved in the portion occupied 
by the plates, T~2∇  = 0.  
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  Symmetry allowed us to reduce the computational 
domain to a unit cell, which is represented by the computational 
domain shown in Fig. 2a and 2b.  The computational domain is 
composed of external fluid and a solid heated plate. The fluid 
flows through the channels as well as the frontal area of the 
plates in the direction of the flow. The three-dimensional parallel 
plates are arranged equidistantly from one another, and the 
thickness of the plate is assumed to be the same for all the plates. 
To complete the problem formulation, the following boundary 
conditions are then specified for the extended three-dimensional 
computational domain in line with Fig 2a and 2b: 
 
              0 x~  at  0  T~,    0 w~    v~,     1P~ =====                   (8) 

                W~   z~  and   0 z~,   at  0  
z~
T~   w~  v~ u~ ===
∂
∂

===     (9)   

           t    D~    y~  and   0 y~    at  0  v 
y~
w~ 

y~
u~

0 +====
∂
∂

=
∂
∂ (10) 

             
  plates  theof surface at   the 

 1    T~,     0    w~    v~    u~ ====                                (11)                                                                                                                               

            
)L~   L~   L~  (  x~  at   

0    
x~
T~     

x~
w~    

x~
v~    

x~
u~  P~

du0 ++=

=
∂
∂

=
∂
∂

=
∂
∂

=
∂
∂

=
         (12) 

Additional boundary conditions are zero shear and zero heat flux 
around the periphery of the computational domain and no-slip on 
the plate surfaces in contact with the fluids.  It should be noted 
that the numerical task of simulating the flow and temperature 
fields in stacks cooled by a free stream in three dimensions is 
considerable and more time-consuming than when the stacks are 
sandwiched between two parallel plates or are in two 
dimensions. In the latter, there is no coolant bypass around the 
stack by a free stream and it is sufficient to perform calculations 
only for one plate-to-plate channel.  In order to represent the 
actual flow, an extension was added to the computational 
domains. The extent of the computational domains ( uL~ and dL~  ) 
was chosen such that the flow behaves like a free stream (i.e. is 
not affected by the stacks in regions situated sufficiently far 
from the stack), see Fig. 2. The upstream reservoir frees the flow 
and allows it to develop hydraulically starting at the entrance 
plane of the channel, while the uniform inlet flow boundary 
condition is specified at the entrance plane of the upstream 
reservoir. Doing this, eliminates the need to impose a velocity 
profile at the entrance of the channels. The downstream reservoir 
of the computational domain delayed the imposition of an 
unrealistic outlet boundary condition on the exit plane of the 
channel. The symmetry about y~  = 0 and y~ = ,t~  D~ 0 + allowed us 
to perform the calculations in the region defined by Fig. 1b of 
the field, namely (0 ≤ y~  ≤ t~  D~ 0 + ).  The temperature profile in 
the volume occupied by the plates is solved simultaneously with 
Eqs. (1)-(5)  for the fluid portion of the domain. 

The global objectives of this study are to find the 
optimal geometry such that the volumetric heat transfer rate 
density is maximised. The dimensionless heat transfer rate 
density is defined as follows: 
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(13) 
Where the overall heat transfer rate between the parallel plates 
and free stream, q, has been divided by the constrained volume 
L0HW, k is the fluid thermal conductivity.  
 
NUMERICAL METHOD 

In this work, we used the finite volume code 
(FLUENTTM) to solve the continuity, momentum and energy 
equations. A detailed discussion of the finite volume method is 
available in Patankar [12]. The second-order upwind scheme 
was used to model the combined convection-diffusion effect in 
the transport equations. Convergence is obtained when the 
residuals for the mass and momentum equation are smaller 
than 10-4, and the residual of the energy equation becomes less 
than 10-9.  To obtain accurate numerical results, several 
mesh/grid refinement tests were conducted. The monitored 
quantity was overall heat transfer rate density, computed with 
Eq. (13), according to the following criterion:    

 
 0.02    q~q~q~    γ j1jj ≤−= −                                   (14) 

 
where j is the mesh iteration index, such that j increases when 
the mesh is more refined. When the criterion is satisfied, the   
j-1 mesh is selected as the converged mesh. The above 
criterion was also extended to find the appropriate lengths 
( uL~ , dL~ ) for the computational domain and γ was set ≤ 0.001. 
Using the above criterion, the test showed that the size of the 
computational domain (Lu = 2L0 and Ld = 3L0) is large 
enough, so that the total heat rate, q~  (with changes less than 1 

%), is insensitive to further increase in uL~ and dL~ . These tests 
were conducted for Be = 105 and 107.   
 
OPTIMAL SPACING FOR STACK OF THREE-
DIMENSIONAL PLATES  

In the first phase of this study, we simulated 
numerically the heat and fluid flow fields for the systems in 
Fig. 2a and 2b in the laminar range represented by 105 ≤  Be ≤ 
107, plate thickness 0.01 ≤ t~ ≤ 0.05 and width W~ = 1, for 
several geometries in search of optimal spacing. The 
optimisation of the stack of parallel plate channels has one 
degree of freedom, the spacing between the plates. This was 
optimised for a given Be and Pr and a fixed plate thickness. 
Fig. 3a shows the result of optimising a stack of three-
dimensional parallel plate channels cooled with a free stream. 
Figure 3a also shows that there exists an optimal spacing for 
three-dimensional parallel plate channels with isothermal 
temperatures.  
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Figure 3a  Numerical optimisation result for parallel plate 
channel spacing. 
 

 
Figure 3b The optimal spacing for three-dimensional 
parallel plates with finite thickness. 
     

 
Figure 3c The maximised total heat transfer rate that 
corresponds with a three-dimensional plate with finite 
thickness. 

 
Figure 3b summarises the relationship between the 

optimal spacing in the range of assumed parameters given 
above. And it shows that as the dimensionless pressure number 
increases, the optimal spacing decreases.  The effect of plate 
thickness is negligible. This is due to the fact that the scales of 
the length and width of the plate are much greater than the plate 
thickness. To further validate our numerical result, we compare 
our results with the one obtained by Bejan and Scuibba [3] in 
their study of cooling a stack of parallel plates with an imposed 
pressure difference ΔP between x = 0 and x = L0. In that study, 
the plate-to-plate channel flow was identical, because the stack 
cooled was in a two-dimensional channel formed between two 

adiabatic plates with the distance H in between them (no three-
dimensional effect and no free stream around the stack). It was 
further assumed that the plate thickness is negligible, and that 
the plate-to-plate spacing, d is small when compared with H or 
that the number of plates is large 

                                       1
d
H  n >>=                                     (15) 

 
The analysis produced the following optimal for a stack with 
uniform temperature on both sides of each plate;  
 

                 0.71) (Pr            Be7.2
L
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L

0
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From Fig. 3b, the optimal spacing in the log-log graphs of Fig. 
3b for t~ = 0.01 can be correlated with the expressions 
 
             0.71) Pr  0.01, t~ (         4.51BeD~ -0.28

opt 0, ==≅       (17)   
 

Figure 3c summarises the effect of the dimensionless 
pressure drop number and plate thickness on the maximum 
heat transfer. As Be increases, the maximum heat transfer rate 
from the plates also increases. The effect of plate thickness, 
t~ on the heat transfer rate density is negligible.  The 

maximum heat transfer rate density in the log-log graphs of 
Fig. 3c for t~ = 0.05 can be correlated with the expressions 

 
     0.05) t~ (  Be 0.31 q~ 0.522

max =≅                         (18) 
 
These results are in agreement with the constructal 

method (Ref [1], chapter 3, Ref [9]) according to which the 
maximal heat transfer means ‘optimal packing’ such that flow 
regions that do not contribute to global performance are 
eliminated. This implies that the packing of Fig. 1 is achieved 
when the three-dimensional plates are brought close enough 
such that their thermal boundary layers just touch. The thermal 
boundary layer of a parallel plate with laminar flow and fluid 
Prandtl number of order 1 and length L0, has a thickness of 
order 

         ReL5.0 2/1
L0T 0

−≅δ                                    (19) 

 
The behaviour of equations (17, 18, 19) suggests that the 
structure of Fig. 1 can be improved further if we insert shorter 
plates midway (see Ref [9]) at the entrance of the three-
dimensional plate channels. These possibilities will be 
discussed in the next section. 
 
THREE-DIMENSIONAL PARALLEL PLATES WITH 
SMALL PLATE INSERT 

In the sequence of increasing more complex structures 
and utilising the fluid wedge between two parallel plates, we 
inserted smaller plates; we inserted a small 1L~ -long plate as 
shown in Figs. 4 and 5. Using the same procedure outlined 
above, we numerically solved the governing equations 1-5, 
subject to the same boundary conditions.  
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Figure 4 Three-dimensional stacks of parallel plates, with 
smaller plate insert. 
 

 

 
(a) 
 
 

 
(b) 
Figure 5(a, b) Computational domain for a three-dimensional 
parallel plate channel, with short plate inserts. 
 

 To determine the contribution of the 1L~ -long plate, we 

fixed opt 0,D~ at the values determined previously (Fig. 3) so that 
the already optimised structure stays the same. The spacing 
between L spacing becomes optD~ = 1,optD~ 2 . The thickness of the 

3-D plates was set at t~ = 0.05, as the maximised  q~  is 
insensitive to changes in t~  as previously determined. We now 
optimized 1L~  by varying its length until we obtained an optimal 
length that corresponded to the new maximised q~ , this is 
reported in Figure 6a. The procedure stated above was repeated 
for several Be in the range 105 ≤ Be ≤ 107 and Pr = 0.71. Note 

the ratio of opt,10,opt D~/D~  = 2. Fig. 6a shows the behaviour of 

the optimal-length scale, opt,1L~ . The optimal-length scale 
increases as the dimensionless pressure drop number 
increases. The results are in agreement with [8], which shows 
that as the Be increases, the optimal plate insert also increases.  

Figure 6c shows the effects of Be on the maximal heat 
transfer rate density for the two combinations of length scales. 
The maximal heat transfer rate density increases as the number 
of plates increases.  It is expected that this would become less 
noticeable as the number of length scales increases, hence for 
this work the number of plate inserts was limited to one.  

 

 
 Fig.6a The effect of the length 1L~ on the  dimensionless total 
heat  transfer density. 
 
 

 
Figure 6b    The effect of the pressure drop number on the 
optimised length scale. 
 
Figure 6c also shows that the maximised heat transfer rate 
density increases in proportion to Be1/2. This confirms the 
analytical result [9], which can be rewritten in the notation 
employed in this paper:                    

                  
2/1

2/1

2
m1Be36.0q~ ⎟
⎠
⎞

⎜
⎝
⎛ +=                                    (20) 

Parameter m is the number of new (inserted) plate lengths, for 
example when m = 1 as in Figure 6c. The prediction (20) is 
that the heat transfer rate density increases in progressively 
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smaller steps as the number of length scales increases. This is 
confirmed by the numerical result shown in Fig. 6c.  
 

 
Figure 6c. The effect of pressure drop number and the number 
of length scales on the dimensionless maximum total heat 
transfer density. 
 
Table 1 shows that the numerical result confirms the theoretical 
predictions of Bejan and Fautrelle, which show an increase of 
19% in heat transfer rate density. This compares favourably with 
the increase of 22% obtained from the theoretical work of Bejan 
and Fautrelle. 

Table 1. Comparison between the numerical and analytical 
results for the maximised heat transfer rate density of the multi-
scale flow construct.  

                                        2/1Be/q~  
m Analytical [9] Numerical Result  

( Figure 6c) 

0 0.36 0.431 

1 0.44 0.529 

% increase 22 19 
 
CONCLUSIONS 
 In this paper, we illustrated the emergence of a multi-
scale forced convection flow structure for maximal heat transfer 
rate density for three-dimensional parallel plates installed in a 
fixed volume.  This objective was achieved by inserting smaller 
plates in the entrance region formed between successive plates.  
This technique utilises to the fullest the fluid surrounding the 
two tips of two neighbourhood plates where the boundary layers 
are the thinnest, the optimised spacings were fixed with each 
new (smaller) plate that is inserted in the entrance region of each 
channel. 
 As the number of plates increases, it is expected that the 
flow structure becomes less permeable and the flow rate 
decreases.  At the same time, the total heat transfer rate density 
from the solid structure increases.  It was found numerically that 
when the number of plates increases to three, the increase in the 
heat transfer rate density becomes less noticeable [8], hence for 

this numerical computation the number of plates inserted in 
the flow structure was limited to one.   
 Optimal spacings were found numerically for structures 
with one length scale.  Performance increases as complexity 
increases, that is the new plates are inserted into the structures. 
The number of plate-length scales is limited by the validity of 
the boundary layer assumption.  The smallest plate is the one 
where the plate length is comparable with the boundary layer 
thickness.   
 The fundamental value of this study is that multi-scale 
flow structures are applicable to every sector of heat 
exchanger design.  The novelty is the increase in heat transfer 
density, and the non-uniform distribution of length scales 
through the available space.  This approach promises the 
development of new and unconventional internal flow 
structures for heat exchangers and cooled electronic packages. 
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