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We describe a statistical framework for reconstructing the sequence of trans-

mission events between observed cases of an endemic infectious disease

using genetic, temporal and spatial information. Previous approaches to recon-

structing transmission trees have assumed all infections in the study area

originated from a single introduction and that a large fraction of cases were

observed. There are as yet no approaches appropriate for endemic situations

in which a disease is already well established in a host population and

in which there may be multiple origins of infection, or that can enumerate

unobserved infections missing from the sample. Our proposed framework

addresses these shortcomings, enabling reconstruction of partially observed

transmission trees and estimating the number of cases missing from the

sample. Analyses of simulated datasets show the method to be accurate in

identifying direct transmissions, while introductions and transmissions via

one or more unsampled intermediate cases could be identified at high to

moderate levels of case detection. When applied to partial genome sequen-

ces of rabies virus sampled from an endemic region of South Africa, our

method reveals several distinct transmission cycles with little contact between

them, and direct transmission over long distances suggesting significant

anthropogenic influence in the movement of infected dogs.
1. Introduction
Understanding the spatial aspects of disease transmission is increasingly recog-

nized as an essential component of successful control strategies [1,2]. However,

disease transmission is usually a highly elusive event and reconstructing ‘who-

infected-whom’ in outbreaks of infectious disease remains a challenging problem.

The advent of high volume and more affordable pathogen genome sequencing to

complement conventional space-time incidence data promises a step-change in

our ability to understand transmission at the population level. Yet, progress

will only be made with advances in statistical methodology to accompany this

ever increasing access to genetic and other data.

Two different but complementary approaches that use spatial, temporal and

pathogen genetic information to reconstruct the dynamics of epidemics have

been developed in recent years. The first approach is based on coalescent

models that assume some form of population dynamic model to relate the demo-

graphy of the pathogen to its evolution, while implementing a diffusion model to

account for the movement of the pathogen over geographical space [3]. These

models can be used to estimate various parameters of interest, such as the rate

of spatial spread of the pathogen [4] and the rate of evolution over time [5].

This approach has the advantage that it is relatively robust to the intensity of
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Figure 1. Modelling the transmission of endemic diseases. (a) All cases in the study region are in some way related both genetically and spatially because they form part
of a larger epidemic that originated from a single progenitor. This, along with the fact that some cases go undetected, makes determining dependence among trans-
mission chains difficult. Letters O represent sampled cases, while X represent unsampled cases. (b) Map of the KwaZulu Natal province of South Africa, showing the
locations of the 176 cases used to infer the transmission tree (see also the electronic supplementary material, table S1). (c) Pathogens radiate both in terms of genetic
diversity and in terms of the geographic space invaded. Triangles represent possible locations in the geographic – genetic space to which cases can move and evolve, with
the grey triangle showing the radiation of the entire epidemic, which can also be viewed as the indirect radiation of the index case (represented by a black X) through its
descendants. In the relatively short observation window, three types of relationships are apparent: direct transmissions ( purple), introductions, which will be more closely
related to the common ancestor of all sampled cases than to any other cases (red and yellow), and indirect transmissions via unsampled intermediary cases (green).
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epidemiological sampling, but because such models do not

have an explicit epidemiological formulation, the inferences

cannot easily be related to real epidemiological processes.

The second approach is based on spatial epidemiological

models of transmission and simple models of genetic drift

and directly reconstructs the transmission tree reflecting

‘who-infected-whom’, thus explicitly recognizing the host

population structure and the epidemiological processes that

govern the interaction of host and pathogen. In this approach,

an epidemiological model of disease progression in individuals

is used to estimate probability distributions for possible dates

of infection and the infectious period of all cases. When

coupled with a model of spatial diffusion and a model of the

accumulation of point mutations over time, the probability of

any two cases A and B being causally related can be calculated

based on the likelihood that case A was infectious and case B

was infected during the same time window, the probability

that the pathogen could have dispersed from the geographical

location at which case A was observed to the location at which

B was observed in the time between observations, and the prob-

ability that the pathogen genetic sequence from case A could

have mutated to the sequence from case B in the time between

observations. This approach enables inferences to be made

about epidemiological processes [6], the transmission tree

[6,7], the mechanism of transmission [8] and the rate of evolution

‘per transmission event’ [9]. More recently, the two approaches

have been combined, using a coalescent model to account for

the influence of intra-host population dynamics on the structure

of pathogen genetic data while reconstructing the transmis-

sion tree, thus addressing an important source of inaccuracy at

high sampling intensities [10]. However, current transmission

tree-based methods cannot handle large numbers of missing

infections, and therefore require a high proportion of infected

hosts from the outbreak to be present within the sample.

In general, these techniques have been applied to epidemics,

and to data that are assumed to arise from a single introduction

to the region under study (thus making its structure monophy-

letic). When pathogens are sampled from infected hosts in an

endemic context (i.e. where the pathogen is stably maintained

in an area in the absence of introductions from outside of

that area), the epidemiological situation is potentially more com-

plex. In this context, the connection between cases applies at two
scales (figure 1a). At the scale of the entire endemic region,

all cases may be related in some way (through the global trans-

mission tree), leading to genetic relatedness and spatial

autocorrelation between sampled cases. However, in a given

study region (even one that has been exhaustively sampled),

only some cases will be directly related through chains of trans-

mission, and many chains of transmission may exist that are only

indirectly related to each other by virtue of sharing a common

ancestor outside the sampled area. The sample of pathogens

within the study area is therefore polyphyletic. The picture is

further complicated because surveillance is unlikely to be

exhaustive, and therefore the sampling will be incomplete.

Undetected or unsampled cases will reduce the detectable corre-

lation between cases that are nevertheless causally related. If we

hope to use genetic data to understand the detailed transmission

biology of endemic pathogens, the challenge will be to develop

algorithms that can accommodate the polyphyletic nature

of pathogen population structure, and account for and make

inferences regarding the unobserved and unsampled infections.

Here, we describe the extension of a spatial-genetic SEIR

(susceptible/exposed/infectious/removed) model of transmis-

sion to accommodate the complexities inherent to polyphyletic

and partially sampled outbreak data containing space, time

and genetic information. In addition, we infer the infected host

population size over the study period and region by developing

a mark–recapture method applied to the virus lineages occur-

ring in the transmission tree, thus providing upper and lower

estimates of the number of undetected or unsampled cases. We

test this technique by analysing various simulated scenarios,

before applying it to endemic rabies virus in a province of

South Africa (figure 1b), and show how it can be used to better

understand the spatial epidemiology of the virus. Such knowl-

edge is crucial for advancing the effectiveness of large-scale

vaccination campaigns—some of which have been in place for

decades, but have failed to eliminate the disease in question.

Rabies is a complex disease endemic to much of the devel-

oping world [11]. The mutation rates of RNA viruses are so

high that population genetic and epidemiological processes

occur on similar timescales, and spatial expansion and epi-

demiology leave a discernible fingerprint on the genetic

structure of these viruses [12,13]. Rabies virus is typically trans-

mitted by direct contact through biting [14]. However, the

http://rspb.royalsocietypublishing.org/
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epidemiological dynamics of rabies are complicated by two

factors. First, rabies has a highly variable incubation period

[15,16] and second, rabies has a very large host range that

includes all mammals, many of which would play no part in

the onward transmission of the virus [14]. In southern Africa,

two distinct genetic variants of rabies virus are known to circu-

late—one among members of the Canidae, including domestic

dogs (Canis lupus familiaris), and the other among several mem-

bers of the Herpestidae [17]. Nevertheless, the majority of

infections in humans are associated with rabid domestic dogs

[11,18], and it is in dogs that the disease must be controlled if

the burden on humans is to be reduced [19].
.Soc.B
281:20133251
2. Material and methods
(a) Data collection
In the KwaZulu Natal province of South Africa (KZN), suspected

cases are primarily collected through a network of state and

private veterinarians. Further cases are collected by travelling

vaccination teams of a Bill and Melinda Gates Foundation-

sponsored rabies elimination project active throughout KZN.

All cases testing positive for rabies virus by the gold-standard

fluorescent antibody test [20] between 1 March 2010 and 8 June

2011 were selected for analysis (n ¼ 195; electronic supplementary

material, table S1). Five cases were negative by polymerase

chain reaction (PCR; see below) after multiple attempts and were

excluded from further analysis. One sequence, from an unrecor-

ded wildlife species, matched the herpestid variant of rabies

virus by BLAST [21] and was also excluded. A further 13 cases

lacked GPS coordinates and were therefore excluded from the

transmission tree reconstruction.

(b) RT-PCR and sequencing
RNA was extracted from original brain material using TRIzol

reagent (Invitrogen). Reverse transcription (RT)-PCR and sequen-

cing were performed as described in the electronic supplementary

material. Consensus sequences were aligned using the FFT-NS-i

algorithm of MAFFT v. 6 [22]. Sequences were trimmed to equal

length (760 nucleotides, encompassing the last 224 nucleotides

of the glycoprotein gene, the G-L intergenic region and 118

nucleotides of the polymerase gene, based on the genome of the

Pasteur rabies virus strain [23]). The overall mean distance

between sequences in the alignment was calculated using

MEGA v. 5 [24].

(c) Transmission tree reconstruction
The transmission trees linking cases were reconstructed using

the trimmed alignment described above, which was realigned

with MAFFT after exclusion of 13 cases lacking GPS coordinates

(electronic supplementary material, table S1).

The core algorithm used here is a generalization of the algor-

ithm of Morelli et al. [7] to allow its application to any directly

transmitted disease. We start with an epidemiological model

in which any susceptible host i becomes infected at time Tinf
i .

Following an incubation period Li, it becomes infectious for

time-period Di before dying. Both Li and Di are random variables

with informative prior distributions based on contact tracing

data from Tanzania [15]. From this data, it is possible to calculate

the probability of a transmission from any host j to any host i
based on the probability of j being infectious at the time of i’s
infection, if we assume the known observation date occurred

shortly after the end of the infectious period [7].

However, this forms only part of the probability of transmission

between hosts. The spatial component of the likelihood equation
mission patterns by replacing the exponential transmission kernel

used in [7] with the exponential-power spatial transmission kernel

described by [25]. This kernel is often used in dispersal studies

and can take a variety of shapes, making it well suited to a range

of endemic situations where often little is known regarding spatial

transmission patterns. We also replaced the simplified substitution

model of [7] with the Kimura three-parameter model [26].
(d) Extension to polyphyletic transmission trees
In a partially sampled outbreak, any given infected host which

was sampled might have been infected by: (i) another sampled

host (through direct transmission), (ii) an unsampled host

which had been infected directly or indirectly by a sampled infec-

ted host (termed ‘indirect transmission’ here) or (iii) an unsampled

host which has no ancestors within the sample, i.e. transmission

from an exogenous source (figure 1a,c). The model of [7] allows

for only a single virus introduction (i.e. a single ‘exogenous’ trans-

mission) followed by direct transmissions for the rest of the

outbreak. We extended this model byallowing multiple unobserved

cases to arise anywhere in both space and time within the set of

inferred transmissions.

The likelihood equation of [7] models the spatial radiation

and genetic evolution of cases over time to determine the likeli-

hood of various parameters at any point in time and thus

calculate the probability of different transmissions. In our model,

this is equivalent to the approach taken for direct transmissions,

where each sampled infected host species able to transmit the

virus can be a source of infection. These are modelled by the prob-

ability distribution Pdirect, defined over the geographical–genetic

space and evolving in time (represented by coloured cones

in figure 1c). Pdirect is dependent on the infection time of the

host (estimated as described above), its incubation duration (esti-

mated), its removal or observation time (observed), a spatial

dispersal kernel (estimated) and substitution rates for the sequence

evolution (estimated).

Each sampled infected host which can spread the disease can

also be an indirect source of observed infections after its removal,

as a consequence of unsampled intermediate hosts: case A

(sampled) infects B (unsampled) which infects C (unsampled)

which infects D (sampled). As these unsampled cases extend the

influence of case A in both geographical and genetic space, their

effect can be modelled by allowing observed cases to continue

moving and evolving after their death. This is represented by prob-

ability distribution Pindirect, again defined over the geographical–

genetic space and evolving in time and depending on the

same parameters as Pdirect. The spatial influence contributed by

unsampled cases is harder to determine. We considered two differ-

ent specifications for the dispersal kernel governing indirect

transmissions (Kindirect). In the first specification, we conservatively

assume that Kindirect is the same as the spatial dispersal kernel used

for the direct transmissions, thus allowing only movement over

transmission distances observed for (single) direct transmissions.

In this scenario, infections occurring after the death of the source

host are attributed to unsampled intermediate hosts. However,

this does not adequately accommodate a scenario encompassing

multiple unsampled intermediate cases, where greater geographi-

cal distances between the indirectly connected cases would be

possible. We therefore also considered a more liberal specification,

where Kindirect is a uniform distribution over the whole study

region, thus allowing unsampled intermediate hosts to carry

the virus to any location within the sampled region. These two

scenarios form extremes between which the true process can

reasonably be expected to occur.

In a similar vein, the source of exogenous transmissions can

be modelled as a probability distribution Pexo defined over the

geographical–genetic space and evolving in time (represented

http://rspb.royalsocietypublishing.org/
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exo

based on an ancestral virus sequence (determined a priori through

ancestral state reconstruction, in our case using the FastML server

under the generalized time reversible model [27]), a time for the

ancestral sequence and the same substitution rates as above

(both of which are co-estimated with the transmission tree). The

ancestral sequence and the sampled infected hosts generate a mix-

ture M of spatio-temporal-genetic distributions (Pexo, Pdirect and

Pindirect) from which the infection events are drawn. Estimating

the source that infected a given host involves assessing in which

component of the mixture model M the infection of the host arose.

Conceptually, however, the source of both types of transmis-

sions involving unobserved ancestors (indirect and exogenous)

can be modelled in the same way—as being external to the sampled

dataset, meaning the transmissions arise in Pexo. Thus, to reduce

complexity and computation time, we distinguished only between

direct and ‘unsampled’ sources in the primary Markov chain Monte

Carlo (MCMC) sampling procedure (onlyPdirect andPexo were used

to define M), with a post-processing algorithm to distinguish

between indirect and true exogenous transmissions. In the

previously described monophyletic model [7], the posterior distri-

butions of the incubation and infectious period durations can be

deformed by indirect links between cases. We used narrow priors

for the parameters governing these distributions, essentially forcing

a decision between direct transmission or linkage to an exogenous

source in the first step. To distinguish between exogenous and

indirect transmissions, the post-processing analysis applies a

Metropolis–Hastings update to the ‘unsampled’ transmission

links determined by the MCMC algorithm, which involves com-

paring the probability that the transmission was really from an

exogenous source (based on Pexo, as described above) with the

probability that it was merely indirect (based on Pindirect). This

post-processing was applied under both the conservative and

liberal specifications of the spatial transmission kernel (Kindirect)

described above.

(e) Population size estimation
To determine the true number of cases represented by indirect

links, we developed a mark–recapture technique applied to the

virus lineages identified in the previous analysis. If we split

the transmission tree dataset into two parts based on the sampling

times of the hosts, any host sampled in the second time-period is

considered as recaptured if it was directly or indirectly infected

by a host observed in the first part of the dataset. Although the

full transmission tree is not known, the previous analysis provides

a sample of its posterior distribution. For each element of this

sample, the number of recaptured virus lineages can be calculated,

generating a posterior distribution of the number of recaptured

virus lineages. With this distribution, one can determine the pos-

terior distribution of the population size using a mark–recapture

analysis, which takes into account uncertainty regarding changes

in the population size from the first to the second time-period.

( f ) Simulations
The accuracy of the method was assessed using 100 simulated

datasets from each of six scenarios (i.e. 600 simulations in total).

The first four scenarios were used to investigate overall accuracy

and the effect of sampling rate on the reconstruction method

with high (three-quarters of all cases), moderate (two-thirds of

all cases), intermediate (one-half of all cases) and low (one-quarter

of all cases) detection rates, respectively. A further two scenarios

were used to test the sensitivity of the method to small and large

misspecifications of epidemiological parameters. The simulation

model was based on the probability distributions and speci-

fications described above and in the electronic supplementary

material, but contained a more realistic specification for the exter-

nal source of infection. While the inference model assumes a single
space and time), the simulation model allows for multiple sources

of novel lineages, occurring both inside and outside the sampling

region, with infection strengths that are localized in time and

space. The simulated epidemics were initiated from a single

point in time and space outside the sampling period and region

and allowed to progress until a set number of hosts had been

infected. Only data from one-third of the region and time-period

affected by the simulated epidemic were retained and subsampled

with the detection rates above determining the probability of a case

being retained.

A more formal description of the model, inference pro-

cedures and simulations described here can be found in the

electronic supplementary material.
3. Results and discussion
Reconstructions of 600 simulated outbreaks reveal that the

method described here accurately recovers most parameters

regardless of sampling intensity or model misspecification

(electronic supplementary material, table S2). As can be

expected, reconstruction of transmission events is sensitive

to the informative priors used for the incubation and infec-

tious periods (electronic supplementary material, table S3).

This limits the suitability of the approach to diseases where

the epidemiology is reasonably well known. The reconstruc-

tion of direct transmissions remains fairly accurate regardless

of sampling intensity (mean posterior probability of true

transmission events more than 0.73; electronic supplementary

material, table S3) and actually increases in accuracy when

sampling intensity decreases. Reconstruction of transmissions

involving unobserved cases is moderately accurate at high

sampling intensities, but becomes increasingly unreliable

when 50% or fewer of the cases in the sampling region are

sampled. At these sampling intensities, the post-processing

algorithm cannot accurately distinguish between indirect

and exogenous connections, which in turn also leads to a sig-

nificant underestimation of the total number of cases

(electronic supplementary material, table S4). At high to

moderate sampling intensities (three-quarter to two-thirds

of all cases in the sampled area), however, the 95% posterior

interval (PI) inferred for the total population size covers the

true value in more than 97% of cases under both the conservative

and liberal specifications of the model.

Between 1 March 2010 and 8 June 2011, 195 rabies virus-

positive cases were detected in KZN. The majority of these

cases occurred close to densely populated areas, often in the

peri-urban townships surrounding cities and large towns (elec-

tronic supplementary material, figure S1). A 760 nucleotide

fragment spanning the highly variable G-L intergenic region

was sequenced from 190 of these samples (electronic sup-

plementary material, table S1). Despite the small spatial and

temporal scale, the overall mean distance between the 189

canid-associated rabies virus sequences generated was 8.42

nucleotides. However, many clusters of identical sequences

exist, and the phylogenetic divergence was not sufficient to

generate a well-resolved phylogeny (electronic supplementary

material, figure S2).

The transmission trees linking cases were estimated using

176 canid-associated rabies cases for which detailed epidemio-

logical data were available (electronic supplementary material,

table S1). When considering only direct transmissions, there

were several independent chains of transmission and many

http://rspb.royalsocietypublishing.org/
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Figure 2. Transmission trees showing the direct pairwise transmissions with
highest posterior probabilities. Transmission links between cases are rep-
resented by orange arrows. Red dots represent cases for which no direct
ancestor was detected and black dots represent all other cases. The inset
shows an enlarged view of connections in the southern coast of KZN,
where the majority of cases were detected.
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transmissions inferred to have taken place over long distances

(figure 2 and electronic supplementary material, figure S3). The

mean distance between the most probable directly connected

cases was 14.9 km (0.025- and 0.975-quantiles: 0.0 and

56.1 km; electronic supplementary material, figure S3). This

was despite the use of narrow prior distributions for the par-

ameters governing the durations of infections, which would

tend to minimize the distance between directly connected

cases in favour of indirect or exogenous connections instead.

Occasional long-distance transmissions in this region, particu-

larly along the major highways that follow the KZN coast, have

been identified before (based on phylogenetic patterns) and

were ascribed to motorized transportation of dogs [28]. Road

distances have also been shown to be a better predictor of

rabies dissemination than absolute distances in northern

Africa [29]. The long distances and short time-periods between

cases in the transmission tree (electronic supplementary

material, figures S3 and S4) provide further evidence for motor-

ized transportation of infected dogs, but such transmissions

were not restricted to any one area and instead appear to be

a common feature of the epidemiology of rabies in this area.

This might be owing to the high prevalence of circular

human migration and migrant labour in many parts of KZN,

with migrants visiting their rural households (and, it would

seem, taking their dogs with them) on a regular basis [30].

The majority of cases could not be linked through direct

transmissions—69 (95% PI: 60–79) direct transmissions

were identified, while unsampled sources were the most

likely link for the remaining 107 (95% PI: 97–117) cases (elec-

tronic supplementary material, figure S5). The conservative

specification of the post-processing algorithm identified a

further 37 (95% PI: 27–47) indirect transmission links over

the 15 month study period, while the liberal version of the

algorithm identified 67 (95% PI: 57–78) indirect transmissions
(figure 3). Sixteen cases were assigned different indirect ances-

tors by the two specifications, while a further 35 were

interpreted as having an exogenous source by the conservative

specification, but were assigned indirect ancestors by the lib-

eral specification. There are no obvious similarities between

cases assigned different ancestors by the two specifications,

with no evidence of either phylogenetic clustering (assessed

using Moran’s I to measure autocorrelation to inverse phyloge-

netic distances between cases, p-value of 0.16 when the null

hypothesis is no clustering) or spatial clustering (assessed

using a spatial scan statistic with a null hypothesis that there

is no more clustering among cases interpreted differently

than among cases in general; p-value of 0.69 for the best sup-

ported cluster) [31–33]. The same was true for cases

interpreted as having an exogenous source by one specification

but not the other, with no evidence of either phylogenetic

( p-value ¼ 0.86) or spatial clustering ( p-value¼ 0.08 for the

best supported cluster).

When considering both direct and indirect connections,

there are many separate, unjoined transmission trees (electronic

supplementary material, figure S6). For the most probable con-

nections under both the conservative and liberal specifications

of our algorithm, these transmission trees can be grouped into

eight distinct spatial clusters. Transmission between different

spatial clusters was rare—we detected only one such trans-

mission with the conservative specification of the algorithm,

and 10 such transmissions with the liberal specification. In

addition, such transmissions do not appear to seed substantial

additional numbers of cases, as only one instance of onward

spread in the new cluster was detected under either specifica-

tion, causing just one additional case in both instances.

Interestingly, four of the inter-cluster transmissions identified

under the liberal specification involved transmission from one

cluster to another and then back to more-or-less the same

location, before onward transmission in the original cluster,

further supporting the hypothesis of migrants moving dogs

back-and-forth between their urban and rural homes.

To gain a better understanding of the surveillance failures

leading to the high number of indirect connections detected,

we estimated the true number of cases occurring in the study

area. This yielded a posterior median estimate of 389 cases

(95% PI: 260–881) using the conservative specification of the

post-processing algorithm, and 195 cases (95% PI: 182–298)

using the liberal specification, over the 15 month study period

(electronic supplementary material, figure S7). Our analyses of

simulated datasets show that this mark–recapture approach

is only accurate at fairly high sampling intensities, owing to

difficulties in distinguishing between indirect and exogenous

transmissions, and we note that the 95% PI of the number of

recaptured lineages under the conservative specification is

fairly wide (electronic supplementary material, figure S8).

However, direct transmissions are accurately identified regard-

less of sampling intensity (electronic supplementary material,

table S2), and in this dataset the conservative algorithm ident-

ified almost all infections involving unsampled individuals as

exogenous transmissions, while the liberal algorithm identified

most of these infections as indirect transmissions. Thus, the con-

servative algorithm minimized the number of recaptured

lineages, while the liberal algorithm maximized it, which

means the inferred population sizes can be interpreted as a

lower and upper bound of the true value. As the herpestid-

associated genetic variant of rabies virus is rare in KZN, the

five cases which could not be sequenced were most likely

http://rspb.royalsocietypublishing.org/
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Figure 3. Pairwise transmissions with the highest posterior probabilities in each quarter of the sampled period, including indirect transmissions. Black dots represent
all cases since the start of the sampling period, while red dots represent cases appearing in that quarter that have an exogenous source. Orange arrows represent
direct transmission events. Blue arrows represent indirect transmissions inferred using the conservative (a) and liberal specification (b) of the post-processing
algorithm. Note that detected cases (black dots) are displayed cumulatively. Q1 – Q4: first to fourth quarter of the sampling period.
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representatives of the canid-associated variant. Thus, surveil-

lance detected 194 cases of infection with the canid-associated

variant, or between 49.87 and 99.49% of all canid-associated

cases (based on the posterior medians of the conservative and

liberal specifications, respectively). Such high detection rates

are exceptional for rabies [34] and need further confirmation

by contact tracing. However, surveillance effort (measured as

the number of samples submitted per month) was fairly con-

stant over the study period while incidence concurrently

declined, suggesting that the ongoing intensive control pro-

gramme is effectively driving rabies towards elimination,

which could account for the low total number of cases inferred

from this analysis. The areas where cases are still being

missed can be deduced from our identification of indirect

links (figure 3), providing a powerful tool for improving detec-

tion rates which would be particularly important if rabies is

indeed close to being eliminated in this province.
4. Conclusion
To successfully control rabies and other endemic diseases in a

changing landscape, a detailed understanding of its spatial epi-

demiology is required. The method described here allows for

the detailed reconstruction of the transmission events of ende-

mic infectious diseases, providing information that can be used

both in designing more efficient control strategies and to

measure and improve the quality of surveillance programmes.

Importantly, key parameters could be recovered accurately

regardless of sampling intensity.

The long distances characterizing many internal trans-

missions point to a significant anthropogenic influence on the

epidemiology of rabies in KZN, the causes of which require
further study. Despite these long-distance transmissions, clear

spatial groupings could be discerned (electronic supplementary

material, figure S6). In addition, the frequent long-distance

transmissions cause most of these spatial clusters to consist of

a relatively small core area and numerous surrounding cases

(figure 3). Thus, identifying the connections of surrounding

cases to specific clusters enables more directed vaccination,

where targeting the smaller core areas would allow control of

rabies over large areas. Identifying the spatial scale at which

independent control strategies can be applied means it is pos-

sible to replace the thin spread of limited resources across the

province with intense, focused campaigns that move across

the province on an annual basis. Also crucial to the success of

any disease elimination effort is effective surveillance. By iden-

tifying the true state of surveillance as well as the areas where

cases are being missed from existing, routinely collected data,

the method described here can be used as a starting point to

investigate the causes of poor surveillance in specific parts of

the region of concern.

By applying the methods described here to data from mul-

tiple years, important information will be revealed about how

to iteratively improve surveillance and adapt rabies control

strategies by identifying areas to be prioritized during annual

vaccination campaigns. In addition, these methods can easily

be adapted to other endemic diseases, and the high mutation

rate of other RNA viruses makes them ideal candidates for

this approach. Particularly encouraging is the fact that the

small genome region sequenced here provided sufficient resol-

ution for this analysis, making the generation of adequate data

for large numbers of cases feasible even in resource-poor areas.
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Figure S1. Detailed map of KwaZulu Natal showing the cases detected between 1 March 2010 and 8 June 2011 in the context of major roads, towns and
cities. Note that in addition to the 180 cases shown, a further 15 cases were detected for which coordinates were not recorded (table S1). Road and town
data © OpenStreetMap contributors.

0.0020

Figure S2. Unrooted consensus phylogeny of all cases sequenced in this study (including those lacking coordinates), inferred using Beast version 1.7.3 under an
exponential growth coalescent model and assuming a strict molecular clock. Branch lengths are in number of substitutions per site, as indicated by the scale bar,
while red labels at key nodes indicate their posterior probability. The tree shown is a majority consensus phylogeny, in which nodes with posterior probabilities
lower than 0.5 are collapsed.
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Figure S3. Posterior distributions of the transmission distances between directly connected cases. (a): Transmission distances between all a posteriori directly
connected cases. (b): Distances between connected cases corresponding to the direct transmission links with the highest posterior probabilities (i.e. only the most
probable links).
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Figure S4. Posterior distributions of the incubation period (a) and infectious period (b) of directly connected cases. These distributions were obtained by
aggregating the respective posterior distributions of all cases responsible for onward transmission through direct connections in the transmission tree.
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Figure S5. Graphical representation of the posterior distribution of inferred sources from the main inference algorithm (which allows only direct and exogenous
sources). Individuals are arranged by observation date on both axes, with each infected individual (horizontal rows) indicated in an alternating colour for clarity.
Q0 indicates the start of the sampling period, while Q1–Q4 indicate the ends of quarters of the sampling period. “Exo” indicates infection from an external source,
encompassing indirect transmissions and introductions from outside the dataset.
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Figure S6. Cases belonging to independent transmission trees (indicated by shapes and colours) and completely unconnected cases (indicated by grey squares)
when considering the most probable direct and indirect connections between cases. Indirect connections were determined by a conservative (a) and liberal (b)
specification of the post-processing algorithm.
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Figure S7. Estimated total number of animals infected by the canid-associated variant of rabies virus over the sampled period. Curves show the posterior
distribution of cases under the conservative (dotted curve) and liberal (solid curve) specification of the transmission kernel (Kindirect). The dashed vertical line
shows the number of cases included in the analysis, while the dotted vertical line shows the number of cases detected by surveillance (including 5 which could not
be confirmed as belonging to the canid-associated genetic variant).
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Figure S8. Posterior distributions of the number of recaptured virus lineages in the second half of the data series (R in figure S10). In total, 88 cases were detected
during this period (C in figure S10), as indicated by the vertical red line. The histogram indicated in blue corresponds to data from the conservative specification of
the post-processing algorithm, while the light green histogram corresponds to data from the liberal specification.

Table S1. Rabies cases detected in KwaZulu Natal between 1 March 2010 and 8 June 2011

Case
number

Date Host species
Latitude
(degrees)

Longitude
(degrees)

Accession
number

10/129 2010/03/03 Unspecified caprine species -30.62 30.45 KC660293
10/128 2010/03/05 Canis lupus familiaris -30.78 30.13 KC660323
10/146 2010/03/12 Canis lupus familiaris -27.35 30.87 KC660234
10/155 2010/03/19 Canis lupus familiaris -27.75 30.90 KC660179
10/157 2010/03/20 Bos taurus -28.60 29.92 KC660255
10/153 2010/03/21 Canis lupus familiaris -28.60 29.92 KC660207
10/154 2010/03/21 Canis lupus familiaris -29.98 30.65 KC660233
10/164 2010/03/22 Bos taurus -28.30 30.15 KC660254
10/167 2010/03/22 Canis lupus familiaris -28.25 31.47 KC660224
10/173 2010/03/23 Bos taurus -28.73 30.23 KC660183
10/168 2010/03/25 Canis lupus familiaris -29.38 30.77 KC660240
10/175 2010/03/26 Bos taurus -29.52 30.93 KC660227
10/188 2010/03/29 Canis lupus familiaris -28.25 31.47 KC660196
10/183 2010/04/02 Canis lupus familiaris -27.00 32.08 KC660341
10/184 2010/04/02 Canis lupus familiaris -30.02 30.85 KC660282
10/212 2010/04/10 Canis lupus familiaris -28.72 30.23 KC660230
10/202 2010/04/11 Canis lupus familiaris -27.52 30.97 KC660201
10/203 2010/04/12 Canis lupus familiaris -27.70 30.35 KC660167
10/195 2010/04/13 Canis lupus familiaris -30.45 30.65 KC660329
10/205 2010/04/16 Canis lupus familiaris -29.83 30.80 KC660244
10/209 2010/04/16 Canis lupus familiaris -30.58 30.32 KC660285
10/207 2010/04/19 Canis lupus familiaris -28.72 30.23 KC660229
10/220 2010/04/22 Canis lupus familiaris -30.12 30.48 KC660327
10/229 2010/04/24 Canis lupus familiaris -30.73 30.42 KC660351
10/233 2010/04/27 Canis lupus familiaris -28.32 31.52 KC660222
10/2362 2010/05/02 Canis lupus familiaris N.R. N.R. KC660235
N.R: not recorded; N.S: not sequenced (RT-PCR unsuccessful)
1 Herpestid-associated variant of RABV (excluded from analysis)
2 Excluded from analysis (RT-PCR unsuccessful or coordinates not recorded)
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Table S1 – continued from previous page

Case
number

Date Species Latitude Longitude
Accession

number
10/237 2010/05/03 Canis lupus familiaris -29.90 30.77 KC660328
10/2452 2010/05/04 Canis lupus familiaris N.R. N.R. KC660166
10/252 2010/05/12 Canis lupus familiaris -27.48 30.52 KC660163
10/261 2010/05/16 Canis lupus familiaris -28.62 29.83 KC660228
10/277 2010/05/17 Canis lupus familiaris -30.75 30.25 KC660322
10/268 2010/05/18 Canis lupus familiaris -30.42 30.57 KC660305
10/267 2010/05/19 Canis lupus familiaris -29.88 30.80 KC660243
10/2692 2010/05/19 Canis lupus familiaris N.R. N.R. KC660265
10/272 2010/05/19 Canis lupus familiaris -28.72 30.23 KC660275
10/274 2010/05/23 Canis lupus familiaris -30.68 30.50 KC660299
10/271 2010/05/24 Canis lupus familiaris -28.73 31.53 KC660209
10/278 2010/05/26 Canis lupus familiaris -30.75 30.45 KC660303
10/2861 2010/06/08 Unspecified wildlife species -28.03 29.98 KC660352
10/294 2010/06/22 Canis lupus familiaris -28.54 30.59 KC660185
10/295 2010/06/22 Canis lupus familiaris -30.32 30.58 KC660297
10/305 2010/06/29 Canis lupus familiaris -30.23 30.23 KC660315
10/307 2010/06/29 Canis lupus familiaris -28.58 29.89 KC660211
10/308 2010/06/30 Canis lupus familiaris -28.58 29.89 KC660226
10/309 2010/06/30 Canis lupus familiaris -28.72 30.56 KC660216
10/310 2010/07/01 Canis lupus familiaris -29.85 30.77 KC660246
10/314 2010/07/05 Canis lupus familiaris -28.63 30.18 KC660184
10/317 2010/07/06 Canis lupus familiaris -28.07 32.15 KC660238
10/318 2010/07/06 Canis lupus familiaris -28.73 31.82 KC660248
10/321 2010/07/06 Canis lupus familiaris -27.41 30.95 KC660221
10/324 2010/07/07 Canis lupus familiaris -29.83 30.78 KC660326
10/325 2010/07/07 Bos taurus -28.19 31.00 KC660218
10/327 2010/07/09 Canis lupus familiaris -29.98 30.15 KC660311
10/331 2010/07/16 Canis lupus familiaris -28.68 31.92 KC660194
10/342 2010/07/23 Bos taurus -30.10 30.75 KC660325
10/347 2010/07/28 Canis lupus familiaris -30.73 30.40 KC660298
10/351 2010/07/30 Canis lupus familiaris -29.90 30.85 KC660318
10/352 2010/07/30 Canis lupus familiaris -29.73 30.60 KC660200
10/353 2010/07/30 Bos taurus -30.10 30.48 KC660320
10/355 2010/08/02 Canis lupus familiaris -31.00 30.23 KC660324
10/366 2010/08/06 Canis lupus familiaris -28.81 30.17 KC660161
10/367 2010/08/06 Canis lupus familiaris -28.70 31.85 KC660273
10/369 2010/08/11 Canis lupus familiaris -28.60 31.33 KC660217
10/370 2010/08/11 Canis lupus familiaris -28.52 30.08 KC660165
10/376 2010/08/16 Canis lupus familiaris -28.78 31.85 KC660219
10/3792 2010/08/17 Canis lupus familiaris N.R. N.R. KC660269
10/385 2010/08/23 Canis lupus familiaris -28.32 30.10 KC660262
10/387 2010/08/24 Canis lupus familiaris -30.45 30.62 KC660287
10/392 2010/08/25 Canis lupus familiaris -29.77 30.93 KC660350
10/393 2010/08/25 Canis lupus familiaris -30.47 30.65 KC660291
10/395 2010/08/27 Canis lupus familiaris -27.39 32.08 KC660340
10/397 2010/08/30 Canis lupus familiaris -30.98 30.20 KC660331
10/400 2010/08/31 Canis lupus familiaris -29.85 30.80 KC660317
10/401 2010/09/01 Canis lupus familiaris -28.60 32.07 KC660241
10/410 2010/09/06 Canis lupus familiaris -29.97 30.51 KC660295
10/420 2010/09/13 Canis lupus familiaris -28.00 30.00 KC660195
10/425 2010/09/14 Canis lupus familiaris -27.85 30.26 KC660225
10/440 2010/09/22 Canis lupus familiaris -28.17 31.18 KC660223
10/441 2010/09/23 Canis lupus familiaris -28.72 29.97 KC660278
10/445 2010/09/27 Canis lupus familiaris -28.77 30.23 KC660172
N.R: not recorded; N.S: not sequenced (RT-PCR unsuccessful)
1 Herpestid-associated variant of RABV (excluded from analysis)
2 Excluded from analysis (RT-PCR unsuccessful or coordinates not recorded)
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Table S1 – continued from previous page

Case
number

Date Species Latitude Longitude
Accession

number
10/447 2010/09/27 Bos taurus -28.60 29.94 KC660181
10/452 2010/09/29 Canis lupus familiaris -28.25 30.33 KC660162
10/4532 2010/09/29 Canis lupus familiaris N.R. N.R. KC660236
10/456 2010/09/29 Canis lupus familiaris -30.23 30.40 KC660330
10/458 2010/09/30 Unspecified caprine species -30.11 29.81 KC660334
10/459 2010/09/30 Canis lupus familiaris -30.42 30.63 KC660319
10/460 2010/09/30 Canis lupus familiaris -27.77 30.82 KC660212
10/461 2010/09/30 Canis lupus familiaris -27.75 29.92 KC660164
10/462 2010/09/30 Canis lupus familiaris -28.16 30.63 KC660176
10/463 2010/09/30 Canis lupus familiaris -29.57 30.63 KC660245
10/472 2010/10/05 Canis lupus familiaris -29.97 30.78 KC660231
10/479 2010/10/07 Canis lupus familiaris -27.64 32.38 KC660348
10/481 2010/10/08 Canis lupus familiaris -28.00 31.85 KC660247
10/485 2010/10/12 Canis lupus familiaris -29.85 30.77 KC660250
10/488 2010/10/12 Canis lupus familiaris -28.75 30.42 KC660215
10/492 2010/10/14 Canis lupus familiaris -28.73 30.23 KC660252
10/495 2010/10/15 Canis lupus familiaris -30.52 30.58 KC660313
10/4962 2010/10/18 Canis lupus familiaris -28.73 30.23 N.S.
10/498 2010/10/19 Canis lupus familiaris -30.00 30.62 KC660281
10/504 2010/10/21 Canis lupus familiaris -29.98 30.76 KC660177
10/506 2010/10/21 Canis lupus familiaris -29.98 30.92 KC660204
10/508 2010/10/22 Canis lupus familiaris -27.90 31.63 KC660173
10/509 2010/10/25 Canis lupus familiaris -30.01 30.53 KC660294
10/515 2010/10/26 Canis lupus familiaris -28.75 31.87 KC660272
10/517 2010/10/27 Canis lupus familiaris -28.60 29.92 KC660180
10/518 2010/10/27 Canis lupus familiaris -28.98 31.78 KC660263
10/524 2010/10/28 Canis lupus familiaris -30.50 30.57 KC660314
10/525 2010/10/28 Bos taurus -30.23 30.40 KC660321
10/5272 2010/11/01 Canis lupus familiaris -29.92 31.00 N.S.
10/528 2010/11/01 Canis lupus familiaris -29.85 30.90 KC660214
10/530 2010/11/01 Canis lupus familiaris -29.85 30.77 KC660178
10/531 2010/11/03 Canis lupus familiaris -30.33 30.72 KC660304
10/532 2010/11/03 Canis lupus familiaris -30.58 30.32 KC660300
10/533 2010/11/03 Canis lupus familiaris -30.58 30.32 KC660283
10/536 2010/11/04 Canis lupus familiaris -28.47 30.14 KC660169
10/541 2010/11/09 Canis lupus familiaris -29.83 30.73 KC660168
10/552 2010/11/12 Canis lupus familiaris -30.00 30.92 KC660199
10/557 2010/11/13 Canis lupus familiaris -30.45 30.65 KC660296
10/5602 2010/11/16 Canis lupus familiaris N.R. N.R. KC660242
10/562 2010/11/17 Canis lupus familiaris -30.30 30.25 KC660308
10/564 2010/11/17 Unspecified jackal species -28.50 31.92 KC660259
10/572 2010/11/17 Canis lupus familiaris -28.60 29.92 KC660174
10/5792 2010/11/18 Canis lupus familiaris N.R. N.R. KC660258
10/583 2010/11/19 Canis lupus familiaris -29.99 30.82 KC660316
10/593 2010/11/24 Bos taurus -30.11 29.81 KC660335
10/600 2010/11/26 Canis lupus familiaris -28.60 29.42 KC660276
10/608 2010/11/30 Canis lupus familiaris -28.73 31.80 KC660274
10/613 2010/12/02 Canis lupus familiaris -28.77 31.95 KC660271
10/614 2010/12/02 Canis lupus familiaris -28.77 31.95 KC660191
10/624 2010/12/06 Unspecified caprine species -27.96 30.56 KC660253
10/633 2010/12/08 Canis lupus familiaris -30.00 30.55 KC660280
10/635 2010/12/09 Bos taurus -30.77 30.12 KC660332
10/641 2010/12/13 Equus ferus caballus -29.78 30.58 KC660251
10/644 2010/12/14 Canis lupus familiaris -28.35 31.40 KC660190
N.R: not recorded; N.S: not sequenced (RT-PCR unsuccessful)
1 Herpestid-associated variant of RABV (excluded from analysis)
2 Excluded from analysis (RT-PCR unsuccessful or coordinates not recorded)
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Table S1 – continued from previous page

Case
number

Date Species Latitude Longitude
Accession

number
10/655 2010/12/20 Canis lupus familiaris -30.30 30.25 KC660292
10/656 2010/12/21 Canis lupus familiaris -30.05 30.87 KC660267
10/659 2010/12/21 Canis lupus familiaris -27.72 30.05 KC660171
11/02 2011/01/04 Canis lupus familiaris -30.03 30.87 KC660232
11/152 2011/01/07 Canis lupus familiaris N.R. N.R. KC660312
11/162 2011/01/10 Canis lupus familiaris N.R. N.R. KC660188
11/28 2011/01/14 Canis lupus familiaris -29.90 30.36 KC660309
11/29 2011/01/14 Canis lupus familiaris -27.41 32.65 KC660342
11/51 2011/01/24 Canis lupus familiaris -28.62 31.73 KC660337
11/54 2011/01/24 Canis lupus familiaris -30.50 30.62 KC660302
11/55 2011/01/24 Canis lupus familiaris -30.65 30.53 KC660307
11/56 2011/01/24 Canis lupus familiaris -30.55 30.53 KC660286
11/61 2011/01/26 Canis lupus familiaris -29.90 31.00 KC660239
11/62 2011/01/26 Canis lupus familiaris -27.52 32.58 KC660347
11/63 2011/01/27 Canis lupus familiaris -28.78 31.88 KC660197
11/66 2011/01/28 Canis lupus familiaris -30.50 30.45 KC660284
11/672 2011/01/28 Canis lupus familiaris N.R. N.R. KC660339
11/84 2011/02/02 Canis lupus familiaris -29.73 30.80 KC660249
11/96 2011/02/08 Canis lupus familiaris -27.42 32.69 KC660345
11/99 2011/02/09 Canis lupus familiaris -30.87 30.37 KC660213
11/1002 2011/02/11 Canis lupus familiaris N.R. N.R. KC660288
11/101 2011/02/14 Canis lupus familiaris -28.70 30.23 KC660277
11/108 2011/02/15 Canis lupus familiaris -28.85 31.82 KC660260
11/115 2011/02/16 Canis lupus familiaris -29.32 31.27 KC660256
11/120 2011/02/17 Bos taurus -27.40 32.67 KC660349
11/121 2011/02/17 Canis lupus familiaris -28.80 30.03 KC660210
11/1242 2011/02/21 Canis lupus familiaris N.R. N.R. N.S.
11/127 2011/02/23 Canis lupus familiaris -29.08 31.57 KC660192
11/1292 2011/02/24 Canis lupus familiaris -28.75 29.87 N.S.
11/144 2011/03/07 Bos taurus -28.90 31.02 KC660270
11/178 2011/03/22 Canis lupus familiaris -28.90 31.04 KC660338
11/181 2011/03/23 Canis lupus familiaris -27.40 31.35 KC660279
11/185 2011/03/24 Canis lupus familiaris -30.04 30.62 KC660187
11/186 2011/03/25 Canis lupus familiaris -27.15 32.40 KC660343
11/188 2011/03/28 Canis lupus familiaris -30.00 30.52 KC660264
11/191 2011/03/29 Canis lupus familiaris -28.77 31.92 KC660261
11/195 2011/03/29 Canis lupus familiaris -30.05 30.62 KC660310
11/240 2011/04/05 Canis lupus familiaris -28.68 31.90 KC660198
11/241 2011/04/05 Canis lupus familiaris -28.68 31.83 KC660189
11/203 2011/04/07 Canis lupus familiaris -28.65 31.78 KC660336
11/208 2011/04/08 Canis lupus familiaris -28.07 29.95 KC660170
11/209 2011/04/11 Bos taurus -28.22 30.00 KC660206
11/212 2011/04/14 Bos taurus -28.72 30.23 KC660175
11/217 2011/04/18 Canis lupus familiaris -30.32 30.73 KC660301
11/2212 2011/04/19 Canis lupus familiaris N.R. N.R. KC660205
11/224 2011/04/20 Canis lupus familiaris -27.55 29.95 KC660160
11/232 2011/04/28 Bos taurus -27.88 31.45 KC660266
11/251 2011/05/06 Canis lupus familiaris -28.24 31.56 KC660182
11/252 2011/05/09 Bos taurus -27.55 29.92 KC660220
11/257 2011/05/09 Canis lupus familiaris -30.00 30.77 KC660333
11/262 2011/05/11 Canis lupus familiaris -26.94 32.77 KC660344
11/268 2011/05/16 Canis lupus familiaris -30.03 30.83 KC660186
11/270 2011/05/17 Canis lupus familiaris -30.05 30.88 KC660202
11/272 2011/05/17 Canis lupus familiaris -30.75 30.43 KC660290
N.R: not recorded; N.S: not sequenced (RT-PCR unsuccessful)
1 Herpestid-associated variant of RABV (excluded from analysis)
2 Excluded from analysis (RT-PCR unsuccessful or coordinates not recorded)
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Table S1 – continued from previous page

Case
number

Date Species Latitude Longitude
Accession

number
11/273 2011/05/17 Canis lupus familiaris -30.75 30.44 KC660289
11/284 2011/05/27 Canis lupus familiaris -28.90 31.05 KC660193
11/296 2011/05/31 Canis lupus familiaris -27.70 29.92 KC660268
11/3002 2011/06/01 Canis lupus familiaris N.R. N.R. KC660306
11/305 2011/06/06 Canis lupus familiaris -27.55 32.67 KC660346
11/3062 2011/06/07 Canis lupus familiaris N.R. N.R. N.S.
11/308 2011/06/08 Unspecified caprine species -28.92 31.22 KC660257
N.R: not recorded; N.S: not sequenced (RT-PCR unsuccessful)
1 Herpestid-associated variant of RABV (excluded from analysis)
2 Excluded from analysis (RT-PCR unsuccessful or coordinates not recorded)

Supplementary text

1. Genetic data

1.1 RT-PCR and sequencing

TRIzol-extracted RNA was eluted in 50 µl nuclease free water. Next, RT-PCR was performed using primers GL4614F (5’-GATTTTGTAGAGGTT
CACC-3’) and GL5632R (5’-GACCTGGAGCAATTGTCTG-3’), amplifying a 1019 nucleotide region from position 4614 to position 5632
on the Pasteur rabies virus genome [1]. For reverse transcription, 2 pmol GL4614F was incubated with 5 µl of a 1:4 or 1:9 dilution of RNA at
70°C for 5 minutes. After a further 5 minutes in an ice bath, 4.1 µl nuclease-free water, 4 µl Improm-II reaction buffer (Promega), 3 mM MgCl2,
0.5 mM dNTP mix (Roche), 20 units Protector RNase inhibitor (Roche) and 1 unit Improm-II reverse transcriptase (Promega) was added. This
was followed by incubation at 25°C for 5 minutes, 42°C for 60 minutes and finally 70°C for 15 minutes. The entire reaction mixture was used for
PCR by adding 10 pmol GL4614F, 12.5 pmol GL5632R, 10 µl DreamTaq buffer (Fermentas), 1.25 units DreamTaq polymerase (Fermentas) and
67.5 µl nuclease free water. This reaction was incubated at 94°C for 1 minute, followed by 40 cycles of 94°C for 30 seconds, 56°C for 30 seconds
and 72°C for 90 seconds, before a final incubation step of 72°C for 7 minutes. PCR products were purified from a 1% agarose gel containing
0.0001 mg/ml Ethidium Bromide using the Wizard SV gel and PCR cleanup system (Promega). Amplicons were sequenced in both directions by
dye-terminator chemistry on an ABI 3100 or 3500xL sequencer using the BigDye v3.1 cycle sequencing kit (Applied Biosystems).

1.2 Phylogenetic analysis

A Bayesian phylogeny was constructed with Beast version 1.7.3 [2] using Kimura’s 3-parameter nucleotide substitution model [7] and assuming
a strict molecular clock with a broad substitution rate prior (defined by a uniform distribution between 1× 10−5 and 1× 10−2). The best-fitting
demographic model was determined to be one describing exponential growth using both path sampling and stepping stone sampling of individual
Markov chains of 50 million iterations each, saving every 5000th step [3]. This model was used to construct two Markov chains of 50 million
steps each, saving every 10 000th step. The resulting estimates were checked for convergence and the posterior estimates of trees were combined
after a burn-in of 10% of each chain, and then summarised as a majority consensus tree using Dendroscope version 3.2.2 [4].

2. Transmission model including direct and external transmissions

We extended the model of Morelli et al. (2012) [5] to allow for the complexities inherent to polyphyletic epidemics and endemic diseases.
Their model reconstructs transmission trees from a combination of temporal, spatial and genetic data, but allows for only a single introduction,
followed by direct transmission for the remainder of the epidemic. This means that missing cases will deform the distributions describing
the incubation and infectious periods, while the polyphyletic origins of many datasets will not be adequately reflected. These factors make it
unsuitable for application to endemic diseases. In what follows, we present only the changes to the model of Morelli et al., using the same
notation for clarity (a summary of the notation used here is provided in table S5 at the end of this document).

2.1 Transmission tree and infection times

Concerning the transmission dynamics, we added into the model of Morelli et al. (i) the possibility of multiple introductions (i.e. transmissions
from sources external to the dataset) and (ii) the existence of two classes of hosts, namely those that can spread the disease and those that are
definite dead-end hosts. The joint conditional probability distribution of the transmission tree J and the infection times Tinf given incubation
periods L, infectious periods D, observation times Tobs (which are assumed to coincide with the times of deaths), host locations X and capacities
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to spread the disease C (see the definition of C below) can be written:

p(J,Tinf |L,D, θ,Tobs,X,C) = p
(
J(1), T inf

1 | L,D, θ,T
obs,X,C

)
×

I∏
i=2

p
(
J(i), T inf

i | J{1 : (i− 1)}, T inf
1:(i−1),L,D, θ,T

obs,X,C
)
,

(1)

where θ is a vector of all unknown parameters, I is the total number of hosts, the index i is sorted with respect to increasing infection times T inf
i ,

J{1 : (i− 1)} = (J(1), . . . , J(i− 1)) and T inf
1:(i−1) = (T inf

1 , . . . , T
inf
i−1). Note that in contrast to the model of Morelli et al. (2012), there is no

delay here between the time when a host is observed as infected and its death. The model assumes that observation of infection leads to the
animal being euthanised (or that cases are detected immediately upon death).

Each host has the same chance (1/I) to be infected first (by an external source J(1) = 0), and its infection time is assumed to be less than or
equal to the first observation time (min{Tobs}):

p
(
J(1), T inf

1 | L,D, θ,T
obs,X,C

)
=

1

I
× 1(T inf

1 ≤ min{Tobs}),

where 1 is the indicator function. Subsequent infections (i.e. for i > 1) occur with the following probabilities:

p
(
J(i), T inf

i | J{1 : (i− 1)}, T inf
1:(i−1),L,D, θ,T

obs,X,C
)

= exp

(
−α0(T inf

i − T
inf
1 )−

∫ T
inf
i

T
inf
1

i−1∑
j=1

α1Cj1(T inf
j + Lj ≤ t ≤ T obs

j )fα2(||Xi −Xj ||)dt

)

×
(
α01{J(i) = 0}+ α1CJ(i)1(T inf

J(i) + LJ(i) ≤ T inf
i ≤ T

obs
J(i))fα2(||Xi −XJ(i)||)1{J(i) > 0}

)
where the exponential term is the probability that host i has not been infected between times T inf

1 and T inf
i , and the second term is the probability

density that host i has been infected by J(i) at time T inf
i . Here, if J(i) > 0 the source is observed, while the source is external to the dataset (an

introduction) if J(i) = 0. α0 is the infection strength of the external source, assumed to be constant in time and space, α1 is the infection
strength of an observed source, and α2 is a vector of the parameters defining the shape of the spatial transmission kernel fα2 (see below). || · || is
a geographic distance (the great-circle distance in this study). The binary variable Cj indicates whether j can be contagious (Cj = 1) or not
(Cj = 0). In this study, dogs and jackals can spread the disease, whereas livestock (cattle, goats and sheep) are dead-end hosts.

2.2 Transmission kernel

We used the exponential-power transmission kernel [6], which is a two-parameter kernel (scale parameter α2,1 and shape parameter α2,2) and
has the advantage of including fat-tailed kernels (when α2,2 < 1), thin-tailed kernels (when α2,2 > 1), the exponential kernel (α2,2 = 1) used
in Morelli et al. (2012), and the normal kernel (α2,2 = 2). Thus, the exponential-power kernel, which is often used in dispersal studies, is a very
general kernel, making it well suited to a range of endemic situations where often very little is known regarding spatial transmission patterns.
The exponential-power kernel satisfies, for all distances r ≥ 0:

fα2(r) =
α2,2

2π(α2,1)2Γ(2/α2,2)
exp

{
−
(

r

α2,1

)α2,2
}
.

2.3 Nucleotide substitutions

To take into account heterogeneity in the rates of different types of nucleotide substitutions, we replaced the Jukes-Cantor substitution model
used in Morelli et al. (2012) with the 3-parameter Kimura model [7]. In this model, the substitution rates are different for transitions (U↔
C and A↔ G), transversions of type 1 (U↔ A and C↔ G) and transversions of type 2 (U↔ G and A↔ C) [7]. Therefore, the numbers
of transitions, type-1 transversions, type-2 transversions and unchanged bases over a time lag ∆ are distributed according to a multinomial
distribution, say Pµ,s(· | ∆), with size equal to the length s of the observed sequence fragment and with the following vector of probabilities:

1

4

(
1− e1 − e2 + e3, 1− e1 + e2 − e3, 1 + e1 − e2 − e3, 1 + e1 + e2 + e3

)
,

where e1 = exp{−2(µ1 + µ2)∆}, e2 = exp{−2(µ1 + µ3)∆}, e3 = exp{−2(µ2 + µ3)∆}, and µ1, µ2 and µ3 are the genetic substitution
rates per nucleotide per day, for transitions, type-1 transversions and type-2 transversions, respectively. In what follows, we use the notation
µ = (µ1, µ2, µ3) for simplicity.
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2.4 Observed and unobserved pathogen sequences

For the purposes of this discussion, we use the terms “sequence” and “sequence fragment” interchangeably. Here, we are interested in the
conditional distribution pµ,s(Sobs | J,Tobs,Tinf, SMRCA, TMRCA) of observed pathogen sequences Sobs given the transmission tree J , infection
times Tinf, observation times Tobs, and the genetic sequence SMRCA and time TMRCA of the most recent common ancestor (MRCA) of the
observed pathogens. This probability distribution, which depends on the nucleotide substitution rates µ and the length s of the sequence fragment
that is observed, can be written as a sum over the unknown transmitted genetic sequences Si at time T inf

i (for all i such that J(i) > 0):

pµ,s(S
obs | J,Tobs,Tinf, SMRCA, TMRCA)

=
∑

{Si∈S: i=1,...,I
and J(i)>0}

{(
I∏
i=1

Pµ,s{M(Sobs
i , S†prec(i,obs)) | ∆ = T obs

i − T †prec(i,obs)}

)

×

 I∏
i=1

J(i)>0

Pµ,s{M(Si, S
∗
prec(i,inf)) | ∆ = T inf

i − T
∗
prec(i,inf)}


 .

(2)

In equation (2), S is the set of all possible sequences (the size of S is 4s, where s is the length of the sequence fragment),M(S′, S) is the vector of
the numbers of transitions, type-1 transversions, type-2 transversions and unchanged bases between S and S′, and Pµ,s{M(S′, S) | ∆ = T ′−T}
is the probability given by the multinomial distribution in Section 2.3.

The subscript prec(i, obs) can take two types of values. First case: if i was infected from outside the dataset (J(i) = 0) and i did not infect
any other observed host, then prec(i, obs) = MRCA, which means S†prec(i,obs) = SMRCA and T †prec(i,obs) = TMRCA. Second case: if J(i) > 0 or if
i infected another observed host, then prec(i, obs) denotes the host whose node of infection belongs to the tree path from the root of the tree to
the observation of i (at time T obs

i ) and whose infection immediately precedes the observation of i (i.e. S†prec(i,obs) is the transmitted sequence

Sprec(i,obs) at the infection time T †prec(i,obs) = T inf
prec(i,obs)). The node of infection of a given host k is defined as the point on the tree at which “the

branch leading to the observation of k” and “the branch leading to the observation of the infecting host J(k)” diverged. The tree path from one
point of the tree to another is defined as the most direct line on the graph connecting the two points. In the second case, if J(i) > 0 and i did not
infect any other host, then prec(i, obs) is i itself.

The subscript prec(i, inf) can also take two types of values. First case: if J(J(i)) = 0 and J(i) did not infect any other observed host before
the infection of i at T inf

i , then prec(i, inf) = MRCA, which means S∗prec(i,inf) = SMRCA and T ∗prec(i,inf) = TMRCA. Second case: if J(J(i)) > 0 or
if J(i) infected another observed host before the infection of i at T inf

i , then prec(i, inf) denotes the host whose node of infection belongs to the
tree path from the root of the tree to the infection of i (at time T inf

i ) and whose infection is just preceding the infection of i (i.e. S∗prec(i,inf) is the
transmitted sequence Sprec(i,inf) at the infection time T ∗prec(i,inf) = T inf

prec(i,inf)).
In other words, the first series of factors in equation (2) accounts for the probabilities of the number of substitutions between an observed

sequence and the immediately preceding unobserved, transmitted sequence or the sequence of the MRCA. The second series of factors accounts
for the probabilities of the number of substitutions between each transmitted sequence and the transmitted sequence immediately preceding it in
time or the sequence of the MRCA.

2.5 Prior distributions

Independent prior distributions were used for all parameters.
Independent vague exponential priors with a mean value of 100 were chosen for the parameter α0 relating to the infection strength of external

sources and parameter α1 relating to the infection strength of observed sources.
A vague exponential prior with mean value of 100 was chosen for the scale parameter α2,1 of the transmission kernel, while a gamma prior

distribution with mean a(1)2,2 = 1 and standard deviation a(2)2,2 = 1 was specified for the shape parameter α2,2 of the transmission kernel. Doing so
allows classical kernels to have a non-negligible weight, in particular the thin-tailed normal kernel (α2,2 = 2), the exponential kernel (α2,2 = 1)
and the fat-tailed kernel corresponding to α2,2 = 0.5.

For the parameters governing incubation and infectious periods, we used very narrow prior distributions centered around values matching
distributions fitted to contact tracing data from rural Tanzania [8]. Narrow prior distributions were used to prevent the inference algorithm from
creating direct connections by extending the incubation and infectious periods when one or more intermediate cases have not been sampled.

Incubation periods were modelled by independent gamma distributions (which were the best fitting distributions for both the incubation
and infectious periods in [8]) with mean parameter β1 and standard deviation β2. A narrow gamma prior with mean b(1)1 = 22.1 days and
standard deviation b(2)1 = 0.01 was specified for β1. A narrow gamma prior with mean b(1)2 = 21.2 days and standard deviation b(2)2 = 0.01
was specified for β2.

Infectious periods were modeled by independent gamma distributions with mean parameter δ1 and standard deviation δ2. A narrow gamma
prior with mean d(1)1 = 3.1 days and standard deviation d(2)1 = 0.01 was specified for δ1. A narrow gamma prior with mean d(1)2 = 1.8 days
and standard deviation d(2)2 = 0.01 was specified for δ2.

Independent exponential prior distributions with a mean parameter m = 2× 10−6 substitutions per nucleotide per day were used for the
substitution rates µ1, µ2 and µ3.

A vague normal prior distribution with mean t(1)MRCA = −5500 days and standard deviation t(2)MRCA = 10000 days was specified for TMRCA.
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3. Inference

In this study, we estimate the same parameters and latent variables as in Morelli et al. (2012) [5], and additionally also the time TMRCA of the
MRCA and the substitution rates µ1, µ2 and µ3. We modified the pseudo-distribution for the genetic data introduced by Morelli et al. specifically
to take into account the possibility for multiple introductions and used interacting Markov chain Monte Carlo (MCMC) instead of simple MCMC
to allow us to reduce computation time by exploiting multiple computation cores.

3.1 Pseudo-distribution for the observed pathogen sequences

The sequence SMRCA was reconstructed a priori using the FastML web server with a general time reversible (GTR) substitution model [9, 10]
and was considered as fixed. In future developments of the method, this sequence could be estimated within our inference algorithm.

To reduce the complexity of the inference algorithm, we used a conditional pseudo-distribution of Sobs, noted p̃µ,s(Sobs | J,Tobs,Tinf, SMRCA,
TMRCA), instead of the exact conditional distribution pµ,s(Sobs | J,Tobs,Tinf, SMRCA, TMRCA). The conditional pseudo-distribution does not
depend on the extra latent vectors {Si : i = 1, . . . , I, J(i) > 0} appearing in equation (2) – see Morelli et al. [5] for details.

With index i being sorted with respect to increasing infection times T inf
i , the distribution pµ,s(Sobs | J,Tobs,Tinf, SMRCA, TMRCA) can be

written as:

pµ,s(S
obs | J,Tobs,Tinf, SMRCA, TMRCA) = pµ,s(S

obs
1 | J,Tobs,Tinf, SMRCA, TMRCA)

×
I∏
i=2

pµ,s(S
obs
i | Sobs

1:(i−1), J,T
obs,Tinf, SMRCA, TMRCA),

(3)

where Sobs
1:(i−1) is the set of observed sequences from hosts 1, . . . , i− 1. For the first infected host,

pµ,s(S
obs
1 | J,Tobs,Tinf, SMRCA, TMRCA) = Pµ,s{M(Sobs

1 , SMRCA) | ∆ = T obs
1 − TMRCA}.

For the other hosts infected by external sources (i.e. i > 1 such that J(i) = 0),

pµ,s(S
obs
i | J,Tobs,Tinf, SMRCA, TMRCA) = Pµ,s{M(Sobs

i , SMRCA) | ∆ = T obs
i − TMRCA}.

For hosts not directly infected by external sources (i.e. i > 1 such that J(i) > 0), we replaced the conditional probability pm,s(Sobs
i |

Sobs
1:(i−1), J,T

obs,Tinf, SMRCA, TMRCA) of Sobsi given sequences Sobs
j (j = 1, . . . , i − 1) by the product, up to a power, of the conditional

probabilities of Sobs
i given each sequence Sobs

j such that j ∈ 1, . . . , i− 1 and j is in the transmission chain leading to i (the latter condition is
mathematically written: ∃n ∈ N∗, Jn(i) = j): i−1∏

j=1
∃n∈N∗,Jn(i)=j

Pm,s{M(Sobs
i , Sobs

j ) | ∆ =| T obs
i − T inf

div(i,j) | + | T
obs
j − T inf

div(i,j) |}


1/ηi

,

where ηi is the number of terms in the product, T obs
div(i,j) denotes the infection time at which the chain of infection leading to i and the chain

of infection leading to j diverged (T inf
div(i,j) is one of the latent variables in Tinf, also called “augmented data”) and ∆ = | T obs

i − T inf
div(i,j) |+

| T obs
j − T inf

div(i,j) | is the evolutionary duration separating the observation of Sobs
i and Sobs

j . The use of the power 1/ηi is a way to get a quantity
homogeneous to a single probability and not to a product of probabilities whatever the length of the transmission chain leading to i. This means
the hosts have similar weights in the pseudo-distribution given below.

Thus, the conditional pseudo-distribution of Sobs satisfies:

p̃µ,s(S
obs | J,Tobs,Tinf, SMRCA, TMRCA)

=

I∏
i=1

J(i)=0

Pµ,s{M(Sobs
i , SMRCA) | ∆ = T obs

i − TMRCA}

×
I∏
i=1

J(i)>0

 i−1∏
j=1

∃n∈N∗,Jn(i)=j

Pm,s{M(Sobs
i , Sobs

j ) | ∆ = | T obs
i − T inf

div(i,j) | + | T
obs
j − T inf

div(i,j) |}


1/ηi

.

(4)

3.2 Interacting MCMC

The MCMC algorithm of Morelli et al. can be directly adapted to the new model developed for endemic diseases. However, to decrease the
computation time, we ran 20 interacting Markov chains in parallel. The chains were independently run except every 2000 iterations when
importance sampling among the 20 current chain states was performed [11]. Following a burn-in of 5000 iterations for each of the 20 chains, we
sampled every 250th iteration to gain a total posterior sample size of 104. For our study, the parallel algorithm took 10 days using a computation
cluster equipped with Intel Xeon X5690 processors (3.46GHz and below).
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3.3 Indirect transmissions

As described in the main text, indirect transmissions were inferred using a post-processing analysis of the output provided by the algorithm
described above. Sources of indirect transmission were represented by extending the infectious potentials of infectious hosts after their deaths, as
illustrated by figure S9.
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Figure S9. Inferring indirect transmissions. The unsampled index case is represented by an x, while o’s represent observed cases. The influence of cases in both
the genetic and geographic space will be extended by cases further down the transmission chain. Thus, the effect of unsampled cases can be modelled by allowing
cases to continue moving and evolving after the death of the host involved, as illustrated by the green and red cones. In this way, we can detect the indirect causal
connection between the light and dark green cases in the figure caused by an unsampled intermediate case whose host was infected by the light green case and
which then went on to infect the host of the dark green case.

The algorithm described below aims to determine if hosts originally considered as infected by external sources might have been infected
by these sources of indirect transmission. Although including this reconstruction in the main inference algorithm would be more statistically
rigorous, this task would require more computational effort. We will test this possibility in future work.

Indirect transmissions determined with genetic data only (liberal specification). The output of the inference algorithm is a table of 104

rows corresponding to the sampled states of the MCMC chains. In this table each column corresponds to a given unknown parameter or latent
variable. We introduce the index b that indicates which state of the posterior sample is considered. For example, J(b)(i) is the source of host i at
the bth state of the posterior sample.

• For each b = 1, . . . , 104:

– Initialize the vector J̃(b) by setting J̃(b) = J(b);

– For each host i such that J(b)(i) = 0:

∗ Compute the value r(b)i of the pseudo-distribution of the genetic data (equation (4)) with (J,Tinf, TTMRCA, µ) = (J(b),Tinf(b),

T
(b)
TMRCA, µ

(b));
∗ For each host j 6= i satisfying Cj = 1 and T inf

j + Lj ≤ T inf
i (j is a possible indirect source since we ignore its death time T obs

j ):

· Generate a new transmission tree J(b,∗) such that J(b,∗) coincides with J(b) except J(b,∗)(i) = j;

· Compute the value r(b,∗)i of the pseudo-distribution of the genetic data (equation (4)) with (J,Tinf, TTMRCA, µ) = (J(b,∗),

Tinf(b), T
(b)
TMRCA, µ

(b));

∗ Select j such that r(b,∗)i is maximum and set J̃(b)(i) = J(b,∗)(j) with probability min(1, r
(b,∗)
i /r

(b)
i ).

If J̃(b)(i) is changed from zero to j, then i is considered as indirectly infected by j in state b. Therefore, we obtain a posterior distribution of the
transmission tree including and differentiating direct, indirect and external transmissions.

Indirect transmissions determined with genetic and spatial data (conservative specification). In the conservative specification, both
genetic and spatial information is taken into account when inferring indirect transmissions, which restricts the spatial influence of undetected
cases. In this paragraph, we extend the formula of the distribution of the transmission tree and the infection times (equation (1)) by differentiating
the death of host j at time T obs

j and the end of its potential influence at time T end
j . Between times T obs

j and T end
j , j cannot infect any other host,
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but unobserved hosts infected by j before T obs
j might go on to infect other hosts. Thus, the distribution of the transmission tree and the infection

times given in equation (1) is replaced by:

pindirect(J,Tinf | L,D, θ,Tobs,Tend,X,C) =
1

I
× 1(T inf

1 ≤ min{Tobs})

×
I∏
i=2

exp

(
−α0(T inf

i − T
inf
1 )−

∫ T
inf
i

T
inf
1

i−1∑
j=1

α1Cj1(T inf
j + Lj ≤ t ≤ T end

j )fα2(||Xi −Xj ||)dt

)

×
(
α01{J(i) = 0}+ α1CJ(i)1(T inf

J(i) + LJ(i) ≤ T inf
i ≤ T

end
J(i))fα2(||Xi −XJ(i)||)1{J(i) > 0}

)
.

(5)

The difference between equations (1) and (5) is the time interval during which j is considered as infectious ([T inf
j + Lj , T

obs
j ] in equation (1) and

[T inf
j + Lj , T

end
j ] in equation (5)).

The algorithm described in the paragraph above is replaced by the following one:

• For each b = 1, . . . , 104:

– Initialize the vector J̃(b) by setting J̃(b) = J(b);

– For each host i such that J(b)(i) = 0:

∗ Compute the value r(b)i of the pseudo-distribution of the genetic data (equation (4)) with (J,Tinf, TTMRCA, µ) = (J(b),Tinf(b),

T
(b)
TMRCA, µ

(b));

∗ Compute the value q(b)i of the distribution of the transmission tree and the infection times (equation (1)) with (J,Tinf,L,D, θ) =

(J(b),Tinf(b),L(b),D(b), θ(b));
∗ For each host j 6= i satisfying Cj = 1 and T inf

j + Lj ≤ T inf
i (j is a possible indirect source since we ignore its death time T obs

j ):

· Generate a new transmission tree J(b,∗) such that J(b,∗) coincides with J(b) except J(b,∗)(i) = j;

· Generate an end-time vector Tend(b,∗) such that Tend(b,∗) coincides with Tobs except T end
j

(b,∗)
= T inf

i + 1 (the end time of j
is fixed at the infection time of i plus one day such that j may indirectly infect i);

· Compute the value r(b,∗)i of the pseudo-distribution of the genetic data (equation (4)) with (J,Tinf, TTMRCA, µ) = (J(b,∗),

Tinf(b), T
(b)
TMRCA, µ

(b));

· Compute the value q(b,∗)i of the new distribution of the transmission tree and the infection times (equation (5)) with
(J,Tinf,L,D, θ,Tend) = (J(b,∗),Tinf(b),L(b),D(b), θ(b),Tend(b,∗));

∗ Select j such that the product r(b,∗)i × q
(b,∗)
i is maximum and set J̃(b)(i) = J(b,∗)(j) with probability min(1, r

(b,∗)
i ×

q
(b,∗)
i /{r(b)i × q

(b)
i }).

As above, if J̃(b)(i) is changed from zero to j, then i is considered as indirectly infected by j in state b. Therefore, we obtain a posterior
distribution of the transmission tree including and differentiating direct, indirect and external transmissions.

4. Population size

Consider a set of infected hosts observed at times Tobs and linked through a transmission tree J̃ including direct and indirect transmissions as
well as transmissions from external sources. This set of hosts is a fraction of the population of infected hosts in the study area and period; letN
be the size of this population that we aim to infer.

The set of observed hosts is split into two halves based on the observation times of the infected hosts (note that one of the groups will
have one more host than the other if the total number of observed hosts is odd), and the following variables are introduced:M is the number
of marked virus lineages during the first period of time; it is equal to the number of hosts in the first half of the data set. C is the number of
captured virus lineages during the second period of time; it is equal to the number of hosts in the second half of the data set. R is the number of
recaptured virus lineages during the second period of time; it is equal to the number of hosts in the second half of the data set that were infected
directly or indirectly by hosts in the first half of the data set. R is directly computed from the transmission tree J̃ . The conditional probability
P (N | M, C,R) of the population sizeN satisfies:

P (N | M, C,R) =

N∑
N2=0

P (N ,N2 | M, C,R),

whereN2 is the size of the population in the second period of time. Using Bayes’ theorem, the conditional joint probability of (N ,N2) satisfies:

P (N ,N2 | M, C,R) =
P (R | N ,N2,M, C)P (N2 | N ,M, C)P (N | M, C)

P (R | M, C) .

In what follows, the terms of the numerator of the previous fraction are provided. Figure S10 provides a graphical explanation of the variables
considered here.
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Figure S10. A graphical representation of the parameters considered in the mark-recapture-based calculation of the true number of cases affecting the study area.
N is the total number of infected hosts, which we wish to infer, while N2 is the number of infected hosts in the second half of the sampling period. M is the
number of hosts from the first half of the sampling period that are marked (i.e. all detected cases), which increases or decreases to M2, the number of hosts in the
second half of the sampling period which are infected directly or indirectly by the M marked hosts. C is the number infected hosts captured (detected) in the
second time period, while R is the number of marked hosts that are recaptured.

Expression of P (R | N ,N2,M, C). LetM2 be the number of hosts (observed or not) corresponding to the second period of time and
infected, directly or indirectly, by theM hosts marked during the first period of time (M2 is unknown). The conditional probability ofR can be
written as follows:

P (R | N ,N2,M, C) =

N2∑
M2=0

P (R | N ,N2,M,M2, C)P (M2 | N ,N2,M, C),

where, assuming that observed hosts are independently sampled,

R | N ,N2,M,M2, C ∼ Binomial
(
C,M2

N2

)
M2 | N ,N2,M, C ∼ Binomial

(
N2,

M
N −N2

)
.

Expression of P (N2 | N ,M, C). Let z be the multiplication coefficient between the size of the population corresponding to the first period
of time and the size of the population corresponding to the second period of time (z is unknown). By assuming that z does not depend on
(N ,M, C), the conditional probability ofN2 can be written as follows:

P (N2 | N ,M, C) =

∫
z

P (N2 | z,N ,M, C)f(z)dz, (6)

where f is the probability density function of z that is assumed to be the uniform density over the interval [0.5, 1.5] and

P (N2 | z,N ,M, C) = P (N2 | z,N ,N2 < N −M,N2 ≥ C)

N2 | z,N ∼ Binomial
(
N , z

1 + z

)
.

Therefore, in equation (6),

z ∼ Uniform([0.5; 1.5])

N2 | z,N ,M, C ∼ Truncated Binomial
(
N , z

1 + z
, C,N −M− 1

)
,

where the two latter arguments in the truncated binomial distribution are the lower and upper truncation bounds.

Expression of P (N | M, C). N is assumed to be uniform over the set of values {0, . . . ,N max} (we usedN max = 103) and, consequently,

N | M, C ∼ Uniform({M+ C, . . . ,N max}).
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Importance sampling. Therefore, the conditional distribution ofN given observed variables (M, C,R) satisfies:

P (N | M, C,R) =
1

P (R | M, C)

N∑
N2=0

N2∑
M2=0

∫
z

(
P (R | N ,N2,M,M2, C)P (M2 | N ,N2,M, C)

× P (N2 | z,N ,M, C)f(z)P (N | M, C)
)
dz.

where all the terms in the multiple sum have explicit expressions. The multiple sum can be assessed with importance sampling [11] by simulating
z,N2 andM2 under their conditional distributions (we used 103 particles in the importance sampling). Then, the domain ofN being finite, a
simple average is performed to obtain P (N | M, C,R) for all integer values ofN between 0 andN max.

Final estimate of P (N | M, C,R). The previous paragraph shows how to compute the conditional distribution of N given the variables
(M, C,R). In our study, the number R of recaptured lineages is merely inferred and we only have access to its posterior distribution (for
each chain state b ∈ {1, . . . , 104}, we can determine the numberR(b) of hosts in the second half of the data set that were infected directly or
indirectly by hosts in the first half of the data set). Consequently, we integrated the conditional distribution P (N | M, C,R) of the population
size with respect to the posterior sample ofR provided by the inference algorithm described in Section 3.3:

P̂ (N | M, C, data) =
1

104

104∑
b=1

P (N | M, C,R(b)),

where P (N | M, C,R(b)) is estimated with the importance sampling procedure cited above.

5. Estimation of Re

5.1 Method

Due to incomplete sampling as well as limited sampling in both time and space, calculating the effective number of secondary cases per infection,
Re, is subject to various sources of bias. We cannot detect transmission to secondary cases occurring after the sampling period (bias 1), occurring
outside the sampled region (bias 2) or occurring within the sampling period and within the sampling region but remaining unobserved (bias 3).

Bias 1 was taken into account by restricting the calculation of Re to the first half of observed infected hosts whose secondary cases are likely
to be observed in the sampling period. Bias 2 was taken into account by restricting the calculation of Re to the hosts distant from the western and
northern borders of the study region whose secondary cases are likely to be observed in the sampling region (only source hosts observed at
longitudes above 30.5 degrees and latitudes below -28.0 degrees were considered). This temporally and spatially restricted set of hosts is denoted
by Iinner ⊂ {1, . . . , I} and the number of hosts in this set is denoted by |Iinner|. Using these two restrictions for source hosts, the following
posterior sample based on inferred direct transmissions gives an initial assessment for Re:R(b)

e, direct =
1

|Iinner|
∑

j∈Iinner

I∑
i=1

1(J(b)(i) = j) : b = 1, . . . , 104

 , (7)

where
∑I
i=1 1(J(b)(i) = j) is the number of direct secondary cases for j at the b-th saved iteration of the MCMC algorithm. This posterior

sample, illustrated in figure S11 (a), can be interpreted as a lower bound of Re.
Transmission to unsampled cases (bias 3) was taken into account by multiplying R(b)

e, direct by a correcting value that was obtained as follows.

Re is the sum of R(b)
e, direct plus a term composed of unobserved secondary cases, say R(b)

e, unobserved: Re = R
(b)
e, direct + R

(b)
e, unobserved. The ratio

R
(b)
e,direct/Re is equal to the probability of "observing a secondary infected host" that is approximately equal to the ratio between the total

number of sampled cases I and the expectation of the population size in the study region and period, i.e.
∑∞
N=0NP (N | M, C,R(b)), where

P (N | M, C,R(b)) depends on the reconstruction specification and the iteration b of the MCMC algorithm (see section 4 of this supplementary
text):

R
(b)
e, direct

Re
= Pr(observing a secondary infected host) ≈ I∑∞

N=0NP (N | M, C,R(b))
.

Thus, transmission to unsampled cases (bias 3) was taken into account by multiplying R(b)
e, direct by the correcting value (1/I)

∑∞
N=0NP (N |

M, C,R(b)), and the following posterior sample gives two further assessments for Re (one for each specification of the postprocessing
algorithm): {

R
(b)
e, indirect =

R
(b)
e, direct

I

∞∑
N=0

NP (N | M, C,R(b)) : b = 1, . . . , 104

}
, (8)

Figure S11 shows these posterior samples as obtained with the conservative (b) and liberal (c) specifications of the reconstruction of indirect
transmissions.

16



0.0 0.5 1.0 1.5 2.0

0
2

4
6

8

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

0
1

2
3

4

0
.0

0
.5

1
.0

1
.5

D
e
n
s
it
y

D
e
n
s
it
y

(a) (b) (c)

D
e
n
s
it
y

Figure S11. Posterior distributions of Re, the effective number of secondary cases per infection. Considering only direct connections gives the lower limit
of Re (a). Estimates of Re when including the probability of missing secondary cases are shown in (b) and (c) for the conservative and liberal specifications
respectively. Vertical black lines indicate the mean in each plot.

5.2 Results

When considering only direct connections, the approach described above gave a median estimate of 0.35 (95%-PI: 0.23-0.47) (this value can be
seen as a lower limit of Re), and 0.88 (95%-PI: 0.50-1.58) and 0.43 (95%-PI: 0.27-0.62) when also accounting for the risk of missing cases
calculated by inclusion of indirect connections, as determined under the conservative and liberal post-processing algorithms respectively, to
the mark recapture approach (figure S11). Given the continued transmission of rabies virus in the study area throughout and after the study
period, the conservative algorithm provides more plausible results for this dataset, with values above 1 in the 95% posterior interval. This result
is consistent with estimates of R0 for dog rabies outbreaks around the world, which are generally only barely above the threshold of one required
for epidemic expansion [8]. The fact that our estimate does not rule out values below one could be due to: (i) the fact that the R0 of dog rabies
epidemics is generally close to one and our estimate is imprecise, (ii) the fact that in KZN, Re will be influenced by active control programmes,
and it may be that Re has dropped below one at a provincial scale, or (iii) the fact that the sources of bias mentioned above are not sufficiently
compensated for in our approach.

6. Simulations

6.1 Method

We tested the accuracy of the method using 100 simulated datasets from each of six scenarios. Scenarios 1 to 4 were used to investigate
overall accuracy and the effect of sampling rate on the reconstruction method, representing high (3/4 of all cases), moderate (2/3 of all cases),
intermediate (1/2 of all cases) and low (1/4 of all cases) detection rates respectively. Scenarios 5 and 6 were used to test the sensitivity of the
method to small and large misspecifications of epidemiological parameters.

The simulation model is based on the probability distributions and specifications given in section 2.1 of this supplementary text. The single
difference between the simulation model and the model used for inference concerns infection from external sources. In the inference model,
there is a single external source with an infection strength that is constant in time and space. In the simulation model, the external sources are
handled in a different manner (and more realistic manner for our case study): the external sources are infectious hosts within or outside the
sampling region generating infectious risks that are local in time and space.

For each simulation of scenario 1, the epidemic is initiated at time zero with one infected host localized at the origin (0, 0) and 119 susceptible
hosts uniformly and randomly localized in the [0.0, 0.3]× [0.0, 0.1] rectangle. At time zero, the genetic sequence of the virus in the infected
host consists purely of adenine bases. The incubation duration parameters are β1 = 50 (mean) and β2 = 5 (standard deviation). The infectious
duration parameters are δ1 = 10 (mean) and δ2 = 1 (standard deviation). The infection strength of each infectious host is 106. The dispersal
parameters are α2,1 = 0.25 (scale) and α2,2 = 1 (shape). The substitution rates are µ1 = µ2 = µ3 = 2× 10−5. The observed hosts form a
sample of the 120 hosts: the sampling is uniform among the hosts with x-coordinate larger than 0.2 and the sampling effort is 3/4 (3/4 of cases
with x-coordinate larger than 0.2 are observed). For genetic data, a sequence fragment of length 800 is observed.

Figure S12 presents an example of a simulation under scenario 1. For this scenario and those below, the prior distributions were the same as
for the inference in the real case study, but we changed the values of the parameters: (i) informative priors for incubation and infectious durations
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parameterized by (b11, b
2
1, b

1
2, b

2
2) = (50, 0.01, 5, 0.01) and (d11, d

2
1, d

1
2, d

2
2) = (10, 0.01, 1, 0.01); (ii) vague exponential priors with mean 106

for strengths of the external source and the observed sources; (iii) exponential prior with mean value 1.0 for the scale dispersal parameter and
prior parameters a(1)2,1 = 1 and a(2)2,2 = 1 for the shape dispersal parameter; (iv) exponential prior distributions with mean m = 2× 10−5 for the
substitution rates; (v) normal prior with mean t(1)MRCA = 0 and standard deviation t(2)MRCA = 10 for TMRCA.

In scenario 2 (moderate detection rate), the sampling effort is 2/3 instead of 3/4. To ensure that the same number of observed hosts were
sampled, the spatial domain was extended to the [0.0, 0.3

√
135/120] × [0.0, 0.1

√
135/120] rectangle and the total number of hosts in this

rectangle was increased to 135 instead of 120.
In scenario 3 (intermediate detection rate), the sampling effort is 1/2. To ensure that the same number of observed hosts were sampled, the

spatial domain was extended to the [0.0, 0.3
√

1.5]× [0.0, 0.1
√

1.5] rectangle and the total number of hosts in this rectangle was increased to
180.

In scenario 4 (low detection rate), the sampling effort is 1/4. To ensure that the same number of observed hosts were sampled, the spatial
domain was extended to the [0.0, 0.3

√
3]× [0.0, 0.1

√
3] rectangle and the total number of hosts in this rectangle was increased to 360.

In scenario 5 (small misspecification of the model), we changed the mean parameter values of the incubation and infectious durations used
for the simulation: β1 = 45 instead of 50 and δ1 = 12 instead of 10, but we left the strongly informative priors of the reconstruction algorithm
unchanged, with means of 50 and 10 for the incubation and infectious durations, respectively.

In scenario 6 (large misspecification of the model), we changed the mean parameter values of the incubation and infectious durations used for
the simulation: β1 = 30 instead of 50 and δ1 = 15 instead of 10, but again left the strongly informative priors of the reconstruction algorithm
unchanged.
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Figure S12. Example of a simulated epidemic under scenario 1. Black dots represent hosts, while black segments represent transmissions. Samples are take from
only a small region, indicated in grey, and in this area, not all cases are detected or sampled. In simulation scenario 1, cases in the sampling area have a probability
of 3/4 of being sampled. Sampled hosts are indicated in red.

6.2 Results

Substitution parameters and the date of the MRCA were appropriately estimated whatever the simulation scenario (rates of coverage by the
95%-posterior intervals are high – see table S2, while the lengths of these intervals are moderate – data not shown). The dispersal parameters
were less accurately estimated (see rates of coverage of α2,1 and α2,2 by their 95%-posterior intervals in table S2). In these simulations,
inaccuracies are observed when the priors for incubation and infectiousness parameters are biased (scenarios 5 and 6) and, surprisingly, when the
sampling rate is high (scenarios 1 and 2). The latter case can be explained by the reduced spatial extent of the sampled domain. In all simulation
scenarios, both the number of sampled individuals and the spatial density of all cases (sampled and unsampled) were kept constant, which
required an increase in the sampled spatial domain. Thus, at lower sampling rates, the range of dispersal distances that can be observed is larger
and, consequently, the estimation of dispersal parameters is improved even if the number of direct connections is reduced. Other simulation
results are discussed in the main text.
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Table S2. Performance of the transmission tree reconstruction approach for the estimation of key parameters. For each parameter, the mean (and standard
deviation) is reported based on 100 simulations for each simulation type.

Parameter Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6
α2,1 0.61 (0.49) 0.66 (0.48) 0.71 (0.45) 0.85 (0.36) 0.59 (0.49) 0.64 (0.48)
α2,2 0.66 (0.47) 0.68 (0.47) 0.78 (0.42) 0.91 (0.29) 0.62 (0.49) 0.91 (0.28)
µ1 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
µ2 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
µ3 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
TMRCA 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

Table S3. Performance of the approach for the estimation of various transmission events. In each case the mean (and standard deviation) of the posterior
probabilities of true transmission events is reported based on 100 simulations for each simulation type.

Transmission type Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6
Direct connection between two observed cases 0.73 (0.12) 0.73 (0.10) 0.78 (0.13) 0.82 (0.12) 0.60 (0.15) 0.03 (0.03)
Infection of an observed case by an unobserved1 case 0.64 (0.19) 0.62 (0.17) 0.54 (0.15) 0.57 (0.15) 0.73 (0.15) 0.76 (0.17)
Infection of an observed case by an exogenous2 case 0.66 (0.22) 0.58 (0.20) 0.45 (0.18) 0.33 (0.14) 0.72 (0.18) 0.85 (0.17)

(conservative specification)
Infection of an observed case by an exogenous2 case 0.65 (0.22) 0.57 (0.20) 0.44 (0.19) 0.29 (0.12) 0.72 (0.18) 0.85 (0.15)

(liberal specification)
Direct or indirect infection of an observed case by 0.63 (0.15) 0.62 (0.13) 0.57 (0.17) 0.40 (0.18) 0.54 (0.15) 0.08 (0.07)

another observed case (conservative specification)
Direct or indirect infection of an observed case by 0.64 (0.14) 0.63 (0.12) 0.59 (0.15) 0.42 (0.17) 0.53 (0.14) 0.07 (0.07)

another observed case (liberal specification)
1 An unobserved case can be inside or outside the study region
2 An exogenous case is an unobserved case outside the study region

Table S4. Performance of the approach for the estimation of the total number N of infected cases in the sampling region. For each parameter, the mean (and
standard deviation) is reported based on 100 simulations for each simulation type.

Parameter Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6
True value ofN 39.5 (5.3) 44.2 (6.0) 59.4 (7.0) 120.4 (8.5) 38.9 (4.8) 39.9 (5.1)
Rate of coverage of the true value by the 95%- 1.00 (0.00) 0.98 (0.14) 0.15 (0.36) 0.16 (0.37) 1.00 (0.00) 0.97 (0.18)

posterior interval (conservative specification)
Length of the 95% posterior interval 31.9 (83.0) 30.0 (63.3) 41.3 (107.1) 89.5 (160.3) 57.9 (165.3) 148.2 (228.7)

(conservative specification)
Rate of coverage of the true value by the 95%- 1.00 (0.00) 0.97 (0.17) 0.05 (0.21) 0.00 (0.00) 1.00 (0.00) 0.98 (0.15)

posterior interval (liberal specification)
Length of the 95% posterior interval 22.2 (4.6) 21.5 (1.2) 21.5 (1.2) 21.7 (1.4) 22.5 (5.8) 56.3 (85.4)

(liberal specification)
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7. Posterior distributions

Figure S13 to S19 show the posterior distributions of model parameters and other relevant quantities.
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Figure S13. Posterior distributions of α1, the strength of observed source individuals (a) and α0, the strength of the exogenous source, which is assumed to be
constant in time (b). Solid lines indicate posterior medians, dotted lines show the 95% posterior intervals, and dashed curves represent prior distributions.
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Figure S14. The proportion of transmissions inferred as direct (a) and indirect (b and c) in the posterior distribution of transmission trees. The remaining cases are
connected to an exogenous source occurring either before the sampling period or outside the sampled region. The proportion of indirect transmissions inferred
using the conservative specification is shown in (b), while (c) shows the proportion inferred under the liberal specification.
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Figure S15. Posterior distributions of the mean and standard deviation of the incubation (a and b) and infectious (c and d) periods for all direct connections. The
solid lines indicate posterior medians, while the dotted, vertical lines show the 95% posterior intervals. Dashed curves represent the prior distributions for each
parameter.
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Figure S16. Posterior distributions of the scale (α2,1; a) and shape (α2,2; b) parameters describing the transmission kernel fα2 and of the theoretical mean (c)
and standard deviation (d) of the dispersal distance arising from an exponential-power transmission kernel with these parameters. Solid lines indicate posterior
medians, while dotted lines indicate the 95% posterior intervals for all parameters. The dashed curves in a and b show the prior distributions for these parameters.
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Figure S17. Posterior distributions of the rate of transitions (µ1; a), rate of type 1 transversions (µ2; b), rate of type 2 transversions (µ3; c) and TMRCA (d). Solid
lines indicate posterior medians, while the dotted lines show the 95% posterior interval for each parameter. Dashed curves indicate the prior distributions of each
parameter.
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Figure S18. Posterior distributions of the number of genetic differences between directly connected cases. Genetic distances between all a posteriori directly
connected cases are shown in (a), while (b) shows the genetic distances between connected cases corresponding to the direct transmission links with the highest
posterior probabilities (i.e. only the most probable links).
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Figure S19. Number of cases with no detectable source in the dataset per month of the sampling period. (a): Number of cases infected by an exogenous
source under the main inference algorithm allowing only direct or exogenous connections. (b): Cases still infected by an exogenous source after applying the
post-processing algorithm using the conservative specification, and (c): after applying the post-processing algorithm using the liberal specification. Solid lines
indicate the median of the posterior distributions, while dashed lines show the 95% posterior intervals. These figures show that the high numbers of cases inferred
as stemming from exogenous transmissions (i.e. introductions) early in the data set are most likely the result of dogs already being infected by the time we started
sampling. The number of cases with exogenous sources stabilises at a posterior median of 2.27 (95%-PI:0.6-5.1) and 0.2 (95%-PI: 0.0-1.3) per month for the
conservative and liberal algorithms respectively.

8. Notation

Table S5. Summary of the notation used in this document

Symbol Description
J{1 : i− 1} The transmission tree (J{1 : i− 1} = (J(1), ..., J(i− 1)), a vector of source-descendant pairs, where J(i) is the

source of J)
Tobs Vector of observation times
Tinf Vector of infection times
L Vector of incubation periods
D Vector of infectious periods
X Vector of observed host locations
Ci Capacity of host i to spread disease (Ci = 0 for dead-end hosts; Ci = 1 for hosts able to transmit the disease)
I Total number of hosts
fα2 The spatial transmission kernel
α0 Infection strength of the exogenous source of infections
α1 Infection strength of observed hosts
α2 Set of parameters describing the shape of the spatial transmission kernel (α2 = (α2,1, α2,2))
α2,1 Scale parameter of the exponential-power transmission kernel
α2,1 Shape parameter of the exponential-power transmission kernel
|| · || Geographic distance between two cases
β1 Mean of the incubation period
β2 Standard deviation of the incubation period
δ1 Mean of the infectious period
δ2 Standard deviation of the infectious period
µ Parameter vector of nucleotide substitution rates (µ = (µ1, µ2, µ3))
µ1 Rate of transitions per nucleotide per day
µ2 Rate of type-1 transversions per nucleotide per day
µ3 Rate of type-2 transversions per nucleotide per day
TMRCA Estimated date of detection of the most recent common ancestor of all cases in the dataset
SMRCA Nucleotide sequence of the most recent common ancestor of all cases in the dataset (determined a priori)
M(S′, S) Vector of the number of transitions, type-1 and type-2 transversions and unchanged bases between S′ and S
θ Vector of all unknown parameters
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