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ABSTRACT 
Steady laminar natural convection heat transfer from thin 

isothermal plates inclined with respect to the gravity vector, for 
both cases of heated side facing either upwards or downwards, 
is studied numerically. A computer code based on the SIMPLE-
C algorithm is used for the solution of the mass, momentum, 
and energy conservation equations. Simulations are performed 
for different values of the inclination angle of the plate in the 
range between −75deg and +75deg, the Rayleigh number in the 
range between 101 and 108, and the Prandtl number in the range 
between 0.7 and 70, whose effects on the temperature and flow 
fields, and on the heat transfer rate, are analyzed in detail and 
discussed. 

 
INTRODUCTION 

Free convection heat transfer from flat plates has been the 
subject of numerous theoretical and experimental studies, being 
of interest in a variety of industrial applications. In addition to 
the limiting cases of flow adjacent to vertical and horizontal 
surfaces, the intermediate case of inclined plates has also been 
examined by a number of investigators, mainly experimentally, 
for both cases of uniform wall temperature and uniform heat 
flux at the plate surface, see, e.g., references [1] to [11].  

However, a non-negligible discrepancy among the several 
heat transfer results available in the literature may be detected. 
In particular, such discrepancy, which increases with the plate 
inclination, may also amount to ±50%, or more, depending on 
the investigation method, the boundary conditions, and the 
occurrence of more or less pronounced three-dimensional edge-
effects. Thus, information is sometimes inconsistent. 

Moreover, the fluids traditionally used in experiments were 
only air and water, which implies a shortness of data for liquids 
with Pr > 10, e.g., dielectric coolants and silicone oils. On the 
other hand, the results of the theoretical studies based on the 
boundary-layer approach, which are virtually applicable to any 
type of fluid, become inapplicable at low Rayleigh numbers. 

It is therefore felt the need of a systematic investigation on 
natural convection heat transfer from tilted plates facing either 
upwards or downwards, and suspended in different types of 
fluids, which is the scope of the present paper.  

The study is carried out numerically under the assumption 
of steady, two-dimensional laminar flow. The case of uniform 
wall temperature is considered. A computer code based on the 
SIMPLE-C algorithm is employed for the solution of the mass, 
momentum and energy conservation equations. Simulations are 
performed for different values of the Rayleigh number in the 
range between 101 and 108, the angle of inclination to gravity in 
the range between −75deg and +75deg, and the Prandtl number 
in the range between 0.7 and 70, whose effects on the flow and 
temperature fields, and on the heat transfer rate, are analyzed in 
detail and discussed. Dimensionless heat transfer correlations 
are also developed. 
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Figure 1 – Geometry, coordinate system and integration domain 



    

PROBLEM FORMULATION 
A plate of length L, inclined of an angle ϕ with respect to 

gravity, is considered. The plate thickness d is set at 1/50 of its 
length. One side of the plate is kept at uniform temperature tp, 
whereas the opposite side and both ends are perfectly insulated. 
Free convection heat transfer occurs between the heated surface 
of the plate and the surrounding undisturbed fluid, assumed at 
uniform temperature t∞. 

The flow is assumed steady, two-dimensional, laminar, and 
incompressible, with constant fluid properties and negligible 
viscous dissipation and pressure work. The buoyancy effects on 
momentum transfer are taken into account by the Boussinesq 
approximation.  

 
Governing equations 

Once the above assumptions are used in the conservation 
equations of mass, momentum and energy, the following set of 
dimensionless governing equations is obtained: 

0=⋅∇ V                      (1) 

( )
g

T
Pr
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Pr
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where V is the dimensionless velocity vector with components 
U and V, parallel and perpendicular to the plate, respectively, 
normalized with ν/L; T is the dimensionless temperature excess 
over the temperature of the undisturbed fluid normalized with 
the temperature difference (tp − t∞); p is the dimensionless 
pressure normalized with ρ∞ν2/L2; Ra is the Rayleigh number 
based on the length of the plate; and Pr is the Prandtl number. 

The related boundary condition are T = 1 and V = 0 at the 
heated side of the plate, ∂T/∂n = 0 and V = 0 at the insulated 
side and both ends of the plate (n detotes the direction normal 
to the surface), and T = 0 and V = 0 at very large distance from 
the plate. 
 
Computational domain and boundary conditions 

The finite-difference solution of equations (1)−(3) with the 
boundary conditions stated above requires that a computational 
domain is established. The two-dimensional integration domain 
is taken as a rectangle which includes the plate and extends 
sufficiently far from it, as sketched in Fig. 1, where the (x,y) 
Cartesian coordinate system adopted is also represented. Such 
integration domain is filled with a non-uniform grid, having a 
concentration of grid lines near the plate. As regards the 
boundary conditions to be assigned at the four lines which 
enclose the rectangular integration domain, once these lines are 
set sufficiently far from the plate, the motion of the fluid which 
enters or leaves the computational domain may reasonably be 
assumed to occur normally to them. The entering fluid is 
assumed at the undisturbed free field temperature. In contrast, 
for the leaving fluid, whose temperature is not known a priori, a 
zero temperature gradient along the normal to the boundary line 

is assumed. Accordingly, the following boundary conditions are 
applied (see Fig. 1): 
a) at the heated side of the plate 

0=U , 0=V , 1=T   (4) 

b) at the insulated side of the plate 

0=U , 0=V , 0
Y
T
=

∂
∂             (5) 

c) at both ends of the plate  

0=U , 0=V , 0
X
T
=

∂
∂             (6) 

d) at boundary line A−B  

0=
∂
∂
X
U , 0=V , T = 0  if  U ≥ 0  or 0=

∂
∂
X
T  if  U < 0     (7) 

e) at boundary line B−C  

0=U , 0=
∂
∂
Y
V , T = 0  if  V < 0  or 0=

∂
∂
Y
T  if  V ≥ 0     (8) 

f) at boundary line C−D  

0=
∂
∂
X
U , 0=V , T = 0  if  U < 0  or 0=

∂
∂
X
T  if  U ≥ 0     (9) 

g) at boundary line A−D  

0=U , 0=
∂
∂
Y
V , T = 0  if  V ≥ 0  or 0=

∂
∂
Y
T  if  V < 0   (10) 

in which X and Y are the dimensionless Cartesian coordinates, 
normalized with L. 

 
Solution algorithm 

The set of equations (1)−(3) with the boundary conditions 
(4)−(10) is solved numerically by a control-volume formulation 
of the finite-difference method. The pressure-velocity coupling 
is handled through the SIMPLE-C algorithm by Van Doormaal 
and Raithby [12]. The advection fluxes are evaluated by the 
QUICK discretization scheme by Leonard [13]. Starting from 
first-approximation distributions of the dependent variables, the 
discretized governing equations are solved iteratively via a line-
by-line application of the Thomas algorithm, enforcing under-
relaxation to ensure convergence. The solution is considered to 
be converged when the maximum absolute values of the mass 
source and the percentage changes of the dependent variables at 
any grid-node between two consecutive iterations are smaller 
than the prescribed values, i.e., 10-4 and 10-6, respectively.  

 
Data reduction 

After convergence is attained, the local and average Nusselt 
numbers Nu and Nuav are calculated: 
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where q is the heat flux and Q is the heat transfer rate. The 
temperature gradients at the heated surface of the plate are 
evaluated by a second-order profile among each wall-node and 
the next two fluid-nodes. The integrals are approximated by the 
trapezoid rule.  

 
Validation of the numerical procedure 

Tests on the dependence of the results on the mesh-spacing, 
as well as on the extent of the computational domain, have been 
performed for several combinations of values of Ra, ϕ, and Pr. 
This has brought to determine the grid-spacings and the extents 
of the integration domain used for computations, which are 
such that further refinements of the grid or enlargements of the 
computational domain do not yield for noticeable modifications 
neither in the heat transfer rate nor in the flow field, that is, the 
percentage changes of Nu and Nuav, and the percentage changes 
of the maximum value of the velocity component U at X = L/4, 
L/2 and 3L/4, are smaller than the prescribed accuracy values, 
i.e., 1% and 2%, respectively. Typical features of the integration 
domain may be summarized as follows: (a) the number of nodal 
points lies in the range between 50×100 and 100×400, (b) the 
extent of the integration domain ranges between 2L and 8L 
upwards, between L and 3L downwards, and between L and 5L 
sidewards, depending on Ra, ϕ, and Pr. 

As far as the validation of the numerical code is concerned, 
a comparison among the average Nusselt numbers obtained for 
a vertical plate at different Rayleigh and Prandtl numbers and 
the corresponding values derived from both the Churchill-Chu 
correlation based on experimental data by other authors [14] 
and the Raithby-Hollands theoretical equation [15], is reported 
in Table 1. In addition, the average Nusselt numbers obtained 
for a tilted plate in air at Ra = 1.7×106 are compared with the 
values derived from the Hassan-Mohamed correlation based on 
their experimental results [2], as shown in Tables 2 and 3 for 
positive and negative inclination angles, respectively. 

Table 1 – Comparison of the present solutions for the average Nusselt 
number of a vertical plate and the data derived from the Churchill-Chu 
and Raithby-Hollands correlating equations 

Ra ϕ = 0°   Nu     
    Pr = 0.7 7 70 
102 Present 2.52 2.79 2.88 
 Churchill-Chu eqn [14] 2.30 2.62 2.74 
 Raithby-Hollands eqn [15] 2.81 3.14 3.28 
     

104 Present 5.88 6.68 7.05 
 Churchill-Chu eqn [14] 5.81 6.80 7.20 
 Raithby-Hollands eqn [15] 6.43 7.43 7.84 
     

106 Present 17.47 19.67 20.76 
 Churchill-Chu eqn [14] 16.92 20.04 21.30 
  Raithby-Hollands eqn [15] 17.55 20.67 21.93 

Table 2 – Comparison of the present solutions for the average Nusselt 
number of a positively inclined plate and the Hassan-Mohamed data  

Ra = 1.7×106, Pr = 0.7   Nuav       
  ϕ = +15° +30° +45° +60° 
Present 19.02 18.60 17.82 16.61 
Hassan-Mohamed eqn [2] 18.14 17.65 16.78 15.39 

Table 3 – Comparison of the present solutions for the average Nusselt 
number of a negatively inclined plate and the Hassan-Mohamed data  

Ra = 1.7×106, Pr = 0.7   Nuav       
  ϕ = −15° −30° −45° −60° 
Present 18.91 18.38 17.46 16.06 
Hassan-Mohamed eqn [2] 18.14 17.65 16.78 15.39 

It may be seen that the Churchill-Chu correlation at low and 
moderate Rayleigh numbers, as well as the Hassan-Mohamed 
correlation, underpredict slightly the present Nusselt numbers, 
while the Raithby-Hollands equation tends to overpredict them. 
However, this was expected, since, at the Rayleigh numbers 
considered, the Churchill-Chu and Hassan-Mohamed equations 
fall slightly below the experimental data upon which they were 
based, while the predictions of the Raithby-Hollands equation 
are somewhat higher than several literature experimental data.  

In addition, also the velocity distributions − not reported for 
the sake of brevity − have shown a substantially good degree of 
agreement with the experimental data by Kierkus [1] for tilting 
angles in the range between −45deg and +45deg. 
 
DISCUSSION OF THE RESULTS 

Numerical simulations are performed for different values of 
the Rayleigh number, Ra, in the range between 101 and 108, the 
inclination angle of the plate, ϕ, in the range between −75deg 
and +75deg (the heated side of the plate faces downwards or 
upwards according as the tilting angle is negative or positive), 
and the Prandtl number, Pr, in the range between 0.7 and 70.  
 
Heat transfer features 

A selection of local results is presented in Fig. 2, where a set 
of isotherm contours are plotted for Ra = 104 and Pr = 0.7, in 
order to highlight in what measure the tilting angle of the plate 
affects the heat transfer performance (the respective flow field 
plots are omitted for briefness).  

It is apparent how, for downward-facing plates, the effect of 
angle ϕ is to increase the thickness of the boundary layer at the 
leading edge of the plate; moreover, at large inclination angles, 
the boundary layer at the trailing edge of the plate becomes 
slightly thinner, being squeezed towards the plate surface by the 
buoyant action of the plume, that is evident at ϕ = −60deg and 
−75deg. In contrast, for upward-facing plates, the effect of the 
inclination angle ϕ is to thicken the tail end of the boundary 
layer, and to give the wall jet a tendency to separate from the 
surface, which is clearly evident at ϕ = +75deg. Of course, 
these effects have a direct influence on the local heat fluxes, as 
shown in Figs. 3 and 4, where the distributions of Nu along the 
plate for Ra = 104 and Pr = 0.7, are represented for plates facing 
downwards and upwards, respectively. 



    

 
 

 

       
    ϕ = −75deg      ϕ = −60deg      ϕ = −45deg 

                              
             ϕ = −30deg      ϕ = −15deg             ϕ = 0deg    ϕ = +15deg         ϕ = +30deg 
 

               
            ϕ = +45deg       ϕ = +60deg            ϕ = +75deg 
 

Figure 2 – Effects of the tilting angle: isotherm lines for Ra = 104, Pr = 0.7, and ϕ in the range from −75deg to +75deg 
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Figure 3 – Distributions of Nu along the plate for Ra = 104, Pr = 0.7 

and different negative tilting angles ϕ (downward-facing plates) 
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Figure 4 – Distributions of Nu along the plate for Ra = 104, Pr = 0.7 

and different positive tilting angles ϕ (upward-facing plates) 
 

   

Figure 5 – Effects of the Rayleigh number: isotherm lines for ϕ = −75deg, Pr = 0.7, and Ra = 102, 104, and 106 
 

     

Figure 6 – Effects of the Rayleigh number: isotherm lines for ϕ = +75deg, Pr = 0.7, and Ra = 102, 104, and 106 



    

    

Figure 7 – Effects of the Prandtl number: isotherm lines for ϕ = −75deg, Ra = 104, and Pr = 0.7, 7, and 70 

     

Figure 8 – Effects of the Prandtl number: isotherm lines for ϕ = +75deg, Ra = 104, and Pr = 0.7, 7, and 70 

 
The effects of the Rayleigh and Prandtl numbers are pointed 

out in Figs. 5−6 and 7−8, respectively, where sets of equispaced 
isotherm contours are plotted for ±75deg inclination angles and 
different values of Ra and Pr. The typical decrease in thickness 
of the boundary layer occurring as both Ra and Pr increase may 
be noticed; in addition, the buoyant plume shrinks and rotates − 
outwards with increasing Ra, and inwards with increasing Pr −,  
the latter effect being more noticeable for the downward-facing 
configuration. Furthermore, at large positive tilting angles (then 
for plates facing upwards), the root of the plume shifts towards 
the trailing edge of the plate as the Rayleigh number increases.  

 
Heat transfer correlations 

A correlation for the local heat transfer performance of the 
plate, with a functional structure derived from the expression 
originally proposed for vertical plates by Churchill and Usagi 
[16], has been developed in terms of Nux and Raxcosϕ, where 
the local Nusselt number Nux = qx / k(tp − t∞) is obtained from 
the local Nusselt number Nu defined in eq. (11) by replacing 
the length L of the plate with the distance x from the leading 
edge, while Rax is the local Rayleigh number based on x: 

( )[ ] ( ) 25.0
x259 169x cosRa

Pr/618.01

48.0Nu ϕ
+

=             (13) 

for −75deg ≤ ϕ ≤ 60deg, 102 ≤ Ra ≤ 106, 0.1 ≤ x / L ≤ 0.9 and 
0.7 ≤ Pr ≤ 70, with a 5.7% standard deviation of error, and a 
±10% range of error with a 90% level of confidence, as shown 
in Fig. 9 − where, for the sake of clarity, less than one-fourth of 
the data used for deriving eq. (13) is represented. 
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Figure 9 – Correlating equation for the local heat transfer 
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Figure 10 – Correlating equation for the overall heat transfer for 

tilting angles from −75deg to +60deg 

 
As far as the overall heat transfer performance of the plate 

is concerned, the following correlating equations are proposed: 

( )[ ] ( ) 25.0
259 169av cosRa

Pr/618.01

635.01Nu ϕ
+

+=             (14) 

for −75deg ≤ ϕ < 60deg, 5×101 ≤ Ra ≤ 108, and 0.7 ≤ Pr ≤ 70, 
with a 2.8% standard deviation of error and a ±7% range of 
error, as shown in Fig. 10;  
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⎧
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     (15) 

for 60deg ≤ ϕ ≤ 75deg, 103 ≤ Ra ≤ 108, and 0.7 ≤ Pr ≤ 70, with 
a 3.3% standard deviation of error, and a ±7% range of error 
with a 95% level of confidence, as shown in Fig. 11.  

 
CONCLUSIONS 

Steady laminar natural convection heat transfer from thin 
isothermal plates inclined with respect to the gravity vector, for 
both cases of heated side facing either upwards or downwards, 
has been studied numerically. Simulations have been executed 
for different values of the inclination angle of the plate in the 
range between −75deg and +75deg, the Rayleigh number in the 
range between 101 and 108, and the Prandtl number in the range 
between 0.7 and 70. 

The main effect of the inclination angle is the increase in 
thickness of the boundary layer at the leading or trailing edge of 
the plate according as the heated side of the plate faces either  
downwards or upwards. The effects of the Rayleigh and Prandtl 
numbers are the overall decrease in thickness of the boundary 
layer, and the shrinkage of the plume, as well as its rotation − 
outwards with increasing the Rayleigh number, inwards with 
increasing the Prandtl number. 
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Figure 11 – Correlating equation for the overall heat transfer for 

tilting angles from +60deg to +75deg 

 
Finally, dimensionless heat transfer correlating equations of 

the Churchill-Usagi type have also been developed for both the 
local and the overall heat transfer performance of the plate. 

However, due to the assumption of steady, two-dimensional 
laminar flow, the present paper should be regarded as a first-
stage paper on the subject, which deserves further investigation 
in order to take into account the influence of three-dimensional 
effects, e.g., unsteady longitudinal rolls, which in a 2D study 
are necessarily neglected.  

 
NOMENCLATURE 
d thickness of the plate 
g gravity vector  
g gravitational acceleration  
k thermal conductivity of the fluid 
L length of the plate 
Nu L-based local Nusselt number =  qL/k(tp − t∞) 
Nuav average Nusselt number = Q/k(tp − t∞) 
Nux x-based local Nusselt number = qx/k(tp − t∞) 
p dimensionless pressure 
Pr Prandtl number = ν/α  
Q heat transfer rate 
q heat flux 
Ra Rayleigh number = gβ(tp – t∞)L3Pr/ν2 
Rax local Rayleigh number = gβ(tp – t∞)x3Pr/ν2 
T dimensionless temperature 
t temperature 
U dimensionless X-wise velocity component 
V dimensionless Y-wise velocity component 
X dimensionless coordinate parallel to the plate 
x coordinate parallel to the plate 
Y dimensionless coordinate normal to the plate  
y coordinate normal to the plate 

Greek symbols 
α thermal diffusivity of the fluid 
β coefficient of volumetric thermal expansion of the fluid 



    

ϕ tilting angle of the plate with respect to gravity 
ν kinematic viscosity of the fluid 

ρ density of the fluid 

Subscripts 
p plate surface 
∞ undisturbed fluid 
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