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ABSTRACT 
The distributed mathematical model (nonstationary 1D and 

2D) of magnesium particle ignition is developed taking into 
account the heterogeneous chemical reaction, the domain of 
particle thermal influence to gas, and the realistic particle 
temperature after ignition.  Solvability of the corresponding 
mathematical problem in the stationary one-dimensional case in 
some kinds of symmetry has allowed one to expand 
classification of regular modes of heating, and also modes of 
extinction and ignition of a particle.  The numerical method for 
solving the considered class of boundary value problems of 
magnesium particles ignition is developed, and the 
mathematical model is verified by the experimental 
dependences of: ignition delay time on surrounding gas 
pressure and particle radius; limiting ignition gas temperature 
on surrounding gas pressure and particle radius.  The limiting 
size of a gas layer near a particle is found that determines an 
ignition mode in the frame of this realistic mathematical model. 

The work was supported financially by the Russian 
Foundation for Basic Research, Grant No 06–01–00299. 

 
INTRODUCTION 

The problem of physical and mathematical modelling of 
ignition and combustion of metal samples is of considerable 
interest for various branches of industry [1–4].  The work [3] 
mainly presented the pointwise and partially distributed models 
of the process of fine metal particles ignition, when the low-
temperature oxidation process occurred on the particle surface.  
The heat diffusion into the gaseous phase was not taken into 
account therein.  This means that the so-called “reduced film” 
has a negligibly small thickness.  It appears to be of interest to 
study the influence of the given factor on thermal history of the 
reacting particle. In the present work, the results obtained in [5] 
are extended for the case of a mathematical model enabling the 
obtaining of a realistic particle temperature after its ignition. 

This is due to the use of concepts on the deceleration of part of 
heterogeneous reactions occurring on the particle surface upon 
reaching some limiting temperature .  The influence of 
thermal field inhomogeneity on the heating and ignition of the 
magnesium particle is also investigated. 
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PHYSICAL AND MATHEMATICAL PROBLEM 
FORMULATION 
 
One-dimensional problem 

Consider the problem of ignition of magnesium samples 
covered by an oxide layer.  As such samples, a magnesium 
plate, a cylindrical thread, and a spherically symmetric particle 
were taken with typical sizes  μm surrounded by a 

gas layer with thickness 

15 60pr = ÷

pL − r

1T

.  Assume that an exothermal 
chemical reaction of oxidation occurs on the sample surface.  
The mathematical model describing the temperature fields of 
particle  and the ambient gas  then has the form 2T
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where ν  is the symmetry exponent equal to 0, 1, and 2 for the 
Cartesian, polar, and spherical coordinates, respectively, 

, , , 1, 2i i ic iρ λ =  are the densities, the thermal conductivities, 
and the specific heats of phases, the subscripts 1 and 2 refer to 
the parameters of gas and particle.  Equations (1) and (2) must 
satisfy the following initial conditions: 

( ) ( )2 10 :t T r T r 0T= = =     (3) 

    



and boundary conditions 
y Ly ( )2 1 10 : 0, : cr T r r L T r T T= ∂ ∂ = = λ ∂ ∂ = −α −1 , 

1 2 1 1 0 3 2 2: , . (4) pr r T T T r q dh dt T r= = λ ∂ ∂ + ρ = λ ∂ ∂
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 are the specific heat release per a unit 
oxide mass, the oxide density, the oxide film thickness, the rate 
of the oxide film thickness variation, the pre-exponent in the 
oxidation law, the activation energy of low-temperature 
oxidation, the universal gas constant, the heat transfer 
coefficient, the Nusselt number, and the temperature at the 
gaseous region boundary.  Functions  (model 1) 

or 
( )2,mf T T =

Lx x 

1

2mf T T T= T−  (model 2) describe the chemical 
reaction type.  The function h t  describes the temporal 
dependence of the oxide film thickness, and the oxidation 
problem (1), (2) must generally be posed as a free boundary 
problem.  The oxide film thickness, however, varies very 
weakly during the pre-ignition period, which enables a problem 
splitting so that it is possible to set a boundary condition 
describing the oxidation at the particle boundary. 
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Let us introduce the dimensionless variables and parameters 
by the formulas 
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Relations (1)–(4) then take the following form: 
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where ( )2,mf T T =1 (model 1) or ( )2 2,m mf T T T T= −  (model 
2).  The bars over the variables will be omitted in the following 
that is all the quantities of the mathematical model will be 
assumed to be dimensionless henceforth. 
 
Two-dimensional problem 

We consider in the following a two-phase medium 
consisting of magnesium particles of radius pr , pR =  

{ , }p pr x y r= − ≤ ≤

( )

, which lies in the rectangular gaseous 

region ( ) ( ){ , , , \ }g x x y y py L L L L R= ∈ − ∪ −R x  (Figure 1).  

In dimensionless variables, which are introduced similarly to 

the way described above, the temperature field of the system is 
described by the heat equation 

Figure 1 Gas — particle system 
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∂
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under the initial condition 

( ) ( )0, , 0 , , 0 ,T x y T x y=      (10) 

the heat exchange condition on the gaseous region boundary 
( ), gx y R∈∂  

( ) ( ) ( )( ), , , , , ,cT x y t T x y t T x y∇ = −α −   (11) 

and the boundary condition at the interface of phases 
( ), px y R∈∂  

( ) (0 2, expmT T q f T T E T+ −λ∇ = ∇ + − ).   (12) 

Here 1k =  in the particle region,  in the gas region, and 

the “+” and “–” signs mean the value at the interface on the 

particle and gas side, respectively. 

1k C=

STEADY APPROXIMATION 
We recall that, as was found previously in [3, 5] from the 

elementary catastrophe theory in the one-dimensional 
formulation, we have a nonlinear equation for the stationary 
temperature value  of the sample, which has two roots 2T
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for model 2.  The manifold of catastrophes/ignitions itself is 
determined by relations 
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for .  The given manifold represents an S-shaped curve in 
the  plane, where  is the sample temperature after the 
reaction termination, and has two turning points with 
coordinates , where the  values are calculated by 

formulas (15), (16) with the  value determined by relations 
(13) and (14).  This curve is universal for all three samples.  
The differences manifest themselves only at a passage to the 

 values.  The given manifold has three branches, which 
determine the types of thermal dynamics of the sample: at 

 the solution T T  and describes the regime of 

regular heating; at β ≤ , we have , which 
corresponds to an unstable heating regime; at 
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, and the solution gets on the branch of the manifold of 
ignitions, which corresponds to the phenomenological ignition 
criterion. 

2T T−≥

DISCUSSION OF COMPUTATIONAL RESULTS 
We will consider in the following only such a type of the 

particle thermal dynamics as ignition.  In this case, the 
determination of experimentally observed quantities: the 
ignition delay time and the limiting temperature of the sample 
ignition proves to be useful.  We now present the results of the 
computation of the one-dimensional problem by model 2 by the 
numerical method developed previously by the authors of [5]. 
 
Ignition delay time 

Let us go over to the analysis of the first experimentally 
observed parameter — the ignition delay time depending on the 
problem symmetry.  Figure 2 shows the graphs of the ignition 
delay time versus the sample reference size for all three 
symmetry kinds of samples for the dimensionless value L = 2. 

Each graph presents the curves for different values of the 
ambient gas temperature.  It is seen that the ignition delay time 
drops with reducing radius and increasing temperature of the 
ambient gas. 

These dependencies are interrupted at some points.  This 
points to the fact that the ignition will not occur for the given 
ambient gas temperature with reducing particle size.  And for 
this particle size, at which the graph interrupts, the gas 
temperature will be limiting.  It is also seen that the limiting 
temperature will grow with decreasing size.  This temperature 
growth will be explained below, where we consider the limiting 
ignition temperature. 
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 of the ambient gas at which the ignition is still 
pos

ntal data within the given range of 
particle sizes (15–90 μm). 

 

iting ignition temperature 
Let us go over to the description of the second 

experimentally observed parameter — the limiting ignition 
temperature depending on the particle radius variation.  The 
limiting ignition temperature is known to be the minimum 
temperature

sible.  
Figure 3 shows the limiting ignition temperature depending 

on the sample size.  The experimental dependence was taken 
from [6], where to determine the ignition temperature of 
spherical magnesium particles a Vycor tube contained in 
vertical Nichrome furnace was filled with dry air. Magnesium 
particles were dropped through a water-cooled inlet into the 
furnace and heated.  A comparison of computed and 
experimental data shows that the computed data describe 
satisfactorily the experime
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mperature than for large particles is needed for fine particles. 
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pre-exponent in the oxidati

 
Figure 4 shows the generalized characteristic in the form of 

the limiting ignition temperature dependence of the particle size 
for sizes from 15 to 600 μm and for all three sample kinds.  It is 

seen from this dependence that the limiting ignition 
temperature increases with reducing radius.  This is explained 
as follows.  The particle is heated fairly quickly up to the 
ambient gas temperature.  A further heating is due to a higher 
heat supply to the particle at the expense of chemical reaction 
as compared to the heat removal into the environment.  A 
reduction of the particles size leads to an increase in the heat-
transfer coefficient, which accelerates the particle heating at the 
initial stage and slows down at the final stage.  Accounting for 
an insignificant duration of the initial stage as compared to the 
entire heating time we obtain that a higher environmental
te
 

e ambient pressure influence 
It appears interesting to extend the region of the particle 

ignition description depending on model parameters versus the 
gas pressure.  Let the on law depend 
linearly on pressure: ( ) 0.0146 0.0774K P = + .  The limiting 

temperature was plotted for the function 

P⋅

( )K P  determined in 
this way versus the particle size for various ambient gas 
pre

 cause a reduction of the limiting ignition 
tem erature [7]. 

 

ssures (Figure 5). 
The computed limiting temperature can be seen to drop with 

increasing pressure.  At the ignition instant, the heat supply to 
the particle at the expense of chemical reaction must be close to 
the heat removal into the environment.  Since the particle 
temperature at the ignition instant depends weakly on the 
variation of medium parameters, the pressure increase leads to 
an increase in heat release at the expense of pre-flame chemical 
reactions, which
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o-dimensional problem 
The problem was solved in the two-dimensional 

formulation with the aid of the FlexPDE package [8].  For the 
assessment of results obtained with the aid of using the 
FlexPDE package the test computations were executed for 
comparison with the data of [5] obtained by the method 
developed on the basis of the Thomas algorithm in the one-
dimensional statement.  We assume to this end that the gaseous 

    



region gR  represents an annulus at the boundary of which the 
uniform heat exchange condition (11) is specified.  The task 
was solved by the method of [5] in the one-dimensional 
statement by virtue of its symmetry, and this task was solved 
with the aid of FlexPDE a two-dimensional task.  Table 1 
presents the ignition time ignt  versus the gaseous region size L, 
which was obtained by the T

as 

homas algorithm (columns 1–3) 
and y FlexPDE (column 4). 

 
 m

 b

ignt , s 
L 

M  M  odel 1 odel 2
2 20.9 21.6 18.4 21 
4 23.2 23.4 19.8 23.2 
6 24.6 24.8 21.2 24.55 
8 25.2 25.8 22 25.6 

10 25.6 22.7 26.4 26.5 
 

, 3, 4, and 5 were obta
 model 2 for 

Table 1 
 

The data presented in columns 2 ined 
by model 1 [5], by 57.09181 10− −β = ⋅ < β , by 

model 2 for −β = ⋅ < β , and by model 2, 
pectively.  
The ignition time is presented in T e particle 

 model 2  values 51.05600 10

51.05600 10−

res
able 2 versus th

radius by  for the −β = ⋅ , L = 2, 
1122cT =  K, and 1538T =  K.  Computation by the methoc d of 

[5] (columns 1 and 2) and by FlexPDE (columns 3 and 4). 
The ignition delay time increases with increasing particle 

radi And it drops at a fixed radius aus.  
p

nd increasing ambient 
tem erature, as this was to be expecte
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1122cT = K K K K 1538cT = 1122cT = 1538cT =

17 21.6 8.5 21 7.9 
20 29.9 11.78 29.2 1  1.2
30 67.4 26.5 66.8 26 
40 119.7 47.1 119.1 46.6 
50 187.1 73.6 186.7 73.2 
60 269.4 10 268.6 105.4 6 

 
Table 2 

 
The agreement in results on the ignition delay times 

obtained by computations using different models and different 
numerical procedures can be seen to be quite satisfactory: the 

ximum difference do ot exceed 2%. 
gas region 

ma es n
Let the gR  now represent a square with sides 

2x yL L= = , and the particle lies at the cente e region 

under considerati e particle of radius 17pr =  μm and 

the temperature 1122cT =  K at the gaseous region boundary, 

the ignition delay time of 21 ms was obtained by the 
computation using the one-dimensional model, whereas the 
time of 21.5 ms was obtained by the computation using the 
two-dimensional model (for the annular gas region surrounding 
the particle the temporal difference in the ignition delay time 
amounted to about 2%) and of 23.5 ms (for a square gas region 
surrounding the particle the temporal difference in the ignition 
delay time amounted to about 11%).  The gaseous region area 
increased by 25 %.  An increase in the ignition delay time when 
passing to a square region from an an

r of th

on.  F

nular one may physically 
be 

 the non-uniform heating case.  Let the 
boundary conditions at the gaseous region boundary have the 
following form: 

or th

explained by an increase in the ambient gas volume, which 
leads to the need in a longer heating. 

Now consider

( ) ( )( )
( ) ( )( )1, , , , , ,

, , , , , ,x x c yT L y t T L y t T L y L∇ ± = −α ± − − ≤ ≤
 

y

era

e
Fi

s 

um value (600, 400, and 200 K, 
spectively, in considered variants), and a regular heating 

regime takes place. 
 

y y c x xT x L t T x L t T L x L∇ ± = −α ± − − ≤ ≤

where the medium temp ture at vertical boundaries of the 
gaseous region took the values 1122, 1300, 1500cT =  K, and 
the temperature values 1cT  on horizontal boundaries of the 
gaseous region were chosen to be lower than the critical 
ignition temp rature crT , which in the case under consideration 
amounts to about 950 K [5]. ows the ignition delay 
time as the 1cT  value drop ies of the 
square gas region with 2x yL L= = .  As follows from 

presented data, with decreasing 1cT  values, an increase in the 
ignition delay time occurs, and no ignition occurs when 1cT  
reaches some minim
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 Let us introduce the concept of the averaged temperature of 
the gaseous region boundary av i ci i

i i
T S T S= ∑ ∑ , where ciT  

is the temperature value at the i-th boundary,  iS  is the area of 
the i-th boundary. As follows from the presented computations, 
the ignition condition is 875avT >  K in all three variants.  This 
value agrees with the accuracy of about 8 % with the value of 
the ignition critical temperature hucrT .

av

  T e aver
tem erature ignition criteri name

ll tak

matical nonstationary 1D- and 2D-models have been 
pro

rticle radius and the ambient gas pressure. 
In the case of a non-uniform heating of particles, it proved 

possible to substantiate the concept of the limiting temperature 
. 
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CONCLUSION  
To describe the thermal history of the magnesium particle 

surrounded by gaseous atmosphere the distributed 
mathe

posed, which account for the heterogeneous chemical 
reaction and the region of the particle thermal influence on the 
gas. 

These models were verified in terms of the ignition delay 
time versus the gas pressure and radius and the limiting 
temperature vs. the pa

of particle ignition
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