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Abstract We reflect on some theoretical aspects of gradient-only optimiza-
tion for the unconstrained optimization of objective functions containing non-
physical step or jump discontinuities. This kind of discontinuity arises when
the optimization problem is based on the solutions of systems of partial differ-
ential equations, in combination with variable discretization techniques (e.g.
remeshing in spatial domains, and / or variable time stepping in temporal
domains). These discontinuities, which may cause local minima, are artifacts
of the numerical strategies used and should not influence the solution to the
optimization problem. Although the discontinuities imply that the gradient
field is not defined everywhere, the gradient field associated with the compu-
tational scheme can nevertheless be computed everywhere; this field is denoted
the associated gradient field. We demonstrate that it is possible to overcome
attraction to the local minima if only associated gradient information is used.
Various gradient-only algorithmic options are discussed. A salient feature of
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our approach is that variable discretization strategies, so important in the nu-
merical solution of partial differential equations, can be combined with efficient
local optimization algorithms.

Keywords Step discontinuous · Gradient-only optimization · Unconstrained
optimization · Partial differential equations · Variable discretization strategies ·
Shape optimization

1 Introduction

In this study, we consider some theoretical aspects of gradient-only approaches
in unconstrained optimization. Here, gradient-only optimization algorithms re-
fer to optimization strategies that solely considers first order information of
a scalar (cost) objective function in computing update directions and update
step lengths. We are concerned with piecewise smooth step discontinuous ob-
jective functions that contain spurious (local) minima which manifest them-
selves in the form of step discontinuities. We consider optimization problems
that are defined by partial differential equations (PDEs) which are numerically
approximated using some discretization strategy, e.g. finite elements or finite
differences. However, we assume that the discretization strategies are not con-
stant; this is of crucial importance in many engineering applications, a single
example being the requirement for good mesh quality.

The resulting step discontinuous functions are non-differentiable and the
gradient field is not defined everywhere [16]. Strategies to allow for optimiza-
tion of discontinuous functions include smoothing of the discontinuous objec-
tive function [25], and more recently by decomposing a discontinuous function
into a smooth and non-smooth functions in the neighbourhood of a discontinu-
ity and then by using an active set approach [5]. To the best of our knowledge
current approaches to optimize discontinuous functions all act as minimizers,
using function values, whereas in this study we propose an alternative by solely
focusing on the first order information of discontinuous functions.

Herein, we propose to construct an associated gradient field with the partial
derivatives of the gradient vector given by one-sided directional derivatives or
partial derivatives when the function is non-differentiable respectively differ-
entiable along partial derivative directions. Such a constructed gradient field
follows from the computational scheme since every point has an associated
discretization for which (semi) analytical sensitivities [12] of the numerically
approximated optimization problem can be calculated. The only requirement
is that we use a constant discretization topology when computing the sensi-
tivities, i.e. we conduct a consistent sensitivity analysis [15]. We will refer to
such a gradient field as an associated gradient field. From a computational
perspective, an associated gradient field of a discontinuous function is defined
everywhere.

During optimization, the domain over which the (P)DEs are solved may
remain constant, but the discretization may still be required to change, to en-
sure convergence or efficiency of the solution. An example is integration over
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Fig. 1.1: (a) Plot depicting a piecewise smooth univariate step discontinu-
ous numerical or approximate objective function fN (x) of an underlying (un-
known) continuous analytical objective function fA(x) of an optimization
problem. We include a projected C0 objective function fC(x) which is con-
structed from fN (x) by removing all the discontinuities. Also indicated at
the discontinuities are the subgradients ∂f , that are defined if ∂f 6= Ø, but
not defined if ∂f = Ø. (b) Plot depicting the associated derivative of fN (x)
and derivative of fA(x). The derivative field f ′A(x) is, as indicated, defined
everywhere; likewise the associated derivative field for f ′AN (x) and f ′AC (x).

a fixed time domain using variable time steps. Alternatively, the design vari-
ables may describe the domain over which the (P)DEs are solved. A change in
design variables therefore changes the solution domain, which in turn requires
the discretization to change. An illustrative example is shape optimization.

We distinguish between two classes of discretization strategies. First, con-
stant discretization strategies continuously adjust some reference discretization
when the solution domains change (and generate a fixed discretization if the
solution domain remains constant). Secondly, variable discretization strate-
gies generate new independent discretizations irrespective of whether or not
the solution domain changes. Temporal (P)DEs may for example be solved
using fixed or variable time steps. For spatial PDEs, the equivalents are fixed
and mesh movement strategies versus remeshing. Fixed time steps and mesh
movement strategies however may imply serious difficulties, e.g. impaired con-
vergence rates and highly distorted grids and meshes, which may even result
in failure of the computational procedures used. The variable discretization
strategies are preferable by far.

Thus, a consequence of using variable discretization strategies while solv-
ing an optimization problem is that the resulting objective functions contain
discontinuities. Consider Figure 1.1(a), which depicts three functions that de-
scribe an optimization problem. The functions are an unknown analytical func-
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tion fA(x), a numerically computed approximate piecewise smooth step dis-
continuous objective function fN (x), and a projected C0 continuous objective
function constructed by removing the discontinuities from fN (x). All three
functions describe an (approximate) objective function to the same optimiza-
tion problem, in turn based on some system of partial differential equations.
Usually, fN (x) is the objective function used when searching for the solution
to the optimization problem, since fA(x) is unknown, and to construct fC(x)
from fN (x) would be computationally expensive. Accordingly, the optimum x∗

and the positive associated gradient projection point x∗g are based on fN (x).
Here, we refer to x∗g as a positive associated gradient projection point since

the associated directional derivatives in all directions around this point are
positive. For the sake of brevity however, we will simply refer to x∗g as a posi-
tive projection point, unless we specifically want to distinguish between types
of positive projection points. In addition, we indicate whether the subgradients
∂f at the discontinuities are defined (∂f 6= Ø) or not defined (∂f = Ø). Since
fN (x) is not convex, the subderivatives over parts of the piecewise smooth
sections of the functions are strictly speaking not defined, since a line (hy-
perplane for multidimensional functions) constructed from a subderivative is
required to support the epigraph of fN (x).

Gradient-only optimization solves an optimization problem by finding the
positive projection point x∗g, as opposed to mathematical programming which
aims to find the optimum x∗ to solve an optimization problem. It is impor-
tant to distinguish between x∗ and x∗g, since they may be distinctly different.
Whether the optimum x∗ or the positive projection point x∗g is a more suitable
solution to fN (x) will ultimately depend on which one best describes the opti-
mum of fA(x). In addition, a positive projection point allows for an alternative
formulation to an optimization problem than the minimization formulation
of mathematical programming, which may allow for easier and more flexible
formulations of an optimization problem. An important spatial example is
structural shape optimization in which fixed or mesh movement strategies are
almost always used; the very motivation for this being that remeshing strate-
gies cannot be used efficiently, due to the induced non-physical local minima
during optimization, e.g. see References [1,4,9,22]. However, we have shown
[23] that remeshing can be successfully handled by reformulating the solution
of the shape optimization problem to be a positive projection point instead of
the minimum.

An important observation is that the positive projection point in fN (x)
coincides with the minimum of fC(x), as is depicted in Figure 1.1. Essentially,
gradient-only optimization allows for the minimization of fC(x) directly from
fN (x).

For the sake of simplicity, we will in the following omit the subscripts of
fN (x) and fA(x), and merely refer to fN (x) as f(x), which is the function for
which we aim to find the positive projection point x∗g.

Let us first present two illustrative examples of non-physical step discon-
tinuities, to set the tone for our paper. The first is rather trivial, the second
not quite.
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1.1 Univariate example problem: Newton’s cooling law

Consider Newton’s law of cooling, which states that the rate of heat loss of a
body is proportional to the difference in temperature between a body and the
surroundings of that body, given by the linear first order DE:

dT

dt
= −κ(T (t)− Tenv), (1.1)

with the well known analytical solution

T (t) = Tenv + (Tinit − Tenv)e−κt. (1.2)

Here κ is a positive proportionality constant, T (t) the temperature of the
body at time t, Tinit its initial temperature, and Tenv the temperature of the
surroundings of the body.

We consider the temperature T (t) of a body after 1s, for 0.5 ≤ κ ≤ 2, with
T (0) = 100◦C at t = 0, and Tenv = 10◦C for all t. The analytical solution of the
temperature T (1) of the body is depicted in Figure 1.2(a) and the associated
derivative of T (1) w.r.t. κ is depicted in Figure 1.2(b).

Solving Eq. (1.1) for 0.5 ≤ κ ≤ 2 with a forward Euler method using a vari-
able time stepping strategy introduces step discontinuities in the temperature
response; this is shown in Figure 1.2(a). For the variable time step strategy
we decrease the time step whenever an allowed temperature increment is ex-
ceeded, otherwise we gradually increase the time step. The corresponding dis-
continuous derivatives are plotted in Figure 1.2(b). Again note that although
discontinuous, the associated derivatives are uniquely defined everywhere, and
can be computed.
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Fig. 1.2: Numerical and analytical solutions for Newton’s cooling law. (a) Tem-
perature T after 1 second for 0.5 ≤ κ ≤ 2, and (b) the corresponding associated
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1.2 Multivariate example problem: Shape optimization

Next, we consider a non-trivial benchmark problem in structural shape optimi-
zation, namely the so-called Michell structure [7] depicted in Figure 1.3(a). The
geometry is represented using 16 control variables with only vertical degrees
of freedom, and with piecewise linear interpolation between the control points.
The objective of this shape optimization problem is to minimize the sum of
the vertical displacement βuF at the point of load application and the normal-
ized volume V

V0
for a unit thickness structure with F = 1N, V0 = 150mm3 and

β = 1.

The displacement uF is computed using a linear elastic finite element
method with linear strain triangular elements (e.g. see [6]). For the material
properties we use Young’s modulus E = 200GPa and Poisson’s ratio ν = 0.3.
The meshes required for the finite element analyses are generated using a qua-
dratic convergent remeshing strategy [24] with ideal element length h0 = 1mm.
To illustrate the discontinuous nature of the objective function, the two control
variables x8 and x9 are perturbed around the reference configuration depicted
in Figure 1.3(a) over the range -1.0 through 1.0, using constant intervals of
0.05.

The resulting objective function values are shown in Figure 1.3(b). The
step discontinuities due to remeshing are clearly evident; they result since
the number of nodes, and the nodal connectivity, changes. This is evident
from Figure 1.3(b): a small decrease in x9 results in 3 elements (top insert in
Figure 1.3(b)) as opposed to 4 elements (bottom insert Figure 1.3(b)) on the
rightmost edge of the structure.
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1.3 Introductory comments

Clearly, the introduced non-physical discontinuities cannot be accommodated
in optimization methods developed for C0 or C1 continuous objective func-
tions. However, again note that the associated gradients of the piecewise smo-
oth step-discontinuous functions considered in this study are uniquely defined
everywhere. Consider the positive projection point x∗g that occurs over a dis-
continuity as depicted by fN (x) in Figure 1.1, with a piecewise smooth part
to the left and a piecewise smooth part to the right of x∗g. Both the left and
the right hand limits represent approximations to the analytical value of the
objective function; the left and right hand limits differ only as a result of the
discretization technique used, and these values approach each other in the limit
of mesh refinement anyway. Hence, the value of the objective function being
reported is not unique.

In this study, we consider the unconstrained optimization of objective func-
tions containing non-physical step or jump discontinuities with accurate gra-
dients that are everywhere defined. For the sake of brevity, we restrict our
efforts to finding positive projective points (but the equivalents for negative
projection points are clear). Our paper is organized as follows: we present def-
initions for optimality that are solely based on the gradient of a function in
Section 2. In Section 3, we introduce the gradient-only optimization problem
and in Appendix A we offer proofs of convergence of descent sequences defined
in the previous section. We give practical considerations regarding gradient-
only optimization algorithms in Section 4, and present a brief comparative
discussion of classical mathematical programming and gradient-only optimi-
zation in Section 5. In Section 6 we present a shape optimization problem of
practical importance, and a number of analytical test functions. Concluding
remarks then follow.

2 Definitions

Not all step discontinuities are necessarily problematic for classical optimiza-
tion, and we distinguish between two step discontinuity types, namely those
that are inconsistent with the function trend, and those that are consistent
with the function trend, as shown in Figure 2.1. (All other discontinuities may
be taken to be representable of either a local minimum or a local maximum.)
To represent semi-continuity of f we introduce a double empty/filled circle
convention as depicted in Figure 2.1(a), where a filled circle indicates F (λ0).
Upper semi-continuity is represented by the filled/empty circle pair indicated
by 1’s in Figure 2.1(a) i.e. the filled/empty circles lie above f . Lower semi-
continuity in turn is represented by the empty/filled circle pair indicated by
2’s, i.e. the empty/filled circles lie below f , in Figure 2.1(a).

Figure 2.1(a) depicts an inconsistent step discontinuity; the function de-
creases as λ increases, but the step discontinuity results in an increase of the
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Fig. 2.1: Upper and lower semi-continuous univariate functions with (a) an
inconsistent step discontinuity, and (b) a consistent step discontinuity.

function over the step discontinuity. Similarly, Figure 2.1(b) depicts a consis-
tent step discontinuity.

The functions we consider in this study are step-discontinuous and there-
fore not everywhere differentiable. However, computationally the derivatives
and gradients are everywhere computable since the analysis is per se restricted
to the part of the objective function before, or after a discontinuity. We there-
fore define an associated derivative f ′A(x) and associated gradient ∇Af(x)
which follows computationally when the sensitivity analysis is consistent [15].
Firstly, we define the associated derivative

Definition 2.1 Let f : X ⊂ R → R be a piecewise smooth real univariate
step-discontinuous function that is everywhere defined. The associated deri-
vative f ′A(x) for f(x) at a point x is given by the derivative of f(x) at x
when f(x) is differentiable at x. The associated derivative f ′A for f(x) non-
differentiable at x, is given by the left-sided derivative of f(x) when x is
associated with the piecewise continuous section of the function to the left of
the discontinuity, otherwise it is given by the right-sided derivative.

Secondly, the associated gradient is defined as follows:

Definition 2.2 Let f : X ⊂ Rn → R be a piecewise continuous function
that is everywhere defined. The associated gradient ∇Af(x) for f(x) at a
point x is given by the gradient of f(x) at x when f(x) is differentiable at
x. The associated gradient ∇Af(x) for f(x) non-differentiable at x is defined
as the vector of partial derivatives with each partial derivative an associated
derivative (see Definition 2.1).

It follows from Definitions 2.1 and 2.2 that the associated gradient reduces
to the gradient of a function that is everywhere differentiable.

We now proceed to develop a self-contained theoretical framework for
gradient-only optimization; what follows is a rather straightforward extension
of classical concepts.
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Definition 2.3 Let f : (a, b) ⊂ R→ R be a real univariate function that is not
necessarily continuous in both function value f(λ) and associated derivative
f ′A(λ) but for which f(λ) and f ′A(λ) are uniquely defined for every λ ∈ (a, b).
Then, f(λ) is said to have a (resp., strictly) negative associated derivative on
(a, b) if f ′A(λ) (resp., <) ≤ 0, ∀ λ ∈ (a, b), e.g. see Figure 2.1. Conversely,
f(λ) is said to have a (resp., strictly) positive associated derivative on (a, b) if
f ′A(λ) (resp., >) ≥ 0, ∀ λ ∈ (a, b).

Next, we define lower and upper semi-continuity of the associated gradient .

Definition 2.4 Let f : X ⊂ Rn → R be a real valued function with an
associated gradient field ∇Af(x) that is uniquely defined for every x ∈ X.

– Then the associated directional derivative along a normalized direction
u ∈ Rn is lower semi-continuous at y ∈ X if

∇ATf(y)u ≤ lim inf
λ→0±

∇ATf(y + λu)u, λ ∈ R.

– The associated directional derivative along a normalized direction u ∈ Rn
is upper semi-continuous at y ∈ X if

∇ATf(y)u ≥ lim sup
λ→0±

∇ATf(y + λu)u, λ ∈ R.

– The associated directional derivative along a normalized direction u ∈ Rn is
pseudo-continuous at y ∈ Rn if it is both upper and lower semi-continuous
at y.

We note that a univariate function f(λ) may be step-discontinuous at a
point λ̄ ∈ (a, b), but the associated derivative may still be pseudo-continuous
at λ̄, e.g. the function

f(λ) =

{
λ2, λ < −1
λ2 − 2, λ ≥ −1

,

is not pseudo-continuous at λ̄ = 1. However, the associated derivative

f ′A(λ) =

{
2λ, λ < −1
2λ, λ ≥ −1

,

is pseudo-continuous at λ̄ = −1, where we defined the associated derivative at
λ̄ = −1 by the right-hand limit.

3 Gradient-only optimization problem

We now present the general unconstrained gradient-only optimization problem
that is equivalent to the classical minimization problem for smooth convex cost
functions [18].
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Problem 3.1 Given a real-valued function f : X ⊂ Rn → R, find a non-
negative associated gradient projection point x∗g ∈ X such that for every
u ∈ {y ∈ Rn / ‖y‖ = 1} there exists a real number ru > 0, and the following
holds:

∇ATf(x∗g + λu)u ≥ 0 ∀ λ ∈ (0, ru].

Accordingly, we define non-negative generalized associated gradient projec-
tion point that characterizes a minimum according to the associated gradient
field of a scalar function, be it local or global, as follows:

Definition 3.2 Suppose that f : X ⊂ Rn → R is a real-valued function
for which the associated gradient field ∇Af(x) is uniquely defined for every
x ∈ X.

Then, a point x∗g ∈ X is a generalized non-negative associated gradient
projection point (G-NN-GPP) if there exists a real number ru > 0 for every
u ∈ {y ∈ Rn / ‖y‖ = 1} such that

∇ATf(x∗g + λu)u ≥ 0, ∀ λ ∈ (0, ru].

A special case of Problem 3.1 is given below which we refer to as the strict
unconstrained gradient-only optimization problem.

Problem 3.3 Given a real-valued function f : X ⊂ Rn → R, find a x∗g ∈ X
such that for every u ∈ {y ∈ Rn / ‖y‖ = 1} there exists a real number ru > 0,
and the following holds:

∇ATf(x∗g + λu)u > 0 ∀ λ ∈ (0, ru].

Accordingly, we define a strict non-negative associated gradient projection
point to imply a minimum according to the associated gradient field of a scalar
function, be it local or global, as follows:

Definition 3.4 Suppose that f : X ⊂ Rn → R is a real-valued function
for which the associated gradient field ∇Af(x) is uniquely defined for every
x ∈ X.

Then, a point x∗g ∈ X is a strict non-negative associated gradient projection
point (S-NN-GPP) if there exists a real number ru > 0 for every u ∈ {y ∈
Rn / ‖y‖ = 1} such that

∇ATf(x∗g + λu)u > 0, ∀ λ ∈ (0, ru].

It follows that the strict unconstrained gradient-only optimization problem
is included in the generalized unconstrained gradient-only optimization prob-
lem. Note that our definition of a G-NN-GPP is consistent with the classical
mathematical programming definition of a minimum for smooth functions.
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Fig. 3.1: An illustration of (a) the function value and (b) the corresponding
associated derivative that is either upper or lower semi-continuous, with a
step-discontinuous gradient projection point (GPP) in ∈ (d, e).

3.1 Discontinuous gradient projection points (GPP)

Our newly introduced definitions for a non-negative associated gradient projec-
tion point (NN-GPP) or a non-positive associated gradient projection point
(NP-GPP) of a function only require that the associated gradient field be
uniquely defined everywhere; no assumptions regarding the continuity of the
function are required. Hereafter associated gradient projection point (GPP) or
associated gradient projection set (GPS) is used to imply either a non-negative
or non-positive associated gradient projection (point / set). We therefore omit
the conventional inclusion of a saddle (point / set). In addition the function
may be discontinuous at a GPP. We first consider discontinuous GPPs for uni-
variate functions and then for multivariate functions. An example of a function
with a discontinuous NN-GPP is the absolute value function with the asso-
ciated derivative at the minimum point λ∗ defined by either the left or right
limit as depicted in Figure 3.1, as opposed to the conventional undefined deri-
vative at λ∗. The associated derivative at λ∗ is therefore either upper or lower
semi-continuous as indicated by the double empty/filled notation.

Proposition 3.5 Let f : [d, e] ⊂ R → R be a real univariate function that
is not necessarily continuous in both function value f(λ) and associated de-
rivative f ′A(λ) but for which f(λ) and f ′A(λ) are uniquely defined for ev-
ery λ ∈ [d, e]. In addition, let f ′A(λ) be step-discontinuous (upper or lower
associated derivative semi-continuous) at a gradient projection point (GPP)
λ∗ ∈ (d, e) according to Definition (resp. 3.2 / 3.4). Let λ∗L be the left limit
and λ∗R the right limit of λ∗.

Then in addition to the GPP λ∗, either λ∗L is a GPP if

lim
λ→λ∗−

f ′A(λ) 6= f ′A(λ∗),
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or λ∗R is a GPP if

lim
λ→λ∗+

f ′A(λ) 6= f ′A(λ∗).

Proof This is immediate from Definition 3.2.

For multivariate functions we can state a similar proposition.

Proposition 3.6 Let f : X ⊂ Rn → R be a real valued function with as-
sociated gradient field ∇Af(x) that is uniquely defined for every x ∈ X. In
addition let ∇Af(x) be step-discontinuous at a GPP x∗g ∈ X according to
Definition 3.2. Then y = limz→x∗g

z with z ∈ X is also a GPP if

Proof This is immediate from Proposition 3.5.

We now introduce a gradient projection set (GPS) to accommodate all the
gradient projection points (GPPs) in the compact neighbourhood of a GPP
x∗g.

Definition 3.7 Let f : X ⊂ Rn → R be a real valued function with associated
gradient field ∇Af(x) that is uniquely defined for every x ∈ X. In addition
let x∗g ∈ X be a GPP according to Definition 3.2.

We define the set S as follows:

S =

{
x∗g,y : lim

y→x∗g
∇Af(y) 6= ∇Af(x∗g), ∀ y ∈ Rn

}
The set S is then a GPS of x∗g if every x ∈ S is a GPP according to Defini-
tion 3.2.

It is straightforward to show that our definition of a GPS reduces to a
singleton ∇f(x∗g) = 0 for smooth functions, being consistent with the mathe-
matical programming definition of a minimum point.

3.2 Derivative descent sequences

Having defined GPPs and GPSs solely based on the associated gradient field
of a function, we proceed to define descent sequences that only consider the
associated gradient field of a function.

Definition 3.8 For a given sequence {x{k} ∈ X ⊂ Rn : k ∈ P} suppose
∇Af(x{k}) 6= 0 for some k and x{k} /∈ S with S defined in Definition 3.7.
Then the sequence {x{k}} is an associated derivative descent sequence for
f : X → R, if an associated sequence {u{k} ∈ Rn : k ∈ P} may be generated
such that if u{k} is a descent direction from the set of all possible descent
directions at x{k}, i.e. ∇ATf(x{k})u{k} < 0 then

∇ATf(x{k+1})u{k} < 0, for x{k} 6= x{k+1} (3.1)
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We also include the definition of a stricter class of associated derivative
descent sequences which we require for convergence proofs of multimodal func-
tions of dimension two and higher in order to exclude oscillating sequences.
Oscillating sequences may occur when the sequence defined in Definition 3.8
is considered.

Definition 3.9 For a given sequence {x{k} ∈ X ⊂ Rn : k ∈ P} suppose
∇Af(x{k}) 6= 0 for some k and x{k} /∈ S with S defined in Definition 3.7. Then
the sequence {x{k}} is a conservative associated derivative descent sequence
for f : X → R, if an associated sequence {u{k} ∈ Rn : k ∈ P} may be
generated such that if u{k} is a descent direction from the set of all possible
descent directions at x{k} then

∇ATf
(
x{k} + λ(x{k+1} − x{k})

)
u{k} < 0,∀ λ ∈ [0, 1] for x{k} 6= x{k+1}.

(3.2)

We offer convergence proofs for univariate and multidimensional derivative
descent sequences in Appendix A.

4 Practical algorithmic considerations

We now consider some practical algorithmic implications of the foregoing, rely-
ing in particular on the new definitions for a GPP presented in Definition 3.2.

We aim to give a fairly general outline for modifying classical gradient based
optimization algorithms to become gradient-only optimization algorithms; of-
ten this merely requires subtle modifications to conventional gradient based
algorithms. We consider two classes of optimization algorithms, namely line
search descent methods, and approximation methods; both are prevalent in
practical optimization. In addition, we also consider the non-smooth gradient-
only r-algorithm for optimization of C0 continuous functions by Shor [16].

4.1 Line search descent methods

Line search methods are generally present in first order methods (e.g. steep-
est descent and conjugate gradient methods), and second order methods (e.g.
modified Newton methods like Davidon-Fletcher-Powell (DFP) and Broyden-
Fletcher-Goldfarb-Shanno (BFGS)) [18]. In any event, for a given iteration
k, the current position is given by x{k−1}, k = 1, 2, 3, . . . and search direc-
tion u{k} at x{k−1}. In general, line search methods use function value and
directional derivative information to predict an update step along the search
direction u{k}. In formulating a rudimentary gradient-only algorithm, the line
search simply needs to be modified to consider only the directional derivative
along the search direction u{k}. In this study we consider two inexact line
search algorithms.



14 D. N. Wilke et al.

Firstly, we consider the zoom algorithm [11] to satisfy the strong Wolfe
conditions which requires that the following two conditions are satisfied: the
sufficient decrease condition given by

f(x{k} + λ{k}u{k}) ≤ f(x{k}) + c1λ
{k}∇Tf(x{k})u{k}, (4.1)

and the curvature condition given by

|∇Tf(x{k} + λ{k}u{k})u{k}| ≤ c2|∇Tf(x{k})u{k}|, (4.2)

with the parameters satisfying 0 < c1 < c2 < 1. Clearly, (4.1) uses both func-
tion values and directional derivatives whereas (4.2) only requires directional
derivatives. The algorithm is outlined in [11] (Algorithm 3.5) which we re-
fer to as BFGS(f) to signify the use of both function values and directional
derivatives.

Secondly, we consider a line search that considers only directional deriva-
tives. We start with some maximum step length λmax and stop when either
(4.2) or

∇Tf(x{k} + λ{k}u{k})u{k} ≤ 0 (4.3)

is satisfied. Otherwise, we half the step and continue. We refer to this gradient-
only BFGS algorithm as BFGS(g). A discussion on gradient-only exact line
searches is presented in [23] and gradient-only interpolation methods presented
in [17].

4.1.1 Algorithmic implementation

We now consider the algorithmic implementation of the second-order line
search BFGS method to solve unconstrained gradient-only optimization prob-
lems. Given an initial point x{0}, the BFGS implementation proceeds as fol-
lows:

1. Initialization: Select real constants ε > 0, c1 > 0 and c2 > 0. Select
integer constants kmax and lmax. Set G{0} = I initially then update

G{0} = (y{1})Tv{1}

(y{1})Ty{1}
I after first step. Set k := 0 and l := 0.

2. Gradient evaluation: Compute ∇f(x{k}).

3. Update the search direction u{k+1} = −G{k}∇f(x{k}).
4. Initiate an inner loop to conduct line search: Find λ{k+1} using

either the function value or gradient-only line search strategy described in
Section 4.1 with l := l + 1, counting the number of required iterations.

5. Test for re-initialization of G{k}: if |∇
Tf(x{k})∇f(x{k−1})|
‖∇f(x{k−1})‖ < 0.1 then

G{k} = I else

G{k} = G{k−1} +

[
1 +

(y{k})TG{k−1}y{k}

(v{k})Ty{k}

] [
v{k}(v{k})T

(v{k})Ty{k}

]

−

[
v{k}(y{k})TG{k−1} + G{k−1}y{k}(v{k})T

(v{k})Ty{k}

]
,
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with v{k} = λ{k}u{k} and y{k} =
(
∇f(x{k})−∇f(x{k−1})

)
.

6. Move to the new iterate: Set x{k+1} := x{k} + λ{k+1}u{k+1}.
7. Convergence test: if ‖x{k+1} − x{k}‖ ≤ ε OR k = kmax, stop.
8. Initiate an additional outer loop: Set k := k + 1 and goto Step 2.

4.2 R-algorithm

In addition, we present results obtained with the r-algorithm developed by
Shor [16] for the minimization of C0 functions. The r-algorithm is a gradient-
only optimization algorithm that keeps track of the minimum function value
obtained along the search path. Hence, this algorithm converges to positive
projection points x∗g but only reports x∗g as the optimum if the function value
at x∗g coincides with the minimum function value obtained thus far by the
algorithm. The only modification required to make this algorithm completely
gradient-only is to report the solution of x∗g instead of the minimum function
value obtained along the search path.

We use the ralg implementation of the r-algorithm provided in the OpenOpt
software library [10], which we denote by R-ALG.

4.3 Approximation methods

Approximation methods can also be formulated using only gradient informa-
tion, e.g. see Groenwold et al. [8].

Let us consider approximation functions f̃ that use the second order Taylor
series expansion of a function f around some current iterate x{k}, given by

f̃{k}(x) = f(x{k}) +∇ATf(x{k})(x− x{k})

+
1

2
(x− x{k})TH{k}(x− x{k}), k = 0, 1, 2, . . . (4.4)

where superscript k represents an iteration number, f̃ the second order Taylor
series approximation to f , ∇A the associated gradient operator and H{k}

the Hessian. f(x{k}) and ∇Af(x{k}) respectively represent the function value
and associated gradient vector at the current iterate x{k}. Generally speaking,
approximation methods use only function value information in constructing
H{k} (due to the excessive computational effort associated with evaluating

and storing H{k} in the first place).
Consider for example a diagonal spherical quadratic approximation, with

H{k} = c{k}I. The unknown c{k} can be obtained by enforcing f̃{k}(x{k−1}) =
f(x{k−1}), which results in

f(x{k−1}) = f(x{k}) +∇ATf(x{k})(x{k−1} − x{k})

+
c{k}

2
(x{k−1} − x{k})T(x{k−1} − x{k}), (4.5)
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e.g. see Snyman and Hay [20]. The scalar c{k} is then obtained as

c{k} = 2
f(x{k−1})− f(x{k})

(x{k−1} − x{k})T(x{k−1} − x{k})

− 2
∇ATf(x{k})(x{k−1} − x{k})

(x{k−1} − x{k})T(x{k−1} − x{k})
. (4.6)

Approximations solely based on gradient information may be constructed
by taking the derivative of (4.4), which gives

∇f̃{k}(x) = ∇Af(x{k}) + H{k}(x− x{k}), k = 0, 1, 2, . . . (4.7)

Note that at x = x{k}, the associated gradient of the function f(x) exactly
matches the gradient of the approximation function f̃(x). We write gradient
instead of associated gradient of the approximation function to emphasize
the differentiability of the approximation function. The Hessian H{k} of the
approximation f̃ is chosen to match some additional condition. Let us again
consider a spherical quadratic approximation, with H{k} = c{k}I. Then, c{k}

may be obtained by matching the gradient vectors at x{k−1}. Since only a
single free parameter c{k} is available, the n components of the respective
gradient vectors can (for example) be matched in a least square sense.

The least squares error is given by

E{k} = (∇f̃{k}(x{k−1})−∇Af(x{k−1}))T(∇f̃{k}(x{k−1})−∇Af(x{k−1})).
(4.8)

After substitution of ∇Af̃{k}(x{k−1}) = ∇Af(x{k}) + c{k}(x{k−1} − x{k}),
we have

E{k} =(∇Af(x{k}) + c{k}(x{k−1} − x{k})−∇Af(x{k−1}))T

(∇Af(x{k}) + c{k}(x{k−1} − x{k})−∇Af(x{k−1})). (4.9)

Minimization of the least squares error E{k} w.r.t. c{k} then gives

dE{k}

dc{k}
= (∇Af(x{k})+c{k}(x{k−1}−x{k})−∇Af(x{k−1}))T(x{k−1}−x{k})

+ (x{k−1}−x{k})T(∇Af(x{k}) + c{k}(x{k−1}−x{k})−∇Af(x{k−1})) = 0,
(4.10)

hence

c{k} =
(x{k−1} − x{k})T(∇Af(x{k−1})−∇Af(x{k}))

(x{k−1} − x{k})T(x{k−1} − x{k})
. (4.11)

If the approximation is required to be strictly convex, we can enforce c{k} =
max(β, c{k}), with β > 0 small and prescribed.

Since the sequential approximate subproblems are smooth, they may be
solved analytically; the minimizer (or gradient projection point) of subproblem
k follows from setting (4.7) equal to 0 [19], to give

x{k∗} = x{k} − ∇Af(x{k})

c{k}
. (4.12)
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4.4 Conservative approximations

Global convergence of sequential approximation methods may for example be
affected through the notion of conservatism. Classical conservatism is based
solely on function values, for which Svanberg [21] demonstrated that an ap-
proximation sequence k = 1, 2, · · · will terminate at the global minimizer
x∗ ↔ f∗, if each kth approximation f̃(x{k∗}) is conservative, i.e. if

f̃(x{k∗}) ≥ f(x{k∗}) ∀ k. (4.13)

A mechanism similar to conservatism may also be affected using only associ-
ated gradient information; we will simply refer to this as conservatism, albeit
that the description is possibly not completely apt. At iterate x{k∗}, the up-
date is given by x{k∗} − x{k}, and conservatism is affected if the projection
of the associated gradient ∇Af(x{k∗}) of the actual function f(x) onto the
update direction x{k∗} − x{k} is negative. For univariate functions, an up-
date is conservative if it is an associated derivative descent update step (see
Definition 3.8). For multivariate functions an update is conservative if it is a
conservative associated derivative descent update step (see Definition 3.9), i.e.
if

∇ATf(x{k∗})(x{k∗} − x{k}) < 0. (4.14)

Hence, enforcement of the conditions given by Definition 3.8 or 3.9 suf-
fices to ensure a sequence of derivative descent sequences for which proofs
of convergence are offered in Appendix A. To allow for update steps that are
computable we employ a trust region strategy where we limit ‖x∗−x{k}‖ ≤ γ.

4.4.1 Algorithmic implementation

Given an initial point x{0}, a {gradient-only}/classical conservative algorithm
based on convex separable spherical quadratic approximations (SSA) for un-
constrained gradient-only optimization problems proceeds as follows:

1. Initialization: Select real constants ε > 0, α > 1 and initial curvature
c{0} > 0. Set k := 0, l := 0.

2. Gradient evaluation: Compute {∇Af(x{k})}/f(x{k}) and ∇Af(x{k}).
3. Approximate optimization: Construct local approximate subproblem
{(4.7)}/(4.4) at x{k}, using {(4.11)}/(4.6) unless inside an inner loop then
use c{k} as calculated in Step 7(b). Solve this subproblem analytically, to
arrive at x{k∗}.

4. Trust region: If the ‖x∗ − x{k}‖ > γ then x∗ = −γ ∇Af(x
{k∗})

‖∇Af(x{k∗})‖
and

c{k} = ‖∇Af(x
{k∗})‖

γ .

5. Evaluation: Compute {∇Af(x{k∗})}/f(x{k∗}).
6. Test if x{k∗} is acceptable: if {(4.14)}/(4.13) is satisfied, goto Step 8.
7. Initiate an inner loop to effect conservatism:

(a) Set l := l + 1.
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Fig. 5.1: Plots depicting (a)-(d) the function values, and (e)-(h) the correspond-
ing derivatives of four instances of step-discontinuous univariate functions.

(b) Set c{k} := αc{k}.
(c) Goto Step 3.

8. Move to the new iterate: Set x{k+1} := x{k∗}.
9. Convergence test: if ‖x{k+1} − x{k}‖ ≤ ε, OR k = kmax, stop.

10. Initiate an additional outer loop: Set k := k + 1 and goto Step 2.

4.5 Termination criteria

Termination criteria also need some consideration: if the function values and
associated gradients of an objective or cost function contain step discontinu-
ities, these quantities may not provide robust termination information. Ac-
cordingly, we only advocate the robust termination criterion

‖∆x{k+1}‖ = ‖x{k+1} − x{k}‖ < ε, (4.15)

with ε small, positive and prescribed. (A maximum number of iterations may
of course also be prescribed, but this is not robust.)

5 Mathematical programming vs. gradient-only optimization

We now briefly reflect on some differences between gradient-only optimization
and classical ‘mathematical programming’. Consider the step discontinuities
depicted in Figure 5.1.

In classical mathematical programming, the inconsistent step discontinuity
depicted in Figure 5.1(a) result in a local minimum, whereas the function with
the consistent step discontinuity depicted in Figure 5.1(b) is monotonically
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Fig. 5.2: Plots depicting a step discontinuous objective function with a (a) dis-
tinct minimizer x∗ and gradient projection point (GPP) x∗g and (b) coinciding
minimizer x∗ and GPP x∗g.

decreasing. The step discontinuities depicted in Figures 5.1(c)-(d) again result
in local minima.

In gradient-only optimization, the inconsistent step discontinuity in Fig-
ure 5.1(a) is derivative negative, as is the consistent step discontinuity depicted
in Figure 5.1(b). The step discontinuities depicted in Figures 5.1(c)-(d) repre-
sent gradient projection points.

Consider the objective functions depicted in Figure 5.2 (b). Clearly, classi-
cal optimization approaches may get stuck in local minima caused by inconsis-
tent step discontinuities, whereas gradient-only optimization approaches will
not. Hence, gradient-only optimization allows for a robust strategy to avoid in-
consistent step discontinuities when the minimizer x∗ of an objective function
coincides with a gradient projection point (GPP) x∗g as shown in Figure 5.2 (b).

However, gradient-only approaches will ignore a global minimizer x∗f of an
objective function that occurs over an inconsistent step discontinuity as de-
picted in Figure 5.2 (a) and converge to a GPP x∗g. It is important to note that
gradient-only approaches used to minimize functions e.g. Shor’s r-algorithm
[16] will report the lowest function value evaluated along the search path but
will converge to a positive projection point x∗g. For example in Figure 5.2 (a)
the reported optimum by such methods will depend on the initial starting
point whereas the point of convergence will be consistently the gradient pro-
jection point x∗g irrespective of the starting point. Whether, x∗ or x∗g is to
be considered will depend on which point best describes or approximates the
solution to the optimization problem.

Although no formal estimates of efficiency for the gradient-only optimi-
zation algorithms are attempted in this study. We note that the efficiency of
gradient-only optimization algorithms will be similar to their classical gradient
based counterparts provided that the gradient computation is efficient.
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Table 6.1: Algorithmic settings used in the numerical experiment.

ε c1 c2 α γ β kmax lmax

10−5 10−4 0.9 10−3 2 2 3000 3000

Table 6.2: Tabulated results obtained for the unconstrained Michell-like struc-
ture.

Algorithm f(x{Nk}) ‖∇f(x{Nk})‖ ‖∆x{Nk}‖ Nk Nl

BFGS(f) 5.263E-01 1.49E-03 2.404E-07 49 92
BFGS(g) 5.260E-01 1.66E-03 6.599E-06 61 69

R-ALG(g)† 5.211E-01 1.49E-03 8.83E-03 104 114
SSA(f) 5.805E-01 1.37E-2 6.692E-06 18 66
SSA(g) 5.269E-01 1.62E-03 8.233E-06 75 203

† The r-algorithm was unable to converge solely on the update termination criteria. In
addition we allowed a convergence criteria based on the gradient norm being less than 10−6.

6 Numerical study

We start our numerical study with a practical shape optimization problem
using a remeshing strategy that results in a discontinuous objective function,
additional problems are presented in [23]. We then proceed with a set of dis-
continuous test functions aimed to “mimic” non-physical discontinuities in
functions. The advantage of introducing a set of test problems is that they
are easily implemented which allows for focused research on algorithm devel-
opment and testing, without requiring access to a variable discretization PDE
solver. The disadvantage of test problems in turn is that only part of the
complexity of PDE based objective functions is captured.

The algorithmic settings used in the numerical study are presented in Ta-
ble 6.1 for the algorithms outlined in Sections 4.1.1. The settings for the strong
Wolfe condition (c1 and c2) are recommended when using the BFGS algorithm
[11].

6.1 Shape optimization

We now consider the isotropic shape optimization problem outlined in Sec-
tion 1.2. The results for the BFGS(f), BFGS(g), SSA(f) and SSA(g) algorithms
are summarized in Table 6.2 with the respective final designs depicted in Fig-
ures 6.1 (a)-(e). Recall that the (f) postfix indicates classical function-value
based algorithms, whereas the (g) postfix indicates gradient-only optimization
algorithms. Presented in Table 6.2 are the function value f(x{Nk}), gradient
norm ‖∇f(x{Nk})‖, convergence tolerance ‖∆x{Nk}‖, number of outer itera-
tions Nk as well as the number of inner iterations Nl.
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(a) (b) (c)

(d) (e)

Fig. 6.1: Michell-like structure: converged designs obtained with (a) BFGS(f),
(b) BFGS(g), (c) R-ALG(g), (d) SSA(f), and (e) SSA(g).

The BFGS(f), BFGS(g) and R-ALG(g) algorithms were able to converge
to a solution which compares well with published literature. The BFGS(f)
managed to do so in 49 outer iterations Nk whereas BFGS(g) and R-ALG(g)
completed it in respectively 61 and 104 outer iterations. The BFGS(g) al-
gorithm managed to converge in the smallest number of total iterations i.e.
inner and outer iterations followed respectively by BFGS(f) and R-ALG(g).
The final designs are represented in Figure 6.1 (a). Clearly, inexact line search
methods significantly improve an algorithms ability to overcome step discon-
tinuities, however, whether it is able to do so robustly remain a concern as
illustrated on the test problems.

In turn, SSA(f) converged after 18 outer iterations Nk after getting trapped
in a step discontinuous minimum. The behaviour of the cost function around
the converged solution of SSA(f) is depicted in Figure 1.3 of Section 1.2. The
premature converged design is evident from Figure 6.1 (d). Clearly, conser-
vative approximation methods are able to overcome some step discontinuities
and of course even more so when conservatism is relaxed.

Conversely, BFGS(f), BFGS(g), SSA(g) and R-ALG(g) were able to opti-
mize the Michell structure without getting trapped in numerical induced step
discontinuities. Consider the similar designs depicted in Figures 6.1 (a)-(c)
and (e). It is clear that BFGS(f), BFGS(g), R-ALG(g) and SSA(g) improved
notably on the designs obtained with SSA(f).

We further present for each algorithm their respective histories w.r.t. func-
tion value f(x{k}), gradient norm ‖∇f(x{k})‖ and convergence tolerance
‖∆x{k}‖. The respective histories for the BFGS algorithms and R-ALG(g) are
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(a) (b) (c)

Fig. 6.2: Michell-like structure: BFGS(f), BFGS(g) and R-ALG(g) algorithms
convergence history plot of the (a) function value f(x{k}), (b) gradient norm
‖∇f(x{k})‖, and (c) and convergence tolerance ‖∆x{k}‖.

(a) (b) (c)

Fig. 6.3: Michell-like structure: SSA(f) and SSA(g) algorithms convergence
history plot of the (a) function value f(x{k}), (b) gradient norm ‖∇f(x{k})‖,
and (c) and convergence tolerance ‖∆x{k}‖.

depicted in Figures 6.2 (a)-(c) and for the SSA algorithms in Figures 6.3 (a)-
(c).

Monotonic function value decrease for SSA(f) is clearly depicted in respec-
tively Figure 6.2(a) and Figure 6.3(a) with the respective associated gradient
norms depicted in Figure 6.2(b) and Figure 6.3(b). The convergence histories
are depicted in Figure 6.2(c) and Figure 6.3(c).

Conversely, non-monotonic function value decrease for BFGS(f), BFGS(g),
R-ALG(g) and SSA(g) is evident in Figure 6.2(a) and Figure 6.3(a) with the re-
spective associated gradient norms depicted in Figure 6.2(b) and Figure 6.3(b).
The convergence histories are depicted in Figure 6.2(c) and Figure 6.3(c).

6.2 Analytical set of test problems

We now present a set of five analytical step discontinuous test problems in
order to further illustrate the advantages of gradient-only optimization.
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Rosenbrock step discontinuous function f1 is piecewise defined as follows:

f1(x) =



n
2∑

i=1

1

1.2

(
100

(
x(2i)− x2(2i− 1)

)2
+ (1− x(2i− 1))2

)
,

if 0 ≤ sin(2‖x‖) <
2

3
.

n
2∑

i=1

1.2
(

100
(
x(2i)− x2(2i− 1)

)2
+ (1− x(2i− 1))2

)
,

if −
2

3
≤ sin(2‖x‖) < 0.

n
2∑

i=1

(
100

(
x(2i)− x2(2i− 1)

)2
+ (1− x(2i− 1))2

)
,

if −
2

3
> sin(2‖x‖) ≥

2

3
.

(6.1)

Quadric step discontinuous function f2 is piecewise defined as follows:

f2(x) =



n∑
i=1

 i∑
j=1

x(j)

2

, if sin(8‖x‖) > 0.5.

n∑
i=1

1.2

 i∑
j=1

x(j)

2

, if sin(8‖x‖) < −0.5.

n∑
i=1

1

1.2

 i∑
j=1

x(j)

2

, if − 0.5 ≤ sin(8‖x‖) ≤ 0.5.

(6.2)

Sum squares step discontinuous function f3 is piecewise defined as follows:

f3(x) =



n∑
i=1

1

1.5
ix2(i), if sin

2

n∑
j=1

x(j)

 > 0.5.

n∑
i=1

1.5ix2(i), if sin

2

n∑
j=1

x(j)

 < −0.5.

n∑
i=1

ix2(i) +
1

n
, if − 0.5 ≤ sin

2
n∑

j=1

x(j)

 ≤ 0.5.

(6.3)

Zakharov step discontinuous function f4 is piecewise defined as follows:

f4(x) =



1

1.5

n∑
i=1

x2(i)+

(
n∑

i=1

ix2(i)

2

)2

+

(
n∑

i=1

ix2(i)

2

)4

,

if sin(‖x‖) > 0.5.

1.5

n∑
i=1

x2(i)+

(
n∑

i=1

ix2(i)

2

)2

+

(
n∑

i=1

ix2(i)

2

)4

+ 0.5,

if sin(‖x‖) < −0.5.
n∑

i=1

x2(i)+

(
n∑

i=1

ix2(i)

2

)2

+

(
n∑

i=1

ix2(i)

2

)4

+ 1,

if − 0.5 ≤ sin(‖x‖) ≤ 0.5.

(6.4)



24 D. N. Wilke et al.

Hyper ellipsoid step discontinuous function f5 is piecewise defined as fol-
lows:

f5(x) =



n∑
i=1

1

1.1
2i−1x2(i) +

1

n
, if sin

2

n∑
j=1

x(j)

 > 0.5.

n∑
i=1

1.1× 2i−1x2(i) +
1

n
, if sin

2

n∑
j=1

x(j)

 < 0,

n∑
i=1

2i−1x2(i), if 0 ≤ sin

2
n∑

j=1

x(j)

 ≤ 0.5.

(6.5)

This set of step discontinuous test problems “mimics” functions that con-
tain non-physical discontinuities. Our aim is to overcome the discontinuities
to obtain x∗g as outlined in Definition 3.7. The region around the solution
of f1, f2 and f4 is continuous as opposed to the region around the solu-
tion of f3 and f5 which are discontinuous. The solution of f1 is given by
x∗(i) = 1, i = 1, 2, . . . , n with f∗1 = 0 whereas the solution of f2 and f4 is given
by x∗g(i) = 0, i = 1, 2, . . . , n with f∗2 = 0 and f∗4 = 1 respectively. For f3 and
f5 the derivative critical set S is defined by x∗g where x∗g(i) = 0, i = 1, 2, . . . , n
with f∗3 = {0, 1} and f∗5 = {0, 1} respectively. The gradient field for each test
function is given by the analytical gradient of each test function whereas the
gradient at a discontinuous point is defined by the analytical gradient of the
active equation of a test function at that point.

Results are presented for dimension n = 10 of the test problem set given
in Section 6.2. The starting of each algorithm for each problem is x(i){0} =
4, i = 1, 2, . . . n.

Numerical results are presented in Table 6.3. Nk and Nl respectively rep-
resent the number of function or gradient evaluations in the outer and inner
loops. We have not limited the step size of the approximation algorithms; this
is normally not done in algorithms based on conservatism (although it may
sometimes be beneficial).

The results presented in Table 6.3 show that gradient-only optimization
algorithms are able to robustly optimize step discontinuous objective func-
tions. In contrast, the classical function-value based optimization algorithms
converged to local minima on some of the problems. It is clear from Table 6.3
that the function-value based approximation algorithms BFGS(f) and SSA(f)
are able to overcome many of the non-physical local minima. However, both
BFGS(f) and SSA(f) do not represent a robust strategy as it still converged
to local minima on some of the test problems.

The required number of inner and outer loops of the gradient-only imple-
mentations is also fewer when compared to their conventional function value
based counterparts.
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Table 6.3: Results for the step discontinuous test problem set.

Function Solution BFGS(f) BFGS(g) R-ALG SSA(f) SSA(g)

f1 f∗ 7.098E-09 2.40E-12 1.59E-10 5.09E-07 5.34E-08
‖∇f∗‖ 6.91E-05 3.40E-05 5.87E-04 5.83E-04 1.89E-04

‖x{Nk∗} − x∗g‖ 5.34E-07 1.05E-07 1.48E-04 8.72E-07 2.26E-07
Nk 35 30 98 235 106
Nl 81 36 84 488 176

f2 f∗ 2.004E-15 2.00E-15 2.28E-10 2.26E+01 5.47E-10
‖∇f∗‖ 6.13E-08 6.13E-08 5.33E-05 2.99E+01 2.20E-05

‖x{Nk∗} − x∗g‖ 5.22E-07 5.22E-07 7.93E-05 2.48E-07 3.02E-07
Nk 48 48 74 20 132
Nl 14 11 33 133 190

f3 f∗ 1.000E+00 1.05E-12 5.07E-10 4.43E-02 1.73E-11
‖∇f∗‖ 7.05E-03 3.61E-06 7.29E-05 7.02E-01 8.43E-06

‖x{Nk∗} − x∗g‖ 1.06E-09 6.21E-07 4.87E-05 5.06E-07 8.13E-07
Nk 20 20 80 25 33
Nl 111 12 34 130 23

f4 f∗ 3.438E+01 1.00E+00 1.00E+00 8.97E+05 1.00E+00
‖∇f∗‖ 1.61E+01 2.08E-03 2.32E-03 1.41E+06 2.57E-03

‖x{Nk∗} − x∗g‖ 1.51E-08 2.65E-05 9.25E-04 9.54E-07 1.68E-05
Nk 19 26 60 18 82
Nl 152 112 42 135 100

f5 f∗ 2.196E+00 4.86E-10 1.98E-10 1.94E+02 1.01E-08
‖∇f∗‖ 5.57E+00 7.95E-05 4.02E-04 9.48E+01 8.41E-04

‖x{Nk∗} − x∗g‖ 1.85E-07 6.54E-07 6.91E-06 7.12E-07 9.24E-07
Nk 51 95 89 25 231
Nl 76 25 35 145 367

7 Conclusions

We have studied the unconstrained optimization of functions containing step
or jump discontinuities. Although these functions may become discontinuous
and non-differentiable we can compute exact gradient information where the
function is differentiable and define approximate gradient information where it
is non-differentiable. At a non-differential point a partial derivative of the gra-
dient vector can be approximated by a one-sided directional derivative or by
the partial derivative itself when the function is respectively non-differentiable
or differentiable along the partial derivative direction. Step or jump disconti-
nuities arises during the solution of systems of (partial) differential equations,
when variable spatial and temporal discretization techniques produce disconti-
nuities that are artifacts of the approximate numerical strategies used. While
discontinuous, we demonstrate that these problems may effectively be opti-
mized if only gradient information is used. Various algorithmic options were
discussed and numerical results presented for a practical shape optimization
problem as well as a set of analytical test functions.

The implications of our approach are that variable discretization strategies,
which are so important in numerical discretization methods, may be used in
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combination with efficient local optimization algorithms, notwithstanding the
fact that these strategies themselves introduce step discontinuities.

Among others, future endeavors should in our opinion concentrate on the
inclusion of constraints, and reduction of the required computational effort.
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A Proofs of convergence for derivative descent sequences

Before we present proofs of convergence of (conservative) associated derivative descent se-
quences we include two gradient-only definitions of the well-known concepts in classical
mathematical programming to simplify our proofs of convergence. First, we present a defini-
tion of coercive functions based solely on the associated gradient of a function [13]. Although
this definition does not bear a strict analogy with the conventional coercive definition it suf-
fices for our purposes.

Definition A.1 Let x1,x2 ∈ Rn. Then a real valued function f : X ⊂ Rn → R with
associated gradient field ∇Af(x) that is uniquely defined for every x ∈ X, is associated
derivative coercive if there exist a positive number RM such that ∇A

Tf(x2)(x2 − x1) > ε
with ε > 0 ∈ R for non perpendicular ∇Af(x2) and (x2 − x1), whenever ‖x2‖ ≥ RM and
‖x1‖ < RM .

Secondly, we present definitions for univariate and multivariate associated gradient uni-
modality based solely on the associated gradient field of a real valued function [2].

Definition A.2 A univariate function f : X ⊂ R → R with associated derivative f ′A (λ)
uniquely defined for every λ ∈ X, is (resp., strictly) associated derivative unimodal over X
if there exists a x∗g ∈ X such that

f ′A (x∗g + λu)u ≥ (resp., >) 0, ∀ λ ∈ {β : β > 0 and β ⊂ R}

and ∀ u ∈ {−1, 1} such that [x∗g + λu] ∈ X. (A.1)

We now consider (resp., strictly) associated derivative unimodality for multivariate func-
tions [14].

Definition A.3 A multivariate function f : X ⊂ Rn → R is (resp., strictly) associated
derivative unimodal over X if for all x1 and x2 ∈ X and x1 6= x2, every corresponding
univariate function

F (λ) = f(x1 + λ(x2 − x1)), λ ∈ [0, 1] ⊂ R
is (resp., strictly) associated derivative unimodal according to Definition A.2.
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A.1 Univariate functions

Now that we have an associated derivative based definition of unimodality for univariate
functions we present a proof of convergence for strict univariate associated derivative uni-
modal functions when associated derivative descent sequences are considered.

Theorem A.4 Let f : Λ ⊆ R→]−∞,∞] be a univariate function that is strictly associated
derivative unimodal as defined in Definition A.2, with first associated derivative f ′A : Λ→
] − ∞,∞[ uniquely defined everywhere on Λ. If λ{0} ∈ Λ and {λ{k}} is an associated
derivative descent sequence, as defined in Definition 3.8, for f with initial point λ{0}, then
every subsequence of {λ{k}} converges. The limit of any convergent subsequence of {λ{k}}
is a strict non-negative associated gradient projection point (S-NN-GPP), as defined in
Definition 3.4, of f .

Proof Our assertion that f is strict associated derivative unimodal as defined in Defini-
tion A.2 implies that f has only one S-NN-GPS SS−NN ⊂ Λ as defined in Definition 3.7

at λ∗ ∈ Λ. Let λr ∈ SS−NN such that |λ{k} − λr| is a maximum. Consider a sequence of

1-balls {B(bk, εk)} defined around bk = 1
2

(λ{k}+λr) with radius of 1
2
|λ{k}−λr|. Then ev-

ery λ{k+1} ∈ B(bk, εk), since {λ{k}} is an associated derivative descent sequence as defined
in Definition 3.8 and f is strict associated derivative unimodal as defined in Definition A.2.
Therefore, k →∞ implies |λ{k}−λr| → 0. It follows from the Cauchy criterion for sequences
that {λ{k}} is convergent, which completes the proof of our first assertion.

Now let {λ{k}m} be a convergent subsequence of {λ{k}} and let λm∗ be its limit.
Suppose, contrary to the second assertion of the theorem, that λm∗ is not a S-NN-GPP
as defined in Definition 3.4 of f . Since we assume that λm∗ is not a S-NN-GPP, and by
Definition 3.8, there exist a λm∗ + δ for δ 6= 0 ∈ R such that f ′A (λm∗ + δ) < 0, which
contradicts our assumption that λm∗ is the limit of the subsequence {λ{k}m}. Therefore,
for λm∗ to be the limit of an associated derivative descent subsequence {λ{k}m}, λm∗ ∈
SS−NN , which completes the proof.

We now proceed with a proof of convergence for generalized univariate associated deri-
vative unimodal functions when associated derivative descent sequences are considered.

Theorem A.5 Let f : Λ ⊆ R →] − ∞,∞] be a univariate function that is associated
derivative unimodal, as defined in Definition A.2, with first associated derivative f ′A :
Λ →]−∞,∞[ uniquely defined everywhere on Λ. If λ{0} ∈ Λ and {λ{k}} is an associated
derivative descent sequence, as defined in Definition 3.8, for f with initial point λ{0}, then
every subsequence of {λ{k}} converges. The limit of any convergent subsequence of {λ{k}}
is a generalized G-NN-GPP, as defined in Definition 3.2, of f .

Proof Our assertion that f is associated derivative unimodal as defined in Definition A.2
implies that f has at least one G-NN-GPS SG−NN ∈ Λ as defined in Definition 3.7. Let S ⊂
Λ be the union of G-NN-GPSs SG−NN . Consider the jth sequence of 1-balls {B(bk, εk)}j
defined around bk = 1

2
(λ{k} + (λ∗j ∈ S)) and with radius εk = 1

2
|λ{k} − (λ∗j ∈ S)|. Then

λ{k+1} ∈ B(bk, εk)j for every sequence j since {λ{k}} is a associated derivative descent
sequence as defined in Definition 3.8 and f is associated derivative unimodal as defined in
Definition A.2. Therefore k →∞ implies |λ{k} − (λ∗j ∈ S)| → aj with aj a constant. Since

|λ{k} − (λ∗j ∈ S)| − aj → 0 for every j it follows from the Cauchy criterion for sequences

that {λ{k}} is convergent, which completes the proof of our first assertion.
Now let {λ{k}m} be a convergent subsequence of {λ{k}} and let λm∗ be its limit.

Suppose, contrary to the second assertion of the theorem, that λm∗ is not a G-NN-GPP
as defined in Definition 3.2 of f . Since we assume that λm∗ is not a G-NN-GPP, and by
Definition 3.8, there exist a λm∗ + δ for δ 6= 0 ∈ R such that f ′A (λm∗ + δ) < 0 which
contradicts our assumption that λm∗ is the limit of the subsequence {λ{k}m}. Therefore,
for λm∗ to be the limit of an associated derivative descent subsequence (see Definition 3.8)
{λ{k}m}, λm∗ ∈ S, which completes the proof.



Theoretical consideration in gradient-only approaches 29

Now that we have concluded our proofs of (strictly) associated derivative unimodal
univariate functions, we present a proof of convergence for univariate associated derivative
coercive functions that have at least one S-NN-GPS.

Theorem A.6 Let f : Λ ⊆ R →] −∞,∞] be a univariate associated derivative coercive
function, as defined in Definition A.1, with first associated derivative f ′A : Λ→]−∞,∞[
uniquely defined everywhere on Λ. If λ{0} ∈ Λ and {λ{k}} is an associated derivative
descent sequence, as defined in Definition 3.8, for f with initial point λ{0}, then there exists
at least one convergent subsequence of {λ{k}}. The limit of any convergent subsequence of
{λ{k}} is a S-NN-GPP of f .

Proof Since we only consider associated derivative descent sequences {λ{k}} our assertion
that f is associated derivative coercive implies the closed interval [a, b] ⊂ Λ. The sequence
{λ{k}} is bounded which follows from our premise of f . It follows from the Weierstrass-
Bolzano theorem that in a closed interval [a, b], every sequence has a subsequence that
converges to a point in the interval [3].

Now let {λ{k}m} be a convergent subsequence of {λ{k}} and let λm∗ ∈ Λ be its limit.
Suppose, contrary to the second assertion of the theorem, that λm∗ is not a S-NN-GPP of f .
Since we assume that λm∗ is not a S-NN-GPP, and by Definition 3.8, there exist a λm∗ + δ
for δ 6= 0 ∈ R such that f ′A (λm∗ + δ) < 0, which contradicts our assumption that λm∗ is
the limit of the subsequence {λ{k}m}. Therefore, for λm∗ to be the limit of an associated
derivative descent sequence (see Definition 3.8) {λ{k}m}, λm∗ ∈ SS−NN with SS−NN ⊂ Λ
which completes the proof.

A.2 Multivariate functions

We begin our proof of convergence of associated derivative descent sequences for multivari-
ate functions with C1 continuous convex functions [13], whereupon we present proofs of
convergence for broader classes of functions.

Theorem A.7 Suppose f : X ⊆ Rn → R is a C1 continuous convex function with x ∈
X. If x{0} ∈ X and {x{k}} is an associated derivative descent sequence, as defined in
Definition 3.8, for f with initial point x{0}, then every subsequence of {x{k}} converges.
The limit of any convergent sequence of {x{k}} is a S-NN-GPP as defined in Definition 3.4
of f .

Proof Our assertion that f is convex and C1 continuous ensures that f has a single global
gradient projection point x∗g ∈ X. Also, by Definition 3.8 and the continuity of the first

partial derivatives, we see that {f(x{k})} is a decreasing sequence that is bounded below
by f(x∗g). It follows that {x{k}} is a bounded sequence since f is convex. The Bolzano-

Weierstrass theorem implies that {x{k}} has at least one convergent subsequence, which
completes the proof of our first assertion [13].

Now let {x{k}m} be a convergent subsequence of {x{k}} and let xm∗ ∈ X be its limit.
Suppose, contrary to the second assertion of the theorem, that xm∗ is not a S-NN-GPP as
defined in Definition 3.4 of f which from our continuity assumption implies ∇Af(xm∗) 6= 0,
which in turn implies that there exists a descent direction um∗ at xm∗, such that um∗ 6= 0.

Since {x{k}m} is an associated derivative descent sequence as defined in Definition 3.8
of which the limit xm∗ is by assumption not a S-NN-GPP i.e.

−∇A
Tf(xm∗)∇Af(xm∗) < 0.

It follows from the continuity assumptions that there exists a small λ > 0 ∈ R such that
−∇A

Tf(xm∗ + λum∗)∇Af(xm∗) < 0 which contradicts our assumption that xm∗ is the
limit of the sequence {x{km}}. Therefore, for x∗m to be the limit of an associated derivative
descent sequence {x{km}}, ∇Af(xm∗) = 0, which in turn implies um∗ = 0. The limit x∗m

of an associated derivative descent sequence as defined in Definition 3.8, is therefore a S-
NN-GPP as defined in Definition 3.4, which completes the proof.
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Before we proceed to present a proof of convergence for C1 continuous associated de-
rivative coercive functions, we show that if a function is associated derivative coercive and
C1 continuous it has at least one global gradient projection point.

Proposition A.8 Suppose f : X ⊆ Rn → R is a C1 continuous associated derivative
coercive function as defined in Definition A.1 with x ∈ X, then f has at least one S-NN-
GPP as defined in Definition 3.4.

Proof Let x1,x2,x3 ∈ Rn. Since f is associated derivative coercive as defined in Defini-
tion A.1, there exists by definition a number RM such that for every {x2 : ‖x2‖ > RM},
and every {x1 : ‖x1‖ < RM}, the following holds: ∇A

Tf(x2)(x2 − x1) > 0, for non per-
pendicular ∇Af(x2) and (x2 − x1). In addition, there exists {x3 : ‖x3‖ < RM}, such that
∇A

Tf(x3)(x3−x1) > 0. Therefore, the set {x : ‖x‖ < RM} is closed and bounded, which by
the continuity assumption implies that f(x) assumes a minimum value on {x : ‖x‖ < RM}
at a point x∗g ∈ X. From the continuity assumption of the first partial associated derivatives,
it follows that ∇Af(x∗g) = 0 [13]. It therefore follows from the continuity assumptions that
Definition 3.4 holds at x∗g .

Theorem A.9 Suppose f : X ⊆ Rn → R is a C1 continuous associated derivative coer-
cive function, as defined in Definition A.1, with x ∈ X. If x{0} ∈ X, and {x{k}} is a
conservative associated derivative descent sequence, as defined in Definition 3.9, for f with
initial point x{0}, then some subsequence of {x{k}} converges. The limit of any convergent
sequence of {x{k}} is a G-NN-GPP, as defined in Definition 3.2, of f .

Proof Our assertion that f is continuous and associated derivative coercive ensures that f
has a global minimizer x∗g ∈ X. Also, by the definition of a conservative associated derivative
descent sequence and the continuity of the first partial associated derivatives, we see that
{f(x{k})} is a decreasing sequence that is bounded below by f(x∗g). Note that we require
conservative associated derivative descent sequences, since derivative descent sequence is
not sufficient to guarantee convergence as it may result in oscillatory behavior for n > 1.
The remainder of the proof is similar to the proof of Theorem A.7.

We now proceed to functions that are either C0 continuous or discontinuous, but for
which the function values and associated gradient field are uniquely defined everywhere.
We present classes of C0 continuous or discontinuous functions for which convergence is
guaranteed, since associated derivative descent sequences may not converge to NN-GPP
when all C0 continuous or discontinuous functions are considered, as is evident from the
following example.

Consider the linear programming problem of finding the intersection between two inter-
secting planes. Since the associated gradient on each plane is constant, a steepest descent
sequence that terminates at the intersection of the two planes is an example of a sequence
that converges to some point that is not a NN-GPP.

Hence, we now present classes of well-posed discontinuous functions for which conver-
gence is guaranteed.

Definition A.10 We consider the (resp. generalized / strict) gradient-only optimization
problem to be well-posed (resp. convex / unimodal) associated derivative when

1. the associated gradient field is everywhere uniquely defined,
2. the problem is associated derivative coercive as defined in Definition A.1,
3. there exits one and only one (resp. G/S)-NN-GPS (resp. SG−NN / SS−NN ) as defined

in Definition 3.7, and
4. when every associated derivative descent sequence as defined in Definition 3.8 has at

least one converging subsequence to a point in (resp. SG−NN / SS−NN ).

We now present a class of well-posed associated derivative coercive functions; this in-
cludes multimodal functions.

Definition A.11 We consider the gradient-only optimization problem to be (resp. proper
/ generalized) well-posed associated derivative coercive when
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1. the associated gradient field is everywhere uniquely defined,
2. the problem is associated derivative coercive as defined in Definition A.1,
3. there exits at least one (resp. G/S)-NN-GPS (resp. SG−NN / SS−NN ) as defined in

Definition 3.7, and
4. when every conservative associated derivative descent sequence as defined in Defini-

tion 3.9 has at least one converging subsequence to a point in (resp. SG−NN / SS−NN ).

We note that the classes of functions defined in Definitions A.10 - A.11 still exclude
many problems of practical significance e.g. linear programming problems. Many of these
practically significant problems may be accommodated by altering Definitions A.10 - A.11
to hold only for specific associated derivative descent sequences.


