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Abstract. In this paper, we show that the concept of sigma-convergence associated to stochastic

processes can tackle the homogenization of stochastic partial differential equations. In this

regard, the homogenization of a stochastic nonlinear partial differential equation is addressed.
Using some deep compactness results such as the Prokhorov and Skorokhod theorems, we prove

that the sequence of solutions of this problem converges in probability towards the solution of

an equation of the same type. To proceed with, we use the concept of sigma-convergence for
stochastic processes, which takes into account both the deterministic and random behaviours of

the solutions of the problem.

1. Introduction

Algebras with mean value have been highly efficient in deterministic homogenization theory. It is
now a well known fact that given a partial differential equation (PDE) with oscillating coefficients,
one can always, under some structural constraints on its coefficients, solve some homogenization
problems related to this PDE.

Contrasted with deterministic homogenization, very few results are available as regards the
homogenization of stochastic PDEs (SPDEs). We may cite [1, 14, 15, 25, 30, 31] in that context.
In the just mentioned previous work, the homogenization of SPDEs is studied under the periodicity
assumption on the coefficients of the equations considered. In addition, the convergence method
used is either the G-convergence method [1, 14, 15] or the two-scale convergence method [30, 31].
Given the nature both random and deterministic of the solutions of these equations, it is more
convenient to use an appropriate method taking into account both these two types of behaviour.
As regards the SPDEs in a general ergodic environment, no results is available so far. The first
attempt to generalize this to SPDEs beyond the periodic context is undertaken in [28] in which
the authors consider the homogenization problem for a SPDE in an almost periodic setting. The
present work is therefore the first one in which such a problem is considered.

To be more precise, we are concerned with the homogenization problem for the following non-
linear stochastic partial differential equation duε =

(
div a

(
x, t, xε ,

t
ε , uε, Duε

)
− a0

(
x, t, xε ,

t
ε , uε

))
dt+M

(
x
ε ,

t
ε , uε

)
dW in QT

uε = 0 on ∂Q× (0, T )
uε(x, 0) = u0(x) in Q,

(1.1)

where QT = Q × (0, T ), Q being a Lipschitz domain in RN with smooth boundary ∂Q, T is a
positive real number and W is a cylindrical standard Wiener process defined on a given probability
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space (Ω,F ,P). Under a suitable assumption on the coefficients of (1.1) we prove that the sequence
of solutions to (1.1) converges to the solution of an equation of the same type as (1.1). In view
of the result obtained, one might be tempted to believe that the homogenization process of an
SPDE is summarized in the homogenization of its deterministic part, added to the average of
its stochastic part. This is not true in general. Indeed, one can obtain, passing to the limit, a
homogenized equation of a type completely different from that of the initial problem; see e.g., [31].

The paper is presented as follows. In Section 2, we give some fundamentals of generalized
Besicovitch spaces. Section 3 deals with the concept of sigma-convergence for stochastic processes.
We state therein some compactness results that will be used in the sequel. In Section 4, we state
the problem and prove some fundamental estimates. In Section 5 we collect some useful results
necessary to the homogenization part, and we use them in Section 6 to study the homogenization
of (1.1). We prove there the global homogenization result and we derive the homogenized problem.
Section 7 deals with a corrector-type result. Finally in Section 8, we apply the result of Section 6
to some concrete physical situations.

Unless otherwise specified, vector spaces throughout are assumed to be real vector spaces, and
scalar functions are assumed to take real values. We shall always assume that the numerical space
Rm (integer m ≥ 1) and its open sets are each equipped with the Lebesgue measure dx = dx1...dxm.

2. Some properties of the generalized Besicovitch spaces

We begin this section by recalling some important properties of algebras with mean value
[16, 8, 26, 35]. By an algebra with mean value (algebra wmv, in short) on RN we mean any closed
subalgebra A of the C*-algebra of bounded uniformly continuous functions BUC(RN ) which con-
tains the constants, is translation invariant (u(·+ a) ∈ A for any u ∈ A and each a ∈ RN ) and is
such that each element possesses a mean value in the following sense:

(MV ) For each u ∈ A, the sequence (uε)ε>0 (where uε(x) = u(x/ε), x ∈ RN ) weakly ∗-converges
in L∞(RN ) to some constant real-valued function M(u) as ε→ 0.

It is known that A (endowed with the sup norm topology) is a commutative C*-algebra with
identity. We denote by ∆(A) the spectrum of A and by G the Gelfand transformation on A. We
recall that ∆(A) (a subset of the topological dual A′ of A) is the set of all nonzero multiplicative
linear functionals on A, and G is the mapping of A into C(∆(A)) such that G(u)(s) = 〈s, u〉
(s ∈ ∆(A)), where 〈, 〉 denotes the duality pairing between A′ and A. We endow ∆(A) with
the relative weak∗ topology on A′. Then using the well-known theorem of Stone (see e.g., [11,
Theorem IV.6.18, p. 274]) one can easily show that the spectrum ∆(A) is a compact topological
space, and the Gelfand transformation G is an isometric isomorphism identifying A with C(∆(A))
(the continuous functions on ∆(A)) as C*-algebras. Next, since each element of A possesses a mean
value, this yields an application u 7→ M(u) (denoted by M and called the mean value) which is
a nonnegative continuous linear functional on A with M(1) = 1, and so provides us with a linear
nonnegative functional ψ 7→ M1(ψ) = M(G−1(ψ)) defined on C(∆(A)) = G(A), which is clearly
bounded. Therefore, by the Riesz-Markov theorem, M1(ψ) is representable by integration with
respect to some Radon measure β (of total mass 1) in ∆(A), called the M -measure for A [19]. It
is a fact that we have

M(u) =

∫
∆(A)

G(u)dβ for u ∈ A.

Next, to any algebra with mean value A are associated the following subspaces: Am = {ψ ∈
Cm(RN ) : Dα

yψ ∈ A for every α = (α1, ..., αN ) ∈ NN with |α| ≤ m} (where Dα
yψ = ∂|α|ψ/∂yα1

1 · · ·
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∂yαNN and integer m ≥ 1). Endowed with the norm ‖|u|‖m = sup|α|≤m
∥∥Dα

yψ
∥∥
∞, Am is a Banach

space. We also define the space A∞ as the space of ψ ∈ C∞(RNy ) such that Dα
yψ = ∂|α|ψ

∂y
α1
1 ···∂y

αN
N

∈ A
for every α = (α1, ..., αN ) ∈ NN . Endowed with a suitable locally convex topology defined by the
family of norms ‖|·|‖m, A∞ is a Fréchet space.

Now, the partial derivative of index i (1 ≤ i ≤ N) on ∆(A) is defined to be the mapping
∂i = G ◦ ∂/∂yi ◦ G−1 (usual composition) of D1(∆(A)) = {ϕ ∈ C(∆(A)) : G−1(ϕ) ∈ A1} into
C(∆(A)). Higher order derivatives are defined analogously. At the present time, let D(∆(A)) =
{ϕ ∈ C(∆(A)) : G−1(ϕ) ∈ A∞}. Endowed with a suitable locally convex topology D(∆(A))) is a
Fréchet space and further, G viewed as defined on A∞ is a topological isomorphism of A∞ onto
D(∆(A)).

Analogously to the space D′(RN ), we now define the space of distributions on ∆(A) to be the
space of all continuous linear form on D(∆(A)). We denote it by D′(∆(A)) and we endow it with
the strong dual topology. Since A∞ is dense in A (see [33, Proposition 2.3]), it is easy to see that
the space Lp(∆(A)) (1 ≤ p ≤ ∞) is a subspace of D′(∆(A)) (with continuous embedding), so that
one may define the Sobolev spaces on ∆(A) as follows.

W 1,p(∆(A)) = {u ∈ Lp(∆(A)) : ∂iu ∈ Lp(∆(A)) (1 ≤ i ≤ d)} (1 ≤ p <∞)

where the derivative ∂iu is taken in the distribution sense on ∆(A). We equip W 1,p(∆(A)) with
the norm

||u||W 1,p(∆(A)) =
[
||u||pLp(∆(A)) +

∑N
i=1 ||∂iu||

p
Lp(∆(A))

] 1
p (

u ∈W 1,p(∆(A))
)
,

1 ≤ p <∞,
which makes it a Banach space. To the above space is attached the space

W 1,p(∆(A))/R = {u ∈W 1,p(∆(A)) :

∫
∆(A)

udβ = 0}

equipped with the seminorm u 7→ (
∑N
i=1 ||∂iu||

p
Lp(∆(A)))

1/p, and its separated completionW 1,p
# (∆(A)).

We will see in the sequel that W 1,p
# (∆(A)) is in fact the completion of W 1,p(∆(A))/R since A will

be taken to be an ergodic algebra; see the last part of this section.
The concept of a product algebra wmv will be useful in our study. Let Ay (resp. Aτ ) be an

algebra wmv on RNy (resp. Rτ ). We define the product algebra wmv Ay � Aτ as the closure in

BUC(RN+1) of the tensor product Ay⊗Aτ = {
∑

finite ui⊗vi : ui ∈ Ay and vi ∈ Aτ}. This defines
an algebra wmv on RN+1. A characterization of these products is given in the following result
whose proof can be found in [20].

Theorem 1. Let Ay, Aτ and A be as above. For f ∈ BUC(RN+1
y,τ ), we define fy ∈ BUC(Rτ ) and

fτ ∈ BUC(RNy ) by

fy(τ) = fτ (y) = f(y, τ) for (y, τ) ∈ RNy × Rτ
and put

Bf = {fτ : τ ∈ R}, Cf = {fy : y ∈ RN}.

Then Bf ⊂ Ay and Cf ⊂ Aτ for every f ∈ A. Also for f ∈ A both Bf and Cf are relatively
compact in Ay and in Aτ respectively (in the sup norm topology).
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Let AP (RN ) denote the space of all Bohr almost periodic functions on RN [4, 5], that is the
algebra of functions in B(RN ) that are uniformly approximated by finite linear combinations of
functions in the set {y 7→ cos(k · y), y 7→ sin(k · y) : k ∈ RN}. It is well-known that AP (RN )
is an algebra wmv on RN . As an example we have AP (RNy ) � AP (Rτ ) = AP (RNy × Rτ ). We

also have that Cper(Y ) � Cper(Z) = Cper(Y × Z) where Y = (0, 1)
N

and Z = (0, 1). This follows
from the identification Cper(Y ) = C(TN ) where TN is the N -torus in RN . Similarly we have
Cper(Z)�AP (RNy ) = Cper(Z;AP (RNy )). Other examples of product algebras wmv can be given.

Next, let BpA (1 ≤ p < ∞) denote the Besicovitch space associated to A, that is the closure of
A with respect to the Besicovitch seminorm

‖u‖p =

(
lim sup
r→+∞

1

|Br|

∫
Br

|u(y)|p dy
)1/p

where Br is the open ball of RN of radius r. It is known that BpA is a complete seminormed vector
space verifying BqA ⊂ BpA for 1 ≤ p ≤ q < ∞. From this last property one may naturally define
the space B∞A as follows:

B∞A = {f ∈ ∩1≤p<∞B
p
A : sup

1≤p<∞
‖f‖p <∞}.

We endow B∞A with the seminorm [f ]∞ = sup1≤p<∞ ‖f‖p, which makes it a complete seminormed

space. We recall that the spaces BpA (1 ≤ p ≤ ∞) are not in general Fréchet spaces since they are
not separated in general. The following properties are worth noticing [20, 26]:

(1) The Gelfand transformation G : A→ C(∆(A)) extends by continuity to a unique continuous
linear mapping, still denoted by G, of BpA into Lp(∆(A)), which in turn induces an isometric
isomorphism G1, of BpA/N = BpA onto Lp(∆(A)) (where N = {u ∈ BpA : G(u) = 0}). Fur-
thermore if u ∈ BpA ∩ L∞(RN ) then G(u) ∈ L∞(∆(A)) and ‖G(u)‖L∞(∆(A)) ≤ ‖u‖L∞(RN ).

(2) The mean value M viewed as defined on A, extends by continuity to a positive continuous
linear form (still denoted by M) on BpA satisfying M(u) =

∫
∆(A)

G(u)dβ (u ∈ BpA). Fur-

thermore, M(τau) = M(u) for each u ∈ BpA and all a ∈ RN , where τau(z) = u(z + a) for

almost all z ∈ RN . Moreover for u ∈ BpA we have ‖u‖p = [M(|u|p)]1/p.
In this work, we will deal with ergodic algebras (see [16, 35]). Let us recall the definition of an

ergodic algebra.

Definition 1. An algebra wmv A on RN is ergodic if for every u ∈ B1
A such that ‖u− u(·+ a)‖1 =

0 for every a ∈ RN we have ‖u−M(u)‖1 = 0.

The class of ergodic algebra plays a crucial role in homogenization theory as it will be seen in
the following sections.

In order to simplify the text, we will henceforth use the same letter u (if there is no danger of
confusion) to denote the equivalence class of an element u ∈ BpA. The symbol % will denote the
canonical mapping of BpA onto BpA = BpA/N . Our goal here is to define another space attached to
BpA. For that purpose, let us recall that the partial derivative of index 1 ≤ i ≤ N of a distribution
u ∈ D′(∆(A)), denoted by ∂iu, is defined as follows:

〈∂iu, ϕ〉 = −〈u, ∂iϕ〉 for any ϕ ∈ D(∆(A)).
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With this in mind, we define the formal derivative of index i, denoted by ∂/∂yi, as follows:

∂

∂yi
= G−1

1 ◦ ∂i ◦ G1.

Considered as defined from BpA into itself, it is an unbounded operator with domain Di = {u ∈
BpA : ∂u/∂yi ∈ BpA}. We set

B1,p
A = ∩1≤i≤NDi ≡

{
u ∈ BpA :

∂u

∂yi
∈ BpA for 1 ≤ i ≤ N

}
.

Since ∂/∂yi is closed, B1,p
A is a Banach space under the norm

‖u‖B1,p
A

=

[
‖u‖pp +

N∑
i=1

∥∥∥∥ ∂u∂yi
∥∥∥∥p
p

]1/p

(u ∈ B1,p
A ).

Moreover, the restriction of G1 to B1,p
A is an isometric isomorphism of B1,p

A onto W 1,p(∆(A)). We
assume for the remainder of this section that A is ergodic. Then according to Definition 1, the only
elements of B1

A that are ‖·‖1-invariant are constant functions. This infers that if u ∈ B1
A satisfies

Dyu = 0, then u is constant. Indeed it can can be shown that u ∈ B1
A is ‖·‖1-invariant if and only

if Dyu = 0. So the mapping

∥∥Dy·
∥∥
p

: u 7→
∥∥Dyu

∥∥
p

:=

(
N∑
i=1

∥∥∥∥ ∂u∂yi
∥∥∥∥p
p

)1/p

considered as defined on B1,p
A , is a norm on the subspace B1,p

A /R of B1,p
A consisting of functions

u ∈ B1,p
A with M(u) = 0. Unfortunately, under this norm, B1,p

A /R is a normed vector space which

is in general not complete. We denote by B1,p
#A the completion of B1,p

A /R with respect to that

norm, and by J1 the canonical embedding of B1,p
A /R into B1,p

#A. By the theory of completion of

uniform spaces [6, Chap. II], the mapping ∂/∂yi : B1,p
A /R→ BpA extends by continuity to a unique

continuous linear mapping still denoted by ∂/∂yi : B1,p
#A → B

p
A such that

∂

∂yi
◦ J1 =

∂

∂yi
and ‖u‖B1,p

#A
=
∥∥Dyu

∥∥
p

(u ∈ B1,p
#A) (2.1)

where Dy = (∂/∂yi)1≤i≤N . Since G1 is an isometric isomorphism of B1,p
A onto W 1,p(∆(A)) we have

by the definition of ∂/∂yi that the restriction of G1 to B1,p
A /R sends isometrically and isomorphically

B1,p
A /R onto W 1,p(∆(A))/R. So by [6, Chap. II] there exists a unique isometric isomorphism

G1 : B1,p
#A →W 1,p

# (∆(A)) such that

G1 ◦ J1 = J ◦ G1 (2.2)

and

∂i ◦ G1 = G1 ◦
∂

∂yi
(1 ≤ i ≤ N). (2.3)

We recall that in this case (when A is ergodic), J is the canonical embedding of W 1,p(∆(A))/R into

its completion W 1,p
# (∆(A)) while J1 is the canonical embedding of B1,p

A /R into B1,p
#A. Furthermore,

Since B1,p
A /R is dense in B1,p

#A (in fact by the embedding J1, B1,p
A /R is viewed as a subspace of B1,p

#A,



6 PAUL ANDRÉ RAZAFIMANDIMBY, MAMADOU SANGO, AND JEAN LOUIS WOUKENG

and by the theory of completion, J1(B1,p
A /R) is dense in B1,p

#A), it follows that, as A∞ is dense in

A, %(A∞/R) is dense in B1,p
#A, where A∞/R = {u ∈ A∞ : M(u) = 0}.

Remark 1. For u ∈ B1,p
A (that is the space of u ∈ BpA such that Dyu ∈ (BpA)N ) we have

G1

(
%

(
∂u

∂yi

))
= G

(
∂u

∂yi

)
= ∂iG (u) = ∂iG1 (%(u)) = (by definition)G1

(
∂

∂yi
(%(u))

)
,

hence

%

(
∂u

∂yi

)
=

∂

∂yi
(%(u)),

or equivalently,

% ◦ ∂

∂yi
=

∂

∂yi
◦ % on B1,p

A . (2.4)

Remark 2. The above remark shows that ∂/∂yi, viewed as defined on BpA, is in fact the infinites-
imal generator of the group of transformations T (y) defined on BpA by

T (y)(u+N ) = u(·+ y) +N .
This shows that all the above results can be obtained through the theory of strongly continuous
groups as shown in [27] (see also [28]).

3. The Σ-convergence method for stochastic processes

In this section we define an appropriate notion of the concept of Σ-convergence adapted to
our situation. It is to be noted that it is built according to the original notion introduced by
Nguetseng [19]. Here we adapt it to systems involving random behavior. In all that follows, Q
is an open subset of RN (integer N ≥ 1), T is a positive real number and QT = Q × (0, T ). Let
(Ω,F ,P) be a probability space. The expectation on (Ω,F ,P) will throughout be denoted by E.
Let us first recall the definition of the Banach space of bounded F-measurable functions. Denoting
by F (Ω) the Banach space of all bounded functions f : Ω → R (with the sup norm), we define
B(Ω) as the closure in F (Ω) of the vector space H(Ω) consisting of all finite linear combinations
of the characteristic functions 1X of sets X ∈ F . Since F is an σ-algebra, B(Ω) is the Banach
space of all bounded F-measurable functions. Likewise we define the space B(Ω;Z) of all bounded
(F , BZ)-measurable functions f : Ω→ Z, where Z is a Banach space endowed with the σ-algebra
of Borelians BZ . The tensor product B(Ω)⊗ Z is a dense subspace of B(Ω;Z): this follows from
the obvious fact that B(Ω) can be viewed as a space of continuous functions over the gamma-
compactification [36] of the measurable space (Ω,F), which is a compact topological space. Next,
for X a Banach space, we denote by Lp(Ω,F ,P;X) the space of X-valued random variables u such
that ‖u‖X is Lp(Ω,F ,P)-integrable.

This being so, let Ay and Aτ be two algebras wmv on RNy and Rτ respectively, and let A =
Ay � Aτ be their product as defined in the preceding section. We know that A is the closure
in BUC(RN+1

y,τ ) of the tensor product Ay ⊗ Aτ . We denote by ∆(Ay) (resp. ∆(Aτ ), ∆(A)) the
spectrum of Ay (resp. Aτ , A). The same letter G will denote the Gelfand transformation on Ay, Aτ
and A, as well. Points in ∆(Ay) (resp. ∆(Aτ )) are denoted by s (resp. s0). The M -measure on the
compact space ∆(Ay) (resp. ∆(Aτ )) is denoted by βy (resp. βτ ). We have ∆(A) = ∆(Ay)×∆(Aτ )
(Cartesian product) and the M -measure on ∆(A) is precisely the product measure β = βy ⊗ βτ ;
the last equality follows in an obvious way by the density of Ay ⊗ Aτ in A and by the Fubini’s
theorem. Points in Ω are as usual denoted by ω.
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Unless otherwise stated, random variables will always be considered on the probability space
(Ω,F ,P). Finally, the letter E will throughout denote exclusively an ordinary sequence (εn)n∈N
with 0 < εn ≤ 1 and εn → 0 as n→∞. In what follows, the notations are those of the preceding
section.

Definition 2. A sequence of random variables (uε)ε>0 ⊂ Lp(Ω,F ,P;Lp(QT )) (1 ≤ p <∞) is said
to weakly Σ-converge in Lp(QT × Ω) to some random variable u0 ∈ Lp(Ω,F ,P;Lp(QT ;BpA)) if as
ε→ 0, we have∫

QT×Ω
uε(x, t, ω)f

(
x, t, xε ,

t
ε , ω

)
dxdtdP

→
∫∫
QT×Ω×∆(A)

û0(x, t, s, s0, ω)f̂(x, t, s, s0, ω)dxdtdPdβ (3.1)

for every f ∈ Lp′(Ω,F ,P;Lp
′
(QT ;A)) (1/p′ = 1− 1/p), where û0 = G1 ◦ u0 and f̂ = G1 ◦ (% ◦ f) =

G ◦ f . We express this by writing uε → u0 in Lp(QT × Ω)-weak Σ.

Remark 3. The above weak Σ-convergence in Lp(QT × Ω) implies the weak convergence in
Lp(QT × Ω). One can show as in the usual setting of Σ-convergence method [19] that each
f ∈ Lp(Ω,F ,P;Lp(QT ;A)) weakly Σ-converges to % ◦ f .

In order to simplify the notation, we will henceforth denote Lp(Ω,F ,P;X) merely by Lp(Ω;X) if
it is understood from the context and there is no danger of confusion. Definition 2 can be formally
motivated by the following fact. Assume p = 2; then using the chaos decomposition (see [7, 32])
of uε and f we get uε(x, t, ω) =

∑∞
j=1 uε,j(x, t)Φj(ω) and f(x, t, y, τ , ω) =

∑∞
k=1 fk(x, t, y, τ)Φk(ω)

where uε,j ∈ L2(QT ) and fk ∈ L2(QT ;A), so that∫
QT×Ω

uε(x, t, ω)f

(
x, t,

x

ε
,
t

ε
, ω

)
dxdtdP

can be formally written as∑
j,k

∫
Ω

Φj(ω)Φk(ω)dP
∫
QT

uε,j(x, t)fk

(
x, t,

x

ε
,
t

ε

)
dxdt,

and by the usual Σ-convergence method (see [26, 19]), as ε→ 0,∫
QT

uε,j(x, t)fk

(
x, t,

x

ε
,
t

ε

)
dxdt→

∫∫
QT×∆(A)

û0,j(x, t, s, s0)f̂k (x, t, s, s0) dxdtdβ.

Hence, by setting

û0(x, t, s, s0, ω) =

∞∑
j=1

û0,j(x, t, s, s0)Φj(ω); f̂ (x, t, s, s0, ω) =

∞∑
k=1

f̂k (x, t, s, s0) Φk(ω)

we get (3.1). We can also see that (3.1) is a straight generalization of the usual concept of Σ-
convergence.

The following result holds.

Theorem 2. Let 1 < p < ∞. Let (uε)ε∈E ⊂ Lp(Ω;Lp(QT )) be a sequence of random variables
verifying the following boundedness condition:

sup
ε∈E

E ‖uε‖pLp(QT ) <∞.

Then there exists a subsequence E′ from E such that the sequence (uε)ε∈E′ is weakly Σ-convergent
in Lp(QT × Ω).
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Proof. Let us set Y = Lp
′
(QT×Ω×∆(A)) andX = Lp

′
(Ω;Lp

′
(QT ; C(∆(A)))) = G(Lp

′
(Ω;Lp

′
(QT ;A))).

Applying [20, Theorem 3.1] with Y and X we are led at once to the result.

The following result will be very useful in the homogenization process.

Theorem 3. Let 1 < p < ∞. Let A = Ay � Aτ be an algebra wmv on RNy × Rτ with the

further property that Ay is ergodic. Finally let (uε)ε∈E ⊂ Lp(Ω;Lp(0, T ;W 1,p
0 (Q))) be a sequence

of random variables which satisfies the following estimate:

sup
ε∈E

E ‖uε‖pLp(0,T ;W 1,p
0 (Q))

<∞.

Then there exist a subsequence E′ of E and a couple of random variables (u0, u1) with u0 ∈
Lp(Ω;Lp(0, T ;W 1,p

0 (Q))) and u1 ∈ Lp(Ω;Lp(QT ;BpAτ (Rτ ;B1,p
#Ay

))) such that, as E′ 3 ε→ 0,

uε → u0 in Lp(QT × Ω)-weak; (3.2)

∂uε
∂xi
→ ∂u0

∂xi
+
∂u1

∂yi
in Lp(QT × Ω)-weak Σ, 1 ≤ i ≤ N. (3.3)

Proof. The proof of the above theorem follows exactly the same lines of reasoning as the one of
[26, Theorem 3.6].

In practice, we will mostly deal with the following modified version of the above theorem.

Theorem 4. Assume that the hypotheses of Theorem 3 are satisfied. Assume further that p ≥ 2
and that there exist a subsequence E′ from E and a random variable u0 ∈ Lp(Ω;Lp(0, T ;W 1,p

0 (Q)))
such that, as E′ 3 ε→ 0,

uε → u0 in L2(QT × Ω). (3.4)

Then there exist a subsequence of E′ (not relabeled) and a BpAτ (Rτ ;B1,p
#Ay

)-valued stochastic process

u1 ∈ Lp(Ω;Lp(QT ;BpAτ (Rτ ;B1,p
#Ay

))) such that (3.3) holds when E′ 3 ε→ 0.

Proof. Since (uε)ε∈E′ is bounded in Lp(Ω;Lp(0, T ;W 1,p
0 (Q))), there exist a subsequence of E′ not

relabeled and v0 ∈ Lp(Ω;Lp(0, T ;W 1,p
0 (Q))) such that uε → v0 in Lp(QT × Ω)-weak (and hence

in L2(QT × Ω)-weak since p ≥ 2) as E′ 3 ε → 0. From (3.4) and owing to the uniqueness of the
weak-limit, we infer that u0 = v0, so that (3.2) holds true with u0 as in (3.4). The remainder of
the proof follows exactly the same lines of reasoning as in the proof of [26, Theorem 3.6].

4. Statement of the problem: a priori estimates and tightness property

4.1. Problem setting. Let (Ω,F ,P) be a probability space on which is defined an infinite se-
quence of independent standard 1-d Brownian motion (Wk)k≥1. We equip the probability space
by the natural filtration, denoted by F t, of Wk. Now let U be a fixed Hilbert space with orthonor-
mal basis {ek : k ≥ 1}. We may define a cylindrical Wiener process W by setting W =

∑∞
k=1Wkek

(see [9]). By L2(U , X) we denote the space of Hilbert-Schmidt operators from U to the Hilbert
space X:

L2(U , X) =

{
R ∈ L(U , X) :

∞∑
k=1

|Rek|2X <∞

}
.

We can define another Hilbert space U0 ⊂ U by setting

U0 =

{
v =

∞∑
k=1

αkek :

∞∑
k=1

α2
kk
−2 <∞

}
.
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Note that the embedding U0 ⊂ U is Hilbert-Schmidt. We endow U0 with the norm |v|2U0 =∑∞
k=1 α

2
kk
−2. It is a well known fact that there exists Ω′ ∈ F with P(Ω′) = 1 such that W (ω) ∈

C(0, T ;U0) for any ω ∈ Ω′ (see, for example, [9]).
For any given G ∈ L2(Ω;L2(0, T ;L2(U , X)) such that G(t) is F t-adapted we may define the

stochastic integral ∫ t

0

GdW =

∞∑
k=1

∫ t

0

GekdWk,

as an element of the space of X-valued square integrable martingale. Moreover we have

E sup
t∈[0,T ]

∣∣∣∣∫ t

0

GdW

∣∣∣∣r ≤ CE
(∫ T

0

|G|2L2(U,X)

) r
2

,

for any r ≥ 1. For the two results and more details on stochastic calculus in infinite dimension
we refer to [9]. From now we will set |G|L2

= |G|L2(U,X) for any Hilbert space X and for any

G ∈ L2(U , X).
Let Q ⊂ RN be an open and bounded domain with smooth boundary. Throughout we will set

H = L2(Q), V = W 1,p
0 (Q) and denote by |u| , u ∈ H, ‖v‖ , v ∈ V their respective norms. We will

also denote by |ν|, ν ∈ RN the Euclidian norm on RN . The symbol V ′ will denote the dual of
V and 〈u, v〉 denotes the duality pairing between u ∈ V ′ and v ∈ V . The inner product in H is
denoted by (u, v) for any u, v ∈ H. In this work we are interested in the asymptotic behaviour
as ε → 0 of the solution of (1.1) which is defined on the stochastic system (Ω,F ,P),F t,W . We
assume that all the coefficients in (1.1) are measurable with respect to each of their arguments.
Furthermore, for a.e (x, t) ∈ Q× (0, T ), (y, τ) ∈ RN ×R and for all µ ∈ R and λ ∈ RN , we assume
that

A1. a(x, t, y, τ , µ, 0) = 0,

A2. (a(x, t, y, τ , µ, λ)− a(x, t, y, τ , µ, λ′) · (λ− λ′)) ≥ c1
∣∣λ− λ′∣∣p,

A3. |a(x, t, y, τ , µ, λ)| ≤ c2(1 + |µ|p−1
+ |λ|p−1

),
A4. |a0(x, t, y, τ , µ)| ≤ c3(1 + |µ|),
A5. |a0(x, t, y, τ , µ)− a0(x, t, y, τ , µ′)| ≤ c4 |µ− µ′| ,
A6. (a) |a0(x, t, y, τ , u)− a0(x′, t′, y, τ , u′)| ≤ m(|x− x′|+ |t− t′|+ |u− u′|)(1 + |u|+ |u′|),
A6. (b) |a(x, t, y, τ , u,v)− a(x′, t′, y, τ , u′,v′)| ≤ m(|x− x′|+ |t− t′|+ |u− u′|p−1

+ |u′|p−1
+

|v|p−1
+ |v′|p−1

) + C(1 + |u|+ |u′|+ |v|+ |v′|)p−2 |v − v′| ,
where m is a continuity modulus (i.e., a nondecreasing continuous function on [0,+∞)

such that m(0) = 0,m(r) > 0 if r > 0, and m(r) = 1 if r > 1).

As far as the operator M is concerned, we will suppose that

A7. it is a measurable mapping from RN × R×H into L2(U , H) such that
(a) |M(y, τ , u)−M(y, τ , v)|L2

≤ c6 |u− v| ,
(b) |M(y, τ , u)|L2

≤ c7(1 + |u|).
We note that an example of nontrivial functions a, a0 and M satisfying A1.-A7. are the

functions a(x, t, y, τ , µ, λ) = g(x, t, y, τ) |λ|p−2
λ, a0(x, t, y, τ , µ) = g0(x, t, y, τ)h(µ), M(y, τ , u) =

(Mk(y, τ , u))k≥1 withMk(y, τ , u) = g1(y, τ)λku ≥ 0, where
∑∞
k=1 |λk|

2
<∞, g, g0 ∈ C(QT ;B(RN+1

y,τ )),

g1 ∈ B(RN+1
y,τ ) and h is a continuous Lipschitz function on R. We recall that B(RN+1

y,τ ) is the space

of bounded continuous real-valued functions defined on RN+1
y,τ .

Note that A1.-A3. imply that A(x, t, y, τ , u,Du) ≡ −div a(x, t, y, τ , u,Du) satisfies
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C1.

〈A(x, t, y, τ , u,Du)−A(x, t, y, τ , v,Dv), u− v〉

≥
∫
Q

(a(x, t, y, τ , u,Du)− a(x, t, y, τ , v,Dv)) · (u− v)dx,

C2. 〈A(x, t, y, τ , u,Du), u〉 ≥ c1 |Du|p,
C3. ‖A(x, t, y, τ , u,Du)‖p

′

W−1,p′ (Q)
≤ c′2(1+ |Du|p) for some positive constant c′2 depending only

on QT and on c2,
C4. the mapping θ → 〈A(x, t, y, τ , u+ θv,D(u+ θv)), w〉 : R→ R is a continuous function for

any u, v, w ∈ V .

To simplify the notations we will set throughout

aε(·, uε, Duε)(x, t) = a

(
x, t,

x

ε
,
t

ε
, uε, Duε

)
,

aε0(·, uε)(x, t) = a0

(
x, t,

x

ε
,
t

ε
, uε

)
,

Mε(·, uε)(x, t) = M

(
x

ε
,
t

ε
, uε

)
,

and

Aε(·, uε, Duε)(x, t) = A

(
x, t,

x

ε
,
t

ε
, uε, Duε

)
.

It is to be noted that the just defined functions make sense as trace functions; see e.g. [26, 34]
for the justification. By a strong probabilistic solution of (1.1) we mean an F t-adapted stochastic
process uε such that:

uε ∈ Lp(Ω,F ,P;Lp(0, T ;V )) ∩ L2(Ω,F ,P; C(0, T ;H)),

and for all φ ∈ V and for almost every (ω, t) ∈ Ω× [0, T ] the following holds true

(uε(t), φ) +

∫ t

0

(aε(·, uε(s), Duε(s)), Dφ)ds = (u0, φ)−
∫ t

0

(aε0(·, uε(s)), φ)ds

+

∞∑
k=1

∫ t

0

(Mε
k(·, uε(s)), φ)dWk,

where Mε
k(·, uε(s)) = Mε(·, uε(s))ek. Under the above conditions, it is easily seen that if uε and

vε are two solutions to (1.1) on the same stochastic system (Ω,F ,P),F t,W with the same initial
condition u0, then uε(t) = vε(t) in H almost surely for any t. Thanks to this fact together with
the Yamada-Watanabe’s Theorem (see [24]) and the existence result of martingale solutions in [2],
we see that (1.1) has a unique strong probabilistic solution.

4.2. The a priori estimates. Throughout C will denote a generic constant independent of ε.
We have the following result whose proof can be obtained in a standard way.

Lemma 1. The solution uε of (1.1) satisfies the following inequalities

E sup
0≤t≤T

|uε(t)|4 ≤ C, (4.1)

E
∫ T

0

|Duε(t)|p dt ≤ C. (4.2)
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The following result is very crucial for the proof of the tightness property of uε.

Lemma 2. There exists a constant C > 0 such that

E sup
|θ|≤δ

∫ T

0

|uε(t+ θ)− uε(t)|p
′

V ′ dt ≤ Cδ
1
p−1 ,

for any ε, and δ ∈ (0, 1). Here we assume that uε(t) has zero extension outside the interval [0, T ].

Proof. Let us assume θ ≥ 0 (as we will see in what follows the same argument will apply for θ < 0).
We will denote by p′ the Hölder conjugate of p (i.e., 1

p + 1
p′ = 1). It is clear that

|uε(t+ θ)− uε(t)|p
′

V ′ ≤ C

∣∣∣∣∣
∫ t+θ

t

Aε(·, uε(s), Duε(s))ds

∣∣∣∣∣
p′

V ′

+ C

∣∣∣∣∣
∫ t+θ

t

aε0(·, uε(s))ds

∣∣∣∣∣
p′

V ′

+ C

∣∣∣∣∫ t

0

Mε(·, uε(s))dW
∣∣∣∣p
′

V ′
.

≤ I1(t, θ) + I2(t, θ) + I3(t, θ).

(4.3)

It is not difficult to show that

I1(t, θ) ≤ θ
p′
p

∫ t+θ

t

|Aε(·, uε(s), Duε(s))|p
′
ds.

Therefore

E sup
θ≤δ

∫ T

0

I1(t, θ)dt ≤ Cδ
p′
p E
∫ T

0

∫ t+δ

t

|Duε|p ds.

Thanks to (4.2) we have that

E sup
θ≤δ

∫ T

0

I1(t, θ)dt ≤ Cδ
p′
p . (4.4)

Thanks to A4., we have that

I2(t, θ) ≤ C

(∫ t+θ

t

(1 + |uε(s)|)ds

)p′
,

which implies that

E sup
θ≤δ

∫ T

0

I2(t, θ)dt ≤
∫ T

0

E

(
δ +

∫ t+θ

t

|uε(s)| ds

)p′
dt.

We invoke from this that

E sup
θ≤δ

∫ T

0

I2(t, θ)dt ≤ C

∫ T

0

E

(
δ +

∫ t+δ

t

|uε(s)| ds

)2

dt


p′
2

.

Thanks to (4.1) we deduce from this that

E sup
θ≤δ

∫ T

0

I2(t, θ)dt ≤ Cδp
′
. (4.5)
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Next, by using Burkhölder-Davis-Gundy’s inequality we see that

E sup
0≤θ≤δ

∫ T

0

I3(t, θ)dt ≤ C
∫ T

0

E

(∫ t+δ

t

|Mε(·, uε(s))|2 ds

) p′
2

dt

≤ C

∫ T

0

E

(∫ t+δ

t

|Mε(·, uε(s))|2 ds

)2

dt


p′
4

By condition A7.,

E sup
0≤θ≤δ

∫ T

0

I3(t, θ)dt ≤ C

[∫ T

0

δ2 + E sup
s∈[0,T ]

|uε(s)|4 dt

] p′
4

,

which clearly implies that

E sup
0≤θ≤δ

∫ T

0

I3(t, θ)dt ≤ Cδ
p′
2 . (4.6)

Combining (4.4), (4.5) and (4.6) we infer from (4.3) that

E sup
0≤θ≤δ

∫ T

0

|uε(t+ θ)− uε(t)|p
′
dt ≤ Cδ

p′
p ,

since p′

p ≤ 1. A same inequality holds for θ < 0. This ends the proof of the lemma.

4.3. Tightness property. To prove the tightness of the law of (uε,W ) we will mainly follow the
idea in [2] and in [10]. Let us consider the mappings:

ψε1 : ω ∈ Ω 7→ uε(ω) ∈ Lp(0, T ;H)

ψε2 : ω ∈ Ω 7→W (ω) ∈ C(0, T ;U0).

We denote by S1 = Lp(0, T,H) ( resp., S2 = C(0, T ;U0)) and B(S1) (resp., B(S2)) its Borel
σ-algebra. The mappings

Πε
1(A) = P ◦ ψε1(A) ≡ P((ψε1)−1(A)), A ∈ B(S1),

Πε
2(A) = P ◦ ψε2(A) ≡ P((ψε2)−1(A)), A ∈ B(S2),

and
Πε = Πε

1 ×Πε
2

define families of probability measures on (S1,B(S1)), (S2,B(S2)) and (S = S1 × S2,B(S1 ×
S2)), respectively.

Lemma 3. Let µn, νn be sequences of positive numbers such that µn, νn → 0 as n→∞. The set

Z =

{
z :

∫ T

0

‖Dz‖p dt ≤ L, |z(t)|2 ≤ K a.e. t, sup
|θ|≤µn

∫ T

0

|z(t+ θ)− z(t)|p
′

V ′ ≤ νnM

}
is a compact subset of Lp(0, T ;H).

Proof. The proof is the same as in [2, Proposition 3.1].

The following result is of great importance for the rest of the work.

Lemma 4. The family Πε is tight on S.
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Proof. Let δ > 0 and let Lδ,Kδ,Mδ positive constants depending only on δ to be fixed later. It
follows from Lemma 3 that

Zδ =

{
z :

∫ T

0

|Dz|p dt ≤ Lδ, |z(t)|2 ≤ Kδ a.e. t, sup
|θ|≤µn

∫ T

0

|z(t+ θ)− z(t)|p
′

V ′ ≤ νnMδ

}
is a compact subset of Lp(0, T ;H) for any δ > 0. Here we choose the sequence µn, νn so that∑

1
νn

(µn)
p′
p <∞. We have that

P (uε /∈ Zδ) ≤ P

(∫ T

0

|Duε(s)|p ds ≥ Lδ

)
+ P

(
sup

s∈[0,T ]

|uε(s)|2 ≥ Kδ

)

+ P

(
sup
|θ|≤µn

∫ T

0

|uε(t+ θ)− uε(t)|p
′
dt ≥ νnMδ

)
.

Thanks to Tchebychev’s inequality we have

P(uε /∈ Zδ) ≤
1

Lδ
E
∫ T

0

|Duε(s)|p ds+
1

Kδ
E sup
s∈[0,T ]

|uε(s)|2

+
∑ 1

νnMδ
E sup
|θ|≤µn

∫ T

0

|uε(t+ θ)− uε(t)|p
′
dt.

From Lemmata 1 and 2 it follows that

P(uε /∈ Zδ) ≤
C

Lδ
+

C

Kδ
+

C

Mδ

∑ 1

νn
(µn)

p′
p .

By Choosing

Kδ = Lδ =
6C

δ
and Mδ =

6C
(∑

1
νn

(µn)
p′
p

)
δ

,

we have that

P (uε /∈ Zδ) ≤
δ

2
. (4.7)

The sequence of probability measure Πε
2 = P◦ψε2(A) = P(W ∈ A) for any A ∈ B(S2) is constantly

consisting of one element so it is weakly compact. As C(0, T ;U0) is a Polish space we have that a
sequence of probability measures which is weakly compact is tight. Therefore for any δ > 0 there
exists a compact Kδ ⊂ S2 such that P(W ∈ Kδ) ≥ 1− δ

2 . It follows from this and (4.7) that

P ((uε,W ) ∈ Zδ ×Kδ) ≥ 1− δ.
So we have found that for any δ > 0 there is a compact Zδ ×Kδ ⊂ S such that

Πε(Zδ ×Kδ) ≥ 1− δ.
This prove that the family Πε is tight on S = Lp(0, T ;H)× C(0, T ;U0).

It follows from Lemma 4 and Prokhorov’s theorem that there exists a subsequence Πεj of
Πε converging weakly (in the sense of measure) to a probability measure Π. It emerges from
Skorokhod’s theorem that we can find a new probability space (Ω̄, F̄ , P̄) and random variables
(uεj ,W

εj ), (u0, W̄ ) defined on this new probability space and taking values in S such that:

The probability law of (W εj , uεj ) is Πεj , (4.8)

The probability law of (W̄ , u0) is Π, (4.9)
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W εj → W̄ in C(0, T ;U0) P̄-a.s., (4.10)

uεj → u0 in Lp(0, T ;H) P̄-a.s.. (4.11)

We can see that {W εj} is a sequence of cylindrical Brownian Motions evolving on U . We let F̄ t
be the σ-algebra generated by (W̄ (s), u0(s)), 0 ≤ s ≤ t and the null sets of F̄ . We can show by
arguing as in [2] that W̄ is an F̄ t-adapted cylindrical Wiener process evolving in U . By the same
argument as in [3] we can show that for all φ ∈ V and for almost every (ω, t) ∈ Ω̄ × [0, T ] the
following holds true

(uεj (t), φ) +

∫ t

0

aεj (·, uεj (s), Duεj ) ·Dφds = (u0, φ)−
∫ t

0

a
εj
0 (·, uεj (s))φds

+

∞∑
k=1

∫ t

0

(M
εj
k (·, uεj (s)), φ)dW

εj
k .

(4.12)

5. Preliminary results

In this section we collect some useful results that will be necessary in the homogenization
process. The notation is that of the preceding sections. Before we can go further, let us however

observe that property (3.1) (in Definition 2) still holds true for f in B(Ω; C(QT ;Bp
′,∞
A )) where

Bp
′,∞
A = Bp

′

A ∩ L∞(RN+1
y,τ ) and p′ = p/(p− 1).

With this in mind, the following assumption will be fundamental in the rest of the paper:

ai(x, t, ·, ·, µ, λ) ∈ Bp
′

A and a0(x, t, ·, ·, µ), Mk(·, ·, µ) ∈ B2
A

for any (x, t) ∈ QT and each (µ, λ) ∈ RN+1, 1 ≤ i ≤ N, k ≥ 1
(5.1)

where p′ = p/(p− 1) with 2 ≤ p <∞.
Arguing exactly as in [26, Proposition 4.5] we have the following result.

Proposition 1. Let 1 ≤ i ≤ N . Assume (5.1) holds true. Then for every (ψ0,Ψ) ∈ (A)N+1 and
every (x, t) ∈ QT , the functions (y, τ) 7→ ai(x, t, y, τ , ψ0(y, τ),Ψ(y, τ)), (y, τ) 7→ Mk(y, τ , ψ0(y, τ))
and (y, τ) 7→ a0(x, t, y, τ , ψ0(y, τ)) denoted respectively by ai(x, t, ·, ·, ψ0,Ψ), Mk(·, ·, ψ0) and a0(x, t, ·, ·, ψ0),

lie respectively in Bp
′

A , B2
A and B2

A.

Now, let (ψ0,Ψ) ∈ B(Ω; C(QT ; (A)N+1)). Assuming (5.1), it can be easily shown that the
function (x, t, y, τ , ω) 7→ ai(x, t, y, τ , ψ0(x, t, y, τ , ω),Ψ(x, t, y, τ , ω)), denoted by ai(·, ψ0,Ψ), lies in

B(Ω; C(QT ;Bp
′,∞
A )) (use also Proposition 1). We can then define its trace

(x, t, ω) 7→ ai(x, t, x/ε, t/ε, ψ0(x, t, x/ε, t/ε, ω),Ψ(x, t, x/ε, t/ε, ω)),

from QT ×Ω into R, as an element of L∞(QT ×Ω), which we denote by aεi (·, ψ
ε
0,Ψ

ε). Likewise we
can define the functions a0(·, ψ0) and aε0(·, ψε0), Mk(·, ψ0) and Mε

k(·, ψε0).
The next result allows us to rigorously set the homogenized problem.

Proposition 2. Let 2 ≤ p < ∞ and let 1 ≤ i ≤ N . Assume (5.1) holds. For any (ψ0,Ψ) ∈
B(Ω; C(QT ; (A)N+1)) we have

aεi (·, ψ
ε
0,Ψ

ε)→ ai(·, ψ0,Ψ) in Lp
′
(QT × Ω)-weak Σ as ε→ 0. (5.2)

Let a(·, ψ0,Ψ) = (ai(·, ψ0,Ψ))1≤i≤N . The mapping (ψ0,Ψ) 7→ a(·, ψ0,Ψ) of B(Ω; C(QT ; (A)N+1))

into Lp
′
(QT ×Ω;Bp

′

A )N extends by continuity to a unique mapping still denoted by a, of Lp(QT ×
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Ω; (BpA)N+1) into Lp
′
(QT × Ω;Bp

′

A )N such that

(a(·, u,v)− a(·, u,w)) · (v −w) ≥ c1 |v −w|p a.e. in QT × Ω× RNy × Rτ

‖ai(·, u,v)‖
Lp′ (QT×Ω;Bp

′
A )
≤ c′′2

(
1 + ‖u‖p−1

Lp(QT×Ω;BpA) + ‖v‖p−1
Lp(QT×Ω;(BpA)N )

)
‖ai(·, u,v)− ai(·, u,w)‖

Lp′ (QT×Ω;Bp
′
A )

≤ c0 ‖1 + |u|+ |v|+ |w|‖p−2
Lp(QT×Ω;BpA) ‖v −w‖Lp(QT×Ω;(BpA)N )

(5.3)

|ai(x, t, y, τ , u,w)− ai(x′, t′, y, τ , v,w)| ≤
≤ m(|x− x′|+ |t− t′|+ |u− v|)

(
1 + |u|p−1

+ |v|p−1
+ |w|p−1

)
a.e. in QT × Ω× RNy × Rτ

for all u, v ∈ Lp(QT × Ω;BpA), v,w ∈ Lp(QT × Ω; (BpA)N ) and all (x, t), (x′, t′) ∈ QT , where the
constant c′′2 depends only on c2 and on QT .

Proof. As discussed above before the statement of the proposition, we know that the function

ai(·, ψ0,Ψ) lies in B(Ω; C(QT ;Bp
′,∞
A )). Since Property (3.1) (in Definition 2) still holds for f ∈

B(Ω; C(QT ;Bp
′,∞
A )) the convergence result (5.2) follows at once. Besides, it is immediate from the

definition of the function ai(·, ψ0,Ψ) (for (ψ0,Ψ) ∈ B(Ω; C(QT ; (A)N+1))) and from some obvious
arguments that the remainder of the proposition follows from [34, Proposition 3.1].

It emerges from the preceding proposition, the following important corollary.

Corollary 1. (1) Let (uε)ε∈E be a sequence in L2(QT × Ω) such that uε → u0 in L2(QT × Ω) as
E 3 ε→ 0, where u0 ∈ Lp(QT ×Ω). Let Ψ ∈ B(Ω; C(QT ; (A)N )), and finally let 1 ≤ i ≤ N . Then,
as E 3 ε→ 0,

aεi (·, uε,Ψε)→ ai(·, u0,Ψ) in Lp
′
(QT × Ω)-weak Σ.

(2) Let ψ0 ∈ B(Ω)⊗ C∞0 (QT ) and ψ1 ∈ B(Ω)⊗ C∞0 (QT )⊗A∞. For ε > 0, let

Φε = ψ0 + εψε1, (5.4)

i.e., Φε(x, t, ω) = ψ0(x, t, ω)+εψ1(x, t, x/ε, t/ε, ω) for (x, t, ω) ∈ QT×Ω. Let (uε)ε∈E be a sequence
in L2(QT ×Ω) such that uε → u0 in L2(QT ×Ω) as E 3 ε→ 0 where u0 ∈ L2(QT ×Ω). Then, as
E 3 ε→ 0, one has

(i) aεi (·, uε, DΦε)→ ai(·, u0, Dψ0 +Dyψ1) in Lp
′
(QT × Ω)-weak Σ.

Moreover, if (vε)ε∈E is a sequence in Lp(QT × Ω) such that vε → v0 in Lp(QT × Ω)-weak Σ as
E 3 ε→ 0 where v0 ∈ Lp(QT × Ω;BpA), then, as E 3 ε→ 0,

(ii)

∫
QT×Ω

aεi (·, uε, DΦε)vεdxdtdP→
∫∫

QT×Ω×∆(A)

âi(·, u0, Dψ0 + ∂ψ̂1)v̂0dxdtdPdβ.

Proof. We just sketch the proof since it is very similar to the one of [26, Corollaries 4.7-4.8]. For
part (1), let f ∈ Lp(QT ×Ω;A), and let (ψj)j be a sequence in B(Ω)⊗C∞0 (QT ) such that ψj → u0
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in Lp(QT × Ω) as j →∞. We have∫
QT×Ω

aεi (·, uε,Ψε)fεdxdtdP−
∫∫
QT×Ω×∆(A)

âi(·, u0, Ψ̂)f̂dxdtdPdβ
=
∫
QT×Ω

[aεi (·, uε,Ψε)− aεi (·, u0,Ψ
ε)] fεdxdtdP

+
∫
QT×Ω

[
aεi (·, u0,Ψ

ε)− aεi (·, ψj ,Ψε)
]
fεdxdtdP

+
∫
QT×Ω

aεi (·, ψj ,Ψε)fεdxdt−
∫∫
QT×Ω×∆(A)

âi(·, u0, Ψ̂)f̂dxdtdPdβ
= Aε +Bε,j + Cε,j

where
Aε =

∫
QT×Ω

[aεi (·, uε,Ψε)− aεi (·, u0,Ψ
ε)] fεdxdtdP,

Bε,j =
∫
QT×Ω

[
aεi (·, u0,Ψ

ε)− aεi (·, ψj ,Ψε)
]
fεdxdtdP,

Cε,j =
∫
QT×Ω

aεi (·, ψj ,Ψε)fεdxdt−
∫∫
QT×Ω×∆(A)

âi(·, u0, Ψ̂)f̂dxdtdPdβ.

As far as Aε is concerned, we have

|Aε| ≤
∫
QT×Ω

m (|uε − u0|)
(

1 + |uε|p−1
+ |u0|p−1

+ |Ψε|p−1
)
|fε| dxdtdP.

From the convergence result uε → u0 in L2(QT ×Ω), we infer that m (|uε − u0|)→ 0 a.e. in QT ×Ω
as E 3 ε → 0, so that, by Egorov’s theorem, Aε → 0 as E 3 ε → 0. As for Cε,j , we see that the

function (x, t, ω) 7→ ai(x, t, ·, ·, ψj(x, t, ω),Ψ(x, t, ·, ·, ω)) belongs to B(Ω; C(QT ;Bp
′,∞
A )), in such a

way that we use the convergence result (5.2) to get

Cε,j →
∫∫

QT×Ω×∆(A)

(
âi(·, ψj , Ψ̂)− âi(·, u0, Ψ̂)

)
f̂dxdtdPdβ ≡ Ĉj as E 3 ε→ 0.

But as ∣∣∣Ĉj∣∣∣ ≤ ∫∫
QT×Ω×∆(A)

m
(∣∣ψj − u0

∣∣)(1 +
∣∣ψj∣∣p−1

+ |u0|p−1
+
∣∣∣Ψ̂∣∣∣p−1

) ∣∣∣f̂ ∣∣∣ dxdtdPdβ,
arguing as before we get Ĉj → 0 as j →∞. We also have limE3ε→0 limj→∞Bε,j = 0, so that part
(1) follows from the equality

limE3ε→0

(∫
QT×Ω

aεi (·, uε,Ψε)fεdxdtdP−
∫∫
QT×Ω×∆(A)

âi(·, u0, Ψ̂)f̂dxdtdPdβ
)

= limE3ε→0Aε + limE3ε→0 limj→∞Bε,j + limE3ε→0 limj→∞ Cε,j = 0.

Part (2) is a mere consequence of part (1).

Another important result which will be needed is the

Lemma 5. Let (uε)ε be a sequence in L2(QT × Ω) such that uε → u0 in L2(QT × Ω) as ε → 0
where u0 ∈ L2(QT × Ω). Then for each positive integer k we have ,

Mε
k(·, uε)→Mk(·, u0) in L2(QT × Ω)-weak Σ as ε→ 0.

Proof. First of all, let u ∈ B(Ω; C(QT )); then the function (x, t, y, τ , ω) 7→ Mk(y, τ , u(x, t, ω)) lies

in B(Ω; C(QT ;B2,∞
A )), so that we have Mε

k(·, u)→Mk(·, u) in L2(QT ×Ω)-weak Σ as ε→ 0. Next,

since B(Ω; C(QT )) is dense in L2(QT × Ω), it can be easily shown that

Mε
k(·, u0)→Mk(·, u0) in L2(QT × Ω)-weak Σ as ε→ 0. (5.5)
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Now, let f ∈ L2(Ω;L2(QT ;A)); then∫
QT×Ω

Mε
k(·, uε)fεdxdtdP−

∫∫
QT×Ω×∆(A)

M̂k(·, u0)f̂dxdtdPdβ

=

∫
QT×Ω

(Mε
k(·, uε)−Mε

k(·, u0))fεdxdtdP +

∫
QT×Ω

Mε
k(·, u0)fεdxdtdP

−
∫∫

QT×Ω×∆(A)

M̂k(·, u0)f̂dxdtdPdβ.

Using the inequality∣∣∣∣∫
QT×Ω

(Mε
k(·, uε)−Mε

k(·, u0))fεdxdtdP
∣∣∣∣ ≤ C ‖uε − u0‖L2(QT×Ω) ‖f

ε‖L2(QT×Ω)

in conjunction with (5.5) leads at once to the result.

Remark 4. From the Lipschitz property of the function Mk we may get more information on the
limit of the sequence Mε

k(·, uε). Indeed, since |Mε
k(·, uε)−Mε

k(·, u0)| ≤ C |uε − u0|, we deduce the
following convergence result:

Mε
k(·, uε)→ M̃k(u0) in L2(QT × Ω) as ε→ 0

where M̃k(u0)(x, t, ω) =
∫

∆(A)
M̂k(s, s0, u0(x, t, ω))dβ, so that we can derive the existence of a

subsequence of Mε
k(·, uε) that converges a.e. in QT × Ω to M̃k(u0). For the next sections we will

need the following function: M̃(u0) = (M̃k(u0))k≥1.

We end this section with some useful spaces. Let

F1,p
0 = Lp(Ω̄× (0, T ) ;W 1,p

0 (Q))× Lp(QT × Ω̄;V)

and
F∞0 = [B(Ω̄)⊗ C∞0 (QT )]× [B(Ω̄)⊗ C∞0 (QT )⊗ E ]

where V = BpAτ (Rτ ;B1,p
#Ay

) and E = %τ (A∞τ )⊗ [%y(A∞y /R)], and %τ (resp. %y) denotes the canonical

mapping of BpAτ (resp. BpAy ) onto BpAτ (resp. BpAy ). F1,p
0 is a Banach space under the norm

‖(u0, u1)‖F1,p
0

= ‖u0‖Lp(Ω̄×(0,T );W 1,p
0 (Q)) + ‖u1‖Lp(QT×Ω̄;V) .

Moreover, since B(Ω̄) is dense in Lp(Ω̄), it is an easy matter to check that F∞0 is dense in F1,p
0 .

6. Homogenization results

Let (uεj ) be the sequence determined in Section 4 and satisfying Eq. (4.12). It therefore satisfies
the a priori estimates (4.1)-(4.2), so that, by the diagonal process, one can find a subsequence of

(uεj )j not relabeled, which weakly converges in Lp(Ω̄;Lp(0, T ;W 1,p
0 (Q))) to u0 determined by the

Skorokhod’s theorem and satisfying (4.11). Next, due to the estimate (4.1) (which yields the
uniform integrability of the sequence (uεj )j with respect to ω) and the Vitali’s theorem, we deduce
from (4.11) that, as j →∞,

uεj → u0 in L2(QT × Ω̄). (6.1)

Then, from Theorem 4, we infer the existence of a function u1 ∈ Lp(Ω̄;Lp(QT ;BpAτ (Rτ ;B1,p
#Ay

)))

such that
∂uεj
∂xi

→ ∂u0

∂xi
+
∂u1

∂yi
in Lp(QT × Ω̄)-weak Σ (1 ≤ i ≤ N) (6.2)
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hold when εj → 0.
With this in mind, the following global homogenization result holds.

Proposition 3. The couple (u0, u1) ∈ F1,p
0 determined above solves the following variational prob-

lem 
−
∫
QT×Ω̄

u0ψ
′
0dxdtdP̄ +

∫∫
QT×Ω̄×∆(A)

â0(·, u0)ψ0dxdtdP̄dβ
+
∫∫
QT×Ω̄×∆(A)

â(·, u0, Du0 + ∂û1) · (Dψ0 + ∂ψ̂1)dxdtdP̄dβ

=
∫

Ω̄

∫ T
0

(
M̃(u0), ψ0

)
dW̄dP̄ for all (ψ0, ψ1) ∈ F∞0 .

(6.3)

Proof. In what follows, we omit the index j from the sequence εj . So we will merely write ε for εj .
With this in mind, let Φ = (ψ0, % ◦ψ1) ∈ F∞0 with ψ0 ∈ B(Ω̄)⊗C∞0 (QT ), ψ1 ∈ B(Ω̄)⊗C∞0 (QT )⊗
[A∞τ ⊗ (A∞y /R)]. Define Φε as in (5.4) (see Corollary 1). Then, Φε ∈ B(Ω̄)⊗ C∞0 (QT ) and, using
Φε as a test function in the variational formulation of (4.12) we get∫

Ω̄

(uε(T ),Φε(T )) dP̄ =

∫
Ω̄

(
u0,Φε(0)

)
dP̄ +

∫
QT×Ω̄

uε
∂Φε
∂t

dxdtdP̄

−
∫
QT×Ω̄

aε(·, uε, Duε) ·DΦεdxdtdP̄

−
∫
QT×Ω̄

aε0(·, uε)ΦεdxdtdP̄

+

∫
Ω̄

∫ T

0

(Mε(·, uε),Φε) dW εdP̄,

or equivalently, taking into account the fact that Φε(0) = Φε(T ) = 0,

−
∫
QT×Ω̄

uε
∂Φε
∂t

dxdtdP̄ +

∫
QT×Ω̄

aε(·, uε, Duε) ·DΦεdxdtdP̄ (6.4)

+

∫
QT×Ω̄

aε0(·, uε)ΦεdxdtdP̄ =

∫ T

0

∫
Ω̄

(Mε(·, uε),Φε) dW εdP̄.

We consider the terms in (6.4) respectively.
Firstly we have∫

QT×Ω̄

uε
∂Φε
∂t

dxdtdP̄ =

∫
QT×Ω̄

uε
∂ψ0

∂t
dxdtdP̄ + ε

∫
QT×Ω̄

uε

(
∂ψ1

∂t

)ε
dxdtdP̄

+

∫
QT×Ω̄

uε

(
∂ψ1

∂τ

)ε
dxdtdP̄.

But in view of (4.11) we have that uε → u0 in L2(QT × Ω̄) (strong). Moreover, since (∂ψ1/∂τ)ε →
M(∂ψ1/∂τ) = 0 in L2(QT × Ω̄)-weak, we deduce from the preceding strong convergence result
that ∫

QT×Ω̄

uε
∂Φε
∂t

dxdtdP̄→
∫
QT×Ω̄

u0
∂ψ0

∂t
dxdtdP̄.

Next, from Corollary 1, it follows that aε0(·, uε)→ a0(·, u0) in L2(QT × Ω̄)-weak Σ, so that∫
QT×Ω̄

aε0(·, uε)ΦεdxdtdP̄→
∫∫

QT×Ω̄×∆(A)

â0(·, u0)ψ0dxdtdP̄dβ.
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As far as the term
∫ T

0

∫
Ω̄

(Mε(·, uε),Φε) dW εdP̄ is concerned, thanks to Remark 4 we get at once∫
Ω̄

∫ T

0

(Mε(·, uε),Φε) dW εdP̄→
∫

Ω̄

∫ T

0

(
M̃(u0), ψ0

)
dW̄dP̄.

The last term is more involved. Indeed, by the monotonicity argument, it emerges that∫
QT×Ω̄

(aε(·, uε, Duε)− aε(·, uε, DΦε)) · (Duε −DΦε)dxdtdP̄ ≥ 0. (6.5)

Owing to the estimate (4.2) (denoting by E the mathematical expectation on (Ω̄, F̄ , P̄)) we infer
that

sup
ε>0

E ‖aε(·, uε, Duε)‖p
′

Lp′ (QT )N
<∞,

so that, from Theorem 2, there exist a function χ ∈ Lp′(QT × Ω̄;Bp
′

A )N and a subsequence of ε not

relabeled, such that aε(·, uε, Duε) → χ in Lp
′
(QT × Ω̄)N -weak Σ as ε → 0. We therefore pass to

the limit in (6.5) (as ε→ 0) using Corollary 1 to get∫∫
QT×Ω̄×∆(A)

(χ̂− â(·, u0,DΦ)) · (Du− DΦ)dxdtdP̄dβ ≥ 0 (6.6)

for any Φ ∈ F∞0 where Du = Du0 + ∂û1 (u = (u0, u1)) and DΦ = Dψ0 + ∂ψ̂1. By a density and

continuity arguments (6.6) still holds for Φ ∈ F1,p
0 . Hence by taking Φ = u + λv for v = (v0, v1) ∈

F1,p
0 and λ > 0 arbitrarily fixed, we get

λ

∫∫
QT×Ω̄×∆(A)

(χ̂− â(·, u0,Du + λDv)) · DvdxdtdP̄dβ ≥ 0 ∀v ∈ F1,p
0 .

Therefore by a mere routine, we deduce that χ = a(·, u0, Du0 +Dyu1). Putting all the above facts
together we are led to (6.3), and the proof is completed.

The problem (6.3) is equivalent to the following system:∫∫
QT×Ω̄×∆(A)

â(·, u0,Du) · ∂ψ̂1dxdtdP̄dβ = 0 for all ψ1 ∈ B(Ω̄)⊗ C∞0 (QT )⊗ E (6.7)

and 
−
∫
QT×Ω̄

u0ψ
′
0dxdtdP̄ +

∫∫
QT×Ω̄×∆(A)

â(·, u0,Du) ·Dψ0dxdtdP̄dβ
+
∫∫
QT×Ω̄×∆(A)

â0(·, u0)ψ0dxdtdP̄dβ =
∫

Ω̄

∫ T
0

(M̃(u0), ψ0)dW̄dP̄
for all ψ0 ∈ B(Ω̄)⊗ C∞0 (QT ).

(6.8)

As far as (6.7) is concerned, let (x, t) ∈ QT and let (r, ξ) ∈ R×RN be freely fixed. Let π(x, t, r, ξ)
be defined by the cell problem

π(x, t, r, ξ) ∈ V = BpAτ (Rτ ;B1,p
#Ay

) :∫
∆(A)

â(·, r, ξ + ∂π̂(x, t, r, ξ)) · ∂ŵdβ = 0 for all w ∈ V. (6.9)

Then from the properties of the function a, it follows by [18, Chap. 2] that Eq. (6.9) admits at
least a solution. Now if π1 ≡ π1(x, t, r, ξ) and π2 ≡ π2(x, t, r, ξ) are two solutions of (6.9), then we
must have ∫

∆(A)

(â(·, r, ξ + ∂π̂1)− â(·, r, ξ + ∂π̂2)) · (∂π̂1 − ∂π̂2) dβ = 0,
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and so, by assumption A2., ∂π̂1 = ∂π̂2, so that ∂π1

∂yi
= ∂π2

∂yi
(1 ≤ i ≤ N) since ∂iπ̂j = G1

(
∂πj
∂yi

)
for j = 1, 2. Hence π1 = π2 since they belong to V. Next, taking in particular r = u0(x, t, ω) and
ξ = Du0(x, t, ω) with (x, t, ω) arbitrarily chosen in QT×Ω̄, and then choosing in (6.7) the particular
test functions ψ1(x, t, ω) = φ(ω)ϕ(x, t)w ((x, t, ω) ∈ QT × Ω̄) with ϕ ∈ C∞0 (QT ), φ ∈ B(Ω̄) and
w ∈ E , and finally comparing the resulting equation with (6.9) (note that E is dense in V), the
uniqueness of the solution to (6.7) tells us that u1 = π(·, u0, Du0), where the right-hand side of the
preceding equality stands for the function (x, t, ω) 7→ π(x, t, u0(x, t, ω), Du0(x, t, ω)) from QT × Ω̄
into V.

We have just proved the

Proposition 4. The solution of the variational problem (6.7) is unique.

Let us now deal with the variational problem (6.8). For that, set

q(x, t, r, ξ) =

∫
∆(A)

â(·, r, ξ + ∂π̂(x, t, r, ξ))dβ

and

q0(x, t, r) =

∫
∆(A)

â0(·, r)dβ; M̃(r) =

∫
∆(A)

M̂(·, r)dβ

for (x, t) ∈ QT and (r, ξ) ∈ R × RN arbitrarily fixed. Substituting u1 = π(·, u0, Du0) in (6.8)
and choosing there the particular test functions ψ0(x, t, ω) = ϕ(x, t)φ(ω) for ϕ ∈ C∞0 (QT ) and
φ ∈ B(Ω̄) we get by Itô’s formula, the macroscopic homogenized problem, viz. du0 = (div q(·, ·, u0, Du0)− q0(·, ·, u0)) dt+ M̃(u0)dW̄ in QT

u0 = 0 on ∂Q× (0, T )
u0(x, 0) = u0(x) in Q.

(6.10)

In view of (6.3), (6.10) admits at least a solution. Moreover the following uniqueness result holds.

Proposition 5. Let u0 and u#
0 be two solutions of (6.10) on the same probabilistic system

(Ω̄, F̄ , P̄), W̄ , F̄ t with the same initial condition u0. We have that u0 = u#
0 P̄-almost surely.

Proof. From the definition of q0 and M̃ , it is not difficult to see that they are Lipschitz continuous
with respect to the variable u0. It also follows from the definition of the operator q that it satisfies
properties similar to A1.-A3.. Now the proof is quite standard but we give the detail for sake of

completeness. The functions u0 and u#
0 given in the proposition satisfy

dw0 =
(

div q(x, t, u0, Du0)− div q(x, t, u#
0 , Du

#
0 )
)
dt−

(
q0(x, t, u0)− q0(x, t, u#

0 )
)
dt

+(M̃(u0)− M̃(u#
0 ))dW̄ ,

where w0 = u0 − u#
0 . For sake of simplicity we will omit the dependence on the variables x, t in

the following computations. Thanks to Itô’s formula we have

d|w0|2 = 2〈div(q(u0, Du0)− q(u#
0 , Du

#
0 )), w0〉dt− 2(q0(u0)− q0(u#

0 ), w0)dt

+|M̃(u0)− M̃(u#
0 )|2L2

dt+ 2(M̃(u0)− M̃(u#
0 ), w0)dW̄ .

Due to the monotonicity of div(q(u,Du)), the Lipschitz continuity of q0(.) and M̃ we have that

d|w0|2 + C|Dw0|p ≤ C|w0|2dt+ 2(M̃(u0)− M̃(u#
0 ), w0)dW̄ .
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Note that we also used the Cauchy-Schwartz’ inequality to get the above estimate. Integrating
over [0, t] and taking the mathematical expectation to both sides of the latter equations yield

Ē|w0(t)|2 ≤ CĒ
∫ t

0

|w0(s)|2ds.

Now we can conclude the proof of the proposition by invoking the Gronwall’s lemma.

Remark 5. The pathwise uniqueness result in Proposition 5 and Yamada-Watanabe’s Theorem
(see, for instance, [24]) implies the existence of a unique strong probabilistic solution of (6.10) on
a prescribed probabilistic system (Ω,F ,P),F t,W .

We are now in a position to formulate the main homogenization result.

Theorem 5. Assume that A1.-A7. hold. Suppose moreover that (5.1) holds true. Let 2 ≤ p <∞.
For each ε > 0 let uε be the unique solution of (1.1) on a given stochastic system (Ω,F ,P),F t,W
defined as in Section 4. Then as ε → 0, the whole sequence uε converges in probability to u0

in L2(QT ) (i.e., ||uε − u0||L2(QT ) converges to zero in probability) where u0 is the unique strong
probabilistic solution of (6.10).

The main ingredients for the proof of this theorem are the pathwise uniqueness for (6.10) and
the following criteria for convergence in probability whose proof can be found in [13].

Lemma 6. Let X be a Polish space. A sequence of a X-valued random variables {xn;n ≥ 0}
converges in probability if and only if for every subsequence of joint probability laws, {νnk,mk ; k ≥
0}, there exists a further subsequence which converges weakly to a probability measure ν such that

ν ({(x, y) ∈ X ×X;x = y}) = 1.

Let us set Lp = LP (0, T,H), Lp,2 = Lp(0, T,H) × Lp(0, T,H), SW = C(0, T : U0), and finally
S = Lp × Lp ×SW . For any S ∈ B(Lp) we set Πε(S) = P(uε ∈ S) and ΠW = P(W ∈ S) for any
S ∈ B(SW ). Next we define the joint probability laws :

Πε,ε′ = Πε ×Πε′

νε,ε
′

= Πε ×Πε′ ×ΠW .

The following tightness property holds.

Lemma 7. The collection {νε,ε′ ; ε, ε′ ∈ E} (and hence any subsequence {νεj ,ε
′
j : εj , ε

′
j ∈ E′}) is

tight on S.

Proof. The proof is very similar to Lemma 4. For any δ > 0 we choose the sets Zδ and Kδ exactly
as in the proof of Lemma 4 with appropriate modification on the constants Kδ, Lδ,Mδ so that
Πε(Zδ) ≥ 1− δ

4 and ΠW (Kδ) ≥ 1− δ
2 for every ε ∈ E. Now let us take Kδ = Zδ×Zδ×Kδ which is

compact in S; it is not difficult to see that {νε,ε′(Kδ) ≥ (1− δ
4 )2(1− δ

2 ) ≥ 1− δ for all ε, ε′. This
completes the proof of the lemma.

Proof of Theorem 5. To prove Theorem 5 we will mainly use the idea in [10]. Lemma 7 implies that

there exists a subsequence from {νεj ,ε
′
j} still denoted by {νεj ,ε

′
j} which converges to a probability

measure ν. By Skorokhod’s theorem there exists a probability space (Ω̄, F̄ , P̄) on which a sequence
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(uεj , uε′j ,W
j) is defined and converges almost surely in Lp,2×SW to a couple of random variables

(u0, v0, W̄ ). Furthermore, we have

Law(uεj , uε′j ,W
j) = νεj ,ε

′
j ,

Law(u0, v0, W̄ ) = ν.

Now let Zuεj = (uεj ,W
j), Z

uε′
j = (uε′j ,W

j), Zu0 = (u0, W̄ ) and Zv0 = (v0, W̄ ). We can infer from

the above argument that
(

Πεj ,ε
′
j

)
converges to a measure Π such that

Π(·) = P̄((u0, v0) ∈ ·).

As above we can show that Zuεj and Z
uε′
j satisfy (4.12) and that Zu and Zv satisfy (6.10) on

the same stochastic system (Ω̄, F̄ , P̄), F̄ t, W̄ , where F̄ t is the filtration generated by the couple
(u0, v0, W̄ ). Since we have the uniqueness result above, then we see that u0 = v0 almost surely
and u0 = v0 in Lp(0, T ;H). Therefore

Π
(
{(x, y) ∈ Lp,2;x = y}

)
= P̄ (u0 = v0 in Lp(0, T ;H)) = 1.

This fact together with Lemma 6 imply that the original sequence (uε) defined on the original
probability space (Ω,F ,P),F t,W converges in probability to an element u0 in the topology of
Lp(0, T ;H). By a passage to the limit’s argument as in the previous subsection it is not difficult to
show that u0 is the unique solution of (6.10) (on the original probability system (Ω,F ,P),F t,W ).
This ends the proof of Theorem 5.

7. A corrector-type result

Our aim in this section is to prove some general corrector-type results.
Here and henceforth, we set, for a function v = (v0, v1) ∈ F1,p

0 , Dyv = Dv0 + Dyv1 and
Dv = Dv0 + ∂v̂1 = GN1 (Dyv). The following result holds.

Theorem 6. Let the hypotheses be those of Theorem 5. There exists a continuous nondecreasing
function ν : [0,∞) → [0,∞) with ν(0) = 0 such that for all Φ = (ψ0, %(ψ1)) with ψ0 ∈ Lp(Ω ×
(0, T );W 1,p

0 (Q)) and ψ1 ∈ Lp(Ω × (0, T );W 1,p
0 (Q)) ⊗ [Aτ ⊗ (A1

y/R)], if we define Φε as in (5.4)
(see Corollary 1), then

lim sup
ε→0

‖Duε −DΦε‖Lp(QT×Ω)N ≤ ν
(
‖Dyu− DyΦ‖Lp(QT×Ω;BpA)N

)
. (7.1)

Proof. The proof follows closely the one of its homologue in [26]. We repeat it here for reader’s
convenience. Let F 1

0 be the vector space of all Φ as in the statement of Theorem 6. Endowed
with an obvious topology, F 1

0 has F∞0 as a dense subspace (this is straightforward). Thus, we first
establish (7.1) for Φ in F∞0 . Owing to A2., for Φ ∈ F∞0 ,

c1 ‖Duε −DΦε‖pLp(QT×Ω)N

≤
∫
QT×Ω

(aε(·, uε, Duε)− aε(·, uε, DΦε) ·D(uε − Φε)dxdtdP ≡ Bε.

As shown in the proof of Proposition 3, we see that, as ε→ 0,

Bε →
∫∫

QT×Ω×∆(A)

(â(·, u0,Du)− â(·, u0,DΦ)) · D(u− Φ)dxdtdPdβ ≡ B,
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where u = (u0, u1) is as in Proposition 3. It follows that

lim sup
ε→0

‖Duε −DΦε‖Lp(QT×Ω)N ≤
(
B

c1

) 1
p

.

But using Hölder’s inequality together with the properties of the function a (see especially assump-
tion A6. in Section 4), we get

B ≤ c0 ‖1 + |u0|+ |Du|+ |DΦ|‖p−2
Lp(QT×Ω×∆(A)) ‖D(u− Φ)‖2Lp(QT×Ω×∆(A))N ,

and by the obvious inequality |DΦ| ≤ |Du− DΦ|+ |Du|,

B ≤ c0
(
‖1 + |u0|+ 2 |Du0|‖Lp(QT×Ω×∆(A)) + ‖D(u− Φ)‖Lp(QT×Ω×∆(A))N

)p−2

×
×‖D(u− Φ)‖2Lp(QT×Ω×∆(A))N .

Now, set α = ‖1 + |u0|+ 2 |Du0|‖Lp(QT×Ω×∆(A)) and

ν(r) =
c0

c
1
p

1

r
2
p (α+ r)

1− 2
p for r ≥ 0.

Then the function ν is independent of Φ and satisfies hypotheses stated in Theorem 6 (this is
straightforward by observing that ‖D(u− Φ)‖Lp(QT×Ω×∆(A))N = ‖Dyu− DyΦ‖Lp(QT×Ω;BpA)N ).

Whence (7.1) is shown for Φ in F∞0 .
Now, let Φ ∈ F 1

0 . Let (Ψj)j be a sequence in F∞0 such that Ψj → Φ in F 1
0 as j →∞. Set

Ψj = (ϕ0j , %(ϕ1j)) and Φ = (ψ0, %(ψ1)),

and define Ψj,ε = ϕ0j + εϕε1j and Φε = ψ0 + εψε1 as in (5.4). We have

lim sup
ε→0

‖Duε −DΦε‖Lp(QT×Ω)N ≤ lim sup
ε→0

‖Duε −DΨj,ε‖Lp(QT×Ω)N +

lim sup
ε→0

‖DΨj,ε −DΦε‖Lp(QT×Ω)N

≤ ν
(
‖Dyu− DyΨj‖Lp(QT×Ω;BpA)N

)
+ lim sup

ε→0
‖DΨj,ε −DΦε‖Lp(QT×Ω)N .

Now, since Ψj → Φ in F 1
0 , we get DΨj → DΦ in Lp(QT × Ω ×∆(A))N as j → ∞. On the other

hand, it can be easily shown that lim
j→∞

lim
ε→0
‖DΨj,ε −DΦε‖Lp(QT×Ω)N = 0. Hence, taking the limit

(as j →∞) of both sides of the last inequality above, we are led to (7.1).

All the ingredients are now available to state the corrector result.

Corollary 2. Let the hypotheses be as in Theorem 6. Assume moreover that

u1 ∈ Lp(Ω× (0, T );W 1,p
0 (Q))⊗ [%(Aτ ⊗ (A1

y/R))].

Then, as ε→ 0,

uε − u0 − εuε1 → 0 in Lp(Ω× (0, T );H1(Q)).

Proof. It is clear that, on one hand, εuε1 → 0 in Lp(QT × Ω) as ε → 0; and on the other hand,
due to the tightness property, it can be shown that the convergence result (6.1) still holds with
L2(QT ×Ω) replaced by Lp(Ω× (0, T );L2(Q)), so that we have uε−u0 → 0 in Lp(0, T ;L2(Q)) a.s.,
and hence uε− u0 → 0 in Lp(Ω× (0, T );L2(Q)). Thus uε− u0− εuε1 → 0 in Lp(Ω× (0, T );L2(Q))
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as ε→ 0. It remains to show that D(uε−u0− εuε1)→ 0 in Lp(Ω× (0, T );L2(Q))N as ε→ 0. But,
if we set Φε = u0 + εuε1, then applying (7.1), we get

lim sup
ε→0

‖Duε −DΦε‖Lp(QT×Ω)N = 0

since ν
(
‖Dyu− DyΦ‖Lp(QT×Ω;BpA)N

)
= ν(0) = 0, and so lim

ε→0
‖Duε −DΦε‖Lp(QT×Ω)N = 0. Thus

D(uε − u0 − εuε1) → 0 in Lp(QT × Ω)N , and the result follows from the continuous embedding
Lp(Ω× (0, T );L2(Q))→ Lp(QT × Ω). We are therefore done.

Remark 6. If we assume that uε → u0 in Lp(QT × Ω), then the corrector result is finer and
expresses as follows:

uε − u0 − εuε1 → 0 in Lp(Ω× (0, T );W 1,p(Q)) as ε→ 0.

This results holds especially in the deterministic setting since we have in that case the strong
convergence result uε → u0 in Lp(QT ). In the stochastic framework, the above results fails in
general, and we can not have a better result than the one in Corollary 2.

8. Some concrete applications of the abstract homogenization result

In this section we give some applications of the results of Section 6 to concrete situations that
occurred in some physical setting.

Example 1. The homogenization of (1.1) can be achieved under the periodicity assumption:

(5.1)1 The functions ai(x, t, ·, ·, µ, λ), a0(x, t, ·, ·, µ) and Mk(·, ·, µ) are both periodic of period 1
in each scalar coordinate, for any fixed (x, t) ∈ QT , (µ, λ) ∈ R × RN , and 1 ≤ i ≤ N and
k ≥ 1.
This leads to (5.1) with A = Cper(Y × Z) = Cper(Y )� Cper(Z) (the product algebra, with
Y = (0, 1)N and Z = (0, 1)), and hence BrA = Lrper(Y × Z) for 1 ≤ r ≤ ∞.

Example 2. The above functions in (5.1)1 are both Besicovitch almost periodic in (y, τ). This
amounts to (5.1) with A = AP (RN+1

y,τ ) = AP (RNy )� AP (Rτ ) (AP (RNy ) the Bohr almost periodic

functions on RNy ).

Example 3. The homogenization problem for (1.1) can be considered under the assumption

(5.1)2 ai(x, t, ·, ·, µ, λ) is weakly almost periodic while the functions a0(x, t, ·, ·, µ) and Mk(·, ·, µ)
are almost periodic in the Besicovitch sense. This yields (5.1) with A = WAP (RNy ) �
WAP (Rτ ) (WAP (RNy ), the algebra of continuous weakly almost periodic functions on

RNy ; see e.g., [12]).

Example 4 (Homogenization in the Fourier-Stieltjes algebra). Let us first and foremost define
the Fourier-Stieltjes algebra on RN . The Fourier-Stieltjes algebra on RN is defined as the closure
in BUC(RN ) (the bounded uniformly continuous functions on RN ) of the space

FS∗(RN ) =

{
f : RN → R, f(x) =

∫
RN

exp(ix · y)dν(y) for some ν ∈M∗(RN )

}
whereM∗(RN ) denotes the space of complex valued measures ν with finite total variation: |ν| (RN ) <
∞. We denote it by FS(RN ).

Since by [12] any function in FS∗(RN ) is a weakly almost periodic continuous function, we have
that FS(RN ) ⊂ WAP (RN ). It is a well known fact that FS(RN ) is an ergodic algebra which is
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translation invariant (this follows from the fact that FS∗(RN ) is translation invariant), so that
all the hypotheses of Theorem 3 are satisfied with any algebra A = FS(RN ) � Aτ , Aτ being any
algebra wmv on Rτ .

This being so, we aim at solve homogenization problem for (1.1) under the assumption

(5.1)3 ai(x, t, ·, ·, µ, λ) ∈ Bp
′

Aτ
(Rτ ;Bp

′

FS(RNy )), a0(x, t, ·, ·, µ), Mk(·, ·, µ) ∈ B2
Aτ

(Rτ ;B2
FS(RNy )) for

any (µ, λ) ∈ R× RN , and for all (x, t) ∈ QT , (1 ≤ i ≤ N)

where Bp
′

FS(RNy ) denotes the closure of the algebra FS(RNy ) with respect to the seminorm
‖·‖p′ , and Aτ is any arbitrary algebra wmv on Rτ . We are then led to (5.1) with A =

FS(RN )�Aτ .

Remark 7. It should be stressed that the problems solved in Examples 3 and 4 are new in the
literature as far as the homogenization of SPDEs is concerned.
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[19] G. Nguetseng, Homogenization structures and applications I, Z. Anal. Anwen. 22 (2003) 73-107.

[20] G. Nguetseng, M. Sango, J.L. Woukeng, Reiterated ergodic algebras and applications, Commun. Math. Phys
300 (2010) 835-876.

[21] G. Nguetseng, J.L. Woukeng, Deterministic homogenization of parabolic monotone operators with time depen-
dent coefficients, Electron. J. Differ. Equ. 2004 (2004) 1-23.
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