The Druggable Antimalarial Target PfDXR: Overproduction Strategies and Kinetic Characterization

Jessica L Goble\textsuperscript{a}, Hailey Johnson\textsuperscript{a}, Jaco de Ridder\textsuperscript{b}, Linda L Stephens\textsuperscript{a}, Abraham Louw\textsuperscript{b}, Gregory L Blatch\textsuperscript{c} and Aileen Boshoff*,\textsuperscript{a,}\textsuperscript{a}

\textsuperscript{a}Biomedical Biotechnology Research Unit, Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown 6140, South Africa; \textsuperscript{b}Department Biochemistry, University of Pretoria, Pretoria 0001, South Africa; \textsuperscript{c}School of Biomedical & Health Sciences, Victoria University, Melbourne, Australia

Abstract: \textit{Plasmodium falciparum} 1–deoxy–D–xylulose–5–phosphate reductoisomerase (PfDXR) is a key enzyme in the synthesis of isoprenoids in the malaria parasite, using a pathway that is absent in the human host. This enzyme is receiving attention as it has been validated as a promising drug target. However, an impediment to the characterisation of this enzyme has been the inability to obtain sufficient quantities of the enzyme in a soluble and functional form. The expression of PfDXR from the codon harmonised coding region, under conditions of strongly controlled transcription and induction, resulted in a yield of 2 – 4 mg/L of enzyme, which is 8 to 10-fold higher than previously reported yields. The kinetic parameters \(K_m\), \(V_{max}\) and \(k_{cat}\) were determined for PfDXR using an NADPH–dependent assay. Residues K295 and K297, unique to species of \textit{Plasmodium} and located in the catalytic hatch region; and residues V114 and N115, essential for NADPH binding, were mutated to resemble those found in \textit{E. coli} DXR. Interestingly, these mutations decreased the substrate affinity of PfDXR to values resembling that of \textit{E. coli} DXR. PfDXR-K295N, K297S and PfDXR-V114A, N115G demonstrated a decreased ability to turnover substrate by 4-fold and 2-fold respectively in comparison to PfDXR. This study indicates a difference in the role of the catalytic hatch in capturing substrate by species of \textit{Plasmodium}. The results of this study could contribute to the development of inhibitors of PfDXR.

Keywords: \textit{Plasmodium falciparum}, DXR; anti–malarial, heterologous expression, molecular chaperones.

INTRODUCTION

\textit{Plasmodium falciparum} 1–deoxy–D–xylulose–5–phosphate reductoisomerase (PfDXR) is a vital enzyme in the 2–C–methyl–D–erythritol–4–phosphate (MEP) pathway for the production of isoprenoids in the malaria parasite. This pathway is different to that of the mevalonate pathway in the human host, making this enzyme an attractive anti–malarial drug target [1]. Recently PfDXR was genetically validated using a single cross–over strategy, and the enzyme was found to be essential for intraerythrocytic development of the parasite, further validating this enzyme as a chemotherapeutic target [2]. Malaria is a devastating parasitic disease caused by vector–transmission of five different species of \textit{Plasmodium} protozoa, with \textit{P. falciparum} being the most deadly strain [3].

The heterologous production of proteins in a bacterial expression system has been largely documented in the literature because of simplicity, rapid growth, and successful overproduction of the target protein [4]. However, a major limitation is the formation of insoluble non–functional clusters of protein known as inclusion bodies, which accumulate due to the attraction of exposed hydrophobic regions of mis-

Copyright © 2013 Bentham Science Publishers

0929-8665/13 $58.00+0.00
Co-expression of molecular chaperones from both harmonized coding region. The strategy also included the purification of soluble active PfDXR using a codon optimized gene [13].

In this study, we demonstrate the successful overproduction of PfDXR in a host, wherein the cell’s endogenous chaperone system can become overloaded, thereby limiting the amount of soluble protein that can be produced [5]. The overproduction of molecular chaperones has been shown to enhance the yield of numerous target proteins [7, 16, 17], however this technique has been found to be highly protein and chaperone specific [5].

In prokaryotes, the most physiologically important and ubiquitous chaperones can be divided into two groups: DnaK–DnaJ–GrpE and GroEL–GroES, which have distinct but co-operative functions [16]. DnaK (prokaryotic Hsp70 homologue) requires the co-chaperone DnaJ (prokaryotic Hsp40 homologue) and nucleotide exchange factor GrpE [18]. The mechanism of action relies on the binding and hydrolysis of ATP [18]. DnaK binds substrates via hydrophobic protein sequences of four to five residues flanked by basic residues [19]. GroEL (Hsp60 homologue) forms a three-dimensional barrel structure containing a hydrophilic interior, with GroES (Hsp10) forming the lid [20]. Substrates bind GroEL via hydrophobic interactions on the interior rim of the hydrophilic chamber [21] and require subsequent binding of GroES and ATP to trigger the release of the protein into the cavity.

In 2002 the crystal structure of E. coli DXR (EcDXR) revealed the enzyme to be a homodimeric V-shaped molecule [22]. In the same year, the crystal structure of EcDXR in complex with NADPH was solved; and revealed the presence of a flexible loop that acted as a catalytic hatch that closed over the active site securing the substrate, and played an important role in the enzymatic reaction and substrate specificity [23]. Recently the crystal structure of PfDXR demonstrated an intrinsic flexibility of the enzyme to house inhibitors in the active site [24]. A model of PfDXR has been generated previously that showed structural similarity between E. coli and PfDXR, but the model was not publicly available [25]. This presented an opportunity to produce a more rigorously validated PfDXR model and it was found that amino acid residues in the catalytic hatch were highly conserved amongst DXR homologues, with the exception of residues K295 and K297, that are unique to species of Plasmodium [26]. The conserved amino acid residues A35 and G36 of EcDXR are positioned to accommodate the 2’ phosphate moiety of NADPH [22], and these are substituted for valine and asparagine respectively within species of Plasmodium.

In this study, we demonstrate the successful overproduction and purification of soluble active PfDXR using a codon harmonized coding region. The strategy also included the co-expression of molecular chaperones from both E. coli and P. falciparum. We show how codon harmonization, coupled to tight control of transcription, greatly improved heterologous protein production. The kinetic parameters of the purified PfDXR enzyme were also determined and compared to EcDXR. Residues unique to Plasmodium and present in the catalytic hatch and involved in the binding of NADPH to PfDXR were mutated by site-directed mutagenesis to resemble those found in EcDXR. A three-dimensional structure of monomeric PfDXR in complex with NADPH and an inhibitor (FR900098, an N-acetyl derivative of fosmidomycin) is shown in (Fig. 1) and it highlights the positions of these selected residues (V114, N115, K295 and K297). To our knowledge, these particular amino acid residues unique to PfDXR have not been mutated previously and the results could play a role in the rational design of novel DXR inhibitors.

![Figure 1. The three-dimensional structure of PfDXR in complex with an inhibitor and cofactor. Stick representation of a monomer of PfDXR with bound inhibitor FR900098 (an N-acetyl derivative of fosmidomycin) shown in green and NADPH in black, both denoted as stick models (pdb accession code: 3AUA [24]). Residues that are part of the catalytic hatch, K295 and K297 (coloured blue and represented as sticks), and residues involved in the binding of NADPH, V114 and N115 (coloured red and represented as sticks), were mutated to resemble EcDXR. The diagram was rendered using PyMOL [53].](image)

**MATERIALS AND METHODS**

**Materials**

All reagents were obtained from Sigma Chemicals (USA), Roche Molecular Biochemicals (USA) or Merck Chemicals (Germany) unless otherwise stated. The plasmid encoding the codon optimized PfDXR was kindly donated by Dr H. Jomaa (Justus–Liebig–Universität Giessen, Germany). Table 1 gives an overview of the plasmids used in this study, including origins of replications, inducers and sources. For the purpose of this study, the protein produced from the codon harmonized PfDXR coding region will be named hPfDXR, and the protein produced from the codon optimized PfDXR coding region will be named oPfDXR.

**Codon Harmonisation of the Coding Region of PfDXR**

The codon harmonization algorithm used in this study was implemented as a PHP–script driven web interface and
is available at (www.sami.org.za/equalize). This algorithm follows a codon frequency matching approach whereby codons are assigned on the basis of closest matching codon preference fraction when comparing the source and target codon preference tables. Each wild-type codon is substituted with a synonymous codon having the closest codon preference match between the source and target codon preference tables. This approach preserves the pause site profile of a wild-type gene in the synthetic gene designed for heterologous expression. Pause sites are predicted by calculating pausing propensity of a sliding window by applying a modified codon adaptation index (CAI) approach.

The coding region of PfDXR (AF111813) was harmonized using the highly expressed E. coli codon preference as target codon preference table. The Shine–Delgarno (SD) removal module of the website indicated no putative false target codon preference tables. Each wild-type codon is substituted with a synonymous codon having the closest codon preference match between the source and target codon preference tables. This approach preserves the pause site profile of a wild-type gene in the synthetic gene designed for heterologous expression. Pause sites are predicted by calculating pausing propensity of a sliding window by applying a modified codon adaptation index (CAI) approach.

The coding region of PfDXR (AF111813) was harmonized using the highly expressed E. coli codon preference as target codon preference table. The Shine–Delgarno (SD) removal module of the website indicated no putative false target codon preference tables. Each wild-type codon is substituted with a synonymous codon having the closest codon preference match between the source and target codon preference tables. This approach preserves the pause site profile of a wild-type gene in the synthetic gene designed for heterologous expression. Pause sites are predicted by calculating pausing propensity of a sliding window by applying a modified codon adaptation index (CAI) approach.

The coding region of PfDXR (AF111813) was harmonized using the highly expressed E. coli codon preference as target codon preference table. The Shine–Delgarno (SD) removal module of the website indicated no putative false target codon preference tables. Each wild-type codon is substituted with a synonymous codon having the closest codon preference match between the source and target codon preference tables. This approach preserves the pause site profile of a wild-type gene in the synthetic gene designed for heterologous expression. Pause sites are predicted by calculating pausing propensity of a sliding window by applying a modified codon adaptation index (CAI) approach.

The coding region of PfDXR (AF111813) was harmonized using the highly expressed E. coli codon preference as target codon preference table. The Shine–Delgarno (SD) removal module of the website indicated no putative false target codon preference tables. Each wild-type codon is substituted with a synonymous codon having the closest codon preference match between the source and target codon preference tables. This approach preserves the pause site profile of a wild-type gene in the synthetic gene designed for heterologous expression. Pause sites are predicted by calculating pausing propensity of a sliding window by applying a modified codon adaptation index (CAI) approach.

The coding region of PfDXR (AF111813) was harmonized using the highly expressed E. coli codon preference as target codon preference table. The Shine–Delgarno (SD) removal module of the website indicated no putative false target codon preference tables. Each wild-type codon is substituted with a synonymous codon having the closest codon preference match between the source and target codon preference tables. This approach preserves the pause site profile of a wild-type gene in the synthetic gene designed for heterologous expression. Pause sites are predicted by calculating pausing propensity of a sliding window by applying a modified codon adaptation index (CAI) approach.

The coding region of PfDXR (AF111813) was harmonized using the highly expressed E. coli codon preference as target codon preference table. The Shine–Delgarno (SD) removal module of the website indicated no putative false target codon preference tables. Each wild-type codon is substituted with a synonymous codon having the closest codon preference match between the source and target codon preference tables. This approach preserves the pause site profile of a wild-type gene in the synthetic gene designed for heterologous expression. Pause sites are predicted by calculating pausing propensity of a sliding window by applying a modified codon adaptation index (CAI) approach.

Construction of the Plasmid Containing the Codon Harmonized Coding Region of PfDXR

The codon harmonised DXR coding region was assembled from synthetic oligonucleotides and/or PCR products by GENART. The fragment was inserted into a pGA15 vector (Kan') using KpnI and SacI restriction sites. The plasmid DNA was purified (PureYield™ Plasmid Midiprep, Promega) from transformed bacteria and the final 0804945–DXR–pGA15 construct was verified by DNA sequencing. The harmonised coding region for PfDXR was amplified by polymerase chain reaction (PCR) from plasmid 0804945–DXR–pGA15. The forward primer 5'-GGA TCC GCC GGT ATC AAG AAA C-3' and reverse primer 5'-GTC GAC TTA AGA GCT GTT GTG-3' were synthesised and purchased from IDT and incorporated BamHI and SalI restriction sites in the forward and reverse primers (underlined) respectively. The amplified product was then inserted into the pGEM®-T (Promega) plasmid vector from which the PfDXR encoding segment was restricted using BamHI and SalI restriction enzymes and ligated into the pQE30 plasmid vector (Qiagen) (Ampr) via compatible overhangs. The integrity of the resultant pQE30–hPfDXR plasmid construct was confirmed by restriction analysis, as well as DNA sequencing.

Site-directed Mutagenesis of the Coding Region for PfDXR

Mutations were performed on codons encoding conserved residues identified in a multiple sequence alignment of full-length DXR homologues, including the N-terminal leader sequence of P. falciparum. The double amino acid substitutions generated in this study were K295N, K297S and V114A, N115G. The double amino acid substitutions generated in this study were K295N, K297S and V114A, N115G. The mutagenic primers, containing the relevant double amino acid substitutions, were used for PCR-based site-directed mutagenesis. The integrity of the resultant plasmid constructs (Table 1) was confirmed by DNA sequencing.

Heterologous Production of PfDXR

E. coli XL1 Blue cells were transformed with either pQE31–oPfDXR or pQE30–hPfDXR plasmid DNA. For co-expression studies, E. coli XL1 Blue cells previously transformed with the appropriate chaperone plasmid DNA (Table 1) were transformed with either pQE31–oPfDXR or pQE30–hPfDXR plasmid. Sterile LB broth (25 ml) containing the appropriate antibiotic (Table 1) was inoculated from a single colony and incubated at 37°C with shaking for 12–16 hours. The culture was diluted into fresh broth containing the appropriate antibiotic to a final volume of 250 ml, and the culture was allowed to grow until mid-log phase (OD600 0.3–0.4). Protein production was then monitored by the collection of hourly and overnight samples both in the absence and the presence of the protein inducers (Table 1). For co-expression studies, the chaperones were induced at mid-log

---

Table 1. Plasmids Encoding the Target Proteins of Interest, as well as the Molecular Chaperones and lac Repressor Investigated in this STUDY

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Description</th>
<th>Inducer</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>pQE31–oPfDXR</td>
<td>CoEl ori, codon optimized coding region for PfDXR, Ampr</td>
<td>1 mM IPTG</td>
<td>H.Jomaa</td>
</tr>
<tr>
<td>pQE30–hPfDXR</td>
<td>CoEl ori, codon harmonised coding region for PfDXR, Ampr</td>
<td>1 mM IPTG</td>
<td>This study</td>
</tr>
<tr>
<td>pQE30–hPfDXR- K295N, K297S</td>
<td>CoEl ori, codon harmonised coding region for PfDXR- K295N, K297S, Ampr</td>
<td>1 mM IPTG</td>
<td>This study</td>
</tr>
<tr>
<td>pQE30–hPfDXR-V114A, N115G</td>
<td>CoEl ori, codon harmonised coding region for PfDXR-V114A, N115G, Ampr</td>
<td>1 mM IPTG</td>
<td>This study</td>
</tr>
<tr>
<td>pGro7</td>
<td>p15A ori, GroEL–GroES, Camr</td>
<td>0.2 % L–Arabinose</td>
<td>Takara Bio Inc.</td>
</tr>
<tr>
<td>pKJE7</td>
<td>p15A ori, DnaK–DnaJ–GrpE, Camr</td>
<td>0.2 % L–Arabinose</td>
<td>Takara Bio Inc.</td>
</tr>
<tr>
<td>pMRBAD–PHsp70–1</td>
<td>p15A ori, PHsp70–1, Kanr</td>
<td>0.2 % L–Arabinose</td>
<td>A Shonhai</td>
</tr>
<tr>
<td>pREP4</td>
<td>p15A ori, lacI, Kanr</td>
<td>None</td>
<td>Qiagen</td>
</tr>
</tbody>
</table>
phase (OD$_{600}$ 0.3–0.4) and the PfDXR proteins were induced an hour later. The whole-cell extracts were normalized to OD$_{600}$ and the appropriate aliquots were run on 12% SDS–PAGE gels. The protein bands were visualized using Coomassie brilliant blue staining. Western analysis was performed to confirm production of the PfDXR, GroEL and PfHsp70 proteins using anti–His (Amersham Biosciences, USA), anti–GroEL (Sigma, USA) and anti–PfHsp70 antibodies respectively. Detection of these proteins was achieved using the ECL, western–based chemiluminescence kit (Amersham Biosciences, USA) according to manufacturer’s instructions.

**Purification of PfDXR**

Protein production was induced for 3 hours and overnight growth, following which cells were resuspended in 1/20th culture volume lysis buffer (100 mM Tris, pH 8.0, 300 mM NaCl, 10 mM imidazole, 1 mM PMSF). Cells were frozen overnight, and thawed in the presence of 1 mg/ml lysozyme. Mild sonication was carried out and the cellular debris was removed by centrifugation at 16 000 g for 20 minutes in a bench top centrifuge (Eppendorf, Germany). Aliquots of the supernatant and pellet were used to determine the solubility of the PfDXR proteins. For hPfDXR, hPfDXR-K295N, K297S and hPfDXR-V114A, N115G purifications, *E. coli* M15 cells containing pREP4 were transformed with each of the respective plasmids. For oPfDXR purification, *E. coli* XL1 Blue cells expressing pGro7 were transformed with pQE31–oPfDXR. Protein production was induced for 3 hours and soluble PfDXR was purified using a nickel–chelating Sepharose fast flow matrix (Pharmacia Biotech, Sweden), using a competitive elution strategy (100 mM Tris, 300 mM NaCl, 500 mM imidazole). The eluted protein was then buffer–exchanged into 100 mM Tris–HCl (pH 7.5) containing 300 mM NaCl via size exclusion chromatography at 4°C using a Sephadex G–25 Medium (Amersham Biosciences) column (10 cm x 1 cm). For oPfDXR purification, additional steps were included to reduce the amount of co–purified GroEL, whereby 25 mM ATP and 0.5 ml of prepared denatured protein were added to the soluble protein before affinity purification, as described by Rohman and Harrison–Lavoie [27]. The quantity of protein recovered was determined using the Bradford protein assay [28], with bovine serum albumin (BSA) as a standard, and the protein purity was qualitatively assessed using SDS–PAGE analysis.

**NADPH–dependent Enzyme Assay**

The assay was performed in a reaction mixture containing 100 mM Tris–HCl (pH 7.5), 1 mM MnCl$_2$, 0.3 mM deoxyxylulose phosphate (DXP), 0.3 mM NADPH, in a final volume of 200 μl [29]. The reaction was initiated by adding 20 μg/ml PfDXR or 2 μg/ml EcDXR enzyme and the oxidation of NADPH was monitored at 340nm using a PowerWave™ Microplate Spectrophotometer adjusted to 37°C. Activity of DXR was expressed in units/mg of protein where 1 unit is defined as the amount of enzyme that causes oxidation of 1 μmol of NADPH per minute. This experiment was done in triplicate for four separate batches of PfDXR protein. Lineweaver–Burk plots were used to calculate the kinetic constants for both EcDXR and PfDXR.

**RESULTS**

The Levels of Soluble PfDXR Improved After Co–production of *E. coli* and Malarial Chaperones

SDS–PAGE and western analyses revealed that the oPfDXR protein (protein produced from the codon optimised coding region of PfDXR) was insoluble after overnight growth (Fig. 2A). In an attempt to enhance the solubility of PfDXR, the coding region was harmonized. However, hPfDXR (protein produced from the codon harmonised coding region of PfDXR) was not over–produced and resulted in decreased protein levels compared to oPfDXR (Fig. 2B). The codon harmonized coding region was less efficiently expressed than the codon optimized coding region, and PfDXR remained insoluble. The ability of heterologous molecular chaperones to enhance solubility was assessed and the co–production of GroELS with oPfDXR resulted in the successful solubilization of ~50% of the PfDXR protein (Fig. 3A), while co–production of DnaKJE did not enhance solubility (Fig. 3B). The solubility of hPfDXR was enhanced by the co–production of GroELS, and western analysis revealed that ~80% of the protein was soluble (Fig. 4A). The amount of hPfDXR produced was considerably less than the amount of oPfDXR produced. In a similar manner to oPfDXR, co–production of the DnaKJE family did not enhance the solubility of hPfDXR (Fig. 4B). Despite an enhancement in the levels of hPfDXR after co–production of the homologous molecular chaperone PfHsp70-1 (Fig. 5A), in comparison to GroEL, the protein was insoluble (Fig. 5B).

**Purification of PDXR**

The largest yield of soluble oPfDXR was achieved during co–expression of GroELS, however, the purification was complicated by the co–elution of GroEL with PfDXR. Contaminating GroEL was effectively reduced by the addition of denatured protein to the soluble protein fraction during purification, but western analysis confirmed that oPfDXR was only partially purified as contaminating GroEL was still present (data not shown).

The tight control of gene expression was the final strategy employed to enhance expression and solubility of PfDXR. The transcription of the hPfdxr gene was halted by the presence of the lac repressor protein in the *E. coli* host expression system. Based on SDS–PAGE analysis, almost no target protein was observed before IPTG induction; whilst high levels of protein were evident after IPTG induction (Fig. 6A). The high levels of soluble protein (Fig. 6B, lane S) facilitated purification using nickel affinity chromatography. Most of the protein was present in fractions 10 – 12 and the purity was assessed to be ~90% using SDS–PAGE analysis; and western analysis confirmed the identity of His–tagged PfDXR (Fig. 6B). In conclusion, between 2 and 4 mg of functional hPfDXR target protein per litre of culture was purified using a lac repressor co–expression strategy that tightly controlled transcription.

**Kinetic analysis of PfDXR**

DXR catalyzes the second step of the MEP pathway whereby the substrate DOXP undergoes intramolecular rear-
rangement and reduction to result in MEP; this reaction step utilizes NADPH, as well as a divalent cation [30]. DOXP is not only an intermediate in the biosynthesis of isopentenyl pyrophosphate and dimethylallyl diphosphate; it is also involved in the biosynthesis of thiamin in vitamin B1 synthesis and pyridoxine in vitamin B6 synthesis [31, 32].

Enzymatic activity was assessed in the presence of various divalent cations. Literature demonstrates that numerous cofactor studies have been performed for other DXR enzymes [33, 34, 35], however to date, cofactor studies using PfDXR have only been examined in silico [25]. Enzyme activity was quantified in the presence of three cofactors; PfDXR was only able to utilize Mn$^{2+}$ and Mg$^{2+}$ as a divalent cation but not Co$^{2+}$, which resulted in only trace amounts of enzyme activity (Table 2). EcDXR was able to utilize all three cofactors, with Mn$^{2+}$ resulting in the greatest activity (Table 2).

After the purification of PfDXR, an enzymatic activity of 1.04 ± 0.04 µmol/min/mg was reported for PfDXR, in the presence of Mn$^{2+}$, while EcDXR demonstrated a 10-fold greater activity of 9.15 ±0.05 µmol/min/mg, which is similar to that reported in the literature [29]. In order to assess the

Figure 2. Analysis of PfDXR solubility in E. coli cells. SDS–PAGE analysis of the solubility study of E. coli [pQE31–oPfDXR] after overnight induction (O/N) (A), and E. coli [pQE30–hPfDXR] after 3 hours of induction (B), where protein samples were separated into the soluble (S) and insoluble (IS) fractions after cell lysis. Western analysis was performed using anti–His antibodies for PfDXR. M = marker (kDa), C = purified EcDXR of 44.6 kDa, oPfDXR = 48.4 kDa, and hPfDXR = 46.7 kDa.

Figure 3. Analysis of oPfDXR solubility after co–expression with the E. coli molecular chaperones DnaKJE and GroEL–ES. SDS–PAGE analysis of the solubility study of E. coli [pQE31–oPfDXR][pGro7] (A), and E. coli [pQE31–oPfDXR][pKJE7] (B), where oPfDXR was co–expressed with GroEL–ES and DnaKJE chaperones respectively. Protein samples were separated into the soluble (S) and insoluble (IS) fractions after cell lysis. Western analysis was performed using anti–His antibodies for PfDXR and anti–GroEL antibodies for the detection of GroEL. M = marker (kDa), DnaK = 70 kDa, GroEL = 60 kDa, DnaJ = 40 kDa, GrpE = 25 kDa, GroES = 10 kDa.
kinetics of PfDXR, $V_{\text{max}}$, $K_m$ and $k_{\text{cat}}$ values were calculated. The kinetics were determined by varying the substrate (DXP) concentrations and not the NADPH concentrations. $K_m$ values that have been reported in the literature for EcDXR range from 0.0031 mM to 0.25 mM [36]. In this work, we report a $K_m$ value of 0.294 mM for EcDXR and 0.067 mM for PfDXR; these values being consistent with the literature for EcDXR, while there appears to be no kinetic parameters reported for PfDXR [36]. The maximum velocity of the reaction whereby DXR converts DXP to MEP was determined to be 1.33 $\mu$mol/min/mg and 11.04 $\mu$mol/min/mg for PfDXR and EcDXR respectively (Table 2). In the case of both enzymes, the average specific activity is approximately equal to the maximum velocity of the reaction. This is due to sub–saturating levels of substrate in the assay, meaning that the maximal velocity of the reaction is not reached.

The overall turnover rate ($k_{\text{cat}}$) was quantified for both enzymes. The literature reports values for other DXR enzymes in the range of 0.04 to 38 s$^{-1}$ for organisms including Mycobacterium tuberculosis, Synechocystis sp., Arabidopsis thaliana and E. coli [37-40]. In this work, values of 17.12 and 2.063 units per second (s$^{-1}$) were reported for EcDXR and PfDXR respectively. The catalytic efficiency of EcDXR is only 2-fold greater than that of PfDXR, due to the significantly greater substrate affinity of PfDXR.

Rational Protein Engineering of PfDXR

Numerous site–directed mutagenesis studies have been undertaken on DXR (almost exclusively on E. coli) including residues responsible for cofactor binding, structural residues that support the catalytic residues, residues that interact with

---

### Table 2. Summary of PfDXR-K295N, K297S and PfDXR-V114A, N115G Kinetic Parameters, $V_{\text{max}}$ ($\mu$mol/min/mg), $K_m$ (mM) and $k_{\text{cat}}$ (min$^{-1}$), as well as the Divalent Cation Preferences for PfDXR and EcDXR

<table>
<thead>
<tr>
<th></th>
<th>EcDXR</th>
<th>PfDXR</th>
<th>PfDXR-K295N, K297S</th>
<th>PfDXR-V114A, N115G</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Mg^{2+}$ ($\mu$mol/min/mg)</td>
<td>5.94 ± 0.19</td>
<td>0.65 ± 0.02</td>
<td>0.65 ± 0.02</td>
<td>0.65 ± 0.02</td>
</tr>
<tr>
<td>$Co^{2+}$ ($\mu$mol/min/mg)</td>
<td>3.98 ± 0.13</td>
<td>0.30 ± 0.03</td>
<td>0.30 ± 0.03</td>
<td>0.30 ± 0.03</td>
</tr>
<tr>
<td>$Mn^{2+}$ ($\mu$mol/min/mg)</td>
<td>9.15 ± 0.05</td>
<td>1.04 ± 0.04</td>
<td>1.04 ± 0.04</td>
<td>1.04 ± 0.04</td>
</tr>
<tr>
<td>$V_{\text{max}}$</td>
<td>11.04 $\mu$mol/min/mg</td>
<td>1.33 $\mu$mol/min/mg</td>
<td>0.59 $\mu$mol/min/mg</td>
<td>0.369 $\mu$mol/min/mg</td>
</tr>
<tr>
<td>$K_m$</td>
<td>0.294 mM</td>
<td>0.067 mM</td>
<td>0.245 mM</td>
<td>0.461 mM</td>
</tr>
<tr>
<td>$k_{\text{cat}}$</td>
<td>17.12 $^{-1}$</td>
<td>2.063 $^{-1}$</td>
<td>0.915 $^{-1}$</td>
<td>0.572 $^{-1}$</td>
</tr>
<tr>
<td>$k_{\text{cat}}/K_m$</td>
<td>0.058</td>
<td>0.031</td>
<td>0.0037</td>
<td>0.0022</td>
</tr>
</tbody>
</table>

---

Figure 4. Analysis of hPfDXR solubility after co–expression with the E. coli molecular chaperones DnaKJE and GroEL–ES. SDS–PAGE analysis of the solubility study of E. coli [pQE30–hPfDXR][pGro7] (A) and E. coli[pQE30–hPfDXR][pKJE7] (B), where hPfDXR was co–expressed with GroEL–ES and DnaKJ–GrpE chaperones respectively. Protein samples were separated into the soluble (S) and insoluble (IS) fractions after cell lysis. Western analysis was performed using anti–His antibodies for PfDXR and anti–GroEL antibodies for the detection of GroEL. M = marker (kDa), C = control (purified EcDXR of 44.6 kDa), DnaK = 70 kDa, GroEL = 60 kDa, DnaJ = 40 kDa, GrpE = 25 kDa, GroES = 10 kDa.
Figure 5. Analysis of hPfDXR induction and solubility after co-expression with the malarial chaperone PfHsp70–1. SDS–PAGE analysis of the induction study of E. coli [pQE30–hPfDXR] [pMRBAD–PfHsp70–1] (A), where hPfDXR was co–expressed with PfHsp70–1. Whole cells were monitored before L–arabinose and IPTG induction (0), after 3 hours of induction (3) and after overnight induction (O/N). SDS–PAGE analysis of the solubility study of E. coli [pQE30–hPfDXR][pMRBAD–PfHsp70–1] (B), where protein samples were separated into the soluble (S) and insoluble (IS) fractions after cell lysis. Western analysis was performed using anti–His antibodies for PfDXR. M = marker (kDa), C = control (purified EcDXR = 44.6 kDa), PfHsp70–1 = 70 kDa.

Figure 6. Purification by nickel affinity chromatography of hPfDXR produced during co–expression with the lac repressor protein. SDS–PAGE analysis of the induction study of E. coli [pQE30–hPfDXR][pREP4] (A), where hPfDXR was co–expressed with lac repressor protein. Whole cells were monitored before IPTG induction (0), after 3 hours of induction (3) and after overnight induction (O/N). Analysis of protein before and after optimized purification of hPfDXR (B), protein samples were separated into total lysate after sonication (L), the soluble (S) and insoluble (IS) fractions after cell lysis to determine solubility. Fractions 10 – 12 contained the highest concentration of PfDXR obtained after competitive gradient elution with 500 mM imidazole. The concentration of protein in fraction 11 = 0.8 mg/ml. Western analysis was performed using anti–His antibodies for PfDXR. M = marker (kDa), C = control (purified EcDXR of 44.6 kDa).

the substrate and residues of the catalytic hatch [22,23, 25, 41- 43], however no literature is available for PfDXR. In this study, two double amino acid substitutions were carried out on PfDXR to generate a modified PfDXR in which the active site more closely resembled that of EcDXR. One of the double amino acid substitutions targeted the NADPH binding residues of PfDXR, V114 and N115, to resemble the EcDXR equivalents of A35 and G36. This mutation resulted in a 2–fold decrease in maximum velocity of the reaction (Vmax), and a 4-fold increase in Km (Table 2). Interestingly, these mutations increased the Km to values resembling that of EcDXR. Substituting the large basic residues K295 and K297, unique to species of Plasmodium and located in the catalytic hatch region, to small polar asparagine and serine equivalents found in EcDXR, resulted in a 4–fold decrease in maximum reaction velocity and 7–fold increase in the Km (Table 2). A decreased ability to turnover substrate by both PfDXR-K295N, K297S and PfDXR-V114A, N115G stresses the importance of these residues in securing the substrate and cofactor.
DISCUSSION

Codon bias can be problematic during the production of heterologous proteins in *E. coli*, and codon harmonization was one of the approaches taken in this study to produce soluble PfDXR. The method used for harmonization was such that there was preservation of the pause site profile of the native sequence; with the intention that the correct arrangements of the protein secondary structures would be maintained. Analysis of the sequence alignment of the codon optimized versus the codon harmonised coding regions for PfDXR revealed that they share 79 % sequence identity, while the protein sequence was preserved. Codon harmonization resulted in a decrease in the amount of PfDXR produced; however neither codon optimization nor harmonization resulted in the production of soluble PfDXR, confirming the recalcitrant nature of the PfDXR protein.

Often the host cell’s chaperone system becomes overloaded during heterologous protein production, limiting the amount of soluble protein that can be produced [5]. The over-production of molecular chaperones has been used successfully for a wide range of proteins; however it is difficult to predict which chaperone family will recognise a particular protein. *E. coli* GroE/LS recognised PfDXR as a substrate and significantly enhanced its solubility, while DnaKJE failed to enhance the solubility of the protein. Due to the size of the cavity formed by GroEL, this chaperone family has an upper size limit for substrates of ~60 kDa [44], therefore allowing PfDXR (47 kDa) to act as a substrate.

The *E. coli* chaperones did not completely solubilise the PfDXR proteins and thus homologous molecular chaperones were used. The production of hPfDXR was enhanced by the co-expression of the *P. falciparum* homologue of DnaK (PfHsp70–1), however western analysis confirmed that all of the target protein was essentially insoluble. PfHsp70–3 (NP 701211) and PfHsp70–y (MAL13P1.540) are potentially localized to the apicoplast [45], but PfHsp70–y is unlikely to be an apicoplast protein due to the presence of a KDEL ER retrieval sequence [46], and the PfHsp70 used in this study was cytosolic PfHsp70–1 [45] and therefore may not be suitable when trying to express the apicoplast target protein PfDXR. There is evidence to suggest that PfHsp70–1 interacts with numerous apicoplast proteins [47, 48]. Based on the results in this study, however, the most probable molecular chaperone folding partner may be the *P. falciparum* homologue of GroEL (PfHsp60) localised in the apicoplast [49].

The most successful strategy to improve expression and solubility was the use of the *lac* repressor protein, which halts basal transcription in the *E. coli* host expression system, and this system was used for the purification of hPfDXR. It is possible that this system led to the greatest control of the levels of PfDXR, and the enzyme was induced at the correct time during growth of the cells to enable the production of soluble protein. The purity of hPfDXR was assessed to be ~90 % using SDS–PAGE analysis and the yield of 2 – 4 mg of hPfDXR per litre of culture was 8 to 10–fold higher than previously reported yields [50].

After the purification of PfDXR, the enzymatic activity was assessed in order to determine whether folded, functional protein was produced. In this study, PfDXR demonstrated a specific activity 10-fold less than that of EcDXR, which is similar to literature [29]. According to an online enzyme database [36], specific activities of 19.5 and 5.6 mol/min/mg for *Zymomonas mobilis* and *Arabidopsis thaliana* DXR (ZmDXR and AtDXR) respectively have been reported [51, 52]. While one group has reported a specific activity for *P. falciparum* DXR, the units were not specified and protein purity was only 80 % [29].

Cofactor studies of PfDXR have been examined in silico [25]. Takenoya [35] examined the effect of cofactors on the activity of the hyperthermophile *Thermotoga maritima* DXR (tDXR) and the enzyme could utilize either Mn²⁺ or Mg²⁺ as a divalent cation, but not Co²⁺. Previous studies concluded that the EcDXR enzyme could utilize Mn²⁺, Co²⁺ and Mg²⁺, with Mn²⁺ generating the highest activity [34], and the results were confirmed in this study. PfDXR was only able to utilize Mn²⁺ or Mg²⁺ as a divalent cation, but not Co²⁺, which is similar to tDXR.

The results of this study emphasize the significance of the basic, large K295 and K297 residues present in the catalytic hatch of PfDXR; the substitution of these residues resulted in a considerable increase in the *Kₘ*, suggesting a decrease in affinity for the substrate. Substitution of these residues on EcDXR may enhance the substrate affinity of this enzyme. PfDXR-V114A,N115G also displayed an increase in the *Kₘ* relative to the unmodified PfDXR, which cannot be accounted for in terms of a decrease in affinity for the substrate, since these residues are involved in cofactor binding and not directly involved in substrate recognition and catalysis. Mutation of these residues may have had an effect on the overall structure of the enzyme. However, the kinetic parameters should have been measured in the presence of varying NADPH concentrations in order to determine the effect of these mutations on cofactor binding. PfDXR-K295N,K297S and PfDXR-V114A,N115G demonstrated a decreased ability to turnover substrate by 4-fold and 2-fold, respectively, compared to PfDXR. The difference in turnover number between these proteins could be due to the maintenance of the catalytic hatch in PfDXR-V114A, N115G and a reduction in the efficiency of binding NADPH while maintaining substrate affinity.

PfDXR-K295N, K297S demonstrated a 24-fold decrease in catalytic efficiency due to a decrease in substrate affinity coupled to a decreased turnover rate. This reduction may be due to substrate being unable to enter the active site as easily or due to the lack of the original lysine residues which may form additional contacts with the substrate, enhancing affinity. PfDXR-V114A, N115G shares a similar *Kₘ* to EcDXR, and the reduced catalytic efficiency is a result of the reduced turnover number.

CONCLUSION

In conclusion, the results of this study show that the influence of various strategies to improve solubility cannot be predicted, but must be optimized for each particular heterologous protein. Once a successful purification strategy had been developed, the importance of residues in the catalytic hatch and involved in cofactor binding could be studied using site–directed mutagenesis. The recent successful crys-
tallization of PfDXR in the presence and absence of an inhibitor [24], coupled to the structural information that comes from rational protein engineering, will aid in the development of novel inhibitors. The PfDXR protein produced in this study will be used for ongoing research investigating novel inhibitors of this enzyme.

CONFLICT OF INTEREST

The authors confirm that this article content has no conflicts of interest.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge Dr H. Jomaa (Justus–Liebig–Universität Giessen, Germany) for the plasmid encoding the codon optimized PfDXR. We also thank Dr A. Shonhai for providing the plasmid encoding PfHsp70. This research was funded by National Research Foundation Grant awarded to AB (Thuthuka Programme) and a SAMI Grant awarded to GLB. LSS was awarded a post-doctoral bursary by the South African Malaria Initiative Programme; JG was awarded a PhD bursary by SAMI and National Research Foundation and HJ was awarded an Honours bursary by Rhodes University.

ABBREVIATIONS

PfDXR = Plasmodium falciparum 1–deoxy–D–xylulose–5–phosphate reductoisomerase
EcDXR = Escherichia coli 1–deoxy–D–xylulose–5–phosphate reductoisomerase
Hsp70 = heat shock protein 70.

REFERENCES


