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Abstract

The family of general Jacobi polynomials P
(α,β)
n where α, β ∈ C can be characterised by complex (non-

hermitian) orthogonality relations (cf. [15]). The special subclass of Jacobi polynomials P
(α,β)
n where α, β ∈ R

are classical and the real orthogonality, quasi-orthogonality as well as related properties, such as the behaviour

of the n real zeros, have been well studied. There is another special subclass of Jacobi polynomials P
(α,β)
n with

α, β ∈ C, β = α which are known as Pseudo-Jacobi polynomials. The sequence of Pseudo-Jacobi polynomials
{Pα,αn }∞n=0 is the only other subclass in the general Jacobi family (beside the classical Jacobi polynomials) that
has n real zeros for every n = 0, 1, 2, . . . for certain values of α ∈ C. For some parameter ranges Pseudo-Jacobi
polynomials are fully orthogonal, for others there is only complex (non-Hermitian) orthogonality. We sum-
marise the orthogonality and quasi-orthogonality properties and study the zeros of Pseudo-Jacobi polynomials,
providing asymptotics, bounds and results on the monotonicity and convexity of the zeros.

Keywords: Orthogonal polynomials; quasi-orthogonal polynomials; Jacobi polynomials with complex
parameters; Pseudo-Jacobi polynomials; zeros.
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1. Introduction

The sequence of Jacobi polynomials {P (α,β)
n }∞n=0 defined by (cf. [14])

P (α,β)
n (x) =

(α+ 1)n
n!

n∑
k=0

(−n)k(α+ β + n+ 1)k
(α+ 1)kk!

(
1− x

2

)k
, n = 0, 1, 2 . . .

where (a)k = a(a+1) . . . (a+k−1) for k = 1, 2, . . . and (a)0 = 1 is the shifted factorial function, is orthogonal on
(−1, 1) when α, β > −1 with respect to the weight function w(x) = (1− x)α(1 + x)β . Jacobi polynomials arise
in the study of rotation groups [26] and occur in the solution of Schrödinger’s equation (cf. [4]). Furthermore,
they play a role in approximation of functions for which the Laplace transform is known [1] and have many
applications in areas other than mathematics such as, for example, in the medical field in ECG data compression
[29].
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In [15] it was shown that Jacobi polynomials P
(α,β)
n can be characterised for general α, β ∈ C by non-hermitian

orthogonality relations. The corresponding weight is the multi-valued function

w(z) = w(z;α, β) = (1− z)α(1 + z)β (1)

and the orthogonality curve is defined on a Riemann surface, however, depending on α and β, the orthogonality
curve can be transformed into one, two or three curves in the complex plane. Moreover, it was established in
[15] that the orthogonality relations uniquely determine the Jacobi polynomials. The strong asymptotics and
the asymptotic zero distribution for the case α, β ∈ R have been investigated in [16] and [18] respectively.

In [12], a different complex weight function was obtained, which has the advantage that the curve of orthogonality
is a simple closed curve independent of the value of α and β. This weight function is considered only for real α
and β in [12], but applies to general α, β ∈ C, with the orthogonality

1

2πi

∫
C

P (α,β)
m P (α,β)

n 2α+β+1 Γ(α+ 1)Γ(β + 1)

Γ(α+ β + 2)(z − 1)
2F1

(
1, α+ 1;α+ β + 2;

2

1− z

)
dz = 0, m = 0, 1, ...n− 1

for |z − 1| > 2 defined in the same way as for α, β real parameter values (cf. [12, eqn. (2.7)]). Nevertheless,
the form of this weight function is more complicated and less appropriate for the analysis of the zero location
or asymptotics than the weight (1) given in [15].

An interesting subclass of Jacobi polynomials P
(α,β)
n , α, β ∈ C, is the class where β = α /∈ R, known as Pseudo-

Jacobi polynomials, which form a finite sequence of orthogonal polynomials (cf. [21], [2]) associated with a beta
integral due to Cauchy (cf. [3, (1.9)]. They are defined by (cf. [10, p.509], [14])

Pn(x; a, b) = (−i)nP (a+ib,a−ib)
n (ix)

= (−i)n (a+ ib+ 1)n
n!

n∑
k=0

(−n)k(2a+ n+ 1)k
(a+ ib+ 1)k

(1− ix)k

k!2k
, n = 0, 1, 2, . . . .

Note that the normalisation given here is different from that in [14]. The differential equation

(x2 + 1)y′′(x) + 2[(a+ 1)x+ b]y′(x)− n(n+ 2a+ 1)y(x) = 0, (2)

satisfied by y(x) = Pn(x; a, b), was already studied in 1884 by Routh (cf. [22]). It is easy to see from the three
term recurrence relation (cf. [14])

(n+ 1)(n+ 2a+ 1)(n+ a)Pn+1(x; a, b) (3)

= (2n+ 2a+ 1)(x(n+ a)(n+ a+ 1) + ab)Pn(x; a, b) + ((n+ a)2 + b2)(n+ a+ 1)Pn−1(x; a, b)

with P−1 = 0 and P0 = 1 that Pn(x; a, b), n = 1, 2, . . . , has real coefficients for a, b ∈ R. Pseudo-Jacobi
polynomials are unique in the sense that they are the only polynomials in the Jacobi class with non-real

parameters and imaginary argument that have real coefficients. This is evident from the fact that P
(α,β)
n (ix), n ∈

N, has real coefficients for all n even and purely imaginary coefficients for all odd n only when α = β̄. To see this,

it suffices to consider the coefficients of P
(α,β)
1 (ix) and P

(α,β)
2 (ix). In fact, it is possible to show, using a symbolic

language such as Mathematica, that a more general polynomial of the form (e+ if)nP
(a+ib,c+id)
n ((g+ ih)x) with

a, b, c, d, e, f, g, h ∈ R, has real coefficients for all n only when b = d = f = h = 0 (the classical Jacobi case) or
b = −d, c = a, e = 0 and g = 0 (the Pseudo-Jacobi case) and to see this it is enough to check up to degree 4.

The symmetry property
Pn(x; a,−b) = (−1)nPn(−x; a, b), (4)
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which follows immediately from the symmetry property (cf. [10, p.82, eqn. (4.1.1)])

P (α,β)
n (x) = (−1)nP (β,α)

n (−x),

for Jacobi polynomials, implies that, when the sign of b changes, the zeros of Pseudo-Jacobi polynomials reflect
around the imaginary axis for n ∈ N, a ∈ R.

With the substitution α = a + ib, β = a − ib and z = ix, the general weight function (1) gives rise to the real
weight function for Pseudo-Jacobi polynomials

w0(x) := (1 + x2)ae2b arctan x

whose moments exist up to n = b−2ac − 1 (cf. [3, (1.10)]) where bxc denotes the lower integer part of x. This
provides (real) orthogonality relations on the real line for a < −n2 −

1
2 which we discuss in section 3. Note that,

since not all the moments exist, only a finite number of polynomials will be orthogonal. From this orthogonality
one has to exclude the special cases when n + 2a = −1, −2, . . . , −n, i.e. a = −n2 −

1
2 , −

n
2 − 1, . . . , −n,

where the degree of Pn(x; a, b) becomes less than n and z = ∞ becomes a multiple zero. When a < −n we
obtain full orthogonality on the real line (at least up to degree n) and this case is considered in more detail in
the next section. The remaining cases, when −n2 −

1
2 < a < −1 and a > −1, are discussed in Sections 4 and 5

respectively.

2. Pn(x; a, b), a < −n

When a < −n, Pseudo-Jacobi polynomials satisfy the finite orthogonality relation (cf. [2, 3, 14, 24])∫ ∞
−∞

w0(x)Pn(x; a, b)Pm(x; a, b)dx = 0 for m = 1, 2, . . . , n− 1.

Hence, when a < −n, the zeros of Pn(x; a, b) are real and simple.

Since, by setting b = 0, the polynomial Pn(x; a, 0) is a rotated version of the Gegenbauer polynomials C
(λ)
n (x) =

(2λ)n
(λ+1/2)n

P
(λ−1/2,λ−1/2)
n (x), we have the following corollary.

Lemma 2.1. (cf. [2, Theorem 1.1]) If λ < −n+ 1/2 then all the zeros of the Gegenbauer polynomial C
(λ)
n (x)

are simple and purely imaginary.

2.1. Asymptotic zero distribution

To consider the asymptotic distribution of the zeros as n→∞, we need an appropriate scaling and therefore
we assume that a and b vary linearly with n. More precisely, we assume that {an}∞n=0 and {bn}∞n=0 are sequences
such that

lim
n→∞

an
n

= A and lim
n→∞

bn
n

= B, (5)

where A, B ∈ R. We are interested in the limit of the normalised zero-counting measure νn of Pn(x; an, bn).
We can state the following.

Theorem 2.2. Let the sequence of Pseudo-Jacobi polynomials {Pn(x; an, bn)}∞n=0 satisfy (5) and assume that
A < −1. Then there is a unique unit measure ν, which is the weak-*-limit of νn. This ν is supported on [γ−, γ+],
where

γ± =
−AB ±

√
−2(A+ 1/2)[(A+ 1)2 +B2]

(A+ 1)2
. (6)
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Moreover, ν is absolutely continuous with respect to the Lebesgue measure with density

dν

dt
=
−(A+ 1)

√
(t− γ−)(γ+ − t)

π(t2 + 1)
. (7)

Proof. The proof follows a standard method due to Perron (cf. [19, 23] and also [18]). First we have to
establish that the zeros are uniformly bounded. This can be done using the monic three term recurrence
relation and Gershgorin’s circle theorem. The monic three term recurrence relation is

xpn(x; a, b) = pn+1(x; a, b) + cnpn(x; a, b) + dnpn−1(x; a, b),

where pn(x; a, b) denotes the monic Pseudo-Jacobi polynomial,

cn = − ab

(n+ a)(n+ a+ 1)
and dn = − n(n+ 2a)[(n+ a)2 + b2]

(n+ a)2(2n+ 2a− 1)(2n+ 2a+ 1)
.

With a = an, b = bn and using (5) we have

lim
n→∞

cn = − AB

(A+ 1)2
and lim

n→∞
dn = − (2A+ 1)[(A+ 1)2 +B2]

4(A+ 1)4
.

Thus, it follows from Gershgorin’s theorem (cf. [20]) that, for A 6= −1, the zeros are uniformly bounded. It
means that the sequence {νn}∞n=0 is weakly compact. Thus, there is a subsequence which weak-*-converges to
a unit measure ν. The uniqueness of this measure follows from the fact that it can be explicitly given using the
Stieltjes transform.

Let hn be the Stieltjes transform of νn, i.e

hn(z) :=

∫
dνn(t)

t− z
= − p′n(z)

npn(z)
.

From (2) we can obtain a differential equation for hn

(z2 + 1)

(
h2
n(z)− h′n(z)

n

)
− 2[(a+ 1)z + b]

n
hn(z)− n+ 2a+ 1

n
= 0. (8)

Since the zeros are uniformly bounded, the hn(z)’s are also uniformly bounded if z is in a domain away from
the zeros. Thus by Montel’s theorem there is a subsequence which converges locally uniformly on this domain
to the Stieltjes transform h(z) of ν

h(z) :=

∫
dν(t)

t− z
.

Now, taking n→∞ in (8) we get the algebraic equation

(z2 + 1)h2(z)− 2(Az +B)h(z)− (2A+ 1) = 0

for h, which leads to

h(z) =
Az +B +

√
Q(z)

z2 + 1
, (9)

where
Q(z) = (A+ 1)2z2 + 2ABz + 2A+B2 + 1 = (A+ 1)2(z − γ−)(z − γ+),

γ± being defined by (6). Applying the Stieltjes-Perron inversion formula to h (see e.g. [30, formula (65.4)]), we
obtain the statement of the theorem.

Figure 1 shows the zeros and the asymptotic distribution according to Theorem 2.2.
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Figure 1: The zeros of P20(x;−40, 20) together with the corresponding limiting distribution (7) and endpoints (6) with A = −2
and B = 1

2.2. Bounds for the extreme zeros

We begin by proving some new lower bounds for the largest zeros and upper bounds for the smallest zeros
of Pn(x; a, b).

Theorem 2.3. Fix n ∈ N and let a < −n. We denote the zeros of Pn(x; a, b) by xn,1 < xn,2 < · · · < xn,n, then

(i) xn,1 < en =
−ab

(n+ a)(n+ a+ 1)(2n+ 2a+ 1)
< xn,n

(ii) xn,1 < fn =
−b
a+ n

< xn,n

(iii) xn,1 < gn =
−b
a+ 1

< xn,n

Proof.

(i) This follows from the three term recurrence relation (3) by using Corollary 2.2 in [8].

(ii) Replacing n by n − 1, α by a + ib, β by a − ib and x by ix in the recurrence relation [7, eqn. (18)])

involving Jacobi polynomials P
(α+1,β)
n−2 , P

(α,β)
n and P

(α,β)
n−1 , we obtain after some simplification,

−1 + x2

2
Pn−2(x; a+ 1, b) = (x+

b

n+ a
)Pn−1(x; a, b)− n

n+ a
Pn(x; a, b).

The result then follows from [8, Corollary 2.2].

(iii) The relation

Bn(1− x2)2P
(α+2,β+2)
n−2 (x) =

(
x− β − α

α+ β + 2

)
P

(α,β)
n−1 (x)−A(x)P (α,β)

n (x) (10)

where

Bn =
(n+ α+ β + 1)(n+ α+ β + 2)(2n+ α+ β)

8(n+ α)(n+ β)(α+ β + 2)
and
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A(x) =
n(x2(n− 1)(2n+ α+ β) + 2x(n− 1)(β − α)− 2n− 2n2 − α− 3n(α+ β)− β − 4αβ

4(n+ α)(n+ β)(α+ β + 2)

follows from [7, (5), (12)] and can be verified by comparing coefficients on both sides of the equation. The
substitutions α by a+ ib, β by a− ib and x by ix in (10) give

−n(n2 + 3an+ n+ 2b2 + 2a2 + a− 2b(n− 1)x+ (n− 1)(n+ a)x2)

2(a+ 1)((n+ a)2 + b2)
Pn(x; a, b)

=
(n+ a)(n+ 2a+ 1)(n+ 2a+ 2)(1 + x2)2

8(a+ 1)((n+ a)2 + b2)
Pn−2(x; a+ 2, b) + (x+

b

a+ 1
)Pn−1(x; a, b)

and [8, Corollary 2.2] yields the stated result.

Remark 1. (i) As mentioned in the introduction, for fixed n, if a = −n then Pn(x; a, b) is only of degree n−1.
Therefore we can expect that if we fix n and let a→ −n−, one of the zeros of Pn(x; a, b) will tend to either
∞ or −∞. Indeed, this can be confirmed for b > 0 using Theorem 2.3 (ii). Since lima→−n− fn = ∞, it
follows that the largest zero of Pn(x; a, b), which is bounded below by fn, tends to ∞ as a→ −n−. Keeping
in mind the symmetry (4) this implies that for b < 0, the smallest zero of Pn(x; a, b) tends to −∞ as
a→ −n−.

(ii) When b ≥ 0, we note that fn ≥ gn ≥ 0 and therefore fn provides a better lower bound for the largest zero.
If we also assume that a < −n− 1/2, it follows that en < 0 and hence, in this case, en will be the better
upper bound for the smallest zero.

Next we consider a method based on the Wall-Wetzel Theorem, introduced by Ismail and Li in [11] and
reproduced in [10], to obtain bounds for the interval on which the zeros lie.

Theorem 2.4. Let n ∈ N fixed, a < −n and b > 0. Denote the zeros of Pn(x; a, b) by
xn,1 < xn,2 < · · · < xn,n, then

(i) xn,n < xn = −ab
(n+a−1)2−1 −

1
n+a−1

√
a2b2

((n+a−1)2−1)2 −
4(n−1)(n+2a−1))((n+a−1)2+b2)

4(n+a−1)2−1 cos2 π
n+1

(ii) xn,1 > yn = min1≤k≤n−1

{
−ab

(k+a)2−1 + 1
k+a

√
a2b2

((k+a)2−1)2 −
4k(k+2a)((k+a)2+b2)

4(k+a)2−1 cos2 π
n+1

}
.

Proof. Applying [11, Theorem 2 and 3] to the three term recurrence relation (3) by setting αn = (n+1)(n+2a+1)
(2n+2a+1)(n+a+1) ,

βn = −ab
(n+a)(n+a+1) and γn = − (n+a)2+b2

(2n+2a+1)(n+a) , we obtain

xn = max
1≤k≤n−1

{
−ab

(k + a)2 − 1
− 1

k + a

√
a2b2

((k + a)2 − 1)2
− 4k(k + 2a)((k + a)2 + b2)

4(k + a)2 − 1
cos2

π

n+ 1

}

and (ii). Now (i) follows from the fact that the functions 1
(k+a)2−1 , −k(k + 2a) and (k+a)2+b2

(k+a)2 are positive and

monotone increasing in k on 1, . . . , n− 1.

Remark 2. It is interesting to consider the asymptotic limit of xn, with a = An and b = Bn. In fact, we have
that

lim
n→∞

xn = limn→∞

(
−ABn2

(n+An−1)2−1 −
1

n+An−1

√
A2B2n4

((n+An−1)2−1)2 −
4(n−1)(n+2An−1))((n+An−1)2+B2n2)

4(n+An−1)2−1 cos2 π
n+1

)
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=
−AB +

√
−(2A+ 1)((A+ 1)2 +B2)

(A+ 1)2
= γ+,

where γ+ is the upper bound of the support of the weak-*-limit of the normalised zero-counting measure νn
defined in (6). Thus, the bound for the largest zero is asymptotically accurate.

Corollary 2.5. Let n ∈ N fixed, a < −n− 1/2 and b = 0. Denote the zeros of Pn(x; a, b) by
xn,1 < xn,2 < · · · < xn,n, then

(i) xn,n < xn =
√
−4(n−1)(n+2a−1)

4(n+a−1)2−1 cos2 π
n+1

(ii) xn,1 > yn = −
√
−4(n−1)(n+2a−1)

4(n+a−1)2−1 cos2 π
n+1 .

Proof. If we let b = 0 in Theorem 2.4(ii), we see that the expression in the curly brackets is negative and
monotone decreasing in k for k = 1, 2, . . . , n− 1 and therefore attains its minimum for k = n− 1.

2.3. Spacing of the zeros

From the differential equation (2) we can also obtain information on the distance between consecutive zeros.
Let x1 < x2 < . . . < xn denote the zeros of Pn(x; a, b). We say that the zeros are convex if the distance
between the zeros increases from left to right, i.e. xk+2 − xk+1 > xk+1 − xk. If the distance decreases, i.e.
xk+2 − xk+1 < xk+1 − xk, the zeros are called concave. The convexity can be determined by Sturm’s theorem
from the so-called normal form of the differential equation (cf. [27, 6]). The normal form can be obtained by
eliminating the first order term, which gives in our case

y′′(x) + F (x)y(x) = 0,

where

F (x) = − 1

(x2 + 1)2

[
(n+ a)(n+ a+ 1)x2 + 2abx+ (n2 + 2an+ n+ a+ b2 + 1)

]
.

According to Sturm’s convexity theorem the zeros are concave on the interval where F (x) is strictly increasing
and convex where F (x) is decreasing. Now,

F ′(x) = 2
j(x)

(x2 + 1)3
,

where j(x) = (n+ a)(n+ a+ 1)x3 + 3abx2 + (n2 + 2an+ n− a2 + a+ 2b2 + 2)x− ab. Therefore the zeros are
concave where the cubic polynomial j(x) > 0 and convex where j(x) < 0. Unfortunately the zeros of j(t) are
difficult to handle in general. However, one can obtain the convexity intervals for the Gegenbauer case. Setting
b = 0 the zeros of j(x) are at x = 0 and

x1,2 = ±

√
−n2 − 2an− n+ a2 − a− 2

(n+ a)(n+ a+ 1)
.

We can compare these ”inflection” points with the bounds for the zeros in Corollary 2.5.

xn =

√
−4(n− 1)(n+ 2a− 1)

4(n+ a− 1)2 − 1
cos2

π

n+ 1
<

√
−(n− 1)(n+ 2a− 1)

(n+ a− 1)2 − 1/4
<

√
−n2 − 2an− n+ a2 − a− 2

(n+ a)(n+ a+ 1)
= x2,

where the last inequality follows from the direct comparison of the numerators and denominators. Thus, we
obtain the following result.
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Theorem 2.6. The convexity of the zeros of Pn(x; a, 0) changes only at the origin. The negative zeros are
concave, the positive ones are convex.

2.4. Monotonicity of the zeros

Markov’s theorem (cf. [28, Theorem 6.12.1]) is a useful tool for obtaining monotonicity properties of zeros
and yields the following result for the monotonicity of the zeros of Pn(x; a, b) with respect to changes in the
parameter b.

Theorem 2.7. For a < −n the zeros of Pn(x; a, b) increase when the parameter b increases.

Proof. The ratio
d
db (w0(x))

w0(x) = 2 arctanx which is an increasing function of x and therefore the result follows

immediately from Markov’s theorem (cf. [28, Theorem 6.12.1].

Markov’s theorem provides no information on the monotonicity of zeros of Pseudo-Jacobi polynomials with

respect to changes in the parameter a since
d
da (w0(x))

w0(x) = ln(1 + x2) is not a monotone function. However, an

extension of Markov’s Theorem to zeros of polynomials orthogonal with respect to an even weight (cf. [13])
does provide information on the monotonicity of zeros of Pseudo-Jacobi polynomials for the special case where
b = 0.

Theorem 2.8. Let a < −n and b = 0, then the positive zeros of Pn(x; a, 0) increase when the parameter a
increases.

Proof. When b = 0, the weight function w1(x) = (1 + x2)a is an even function of x and hence the zeros of

Pn(x; a, 0) will be symmetric about the origin. Since
d
da (w1(x))

w1(x) = ln(1 + x2) is an increasing function of x for

x > 0 the result follows by [13, Theorem 3].

3. Pn(x; a, b), −n < a < −n
2
− 1

2

In this case, at the values a = −n/2− 1/2, −n/2− 1, . . . , −n there is a degree reduction in Pn(x; a, b). If we
fix n and increase a from −n, the zeros will gradually change from real to non-real as we pass these values. Of
course, the polynomial having real coefficients, the complex zeros always appear in conjugate pairs.

The general complex orthogonality relation with respect to w(z) can be broken down into orthogonality relations
along 3 different curves like in [15, Section 6]. Here we state this result without proof. Let Γi be the circle
{z ∈ C : |z + i| = 2} and Γ−i be the circle {z ∈ C : |z − i| = 2}, both oriented clockwise.

Proposition 3.1. (cf. [15, Theorem 6.4]) Assume that −n < a < −n2−
1
2 and a 6= −n+1/2, −n+1, . . . , −n−

1. Then ∫
Γi

tkPn(t; a, b)w(it; a+ ib, a+ b−ac − ib)dt = 0, k = 0, 1, . . . , n− b−ac − 1,∫
Γ−i

tkPn(t; a, b)w(it; a+ b−ac+ ib, a− ib)dt = 0, k = 0, 1, . . . , n− b−ac − 1,

and ∫ ∞
−∞

xkPn(x; a, b)w0(x)dx = 0, k = 0, 1, . . . , 2b−ac − n− 1. (11)
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This gives n orthogonality conditions together. Relations (11) are real orthogonality relations, but, unlike in
Section 2, they only provide quasi-orthogonality. A polynomial Pn of exact degree n ≥ r, is quasi-orthogonal of
order r on [a, b] with respect to a weight function w(x) > 0, if (cf. [5, p.159])∫ b

a

xjPn(x)w(x)dx

{
= 0, for j = 0, 1, . . . , n− r − 1

6= 0, for j = n− r.

Since Pk(x; a.b) and Pl(x; a, b) are orthogonal to each other with respect to w0(x) if k+ l ≤ b−2ac−1, it follows
that Pn(x; a, b) is quasi-orthogonal of order 2n− b−2ac. This gives a lower bound on the number of real zeros
in this case (cf. [5, Theorem 2]).

Corollary 3.2. Assume that −n < a < −n2 −
1
2 and a 6= −n+ 1/2, −n+ 1, . . . , −n− 1. Then Pn(x; a, b) has

at least b−2ac − n real zeros.

We can state again the corresponding result for Gegenbauer polynomials.

Corollary 3.3. Assume that −n + 1/2 < λ < −n2 and λ 6= −n + 1, −n + 3/2, . . . , −n− 1/2. Then C
(λ)
n (x)

has at least b−2λc − n+ 1 purely imaginary zeros.

The asymptotic behaviour of the zeros is quite complicated in this case due to the fact that we have non-
Hermitian orthogonality and three different curves with orthogonality conditions. This type of problem could
be tackled by a Riemann-Hilbert approach using steepest descent analysis as was done in [16].

4. Pn(x; a, b), −n
2
− 1

2
< a < −1

In this case there is no real (quasi-) orthogonality anymore, nevertheless, just like in Section 3 the general
complex orthogonality can be expressed in the form of separate orthogonality conditions on 3 curves (cf. [15,
Theorem 6.3]).

Proposition 4.1. Assume that −n2 −
1
2 < a < −1. Then∫

Γi

tkPn(t; a, b)w(it; a+ ib, a+ b−ac − ib)dt = 0, k = 0, 1, . . . , −b−ac − 1,

∫
Γ−i

tkPn(t; a, b)w(it; a+ b−ac+ ib, a− ib)dt = 0, k = 0, 1, . . . , −b−ac − 1,

∫ i

−i
tkPn(t; a, b)w(it; a+ b−ac+ ib, a+ b−ac − ib)dt = 0, k = 0, 1, . . . , n− 2b−ac − 1, (12)

where the last integration is along the imaginary interval [−i, i].

Note that in (12) the weight function is w0(x), thus it is real for real x, however the integration curve is complex,
so it does not give a real orthogonality relation.

Remark 3. In case b = 0, formula (12) gives the quasi-orthogonality conditions for the Gegenbauer polynomials
(cf. [5, Section 3.1]).
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5. Pn(x; a, b), a > −1

The general complex orthogonality can be given in this case as a full set of orthogonality conditions along one
single complex contour, the interval [−i, i] (cf. [15, Corollary 5.2]).

Proposition 5.1. Assume that a > −1. Then∫ i

−i
tkPn(t; a, b)w(it; a+ ib, a− ib)dt

{
= 0, for k = 0, 1, . . . , n− 1,

6= 0, for k = n.

These conditions characterise the polynomials Pn(x; a, b) of degree n up to a constant factor.

Although we have full orthogonality on a single contour, it is non-Hermitian, therefore we cannot conclude that
the zeros would lie on [−i, i]. Nevertheless, according to numerical examples, they seem to lie on well-arranged
complex curves. This can be confirmed, at least in the asymptotic sense, if n→∞.

Again, like in Section 2, assume that {an}∞n=0 and {bn}∞n=0 are sequences satisfying (5), where now A > 0. We
would like to find the limit of the normalised zero-counting measure νn of Pn(x; an, bn). Although we can obtain
the Stieltjes transform (9) of the limiting measure the same way as in Theorem 2.2, this time we cannot use
the Stieltjes-Perron inversion formula to get the measure. Instead, one has to use potential theory to obtain
the limiting measure. The method was developed by Stahl in [25] and Gonchar and Rakhmanov in [9]. They
connected the complex orthogonality with a logarithmic energy-minimising problem on the complex plane in
the presence of an external field. The solution of the energy problem, the so-called equilibrium measure, is the
limiting measure itself.

This method was then generalised by Mart́ınez-Finkelshtein (cf. [17] and [18, Theorem 2]) to the case when the
orthogonality curve includes the point infinity, which is a branch point of the weight function. In our case we
would need a further generalisation of this theorem to the case when the weight function has 2 branch points
on the curve (for Pseudo-Jacobi these would be -1 and 1). This would, however, go beyond the scope of this
paper. Nevertheless, according to simulations with Mathematica, the following statement seems to hold, which
we state as a conjecture.

Conjecture 5.2. (cf. [18, Theorem 1])
Let the sequence of Pseudo-Jacobi polynomials {Pn(x; an, bn)}∞n=0 satisfy (5) and assume that A > 0. Then

there is a unique unit measure ν, which is the weak-*-limit of νn. This ν is supported on an analytic arc Γ with
endpoints γ± defined by (6). Γ is given by the equation

Re

∫ z

γ−

√
(t− γ−)(t− γ+)

1 + t2
dt = 0,

and the density of ν with respect to the Lebesgue measure is

dν

|dt|
=

2(A+ 1)

π

∣∣∣∣∣
√

(t− γ−)(t− γ+)

1 + t2

∣∣∣∣∣ .
Remark 4. This conjecture seems to hold true for the case −n2 −

1
2 < a < −1 as well (see Section 4), although

in that case the orthogonality condition is given on three different curves instead of a single one.
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[27] C. Sturm, Memoire sur les équations différentielles du second ordre. J. Math. Pures Appl., 1 (1836), 106-186.
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