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ABSTRACT 

Implementing a Reusable Design Pattern Library in C# 

By 

Alastair van Leeuwen, 2012 

Design patterns in software systems are described as a universal reusable solution to a commonly recurring 

problem in software design. Design patterns were, however, not intended to be reusable in terms of 

code. A symptom of their non-reusability is the problems experienced with the way the 

implementation of design patterns negatively affects their traceability, maintainability and contribution 

to productivity. This thesis shows how design patterns can be elevated to a higher level of reusability. This 

work presents design patterns as reusable components that developers can use to implement solutions 

that utilise patterns, without having to implement a major part of a pattern’s structure and behaviour 

anew each time. A component is a reusable software section, with possible library classes, that is 

usually in source form. Previous research has shown that a high proportion of patterns (65%) can be 

“componentized” in Eiffel, which leads to the idea that a language supporting the same set of features 

would also have the same success in pattern componentization. This thesis has looked at the 

componentization of twelve design patterns in C#. The C# language has more advanced language 

features than Eiffel, including functional and dynamic language features and, as such, should lend itself 

better to pattern componentization than Eiffel does. The language features that are reviewed in this 

thesis are inheritance, design by contract™, attributes, method references (or delegates), anonymous 

functions, lambda expressions, mixins (or extension methods), duck typing, dynamic types and meta-

programming. Each pattern’s reusable components are discussed in detail, including the success of the 

reusable component transformation. All the design patterns reviewed in this thesis could be 

transformed into fully or partially reusable components. Implementing design patterns using reusable 

library components is thus a step in the right direction in making design pattern implementations more 

traceable, reusable, maintainable and more productive. Other object-oriented languages implementing 

the same or similar language features as those reviewed in this thesis should have the same level of 

success in transforming design patterns into reusable components. 
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 C h a p t e r  1  

1 INTRODUCTION 

1.1 Problems with Design Patterns 

A design pattern (Gamma, Helm, Johnson, & Vlissides, 1994) is a formal mechanism for documenting 

solutions to recurring software design problems. Christopher Alexander first introduced the concept 

of design patterns in civil architecture (Alexander & Ishikawa, 1977). This was later adapted to 

software design. The academic and commercial interest in design patterns has shown a dramatic 

growth in the last decade. Design patterns have been catalogued by a number of research projects 

including Patterns languages of program design (Coplien & Schmidt, 1995), Design patterns for object-oriented 

software development (Pree, 1995) and Design patterns, elements of reusable object-oriented software (Gamma, Helm, 

Johnson, & Vlissides, 1994). 

“A design pattern names, abstracts, and identifies the key aspects of a common design structure that 

make it useful for creating a reusable object-oriented design” (Gamma, Helm, Johnson, & Vlissides, 

1994, p. 3). 

Design patterns can be classified according to the underlying problem that they solve. These 

classifications include creational, structural, behavioural (Gamma, Helm, Johnson, & Vlissides, 1994), 

concurrency (Schmidt, 1995) and architectural patterns (Avgeriou & Zdun, 2005). 

Design patterns offer a number of benefits, as shown below (Chambers, Harrison, & Vlissides, 2000) 

(Schmidt, 1995). Design patterns 

 promote design reuse. 

 have names which form a common vocabulary and improve communication within and across 

software development teams. 

 improve documentation. 

 help one restructure a software system whether or not patterns were used up-front. 

 explicitly capture knowledge that experienced developers already understand implicitly. 
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 may lead developers to think they know more about the solution to a problem than they 

actually do. 

 help with the training of new developers. 

 help to transcend “programming language-centric” viewpoints. 

Design patterns are mostly seen as a solution to recurring problems encountered in software design. 

Not much emphasis has yet been placed on the physical implementation of design patterns in 

traditional object-oriented languages. The physical implementations of design patterns do suffer from 

problems. 

The main difficulties with design patterns are the lack of traceability in the implementation, language 

expressiveness and the implementation overhead, as shown below (Bosch, 1998b) (Bosch, 1998a): 

 Traceability 

The traceability of design patterns is lost because the programming language does not directly 

support the underlying pattern. The physical implementation of the design pattern in the 

programming language is scattered across a number of classes and is thus hard to trace. 

 Reusability  

Design patterns are implemented and recycled in the design of a software system. A developer is 

constrained to implement a design pattern over and over in a physical programming language. A 

design pattern does not give a developer the same benefits as a reusable component. 

 Implementation Overhead or Writability 

Design patterns force a developer to implement several methods with trivial behaviour. This leads 

to a huge programming burden on the developer, made even worse by the fact that the design 

pattern implementations cannot be reused. These methods are tedious to develop and maintain 

without the help of powerful programming or integrated development environment (IDE) tools (Bishop, 

2008). 

 Maintainability 

It has also been argued that using multiple patterns in the same implementation can lead to a large 

cluster of mutually dependent classes (Soukup, 1995). Using a traditional object-oriented 

programming language can cause maintainability problems when working with mutually dependent 

classes (Soukup, 1995). 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



I n t r o d u c t i o n  

3 

 

Pinto, Amor, Fuentes and Troya state “The DPs fail providing a solution because it is necessary to 

apply and implement the same design over and over, for each component” (Pinto, Amor, Fuentes, & 

Troya, 2001, p. 5). This is the same as the reusability problem defined by Bosch, as discussed above 

(Bosch, 1998b) (Bosch, 1998a). 

Another criticism of design patterns is the fact that some patterns can be consolidated (Agerbo & 

Cornils, 1998). The physical implementation of a design pattern can be confused with another pattern 

because they are, in fact, closely related. An increase in the number of new design patterns will actually 

threaten their original benefits. Agerbo and Cornils argue that the rapid evolution of design patterns 

has hampered the benefits gained from using patterns. They note that an increase in design patterns 

impairs communication within and across software development teams. Vlissides also had the same 

belief, quoting Kahlil Gibran in his paper “We shall never understand one another until we reduce the 

language to seven words.” (Chambers, Harrison, & Vlissides, 2000, p. 283). 

I have also noticed from experience on a number of projects that I have been involved with that 

design patterns are not implemented properly in object-oriented programming languages by 

developers. The incorrect implementations usually do not follow the structure of the pattern as 

defined in the Design Patterns (Gamma, Helm, Johnson, & Vlissides, 1994) catalogue. The incorrect 

implementation can also have the wrong name, in which case it actually implements another design 

pattern. 

1.2 The Goal of  this Thesis 

The goal of this thesis is to report on the success of the design and development of a reusable design 

pattern library, called Adaptive Pattern Library (APL), in C#. A reusable design pattern library solves 

most of the problems mentioned above. Using a design pattern from a library makes it clear to a 

developer which pattern is being implemented, thus solving the Traceability problem. It also solves 

the Implementation Overhead problem because a developer is not tasked with implementing the 

core of the pattern. A developer only needs to use the implementations in the pattern library. It also 

directly solves the Reusability problem, because a reusable component for a specific pattern exists 

and can thus be reused. 

This thesis explores the implementation of reusable design pattern components in the C# 

programming language. The focus of my research was to transform design patterns into reusable 

artefacts so that developers would not have to implement the same design pattern core logic and 

structure over and over. The concept of reusability uses Meyer’s definition as defined in Object-Oriented 

Software Construction which states: “Reusability is the ability of software elements to serve for the 

construction of many different applications” (Meyer, 2000, p. 7). In the context of design patterns, a 

specific language feature or features can be used to implement a language library or a component 
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which might solve the pattern implementation reusability problem. In this thesis I have therefore 

explored the creation of a design pattern class library with reusable components in C#. It concentrates 

on the design patterns defined in the book Design Patterns: Elements of Reusable Object-Oriented Software 

(Gamma, Helm, Johnson, & Vlissides, 1994), which is referred to as Design Patterns in the rest of this 

thesis. Four design patterns each were chosen from the structural, behavioural and creational design 

pattern categories. Concurrency patterns (Schmidt, 1995) and architectural patterns (Avgeriou & Zdun, 

2005) would benefit from the same techniques used in this thesis, but they were not explored. 

Meyer’s “component” definition is used extensively in this thesis. His definition of “component” must 

satisfy the following criteria (Meyer, 2000): A component can be used by other program elements 

which are known as “clients”. The supplier of a component does not need to know who its clients are. 

Clients can use a component on the sole basis of its official information. A C# class and interface thus 

adheres to Meyer’s definition of a “component”. This thesis does not use the component definition 

specified by Szyperski (Szyperski, 2002). 

Meyer and Arnout define a componentizable design pattern as “A design pattern is componentizable if 

it is possible to produce a reusable component, which provides all the functions of the pattern” (Meyer 

& Arnout, 2006, p. 24). Meyer also stresses (Meyer, 2000, p. 72) that “A successful pattern cannot just 

be a book description: it must be a software component or a set of components”. In this thesis, I 

argue and show that a design pattern is reusable if it is implemented as a component that adheres to 

the pattern’s intent and functionality and where the component is also usable and practical. 

Note the difference between design reuse and software implementation reuse. The Design Patterns book 

does mention that design patterns are there to create “a reusable object-oriented design” (Gamma, Helm, 

Johnson, & Vlissides, 1994, p. 3). However, this reuse is in the context of design and not 

implementation. Bosch and Soukup discuss the problems regarding the actual physical implementation 

of design patterns, including their current lack of reusability (Bosch, 1998b) (Soukup, 1995). 

Arnout remarks that from a software engineering perspective, design patterns could be seen to 

represent a step backwards as regards implementation reuse, because patterns must be implemented 

and re-implemented manually (Arnout, 2004). 

Jézéquel, Train and Mingins note that “Patterns are not, by definition formalized descriptions. They 

can’t appear as a deliverable” (Jézéquel, Train, & Mingins, 1999, p. 22). Arnout challenges this 

perception, asking why one has to step back to pre-reuse times when implementing design patterns 

(Arnout, 2004). My research also challenges this statement with examples of reusable design pattern 

components in C#. 
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1.3 Previous Solutions 

Others have already challenged the statement by Jezequel that design patterns are not reusable on an 

implementation level. In the book Modern C++ Design: Generic Programming and Design Patterns Applied 

Alexandrescu explores the reusability of design patterns using the generic features of C++ 

(Alexandrescu, 2001). The result is a reusable library called Loki with reusable implementation 

solutions for certain design patterns. Loki is a popular class library in C++ showing that it is possible 

to reuse certain design patterns in a language with similar features to those of C++. 

Schmidt has successfully implemented concurrent and networking reusable design pattern 

implementations in the ACE (Adaptive Communication Environment) C++ library (Schmidt, Stal, 

Rohnert, & Buschmann, 2000). He has also relied heavily on C++ generics (templates) with which to 

implement the reusable design patterns. For example, as part of his extensive library he has created a 

generic class that implements the singleton design pattern. The reusable singleton C++ class uses 

generics in order to turn ordinary C++ classes into singletons optimised with the double-checked 

locking optimisation pattern (Schmidt & Harrison, 1996). The following code snippet shows an 

example of the usage of the ACE singleton class in C++. The SingletonImpl class is transformed into 

a singleton by the SingletonTest type definition, using the ACE_Singleton class: 

C++ 
---------------------------------------------------------------------------------------------------------- 
typedef ACE_Singleton<SingletonImpl, ACE_Null_Mutex> SingletonTest; 
 
int main(int argc, char* argv[]) { 
   SingletonTest singleton = SingletonTest::instance(); // Aquire a reference to the singleton instance 
   // …    
} 

Bosch takes the standpoint that it is the task of the programming language to represent the 

implementation of a design pattern as closely as possible. He does concede that it would be impossible 

for a language to represent all design patterns (Bosch, 1998c). He argues further that most design 

patterns have well defined semantics that could be used as the basis for defining language constructs 

that explicitly support the representation of a certain design pattern in the programming language. He 

complains that some engineers and researchers believe that design patterns should only be used in 

software design. Bosch disagrees with these engineers and researchers and wants to see more explicit 

language support or language features for design patterns. Bosch strongly disagrees that this would 

increase the complexity of the language, because the language will represent the paradigm concepts 

used by the developer (Bosch, 1998b). He further argues that it is, in fact, the lack of language support 

for design patterns that increases the complexity. This is because a developer is forced to implement 

the patterns in terms of lower level language constructs, thereby reducing traceability and 

understandability. He also argues that a developer is free to use the available language constructs, but is 

not forced to use them. He states that as a developer gains experience, his usage of language constructs 
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increases. He finally states that it is “beneficial for a programming language to provide constructs for 

representing design patterns” (Bosch, 1998b, p. 9). 

Some modern languages, such as Ruby, already have some design patterns implemented in their 

standard class libraries (Matsumoto, 2001). Here is an example of how to implement a singleton 

(Gamma, Helm, Johnson, & Vlissides, 1994) in Ruby (Williams, 2006 ): 

Ruby 
---------------------------------------------------------------------------------------------------------- 
require 'singleton' 
 
class Example 
   include Singleton 
end 

The above code snippet shows that Ruby provides a module for making classes singletons, which is 

defined in the standard library inside ‘singleton.rb’. The following example shows how a singleton in 

Ruby could have been implemented without the singleton standard library support (Williams, 2006 ): 

Ruby 
---------------------------------------------------------------------------------------------------------- 
class Example 
  def initialize 
    # do something? 
  end 
 
  def self.instance 
    return @@instance if defined? @@instance 
    @@instance = new 
  end 
  private_class_method  :new 
end 

MultiJava is an extension to the Java programming language that adds symmetric multiple-dispatch 

(Clifton, Millstein, Leavens, & Chambers, 2006). The multiple-dispatch language feature eliminates the 

need for the accept element when implementing the visitor pattern (Gamma, Helm, Johnson, & 

Vlissides, 1994). Multimethods or multiple-dispatch is a special feature in certain object-oriented 

programming languages where a function or method can be specialised on the type of more than one 

of its arguments. Multiple-dispatch is a type of language feature that is part of The Common Lisp Object 

System (CLOS) (DeMichiel & Gabriel, 1987). 

The following example from Arnout shows a possible implementation in MultiJava (Clifton, Millstein, 

Leavens, & Chambers, 2006) of the visitor pattern (Gamma, Helm, Johnson, & Vlissides, 1994) 

without the use of the accept element (Arnout, 2004): 

Java 
---------------------------------------------------------------------------------------------------------- 
public class MaintenanceVisitor { 
    public void visit (Borrowable borrowable) { 
        throws new Error("An abstract class cannot be instantiated."); 
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    } 
 
    public void visit (Borrowable@Book borrowable) { // Special treatment for books } 
    public void visit (Borrowable@VideoRecorder borrowable) { // Special treatment for video recorder } 
} 

Arnout states in her Ph.D. thesis From Patterns to Components that “Design patterns are good but 

components are better” (Arnout, 2004, p. 5). She argues that reusing software improves the overall 

quality of software, including its correctness, maintainability and performance. 

She correctly notes that design patterns are naturally reusable in software design, but not in software 

implementation. Her thesis explores the componentization of design patterns. She focused mainly on 

Eiffel (ECMA, 2006), but did also briefly explore the componentization of design patterns in Java and 

C# (Arnout, 2004). Arnout did note, however, that not all design patterns could be componentized. 

This thesis builds on Arnout’s research. C# has more advanced language features than Eiffel (Meyer, 

1991) and this thesis shows that this improves the possibility for componentization of design patterns. 

In the publication A Debate on Language and Tool Support for Design Patterns Chambers, Harrison and 

Vlissides (Chambers, Harrison, & Vlissides, 2000) question whether languages should be extended 

with features corresponding to particular patterns. They further note that design patterns “have proved 

so useful that some have called for their promotion to programming language features” (Chambers, 

Harrison, & Vlissides, 2000, p. 277). Chambers argues that some design patterns do have native 

support in mainstream object-oriented languages. Vlissides argues that advances in computer language 

features have come from abstracting what programmers do most in their existing code. He notes that 

there are design patterns that naturally lend themselves towards language constructs, using the 

singleton as an example: 

public singleton class WindowManager { … } 

The programming language implementing the singleton design pattern as a language feature will ensure 

that only one instance of the object is created. The language will also handle advanced singleton issues 

such as multi-threading and locking problems. For example, the language can use the double-checked 

locking pattern internally with the singleton pattern in order to solve advanced locking problems 

(Schmidt & Harrison, 1996). Vlissides does warn, however, that not all design patterns should be 

implemented as language features. He argues that some design patterns included as a feature in a 

programming language could make that language too complicated. He gives multiple-dispatch 

(Stroustrup, 1994) as an example. Multiple-dispatch is a language feature that can be used to 

implement the visitor pattern. He argues that current mainstream languages such as C# and Java do 

not implement multiple-dispatch as a language feature because of the extra complexity. This is in 

contrast to Bosch, who believes that design pattern language features do not necessarily make a 

language more complex (Bosch, 1998a). Today, some of the following programming languages 
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support multiple-dispatch, either directly or indirectly, as a built in language feature: Common Lisp (via 

the Common Lisp Object System) (DeMichiel & Gabriel, 1987), Haskell via Multi-parameter type 

classes, Dylan, Cecil, R, Groovy, Perl 6, Seed7, Clojure, C# 4.0 (Burchall, 2009) and Fortress. 

The following code snippet by Burchall shows how the dynamic keyword in C# 4.0 can be used in 

order to implement multiple-dispatch functionality (Burchall, 2009): 

C# 
---------------------------------------------------------------------------------------------------------- 
class Program { 
    class Thing { } 
    class Asteroid : Thing { } 
    class Spaceship : Thing { } 
 
    static void CollideWithImpl(Asteroid x, Asteroid y) { 
        Console.WriteLine("Asteroid hits an Asteroid"); 
    } 
 
    static void CollideWithImpl(Asteroid x, Spaceship y) { 
        Console.WriteLine("Asteroid hits a Spaceship"); 
    } 
 
    static void CollideWithImpl(Spaceship x, Asteroid y) { 
        Console.WriteLine("Spaceship hits an Asteroid"); 
    } 
 
    static void CollideWithImpl(Spaceship x, Spaceship y) { 
        Console.WriteLine("Spaceship hits a Spaceship"); 
    } 
 
    static void CollideWith(Thing x, Thing y) { 
        dynamic a = x; 
        dynamic b = y; 
        CollideWithImpl(a, b); 
    } 
 
    static void Main(string[] args) { 
        var asteroid = new Asteroid(); 
        var spaceship = new Spaceship(); 
        CollideWith(asteroid, spaceship); 
        CollideWith(spaceship, spaceship); 
    } 
} 

In C# a virtual method is polymorphic (Cardelli & Wegner, 1985) only on a singular level. 

Multimethods or multiple-dispatch takes polymorphism a step further, where a method is polymorphic 

on multiple levels, which can be advantageous in some situations. In the above code the dynamic 

keyword permits a method to be selected that is dependent on the type of arguments at runtime, not 

just the connected object. In the above example the CollideWith method takes in two arguments of 

type Thing. The CollideWith method passes the request to the correct CollideWithImpl during runtime, 

depending on the type of argument. A CollideWith(asteroid, spaceship) request is thus passed on to 

the CollideWithImpl(Asteroid x, Spaceship y) implementation that will execute the correct algorithm.  

The example thus shows an implementation of genuine multiple-dispatch in C#. In the above trivial 

example the CollideWith(Thing x, Thing y) method can be removed and the CollideWithImpl 
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method can still be called correctly. Functionally, this solves the same problem; however the method 

resolution occurs during compile time, using method overloading. The usage of the dynamic keyword 

in the CollideWith(Thing x, Thing y) method allows for runtime method resolution and thus makes 

multiple-dispatch possible. 

The Seed7 programming language implements multimethods directly as a language feature. It is a 

higher level language than Ada, C++ or Java (Mertes, 2011). In Seed7 methods are not associated with 

just one type. True to the functionality of multiple-dispatch, the decision which method is executed at 

runtime is dependent on the types of the arguments. In the example below, from the Seed7 manual, 

the type Number is used to amalgamate numerical types. The type Number is also defined as an interface 

that defines the contract behaviour for the ‘+’ operation (Mertes, 2011):  

Seed7 
---------------------------------------------------------------------------------------------------------- 
const type: Number is sub object interface; 
const func Number: (in Number param) + (in Number param) is DYNAMIC; 

The interface type part Number can denote an Integer or a Float: 

Seed7 
---------------------------------------------------------------------------------------------------------- 
const type: Integer is new struct 
    var integer: val is 0; 
  end struct; 
 
type_implements_interface(Integer, Number); 
 
const type: Float is new struct 
    var float: val is 0.0; 
  end struct; 
 
type_implements_interface(Float, Number); 

The following shows the implementations of the converting '+' operators: 

Seed7 
---------------------------------------------------------------------------------------------------------- 
const func Float: (in Integer: a) + (in Float: b) is func 
  result 
    var Float: result is Float.value; 
  begin 
    result.val := flt(a.val) + b.val; 
  end func; 
 
const func Float: (in Float: a) + (in Integer: b) is func 
  result 
    var Float: result is Float.value; 
  begin 
    result.val := a.val + flt(b.val); 
  end func; 
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The following shows the implementations of the normal '+' operators that do not do any conversions: 

Seed7 
---------------------------------------------------------------------------------------------------------- 
const func Integer: (in Integer: a) + (in Integer: b) is func 
  result 
    var Integer: result is Integer.value; 
  begin 
    result.val := a.val + b.val; 
  end func; 
 
const func Float: (in Float: a) + (in Float: b) is func 
  result 
    var Float: result is Float.value; 
  begin 
    result.val := a.val + b.val; 
  end func; 

More operators can be added to the Number type such as ‘-’ or ‘*’. More implementations can also be 

added such as Complex, Decimal or Double. The Number type defined above can thus be used as a 

common type for mathematical calculations. 

Vlissides further argues that the problem is to decide which design patterns should be included as a 

language feature and which should be excluded. Vlissides calls this the “kitchen sink problem” and 

says: “While several of the more fundamental design patterns may be transliterated easily into 

programming language constructs, many others cannot – and at least should not” (Chambers, 

Harrison, & Vlissides, 2000, p. 284). Arnout shares the same views as Vlissides, as discussed in her 

Ph.D. thesis (Arnout, 2004). She argues that some design patterns just cannot be transformed into 

language features. She suggests the idea of design pattern componentization through software libraries, 

arguing that libraries do not add complexity to the language as a language feature would. Arnout does 

concede that certain design patterns, which could not be componentized, can be made reusable by 

extending the Eiffel language (Arnout, 2004). In depth research has also been done regarding the 

implementation of design patterns using aspect oriented programming (AOP). Aspect-oriented 

programming is a programming concept the goal of which is to boost modularity by implementing the 

separation of cross-cutting concerns (Kiczales, et al., 1997). Hannemann notes that 52% of the design 

patterns defined in Design Patterns are reusable, when using aspect oriented programming (Hannemann 

& Kiczales, 2002). Arnout argues that using aspects does have its weaknesses (Arnout, 2004). She 

notes that it may become difficult to master a whole system where the design patterns are 

implemented using aspects. 

The technique of automatic code generation from models depicting design patterns can be seen as 

another solution to pattern reuse. Budinsky describe a tool for generating source code from models of 

design patterns (Budinski, Finnie, Yu, & Vlissides, 1996). 
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Hedin has proposed that design patterns be formalised in the implementation language, using attribute 

grammars (Hedin, 1997). This, however, forces the developer to learn the formalised grammar.  

Agerbo and Cornils have argued that design patterns can be partitioned into the following categories 

(Agerbo & Cornils, 1998): 

 Fundamental Design Patterns (FDPs) 

 Language Dependant Design Patterns (LDDPs) 

 Related Design Patterns (RDPs) 

 Library Design Patterns (LDPs) 

They define Fundamental Design Patterns (FDPs) as the core patterns, which should capture good 

object-oriented design on a high enough level so that they can be used in various kinds of applications. 

They state that design patterns covered by language constructs are not Fundamental Design Patterns. 

It is their belief that a Fundamental Design Pattern must be independent of any implementation 

language. They have analysed the patterns and found that only 11 of the 23 design patterns in Design 

Patterns can be classified as Fundamental Design Patterns (Agerbo & Cornils, 1997). The first column 

in Table 1, by Bishop and Horspool (Bishop & Horspool, 2008), shows these Fundamental Design 

Patterns: 

Table 1: Fundamental patterns identified as FDPs by Agerbo and Cornils and as cadets by Gil and Lorenz. 

Design Pattern FDPs Cadets 

Bridge     

Builder     

Composite     

Decorator     

Mediator     

Proxy     

State     

Adapter    

Chain of Responsibility    

Interpreter    

Observer    

Strategy    
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Visitor    

Abstract Factory    

Flyweight    

Iterator    

Memento    

 

It is noted, correctly, (Bishop & Horspool, 2008) that the list above is dated, because both the iterator 

and memento design patterns can be covered by new language features that have been added to both 

Java and C# (iterators and serializable respectively). There is also a strong case that the events and 

delegates language features in C# are implementations of the observer design pattern (Purdy & 

Richter, 2002) (Gasiūnas, Satabin, Mezini, Núñez, & Noyé, 2010). 

Agerbo and Cornils also define Language Dependant Design Patterns (LDDPs). These are design 

patterns that are covered by a language construct in some programming languages, but not all. For 

example, multiple-dispatch can be seen as a language feature that implements the visitor design pattern 

(Gamma, Helm, Johnson, & Vlissides, 1994). The first column in Table 2, by Bishop and Horspool 

(Bishop & Horspool, 2008), shows the patterns that are supported by language features and defined as 

LDDPs by Agerbo and Cornils. 

Table 2: Patterns supported by language features: the LDDPs of Agerbo and Cornils and the clichés/idioms 

of Gil and Lorenz. 

Design Pattern LDDPs Clichés and Idioms 

Chain of Responsibility Delegates  

Command  Procedure classes Classes 

Facade Nested classes Encapsulation 

Factory Method Virtual classes  

Memento  Persistence 

Prototype Pattern variables  Deep copy 

Singleton Singular objects Module 

Template Method Complete block structure Overriding 

Visitor Multiple dispatch Multi-methods 
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Agerbo and Cornils also define Related Design Patterns (RDP) as an application of another design 

pattern. As an example, they show that the observer design pattern can be implemented using the 

mediator. Another example is the interpreter pattern that uses the visitor (Agerbo & Cornils, 1998). 

Agerbo and Cornils note that the more new design patterns are applied to a certain software 

implementation, the more difficult it is to recognise the structure of the participating design patterns 

(Agerbo & Cornils, 1997). This is known as the tracing problem (Bosch, 1998b). They further argue 

that the solution to this problem could be the use of Library Design Patterns or LDPs. An LDP is a 

design pattern which is implemented in a reusable library. When using LDPs in the application code, it 

is possible to trace the design pattern from which the implementation ideas came. They believe that a 

way of promoting the habit of using design patterns is to have the design patterns available as LDPs in 

a library where they are easily accessible. They state that another benefit of having a design pattern as 

an LDP is that one doesn’t have to duplicate the implementation anew each time a design pattern is 

applied in a new context. Agerbo and Cornils warn that when using a pattern as an LDP the design 

pattern implementation is fixed (Agerbo & Cornils, 1997). It is thus not possible to adapt an LDP for 

other desired pattern scenarios. 

Agerbo and Cornils have formulated the following three guidelines with regard to design patterns 

(Agerbo & Cornils, 1997, p. 3): 

 Design patterns covered by language constructs are not Fundamental Design Patterns (FDPs). 

 Applications and variations of design patterns are not Fundamental Design Patterns (FDPs). 

 A design pattern may not be an inherent object oriented way of thinking. 

In the article Design Patterns vs. Language Design Gil and Lorenz have done similar research on design 

patterns to that of Agerbo and Cornils, looking at how far they are from becoming actual language 

features by classifying patterns in groups (Gil & Lorenz, 1998). They classified patterns as clichés, 

idioms or cadets. These classifications correspond to the guidelines from the design pattern analyses of 

Agerbo and Cornils. They note that cadets are current contenders for language support, whereas 

clichés and idioms imitate features found in languages. It is their standpoint that design patterns should 

eventually evolve into language features. This set of patterns is shown in the second column of Table 

2. The second column in Table 2 shows the patterns that they have identified as still requiring language 

support. 
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1.4 Design Pattern Reusability 

The purpose of this thesis is to determine whether design patterns, as explained in Design Patterns, can 

be made reusable in C#, given the features and mechanisms in the C# programming language. The 

following language features and mechanisms are studied, all of which are available in C#: 

 Inheritance (Mitchell, Mitchell, & Krzysztof, 2003) 

 Interfaces (Pattison & Box, 2000) 

 Generics (Jagger, Perry, & Sestoft, 2007) 

 Design by Contract™ (Mitchell & McKim, 2001) 

 Attributes (Nagel, Evjen, Glynn, & Watson, 2010) 

 Method References (Microsoft, 2010e) 

 Anonymous Functions (Ierusalimschy, 2003) 

 Lambda Expressions (Michaelis, 2010) 

 Mixins (Extension Methods) (Esterbrook, 2001) (Jesse & Xie, 2008) 

 Reflection (Sobel & Friedman, 1996) (Forman & Forman, 2005) 

 Duck Typing (Koenig & Moo, 2005) 

 Meta-Programming (Perrotta, 2010) 

 Dynamic Typing (Tratt, 2009) 

The componentization process in each chapter shows how the above mentioned C# language features 

helped with the implementation of the pattern components. 

The original design pattern catalogue discussed in Design Patterns (Gamma, Helm, Johnson, & Vlissides, 

1994) shows implementations that do not take modern language features into consideration. In the 

paper On the Efficiency of Design Patterns Implementation in C# 3.0 Bishop and Horspool argue that new 

language features such as delegates, generics, nested classes, reflection and built-in iteration must be 

taken into consideration when implementing design patterns in C# 3.0. It is shown that the advances 
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in language features make design pattern implementations more efficient and also easier to produce 

and reproduce (Bishop & Horspool, 2008). It is also argued that the usage of modern language 

features improves the Traceability, Reusability, Writability and Maintainability problems of 

pattern implementation (Bishop, 2008). This thesis shows that modern language features are also 

important when implementing reusable design pattern components. 

In each chapter in this thesis that examines a design pattern, the components discussed are declared 

reusable if the pattern conforms to the following criteria: 

 Completeness: Does the reusable component cover all cases of the core pattern 

implementation described in Design Patterns (Gamma, Helm, Johnson, & Vlissides, 1994)? 

 Usefulness: Is the reusable component beneficial compared to an implementation from 

scratch of the design pattern? 

 Faithfulness: Is the reusable component faithful to the original pattern description? 

 Type-safety: Is the reusable component type-safe? 

 Extended applicability: Does the reusable component cover more cases than the original 

design pattern? 

 Performance: Is the performance of the reusable component acceptable? 

The above mentioned criteria were also used by Arnout in her exploration of reusable design patterns 

in Eiffel (Arnout, 2004). Each chapter in this thesis describing reusable design pattern 

componentization ends with a discussion about the quality of the reusable component compared to 

the above criteria. 

1.5 Reusable Design Pattern Exploration 

Each chapter in this thesis that explores the componentization of a specific design pattern does so by 

dividing the exploration into the following sections: 

1. Introduction 
In this section a short discussion and the formal definition of the design pattern is given. It also shows 

the pattern participants and the formal UML structure of the design pattern. 
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2. Reusable Library Implementation 
This section discusses the reusable library implementations or components that were developed in C# 

for this thesis, for the specific design pattern that is the subject of each chapter. It discusses their 

technical implementation in detail, how they satisfy the intent of the pattern and also possible caveats. 

It is possible that a design pattern does not have a reusable library implementation in C#. It is also 

possible that a design pattern is only partially reusable when implemented in C#. Partial reusability 

means that some parts of the pattern must still be coded by hand. Lastly, it is also possible that not all 

of a pattern’s functionality or intent could be realised with a reusable component in C#. 

3. Theoretical Examples 
In this section formal implementation examples of the specific design pattern are given in C#, using 

the reusable library components described in the previous section. 

4. Outcome 
This section discusses the success of the reusable library using the criteria discussed in the previous 

section. 

The source code shown in this thesis sometimes omits code that is seen as redundant. The “… S N I P 

…” or “…” snippets are used to show that there is more code than that which is shown: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public sealed class ActionChainOfResponsibility : ICommand { // The handler is also a command 
    private readonly Action _successor; // Successor defined as an Action delegate 
    private readonly Action _handler;   // Handler defined as an Action delegate 
    // … S N I P … 
} 

The ActionChainOfResponsibility class thus has more elements present, but they are not shown. The 

“… M O R E …” snippet is used to express that there is more of the same coding methodology that is not 

shown: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public sealed class ActionComposite<T> : IComponent<Action<T>> { … } // One argument 
public sealed class ActionComposite<T1, T2> : IComponent<Action<T1, T2>> { … } // Two  
// … M O R E … 

The code above thus shows that there are more ActionComposite delegates present. The “… C O N T R 

A C T …” snippet indicates that there is contract code that is not shown. 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public TProduct Create() { 
    // … C O N T R A C T S … 
    return new TProduct(); 
} 
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The code on the previous page thus shows that there are contracts present in the Create method that 

are not shown. 

Participants are the directory of the objects and classes used in a design pattern and their direct roles in 

the design. All of the design pattern participants in this thesis are underscored in order to clearly 

identify them as such. For example an AbstractFactory participant is thus written as AbstractFactory. 

1.6 C# 4.0 and .NET 

“C# (pronounced “See Sharp”) is a simple, modern, object-oriented, and type-safe programming 

language. C# has its roots in the C family of languages and will be immediately familiar to C, C++ and 

Java programmers.” (Microsoft, 2007, p. 1) 

C# is also a memory managed programming language with hybrid functional and dynamic language 

features that have evolved from C++, Delphi and Java (Jagger, Perry, & Sestoft, 2007). 

This thesis uses C# 4.0 and the .NET framework version 4.0 for its design pattern research. Hejlsberg 

is the principal architect of C#. He was also involved with the design of Turbo Pascal (Savitch, 1993) 

and Borland Delphi (Cantu, 2008). C# forms part of the Microsoft .NET universal framework. 

Since the first release of C# it has supported features such as inheritance, garbage collection, type-

safety, value types, reflection and events. New features in C# 2.0 include static classes, generics, partial 

classes, covariance and contravariance for delegates, null-coalesce operator, ability to set the 

accessibility of property accessors independently, nullable types, anonymous delegates and new 

iterators with the yield statement (Microsoft, 2005) (Jon, 2010). 

New features in C# 3.0 include (Hejlsberg & Torgersen, 2007) extension methods, LINQ, lambda 

expressions, collection initialisers, object initialisers, local variable type inference, anonymous types, 

partial methods and automatic properties. 

New features in C# 4.0 include (Torgersen, 2008) dynamic language features, contravariant and 

covariant generic types parameters, optional ref keyword when using COM, optional parameters and 

named arguments and indexed properties. 

Microsoft’s active commitment towards programming language improvement makes C# an attractive 

choice for language research. 
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1.7 Features used to Implement Reusable Components 

1.7.1 Design by contract™. 

“Reliability is even more important in object-oriented programming than elsewhere.” (Meyer, 1992, p. 

40) 

Design by contract™ or DbC™ is used to enforce the behavioural and functional rules in most of the 

pattern components in this thesis. DbC™ is a programming methodology where a contract is placed 

on a method or a class (Meyer, 1992). Arnout has shown that DbC™ can be used successfully in Eiffel 

to help componentize design patterns (Arnout, 2004).  

Both a pre and a post-condition are placed on a method in order to validate the contract validity of the 

method. The pre-condition on a method that is defined on a subclass, where the method overrides the 

original method in the super-class, will weaken the contract because the original interface and contract 

of the method must be upheld. Adding stronger conditions leads to the possibility of breaking base 

class method calls and, in turn, breaking the interface. The post-condition on a method that is defined 

on a subclass and that overrides the original method will strengthen the contract. The reason why a 

contract is strengthened is because it doesn’t affect the interface. An invariant can also be placed on a 

class to define a contract. An invariant is a predicate that will continuously maintain its truth value 

during an exact sequence of operations. A subclass would weaken an invariant contract, because the 

interface and contract of the base class must be upheld. 

A large number of the reusable components in this thesis were originally developed in C# 3.0. A basic 

yet correct DbC™ feature was implemented in C# 3.0 as part of this thesis in order to apply the 

desired contracts on the patterns. A custom built DbC™ implementation was thus developed for this 

thesis using the PostSharp Aspect Oriented Programming framework (Fraiteur, 2008). Aspect Oriented 

Programming or AOP is a programming methodology that employs techniques to improve the 

separation of concern principle (Chris, 1989). Separation of concern is a programming principle whereby 

distinct features of a computer program are separated into non-overlapping pieces of functionality. 

Dijkstra was the first to mention the principle of separation of concerns in his 1974 paper On the role of 

scientific thought (Dijkstra, 1974). A major part of AOP is the separation of concerns with regard to Cross-

cutting concerns. Cross-cutting concerns are aspects of a program that affect or cross-cut other concerns. An 

aspect is a part of a program that cross-cuts its main concerns and thus violates its separation of concerns 

(Kiczales, et al., 1997). One of the benefits of AOP is that it improves the logical decoupling of 

components. This can also be a drawback, in that it could create a high number of scattered classes 

that would be difficult to track and maintain. 
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Fortunately the latest version of C#, at the time of writing this thesis, does implement design by 

contract™ through library components. With the release of C# 4.0 the reusable components used in 

this thesis were refactored to use the C# 4.0 design by contract™ library. DbC™ is implemented in 

C# 4.0 by a Microsoft DevLabs project called Code Contracts (Microsoft, 2011a). DevLabs (Microsoft, 

2011c) implement developer focused technology projects and offer them to a large developer 

community well before they are officially released. Code Contracts implements all of the DbC™ 

requirements, including runtime contract checking, static contract checking and also documentation 

generation that includes the defined contracts. Code Contracts is an offshoot of the Spec# project. 

Spec# is a research project that tried to evaluate the implementation of contracts in a programming 

language with features such as aliasing, delegates, call backs, inheritance and multi-threading. Spec# is 

based on C# 2.0 (Barnett, Leino, & Schulte, 2005) and uses a source rewriter in order to weave the 

contracts into the code. Code Contracts is the outcome of knowledge gained from Spec# in order to 

evaluate which parts of the research were successful and which were not. 

The following code, from the Code Contracts User Manual, shows how contracts can be added to C# 

source code using the Code Contracts library (Microsoft, 2011a): 

C# 
---------------------------------------------------------------------------------------------------------- 
class Rational { 
    int numerator; 
    int denominator; 
 
    public Rational(int numerator, int denominator) { 
        Contract.Requires(denominator != 0); // Add a Requires contract 
        this.numerator = numerator; 
        this.denominator = denominator; 
    } 
 
    public int Denominator { 
        get { 
            Contract.Ensures(Contract.Result<int>() != 0); // Add a Ensures contract 
            return this.denominator; 
        } 
    } 
 
    [ContractInvariantMethod] // Add an Invariant contract 
    void ObjectInvariant() { 
        Contract.Invariant(this.denominator != 0); 
    } 
} 

The code above shows the implementation of the most important features of contracts, namely pre-

conditions, post-conditions and object-invariants. The code shows a subset of a Rational class with 

which to model rational numbers. In order to implement an accurate rational number instance, the 

denominator must be non-zero. This contract is conveyed as a pre-condition in the constructor with 

the Contract.Requires statement. An object-invariant ObjectInvariant attributed with the 

ContractInvariantMethod attribute ensures that the denominator is always non-zero. Finally, the 

Contract.Ensures on the Denominator getter property ensures that the return value will never be zero. 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



I n t r o d u c t i o n  

20 

 

1.7.2 Mixins or extension methods. 

Mixins (Bracha & Cook, 1990) or extension methods (Microsoft, 2010g) allow one to enhance existing 

types by adding additional methods without the need for a new derived type or altering the original 

type. Extension methods are a specific variety of static methods; however, they are available as 

instance methods on a certain enhanced type. There is thus no apparent difference for user code 

between calling an extension method and a calling a normal method. 

Using mixins is thus a technique that adds additional behaviour or functionality to an existing class. 

More traditional techniques to achieve this are just to modify the existing class and add the desired 

behaviour. This, however, is not always possible, as the class could be part of a third-party assembly. 

Without mixins the programmer must inherit from the class in order to implement the desired 

instance method on the derived class or implement the behaviour in added helper classes. Aggregation 

can also be used instead of inheritance in order to achieve the same desired effect. 

Mixins were first introduced at a company called Symbolics into the object-oriented Flavors (Moon, 

1986) programming language. Flavors, which is an extension of Lisp, was developed by Howard 

Cannon at the MIT Artificial Intelligence Laboratory for the Lisp machine and its programming 

language Lisp Machine Lisp. The name “Mixin” was motivated by an ice cream shop in Massachusetts 

called Steve’s Ice Cream Parlour (Esterbrook, 2001). The ice cream shop offered a special service called a 

“Mixin” that adds extra items such as nuts, fudge or cookies to a basic flavour such as vanilla or 

chocolate. This term was trademarked by the shop (Mariani, 1999). 

Mixins, used in the correct scenarios, can help avoid well-known nuisances linked with multiple 

inheritance (Balagurusamy, 2008) and boost code reuse. 

The APL library uses extension methods in a number of places. For example, it is used by the 

prototype reusable component in order to add a DeepCopy method to all objects: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
namespace Apl.Pattern.Gof.Creational.Prototype { 
    public static class PrototypeExtention { 
        static public T DeepCopy<T>(this T obj) { 
            return PrototypeHelper<T>.DeepCopy(obj); 
        } 
    } 
} 

The DeepCopy method can now be used by any object that is used in an environment where the 

Apl.Pattern.Gof.Creational.Prototype namespace is included. The following code shows how the 

DeepCopy extension method is used by the memento pattern in order to make a snapshot of the 

internal state of the Originator: 
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C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public IMemento<TOriginator> CreateMemento() { 
    var memento = GetMemento(); 
    memento.SnapshotState = _originator.DeepCopy(); // Make a copy of the originator 
    return memento; 
} 

1.7.3 Attributes. 

In C# there is a technique for defining declarative tags, called attributes (Microsoft, 2010d), that can be 

placed on certain entities in the source code to specify additional meta, or declarative, information. An 

attribute is a special object in C# that holds meta-information that is linked to an element. A linked 

element with attributed meta-information is known as the target of that attribute (Liberty, 2001). This 

meta-information that the attribute contains can be acquired and used during run-time using reflection 

(Hejlsberg, Torgersen, Wiltamuth, & Golde, 2010). A programmer can define their own custom 

attributes. An attribute can be attached to entities such as classes, interfaces, namespaces or methods. 

An attribute can also be global, where it applies to a whole module or assembly. A class in C# is an 

attribute if it directly or indirectly inherits from the System.Attribute (Microsoft, 2010c) class. 

There are two different types of attribute, namely intrinsic and custom (Liberty, 2001). Intrinsic 

attributes are provided as a component of the Common Language Runtime (CLR) and are integrated 

into .NET and C#. The second type is custom attributes (Microsoft, 2010d). Custom attributes are 

attributes that are created manually for custom purposes. A programmer creates custom attributes in 

order to add more declarative information to entities in the code. 

For example, the Obsolete intrinsic attribute (Microsoft, 2010m) is associated with a method on a 

target class to indicate that the method is deprecated. This will cause the C# compiler to issue a 

warning that the method is obsolete: 

C# 
---------------------------------------------------------------------------------------------------------- 
public interface IOrder { 
    [System.Obsolete("Use EnterOrder instead.")] 
    public void CreateOrder() {} 
    public void EnterOrder() {} 
} 

Most systems usually make use of intrinsic attributes only. Custom attributes, however, are a useful 

mechanism when used in conjunction with reflection (Smith, 1982). Custom attributes are used in 

certain parts of the APL library.  

The following example shows how an APL attribute StateAttribute is used to define an IMyState 

State interface that is used in the implementation of a state design pattern: 
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C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
[State(StateCreationStyle = StateCreationStyle.Flyweight)] 
public interface IMyState { 
    void Foo(IFlyweightContext<IMyState> context); 
    void Bar(IFlyweightContext<IMyState> context); 
} 

1.7.4 Generics. 

Generics (Dehnert & Stepanov, 2005) are among the most powerful new features introduced in C# 

2.0. With generic programming, algorithms or logic are coded with generic types that are statically 

defined. The types are defined with generic arguments that are passed through statically during 

compile time. This allows the coding of templatised functions, or types, that differ only in the type 

used and thereby duplication is reduced. C# generics are similar to C++ templates (Vandevoorde & 

Josuttis, 2003) in concept but in implementation they are significantly different. Generics can be used 

for static polymorphism. Static polymorphism involves the binding of methods to logic during 

compile time (Meyer, 1986). 

Generic programming was made popular by the Ada programming language (Ichbiah, et al., 1979) 

when it was introduced in that language in 1983 (Musser & Stepanov, 1989). Today, generic 

programming is found in programming languages such as Ada, Eiffel, Java, C#, Scala, Haskell, C++ 

(in the form of templates), D and Object Pascal. 

Stepanov, who is the chief architect and implementer of the C++ Standard Template Library 

(Stepanov & Lee, 1995), wrote: “Generic programming is about abstracting and classifying algorithms 

and data structures. It gets its inspiration from Knuth and not from type theory. Its goal is the 

incremental construction of systematic catalogs of useful, efficient and abstract algorithms and data 

structures. Such an undertaking is still a dream” as quoted in (Stroustrup, 2007, p. 18). 

Generics are used extensively in the APL library. The following code shows how generics are used 

with regard to the command pattern: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
public interface ICommand<in TArgument> { void Execute(TArgument arg); } 
 
class ConcreteCommand : ICommand<string> { public void Execute(string text) { Console.WriteLine(text); } } 

The generic argument TArgument specifies the type of the argument to the Execute method on the 

ICommand interface. The TArgument type can thus be supplied during compile time, as seen with the 

ConcreteCommand example above. 

Generics are also used extensively by the APL library to implement the curiously recurring template pattern 

(CRTP) (G´eraud & Duret-Lutz, 2000). CRTP was first defined in C++ as an idiom by Coplien where a 
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class Foo derives from a class template instantiation using Foo itself as a template argument (Coplien, 

1995). The singleton APL component uses CRTP, as shown below: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
public class TheSingleton : Singleton<TheSingleton> { 
    // … S N I P … 
    private TheSingleton () { … } 
    public void Foo() { … } 
    public void Bar() { … } 
    // … S N I P … 
} 

Note how the instantiated class TheSingleton is also passed to the derived class Singleton as a generic 

argument, thus implementing the curiously recurring template pattern (CRTP).  

1.7.5 Reflection, meta-programming and duck typing. 

Reflection is the mechanism by which a computer program can query and possibly alter its own 

structure and behaviour during runtime (Malenfant, Jacques, & Demers, 1996). The thought of 

runtime reflection was introduced in 1982 by Brian Cantwell Smith's Ph.D. thesis, which discussed 

adding structural and behavioural information to 3-Lisp (Smith, 1982). 

Reflection is an integral part of C#. The following code shows how reflection can be used in C# to 

instantiate an instance of a new class X and call a method Y on the instance: 

C# 
---------------------------------------------------------------------------------------------------------- 
// No reflection 
var x = new X(); 
x.Y(); 
  
// Reflection 
var x = Activator.CreateInstance(null, "X"); 
var method = x.GetType().GetMethod("Y"); 
method.Invoke(x, null); 

Reflection is used extensively by the APL library. For example, the AutoComposite component uses 

reflection to create a new instance of the generic argument TComposite in its Create factory: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public static AutoComposite<TComponent> Create<TComposite>()  
where TComposite : IAutoComponent<TComponent> { 
    var autoComposite = Activator.CreateInstance<TComposite>(); 
    var composite = new AutoComposite<TComponent>(autoComposite); 
    // … S N I P … 
    return composite; 
} 

Reflection is one of the most fundamental concepts of meta-programming (Klint, 1993). Meta-

programming is the creation of computer instructions that manipulate other computer instructions, or 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



I n t r o d u c t i o n  

24 

 

themselves. This manipulation can be done during compile time or run time. Reflection (Sobel & 

Friedman, 1996) (Forman & Forman, 2005) is thus an important language feature employed in order 

to implement meta-programming. In some programming languages, the language itself is a first-class 

data type as in Forth, Rebol and Lisp (Lee & Zachary, 1995). This helps make reflection more natural 

in the language. 

Meta-programming is used by the APL library to implement what is known as duck typing (Koenig & 

Moo, 2005). Duck typing is a type of dynamic typing where an object's current set of methods and 

properties determines the valid semantics, rather than its inheritance from a particular class or 

implementation of a specific interface. Duck typing refers to the duck test that was coined by James 

Whitcomb Riley, which may be phrased as follows: “When I see a bird that walks like a duck and 

swims like a duck and quacks like a duck, I call that bird a duck” (Flanagan, 2011, p. 213). 

Simple duck typing is possible in C# 4.0 with its new dynamic language features (Nierstrasz, et al., 2005). 

The following example shows how the Run method can successfully invoke both Foo and Bar on the 

dyn argument: 

C# 
---------------------------------------------------------------------------------------------------------- 
public class X { 
    public void Foo() { } 
    public void Bar() { } 
} 
 
public class Y { 
    public void Foo() { } 
    public void Bar() { } 
} 
 
class Program { 
    private static void Run(dynamic dyn) { 
        dyn.Foo(); 
        dyn.Bar(); 
    } 
 
    private static void Main() { 
        var x = new X(); 
        var y = new Y(); 
        Run(duck); 
        Run(person); 
    } 
} 

A more advanced duck typing implementation can be found in the DuckTaper third party open source 

library. This library tries to bridge the gap between the dynamic and static worlds in C#, by allowing a 

dynamic object to be used with a static interface. 

The article Introducing ‘The C# Ducktaper’ – Bridging the dynamic world with the static world (de Smet, 2008) 

explains this phenomenon with the following example: 
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C# 
---------------------------------------------------------------------------------------------------------- 
interface IDuck { 
    void Walk(); 
    void Walk(int steps); 
    object Quack(string name); 
    event EventHandler Walking; 
} 
 
object possibleDuck = GetDuckFrom(DuckSource.Pond); // Acquire a possibleDuck reference, 
                                                    // where possibleDuck probably does not realize 
                                                    // the IDuck interface 
IDuck duck = possibleDuck.AsIf<IDuck>(); // Try to convert the reference to an IDuck interface 
duck.Walking += (o, e) => { Console.WriteLine("Duck is walking"); }; // Use a method on the interface 
duck.Walk(); // Use a method on the interface 
Console.WriteLine(duck.Quack("Bart")); // Use a method on the interface 
duck.Walk // Use a method on the interface 

An object possibleDuck is acquired where its contract is unknown. The AsIf extension method, which 

is part of the DuckTaper library, will try to convert the possibleDuck instance into an IDuck instance. 

The AsIf extension method creates a new class during runtime that implement all of the methods of 

the IDuck interface. Thereafter, every request on the duck instance delegates an invocation to the 

possibleDuck instance where the method signatures are exactly the same. If no method signature is 

available, an exception is thrown. The newly created instance, which implements the IDuck interface, 

can be seen as a proxy (Gamma, Helm, Johnson, & Vlissides, 1994) that thunks the method request to 

the appropriate target. Thunking can be seen as a wrapper function that directs an invocation to an 

appropriate target (Driesen & Hölzle, 1996) (Stroustrup, 1987). 

The DuckTaper library can be extended by implementing one’s own method lookup table and 

forwarding an invocation request to the appropriate method in the table. This can be achieved by 

using the IDynamicInvoker DuckTaper interface, as seen in the following example: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public class AutoAdapter<TTarget, TAdaptee> : IDynamicInvoker 
    where TTarget : class { 
    private TAdaptee _adaptee; 
     
    // … S N I P … 
     
    public AutoAdapter(TAdaptee adaptee) { … } 
 
    // … S N I P … 
 
    public void RegisterAction(string methodName, AdapterAction<TAdaptee> operation) { 
        // … C O N T R A C T S … 
        Validate(methodName); 
        var method = typeof(TTarget).GetMethod(methodName); 
        _operationDictionary.Add(new DynamicMethod(method), operation); 
    } 
 
    public void RegisterAction(MethodInfo method, Action operation) { … }     
 
    // … S N I P … 
 
    public object Invoke(string methodName, object[] args) { 
        // … S N I P … 
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        var operation = GetAdapteeOperation(methodName, args); 
        return operation != null ? operation.DynamicInvoke(_adaptee, args) : null; 
        // … S N I P … 
    } 
 
    public TTarget Target { 
        get { return DoubleCheckedLock<TTarget>.Create(_target, this, () => this.AsIf<TTarget>(true)); } 
    } 
} 

The IDynamicInvoker interface enforces the implementation of the Invoke(string methodName, 

object[] args) contract. Every invocation made on the reference returned by the Target property is 

delegated to the Invoke method. If an AdapterAction was registered with the instance of the 

AutoAdapter with the same method signature as the one received by the Invoke method, then the 

AdapterAction is invoked. 

AdapterAction APL delegates can be registered with the adapter using the RegisterAction methods. 

The simplest RegisterAction method identifies a method just by its name: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
Adapter.RegisterAction("Foo", x => Console.WriteLine("Hello World" + x.FooBar()); 

This RegisterAction method cannot be used if method overloading is desired. This is because 

multiple methods with the same name, but with different arguments, would then exist. The 

RegisterAction method that is supplied with the reflective type MethodInfo can be used for method 

overloading: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
Adapter.RegisterAction(myMethod, x => Console.WriteLine("Hello World") + x.FooBar()); 

The techniques shown above are used extensively by the APL library in order to create reusable design 

pattern components. 

The duck typing  most used in the APL library is that implemented by means of the DuckTaper library. 

The duck typing used is thus not a direct language feature of C#. The DuckTaper library uses reflection 

and meta-programming language features in order to achieve duck typing. 

1.7.6 Anonymous methods (anonymous functions). 

An anonymous method (Microsoft, 2010b) or an anonymous function is an un-named method 

defined inside source code and is thus not linked to an identifier. In C# an anonymous method allows 

a code block to be passed as arguments instead of a standalone coded method. 

Anonymous methods or functions were first added in the Lisp programming language in 1958 (Stoyan, 

1984). 
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Anonymous methods can be created in C# by using the delegate keyword: 

C# 
---------------------------------------------------------------------------------------------------------- 
delegate void Action(string text); 
Action action = delegate(string text) { Console.WriteLine(text); }; 

Anonymous methods can also be created in C# by using lambda expressions: 

C# 
---------------------------------------------------------------------------------------------------------- 
Action action = (x) => Console.WriteLine(x); 

In C# anonymous methods can only be passed as a code block to a delegate parameter. 

1.7.7 Method references or delegates. 

In C# a delegate (Microsoft, 2010e) is a special type that references a method signature. A delegate can 

be assigned to method implementations with the same method signature. When a delegate is assigned 

to a method it can be used in exactly the same way as any other normal method. A delegate can also be 

used like any other reference type in C#, where it can be passed in as a method argument or be used as 

a class attribute. 

Any method that has the same signature as a specific delegate can be linked to that delegate. With 

delegates new code can be plugged into defined classes and method calls can be changed during 

runtime. 

Delegates are used extensively in the APL library. For example, in the ActionCommand APL component 

the Action family of delegates is used to describe the Receiver logic: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public class ActionCommand : ICommand { // No arguments 
    protected Action ExecuteReceiver; 
 
    public ActionCommand() { } 
    public ActionCommand(Action executeReceiver) { ExecuteReceiver = executeReceiver; } 
 
    public void Execute() { 
        if(ExecuteReceiver == null) return; 
        ExecuteReceiver(); 
    } 
} 
 
C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
var concreteCommand = new ActionCommand(() => Console.WriteLine("The command was invoked!")); 
invoker.Process(concreteCommand); 

In the example above the code block is passed to the ActionCommand constructor with a lambda 

expression (J'arvi, Freeman, & Crowl, 2007). 
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1.7.8 Action and Func family of library delegates. 

The C# Func group of delegates (Microsoft, 2010h) is used to embody a method that can be used as an 

argument without explicitly creating a custom delegate. The referenced method must match the 

method definition that is defined by this specific delegate. 

The Func group of delegates is implemented in the C# standard library as shown below: 

C# 
---------------------------------------------------------------------------------------------------------- 
public delegate TResult Func<T,TResult>(T arg) 
public delegate TResult Func<T1,T2,TResult>(T1 arg1, T2 arg2) 
public delegate TResult Func<T1,T2,T3,TResult>(T1 arg1, T2 arg2, T3 arg3) 
public delegate TResult Func<T1,T2,T3,T4,TResult>(T1 arg1, T2 arg2, T3 arg3, T4 arg4) 
/* … M O R E … */ 

A Func delegate can also be used with anonymous methods (Eric, 2007). A lambda expression 

(Microsoft, 2010i) can be assigned to a Func delegate, as the below example shows: 

C# 
---------------------------------------------------------------------------------------------------------- 
Func<string> function1 = () => return "Hello World";  
Console.WriteLine(function1); 
/* Output 
Hello World 
*/ 
 
Func<string, string> function2 = (x) => return x;  
Console.WriteLine(function2("Hello World")); 
/* Output 
Hello World 
*/ 
 
Func<string, string, string> function3 = (x) => return x + " " + y;  
Console.WriteLine(function3("Hello", "World")); 
/* Output 
Hello World 
*/ 

The Action group of delegates (Microsoft, 2010a) in the C# standard library is almost the same as the 

Func delegates (Microsoft, 2010h), except that they do not have a return value. They are therefore 

actions and not functions. The following example shows the usage of Action delegates together with 

lambda expressions (Microsoft, 2010i): 

C# 
---------------------------------------------------------------------------------------------------------- 
Action action1 = () => Console.Write("Hello World");  
Action1() 
/* Output 
Hello World 
*/ 
 
Action<string> action2 = (x) => Console.Write(x);  
Action1("Hello World"); 
/* Output 
Hello World 
*/ 
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Action<string, string> action3 = (x) => Console.Write(x + y);  
Action1("Hello", "World"); 
/* Output 
Hello World 
*/ 

Both the Func and Action delegates are used extensively by the APL library. For example, the 

ActionCommand APL component takes an Action as a Receiver that it will invoke in its executing 

method: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
public class ActionCommand : ICommand { 
    protected Action ExecuteReceiver; 
 
    public ActionCommand() { } 
    public ActionCommand(Action executeReceiver) { ExecuteReceiver = executeReceiver; } 
 
    public void Execute() { 
        if(ExecuteReceiver == null) return; 
        ExecuteReceiver(); 
    } 
} 

The Action and Func C# groups of delegates are not a language feature. They are functionality that is 

available because of standard library components. The delegates are mentioned here because they are 

used extensively within the APL library components. A language that offers method references or 

delegates should be able to offer the same functionality as the Action and Func C# groups of delegates. 

1.7.9 Dynamic typing. 

C# 4.0 provides a dynamic keyword (Microsoft, 2011b) that adds dynamic typing language features in 

what used to be a statically typed language. With static typing, type checking is performed by the 

programming language during compile time. With dynamic typing, type checking is performed during 

runtime. A dynamic language thus does not do type checking during compile time (Scott, 2009). The 

type of an expression or variable is not necessarily known at compile time. Storage limitations are 

verified only during run time and are overlooked at compile time. Semantic analysis thus transpires 

only at run time. 

The C# 4.0 programming language can be seen as both dynamic and static because it has features that 

support both (Hejlsberg, Torgersen, Wiltamuth, & Golde, 2010). C# first started off as a statically 

typed language. It has been transformed into a hybrid dynamically typed language in which one uses 

the newly added dynamic features. In C# 4.0 an object defined as type dynamic sidesteps static type 

checking entirely. 

The Dynamic Language Runtime (DLR) (Hugunin, 2007) is one of the latest APIs in the .NET 

Framework. It offers the mechanism that implements the dynamic type features in C# and is used 
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extensively by new dynamic programming languages in .NET such as IronPython (Python Software 

Foundation, 2011) and IronRuby (Ruby-Doc.Org, 2011). 

The new dynamic features in the C# language are not used extensively by the APL library. This is 

because design patterns are usually strongly typed by nature. The chain of responsibly (Gamma, Helm, 

Johnson, & Vlissides, 1994) APL component DynamicChainOfResponsibility uses the dynamic 

keyword in C#: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
var factory = new DynamicChainOfResponsibilityFactory(); 
dynamic handler = factory.Create( … ); 
handler.Foo( … ); 

The Foo method on the chain of responsibility Handler instance handler, which is of type dynamic, is 

evaluated during runtime. If the Foo method is not found on the Handler then it is invoked on the 

next Handler in the chain until one is found or the end of the chain is reached. 

1.7.10 Lambda expressions. 

A lambda expression is an anonymous function containing statements and expressions (Samko, et al., 

2006). In C# a lambda expression can be used to create expression tree types and delegates 

(Torgersen, 2007). Lambda expressions offer an abridged and functional syntax for writing anonymous 

methods. In C#, the arguments of a lambda expression can be explicitly or implicitly typed. The 

arguments of a lambda expression may thus be explicit or inferred. 

Church invented lambda expressions with his creation of lambda calculus in 1936, where all methods 

are anonymous (Church, 1936). Landin's classical paper of 1965 shows that lambda calculus can be 

successfully implemented and used in a procedural programming language such as ALGOL 60 

(Landin, 1965). 

Lambda expressions in C# use the operator => (Microsoft, 2010i). The lambda operator is read as “goes 

to” (Microsoft, 2010i). Input parameters are specified by the left side of the operator. The right side of 

the operator defines the statement block or expression. Lambda expressions can also be assigned to 

delegates (Kennedy, 2006): 

C# 
---------------------------------------------------------------------------------------------------------- 
delegate int Sum(int i); 
static void Main() { 
    Sum theDelegate = x => x + x; 
    int i = theDelegate(15); 
    Console.WriteLine("Sum : " + i); // Sum : 30 
} 
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The code on the previous page can be refined by replacing the Sum delegate with the Func<T, TResult> 

generic delegate that is supplied by the .NET framework: 

C# 
---------------------------------------------------------------------------------------------------------- 
static void Main() { 
    Func<int, int> sum = x => x + x; 
    int i = sum(15); 
    Console.WriteLine("Sum : " + i); // Sum : 30 
} 

Lambda expressions are available in a large number of programming languages, especially functional 

languages, such as Haskell (Thompson, 1999), Lisp (Seibel, 2004), Erlang (Armstrong, 2007), Scala 

(Wampler & Payne, 2009) and F# (Smith, 2009). 

The inclusion of lambda functions in C# shows its shift to a more declarative style of programming 

(Lloyd, 1994) as in functional languages. Lambda expressions are used extensively in the APL library. 

For example the AutoAbstractFactory APL component takes in the Factory<TResult> family of 

creational delegates. The code below shows how a lambda expression () => new ProductA1() is used 

to inject a creational anonymous function with the RegisterOperation for the "CreateProductA" 

method available on the IAbstractFactory interface: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
var factory = new AutoAbstractFactory<IAbstractFactory>(); 
// Register a creational lambda expression representing the CreateProductA method on the AbstractFactory 
factory.RegisterOperation<IAbstractProductA>("CreateProductA", () => new ProductA1()); 

1.8 Contributions of  this Thesis 

This section provides an overview of the scientific contributions of this thesis. The thesis has 

 shown that modern language features are beneficial in the creation of reusable design pattern 

components. 

 shown that duck typing (Koenig & Moo, 2005) is a powerful language feature with which to 

implement reusable design patterns. 

 built on the argument that reusable design patterns are a useful solution for the traceability, 

reusability, implementation overhead and maintainability problems associated with design 

patterns. 

 shown that it is possible to implement reusable design pattern components in C#. 
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 C h a p t e r  2  

2 PROTOTYPE 

2.1 Introduction 

Prototypes (Gamma, Helm, Johnson, & Vlissides, 1994) (Meyer, 2000) enable clients to select at run-

time what objects they want to create. The prototype pattern provides a simple solution for facilitating 

dynamic object creation (Nierstrasz, et al., 2005) and run-time management of a registry of objects. 

The intent of the prototype design pattern is to create a new instance by making a copy of an existing 

prototype object during run time. 

2.1.1 Structure. 

The following figure shows the formal structure of the prototype design pattern: 

 

Figure 1. Prototype formal structure. 

2.1.2 Participants. 

The classes and/or objects participating in the prototype design pattern are: 

 Prototype 

The Prototype is the class that declares the cloning interface. 

Clone()

Prototype

Clone()

ConcretePrototype1

return copy of self

Operation()

Client

Clone()

ConcretePrototype2

return copy of self

p = prototype.Clone()

prototype
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 ConcretePrototype 

The ConcretePrototype is the class that implements the cloning interface. 

 Client 

The Client is the user of the Prototype asking it to clone itself. 

2.2 Library Components 

2.2.1 The Prototype component. 

The prototype component is implemented by a DeepCopy generic extension method (Microsoft, 2010g). 

The DeepCopy extension method thus makes a clone from an original object. The extension method is 

generic, and so the method is available on all classes of type T: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
namespace Apl.Pattern.Gof.Creational.Prototype { 
    public static class PrototypeExtention { 
        static public T DeepCopy<T>(this T obj) { 
            Contract.Requires<ArgumentNullException>(obj != null, "Input argument obj cannot be null"); 
            Contract.Ensures(Contract.Result<T>() != null);  
            return PrototypeHelper<T>.DeepCopy(obj); 
        } 
    } 
 
    // … S N I P … 
} 

The actual clone or copy processing of the original object is delegated to the DeepCopy method on the 

generic PrototypeHelper APL component: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public static T DeepCopy(T obj) { 
        Contract.Requires<ArgumentNullException>(obj != null, "Input argument obj cannot be null"); 
        Contract.Ensures(Contract.Result<T>() != null); 
        var memoryStream = new MemoryStream(); // Create a new memory stream 
        var binaryFormatter = new BinaryFormatter(); // Create a new binary formatter 
        binaryFormatter.Serialize(memoryStream, obj); // Serialize the object to the memory stream 
        memoryStream.Seek(0, SeekOrigin.Begin); // Go back to the beginning of the stream 
        var copy = (T)binaryFormatter.Deserialize(memoryStream); // Deserialize the memory to an object 
        memoryStream.Close(); // Close the stream 
        return copy; // Return the deserialized object 
} 

The DeepCopy extension method first serializes the state of the prototype to a memory stream. Next, it 

deserializes the memory stream back into a new copy with the original state of the Prototype. The 

DeepCopy extension method uses the same technique shown by Bishop in her book C# 3.0 Design 

Patterns (Bishop, 2007). 
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The DeepCopy extension method is thus available on any object that uses the 

Apl.Pattern.Gof.Creational.Prototype namespace: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
// Namespace that makes the DeepCopy extension method available 
uses Apl.Pattern.Gof.Creational.Prototype {     
    // … S N I P … 
    var newFoo = foo.DeepCopy(); 
    // … S N I P … 
} 

A slight drawback of the prototype component is that the class being copied must be attributed with 

the C# Serializable (Bishop, 2007) (Albahari & Albahari, 2007) (Microsoft, 2010k) attribute. 

The C# NonSerialized (Albahari & Albahari, 2007) attribute can be used to control which fields of a 

prototype class must not be copied: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
[Serializable] 
class ThePrototype { 
    private string _state1; 
    [NonSerialized] private string _state2; // Don’t serialize this field… 
    private string _state3; 
    // … S N I P …     
} 

In the above code, the _state2 field will not be serialized when the DeepCopy method is invoked on an 

instance of the ThePrototype class, thus giving more control on how the object must be cloned. 

2.3 Theoretical Examples 

The following example shows how the prototype component is used in a formal pattern setting. At the 

heart of the prototype design pattern is the clone operation. When using the APL library the clone 

operation is automatically added to all classes by using the extension method C# language feature 

(Microsoft, 2010g). The hand coded implementation of the clone method is thus no longer necessary 

as per the traditional pattern. The only constraint that exists is that the ConcretePrototype must be 

attributed with the Serializable attribute. 

In the following theoretical example, Prototype defines a Prototype with a base state: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
[Serializable] 
abstract class Prototype { 
    private readonly string _state;     
    protected Prototype(string state) { _state = state; }         
    public string State { get { return _state; } } 
} 
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Note that no hand coded clone method is defined on the Prototype class. Next, ConcretePrototype1 

and ConcretePrototype2 classes are implemented, that define the ConcretePrototypes: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
[Serializable] 
class ConcretePrototype1 : Prototype { public ConcretePrototype1(string state) : base(state) {} } 
[Serializable] 
class ConcretePrototype2 : Prototype { public ConcretePrototype2(string state) : base(state) {} } 

Both of the ConcretePrototypes must have the Serializable attribute. This is because the internal 

engine of the prototype component serializes and deserializes the entire prototype in order to make the 

copy. The ConcretePrototypes can now use the DeepCopy extension method from the APL library in 

order to make a clone of themselves: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
var concretePrototype1 = new ConcretePrototype1("Foo"); 
var copy1 = concretePrototype1.DeepCopy(); // Make a clone of the concretePrototype1 object 
Console.WriteLine("Cloned : {0}", concretePrototype1.State);  
var concretePrototype2 = new ConcretePrototype2("Bar"); 
var copy2 = concretePrototype2.DeepCopy(); // Make a clone of the concretePrototype2 object 
Console.WriteLine("Cloned : {0}", concretePrototype2.State); 
 
/* 
Output: 
Cloned : Foo 
Cloned : Bar 
*/ 

The output of this example shows that the state of the newly copied objects is the same as the original 

state. 

2.4 Outcome 

The componentization of the prototype design pattern is a partial success because it meets most of the 

requirements listed in section 1.4: 

 Completeness: The prototype design pattern library component covers all cases described in 

the original design pattern. 

 Usefulness: The prototype design pattern library component is partially useful because it does 

not solve all of the prototype scenarios desired by a developer. A developer can fine-tune 

which parts of a Prototype instance must or must not be cloned, using the NonSerialized C# 

(Albahari & Albahari, 2007) attribute. When cloning, however, deep and shallow copying 

should be taken into consideration for composition, aggregation and association relationships. 

Aggregation characterises a part-of or part-whole relationship. Composition is a stronger type 

of association relationship. Composition generally has a strong life cycle dependency. If a class 
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holding a composition relationship is destroyed, usually every composition instance that it 

holds is destroyed as well. An association represents a weaker relationship, for example where 

a container instance needs to send messages to the associated dependent instance. An 

association can thus be a reference to a service instance. Ideally, when cloning an instance, a 

deep copy should be performed on composition relationships and a shallow copy should be 

performed on aggregation and association relationships. Unfortunately, in C# there is no 

meta-information available that define the three different relationships. The reusable 

component thus can only implement a deep copy. 

 Faithfulness: The implementation of the prototype pattern follows a path slightly different 

from the original pattern described in Design Patterns (Gamma, Helm, Johnson, & Vlissides, 

1994). In Design Patterns an interface is defined with a clone method. All classes which 

implement the prototype design pattern implement the prototype interface. The 

implementation of the prototype pattern in the APL library injects a clone method into classes 

using C# extension methods (Esterbrook, 2001) (Jesse & Xie, 2008). The end structure is the 

same however, where a clone method is available on a certain class. A slight drawback is that a 

class must be attributed with the Serializable C# (Albahari & Albahari, 2007) attribute in 

order to participate within the reusable prototype pattern. 

 Type-safety: The prototype library component is fully type-safe. 

 Extended applicability: The prototype library component does not cover more cases than 

the original prototype pattern. 

 Performance: Serialization will always be slower than manually creating a clone algorithm for 

a certain class. This is because serialization must use reflection and must thus evaluate the 

meta-information of a certain object during runtime. Serialization is, however, used extensively 

in C# libraries such as WCF and Object Relational Mappers (ORM), and is thus a valid 

solution. 

The prototype library component is partially componentized because the developer using it does not 

have to implement any prototype boiler plate code. The prototype library component however can 

only be used as a deep copy. 

The following language features are fundamental to the implementation or usage of the reusable 

prototype design pattern component: Generics (Jagger, Perry, & Sestoft, 2007), Design by Contract™ 

(Mitchell & McKim, 2001), Mixins (Extension Methods) (Esterbrook, 2001) (Jesse & Xie, 2008) and 

Reflection (Sobel & Friedman, 1996) (Forman & Forman, 2005). 
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 C h a p t e r  3  

3 SINGLETON 

3.1 Introduction 

The singleton design pattern ensures that that there is only one instance of each class and offers a 

universal point of access to it (Gamma, Helm, Johnson, & Vlissides, 1994). 

The intent can thus be described as: 

 The ability to enforce that a class has only a single instance. 

 The ability to avoid redundant instance creation, especially for stateless objects. 

 The ability to manage the responsibility of maintaining universal access to the single 

instance of a class. 

3.1.1 Structure. 

The following figure shows the formal structure of the singleton design pattern (Gamma, Helm, 

Johnson, & Vlissides, 1994): 

 

Figure 2. Singleton structure. 

3.1.2 Participants. 

The classes and/or objects participating in the singleton design pattern are: 

 Singleton 

A Singleton defines a static GetInstance operation on a class that lets clients access its unique 

instance. It also governs the creation and controls the subsequent management of its own 

unique instance. 

-Singleton()

+GetInstance() : Singleton

-instance : Singleton

Singleton
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3.2 Library Components 

3.2.1 The Singleton component. 

The singleton component in the APL library is implemented using the curiously recurring template pattern 

(Coplien, 1995). This means that the generic singleton component must be inherited from the 

Singleton being implemented, as seen below: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
class TheSingleton : Singleton<TheSingleton> { … } 

The following code shows how the reusable Singleton class is implemented in the APL library: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public abstract class Singleton<T> : BaseSingleton<T> 
    where T : class { 
 
    // Boolean indicating a Thread Local Static Singleton 
    private static readonly bool TLS;  
 
    // Aquire a reference to a Singleton for class T 
    public static T Instance { 
        get { 
            Contract.Ensures(Contract.Result<T>() != null); 
 
            return TLS ? SingletonTLSCreator.Instance : SingletonCreator.Instance; 
        } 
    } 
 
    static Singleton() { 
        var singletonAttribute = GetAttribute(); 
 
        if(singletonAttribute != null && singletonAttribute.ThreadStatic)  
            TLS = true; 
    } 
 
    // … S N I P … 
 
    // Protected Singleton constructor 
    protected Singleton() { } 
 
    // A normal Singleton creator 
    private class SingletonCreator { 
        internal static readonly T Instance = CreateHelper<T>.CreateFromPrivateConstructor(); 
    } 
 
    // A Thread Local Storage Singleton creator 
    private class SingletonTLSCreator { 
        [ThreadStatic] 
        private static T _instance; 
 
        internal static T Instance { 
            // Create a Singleton instance from its private constructor if an instance 
            // does not exist already 
            get {  
                return _instance ?? (_instance = CreateHelper<T>.CreateFromPrivateConstructor()); 
            } 
        } 
    } 
} 
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Figure 3. UML class diagram of the Singleton APL component. 

Figure 3 shows a UML class diagram of the Singleton APL component. 

The Singleton component implements two different singleton variants. One is per process and the 

other is per thread as shown in the article A Per-Thread Singleton Class (Chaudhry, 2002) and also in the 

paper Thread-Specific Storage - An Object Behavioral Pattern for Efficiently Accessing per-Thread State (Harrison 

& Schmidt, 1997). The above-mentioned singleton variant is disclosed using the ThreadStatic property 

on the APL SingletonAttribute attribute. The implementation of the SingletonAttribute is shown 

below: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
[AttributeUsage(AttributeTargets.Class, AllowMultiple = false, Inherited = false)] 
public class SingletonAttribute : System.Attribute, IPatternClassAttribute { 
    public SingletonAttribute() { ThreadStatic = false; } 
    public SingletonAttribute(bool threadStatic) { ThreadStatic = threadStatic; } 
  
    public bool ThreadStatic { get; set; } 
    public bool Validate(Type classType) { … } 
} 

The SingletonAttribute APL attribute’s bool ThreadStatic property thus defines whether the 

Singleton is single per process or per thread. If it is a Singleton per process, then the single instance is 

created using the SingletonCreator inner class in the Singleton component. The Singleton instance is 

only created on the very first instantiation of the internal SingletonCreator. The 

CreateFromPrivateConstructor method on the CreateHelper helper class creates an instance of the T 

T > class

Singleton

- TLS  :bool {readOnly}

«Propery»

- Instance  :T

- GetAttribute()  :SingletonAttribute

- GetSingletonAttributes()  :IEnumerable<SingletonAttribute>

- Singleton()

# Singleton()

T > class

BaseSingleton

- BaseSingleton()

# BaseSingleton()

- Validate()  :void
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class using reflection (Sobel & Friedman, 1996), because the constructor of the Singleton must be 

private. 

In the Singleton component, the SingletonTLSCreator inner class is used to instantiate a Singleton per 

thread (Chaudhry, 2002). A mechanism known as thread local storage is used (Stein & Shah, 1992) in 

which a variable is assigned per thread. The ThreadStatic (Microsoft, 2010n) attribute on the 

_instance field on the SingletonTLSCreator inner class tells the runtime that a unique instance of the 

field must exist per thread. The Instance property on the SingletonTLSCreator class creates an instance 

of the thread static Singleton only if one does not already exist for the specific thread on which the 

logic is executed. 

The Singleton component also inherits from an abstract BaseSingleton<T> class that defines the most 

common functionality for all APL Singleton components, such as validations: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public abstract class BaseSingleton<T> 
    where T : class { 
    static BaseSingleton() { Validate(); } 
    protected BaseSingleton() { }     
    private static void Validate() { … } 
} 

3.3 Theoretical Examples 

The following example shows the usage of the Singleton APL component: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
class TheSingleton : Singleton<TheSingleton> { private TheSingleton() { } } 
 
class Program { 
    static void Main() { 
        var s1 = TheSingleton.Instance; 
        var s2 = TheSingleton.Instance; 
 
        if(s1 == s2) {  
            Console.WriteLine("Objects are the same instance");  
        } 
 
        Console.ReadKey(); 
    } 
} 
 
/* Output 
Objects are the same instance 
*/ 

The TheSingleton hand coded class inherits from the Singleton component, passing itself as the 

generic argument. The constructor must be made private because the validation in the Singleton 

component throws an exception during runtime if the constructor is not private. 
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In this example, the client calls the Instance property of TheSingleton twice, storing it in two separate 

variables. If no SingletonAttribute APL attribute is placed on the Singleton then the pattern variant 

defaults to a singleton per process. The output shows that the variables reference the same instance, 

thus the Instance property has returned the same single object. 

The next example shows the usage of the Singleton component configured to return an instance per 

thread: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
[Singleton(ThreadStatic = true)] 
public class TheSingleton : Singleton<TheSingleton> { 
    private TheSingleton() { 
        Console.WriteLine("A new singleton was creater on thread id: " +  
                           Thread.CurrentThread.ManagedThreadId); 
    } 
 
    public void DoSomething() { Console.WriteLine("Doing something on thread id: " + 
                                                  Thread.CurrentThread.ManagedThreadId); } 
} 
 
public class ThreadStaticExample { 
    static void Main() { 
        var thread1 = new Thread(() => { 
            var s1 = TheSingleton.Instance; 
            s1.DoSomething(); 
            var s2 = TheSingleton.Instance; 
            s2.DoSomething(); 
            if(s1 == s2) { Console.WriteLine("Objects are the same instance for thread 1"); }  
        }); 
 
        var thread2 = new Thread(() => { 
            var s1 = TheSingleton.Instance; 
            s1.DoSomething(); 
            var s2 = TheSingleton.Instance; 
            s2.DoSomething(); 
            if(s1 == s2) { Console.WriteLine("Objects are the same instance for thread 2"); }  
        }); 
 
        thread1.Start(); 
        thread2.Start(); 
        Thread.Sleep(10000); 
 
        Console.WriteLine(); 
        Console.Write("Press any key to exit."); 
        Console.Read(); 
    } 
} 
 
/* Output 
A new singleton was creater on thread id: 11 
Doing something on thread id: 11 
Doing something on thread id: 11 
Objects are the same instance for thread 1 
A new singleton was creater on thread id: 12 
Doing something on thread id: 12 
Doing something on thread id: 12  
Objects are the same instance for thread 2 
*/ 
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The TheSingleton class is attributed with the Singleton attribute where ThreadStatic is set to true. The 

client creates two separate threads during runtime. Each thread calls the Instance property twice. The 

output shows that the constructor of the Singleton instance was called twice, once for each thread. 

The second call to Instance in each thread has thus not created a new instance of the TheSingleton 

class, but returned the instance already allocated to the specific thread. 

 

Figure 4. UML sequence diagram for the thread static Singleton APL component example. 

Figure 4 shows a sequence diagram for the thread static Singleton APL component example. 

3.4 Outcome 

The componentization of the singleton design pattern is a success because it meets all the 

requirements listed in section 1.4: 

 Completeness: The singleton design pattern library components cover all cases described in 

the original core design pattern. 

 Usefulness: The singleton design pattern library component is useful because it solves all of 

the singleton’s defined intent. The singleton design pattern library component is also easy to 

understand and simple to use. 
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 Faithfulness: The implementation of the singleton design pattern library component mostly 

follows the original pattern described in Design Patterns (Gamma, Helm, Johnson, & Vlissides, 

1994). The Singleton implementation has been slightly changed where the static GetInstance 

operation that lets clients access its unique instance is replaced by a static read-only Instance 

property. 

 Type-safety: All of the library components are fully type-safe. 

 Extended applicability: The singleton library component covers more cases than the original 

singleton pattern. The reusable singleton component allows a Singleton to be created per 

thread. 

 Performance: Using the singleton component does not have a performance impact. 

A developer still needs to make the default constructor of a class private when implementing a 

Singleton using the singleton library component. The singleton library component, however, is still 

classified as fully componentized because the boiler plate code that must be implemented by a 

developer is not significant. 

The following language features are fundamental to the implementation or usage of the reusable 

singleton component: Inheritance (Mitchell, Mitchell, & Krzysztof, 2003), Generics (Jagger, Perry, & 

Sestoft, 2007), Design by Contract™ (Mitchell & McKim, 2001), Attributes (Nagel, Evjen, Glynn, & 

Watson, 2010) and Reflection (Sobel & Friedman, 1996) (Forman & Forman, 2005). 
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 C h a p t e r  4  

4 ABSTRACT FACTORY 

4.1 Introduction 

The abstract factory design pattern offers an interface for creating families of related objects that assist 

in decoupling applications from the concrete implementation of an entire framework or library 

(Gamma, Helm, Johnson, & Vlissides, 1994) (McConnell, 1993). 

The intent can thus be described as: 

 The ability to decouple the concrete family of objects from their users. 

 The ability to be able to choose at runtime a concrete factory that implements creational 

contracts whose sole responsibility is to instantiate a specific family of related classes. 

4.1.1 Structure. 

The following figure shows the formal structure of the abstract factory design pattern (Gamma, Helm, 

Johnson, & Vlissides, 1994): 

 

Figure 5. Abstract factory structure. 

4.1.2 Participants. 

The classes and/or objects participating in the abstract factory design pattern are:  

AbstractProduct A

Product A2

Product A1

AbstractProduct B

Product B2

Product B1

CreateProductA()

CreateProductB()

AbstractFactory

CreateProductA()

CreateProductB()

ConcreteFactory1

CreateProductA()

CreateProductB()

ConcreteFactory2

«create»

«create»

«create»

«create»
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 AbstractFactory 

An AbstractFactory defines an interface for creational operations that instantiates an 

AbstractProduct. 

 ConcreteFactory 

A ConcreteFactory implements the creational operations with which to instantiate Product 

objects. 

 AbstractProduct 

An AbstractProduct defines an interface for a specific type of Product object. 

 Product 

A Product defines a concrete product object that implements the AbstractProduct interface. It 

is instantiated by the corresponding ConcreteFactory. 

 Client 

A Client uses the interfaces defined by the AbstractFactory and AbstractProduct participants. 

4.2 Library Components 

4.2.1 The AutoAbstractFactory component. 

The AutoAbstractFactory APL component uses dynamic duck typing (Koenig & Moo, 2005) in order to 

hook up creational methods or creational anonymous functions (Ierusalimschy, 2003) with methods 

defined in an AbstractFactory contract. The AutoAbstractFactory has one generic argument 

TAbstractFactory that defines the AbstractFactory contract. The implementer of the 

AutoAbstractFactory must use the RegisterOperation methods to register the creational methods or 

creational anonymous functions. Each RegisterOperation method validates whether the registered 

creational method signature exists on the TAbstractFactory AbstractFactory interface and adds it to 

the internal dictionary if it does: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public sealed class AutoAbstractFactory<TAbstractFactory> : IDynamicInvoker 
    where TAbstractFactory : class { 
    private readonly Dictionary<DynamicMethod, Delegate> _operationDictionary =  
        new Dictionary<DynamicMethod, Delegate>(); 
    private volatile TAbstractFactory _targetCache; 
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    public AutoAbstractFactory() { _targetCache = null;  } // Constructor 
 
    [ContractInvariantMethod] 
    private void ContractInvariant() { 
        Contract.Invariant(operationDictionary!= null, "The dictionary cannot be null"); 
        // … M O R E  C O N T R A C T S … 
    } 
 
    // Register methods for the Factory set of delegates: 
 
    // Register a creational method with no arguments 
    public void RegisterOperation<TResult>(string methodName, Factory<TResult> operation) { 
        Contract.Requires<ArgumentException>(!string.IsNullOrEmpty(methodName) != null, 
                                             "Argument methodName cannot be null or empty"); 
        Contract.Requires<ArgumentException>(operation != null, 
                                             "Argument operation cannot be null"); 
        // … C O N T R A C T S … 
        Validate();         
        _operationDictionary.Add(new DynamicMethod(operation.Method), operation); 
    } 
 
    // Register a creational method with no arguments 
    public void RegisterOperation<TResult>(MethodInfo method, Factory<TResult> operation) {         
        // … C O N T R A C T S …         
        Validate();         
        _operationDictionary.Add(new DynamicMethod(method), operation); 
    } 
 
    // Register a creational method with one argument 
    public void RegisterOperation<TResult, TArg1>(string methodName,  
                                                  Factory<TResult, TArg1> operation) { … } 
 
    // Register a creational method with one argument 
    public void RegisterOperation<TResult, TArg1>(MethodInfo method,  
                                                  Factory<TResult, TArg1> operation) { … } 
 
    // Register a creational method with two arguments 
    public void RegisterOperation<TResult, TArg1, TArg2>(string methodName, 
                                                         Factory<TResult, TArg1, TArg2> operation) { … } 
     
    // Register a creational method with two arguments 
    public void RegisterOperation<TResult, TArg1, TArg2>(MethodInfo method, 
                                                         Factory<TResult, TArg1, TArg2> operation) { … } 
 
    // … M O R E … 
 
    // Register methods for the IFactory set of interfaces: 
 
    public void RegisterOperation<TResult>(string methodName, IFactory<TResult> factory) { … } 
    public void RegisterOperation<TResult>(MethodInfo method, IFactory<TResult> factory) { … } 
    public void RegisterOperation<TResult, TArg1>(string methodName, 
                                                       IFactory<TResult, TArg1> factory) { … } 
    public void RegisterOperation<TResult, TArg1>(MethodInfo method, 
                                                       IFactory<TResult, TArg1> factory) { … }     
     
    // … M O R E … 
 
    public object Invoke(string methodName, object[] args) { 
        Contract.Requires<ArgumentException>(!string.IsNullOrEmpty(methodName), 
                                             "Argument path cannot be null"); 
        var operation = GetOperation(methodName, args); 
        if(componentOperation != null) { return operation.DynamicInvoke(args); } 
         
        throw new Exception("Creational method not found"); 
    }     
 
    public TAbstractFactory Target { 
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        get { 
            Contract.Ensures(Contract.Result<TAbstractFactory>() != null); 
            return DoubleCheckedLock<TAbstractFactory>.Create( 
                _targetCache, this, () => this.AsIf<TAbstractFactory>(true)); 
        } 
    } 
 
    // … S N I P … 
} 

The RegisterOperation methods accept a string, which defines the creational method name, or a 

MethodInfo (Microsoft, 2010j) as the type for its first argument. The second argument defines the 

actual creational method. The registered method must be linked to a corresponding method on the 

TAbstractFactory AbstractFactory interface. An exception is thrown if the method signature is not 

found on the AbstractFactory. When a string is used to identify the method (as opposed to using a 

MethodInfo), then method overloading (Meyer, 2001) is not allowed, because no argument information 

is supplied and the RegisterOperation thus does not know with what method on the AbstractFactory 

it must hook up with. The MethodInfo (Microsoft, 2010j) type, which is an internal .NET type, does 

allow method overloading on the AbstractFactory. 

Only Factory APL delegates or IFactory APL interfaces can be registered with the 

AutoAbstractFactory component. Both the Factory delegates and the IFactory interfaces define 

methods that return a newly created instance. A number of Factory delegates exist in the APL library, 

each with a different set of arguments: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public delegate TResult Factory<out TResult>(); 
public delegate TResult Factory<out TResult, in T>(T arg); 
public delegate TResult Factory<out TResult, in T1, in T2>(T1 arg1, T2 arg2); 
// … M O R E … 

A number of IFactory interfaces also exist in the APL library also with a different set of arguments: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public interface IFactory<out TResult> { TResult Create(); } 
public interface IFactory<out TResult, in T> { TResult Create(T arg); } 
public interface IFactory<out TResult, in T1, in T2> { TResult Create(T1 arg1, T2 arg2); } 
// … M O R E …  

The Invoke method on the AutoAbstractFactory queries the internal dictionary in order to see whether 

an operation was registered for the received method signature. The method signature is part of the 

Invoke method’s argument list. If one exists, the operation is invoked and the newly created instance is 

returned. If a method is not found, then an exception is thrown. The validation if an implementation is 

registered against a method signature on the TAbstractFactory AbstractFactory interface is thus done 

only when the method is being invoked by a client. 
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The Target property on the AutoAbstractFactory returns an instance of a dynamically created class that 

has implementations for all the methods on the TAbstractFactory AbstractFactory interface. Every 

invocation on the instance is channelled to the Invoke method, which then calls the appropriate 

creational method. 

AutoAbstractFactory

OperationDictionary 

Key: CreateProductA 
Value: { Delegate that 
creates an instance of 
an IAbstractProductA}

Key: CreateProductB 
Value: { Delegate that 
creates an instance of 
an IAbstractProductB}

Target Register Invoke

ConcreteFactory Dynamically 
Created During Runtime 

(Realization of IAbstractFactory)

CreateProductA CreateProductB

 

Figure 6. AutoAbstractFactory APL component overview. 

Figure 6 shows a graphical overview of the AutoAbstractFactory component. It indicates the three 

main contracts of an AutoAbstractFactory. These are: first, the registration contracts used to register 

creational methods; secondly, the Target contract used to retrieve a dynamically created instance of a 

ConcreteFactory during runtime and; thirdly, the Invoke contract that is used by the duck typing 

(Koenig & Moo, 2005) runtime in order to invoke one of the delegates stored inside the dictionary. 

The dynamically created ConcreteFactory, which realizes an AbstractFactory IAbstractFactory, 

forwards all local invocations to the Invoke method on the AutoAbstractFactory instance, from where 

the call is forwarded to the correct method in the dictionary. For example, a call to the CreateProductA 
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method on the ConcreteFactory is forwarded to the Invoke method on the AutoAbstractFactory. 

From there, a delegate that represents the CreateProductA method, and thus a creator of an instance 

that realizes the IAbstractProductA interface, is retrieved from the dictionary and executed. The 

Product result is then passed to the ConcreteFactory, from where it is passed back to the caller. 

The SimpleAutoAbstractFactory component does almost exactly the same as the AutoAbstractFactory 

component. However, an AbstractProduct type is registered on the SimpleAutoAbstractFactory 

component and not the creational method. The AbstractProduct type is registered together with its 

corresponding Product type, as can be seen in the Register<TAbstractProduct, TProduct>() method. 

The Register<TAbstractProduct, TProduct>() method adds a creational method for the 

AbstractProduct type in the component’s internal dictionary. In order to eliminate ambiguities, only 

one creational method that returns a certain AbstractProduct type is allowed on the AbstractFactory 

interface when using the SimpleAutoAbstractFactory. 

The code below shows the implementation of the SimpleAutoAbstractFactory component in the APL 

library: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public sealed class SimpleAutoAbstractFactory<TAbstractFactory> : IDynamicInvoker         
    where TAbstractFactory : class { 
    private readonly Dictionary<Type, Factory<object>> _factoryDictionary =  
        new Dictionary<Type, Factory<object>>(); 
    private volatile TAbstractFactory _abstractFactoryCache; 
 
    [ContractInvariantMethod] 
    private void ContractInvariant() { 
        Contract.Invariant(_factoryDictionary != null, "The FactoryDictionary cannot be null"); 
    } 
 
    public SimpleAutoAbstractFactory() { _abstractFactoryCache = null; } 
 
    public void Register<TAbstractProduct, TProduct>() 
        where TConcreteFactory : class, TFactoryInterface, new() { 
        // … C O N T R A C T S … 
 
        _factoryDictionary.Add(typeof(TAbstractProduct), () => new TProduct()); 
    } 
 
    public TAbstractFactory Target { 
        get { 
            Contract.Ensures(Contract.Result<TAbstractFactory>() != null); 
            return DoubleCheckedLock<TAbstractFactory>.Create( 
                   _abstractFactoryCache, this, () => this.AsIf<TAbstractFactory>(true)); 
        } 
    } 
 
    public object Invoke(string methodName, object[] args) { 
        Contract.Requires<ArgumentException>(!string.IsNullOrEmpty(methodName), 
                                             "Argument methodName cannot be null"); 
 
        // Go through all of the factory interfaces and find the method 
        // with the argument contract. 
        var factory = GetFactory(methodName, args); 
        if(factory != null) return factory; 
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        throw new Exception("The factory was not found."); 
    } 
 
    // … S N I P … 
} 

The Invoke method of the SimpleAutoAbstractFactory component queries its internal dictionary for 

the ConcreteFactory which holds a method that creates, and thus returns, the specific Product. The 

query is performed using the AbstractProduct type as a key. If this method is found, then it invokes 

the creational method and returns the newly created Product. An exception is thrown if no method is 

found. An exception is also thrown if any ambiguity is found. 

For example an AbstractFactory creating two AbstractProducts can be used as follows: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
public interface IAbstractFactory { // AbstractFactory interface 
    IProductA CreateProductA(); // Creational method that creates an IProducA AbstractProduct 
    IProductB CreateProductB(); // Creational method that creates an IProducB AbstractProduct 
} 
 
var factory = new SimpleAutoAbstractFactory<IAbstractFactory>(); // Create a ConcreteFactory 
factory.Register<IProductA, ProductA>(); // Register a ProductA against an IProductA AbstractProduct 
factory.Register<IProductB, ProductB>(); // Register a ProductB against an IProductB AbstractProduct 

The Products ProductA and ProductB are registered against the AbstractProducts they realize. Both of 

the AbstractProducts in the above example are return types on creational methods defined on the 

IAbstractFactory interface. The factory instance can now be used with the Target property that 

returns an instance of a dynamically created ConcreteFactory, which implements the IAbstractFactory 

interface. The code snippet below returns an instance of the ProductA class that was registered with the 

factory instance: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
var productA = factory.Target.CreateProductA(); 

Abstract factories can also be implemented using the prototype (Gamma, Helm, Johnson, & Vlissides, 

1994) (Zimmer, 1995) design pattern. For this reason a PrototypeAbstractFactory component also 

exists in the APL library. This component behaves almost exactly as the SimpleAutoAbstractFactory, 

except that Prototype instances, not Products types, are registered against AbstractProducts. 

The registration of creational operations against a certain method available on the Target interface can 

be improved by using C# dynamics or lambda expressions, as shown in Appendix I. The same 

mechanism can be used for all the components in this thesis that have to register a method that will be 

used in a duck typing (Koenig & Moo, 2005) environment. 
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4.3 Theoretical Examples 

The following theoretical example shows the usage of the AutoAbstractFactory component defined in 

the previous section. It defines two AbstractProducts IAbstractProductA and IAbstractProductB: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
public interface IAbstractProductA { void Bar(); }                       // AbstractProduct 
public interface IAbstractProductB { void Foo(IAbstractProductA a); }    // AbstractProduct 

Figure 7 shows a sequence diagram for the AutoAbstractFactory example. The full example is shown 

after the sequence diagram. It illustrates the registration of an IAbstractProductA AbstractProduct and 

the subsequent creation of a Product using the Target property. 

 

Figure 7. UML sequence diagram for the AutoAbstractFactory component example. 

The example creates implementations for the AbstractProducts. Each AbstractProduct is given two 

implementations: 
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C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
[Serializable] 
public class ProductA1 : IAbstractProductA { // Product 
    public void Bar() { Console.WriteLine("ProductA1: Called Bar"); } 
} 
 
[Serializable] 
public class ProductB1 : IAbstractProductB { // Product 
    public void Bar() { Console.WriteLine("ProductB1: Called Bar"); } 
    public void Foo(IAbstractProductA a) { 
        Console.WriteLine("ProductB1: Called Foo - uses " + a.GetType().Name); 
    } 
} 
 
[Serializable] 
public class ProductA2 : IAbstractProductA { // Product 
    public void Bar() { Console.WriteLine("ProductA2: Called Bar"); } 
} 
 
[Serializable] 
public class ProductB2 : IAbstractProductB { // Product 
    public void Foo(IAbstractProductA a) { 
        Console.WriteLine("ProductA2: Called Foo - uses " + a.GetType().Name); 
    } 
} 

An AbstractFactory interface is then defined with two methods that return each AbstractProduct. No 

ConcreteFactories are defined, as they are automatically implemented by the abstract factory 

components: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
public interface IAbstractFactory { //AbstractFactory 
    IAbstractProductA CreateProductA(); // Creational Method 
    IAbstractProductB CreateProductB(); // Creational Method 
} 
 

The following code shows the usage of the AutoAbstractFactory component: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
var factory = new AutoAbstractFactory<IAbstractFactory>(); 
// Register a creational lambda expression representing the CreateProductA method on the AbstractFactory 
factory.RegisterOperation<IAbstractProductA>("CreateProductA", () => new ProductA1()); 
 
// Register a creational lambda expression representing the CreateProductB method on the AbstractFactory 
factory.RegisterOperation<IAbstractProductB>("CreateProductB", () => new ProductB1()); 
 
var productA = factory.Target.CreateProductA(); // Create a productA using the CreateProductA method 
productA.Bar(); // Use the productA instance 
var productB = factory.Target.CreateProductB(); // Create a ProductB using the CreateProductB method 
productB.Foo(productA); // Use the productB instance 
 
/* Output 
ProductA1: Called Bar 
ProductB1: Called Foo - uses ProductA1 
*/ 
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In the example above, a factory instance is created with the AutoAbstractFactory component with an 

IAbstractFactory AbstractFactory interface. Both of the methods on the AbstractFactory are then 

registered with the factory instance, using the RegisterOperation method. The creational method type 

is defined by its name “CreateProductA” and the creational logic is injected with a lambda expression 

(J'arvi, Freeman, & Crowl, 2007): 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
factory.RegisterOperation<IAbstractProductA>("CreateProductA", () => new ProductA1()); 

The factory instance is then used in a client environment. The Target property is used to acquire a 

dynamically created instance during runtime that realizes the IAbstractFactory AbstractFactory 

interface. The AutoAbstractFactory component thus creates a new class during runtime and returns an 

instance of it to the calling client. All of the invocations done through the Target property are 

forwarded to the AutoAbstractFactory, where the appropriate creational logic is invoked. In the 

example, two Products productA and productB are created using the Target property on the factory 

instance. The Products are also used in the example. 

The output shows that both of the factory calls were successful. 

4.4 Outcome 

The componentization of the abstract factory design pattern is a success because it meets all the 

requirements listed in section 1.4: 

 Completeness: The abstract factory design pattern library components cover all cases 

described for the original core abstract factory design pattern in Design Patterns (Gamma, Helm, 

Johnson, & Vlissides, 1994). 

 Usefulness: The abstract factory design pattern library components are useful because they 

solve all of the abstract factory’s defined intent. With the AutoAbstractFactory component, a 

developer need only inject the creational logic with an instance of the abstract factory 

component. A different abstract factory component implementation, 

PrototypeAbstractFactory, exists where a Prototype is used for the creation of the Products, 

giving the user a different implementation choice. The SimpleAutoAbstractFactory component 

is useful when the creation of the Product can be done using the default constructor. The 

abstract factory design pattern library components are simple to understand and easy to use. 

 Faithfulness: The implementation of the abstract factory pattern differs from the original 

pattern described in Design Patterns (Gamma, Helm, Johnson, & Vlissides, 1994). In Design 

Patterns the ConcreteFactory participant is manually coded. With the AutoAbstractFactory 
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reusable component, the ConcreteFactory is dynamically created using meta-programming 

(Perrotta, 2010). The SimpleAutoAbstractFactory component implementation is also slightly 

different where the default constructor is automatically used for Product creation. The 

functionality and original intent, however, of the abstract factory pattern, are satisfied for all 

the reusable abstract factory library components. All the abstract factory components in the 

APL library offer an instance that realizes the AbstractFactory interface. 

 Type-safety: The RegisterOperation methods on the AutoAbstractFactory component use 

non type-safe string literals for the specification of the method names. Lambda expressions 

(expressions trees) (Albahari & Albahari, 2007, p. 317) however, can be used to solve the type-

safe registration problem, as shown in Appendix I. Other than that, all the library components 

are fully type-safe. 

 Extended applicability: The abstract factory library components do not cover more cases 

than the original abstract factory pattern. 

 Performance: The abstract factory components do have a performance impact because of the 

usage of duck typing (Koenig & Moo, 2005). Appendix II shows the performance impact of 

duck typing. The performance impact is, however, acceptable in normal situations. 

The abstract factory is fully componentizable because the developer is not tasked with implementing 

any boiler plate code when using the reusable abstract factory library components. 

The following language features are fundamental to the implementation or usage of the reusable 

abstract factory design pattern components: Inheritance (Mitchell, Mitchell, & Krzysztof, 2003), 

Interfaces (Pattison & Box, 2000), Generics (Jagger, Perry, & Sestoft, 2007), Design by Contract™ 

(Mitchell & McKim, 2001), Method References (Microsoft, 2010e), Anonymous Functions 

(Ierusalimschy, 2003), Lambda Expressions (Michaelis, 2010), Reflection (Sobel & Friedman, 1996) 

(Forman & Forman, 2005), Duck Typing (Koenig & Moo, 2005) and Meta-programming (Perrotta, 

2010). 
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 C h a p t e r  5  

5 FACTORY METHOD 

5.1 Introduction 

The factory method design pattern is one of the humblest creational patterns. The design pattern is 

also known as the virtual constructor (Gamma, Helm, Johnson, & Vlissides, 1994). The pattern 

defines an interface for creating a specific object. However, it allows subclasses to resolve which 

concrete class to create. The factory method design pattern thus allows a class to delegate object 

creation to its subclasses (Gamma, Helm, Johnson, & Vlissides, 1994). 

The intent of the factory method pattern can be defined as: 

 The ability to support polymorphic object creation. 

 The ability to define a contract for instantiating objects and to let the instances of subclasses 

decide which concrete objects to create. 

5.1.1 Structure. 

The following figure shows the formal structure of the factory method design pattern (Gamma, Helm, 

Johnson, & Vlissides, 1994): 

Product

ConcreteProduct1

FactoryMethod()

AnOperation()

Creator

FactoryMethod()

ConcreteCreator1

product = FactoryMethod()

«create»
return new ConcreteProduct1

ConcreteProduct2
FactoryMethod()

ConcreteCreator2
«create»

return new ConcreteProduct2

 

Figure 8. Factory method structure. 
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5.1.2 Participants. 

The classes and/or objects participating in the factory method design pattern are: 

 Product 

The Product defines the interface of the objects that the factory method creates. 

 ConcreteProduct 

The ConcreteProduct implements the Product interface. 

 Creator 

The Creator defines the virtual creational operation that returns an object of type Product. 

The Creator may also realize a standard implementation of the factory method that returns a 

standard ConcreteProduct object. 

 ConcreteCreator  

The ConcreteCreator overrides the virtual factory operation in order to return an instance of a 

ConcreteProduct. 

5.2 Library Components 

5.2.1 The ActionCreator component. 

The ActionCreator APL component utilises generics (Jagger, Perry, & Sestoft, 2007) in order to 

implement a reusable factory method pattern. The user must supply the ActionCreator component 

with the Product and ConcreteProduct generic arguments as seen below: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
var concreteCreator1 = new ActionCreator<IProduct, ConcreteProduct>(x => x.Operation()); 

The ActionCreator component defines a specific implementation for the factory method pattern. The 

ActionCreator has a public constructor that takes in an Action C# delegate (Microsoft, 2010a). The 

Action delegate itself takes in the Product as an argument. The delegate, which is supplied by the 

client, thus defines what action must be performed with the Product. The ActionCreator has two 

public methods, Create and Execute. The Create method returns a new instance of the 

ConcreteProduct. The ConcreteProduct type, which is supplied as a generic argument, must have a 
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default constructor. This is because the ActionCreator component creates an instance of the 

ConcreteProduct using the new C# keyword on the ConcreteProduct generic type, as seen below: 

public TProduct Create() { return new TConcreteProduct(); } 

The Execute method defines a universal method that invokes a registered action using the newly 

created Product. This reusable pattern component thus generalises and componentizes one of the 

most common usages of the factory method pattern. 

 

Figure 9. UML class diagram of the ActionCreator APL component. 

Figure 9 shows a UML class diagram of the ActionCreator. The ActionCreator component implements 

the IFactory<TProduct> and ICommand APL interfaces that make the component more flexible and 

adaptable in other pattern scenarios. Multiple ActionCreator components exist in the APL library, 

where each one accommodates the different number of arguments possible for the Execute method. 

The ActionCreator can only be used for a specific factory method solution where a specific method 

performs a certain action on a newly created Product: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public sealed class ActionCreator<TProduct, TConcreteProduct> : IFactory<TProduct>, ICommand 
    where TConcreteProduct : TProduct, new() { 
    private readonly Action<TProduct> _action; 
 
    [ContractInvariantMethod] 
    private void ContractInvariant() { 
        Contract.Invariant(_action != null, "The action cannot be null"); 
    } 
 
    public ActionCreator(Action<TProduct> action) { 

TProduct

TConcreteProduct > TProduct, new()

ActionCreator

{leaf}

- _action  :Action<TProduct> {readOnly}

+ ActionCreator(action :Action<TProduct>)

+ Create()  :TProduct

+ Execute()  :void

«interface»

TResult

BasicFactory::IFactory

+ Create()  :TResult

«interface»

Command::

ICommand

+ Execute()  :void
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        _action = action; 
    } 
 
    // A well known Create 
    public TProduct Create() {  
        return new TConcreteProduct(); 
    } 
 
    // Execute which uses a Factory Method 
    public void Execute() { 
        _action(Create()); 
    } 
} 

The ActionFactoryCreator component is a special variant of the ActionCreator where the creation of 

the Product is entrusted to an implementation of the Factory<TProduct> delegate or 

IFactory<TProduct> interface. The Factory<TProduct> delegate and IFactory<TProduct> interface are 

part of the APL library. 

 

Figure 10. UML class diagram of the ActionFactoryCreator APL component. 

Figure 10 shows a UML class diagram of the ActionFactoryCreator. It shows the following: first, the 

registration of the Factory and Action delegates in the component’s constructor; secondly, the Create 

method that routes its invocation logic to the registered _factory delegate and thirdly, the Execute 

method that routes its invocation logic to the registered _action delegate. The IFactory<TProduct> 

interface is converted into a Factory<TProduct> delegate in the constructor, where the interface is used. 

The code snippet on the next page shows the implementation of the ActionFactoryCreator 

component: 

TProduct

ActionFactoryCreator

{leaf}

- _action  :Action<TProduct> {readOnly}

- _factory  :Factory<TProduct> {readOnly}

+ ActionFactoryCreator(factory :IFactory<TProduct>, action :Action<TProduct>)

+ ActionFactoryCreator(factory :Factory<TProduct>, action :Action<TProduct>)

+ Create()  :TProduct

+ Execute()  :void

«interface»

TResult

BasicFactory::IFactory

+ Create()  :TResult

«interface»

Command::

ICommand

+ Execute()  :void
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C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public sealed class ActionFactoryCreator<TProduct> : IFactory<TProduct>, ICommand { 
    private readonly Factory<TProduct> _factory; 
    private readonly Action<TProduct> _action; 
 
    [ContractInvariantMethod] 
    private void ContractInvariant() { 
        Contract.Invariant(_factory != null, "The factory cannot be null"); 
        Contract.Invariant(_action != null, "The action cannot be null"); 
    } 
 
    // Register the action and the factory through the constructor 
    public ActionFactoryCreator(IFactory<TProduct> factory, Action<TProduct> action) { 
        _factory = factory.Create; 
        _action = action; 
    } 
 
    // Register the action and the factory through the constructor 
    public ActionFactoryCreator(Factory<TProduct> factory, Action<TProduct> action) { 
        _factory = factory; 
        _action = action; 
    } 
 
    public TProduct Create() { // Route the Create invocation to _ factory 
        Contract.Ensures(Contract.Result<TProduct>() != null); 
        return _factory();  
    }  
 
    public void Execute() { _action(Create()); } // Route the Execute invocation to the _action delegate 
} 

In the above code, the Create method delegates the creation of the Product to the registered _factory 

delegate. This is slightly more adaptable than the original ActionCreator component, in which the 

generic Product is forced to have a default constructor. 

There are also multiple ActionFactoryCreator components in the APL library, each one catering for 

the different number of possible arguments. 

C# Action delegates (Microsoft, 2010a) define methods that take in a specific set of arguments and 

that do not return anything. The APL library also has FuncCreator components that use Func 

(Microsoft, 2010h) delegates rather than Action delegates: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public sealed class FuncCreator<TProduct, TConcreteProduct, TResult> : IFactory<TProduct> 
    where TConcreteProduct : TProduct, new() { 
    private readonly Func<TProduct, TResult> _func 
 
    [ContractInvariantMethod] 
    private void ContractInvariant() { 
        Contract.Invariant(_func != null, "The function cannot be null"); 
    } 
 
    public FuncCreator(Func<TProduct, TResult> func) { 
        _func = func; 
    } 
     
    public TProduct Create() {  
        Contract.Ensures(Contract.Result<TProduct>() != null); 
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        return new TConcreteProduct(); 
    } 
 
    public TResult Execute() { 
        return _func(Create()); 
    } 
} 

 

Figure 11. UML class diagram of the FuncCreator APL component. 

Figure 11 shows a UML class diagram of the FuncCreator component. An Execute method is defined 

on the FuncCreator that returns a certain value. The Execute method is thus a function, because it has a 

return value. Note that the FuncCreator no longer implements the ICommand interface. This is because 

the Execute method on the ICommand interface does not return any value and is thus not a function. 

A FuncFactoryCreator also exists in the APL library. The FuncFactoryCreator component is a special 

variant of the FuncCreator where the creation of the Product is entrusted to an implementation of the 

Factory<TProduct> delegate or an IFactory<TProduct> interface. The execute method of a 

FuncFactoryCreator is a function, and thus returns a value. 

The code below shows the implementation of the FuncFactoryCreator APL component: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public sealed class FuncFactoryCreator<TProduct, TResult> : IFactory<TProduct> 
    private readonly Factory<TProduct> _factory; 
    private readonly Func<TProduct, TResult> _func; 
 
    [ContractInvariantMethod] 
    private void ContractInvariant() { 
        Contract.Invariant(_factory != null, "The factory cannot be null"); 

TProduct

TConcreteProduct > TProduct, new()

TResult

FuncCreator

{leaf}

- _func  :Func<TProduct, TResult> {readOnly}

+ Create()  :TProduct

+ Execute()  :TResult

+ FuncCreator(func :Func<TProduct, TResult>)

«interface»

TResult

BasicFactory::IFactory

+ Create()  :TResult

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



C r e a t i o n a l  P a t t e r n s  

61 

 

        Contract.Invariant(_func != null, "The action cannot be null"); 
    } 
 
    // Register the action and the factory through the constructor 
    public ActionFactoryCreator(IFactory<TProduct> factory, Func<TProduct> func) { 
        _factory = factory.Create; 
        _func = func; 
    } 
 
    // Register the action and the factory through the constructor 
    public ActionFactoryCreator(Factory<TProduct> factory, Func<TProduct> func) { 
        _factory = factory; 
        _func = func; 
    } 
 
    public TProduct Create() { // Route the Create invocation to the _factory delegate 
        Contract.Ensures(Contract.Result<TProduct>() != null); 
        return _factory(); 
    }  
  
    public TResult Execute() { return _func(Create()); } // Route the Execute invocation to the 
                                                         // _func delegate 
}  

A number of FuncCreator and FuncFactoryCreator components are also present in the APL library, 

each one catering for a certain set of arguments. 

The last ActionCreator variant in the APL library is the ActionPrototypeCreator component. This 

component serves the same function as the ActionCreator, except that a Product instance is registered 

with the component during its construction: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public sealed class ActionPrototypeCreator<TProduct> : IFactory<TProduct>, ICommand { 
     
    private readonly TProduct _product; 
    private readonly Action<TProduct> _action; 
 
    protected ActionPrototypeCreator(TProduct product, Action<TProduct> action) { 
        _product = product; 
        _action = action; 
    } 
 
    public void Execute() { 
        action(Create());  
    } 
 
    // Use the Prototype component in order to return a clone of the _product instance 
    public TProduct Create() { 
        Contract.Ensures(Contract.Result<TProduct>() != null); 
 
        return _product.DeepCopy(); 
    }    
} 

The ActionPrototypeCreator component uses a Product instance in order to clone it in the Create 

method, instead of using the Product’s default constructor or an injected factory delegate. It thus 

implements an extension (Dyson & Anderson, 1997) of the factory method where the prototype pattern 
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(Gamma, Helm, Johnson, & Vlissides, 1994) is used. The cloning mechanism uses the prototype APL 

component. 

 

Figure 12. UML class diagram of the ActionPrototypeCreator APL component. 

Figure 12 shows a UML class diagram of the ActionPrototypeCreator APL component. It shows that 

the component’s constructor takes in a Product, which is cloned in the Create method. It also shows 

the component’s implementation of the IFactory and ICommand APL interfaces. 

Once again, multiple ActionPrototypeCreator and FuncPrototypeCreator components are defined in 

the APL library, depending on the number of desired arguments. 

5.3 Theoretical Examples 

The following example shows the usage of the ActionCreator, ActionPrototypeCreator and 

ActionFactoryCreator components. The code below shows the definitions of the ConcreteProduct1 

and the ConcreteProduct2 classes, both of which implement the IProduct interface and are serializable: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
public interface IProduct { void Operation(); } 
 
[Serializable] 
class ConcreteProduct1 : IProduct { 
    public void Operation() { Console.WriteLine("Calling operation on ConcreteProduct1 …"); } 
} 
 
[Serializable] 

TProduct

ActionPrototypeCreator

{leaf}

- _action  :Action<TProduct> {readOnly}

- _product  :TProduct {readOnly}

+ ActionPrototypeCreator(product :TProduct, action :Action<TProduct>)

+ Create()  :TProduct

+ Execute()  :void

«interface»

TResult

BasicFactory::IFactory

+ Create()  :TResult

«interface»

Command::ICommand

+ Execute()  :void
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class ConcreteProduct2 : IProduct { 
    public void Operation() { Console.WriteLine("Calling operation on ConcreteProduct2 …"); } 
} 
 
public static class OperationHelper { 
    public static void AnOperation(IProduct product) { product.Operation(); } 
} 

In the above example code, some action logic resides in the OperationHelper that is registered with the 

ActionCreator components. 

The concreteCreatorA instance, shown in the example code below, is created using the ActionCreator 

component together with the AnOperation method action logic that is defined on the OperationHelper 

static class. The concreteCreatorA instance is also created with the IProduct and ConcreteProduct1 

generic arguments, notifying the component of its Product and ConcreteProduct types. The 

concreteCreatorB instance is created using the ActionPrototypeCreator component, also with the 

AnOperation method action logic that is defined on the OperationHelper static class. The 

concreteCreatorB instance is also created with a ConcreteProduct2 instance that the component will 

use as a Prototype. An instance of the ActionFactoryCreator component is created where both the 

creational logic and action logic are injected using lambda expressions (Samko, et al., 2006): 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
class FactoryMethodExample { 
    static void Main() { 
        var concreteCreatorA = new ActionCreator<IProduct, ConcreteProduct1>(OperationHelper.AnOperation); 
        concreteCreatorA.Execute(); 
 
        var concreteCreatorB = new ActionPrototypeCreator<IProduct>(new ConcreteProduct2(),  
                                                                    OperationHelper.AnOperation); 
        concreteCreatorB.Execute(); 
 
        var concreteCreatorC = new ActionFactoryCreator<IProduct>(() => new ConcreteProduct2(), 
                                                                  x => x.Operation() + "[More]"); 
        concreteCreatorC.Execute(); 
 
 
        Console.WriteLine("Press Enter to exit."); 
        Console.ReadLine(); 
    } 
} 
 
/* Output 
Calling operation on ConcreteProduct1 … 
Calling operation on ConcreteProduct2 … 
Calling operation on ConcreteProduct2 …[More] 
*/ 

In the example code above, the ConcreteCreators are created and their specific Execute methods are 

invoked, thus executing the desired action on each created Product. It can be seen in the output that 

the Operation method on the correct ConcreteProduct is called successfully by all the 

ConcreteCreators. 
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5.4 Outcome 

The componentization of the factory method design pattern is a partial success because it meets some 

of the requirements listed in section 1.4: 

 Completeness: The factory method design pattern library components cover all cases 

described in the original core design pattern. 

 Usefulness: A factory method design pattern implementation is largely structural and cannot 

be successfully componentized. With the ActionCreator group of components, a fully 

functional factory method can be implemented, which thus makes the component reusable. 

However, its usefulness is debatable, as there might be scenarios where a developer wishes to 

add multiple abstract factories to the same class. Furthermore, implementing a fully functional 

abstract factory by hand is a simple task and the reusable component might be an overhead in 

certain scenarios. Also, a factory method usually blends into an existing class in a system 

design, and is not a standalone element. For these three reasons, the componentization of the 

factory method design pattern can be regarded as only partially successful. Nevertheless, there 

are certain scenarios in which the ActionCreator is functionally adequate and can be regarded 

as useful. An instance of an ActionCreator realizes the ICommand pattern and can be used by the 

command patterns described later in this thesis. 

 Faithfulness: Some elements of the implementation of the factory method pattern follow the 

original pattern described in Design Patterns (Gamma, Helm, Johnson, & Vlissides, 1994). The 

reusable ActionFactoryCreator component follows the original core pattern described in Design 

Patterns (Gamma, Helm, Johnson, & Vlissides, 1994), except for the creational method as a 

constant name, namely Execute. The ActionCreator, however, is slightly different to the 

implementation mentioned in Design Patterns (Gamma, Helm, Johnson, & Vlissides, 1994) 

where the default constructor of a specific ConcreteProduct type is used for the 

ConcreteProduct creation. The ActionPrototypeCreator component, which uses a Prototype 

for ConcreteProduct creation, is mentioned in Design Patterns (Gamma, Helm, Johnson, & 

Vlissides, 1994). Using a Prototype for ConcreteProduct creation, however, does not form 

part of the core factory method pattern (Gamma, Helm, Johnson, & Vlissides, 1994). 

 Type-safety: All of the library components are fully type-safe. 

 Extended applicability: The factory method library components cover more cases than the 

original core factory method pattern in Design Patterns (Gamma, Helm, Johnson, & Vlissides, 

1994). The ActionPrototypeCreator and FuncPrototypeCreator components use a Prototype in 

order to create the ConcreteProduct. The Prototype usage, as a variant implementation of the 
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factory method, is mentioned in Design Patterns (Gamma, Helm, Johnson, & Vlissides, 1994), 

however not as the core implementation. 

 Performance: The factory method components do not have a performance impact. 

The following language features are fundamental to the implementation or usage of the reusable 

factory method design pattern components: Inheritance (Mitchell, Mitchell, & Krzysztof, 2003), 

Interfaces (Pattison & Box, 2000), Generics (Jagger, Perry, & Sestoft, 2007), Design by Contract™ 

(Mitchell & McKim, 2001), Attributes (Nagel, Evjen, Glynn, & Watson, 2010), Method References 

(Microsoft, 2010e), Anonymous Functions (Ierusalimschy, 2003), Lambda Expressions (Michaelis, 

2010) and Reflection (Sobel & Friedman, 1996) (Forman & Forman, 2005). 
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 C h a p t e r  6  

6 FLYWEIGHT 

6.1 Introduction 

The flyweight pattern is suitable wherever there is the possibility of a large number of instances of the 

same class, with some partial common state, of which the non-common part can be evaluated with 

arguments. The flyweight design pattern is thus used where a large number of fine grained objects are 

shared for maximum efficiency (Gamma, Helm, Johnson, & Vlissides, 1994). 

6.1.1 Structure. 

The following figure shows the formal structure of the flyweight design pattern (Gamma, Helm, 

Johnson, & Vlissides, 1994): 

GetFlyweight(in key)

Flyweight

Factory
Operation(in ExtrinsicState)

Flyweight

1

Flyweights

0..*

Operation(in ExtrinsicState)

allState

UnsharedConcreteFlyweight

Operation(in ExtrinsicState)

intrinsicState

ConcreteFlyweight

Client

if(flyweight(key) exists)

   return flyweight(key)

else {

   create new flyweight;

   add it to the pool of flyweights;

   return the new flyweight;

}

 

Figure 13. Flyweight structure. 

6.1.2 Participants. 

The classes and/or objects participating in the flyweight design pattern are: 
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 Flyweight 

A Flyweight defines an interface that flyweight objects can use in order to process messages 

with extrinsic state.  

 ConcreteFlyweight 

The ConcreteFlyweight implements the operations of the Flyweight interface. It also stores 

the intrinsic state if it exists. The stored state must be intrinsic, which means that the state 

must not influence the ConcreteFlyweight object's functional context. All ConcreteFlyweight 

instances must be sharable. 

 UnsharedConcreteFlyweight 

The Flyweight interface does not enforce sharing. A Flyweight subclass thus does not need to 

be shared. UnsharedConcreteFlyweight instances are usually concrete and hold a state that 

influences the object’s functional context. An UnsharedConcreteFlyweight can have a child 

ConcreteFlyweight as a subclass. 

 FlyweightFactory  

This is the class that instantiates, controls and manages flyweight objects. It enforces the 

sharing of flyweight objects through a common acquisition operation. On the demand of a 

client or user, the FlyweightFactory returns an existing flyweight or creates a new one if none 

exists. The FlyweightFactory thus returns an existing Flyweight, or creates a new one if none 

exists, on demand. 

 Client 

The Client holds a reference to the Flyweights that were acquired by the FlyweightFactory. It 

also regulates and probably manages and stores, or has some control over, the extrinsic state of 

Flyweights. 

6.2 Library Components 

6.2.1 The FlyweightFactory component. 

The FlyweightFactory APL component lies at the heart of the reusable flyweight pattern 

implementation. The component is defined as a Singleton (Gamma, Helm, Johnson, & Vlissides, 
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1994) that holds an internal Flyweight cache (Drepper, 2007). The code below shows the 

implementation of the FlyweightFactory APL component: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public class FlyweightFactory<TKey, TConcreteFlyweight> : 
        Singleton<FlyweightFactory<TKey, TConcreteFlyweight>> { // The FlyweightFactory is a Singleton     
    private IFlyweightCache<TKey, TConcreteFlyweight> _cache; // Internal Flyweight cache 
     
    // … S N I P … 
 
    [ContractInvariantMethod] 
    private void ContractInvariant() {  
        Contract.Invariant(_cache != null, "The cache cannot be null"); 
    } 
 
    // Constructor is private because the FlyweightFactory is a Singleton 
    private FlyweightFactory(DictionaryType type) { CreateCache(type); } 
 
    // Constructor is private because the FlyweightFactory is a Singleton 
    private FlyweightFactory() : this(DictionaryType.BinaryTree) { } 
  
    public TConcreteFlyweight GetFlyweight(TKey key) { 
        Contract.Requires<ArgumentNullException>(key!= null, "Argument key cannot be null");  
        Contract.Ensures(Contract.Result<TConcreteFlyweight>() != null); 
        TConcreteFlyweight flyweight;  
 
        lock(this) { 
            if(!GetFlyweight(key, out flyweight)) { // Get a Flyweight object for the given key 
                Construct(key, out flyweight); // If the Flyweight does not exist create it… 
                _cache.Add(key, flyweight); // … and add it into the internal cache 
            } 
        } 
 
        return flyweight; 
    } 
 
    public TConcreteFlyweight this[TKey key] { get { return GetFlyweight(key); } }   
    public int Count { get { return _cache.Count; } } // Get the number of Flyweight objects in the cache 
 
    protected virtual void Construct(TKey key, out TConcreteFlyweight flyweight) { 
        Contract.Requires<ArgumentNullException>(key!= null, "Argument key cannot be null"); 
        Contract.Ensures(flyweight != null); 
 
        var args = new object[1]; 
        args[0] = key; 
 
        flyweight = CreateHelper<TConcreteFlyweight>.CreateFromPrivateConstructor(args); 
    } 
 
    private void CreateCache(DictionaryType type) { 
        Contract.Ensures(cache != null); 
 
        var factory = new FlyweightCacheFactory<TKey, TConcreteFlyweight>(); 
        _cache = factory.Create(type); 
    } 
 
    private IFlyweightCache<TKey, TConcreteFlyweight> GetCache() { return _cache; } 
 
    private bool GetFlyweight(TKey key, out TConcreteFlyweight flyweight) { 
        Contract.Ensures(flyweight != null); 
 
        return _cache.TryGetValue(key, out flyweight); 
    } 
} 
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Figure 14. UML class diagram of the FlyweightFactory APL component. 

Figure 14 shows a UML class diagram of the FlyweightFactory. This diagram shows how the 

FlyweightFactory is associated with the IFlyweightCache interface that is used to register and retrieve 

ConcreteFlyweight instances according to a certain key. The diagram also shows the 

DictionaryFlyweightCache that is a realization of the IFlyweightCache interface. 

The reusable APL Singleton component is used to enforce the singleton nature of the 

FlyweightFactory component. The FlyweightFactory component takes two generic arguments TKey 

and TConcreteFlyweight. TKey defines the key type of the Flyweight where TConcreteFlyweight defines 

the actual instance of the Flyweight. The FlyweightFactory thus creates only one specific 

ConcreteFlyweight type, which is defined by the TConcreteFlyweight generic argument. The TKey 

generic argument defines the key type that is used to determine what specific ConcreteFlyweight 

instance must be returned. 

The IFlyweightCache interface defines the contract of the internal flyweight cache. The actual 

implementation of the IFlyweightCache can be any desired data structure (Knuth, 1968) (Wirth, 1976), 

Singleton

TKey

TConcreteFlyweight

FlyweightFactory

- _cache  :IFlyweightCache<TKey, TConcreteFlyweight>

«Propery»

- Count  :int

# Construct(key :TKey, flyweight :TConcreteFlyweight*)  :void

- CreateCache(type :DictionaryType)  :void

- FlyweightFactory(type :DictionaryType)

- FlyweightFactory()

- GetCache()  :IFlyweightCache<TKey, TConcreteFlyweight>

+ GetFlyweight(key :TKey)  :TConcreteFlyweight

- GetFlyweight(key :TKey, flyweight :TConcreteFlyweight*)  :bool

«indexer»

+ this(key :TKey)  :TConcreteFlyweight

TKey

TTheFlyweight

DictionaryFlyweightCache

- _dictionary  :IDictionary<TKey, TTheFlyweight> {readOnly}

«Propery»

- Count  :int

+ Add(key :TKey, value :TTheFlyweight)  :void

+ ContainsKey(key :TKey)  :bool

+ Create(type :DictionaryType)  :DictionaryFlyweightCache<TKey, TTheFlyweight>

+ Create(dictionary :IDictionary<TKey, TTheFlyweight>)  :DictionaryFlyweightCache<TKey, TTheFlyweight>

- DictionaryFlyweightCache(dictionary :IDictionary<TKey, TTheFlyweight>)

- DictionaryFlyweightCache(type :DictionaryType)

# DictionaryFlyweightCache()

+ Remove(key :TKey)  :bool

+ TryGetValue(key :TKey, value :TTheFlyweight*)  :bool

«interface»

TKey

TTheFlyweight

IFlyweightCache

«Property»

- Count  :int

+ Add(key :TKey, theFlyweight :TTheFlyweight)  :void

+ ContainsKey(key :TKey)  :bool

+ Remove(key :TKey)  :bool

+ TryGetValue(key :TKey, theFlyweight :TTheFlyweight*)  :bool

-_cache

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



S t r u c t u r a l  P a t t e r n s  

 

70 

 

such as a dictionary (Weiss, 1999), or any associative array with fast lookups to avoid performance 

implications. 

The code below shows the implementation of the DictionaryFlyweightCache component: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
class DictionaryFlyweightCache<TKey, TTheFlyweight> : IFlyweightCache<TKey, TTheFlyweight> { 
    private readonly IDictionary<TKey, TTheFlyweight> _dictionary; 
 
    public DictionaryFlyweightCache(IDictionary<TKey, TTheFlyweight> dictionary) { 
        _dictionary = dictionary; 
    } 
 
    // … S N I P …         
    public void Add(TKey key, TTheFlyweight value) { _dictionary.Add(key, value); } 
    public bool ContainsKey(TKey key) { return _dictionary.ContainsKey(key); } 
        
    public bool TryGetValue(TKey key, out TTheFlyweight value) { 
        return _dictionary.TryGetValue(key, out value); 
    } 
     
    // … S N I P … 
} 

In the above code snippet, the _dictionary variable itself can be a standard C# runtime .NET 

SortedDictionary (Microsoft, 2010l) or a Dictionary (Microsoft, 2010f). In .NET a SortedDictionary 

is a red black binary tree (Leiserson, Rivest, & Stein, 2001) and a Dictionary is a hash table 

(Tenenbaum, Langsam, & Augenstein, 1990). The flyweight cache can hold any desired data structure, 

as long as it adheres to the IFlyweightCache contract. 

The GetFlyweight public method or C# [] operator defined on the FlyweightFactory component is 

used to return a specific ConcreteFlyweight instance by supplying it with the key: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public TConcreteFlyweight this[TKey key] { get { return GetFlyweight(key); } } 
 
public TConcreteFlyweight GetFlyweight(TKey key) { 
    Contract.Requires<ArgumentNullException>(key!= null, "Argument key cannot be null");  
    Contract.Ensures(Contract.Result<TConcreteFlyweight>() != null); 
    TConcreteFlyweight flyweight; 
 
    // Use double checked locking pattern 
    if (!GetFlyweight(key, out flyweight)) { 
        lock (GetCache()) { 
            if (!GetFlyweight(key, out flyweight)) { // Get a Flyweight object for the given key 
                Construct(key, out flyweight); // If the Flyweight does not exist create it… 
                _cache.Add(key, flyweight); // …and add it to the internal cache 
            } 
        } 
    } 
 
    return flyweight; 
} 
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The acquisition of the ConcreteFlyweight first checks whether the ConcreteFlyweight exists in the 

local cache. If the ConcreteFlyweight object does not exist, then a new ConcreteFlyweight is created. 

The key is passed to the ConcreteFlyweight’s constructor, where it can be used in the construction 

logic. The newly created ConcreteFlyweight object is then added into the local cache. The 

FlyweightFactory component also has some value added public methods, such as Count, which returns 

the number of ConcreteFlyweight objects in the cache: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public int Count { get { return _cache.Count; } } 

6.3 Theoretical Examples 

The following theoretical example shows the usage of the FlyweightFactory component in the APL 

library: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
interface IFlyweight { void Operation(); } 
 
class ConcreteFlyweight : IFlyweight { 
    private readonly int _state; 
     
    // The Key is an ‘int’ thus a private constructor that takes one argument of type ‘int’ must exist 
    private ConcreteFlyweight(int state) { _state = state; } 
    public override void Operation() { Console.WriteLine("ConcreteFlyweight: " + _state); } 
} 
 
class UnsharedConcreteFlyweight : IFlyweight { 
    private readonly int _state; 
     
    public UnsharedConcreteFlyweight(int state) { _state = state; } 
    public override void Operation() { Console.WriteLine("UnsharedConcreteFlyweight: " + _state); } 
} 
 
class Program { 
    static void Main() { 
        // Creat an instance of a FlyweightFactory for a ‘ConcreteFlyweight’ with an ‘int’ key 
        var factory = FlyweightFactory<int, ConcreteFlyweight>.Instance; 
 
        Flyweight f1 = factory[1973]; // Get the Flyweight for instance for ‘1973’ 
        f1.Operation(); // Use the Flyweight 
 
        Flyweight f2 = factory[1973]; // Get the Flyweight for instance for ‘1973’ 
        f2.Operation(); // Use the Flyweight 
 
        // Check if the instances are the same 
        if(f1 == f2) { Console.WriteLine("Objects are the same instance"); } 
 
        Flyweight f3 = factory[2006]; // Get the Flyweight for instance for ‘2006’ 
        f3.Operation(); // Use the Flyweight 
 
        var f4 = new UnsharedConcreteFlyweight(2009); // Create a UnsharedConcreteFlyweight 
        f4.Operation(); 
    } 
} 
 
/* 
ConcreteFlyweight: 1973 
ConcreteFlyweight: 1973 
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Objects are the same instance 
ConcreteFlyweight: 2006 
UnsharedConcreteFlyweight: 2004 
*/ 

 

Figure 15. UML sequence diagram for the FlyweightFactory APL component example. 
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Figure 15 shows a UML sequence diagram for the flyweight theoretical example discussed in this 

section. It shows how the IFlyweightCache<TKey, TTheFlyweight> interface is used to register and 

retrieve ConcreteFlyweights instances via an instance of a FlyweightFactory. 

The IFlyweight interface, shown in the example, defines the desired Flyweight contract. A 

ConcreteFlyweight ConcreteFlyweight is defined that implements the IFlyweight interface. A private 

constructor is defined on the ConcreteFlyweight ConcreteFlyweight that takes in the key as an 

argument. 

In the example, the ConcreteFlyweight ConcreteFlyweight holds intrinsic state where the state is 

computed using the key received from the private constructor. A ConcreteFlyweight will not always 

hold intrinsic state. In the case where a ConcreteFlyweight does hold intrinsic state, then the state 

must be computed from the given key. There is always thus a direct coupling between the given key 

and a ConcreteFlyweight’s intrinsic state. In the example the ConcreteFlyweights are created and 

managed with the reusable FlyweightFactory APL component: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
var flyweight1 = flyweightFactory[1973]; // Get the Flyweight for instance for ‘1973’ 
flyweight1.Operation(); // Use the Flyweight 
 
var flyweight2 = flyweightFactory[1973]; // Get the Flyweight for instance for ‘1973’ 
flyweight2.Operation(); // Use the Flyweight 

The FlyweightFactory is also a reusable generic singleton (Gamma, Helm, Johnson, & Vlissides, 1994) 

component. The first generic argument defines the key and the second argument defines the 

ConcreteFlyweight. A reference to the Singleton is acquired by supplying all the generic arguments 

and using the Instance property: 

C# (APL Example)  
---------------------------------------------------------------------------------------------------------- 
// Creat an instance of a FlyweightFactory for a ‘ConcreteFlyweight’ with an ‘int’ key 
var flyweightFactory = FlyweightFactory<int, ConcreteFlyweight>.Instance; 

The flyweightFactory can then be used to acquire a desired Flyweight by passing it a specific key: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
var flyweight1 = flyweightFactory[1973]; // Get the Flyweight for instance for ‘1973’  

The example shows that the flyweight1 and flyweight2 Flyweights returned by the flyweightFactory 

are the same object instance and thus the FlyweightFactory component is working correctly. 
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An UnsharedConcreteFlyweight UnsharedConcreteFlyweight, that is not shared and thus not used by 

the flyweight pattern, is also defined in the example. The Flyweight interface does not enforce sharing, 

which is thus optional. A Flyweight subclass, therefore, does not need to be shared. 

UnsharedConcreteFlyweight instances are concrete Flyweights and hold a state that influences the 

object’s functional context. It is possible that an UnsharedConcreteFlyweight might have child 

ConcreteFlyweights as subclasses. 

6.4 Outcome 

The componentization of the flyweight design pattern is a success, because it meets all the 

requirements listed in section 1.4: 

 Completeness: The flyweight design pattern library component covers all cases described in 

the original core design pattern. 

 Usefulness: The flyweight design pattern library component is useful, because it solves all of 

the flyweight scenarios desired by a developer and implement the pattern’s defined intent. The 

flyweight library component is simple to understand and easy to use. 

 Faithfulness: The implementation of the flyweight pattern follows the original pattern 

described in Design Patterns (Gamma, Helm, Johnson, & Vlissides, 1994). 

 Type-safety: All of the library components are fully type-safe. 

 Extended applicability: The flyweight library component does not cover more cases than the 

original flyweight pattern. 

 Performance: The flyweight component does not have a performance impact. 

The flyweight pattern is fully componentizable because the developer is not tasked with implementing 

any boiler plate code when using the reusable flyweight components. 

The following language features are fundamental in the implementation or usage of the reusable 

flyweight design pattern components: Inheritance (Mitchell, Mitchell, & Krzysztof, 2003), Interfaces 

(Pattison & Box, 2000), Generics (Jagger, Perry, & Sestoft, 2007), Design by Contract™ (Mitchell & 

McKim, 2001), Attributes (Nagel, Evjen, Glynn, & Watson, 2010) and Reflection (Sobel & Friedman, 

1996) (Forman & Forman, 2005). 
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 C h a p t e r  7  

7 ADAPTER 

7.1 Introduction 

An interface is normally used to decouple the client from the implementation. It can happen that 

different interfaces exist for the same underlying functionality, usually in different frameworks. The 

adapter design pattern converts the contract and message flows from one interface to another. 

The intent is thus to convert the interface of a class to an interface that clients expect. The adapter 

pattern makes it possible for classes to communicate with each other where it would otherwise not 

have been possible (Gamma, Helm, Johnson, & Vlissides, 1994). 

7.1.1 Structure. 

The following figure shows the formal structure of the adapter design pattern (Gamma, Helm, 

Johnson, & Vlissides, 1994): 

 

Request()

Target

Request()

Adapter

SpecificRequest()

Adaptee

adaptee.SpecificRequest()

adaptee

*

Client

 

Figure 16. Adapter structure. 

7.1.2 Participants. 

    The classes and/or objects participating in the adapter design pattern are:  

 Target 

The Target declares the interface that the Client uses. 
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 Adapter 

The Adapter converts or adapts the interface of the Adaptee to the Target interface.  

 Adaptee 

The Adaptee declares a current interface that needs adapting in order to be useful for the 

Client. 

 Client 

The Client can use only objects implementing the Target interface. 

7.2 Library Components 

7.2.1 The AutoAdapter component. 

The AutoAdapter APL component adapts registered AdapterAction and AdapterFunc delegates to 

methods available on a Target. It does so by dynamically routing a method invocation on an instance 

of the component to the appropriate method stored inside its internal dictionary (Weiss, 1999). The 

dictionary stores delegates associated with a certain method on the Target. The method behaviour is 

registered using the RegisterAction and RegisterFunc methods defined on the AutoAdapter 

component, as seen below: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public class AutoAdapter<TTarget, TAdaptee> : IDynamicInvoker // The IDynamicInvoker interface forces 
                                                              // the implementation of the duck typing 
                                                              // Invoke method 
    where TTarget : class { 
    private readonly Dictionary<DynamicMethod, Delegate> _operationDictionary =  
        new Dictionary<DynamicMethod, Delegate>(); // Internal operation dictionary  
     
    private TAdaptee _adaptee; // The adaptee instance 
    private volatile TTarget _target; // Internal target cache 
 
    [ContractInvariantMethod] 
    private void ContractInvariant() {  
        Contract.Invariant(_operationDictionary != null, "The operationDictionary cannot be null"); 
        Contract.Invariant(_adaptee != null, "The adaptee cannot be null"); 
    } 
 
    // Constructor 
    public AutoAdapter(TAdaptee adaptee) { 
        _target = null; 
        _adaptee = adaptee; 
    } 
     
    // Register an AdapterAction with no arguments 
    public void RegisterAction(MethodInfo method, AdapterAction<TAdaptee> operation) { … } 
 
    // Register an AdapterAction with no arguments 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



S t r u c t u r a l  P a t t e r n s  

 

77 

 

    public void RegisterAction(string methodName, AdapterAction<TAdaptee> operation) { … } 
 
    // Register an AdapterAction with one argument 
    public void RegisterAction(MethodInfo method, AdapterAction<TAdaptee, TArg1> operation) { … } 
 
    // Register an AdapterAction with one argument 
    public void RegisterAction<TArg1>(string methodName, AdapterAction<TAdaptee, TArg1> operation) { … } 
 
    // … M O R E … 
 
    // Register a AdapterFunc with no arguments 
    public void RegisterFunc<TResult, TArg1>(MethodInfo method, 
                                             AdapterFunc<TAdaptee, TArg1, TResult> operation) { … } 
 
    // Register a AdapterFunc with no arguments 
    public void RegisterFunc<TResult>(string methodName, 
                                                    AdapterFunc<TAdaptee, TResult> operation) { … } 
 
    // Register a AdapterFunc with one argument 
    public void RegisterFunc<TResult, TArg1>(MethodInfo method, 
                                             AdapterFunc<TAdaptee, TArg1, TResult> operation) { … } 
 
    // Register a AdapterFunc with one argument 
    public void RegisterFunc<TResult, TArg1>(string methodName, 
                                             AdapterFunc<TAdaptee, TArg1, TResult> operation) { … } 
 
    // … M O R E … 
 
    // The following method, which is required by the IDynamicInvoker interface, maps the recieved 
    // method signature to a delegate stored in the internal dictionary. 
    // If a delegate is found with the same method signature then it is invoked and its result 
    // is returned. 
    public object Invoke(string methodName, object[] args) { 
        Contract.Requires<ArgumentException>(!string.IsNullOrEmpty(path), 
                                             "Argument methodName cannot be null"); 
 
        // Get a delegate from the internal dictionary with a matching method signature 
        var operation = GetAdapterOperation(methodName, args); 
 
        // Invoke the delegate and return its result 
        if (operation != null) 
            return operation.DynamicInvoke(_adaptee, args); 
 
        throw new Exception("No adapter method found"); 
    } 
 
    // Dynamicly create an instance during runtime that realizes the TTarget interface and return it 
    // to the calling Client 
    public TTarget Target { 
        get {  
            Contract.Ensures(Contract.Result<TTarget>() != null); 
 
            return DoubleCheckedLock<TTarget>.Create(_target, this, () => this.AsIf<TTarget>(true)); 
        } 
    } 
} 

The RegisterAction set of methods registers a specific AdapterAction against a certain method 

available on the Target. The method name must be passed through as a string or a C# reflection 

MethodInfo type, as seen in the example code below: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
adapter.RegisterAction<string>("Request", (x, y) => x.TheRequest(); Console.WriteLine(y)); 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



S t r u c t u r a l  P a t t e r n s  

 

78 

 

A number of RegisterAction methods are defined on the component, each specifying a specific 

number of arguments. A number of AdapterAction delegates also exist in the library, where each relates 

to the number of arguments needed: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public delegate void AdapterAction<in TAdaptee>(TAdaptee adaptee); 
public delegate void AdapterAction<in TAdaptee, in T>(TAdaptee adaptee, T arg); 
public delegate void AdapterAction<in TAdaptee, in T1, in T2>(TAdaptee adaptee, T1 arg1, T2 arg2); 
public delegate void AdapterAction<in TAdaptee, in T1, in T2, in T3>(TAdaptee adaptee, 
                                                                     T1 arg1, T2 arg2, T3 arg3); 
 
// … M O R E … 

The first argument to all of the above AdapterAction delegates defines the Adaptee that is registered 

with the AutoAdapter component. The user thus has access to the registered Adaptee instance when 

formulating the adapter logic for a specific method. In the example above, the x variable in the lambda 

expression (KJärvi & Freeman, 2008) denotes the Adaptee instance and the y variable denotes the only 

argument available on the Request method. The injected adapter lambda expression (x, y) => 

x.TheRequest(); Console.WriteLine(y) thus first calls the TheRequest method on the Adaptee and 

then writes the contents of the y argument to the console. 

The RegisterFunc set of methods does exactly the same as the RegisterAction methods, except that it 

registers AdapterFunc delegates. An AdapterFunc defines a return value and is thus used to adapt 

functions. A number of RegisterFunc methods are defined on the component, each specifying a 

specific number of arguments. A number of RegisterFunc delegates also exist in the library, where each 

relates to the number of arguments needed: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public delegate TResult AdapterFunc<in TAdaptee, out TResult>(TAdaptee adaptee); 
public delegate TResult AdapterFunc<in TAdaptee, in T, out TResult>(TAdaptee adaptee, T arg); 
public delegate TResult AdapterFunc<in TAdaptee, in T1, in T2, out TResult>(TAdaptee adaptee, T1 arg1, T2 
arg2); 
public delegate TResult AdapterFunc<in TAdaptee, in T1, in T2, in T3, out TResult>(TAdaptee adaptee, T1 
arg1, T2 arg2, T3 arg3); 
 
// … M O R E … 

The Target property returns an interface proxied by the dynamic duck typing (Koenig & Moo, 2005)  

engine: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
adapter.Target.Request(); 

Each call by the client to a certain method on the auto generated Target is intercepted by the Invoke 

method on the AutoAdapter component, as seen in the following code: 
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C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public object Invoke(string methodName, object[] args) { 
    // … C O N T R A C T S … 
     
    // Get a delegate from the internal dictionary with a matching method signature 
    var operation = GetAdapterOperation(methodName, args); 
 
    // Invoke the delegate and return its result 
    if (operation != null) 
        return operation.DynamicInvoke(_adaptee, args); 
 
    throw new Exception("No adapter method found"); 
} 

AutoAdapter

OperationDictionary 

Key: OperationA 
Value: { Delegate ...}

Key: OperationB 
Value: { Delegate ... }

Target Register Invoke

Target Dynamically Created 
During Runtime

OperationA OperationB

Adaptee

 

Figure 17. AutoAdapter APL component overview. 
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The Invoke method matches a registered Adapter method from the internal dictionary, with the 

method signature received from its arguments. If an Adapter method is found in the internal 

dictionary that matches the method signature, then the call is routed to it and the result returned. 

Figure 17 shows a graphical overview of the AutoAdapter component. It shows the three main 

contracts of an AutoAdapter, namely Target, Register and Invoke. The registration set of contracts is 

used to register Target methods that use the internal Adaptee instance together with Adapter logic in 

the body of the method. The figure also shows the Target contract, which is used to retrieve a 

dynamically created instance of a Target during runtime. Finally, Figure 17 shows the Invoke method 

used by the duck typing runtime (Koenig & Moo, 2005). The dynamically created Target forwards all 

local invocations to the invoke method on the AutoAdapter instance, from where the call is forwarded 

to the correct delegate in the dictionary. For example, a call to the OperationA method on the Target is 

forwarded to the Invoke method on the AutoAdapter. From there, a delegate that represents an 

OperationA is retrieved from the dictionary and is executed. The result, if any, is passed back to the 

caller. 

The registration of Adapter operations against a certain method available on the Target interface can 

be improved by using C# dynamics or lambda expressions, as shown in Appendix I. The same 

mechanism can be used for all the components in this thesis that have to register a method that will be 

used in a duck typing (Koenig & Moo, 2005) environment. 

7.3 Theoretical Examples 

The following example shows the usage of the AutoAdapter component. An AutoAdapter instance is 

created with an Adaptee instance. The Adaptee instance has internal state, together with a 

SpecificRequest method that takes one string argument. The ITarget Target has one Request method 

that also takes in one string argument. In the following example a lambda expression (x, y) => 

x.SpecificRequest(y) is registered against the Request method available on the ITarget Target: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
public interface ITarget { void Request(string arg); } 
 
public class Adaptee { 
    private string _state; 
 
    public Adaptee(string state) { _state = state; } 
 
    public void SpecificRequest(string arg) { 
 Console.WriteLine("Called SpecificRequest() : " + state "|" + arg); 
    } 
} 
 
public static void Run() { 
    var adaptee = new Adaptee("[State]"); 
    var adapter = new AutoAdapter<ITarget, Adaptee>(adaptee); // Creates an Adapter for Target ITarget 
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    // Register the lambda expression against the "Request" method on the Target interface 
    adapter.RegisterAction<string>("Request", (x, y) => x.SpecificRequest(y)); 
     
    // Delegates the call to the injected AdapterAction 
    adapter.Target.Request("[External Data]"); 
} 
 
/* Output 
Called SpecificRequest() : [State]|[External Data] 
*/ 

In the above example the adapter.Target.Request invocation delegates the call to the injected 

AdapterAction lambda expression. 

The next example shows another usage of the AutoAdapter and is almost identical to the previous 

example. In this example, however, the Request method on the Target ITarget returns a string. The 

example thus shows the registration and usage of an AdapterFunc delegate: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
public interface ITarget { string Request(string arg); } 
 
public class Adaptee { 
    private string _state; 
 
    public Adaptee(string state) { _state = state; } 
 
    public string SpecificRequest(string arg) { 
 Console.WriteLine("Called SpecificRequest() : " + state "|" + arg); 
        return "[" + arg + "]"; 
    } 
} 
 
public static void Run() { 
    var adaptee = new Adaptee("[State]"); 
    var adapter = new AutoAdapter<ITarget, Adaptee>(adaptee); // Creates an Adapter for Target ITarget 
     
    // Register the lambda expression against the "Request" method on the Target interface 
    adapter.RegisterFunc<string, string>("Request", (x, y) => x.SpecificRequest(y)); 
     
    // Delegates the call to the injected AdapterFunc 
    string ret = adapter.Target.Request("[External Data]"); 
    Console.WriteLine("Ret : " + ret); 
} 
 
/* Output 
Called SpecificRequest() : [State]|[External Data] 
Ret : [[External Data]] 
*/ 

The next example shows how multiple Adapter methods, in this case using an AdapterAction and an 

AdapterFunc delegate, can be registered with the AutoAdapter component: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
public interface ITarget { 
    void Request1(); 
    string Request2(string arg1); 
} 
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public class Adaptee { 
    private string _state; 
 
    public Adaptee(string state) { 
        _state = state; 
    } 
 
    public void SpecificRequest1() { Console.WriteLine("Called SpecificRequest1()"); } 
 
    public string SpecificRequest2(string arg) { 
 Console.WriteLine("Called SpecificRequest2() : " + state "|" + arg); 
        return "[" + arg + "]"; 
    } 
} 
 
public static void Run() { 
    var adaptee = new Adaptee("[State]"); 
    var adapter = new AutoAdapter<ITarget, Adaptee>(adaptee); // Creates an Adapter for Target ITarget 
     
    // Register the adaptee.SpecificRequest method against the "Request" method on the Target interface 
    adapter.RegisterAction<string>("Request1", (x, y) => x.SpecificRequest(y)); 
 
    // Register the lambda expression against the "Request" method on the Target interface 
    adapter.RegisterFunc<string, string>("Request2", (x, y) => x.SpecificRequest(y)); 
 
    // Delegates the call to the injected AdapterAction 
    adapter.Target.Request1(); 
 
    // Delegates the call to the injected AdapterFunc 
    string ret = adapter.Target.Request2("[External Data]"); 
    Console.WriteLine("Ret : " + ret); 
} 
 
/* Output 
Called SpecificRequest1() 
Called SpecificRequest2() : [State]|[External Data] 
Ret : [[External Data]] 
*/ 

The output shows that all of the Adapters were called successfully. 

7.4 Outcome 

The componentization of the adapter design pattern is a success, because it meets all the requirements 

listed in section 1.4: 

 Completeness: The adapter design pattern library component cover all cases described in the 

original core design pattern. 

 Usefulness: The adapter design pattern library component is useful, because it solves most of 

the adapter scenarios desired by a developer. The AutoAdapter component solves the standard 

criteria for an Adapter, and is not overly complex to use. A developer is only tasked with 

defining the Target interface and injecting the adapting methods. A developer thus does not 

have to implement the Adapter boiler plate code manually. However, in some scenarios, 

implementing an Adapter manually might still be appropriate, especially to maintain the 
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cohesion of the adapter algorithms. A manually implemented Adapter, in most cases, is also 

simple to implement and does not need much boiler plate code. 

 Faithfulness: The implementation of the reusable AutoAdapter component differs from the 

original pattern described in Design Patterns (Gamma, Helm, Johnson, & Vlissides, 1994). In the 

original implementation the Adapter is hand coded with the corresponding methods that 

implement the Adaptee. With the reusable AutoAdapter component, the Adapter class is 

dynamically created during runtime using meta-programming (Perrotta, 2010). The methods 

are injected with the component using anonymous functions (Ierusalimschy, 2003) and lambda 

expressions (Michaelis, 2010). The outcome of the component is, however, the same as the 

original pattern and implements its defined intent. 

 Type-safety: The string literals used when registering the adapter methods are not type-safe. 

Lambda expressions (expressions trees) (Albahari & Albahari, 2007, p. 317) however, can be 

used to solve the type-safe registration problem, as shown in Appendix I. Other than that, the 

library component is fully type-safe. 

 Extended applicability: The adapter library component does not cover more cases than the 

original adapter pattern. 

 Performance: The adapter library component does have a performance impact because of the 

usage of duck typing (Koenig & Moo, 2005). Appendix II shows the performance impact of 

duck typing. The performance impact is, however, acceptable in normal situations. 

The adapter pattern is fully componentizable because the developer is not tasked with implementing 

any boiler plate code when using the reusable pattern component. 

The following language features are fundamental to the implementation or usage of the reusable 

adapter design pattern components: Inheritance (Mitchell, Mitchell, & Krzysztof, 2003), Interfaces 

(Pattison & Box, 2000), Generics (Jagger, Perry, & Sestoft, 2007), Design by Contract™ (Mitchell & 

McKim, 2001), Method References (Microsoft, 2010e), Anonymous Functions (Ierusalimschy, 2003), 

Lambda Expressions (Michaelis, 2010), Reflection (Sobel & Friedman, 1996) (Forman & Forman, 

2005), Duck Typing (Koenig & Moo, 2005) and Meta-programming (Perrotta, 2010). 
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 C h a p t e r  8  

8 DECORATOR 

8.1 Introduction 

The decorator design pattern bestows additional behaviour on an object dynamically during runtime. It 

thus provides a flexible alternative to sub-classing for extending object behaviour (Gamma, Helm, 

Johnson, & Vlissides, 1994). 

8.1.1 Structure. 

The following figure shows the formal structure of the decorator design pattern (Gamma, Helm, 

Johnson, & Vlissides, 1994): 

 

Figure 18. Decorator structure. 

8.1.2 Participants. 

The classes and/or objects participating in the decorator design pattern are:  

 Component 

A Component declares the interface for Decorator instances. The operations declared in the 

interface will thus have behaviour dynamically added during runtime. 

 

Operation()

Component

Operation()

ConcreteComponent

Operation()

Decorator

Component

Operation()

addedBehavior()

ConcreteDecoratorB

Operation()

addedState

ConcreteDecoratorA

component.Operation()

decorator.Operation();

AddedBehavior()
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 ConcreteComponent 

A ConcreteComponent declares an instance that implements the Component interface. 

 Decorator 

A Decorator holds and manages an association to a Component instance. A Decorator also 

implements the Component interface. 

 ConcreteDecorator 

A ConcreteDecorator also implements the operations defined by its Component's interface. A 

decorated operation combines the behaviour of the Decorator and the Component instance in 

order to add functionality dynamically. A ConcreteDecorator thus adds new behaviour to the 

Component. 

 

8.2 Library Components 

8.2.1 The AutoDecorator component. 

The AutoDecorator APL component maps registered delegates to methods available on the 

Component interface. The AutoDecorator holds a dictionary of delegates with a corresponding 

DynamicMethod instance as the key. The AutoDecorator also inherits from the Decorator APL 

component, which stores an internal reference to a certain Component and realizes the dynamic duck 

typing (Koenig & Moo, 2005) IDynamicInvoker interface. On the Decorator APL component, the 

internally stored Component type is defined by the TComponent generic argument. The Decorator 

component is abstract, with an abstract Invoke method, which is used by the duck typing (Koenig & 

Moo, 2005) engine. The abstract Invoke method must be overridden by a base class. The code snippet 

below shows the implementation of the abstract Decorator component: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public abstract class Decorator<TComponent> : // TComponent defines the component participant 
        IDynamicInvoker // Used for duck typing and forces the implementation 
                        // of the Invoke method 
    where TComponent : class { 
     
    // Internal reference to a component participant 
    protected TComponent Component;  
 
    [ContractInvariantMethod] 
    private void ContractInvariant() {  
        Contract.Invariant(Component != null, "The internal component cannot be null"); 
    } 
 
    // Constructor that takes a component 
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    protected Decorator(TComponent component) {  
        Component = component;  
    }  
 
    // … S N I P … 
 
    // Used for duck typing 
    public abstract object Invoke(string methodName, object[] args);  
} 

The AutoDecorator APL component implements the overridden Invoke method, which takes in as 

arguments the method name of a certain invocation and its arguments. The Invoke method checks 

whether a delegate for the certain method signature exists in the internal dictionary. If one does exist, it 

is executed and the result returned: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public class AutoDecorator<TComponent> : Decorator<TComponent> // Uses the Decorator component 
    where TComponent : class { 
    private readonly Dictionary<DynamicMethod, Delegate> _operationDictionary =  
            new Dictionary<DynamicMethod, Delegate>(); // Internal method dictionary. 
                                                       // A delegate stored in this dictionary 
                                                       // is mapped to a method on the TComponent 
                                                       // contract. 
                                                       // The Invoke method executes the appropriate 
                                                       // delegate stored in the dictionary by 
                                                       // matching the method names. 
     
    private volatile TComponent _targetCache; // Dynamicly generated TComponent instance that 
                                              // is generated during runtime 
 
    public AutoDecorator(TComponent component) : base(component) {  
        // … S N I P …  
    } 
 
    // Register methods. 
    // Four different type of delegates can be registered: 
    // Action                  : .Net Action 
    // Func                    : .Net Func (function) 
    // ActionDecoratorStrategy : APL action decorator strategy delegate 
    // FuncDecoratorStrategy   : APL function decorator strategy delegate 
 
    // Register an Action with no arguments 
    public void (MethodInfo method, Action operation) { … } 
 
    // Register an Action with no arguments 
    public void RegisterAction RegisterAction(string methodName, Action operation) { … } 
 
    // Register an Action with one argument 
    public void RegisterAction<TArg1>(MethodInfo method, Action<TArg1> operation) { … } 
 
    // Register an Action with one argument 
    public void RegisterAction<TArg1>(string methodName, Action<TArg1> operation) { … } 
     
    // … M O R E … 
     
    // Register a Func with no arguments 
    public void RegisterFunc<TResult>(MethodInfo method, Func<TTResult> operation) { … } 
 
    // Register a Func with no arguments 
    public void RegisterFunc<TResult>(string methodName, Func<TResult> operation) { … } 
 
    // Register a Func with one argument 
    public void RegisterFunc<TArg1, TResult>(MethodInfo method, Func<TArg1, TResult> operation) { … } 
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    // Register a Func with one argument 
    public void RegisterFunc<TArg1, TResult>(string methodName, Func<TArg1, TResult> operation) { … } 
     
    // … M O R E … 

 
    // Register an ActionDecoratorStrategy delegate with no arguments 
    public void RegisterStrategy(MethodInfo method, ActionDecoratorStrategy decoratorStrategy) { … } 
 
    // … M O R E … 
     
    // Register a FuncDecoratorStrategy delegate with no arguments 
    public void RegisterStrategy<TResult>(MethodInfo method, 
                                          FuncDecoratorStrategy<TResult> decoratorStrategy) { … } 
 
    // … M O R E … 
     
    // The Invoke method routes an invocation on the dynamicly created TComponent instance 
    // returned by the Target property to an appropriate delegate stored in the internal dictionary 
    public override object Invoke(string methodName, object[] args) { 
        Contract.Requires<ArgumentException>(!string.IsNullOrEmpty(methodName), 
                                             "Argument methodName cannot be null"); 
 
        // Call the decorator strategy that can be an ActionDecoratorStrategy or FuncDecoratorStrategy 
        var decoratorStrategy = GetDecoratorStrategy(methodName, args); 
        if(decoratorStrategy != null) { 
            var internalComponentOperation = GetInternalComponentOperation(methodName, decoratorStrategy); 
            return InvokeDecoratorStrategy(decoratorStrategy, internalComponentOperation, args); 
        } 
 
        // Else - just call both the component method and  
        //        the registered method normally as an Action or Func 
        var componentMethod = GetComponentMethod(methodName, args); 
        var registeredMethod = GetRegisteredMethod(methodName, args); 
        object ret = null; 
 
        if(componentMethod != null) { ret = componentMethod.DynamicInvoke(args); } 
        if(registeredMethod != null) { ret = registeredMethod.DynamicInvoke(args); } 
         
        If(componentMethod == null && registeredMethod == null) { 
            throw new Exception("No method found to invoke."); 
        } 
         
        // If it is a Func, the registered method’s return value 
        // takes precedence over the component method’s return value 
        return ret; 
    } 
 
    public TComponent Target { 
        get {  
            Contract.Ensures(Contract.Result<TComponent>() != null); 
            return DoubleCheckedLock<TComponent>.Create(_targetCache, this,  
                      () => this.AsIf<TComponent>(true)); 
        } 
    } 
 
    //… M O R E … 
}  

Four different types of delegates can be registered with the AutoDecorator<TComponent> component 

against a specific method available on the TComponent Component. These delegates are a Func 

(Microsoft, 2010h), Action (Microsoft, 2010a), FuncDecoratorStrategy and ActionDecoratorStrategy. 

The FuncDecoratorStrategy and ActionDecoratorStrategy are APL delegates. 
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The ActionDecoratorStrategy delegate takes in an Action as its first argument. The rest of the 

arguments in an ActionDecoratorStrategy define the number of arguments on the underlying 

Operation that is decorated: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public delegate void ActionDecoratorStrategy(Action decoratorOperation); 
public delegate void ActionDecoratorStrategy<TArg>(Action<TArg> decoratorOperation, TArg args); 
public delegate void ActionDecoratorStrategy<TArg1, TArg2>(Action<TArg1, TArg2> decoratorOperation, 
                                                           TArg1 arg1, TArg2 arg2); 
//… M O R E … 

The following example shows the usage of the ActionDecoratorStrategy delegate: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
// ActionDecoratorStrategy example: 
// x is an Action representing the method being decorated on the internal TComponent Component 
// y is a string that represents the argument of the decorated method 
// 
// Thus decorator.Target.Foo("Hello World") does: 
// 
//   x(y) - - - > this.Component("Hello World"); 
//   Console.WriteLine("More" + y) - - - > Console.WriteLine("More" + "Hello World"); 
 
decorator.RegisterStrategy<string>("Foo", (x, y) => { x(y); Console.WriteLine("More" + y); }); 

The example above shows how a lambda expression is used to register an ActionDecoratorStrategy 

with an AutoDecorator instance. In the lambda expression, the x argument represents a specific method 

on the internal Component instance referenced by the AutoDecorator. The y argument represents the 

argument type of the specific method on the Component instance. The string template argument 

thus tells the ActionDecoratorStrategy that the method being decorated on the Component interface 

has one argument, which is of type string. Thus, in this case, the method is void Foo(string str). 

The Foo method does not return any value; it is thus not a function. The injected lambda expression 

first makes a call to x(y). The x(y) call is translated into an invocation on the Foo(string str) method 

on the internally stored Component instance, with y as the string argument. The second decorative 

part of the lambda expression writes a comment to the console, using the y string argument. 

The FuncDecoratorStrategy is almost exactly the same as the ActionDecoratorStrategy, except that it 

takes in a Func as its first argument and not an Action, as shown below: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public delegate TResult DecoratorStrategy<TResult>(Func<TResult> decoratorOperation); 
public delegate TResult DecoratorStrategy<TArg, TResult>(Func<TArg, TResult> decoratorOperation, 
                                                         TArg arg); 
public delegate TResult DecoratorStrategy<TArg1, TArg2, TResult>( 
        Func<TArg1, TArg2, TResult> decoratorOperation, TArg1 arg1, TArg2 arg2); 
public delegate TResult DecoratorStrategy<TArg1, TArg2, TArg3, TResult>( 
        Func<TArg1, TArg2, TArg3, TResult> decoratorOperation, TArg1 arg1, TArg2 arg2, TArg3 arg3); 
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An ActionDecoratorStrategy represents a decorative expression for a method on the Component 

interface that does not return anything. A FuncDecoratorStrategy, on the other hand, represents a 

decorative expression for a method on the Component interface that does return something. The first 

argument for both the ActionDecoratorStrategy and FuncDecoratorStrategy delegates represents the 

same operation on the Component which is being decorated, where the operation is available on the 

Component reference that is stored internally on an AutoDecorator instance. These delegates make it 

possible to write advanced decorator algorithms that can be registered with an AutoDecorator instance. 

 

Figure 19. UML class diagram of the AutoDecorator APL component. 

Figure 19 shows a UML class diagram of the APL AutoDecorator component. It shows all the different 

types of registration methods available on the AutoDecorator. Figure 19 also shows the Target 

property, which is used to acquire, during runtime, an auto generated instance that realizes the 

Component interface. Finally, the figure shows the Invoke method that is used by the duck typing 

(Koenig & Moo, 2005) runtime. All method invocations on the auto generated Component instance 

are routed to the Invoke method. The Invoke method then routes the invocation to the appropriate 

registered operation. 

Figure 20 shows an overview of the AutoDecorator APL component. The register set of methods 

registers a new decoration operation into the internal dictionary. Each registered operation is 

associated with one method defined on the Component interface. The Target property returns a 

IDynamicInvoker

TComponent > class

Decorator

# Component  :TComponent

# Decorator(component :TComponent)

+ Invoke(methodName :string, args :object[])  :object

TComponent > class

AutoDecorator

- _operationDictionary  :Dictionary<DynamicMethod, Delegate> {readOnly}

- _targetCache  :volatile TComponent

«Propery»

- Target  :TComponent

- AutoDecorator(component :TComponent)

+ Invoke(methodName :string, args :object[])  :object

+ RegisterAction(... :)  :void

+ RegisterFunc(... :)  :void

+ RegisterStrategy(... :)  :void

< TComponent->TComponent >

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



S t r u c t u r a l  P a t t e r n s  

 

90 

 

runtime generated instance that realizes the Component interface. Each invocation on the instance is 

routed through to the Invoke method on the AutoDecorator instance. The Invoke method then routes 

the call to the appropriate operation stored in the internal operation dictionary. 

AutoDecorator

OperationDictionary 

Key: OperationA 
Value: { Delegate ...}

Key: OperationB 
Value: { Delegate ... }

Target Register Invoke

Target Dynamically Created 
During Runtime (Realization of 

the Component interface)

OperationA OperationB

Component

 

Figure 20. AutoDecorator APL component overview. 

The registration of operations against a certain method available on the Component interface can be 

improved by using C# dynamics or lambda expressions, as shown in Appendix I. The same 

mechanism can be used for all the components in this thesis that have to register a method that will be 

used in a duck typing (Koenig & Moo, 2005) environment. 
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8.3 Theoretical Examples 

The following example shows the usage of the AutoDecorator APL component. The IComponent 

interface defines the methods of the Component, some with arguments and others with return values: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
public interface IComponent { 
    void Operation1(); // No arguments and no return value 
    void Operation2(string arg); // One argument and no return value 
    uint Operation3(); // No argument and one return value 
    uint Operation4(string arg); // One argument and one return value     
}  

A ConcreteComponent is also defined, implementing the IComponent contract: 

C#  (APL Example) 
---------------------------------------------------------------------------------------------------------- 
public class ConcreteComponent : IComponent { 
    public void Operation1() { Console.Write("a"); } 
    public void Operation2(string arg) { Console.Write("a" + arg); } 
    public uint Operation3() { return 10; } 
    public uint Operation4(string arg) { Console.Write("a"); return 10; } 
} 

The example creates a ConcreteDecorator decorator1, and injects a decorative algorithm for each 

method on the Component using the RegisterStrategy set of methods on the AutoDecorator instance. 

Each decorative algorithm is injected using a lambda expression. An instance of the 

ConcreteComponent is used to construct the decorator1 object, as seen below: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
static public void Main() {  
    var concreteComponent = new ConcreteComponent(); 
    var decorator1 = new AutoDecorator<IComponent>(concreteComponent); // Create a decorator 
     
    // Register a decorative expression for "Operation1" (no direct decoration in this case) 
    decorator1.RegisterStrategy("Operation1", x => x()); 
 
    // Register a decorative expression for "Operation2" 
    decorator1.RegisterStrategy<string>(concreteComponent.Operation2, 
                                        (x, y) => { x(y); Console.Write("b" + y); }); 
     
    // Register a decorative expression for "Operation3" 
    decorator1.RegisterOperation("Operation3", x => x() + 2); 
     
    // Register a decorative expression for "Operation4" 
    decorator1.RegisterOperation<string, uint>("Operation4", 
        (x, y) => { Console.Write("b" + y); return x(y) + 2; }); 
     
    // Use decorator1 
    Console.WriteLine("Decorator 1:"); 
    Console.Write("Operation1: "); decorator1.Target.Operation1(); Console.WriteLine(); 
    Console.Write("Operation2: "); decorator1.Target.Operation2("c"); Console.WriteLine(); 
    Console.Write("Operation3: "); Console.Write(decorator1.Target.Operation3()); Console.WriteLine(); 
    Console.Write("Operation4: "); Console.Write(decorator1.Target.Operation4("c")); Console.WriteLine(); 
  
    // Use decorator2 
    var decorator2 = new AutoDecorator<IComponent>(decorator1.Target); // Link to decorator1                                    
    Console.WriteLine(); Console.WriteLine("Decorator 2:"); 
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    decorator2.RegisterOperation(concreteComponent.Operation3, x => x() * 4); 
    Console.Write("Operation3: "); Console.Write(decorator2.Target.Operation3()); Console.WriteLine(); 
} 
 
/* Output 
Decorator 1: 
Operation1: a 
Operation2: acbc 
Operation3: 12 
Operation4: bca12 
 
Decorator 2: 
Operation3: 48 
*/ 

Each method on the ConcreteDecorator decorator1 in the example is called, some with passed-in 

arguments. The Target property on the AutoDecorator is used to acquire a dynamically generated 

instance that implements the IComponent contract. All the requests made on the instance are forwarded 

to an instance of the AutoDecorator component, where they are processed. The output shows that all 

the methods on the decorator1 object were processed correctly. 

The example also creates a ConcreteDecorator decorator2 using the decorator1 instance, and injects a 

decorative algorithm using a lambda expression for Operation3. The output shows that Operation3 on 

the decorator2 object was processed correctly. 

8.4 Outcome 

The componentization of the decorator design pattern is a success because it meets all of the 

requirements listed in section 1.4: 

 Completeness: The decorator design pattern library components cover all cases described in 

the original core design pattern. 

 Usefulness: The decorator design pattern library components are useful because they solve all 

of the decorator scenarios desired by a developer. The components serve the same 

functionality as a hand written decorator; however, a developer does not have to write the 

decorator boiler plate code by hand. With the AutoDecorator group of components, a 

developer is only responsible for implementing the Component and hooking up the decorative 

algorithms. The AutoDecorator group of components are relatively simple and easy to use. 

 Faithfulness: The implementation of the AutoDecorator group of components deviates from 

the original pattern described in Design Patterns (Gamma, Helm, Johnson, & Vlissides, 1994). 

The implementation makes use of dynamic duck typing (Koenig & Moo, 2005) and meta-

programming (Perrotta, 2010) in order to hook up decorative algorithms within an 
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AutoDecorator instance which, in return, auto generates a ConcreteDecorator instance. The 

end result and intent of the decorator library components are, however, the same. 

 Type-safety: The Register methods on the AutoDecorator component use non type-safe 

string literals for the specification of the method names. Lambda expressions (expressions 

trees) (Albahari & Albahari, 2007, p. 317) however, can be used to solve the type-safe 

registration problem, as shown in Appendix I. Other than that, all the library components are 

fully type-safe. 

 Extended applicability: The decorator library components do not cover more cases than the 

original decorator pattern. 

 Performance: The decorator library components do have a performance impact because of 

the usage of duck typing (Koenig & Moo, 2005). Appendix II shows the performance impact of 

duck typing. The performance impact is, however, acceptable in normal situations. 

The decorator pattern is fully componentizable because the developer is not tasked with implementing 

any boiler plate code when using the reusable pattern components.  

The following language features are fundamental to the implementation or usage of the reusable 

decorator design pattern components: Inheritance (Mitchell, Mitchell, & Krzysztof, 2003), Interfaces 

(Pattison & Box, 2000), Generics (Jagger, Perry, & Sestoft, 2007), Design by Contract™ (Mitchell & 

McKim, 2001), Method References (Microsoft, 2010e), Anonymous Functions (Ierusalimschy, 2003), 

Lambda Expressions (Michaelis, 2010), Reflection (Sobel & Friedman, 1996) (Forman & Forman, 

2005), Duck Typing (Koenig & Moo, 2005) and Meta-programming (Perrotta, 2010). 
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 C h a p t e r  9  

9 COMPOSITE 

9.1 Introduction 

The composite design pattern distinguishes objects in a certain tree-like structure to represent a part-

whole hierarchy. The recursive tree-like structure allows single objects and compositions of objects to 

be treated uniformly by a client or user (Gamma, Helm, Johnson, & Vlissides, 1994). 

9.1.1 Structure. 

The following figure shows the formal structure of the composite design pattern (Gamma, Helm, 

Johnson, & Vlissides, 1994): 

Operation()

Add(in Component)

Remove(in Component)

GetChild(in int)

Component

Operation()

Leaf
Operation()

Add(in Component)

Remove(in Component)

GetChild(in int)

Composite

1

Children

*

forall g in children

  g.Operation()

 

  Figure 21. Composite structure. 

9.1.2 Participants. 

The classes and/or objects participating in the composite pattern are:  

 Component 

A Component defines the interface for every instance used in the composition. It also defines 

the interface for retrieving, using and controlling each one of its child components. It might 

also implement the default behaviour for the operations defined in the desired Component 
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contract. A Component might also declare an interface and the implementation for retrieving, 

using and controlling the component’s parent recursively. 

 Leaf 

A Leaf is an instance that implements the behaviour of the interface defined in the 

Component, but it has no children. It is thus known as a primitive instance in the 

composition. 

 Composite 

A Composite is an instance that implements the behaviour of the interface defined in the 

Component. It also holds references to child Components. 

 Client 

A Client holds a reference to a Component interface through which it uses the Composite's 

functionality. 

9.2 Library Components 

9.2.1 The AutoComposite component. 

The AutoComposite reusable component implements a Composite for a specific Component that is 

represented by a generic argument TComponent. At the heart of the AutoComposite is a list of child 

Components, which is of type List<IComponent<TComponent>>. The IComponent interface is part of the 

APL library. The AutoComposite also holds a dictionary of composite strategy function delegates, 

composite function delegates and normal operations for methods that are present on the TComponent 

interface. Composite strategy function delegates and composite functions delegates are used to register 

algorithms that participate in the composite pattern, against methods present on the TComponent 

Component. Note that only the methods on the TComponent interface that participate in the composite 

pattern and are tagged with the CompositeMethodAttribute APL attribute can be registered on the 

AutoComposite component with a composite strategy function delegate or composite function delegate. 

The composite function delegates stored in the internal dictionary use a special CompositeFunc APL 

delegate. The composite strategy delegates stored in the internal dictionary use a special 

CompositeStrategy APL delegate. A certain method on the TComponent Component that participates in 

the composite pattern can be registered by means of either a CompositeFunc delegate or a 

CompositeStrategy delegate or as a C# Action or Func. The method must, however, be tagged with the 

CompositeMethodAttribute APL attribute. C# Action or Func registered methods are invoked as normal 

actions or functions by the AutoComposite on each Component stored in the internal list. A method on 
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the TComponent Component that is attributed with the CompositeMethodAttribute APL attribute will 

thus always join the composite pattern. 

It is possible that a certain Component, where the Component is defined by the TComponent generic 

argument, might have methods that should not be part of the composite pattern. Methods on the 

TComponent Component that do not participate in the composite pattern must be registered as C# 

Actions or Funcs and these methods must not be tagged with the CompositeMethodAttribute APL 

attribute on the Component. 

An exception is thrown in the Invoke method of the AutoComposite if no registered implementation is 

found for a method on the TComponent. Furthermore, at least one of the methods on the TComponent 

generic argument must be registered with an AutoComposite instance as a composite method. Thus, at 

least one of the methods on the TComponent Component must be tagged with the 

CompositeMethodAttribute APL attribute. The code below shows the implementation of the 

AutoComposite in the APL library: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public interface IComponent<T> { 
    IList<IComponent<T>> GetList(); 
    T GetInterface(); 
} 
 
public class AutoComposite<TComponent> : IDynamicInvoker, IComponent<TComponent> 
    where TComponent : class { 
    private readonly List<IComponent<TComponent>> _components; 
    private readonly Dictionary<DynamicMethod, Delegate> _operationDictionary; 
    private volatile TComponent _target; // Target cache 
 
    [ContractInvariantMethod] 
    private void ContractInvariant() {  
        Contract.Invariant(_components != null, "The components list cannot be null"); 
        Contract.Invariant(_operationDictionary != null, "The operationDictionary cannot be null"); 
    } 
  
    public AutoComposite() { 
        _components = new List<IComponent<TComponent>>(); 
        _operationDictionary = new Dictionary<DynamicMethod, Delegate>(); 
    } 
 
    public AutoComposite(List<IComponent<TComponent>> components) : this() { … } 
 
    // Register methods. 
    // Four different type of delegates can be registered: 
    // Action                  : .Net Action 
    // Func                    : .Net Func (function) 
    // CompositeStrategy       : APL composite strategy delegate 
    // CompositeFunc           : APL composite func delegate 
 
    // Register an Action with no arguments 
    public void RegisterAction(MethodInfo method, Action operation) { … } 
 
    // Register an Action with no arguments 
    public void RegisterAction(string methodName, Action operation) { … } 
 
    // Register an Action with one argument 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



S t r u c t u r a l  P a t t e r n s  

 

97 

 

    public void RegisterAction<TArg1>(MethodInfo method, Action<TArg1> operation) { … } 
 
    // Register an Action with one argument 
    public void RegisterAction<TArg1>(string methodName, Action<TArg1> operation) { … } 
 
    // … M O R E …     
    // Register a Func with no arguments 
    public void RegisterFunc<TResult>(MethodInfo method, Func<TTResult> operation) { … } 
 
    // Register a Func with no arguments 
    public void RegisterFunc<TResult>(string methodName, Func<TResult> operation) { … } 
 
    // Register a Func with one argument 
    public void RegisterFunc<TArg1, TResult>(MethodInfo method, Func<TArg1, TResult> operation) { … } 
 
    // Register a Func with one argument 
    public void RegisterFunc<TArg1, TResult>(string methodName, Func<TArg1, TResult> operation) { … } 
 
    // … M O R E …     
    // Register a CompositeStrategy with no arguments 
    public void RegisterStrategy<TResult>(MethodInfo method, 
                                          CompositeStrategy<TResult> compositeStrategy) { … } 
 
    // Register a CompositeStrategy with no arguments 
    public void RegisterStrategy<TResult>(string methodName, 
                                          CompositeStrategy<TResult> compositeStrategy) { … } 
 
    // Register a CompositeStrategy with one argument 
    public void RegisterStrategy<TArg1, TResult>(MethodInfo method,   
                                   CompositeStrategy<TArg1, TResult> compositeStrategy) { … } 
 
    // Register a CompositeStrategy with one argument 
    public void RegisterStrategy<TArg1, TResult>(string methodName,   
                                   CompositeStrategy<TArg1, TResult> compositeStrategy) { … } 
 
    // … M O R E …     
    // Register a CompositeFunc with no arguments 
    public void RegisterCompositeFunc<TResult>(MethodInfo operation, 
                                               CompositeFunc<TComponent, TResult> compositeFunc) { … } 
 
    // Register a CompositeFunc with no arguments 
    public void RegisterCompositeFunc<TResult>(string operation, 
                                               CompositeFunc<TComponent, TResult> compositeFunc) { … } 
     
    // … M O R E … 
    // Register a CompositeStrategy with one argument 
    public void RegisterCompositeFunc<TArg1, TResult>(MethodInfo operation, 
                                        CompositeFunc<TComponent, TArg1, TResult> compositeFunc) { … } 
 
    // Register a CompositeStrategy with one argument 
    public void RegisterCompositeFunc<TArg1, TResult>(string operation, 
                                        CompositeFunc<TComponent, TArg1, TResult> compositeFunc) { … } 
 
    // … M O R E … 
    public object Invoke(string methodName, object[] args) { 
        Contract.Requires<ArgumentException>(!string.IsNullOrEmpty(methodName), 
                                             "Argument methodName cannot be null"); 
 
        // Step 1 : Are there any registered component methods? 
        if(HasComponentMethodToInvoke(methodName, args)) { 
            // If it is a CompositeStrategy registered method, then execute it… 
            var strategy = GetCompositeStrategy(methodName, args); 
            if(strategy != null) { 
                object ret = null; 
                _components.ForEach(x => { ret = InvokeStrategy(x, methodName, args, strategy, ret); }); 
                return ret; 
            } 
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            // Step 2 : Or if it is a CompositeFunc registered method, then execute it… 
            var func = GetCompositeFunc(methodName, args); 
            if(func != null) { return func.DynamicInvoke(GetFuncArguments(args)); } 
             
            // Step 3 : Or just a Func or Action but must still participate in the composite pattern 
            var method = GetNormalComponentMethod(methodName, args); 
            if (method != null) { // Call it on each method in the list, ignore the return value if Func 
               _components.ForEach(x => { method.DynamicInvoke(args);}); 
               return null; 
            } 
        } 
         
        // Are there any non registered component methods? 
        if(HasNonComponentMethodToInvoke(methodName, args)) { 
            // If it is not a component method, just execute it normally… 
            var method = GetNonComponentMethod(methodName, args); 
            if (method != null) { return method.DynamicInvoke(args); } 
        } 
 
        throw new Exception("The method " + methodName + " is not registered."); 
    }     
 
    public TComponent Target { 
        get { 
            Contract.Ensures(Contract.Result<TComponent>() != null); 
            _target = DoubleCheckedLock<TComponent>.Create(_target, this, 
                () => this.AsIf<TComponent>(true)); 
            return _target; 
        } 
    } 
 
    public IList<IComponent<TComponent>> GetList() { return _components; } 
    public TComponent GetInterface() { return Target; } 
     
    // … S N I P … 
} 

The IComponent<T> APL interface, shown on page 96, defines a method that returns the list of 

Components and a method that returns the Component interface. The IComponent<T> interface also 

injects extension methods with the ComponentExtend APL class as shown below: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public static class ComponentExtend { 
    public static int GetCount<T>(this IComponent<T> component) { … } 
    public static void Add<T>(this IComponent<T> composite, IComponent<T> element) { … } 
    public static void Remove<T>(this IComponent<T> component, T obj) { … } 
    public static IComponent<T> Remove<T, TArg>(this IComponent<T> component, 
                                                RemoveCompare<T, TArg> removeCompare, TArg arg) { … } 
    public static void ForEach<T>(this IComponent<T> composite, Action<T> action)  { … } 
    public static IEnumerator GetEnumerator<T>(this IComponent<T> component) { … } 
    public static IComponent<T> Find<T>(this IComponent<T> component, T obj) { … } 
    public static IComponent<T> Find<T, TArg>(this IComponent<T> component, 
                                              FindCompare<T, TArg> findCompare, TArg arg) { … } 
} 

The AutoComposite<TComponent> component thus offers the above composite extension methods 

because it realizes the IComponent<TComponent> interface. 

The RegisterStrategy set of methods, defined on the AutoComposite<TComponent> component, is used 

to register a CompositeStrategy delegate that is associated with a certain method on the Component. 
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The code below shows the implementation of the delegate, where the T generic argument denotes the 

return type of the composite method. Multiple CompositeStrategy delegates exist in the APL library, 

where each delegate caters for a different set of arguments: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public delegate T CompositeStrategy<T>(T leftValue, T rightValue); 
public delegate T CompositeStrategy<TArg1, T>(TArg1 arg1, T leftValue, T rightValue); 
public delegate T CompositeStrategy<TArg1, TArg2, T>(TArg1 arg1, TArg2 arg2, T leftValue, T rightValue); 
// … M O R E … 

The example code below shows how a summation lambda expression (l, r) => l + r is registered 

on an instance of the AutoComposite component against the Operation method. The Operation method, 

which returns an int, is declared on the example ITheComponent Component: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
var composite1 = new AutoComposite<ITheComponent>(); 
composite1.RegisterStrategy<int>("Operation", (l, r) => l + r); 

The AutoComposite component will thus apply the injected CompositeStrategy algorithm to all of the 

Components in its internal list for the specific registered method. The registered method using the 

CompositeStrategy delegate will thus always participate in the composite pattern. It is important to 

note that the CompositeStrategy delegate can only be applied to functions. The usage of the (l, r) => 

l + r expression by the AutoComposite component can be explain as follows: The l value is the value 

at which the Component iteration is currently. The r value is what the method invocation for the 

current Component in the iteration has returned. The expression, which in this case is a summation, is 

evaluated and its result will either be the l value for the next iteration or the overall return value. 

The RegisterCompositeFunc method is used to register CompositeFunc delegates that are also associated 

with a certain method on the Component that participates in the composite pattern. The 

CompositeFunc set of delegates takes in the IComponent<TComponent> as its first argument and the rest of 

the arguments are determined by the number of arguments on the Component method itself. The 

IComponent<TComponent> interface has a GetInterface method, from where the instance of the 

TComponent contract can be acquired. The CompositeFunc delegate thus gives the user the ability to inject 

a powerful composite algorithm that can utilise the contract of a full Component. The code below 

shows some of the CompositeFunc delegates that are available in the APL library, where each one caters 

for a certain number of arguments: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public delegate TResult CompositeFunc<TComponent, out TResult>(IComponent<TComponent> component); // None 
public delegate TResult CompositeFunc<TComponent, in T, out TResult>( // One 
    IComponent<TComponent> component, T arg); 
public delegate TResult CompositeFunc<TComponent, in T1, in T2, out TResult>( // Two 
    IComponent<TComponent> component, T1 arg1, T2 arg2); 
// … M O R E … 
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Figure 22. AutoComposite APL component overview. 

Figure 22 shows an overview of the AutoComposite APL component. The register set of methods 

registers a new operation on the internal dictionary. Each registered operation has an association with 

one, and only one, method defined on the Component interface. The Target property returns a 

runtime generated instance that realizes the Component interface. Each invocation on the instance is 

routed through to the Invoke method on the AutoComposite instance. The Invoke method instance then 

routes the call to the appropriate operation stored in the internal operation dictionary. 

The following code shows how the CompositeFunc can be used in order to inject a composite algorithm 

with an instance of the AutoComposite component. The code shows the registration of a lambda 

expression that must be used for the Operation method that is defined on a certain Component 

interface: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
// In the lambda expression below c defines the Component and  
// arg defines the argument of the "Operation" method 
// The first template argument – int – is the type of the single argument on the "Operation" method 
// The second template argument – string – is the return type of the "Operation" method 
// The "Operation" method is avaliable on the Component 
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composite.RegisterCompositeFunc<int, string>("Operation", (c, arg) => {  
                  var stringBuilder = GetStringBuilder(arg, c.GetInterface().Name, c.GetCount()); 
                  c.ForEach(x => stringBuilder.Append(x.GetInterface().Operation(arg + 2))); 
                  return stringBuilder.ToString(); }); 

In the example above, the Operation method has one argument of type int and it returns a value of 

type string. The injected lambda expression has access to the Composite instance that is passed in as 

the first argument. The user can thus inject complex composite algorithms without writing the 

necessary composite pattern plumping code. 

The Target property on the AutoComposite returns an instance of a dynamically created class that 

implements the TComponent contract. All calls on the instance are first intercepted by the Invoke 

method which receives the runtime name of the method and the runtime arguments. The Invoke 

method first tests to see whether the received method must participate in the Composite pattern, by 

looking for a CompositeStrategy delegate in the internal dictionary with the same method signature. If 

a delegate is found, it is invoked together with all the Composite’s registered Components, as shown 

in the code snippet below found within the Invoke method: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
// If it is a CompositeStrategy registered method, then execute it… 
var strategy = GetCompositeStrategy(methodName, args); 
if(strategy != null) { 
    object ret = null; 
    _components.ForEach(x => { ret = InvokeStrategy(x, methodName, args, strategy, ret); }); 
    return ret; 
} 

If no strategy is found, then the Invoke method determines whether a relevant CompositeFunc delegate 

is available for the given method in the internal dictionary: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
// If it is a CompositeFunc registered method, then execute it… 
var func = GetCompositeFunc(methodName, args); 
if(func != null) { return func.DynamicInvoke(GetFuncArguments(args)); } 

If no CompositeStrategy or CompositeFunc is found, then the relevant method on all of the internally 

stored Components is invoked: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
// Or just a Func or Action but must still participate in the composite pattern 
var method = GetNormalComponentMethod(methodName, args); 
if (method != null) { // Call it on each method in the list, ignore the return value if Func 
    components.ForEach(x => { method.DynamicInvoke(args);}); 
    return null;          
} 
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A registered method on the internally stored Composite doesn’t participate in the composite pattern if 

it is not attributed with the CompositeMethodAttribute attribute. In this case, the Invoke method just 

invokes the registered method normally and the internal list of Components is thus ignored: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
// Are there any non registered component methods? 
if(HasNonComponentMethodToInvoke(methodName, args)) { 
    // If it is not a component method, just execute it normally… 
    var method = GetNonComponentMethod(methodName, args); 
    if (method != null) { return method.DynamicInvoke(args); } 
} 
 

9.2.2 The Composite component. 

The Composite APL component is a simple component that is used in a curiously recurring template pattern 

(Coplien, 1995) environment. It takes in one generic argument that defines the underlying user coded 

Component. It also implements the IComponent<T> APL interface, giving it access to the large set of 

Component extension methods. 

The code snippet below shows the implementation of the Composite APL component: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public abstract class Composite<T> : IComponent<T> { 
    protected List<IComponent<T>> List = new List<IComponent<T>>(); 
    protected void SetComposite(T composite) { Target = composite; } 
    public IList<IComponent<T>> GetList() { return List; } 
    public T GetInterface() { return Target; } 
    public T Target { get; private set; } 
    public int GetCount() { return List.Count; } 
} 

The Composite<T> component stores the list of Components internally. A developer now has access to 

a large number of standard Composite functionalities, including an enumerator to a list of 

Components. Component methods can now be added to the base hand coded Composite by a 

developer. 

Developers need only concentrate on the algorithms of the methods defined in the user coded 

concrete Composite, and thus do not have to implement the entire pattern structure by hand: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
public interface { 
    public string Operation(int depth)  
} 
 
public class TheComposite : Composite<ITheComponent>, ITheComponent { // Using CRTP 
    public TheComposite(string name) { 
        Name = name; 
        SetComposite(this); 
    } 
 
    public string Name { get; set; } 
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    // Implementation of the ‘Operation’ method that is defined on the ITheComponent interface 
    public string Operation(int depth) {  
        var stringBuilder = new StringBuilder(new String('-', depth)); 
        stringBuilder.Append("Set " + Name + " length :" + GetCount() + "\n"); 
        this.ForEach(x => stringBuilder.Append(x.Display(depth + 2))); 
        return stringBuilder.ToString(); 
    } 
} 

A Leaf participant may also be added by using the Leaf APL component, where it implements the 

IComponent<T> interface for a certain Component contract T:  

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public abstract class Leaf<T> : IComponent<T> { 
    private T _component; 
 
    protected void SetComponent(T component) {  
        Contract.Requires<ArgumentNullException>(component != null, "Argument component cannot be null"); 
        _component = component;  
    } 
 
    public IList<IComponent<T>> GetList() { return new List<IComponent<T>>(); } // Return an empty list 
    public T GetInterface() { return _component; } 
    public T Target { get { return _component;  } } 
    public int GetCount() { return 0; } 
} 

  

Figure 23. UML class diagram of the Composite APL component. 

Figure 23 shows a UML class diagram of the Composite APL component. It shows the Composite and 

Leaf components and also their realization of the IComponent APL interface. A Leaf can easily be 

created using the Leaf APL component together with the curiously recurring template pattern (G´eraud & 
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Duret-Lutz, 2000). The methods of the T contract must, however, be implemented manually, as seen 

in the code below: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
public class TheLeaf : Leaf<ITheComponent>, ITheComponent { 
    public TheLeaf () { SetComponent(this); } 
    public string NonCompositeOperation() { … } 
} 

9.3 Theoretical Examples 

The first theoretical example shows the usage of the AutoComposite APL component. The Component 

contract is implemented with the ITheComponent interface, which implements the IComponent<T> APL 

interface. The ITheComponent Component has one Operation method that returns an int. The 

Operation method participates in the composite pattern. A Component can also have methods that are 

not used in the Composite pattern; however, this is not shown in this example. Only the methods that 

participate in the composite pattern should be attributed with the CompositeMethodAttribute attribute. 

A Leaf is also defined, which inherits from the Leaf<T> APL component: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
public interface ITheComponent : IComponent<ITheComponent> { 
    [CompositeMethod] 
    int Operation(); 
} 
 
public class ConcreteLeaf : Leaf<ITheComponent>, ITheComponent { 
    private readonly int _value; 
 
    public ConcreteLeaf(int value) { 
        SetComponent(this); 
        _value = value; 
    } 
 
    public int Operation() { return _value; } 
} 
 
class Program { 
    static void Main() { 
        var composite1 = new AutoComposite<ITheComponent>(); 
        composite1.RegisterStrategy<int>("Operation", (l, r) => l + r); 
        var leaf1 = new ConcreteLeaf(10); 
        composite1.Add(leaf1); 
        var leaf2 = new ConcreteLeaf(12); 
        composite1.Add(leaf2); 
 
        var composite2 = new AutoComposite<ITheComponent>(); 
        composite2.RegisterStrategy<int>("Operation", (l, r) => l + r); 
        var leaf3 = new ConcreteLeaf(18); 
        composite2.Add(leaf3); 
        var leaf4 = new ConcreteLeaf(22); 
        composite2.Add(leaf4); 
 
        // Add a composite2 to a composite1, which creates a tree-like structure 
        composite1.Add(composite2.Target); 
        var leaf5 = new ConcreteLeaf(45); 
        composite1.Add(leaf5); 
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        // Add and remove a leaf 
        var leaf6 = new ConcreteLeaf(9); 
        composite1.Add(leaf6); 
        composite1.Remove(leaf6); 
 
        // Calculate the value 
        int value = composite1.Target.Operation(); 
        Console.WriteLine("Value = " + value); 
    } 
} 
 
/* Output 
Value = 116 
*/  

In the above example, no Composites are hand coded. Both the composite1 and composite2 instances 

are implemented by new instances of the AutoComposite component. A CompositeStrategy is injected 

on the Operation method, using a lambda expression, on each Composite instance: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
var composite1 = new AutoComposite<ITheComponent>(); 
composite1.RegisterStrategy<int>("Operation", (l, r) => l + r);  
   
var composite2 = new AutoComposite<ITheComponent>(); 
composite2.RegisterStrategy<int>("Operation", (l, r) => l + r); 

A couple of Leaf instances are also registered on the composite1 and composite2 Components. The 

composite2 instance is also added to the composite1 instance, as seen below: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
composite1.Add(composite2.Target); 

Finally, the Operation method is called on the composite1 Composite that runs through all of the 

added Components. The Target property on the AutoComposite uses duck typing (Koenig & Moo, 2005) 

in order to map the Operation method to the injected CompositeStrategy, which in this case is the 

lambda expression (l, r) => l + r: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
int value = composite1.Target.Operation(); 

The output shows that the correct value was calculated and returned by the Operation invocation. 

The final example shows the usage of the Composite APL component. It is almost the same as the 

previous example, except that the Composite component is used instead of the AutoComposite 

component. The ConcreteComposite inherits from the Composite component and is thus able to reuse 

most of the component’s Composite functionality. The Composite only has to implement the 

Operation method: 
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C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
public interface ITheComponent : IComponent<ITheComponent> { 
    [CompositeMethod] 
    int Operation(); 
} 
 
public class ConcreteComposite : Composite<ITheComponent>, ITheComponent { 
    public ConcreteComposite() { SetComposite(this); } 
 
    public int Operation() { 
        int sum = 0; 
        this.ForEach(x => sum = sum + x.Operation()); 
        return sum; 
    } 
} 
 
public class ConcreteLeaf : Leaf<ITheComponent>, ITheComponent { 
    private readonly int _value; 
 
    public ConcreteLeaf(int value) { 
        _value = value; 
        SetComponent(this); 
    } 
 
    public int Operation() { return _value; } 
} 
 
class Program { 
    static void Main() { 
        var composite1 = new ConcreteComposite(); 
        var leaf1 = new ConcreteLeaf(10); 
        composite1.Add(leaf1); 
        var leaf2 = new ConcreteLeaf(12); 
        composite1.Add(leaf2); 
 
        var composite2 = new ConcreteComposite(); 
        var leaf3 = new ConcreteLeaf(18); 
        composite2.Add(leaf3); 
        var leaf4 = new ConcreteLeaf(22); 
        composite2.Add(leaf4); 
 
        // Add a composite2 to a composite1, which creates a tree-like structure 
        composite1.Add(composite2.Target); 
        var leaf5 = new ConcreteLeaf(45); 
        composite1.Add(leaf5); 
 
        // Add and remove a leaf 
        var leaf6 = new ConcreteLeaf(9); 
        composite1.Add(leaf6); 
        composite1.Remove(leaf6); 
 
        // Recursively display tree 
        int value = composite1.Operation(); 
        Console.WriteLine("Value = " + value);  
        Console.ReadLine(); 
    } 
} 
 
/* Output 
Value = 116 
*/ 
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In the above example, a developer has access to the Component list inside the user coded Operation 

method. The Operation method iterates through all of the registered Components and calculates their 

sum and returns the value: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
public int Operation() { 
    int sum = 0; 
    this.ForEach(x => sum = sum + x.Operation()); 
    return sum; 
} 

In the last full example, instances of the Composite ConcreteComposite class are created normally and 

Leaves are added using the inherited Add method, as shown below: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
var composite1 = new ConcreteComposite(); 
var leaf1 = new ConcreteLeaf(10); 
composite1.Add(leaf1); 

The output of the example is the same as the previous one, showing that the composite1.Operation() 

invocation was successful. 

9.4 Outcome 

The componentization of the composite design pattern is a success because it meets all the 

requirements listed in section 1.4: 

 Completeness: The composite design pattern library components cover all cases described in 

the original design pattern. 

 Usefulness: The composite design pattern library components are useful because they solve 

all of the composite scenarios desired by a developer. The components serve the same 

functionality as a hand written composite, without a developer having to write the composite 

boiler plate code by hand. With the AutoComposite component a developer is responsible only 

for implementing the Component and Leaf participants and hooking up the composite 

algorithms. With the Composite component a developer is also responsible only for 

implementing the Component and Leaf participants and implementing the composite 

methods. Both of the components are relatively simple and easy to use. 

 Faithfulness: The AutoComposite reusable pattern component follows an implementation that 

differs from the original core pattern described in Design Patterns (Gamma, Helm, Johnson, & 

Vlissides, 1994). With the AutoComposite component, the Composite is generated during 

runtime using duck typing (Koenig & Moo, 2005) and meta-programming (Perrotta, 2010). The 
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Composite component implementation follows the same implementation as the original pattern 

described in Design Patterns. 

 Type-safety: The registration methods on the AutoComposite component use non type-safe 

string literals for the specification of the method names. Lambda expressions trees (Albahari & 

Albahari, 2007, p. 317) however, can be used to solve the type-safe registration problem, as 

shown in Appendix I. Other than that, all the library components are fully type-safe. 

 Extended applicability: The composite library components do not cover more cases than 

the original composite pattern. 

 Performance: The composite library components do have a performance impact because of 

the usage of duck typing (Koenig & Moo, 2005). Appendix II shows the performance impact of 

duck typing. The performance impact is, however, acceptable in normal situations. 

The composite pattern is fully componentizable, because the developer is not tasked with 

implementing any boiler plate code when using the reusable pattern components. 

The following language features are fundamental to the implementation or usage of the reusable 

composite design pattern components: Inheritance (Mitchell, Mitchell, & Krzysztof, 2003), Interfaces 

(Pattison & Box, 2000), Generics (Jagger, Perry, & Sestoft, 2007), Design by Contract™ (Mitchell & 

McKim, 2001), Attributes (Nagel, Evjen, Glynn, & Watson, 2010), Method References (Microsoft, 

2010e), Anonymous Functions (Ierusalimschy, 2003), Lambda Expressions (Michaelis, 2010), 

Reflection (Sobel & Friedman, 1996) (Forman & Forman, 2005), Duck Typing (Koenig & Moo, 2005) 

and Meta-programming (Perrotta, 2010). 
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 C h a p t e r  1 0  

10 STATE 

10.1 Introduction 

The state design pattern (Gamma, Helm, Johnson, & Vlissides, 1994) tackles the challenge of how an 

object implements an interface differently according to the state it is in. This problem is sometimes 

incorrectly implemented using conditional statements such as if and switch. The pattern adheres to 

the refactoring rule of Replace Conditional with Polymorphism (Fowler, Beck, Brant, Opdyke, & Roberts, 

1999, pp. 255-259) that states “Move each leg of the conditional to an overriding method in a subclass. Make the 

original method abstract”. The state design pattern shows an elegant object-oriented solution that is closed 

to change, yet open to extension (Meyer, 2000). 

The pattern permits an object to change its functionality according to its internal state. It will thus 

appear as though the object has changed its class (Gamma, Helm, Johnson, & Vlissides, 1994). The 

intent is, therefore, to offer an unsophisticated and adaptable mechanism for an object to delegate 

messages to different concrete implementations depending on the state of the underlying object. 

10.1.1 Structure. 

The following figure shows the formal structure of the state design pattern (Gamma, Helm, Johnson, 

& Vlissides, 1994): 

 

Figure 24. State structure. 

10.1.2 Participants. 

The classes and/or objects participating in the state design pattern are: 
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 Context 

The Context declares the interface that will be used by clients or users. It also holds, manages 

and uses an instance of the subclass of a ConcreteState that controls the present desired state. 

 State 

A State declares an interface that implements the operations in a ConcreteState, which is 

associated with a distinctive state of the Context. 

 ConcreteState 

A ConcreteState implements the operations declared in the State interface. It holds the actual 

state linked with a Context instance. 

10.2 Library Components 

10.2.1 The State component. 

The APL IState interface defines a standard reusable contract for a State. The interface defines useful 

methods such as setting and getting the underlying State instance, as seen below: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public interface IState<TState> : IAutoState<TState> { 
    void SetState(IState<TState> state); // Sets the state to the new IState state instance 
    void SetState<TConcreteState>() where TConcreteState : TState; // Sets the state to TConcreteState 
    void SetStateContext(IStateContext<TState> stateContext); // Sets a new Context 
    TState GetTarget(); // Get a Target 
    void SetTarget(TState state); // Set the Target 
} 

The APL IState interface also implements the IAutoState<TState> APL interface in order for an 

implementer of the IState interface to make use of the extension methods made available by the 

IAutoState<TState> APL interface. The implementer of the IState<TState> interface must implement 

all of the methods defined on the interface. The implementation can, however, delegate the processing 

to the relevant extension method that is made available on the IAutoState<TState> interface. 

The State<TState> APL component implements a part of a ConcreteState that must be used in a 

curiously recurring template pattern (CRTP) (Coplien, 1995) setting. Figure 25 shows a UML class diagram 

of the State APL group of components, which illustrates the following four items: First, it illustrates 

the implementation hierarchy of the IState interface and the State component; secondly, the 

StateContext component’s usage of the State component (discussed later in this chapter) and the 

StateContext component’s implementation of the IStateContext interface; thirdly, the State 
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component’s usage of the IState interface, which it uses to change the state of a StateContext 

instance and, fourthly, the dominance of the state getter and setter methods on the components. 

 

Figure 25. UML class diagram of the State APL component. 

The State<TState> component, which realizes the IState<TState> APL interface, implements a certain 

extension of the state design pattern (Dyson & Anderson, 1997) where it holds an internal reference to 

the State’s Context through an IStateContext<TState> APL interface, as illustrated in Figure 25. A 

State instance thus holds a reference back to its Context instance. This makes it possible for a 

ConcreteState to change the state, delegating the state change request to its holding Context: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public abstract class State<TState> : IState<TState> { 
    private IStateContext<TState> _stateContext; 
 
    public void SetStateContext(IStateContext<TState> stateContext) { 
        Contract.Requires<ArgumentNullException>(stateContext!= null,  
                                                 "Argument stateContext cannot be null");  
        _stateContext = stateContext; 
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        Validate(); 
    } 
 
    public IStateContext<TState> GetStateContext() { 
        Contract.Ensures(Contract.Result<IStateContext<TState>>() != null); 
        return _stateContext; 
    } 
 
    public void SetState(IState<TState> state) { 
        Contract.Requires<ArgumentNullException>(state != null,  
                                                 "Argument state cannot be null");  
        Contract.Requires<ArgumentNullException>(_stateContext!= null,  
                                                 "The internal stateContext cannot be null");  
        _stateContext.SetState(state.GetTarget()); 
    } 
 
    public void SetState<TConcreteState>() 
        where TConcreteState : TState { 
        Contract.Requires<ArgumentNullException>(_stateContext!= null,  
                                                 "The internal stateContext cannot be null"); 
        _stateContext.SetState<TConcreteState>(); 
    } 
 
    // … S N I P … 
 
    public TState Target { get; set; }     
 
    public TState GetTarget() { 
        Contract.Ensures(Contract.Result<TState>() != null); 
        return Target;  
    } 
 
    public void SetTarget(TState state) {  
        Contract.Requires<ArgumentNullException>(state != null,  
                                                 "Argument state cannot be null"); 
        Target = state; 
    } 
} 

The SetState method changes the Context’s state to the new desired state, where the state can be 

passed in with either a generic argument or as an IState<TState> APL interface. The TState generic 

argument of the State<TState> component defines the State participant of the state pattern. The 

TConcreteState generic argument that is passed to the SetState defines a ConcreteState participant 

and must be of type TState. The SetStateContext method changes the Context reference of the 

ConcreteState. This can only be done after the Context’s state has been set to reference the State, as 

the SetStateContext will validate this rule. The SetTarget method registers the TState State whereas 

the GetTarget method retrieves it. The SetTarget and GetTarget methods are used only in a scenario 

where the creator and user of the component are separated and the user does not have access to the 

TState. The user can thus gain access to the TState by using the GetTarget method. 

In the example below, the example ConcreteState class is defined in a curiously recurring template pattern 

(Coplien, 1995) setting. The ConcreteState class implements the user defined ITheState interface, 

which define the HandleState1 and HandleState2 methods as its contract. The ConcreteState class can 

now use the inherited SetState method in order to change the state on the Context: 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



B e h a v i o u r a l  P a t t e r n s  

113 

 

 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
public class ConcreteState : State<ITheState>, ITheState { 
    public void HandleState1() { 
        // … S N I P … 
        SetState<MyConcreteStateB>(); // Change the state to MyConcreteStateB 
        // … S N I P … 
    } 
 
    public void HandleState2() { … } 
} 

The IStateContext<TState> APL interface defines the contract for a standard Context. It defines 

methods whereby the state of the context can be changed. The TState generic argument defines the 

State participant and it can be retrieved with the State property: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public interface IStateContext<TState> { 
    void SetState(TState state); // Sets the State using a TState instance 
    void SetState<TConcreteState>() where TConcreteState : TState; // Sets the State using TConcreteState 
    TState State { get; } // Gets the State 
} 

The StateContext<TState, TContextInterface> APL component defines a standard Context. It is 

defined with two generic arguments TState and TContextInterface. The TState generic argument must 

be a specific State implementation, and the TContextInterface must be a Context interface. The 

StateContext<TState, TContextInterface> component realizes the IStateContext<TState, 

TContextInterface> APL interface. The TState generic argument must be of type IAutoState<TState> 

because it must have the standard injected State functionality: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public abstract class StateContext<TState, TContextInterface> : IStateContext<TState, TContextInterface> 
    where TState : IAutoState<TState> { 
    public TState State { get; private set; } 
 
    public void SetState(TState state) { 
        System.Diagnostics.Contracts.Contract.Requires<ArgumentNullException>(state != null,  
                                                 "Argument state cannot be null"); 
  
        // … S N I P … 
        State = state; 
        state.SetStateContext(this); // After setting the state on the context, 
                                     // set the context on the state 
    } 
 
    public void SetState<TConcreteState>() where TConcreteState : TState { 
        SetState(StateFactory<TConcreteState, TState>.Create()); 
    } 
 
    public void SetContract(TContextInterface contract) {  
        System.Diagnostics.Contracts.Contract.Requires<ArgumentNullException>(state != null,  
                                                 "Argument state cannot be null"); 
 
        Contract = contract; 
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    } 
 
    public TContextInterface Contract { get; private set; } 
     
     
    static public IStateContext<TState, TContextInterface> Create<TStateContext, TConcreteState>() 
        where TStateContext : StateContext<TState, TContextInterface>, TContextInterface 
        where TConcreteState : State<TState>, TState {  
        System.Diagnostics.Contracts.Contract.Ensures( 
            Contract.Result<IStateContext<TState, TContextInterface>>() != null); 
 
        Validate<TConcreteState>(); 
        return StateContextFactory<TStateContext, TConcreteState, TState, TContextInterface>.Create(); 
    } 
     
    // … S N I P … 
} 

The State auto property, as seen in the implementation code above, holds the current State instance of 

the Context. The internal state cannot be set with the State property; it must be set with the public 

SetState method. The SetState method sets the state of the Context instance and also sets the 

Context on the State instance. A State instance holds a reference back to its Context, in order for the 

state to be changed. 

The StateFactory APL component, which is used in the SetState<TConcreteState> method on the 

StateContext component, is used to create a normal instance of the ConcreteState. Different types of 

ConcreteState creational strategies exist in the APL library, such as Normal, Singleton and Flyweight. 

The StateFactory APL component just creates a normal instance of a certain ConcreteState. The 

SingletonStateFactory APL component creates a singleton instance of a certain ConcreteState and the 

FlyweightStateFactory creates ConcreteState instances in a flyweight pattern setting (Gamma, Helm, 

Johnson, & Vlissides, 1994). The ConcreteState creational strategies adhere to the creational patterns 

discussed in Design Patterns with regard to the state pattern (Gamma, Helm, Johnson, & Vlissides, 

1994). 

The different creational strategies available are Normal, Singleton and Flyweight and are defined on the 

StateCreationStyle enumerator: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public enum StateCreationStyle { 
    Normal, // The State class is a normal instance and holds a reference back to the context 
    Singleton, // The state class is a Singleton and doesn't hold any context reference 
    Flyweight // The state class is a Flyweight and doesn't hold any context reference 
} 

The StateCreationStyle enumerator is used when the StateAttribute is tagged on a State interface, as 

shown later in this section. 

The StateContext component is used in a curiously recurring template pattern (Coplien, 1995) setting, as 

shown below: 
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C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
public interface ITheContextInterface { void Request(); } 
 
public class Context : StateContext<ITheState, IContextInterface>, ITheContextInterface { // Using CRTP 
    // … S N I P … 
 
    public void Request() { // Implementation of the ‘Request’ method on the ITheContextInterface 
 
        // … S N I P … 
        SetState<ConcreteState1>; // Switch to state ConcreteState1 
        // … S N I P … 
        State.HandleState1();     // Invoke the HandleState1 method on the state instance 
        // … S N I P … 
        SetState<ConcreteState2>; // Switch to state ConcreteState2 
        // … S N I P … 
        State.HandleState3();     // Invoke the HandleState3 method on the state instance 
        // … S N I P … 
        State.HandleState2();     // Invoke the HandleState2 method on the state instance 
        // … S N I P … 
        SetState<ConcreteState3>; // Switch to state ConcreteState3 
        // … S N I P … 
    } 
} 

The above example shows the usage of the StateContext<TState, TContextInterface> component. 

The user must supply the State interface and the Context interface through generic arguments when 

using the StateContext component. In this example, the ITheState interface defines the State contract 

and the TContextInterface interface defines the Context contract. The user defined Context class must 

implement the Context interface. The Context concrete instance, thus, must implement the method of 

the ITheContextInterface, which in this case is Request. The Request method implements the necessary 

state transitions using the State property inherited from the StateContext component. 

A SingletonStateContext component also exists in the APL library. It performs exactly the same 

functionality as the StateContext except that it uses a SingletonStateFactory to create an instance of a 

certain ConcreteState: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public void SetState<TConcreteState>() where TConcreteState : TState { 
    Validate<TConcreteState>(); 
    SetState(SingletonStateFactory<TConcreteState, TState>.Create()); 
} 

The SetState method validates that the TConcreteState is indeed a singleton (Gamma, Helm, Johnson, 

& Vlissides, 1994) by checking some standard singleton rules. The developer of the TConcreteState 

does not have to implement a full singleton by hand. The TConcreteState must only be implemented 

in such a way that the SingletonStateFactory can use it as a singleton: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
public class ConcreteStateA : ITheState { 
    // Must be set to private in order to pass validations 
    private ConcreteStateA() { } 
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    public void HandleState1(IStateContext<IState> context) { 
        // … S N I P … 
 
        // Switches the state to a Singleton ConcreteStateB using the context argument 
        context.SetState<ConcreteStateB>(); 
    } 
 
    public void HandleState2(IStateContext<IState> context) { … } 
} 

In the above example, ConcreteStateA is set to private in order to prohibit intermittent instance 

creation of the ConcreteStateA class. The validation in the SetState method on the 

SingletonStateContext component fails if its TConcreteState’s constructor is not private. The 

ConcreteStateA implementation can also no longer inherit from the State APL component. This is 

because the State component holds a reference back to a certain Context. An instance of the State 

component thus holds its own internal state, which makes a State component instance impossible to 

share with multiple Context instances; therefore it cannot be a Singleton. A Singleton ConcreteState 

must be shareable and must hold no state. The Context must, therefore, be passed to the 

ConcreteState through the arguments of the handler methods, as shown in the example below: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
[State(StateCreationStyle = StateCreationStyle.Singleton)] // The state interface is used as a singleton 
public interface ITheState { 
    // State handle… 
    void HandleState1(); 
 
    // Another state handle… 
    void HandleState2(IStateContext<IState> context); // Pass in the Context’s state 
} 

It is the developer’s responsibility to code the State contract and the ConcreteState implementation of 

that contract. The developer must also define the creational style for the State with the StateAttribute 

APL attribute. The SingletonStateContext will, however, validate if the ConcreteState was 

implemented correctly. The SingletonStateContext will thus validate that the ConcreteState holds only 

one constructor that is private, with no arguments, and that it does not hold any state. 

The FlyweightStateContext APL component performs the same functionality as the StateContext and 

SingletonStateContext. It does, however, ensure that the ConcreteStates are also Flyweights (Gamma, 

Helm, Johnson, & Vlissides, 1994). The FlyweightStateContext forces the ConcreteStates to be 

Flyweights through its SetState method: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
// Set the state using a flyweightkey 
public void SetState<TConcreteState, TFlyweightKey>(TFlyweightKey flyweightKey)  
    where TConcreteState : TState { 
    Validate(flyweightKey); // Validate if the new state is possible… 
    // Sets the new state using the flyweightKey argument 
    SetState(FlyweightStateFactory<TConcreteState, TFlyweightKey>.Create(flyweightKey)); 
} 
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Figure 26. UML class diagram of the FlyweightContext APL component. 

Figure 26 shows a UML class diagram of the FlyweightContext APL component and the APL 

interfaces it implements. 

The ConcreteStates must be implemented by the developer in order for them to be used by the APL 

flyweight components. This means that the developed ConcreteStates must follow the same kind of 

rules as the singleton ConcreteStates. The ConcreteStates can have a state, but the state must be 

«interface»
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«Property»

- State  :TState

+ SetState(state :TState)  :void

+ SetState()  :void
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IFlyweightContextEx

TState
TContextInterface

FlyweightContext

«Property»
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+ State  :TState
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+ SetState()  :void
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related to the key of the Flyweight, because their instances must be shareable. A ConcreteState’s 

constructor must also be private, in order to protect the creation of the class. The ConcreteState’s 

private constructor must, however, take one argument that represents the key of the Flyweight. The 

APL flyweight components use this keyed private constructor in order to create a unique instance of a 

ConcreteState that is related to the key: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
public class MyConcreteStateA : ITheState { 
    private Setting Setting = Setting.SettingA; 
 
    // Private constructor with a Flyweight key. 

    private MyConcreteStateA(Setting setting) { Setting = setting; } 
    public override void HandleState1(IFlyweightContext<IMyState> context) { … } 
    public override void HandleState2(IFlyweightContext<IMyState> context) { … } 
} 

An IFlyweightContext<TState> interface must be passed to a handler in order for it to make state 

changes. The IFlyweightContext<TState> interface adds an extra SetState method to the 

IStateContext<TState> interface, which also supplies the Flyweight key as a generic argument: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public interface IFlyweightContext<TState> : IStateContext<TState> { 
    void SetState<TConcreteState, TFlyweightKey>(TFlyweightKey flyweightKey) 
        where TConcreteState : TState; 
} 

It is now possible for the user or ConcreteState to change the state by using the Context: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
context.SetState<ConcreteState, Key>(Key.Value1); 

In the above example the key is an enumerator on which Value1 is a variable. 

A ConcreteState can also be defined without having to inherit from the State<TState> APL 

component. C# does not allow multiple inheritance (Balagurusamy, 2008). A C# class can thus only 

inherit from one base class. This limits the possibilities for applying multiple patterns on a certain class 

if only the curiously recurring template pattern (Coplien, 1995) is available. The state pattern in the APL 

library gives the developer the option to implement the IAutoState<TState> interface on a 

ConcreteState instead of inheriting from the State<TState> APL component. The IAutoState<TState> 

interface injects the same standard State functionality as the State<TState> component, by using C# 

extension methods (Esterbrook, 2001) (Jesse & Xie, 2008): 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
public class ConcreteState : IAutoState<ITheState>, ITheState { 
    public void HandleState1() {  
        // … S N I P …  
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        this.SetState<MyConcreteStateB, IMyState>(); 
        // … S N I P …  
    } 
 
    public void HandleState2() { … } 
}  

The extension methods are injected with the DynamicStateEx static APL class, whereby they implement 

all the methods on the IState<TState> APL interface.  

The code below shows the implementation of the IAutoState<TState> interface: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public interface IAutoState<TState> { } // Just an empty interface 

The IAutoState<TState> APL interface is empty because all the methods it injects are defined in the 

extension methods. Figure 27 shows a UML class diagram of the DynamicStateEx APL static class. The 

IAutoState<TState> interface thus allows for the automatic inclusion of those state pattern methods on 

a certain State implementation without using inheritance. 

 

Figure 27. UML class diagram of the DynamicStateEx APL component. 

The code below shows the implementation of the DynamicStateEx extension method in the APL 

library: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public static class DynamicStateEx { 
    public static TState GetTarget<TState>(this IAutoState<TState> obj) { … } 
     
    public static void SetState<TConcreteState, TState>(this IAutoState<TState> obj)  
        where TConcreteState : TState { … } 
 
    public static void SetStateContext<TState>(this IAutoState<TState> obj, 
                                               IStateContext<TState> stateContext) { … }     
 
    public static void SetTarget<TState>(this IAutoState<TState> obj, TState state) { … } 
}     

A State implemented with the IAutoState<TState> APL interface can be used as a participant in 

another design pattern using APL components, because multiple interface implementations are 

DynamicStateEx

«extension»

+ GetTarget()  :TState

+ SetState()  :void

+ SetStateContext(stateContext :IStateContext<TState>)  :void

+ SetTarget(state :TState)  :void
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allowed in C#. A State implemented using the curiously recurring template pattern (Coplien, 1995) cannot 

be a combined with another design pattern using inheritance only APL components. This is because 

the curiously recurring template pattern uses inheritance, and multiple inheritance is not allowed in C#. For 

example, a State can be defined as a Decorator and a Composite, as the following code snippet shows: 

C# (Example) 
---------------------------------------------------------------------------------------------------------- 
public class MyState : Composite<ITheComponent<T>>, ITheComponent<T>, // APL class using CRTP 
                       IAutoState<TState>, // APL interface 
                       IAutoDecorator { // APL interface 
    // … S N I P … 
} 

In the above example, the MyState class is made a State and a Decorator by using APL interfaces. The 

MyState class is made a decorator by the IAutoDecorator APL interface, which is not discussed in this 

thesis. The APL interfaces use C# extension methods in order to inject the desired boiler plate 

reusable pattern code. The MyState class is also made a Composite by using an APL composite 

component using CRTP (Coplien, 1995). The implementation would not have been possible if more 

than one pattern injected its boiler plate code using the curiously recurring template pattern (Coplien, 1995), 

as seen below: 

C# (Error Example) 
---------------------------------------------------------------------------------------------------------- 
public class MyState : Composite<ITheComponent<T>>, ITheComponent<T>, // APL class using CRTP 
                       State<TState>, // APL class using CRTP (error) 
                       IAutoDecorator { // APL interface 
    // … S N I P … 
} 

In the above code, the MyState class inherits from both the Composite and State APL classes. This 

scenario is not allowed, because multiple inheritance is illegal in C# (Balagurusamy, 2008).  

An IAutoStateContext<TState> also exists in the APL library, which allows the use of an interface 

instead of the StateContect<TState> component. The DynamicStateContextEx static class injects the 

necessary standard Context functionality by using C# extension methods, as shown below: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public interface IAutoStateContext<TState> { // None } // Just an empty interface 
 
public static class DynamicStateContextEx { 
    public static TState GetState<TState>(this IAutoStateContext<TState> autoStateContext) { 
        // … S N I P …  
    } 
 
    public static void SetState<TState>(this IAutoStateContext<TState> autoStateContext, TState state) { 
        // … S N I P …  
    } 
 
    public static void SetState<TState, TConcreteState>(this IAutoStateContext<TState> autoStateContext) 
        where TConcreteState : TState { … } 
 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



B e h a v i o u r a l  P a t t e r n s  

121 

 

    private static IStateContext<TState> GetStateContext<TState>( 
        IAutoStateContext<TState> autoStateContext) { … } 
} 

The following example shows how the IAutoStateContext can be used when creating a Context: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
public class Context : IAutoStateContext<ITheState>, IContextInterface { // No CRTP 
    public void Request() { 
        // … S N I P …  
        this.GetState().HandleState1(); // The GetState method is auto injected 
        // … S N I P …  
        this.SetState<IMyState, MyConcreteStateA>(); // The SetState method is auto injected 
        // … S N I P …   
        this.GetState().HandleState2(); // The GetState method is auto injected 
        // … S N I P …  
        this.GetState().HandleState3();// The GetState method is auto injected 
        // … S N I P …  
    } 
} 

The example above shows how the Context has access to State functionalities such as SetState and 

GetState, which are auto injected by the IAutoStateContext<TState> APL interface. 

Different creational strategies can also be used when using the IAutoState and IAutoStateContext 

interfaces, by using the AutoStateContextFactory APL component and other library factories. When 

using the auto state interfaces, the state creational strategy must be supplied by using the 

StateCreationStyle property on the State attribute: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
[State(StateCreationStyle = StateCreationStyle.Singleton)] // The state instance will be a singleton 
public interface ITheState : IAutoState<ITheState> { 
    void HandleState1(IAutoStateContext<IMyState> context); 
    void HandleState2(IAutoStateContext<IMyState> context); 
} 

Note, however, that the Context must be supplied to the state handler when using the singleton or 

flyweight (Gamma, Helm, Johnson, & Vlissides, 1994) pattern, because the ConcreteState itself cannot 

hold any state. The ITheState State defined above can thus be used to implement ConcreteState 

participants, as shown in the example below: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
public class ConcreteStateA : ITheState { 
    public void HandleState1(IAutoStateContext<IMyState> context) { 
        // … S N I P … 
        context.SetState<IMyState, MyConcreteStateB>(); // This will create a singleton MyConcreteStateB 
    } 
 
    public void HandleState2(IAutoStateContext<IMyState> context) { … } 
} 

The ConcreteState can now be used by the state factories in order to create it: 
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C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
var contextFactory = new AutoStateContextFactory<MyConcreteStateA, IMyState>(); 
var context = contextFactory.Create<Context, IContextInterface>(); 

The SetState used in the HandleState1 handler on the ConcreteState in the example on the previous 

page also uses the internal APL state factories. In this case the ITheState State is defined as a 

Singleton. The SetState method will thus return a Singleton instance. 

A flyweight (Gamma, Helm, Johnson, & Vlissides, 1994) pattern can also be used as a creational 

strategy for the ConcreteStates in the example on the previous page. The StateCreationStyle on the 

ITheState handler must be changed to Flyweight and the ConcreteState must be given a private 

constructor that takes in one Flyweight key: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
[State(StateCreationStyle = StateCreationStyle.Flyweight)] // The state instance will be a flyweight 
public interface ITheState : IAutoState<ITheState> { 
    void HandleState1(IAutoFlyweightContext<IMyState> context); 
    void HandleState2(IAutoFlyweightContext<IMyState> context); 
} 

The IAutoFlyweightContext APL interface must also be used instead of the IFlyweightContext, because 

the FlyweightFactory APL component needs a key in order to create a Flyweight. This key is used by 

the private constructor of the ConcreteFlyweight during its construction. 

10.3 Theoretical Examples 

The following example shows the usage of the State<TState> APL component. First, the State 

implementation must be defined with an appropriate creational style which, in this case, is 

StateCreationStyle.Normal. A creational style of Normal means that the ConcreteState instance is 

created normally and thus will not be shared. The State interface in this example has two handlers or 

methods HandleState1 and HandleState2. The State interface must also implement the IState<TState> 

APL interface, which realizes standard state functionality: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
[State(StateCreationStyle = StateCreationStyle.Normal)] // Defines a Normal State 
public interface IMyState : IState<IMyState> { 
    void HandleState1(); 
    void HandleState2(); 
} 

Two ConcreteState classes are defined in the example. Both implement the user defined IMyState 

State interface. The two ConcreteState classes also inherit from the State<TState> APL component, 

which itself implements the methods on the IState<TState> APL interface. In the example on the next 

page both the MyConcreteStateA class and MyConcreteStateB class are defined in a curiously recurring 

template pattern (Coplien, 1995) setting: 
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C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
public class MyConcreteStateA : State<IMyState>, IMyState { // The state is implemented using CRTP 
    public void HandleState1() { 
        Console.WriteLine("Calling HandleState1 from state A"); 
        SetState<MyConcreteStateB>(); // Set the State to MyConcreteStateB 
    } 
 
    public void HandleState2() { Console.WriteLine("Calling HandleState2 from state A"); } 
} 
 
public class MyConcreteStateB : State<IMyState>, IMyState { 
    public void HandleState1() { Console.WriteLine("Calling HandleState1 from state B"); } 
    public void HandleState2() { Console.WriteLine("Calling HandleState2 from state B"); } 
} 

In the code above, the HandleState1 handler on the MyConcreteStateA State class changes the state on 

the Context to MyConcreteStateB. The handler is able to perform a state change task because it has 

access to the Context through the inherited State<TState> component. 

A Context class Context is also implemented. The Context class inherits from the 

StateContext<TState, TContext> APL component, which injects standard Context functionality. In the 

example below the Context class is thus defined in a curiously recurring template pattern (Coplien, 1995) 

setting: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
public interface IContextInterface : IContext { void Request(); } 

 
public class Context : StateContext<IMyState, IContextInterface>, IContextInterface { // Using CRTP 
    private Context() { } 
 
    public void Request() { 
        State.HandleState2(); 
        State.HandleState1(); 
        State.HandleState2(); 
    } 
} 

An instance of the Context class is then created using a factory on the StateContext<TState, 

TContext> component. The factory must be supplied with the Context type and the ConcreteState 

type, which are used to set the initial state of the Context instance: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
var context = Context.Create<Context, MyConcreteStateA>(); // Create context instance using a factory 
                                                           // with an initial state of MyConcreteStateA 
// Invoke ‘Request’ on the context instance 
context.Contract.Request(); 
 
// Change the state of the context to MyConcreteStateA 
context.SetState<MyConcreteStateA>(); 
 
// Invoke ‘Request’ on the context instance 
context.Contract.Request(); 
 
Console.Write("Press any key to exit."); 
Console.Read(); 
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/* Output 
Calling HandleState2 from state A 
Calling HandleState1 from state A 
Calling HandleState2 from state B 
Calling HandleState2 from state A 
Calling HandleState1 from state A 
Calling HandleState2 from state B 
*/ 

In the code above, a Context instance is created with an initial state of MyConcreteStateA. The Request 

method on the context instance is then called, whereupon the state is changed to MyConcreteStateB by 

one of the handlers. The state is changed to MyConcreteStateA again and the Request method on the 

context instance is called for the last time. From the output it can be seen that the state processing was 

handled correctly. 

The next example is almost exactly the same as the previous one, except that a singleton (Gamma, 

Helm, Johnson, & Vlissides, 1994) creational style is used for the ConcreteStates. In this example the 

StateCreationStyle enumerator on the IState State interface is set to Singleton, informing the internal 

factories of the APL library that they should treat the ConcreteStates as singletons. The ConcreteState 

instances now will not hold intrinsic state to the Context any more: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
[State(StateCreationStyle = StateCreationStyle.Singleton)] // The state interface is used as a singleton 
public interface IState { 
    void HandleState1(IStateContext<IState> context); // The context is passed in as an argument 
    void HandleState2(IStateContext<IState> context); // The context is passed in as an argument 
} 
 
public class ConcreteStateA : IState { 
    private ConcreteStateA() { } 
    public void HandleState1(IStateContext<IState> context) { 
        Console.WriteLine("Calling HandleState1 from state A"); 
        context.SetState<ConcreteStateB>(); 
    } 
 
    public void HandleState2(IStateContext<IState> context) { 
        Console.WriteLine("Calling HandleState2 from state A"); 
    } 
} 

 
public class ConcreteStateB : IState { 
    private ConcreteStateB() { } 
    public void HandleState1(IStateContext<IState> context) { 
        Console.WriteLine("Calling HandleState1 from state B"); 
    } 
 
    public void HandleState2(IStateContext<IState> context) { 
        Console.WriteLine("Calling HandleState2 from state B"); 
    } 
} 

The ConcreteStates no longer inherit from the State<TState> APL component, because they must be 

shareable and thus cannot hold any intrinsic state, such as the Context. The Context is thus passed to 

the handler through a method as an argument by means of the IStateContext<TState> APL interface. 
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The Context implementation in this example does almost exactly the same as in the previous example, 

except that the Context instance must be passed to the handlers: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
public interface IContextInterface { void Request(); } 
 
public class Context : SingletonStateContext<IState, IContextInterface>, IContextInterface { 
    private Context() { } 
 
    public void Request() { 
        State.HandleState2(this); // The context is passed as an argument 
        State.HandleState1(this); // The context is passed as an argument 
        State.HandleState1(this); // The context is passed as an argument 
    } 
} 

The client performs the same steps as in the previous example. From the output it can be seen that the 

handlers were processed correctly: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
var context = Context.Create<Context, ConcreteStateA>(); // Create context instance using a factory 
                                                         // with an initial state of MyConcreteStateA 
context.Contract.Request(); // Invoke ‘Request’ on the context instance 
context.SetState<ConcreteStateA>(); // Change the state of the context to MyConcreteStateB 
context.Contract.Request(); // Invoke ‘Request’ on the context instance 
Console.Write("Press any key to exit."); 
Console.Read(); 
 
/* Output: 
Calling HandleState2 from state A 
Calling HandleState1 from state A 
Calling HandleState2 from state B 
Calling Handlestate2 from state A 
Calling HandleState1 from state A 
Calling HandleState2 from state B 
*/ 

The next example shows how the state design pattern can be implemented using a Flyweight creational 

style. Once again a State contract is defined, this time with the StateCreationStyle set to Flyweight. 

The Context instance that is passed to the handlers must also be of type IFlyweightContext<TState>. 

The IFlyweightContext<TState> APL interface must be passed to the handlers as an argument, because 

the interface holds a state transition contract that uses the flyweight pattern: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
[State(StateCreationStyle = StateCreationStyle.Flyweight)] 
public interface IMyState { 
    void HandleState1(IFlyweightContext<IMyState> context); 
    void HandleState2(IFlyweightContext<IMyState> context); 
} 

The key used for the Flyweights in the example is an enum holding five items, as seen below: 
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C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
public enum Setting { 
    SettingA, 
    SettingB, 
    SettingC, 
    SettingD, 
    SettingE 
} 

A base class BaseConcreteState is defined that implements the IMyState State. The BaseConcreteState 

class also holds the intrinsic state of the Flyweight, which in this case is exactly the same as the 

Flyweight key. The BaseConcreteState base class also implements the non-public constructor that is 

used by the Flyweight factory: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
public abstract class BaseConcreteState : IMyState { 
    protected Setting Setting = Setting.SettingA; 
 
    protected BaseConcreteState(Setting setting) { Setting = setting; } 
    public abstract void HandleState1(IFlyweightContext<IMyState> context); 
    public abstract void HandleState2(IFlyweightContext<IMyState> context); 
} 

Two ConcreteStates are also defined that inherit from the BaseConcreteState and implement the 

IMyState State: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
public class MyConcreteStateA : BaseConcreteState { 
    private MyConcreteStateA(Setting setting) : base(setting) { } 
 
    public override void Handlestate1(IFlyweightContext<IMyState> context) { 
        Console.WriteLine("Calling HandleState1 from state A"); 
        context.SetState<MyConcreteStateB, Setting>(Setting.SettingA); 
    } 
 
    public override void HandleState2(IFlyweightContext<IMyState> context) { 
        Console.WriteLine("Calling HandleState2 from state A"); 
    } 
} 
 
public class MyConcreteStateB : BaseConcreteState { 
    private MyConcreteStateB(Setting setting) : base(setting) { } 
 
    public override void HandleState1(IFlyweightContext<IMyState> context) { 
        Console.WriteLine("Calling HandleState1 from state B"); 
    } 
 
    public override void HandleState2(IFlyweightContext<IMyState> context) { 
        Console.WriteLine("Calling HandleState2 from state B"); 
    } 
} 

The Context class is implemented in the same way as in the two previous examples, except that the 

Context class inherits from the FlyweightContext<TState, TContext> APL component, which adds the 

necessary Flyweight functionality: 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



B e h a v i o u r a l  P a t t e r n s  

127 

 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
public interface IContextInterface { void Request(); } 
 
public class Context : FlyweightContext<IMyState, IContextInterface>, IContextInterface { 
    private Context() { } 
 
    public void Request() { 
        State.HandleState1(this); 
        State.HandleState2(this); 
        State.HandleState1(this); 
    } 
} 

The client performs the same steps as in the previous two examples. From the output it can be seen 

that the state handlers were processed correctly: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
var context = Context.Create<Context, MyConcreteStateA, Setting>(Setting.SettingD); 
context.Contract.Request(); 
context.SetState<MyConcreteStateA, Setting>(Setting.SettingA); 
context.Contract.Request(); 
Console.Write("Press any key to exit."); 
Console.Read(); 
 
/* Output 
Calling HandleState2 from state A 
Calling HandleState1 from state A 
Calling HandleState2 from state B 
Calling HandleState2 from state A 
Calling HandleState1 from state A 
Calling HandleState2 from state B 
*/ 

The next and final example shows the usage of the IAutoState<TState> APL interface. A State contract 

is defined that implements the IAutoState<TState> interface, which is configured with a Normal 

creational style. The IAutoState<TState> APL interface injects a standard set of State functionality with 

the help of C# extension methods. The ConcreteState implementations of the IMyState interface thus 

do not have to inherit from the State<TState> APL component: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
[State(StateCreationStyle = StateCreationStyle.Normal] 
public interface IMyState : IAutoState<IMyState> { // IAutoState injects state functionality 
    void HandleState1(); 
    void HandleState2(); 
} 

Both the ConcreteState implementations, MyConcreteStateA and MyConcreteStateB, thus only have to 

implement the State contract: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
public class MyConcreteStateA : IMyState { 
    public void HandleState1() { 
        Console.WriteLine("Calling HandleState1 from state A"); 
        this.SetState<MyConcreteStateB, IMyState>(); 
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    } 
 
    public void HandleState2() { 
        Console.WriteLine("Calling HandleState2 from state A"); 
    }  
} 
 
public class MyConcreteStateB : IMyState { 
    public void HandleState1() { 
        Console.WriteLine("Calling HandleState1 from state B"); 
    } 

 
    public void HandleState2() { 
        Console.WriteLine("Calling HandleState2 from state B"); 
    } 
} 

The Context in this example does not inherit from a Context APL class. Instead, it implements the 

IAutoStateContext<IState> interface, which injects the necessary Context functionality with C# 

extension methods. This allows the Context class to be combined with other reusable pattern 

components: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
public interface IContextInterface { void Request(); } 
 
public class Context : IAutoStateContext<IMyState>, IContextInterface { // IAutoStateContext injects 
                                                                        // context functionality 
    public void Request() { 
        this.GetState().HandleState2(); 
        this.GetState().HandleState1(); 
        this.GetState().HandleState2); 
    } 
} 

The Context class in the above example code can also be made a Singleton, where the Singleton 

component is used in a curiously recurring template pattern (Coplien, 1995) setting: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
 
public class Context : Singleton<Context>, IAutoStateContext<IMyState>, IContextInterface { 
    private Context() { } 
    public void Request() { … }  
} 

The client performs the same steps in this final example as in the previous examples. The client does, 

however, use the AutoStateContextFactory APL component in order to create an instance of the 

Context class.  

From the output it can be seen that the handlers were processed correctly: 
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C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
var contextFactory = new AutoStateContextFactory<MyConcreteStateA, IMyState>(); 
var context = contextFactory.Create<Context, IContextInterface>(); 
context.Contract.Request(); 
context.SetState<MyConcreteStateA>(); 
context.Contract.Request(); 
Console.Write("Press any key to exit."); 
Console.Read(); 
 
/* Output 
Calling HandleState2 from state A 
Calling HandleState1 from state A 
Calling HandleState2 from state B 
Calling HandleState2 from state A 
Calling HandleState1 from state A 
Calling HandleState2 from state B 
*/ 

10.4 Outcome 

The componentization of the state design pattern is a success because it meets all the requirements 

listed in section 1.4: 

 Completeness: The state design pattern library components cover all cases described in the 

original design pattern. 

 Usefulness: The state design pattern library components are useful because they solve most 

of the state scenarios desired by a developer. The developer is free to define the state interface 

as he sees fit and can then use it with the reusable state components. The state plumbing 

functionality is reusable; a developer is only tasked with implementing the state specific 

structures and algorithms. The state design pattern library components are relatively easy to 

understand and to implement. 

 Faithfulness: The implementation of the state pattern follows the original pattern described in 

Design Patterns (Gamma, Helm, Johnson, & Vlissides, 1994). 

 Type-safety: All of the library components are fully type-safe. 

 Extended applicability: The state library components cover more cases than the original 

core state pattern in Design Patterns (Gamma, Helm, Johnson, & Vlissides, 1994), whereby a 

State participant can be implemented as a flyweight or a singleton. 

 Performance: Using the state components does not have a performance impact. 

Dyson and Anderson have shown that the state design pattern can be broken up into the following 

extensions or refinements: state object, state member, pure state, exposed state, state-driven, 
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transitions owner-driven, transitions and default state (Dyson & Anderson, 1997). The state reusable 

component can be used to implement all of the above mentioned extensions or refinements, except 

for the exposed state pattern. The exposed state pattern, however, is a special state pattern where the 

state interface changes according to the state the Context is in. The exposed state pattern thus should 

best be solved with dynamic language features. At the heart of the rest of the patterns discusses by 

Design Patterns (Gamma, Helm, Johnson, & Vlissides, 1994) and by Dyson and Anderson (Dyson & 

Anderson, 1997) is a rigid State interface. 

The state pattern is fully componentizable because the developer is not tasked with implementing any 

boiler-plate code when using the reusable pattern component. 

The following language features are fundamental to the implementation or usage of the reusable state 

design pattern components: Inheritance (Mitchell, Mitchell, & Krzysztof, 2003), Interfaces (Pattison & 

Box, 2000), Generics (Jagger, Perry, & Sestoft, 2007), Design by Contract™ (Mitchell & McKim, 

2001), Attributes (Nagel, Evjen, Glynn, & Watson, 2010), Mixins (Extension Methods) (Esterbrook, 

2001) (Jesse & Xie, 2008) and Reflection (Sobel & Friedman, 1996) (Forman & Forman, 2005). 

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



B e h a v i o u r a l  P a t t e r n s  

131 

 

 C h a p t e r  1 1  

11 COMMAND 

11.1 Introduction 

The command design pattern decouples strongly related clients from particular behaviours. It makes 

changes to the participant relationships easier and lessens the complexity of the interfaces. 

The command design pattern packages a client request in an object called a command. This allows for 

different requests for the same command contract. The command objects can be queued or logged 

and may support undoable operations (Gamma, Helm, Johnson, & Vlissides, 1994). 

11.1.1 Structure. 

The following figure shows the formal structure of the command design pattern (Gamma, Helm, 

Johnson, & Vlissides, 1994): 

Invoker
Execute()

Command

Execute()

state

ConcreteCommand

Action()

Receiver
Receiver

Client

receiver.Action()

 

Figure 28. Command structure. 

11.1.2 Participants.  

The classes and/or objects participating in the command pattern are: 
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 Command 

The Command defines an interface for the command operations or actions. 

 ConcreteCommand 

A ConcreteCommand implements the operations defined in the Command and is the link 

between a Receiver object and a command action. 

 Client 

A Client or user creates, holds and manages a ConcreteCommand object and passes it to a 

Receiver. 

 Invoker 

The Invoker directs a Command or queue of Commands to execute a certain action in their 

interface. 

 Receiver 

Operations in a ConcreteCommand might delegate all or some of the command actions to an 

associated Receiver. 

11.2 Library Components 

11.2.1 The ActionCommand component. 

At the heart of the reusable Command component is the ICommand interface. The APL library defines a 

number of ICommand interfaces as seen in the code snippet below: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public interface ICommand { void Execute(); } // No arguments 
 
public interface ICommand<in TArgument> { void Execute(TArgument arg); } // One argument 
 
public interface ICommand<in TArgument1, in TArgument2> { // Two arguments 
    void Execute(TArgument1 arg1, TArgument2 arg2); 
} 
 
public interface ICommand<in TArgument1, in TArgument2, in TArgument3> { // Three arguments 
    void Execute(TArgument1 arg1, TArgument2 arg2, TArgument3 arg3); 
} 
 
// … M O R E … 
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Each ICommand interface has an Execute method that represents the action of the command. Different 

ICommand interfaces are defined with a unique set of arguments that can be passed to its Execute 

method. 

Interfaces are also defined in the APL library for undoable Commands, macro Commands and macro 

undoable Commands (Gamma, Helm, Johnson, & Vlissides, 1994), each with its unique set of 

arguments: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public interface IUndoableCommand : ICommand { void Undo(); } 
 
public interface IUndoableCommand<in TArgument1> : ICommand<TArgument1> { 
    void Undo(TArgument1 arg1); 
} 
 
public interface IUndoableCommand<in TArgument1, in TArgument2> : ICommand<TArgument1, TArgument2> { 
    void Undo(TArgument1 arg1, TArgument2 arg2); 
} 
 
// … M O R E … 
 
public interface IMacroCommand : ICommand, IComponent<ICommand> { 
    [CompositeMethod] 
    new void Execute(); 
} 
 
public interface IMacroCommand<in TArgument1> : ICommand, 
                                                IComponent<ICommand< TArgument1>> { 
    [CompositeMethod] 
    new void Execute(TArgument1 arg1); 
} 
 
// … M O R E … 
 
public interface IMacroUndoableCommand : IUndoableCommand, 
                                         IComponent<IUndoableCommand> { 
    [CompositeMethod] 
    new void Undo(); 
} 
 
public interface IMacroUndoableCommand<in TArgument1> :  
        IUndoableCommand< TArgument1>, 
        IComponent<IUndoableCommand< TArgument1>> { 
    [CompositeMethod] 
    new void Undo(); 
} 
 
// … M O R E … 

The macro Commands implement the IComponent interface because they use the APL reusable 

composite components. 

The ActionCommand APL component is used to create ConcreteCommand instances. The logic of the 

Receiver that is invoked inside the Execute method of a ConcreteCommand is injected with a C# 

Action (Microsoft, 2010a). Multiple reusable implementations for an ActionCommand exist in the APL 

library, one for each corresponding APL ICommand interface: 
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C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public class ActionCommand : ICommand { // No arguments 
    protected Action ExecuteReceiver; 
 
    public ActionCommand() { } 
     
    public ActionCommand(Action executeReceiver) { ExecuteReceiver = executeReceiver; } 
 
    public void Execute() { 
        if(ExecuteReceiver == null) return; 
 
        ExecuteReceiver(); 
    } 
} 
 
public class ActionCommand<T1> : ICommand<T1> { // One argument 
    protected Action<T1> ExecuteReceiver; 
 
    public ActionCommand() { } 
 
    public ActionCommand(Action<T1> executeReceiver) { ExecuteReceiver = executeReceiver; } 
 
    public void Execute(T1 arg1) { 
        if(ExecuteReceiver == null) return; 
 
        ExecuteReceiver(arg1); 
    } 
} 
 
// … M O R E … 
 
public class ActionUndoableCommand : ActionCommand, IUndoableCommand { // No arguments 
    protected Action UndoReceiver; 
 
    public ActionUndoableCommand() { } 
 
    public ActionUndoableCommand(Action executeReceiver, Action undoReceiver) : base(executeReceiver) { 
        UndoReceiver = undoReceiver; 
    } 
 
    public void Undo() { 
        if(UndoReceiver == null) return; 
 
        UndoReceiver(); 
    } 
} 

 
public class ActionUndoableCommand<T1> : ActionCommand<T1>, IUndoableCommand<T1> { // One argument 
    protected Action<T1> UndoReceiver; 
 
    public ActionUndoableCommand() { } 
 
    public ActionUndoableCommand(Action<T1> executeReceiver, Action<T1> undoReceiver) 
        : base(executeReceiver) { 
        UndoReceiver = undoReceiver; 
    } 
 
    public void Undo(T1 arg1) { 
        if(UndoReceiver == null) return; 
 
        UndoReceiver(arg1); 
    } 
} 
 
// … M O R E … 
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Figure 29 shows a UML class diagram of the ActionCommand and ActionUndoableCommand APL 

components; this figure also depicts the hierarchy and available methods. 

 

Figure 29. UML class diagram of the ActionCommand and ActionUndoableCommand APL components. 

The usage of the ActionCommand is relatively simple. An Action that represents the Receiver is supplied 

during the construction of an ActionCommand. The ActionCommand ConcreteCommand instance is then 

ready to be processed by an Invoker. In the following code snippet, given as an example, the Action is 

injected with a lambda expression (Michaelis, 2010). The ActionCommand ConcreteCommand instance 

is then processed by an Invoker: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
var concreteCommand = new ActionCommand(() => Console.WriteLine("The command was invoked!")); 
invoker.Process(concreteCommand); 

The usage of the ActionUndoableCommand APL component takes on an extra undo Action. The undo 

Action tells an instance of the ActionUndoableCommand component what action to perform when the 

Command must be undone: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
var concreteCommand = new ActionUndoableCommand(() => ServerSingleton.Instance.ClientConnections++, 
                                                () => ServerSingleton.Instance.ClientConnections--); 
invoker.Process(concreteCommand); 
invoker.Undo(concreteCommand); 

«interface»

ICommand

+ Execute()  :void

ActionCommand

# ExecuteReceiver  :Action

+ ActionCommand()

+ ActionCommand(executeReceiver :Action)

+ Execute()  :void

«interface»

IUndoableCommand

+ Undo()  :void

ActionUndoableCommand

# UndoReceiver  :Action

+ ActionUndoableCommand()

+ ActionUndoableCommand(executeReceiver :Action, undoReceiver :Action)

+ Undo()  :void
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In the above undoable example the concreteCommand is used to increase the number of connections on 

a hypothetical server. The concreteCommand can also be undone because it implements the 

IUndoableCommand APL interface. An undo Action is injected with a lambda expression (Michaelis, 

2010) during its construction. Calling the Undo method on the Invoker invokes the undo injected 

action logic on the concreteCommand. 

ActionMacroCommand and ActionMacroUndoableCommand components also exist in the APL library, which 

realize the IMacroCommand and IMacroUndoableCommand APL interfaces. These action macro Command 

components are almost exactly the same as the above-mentioned action Command components, 

except that they allow the ConcreteCommands to exist in a composite environment, as defined in 

Design Patterns (Gamma, Helm, Johnson, & Vlissides, 1994). The composite pattern is applied on the 

macro Commands using APL composite components. 

11.2.2 The Command component. 

The Command group of APL components differs from the ActionCommand in that the Command 

components are abstract. The components define an abstract Execute method that must be 

overridden in the derived class. The Receiver is also not a C# Action (Microsoft, 2010a) but is an 

IReceiver APL interface, as seen in the code below: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public abstract class Command : ICommand { // No arguments 
    protected IReceiver Receiver; // Internal receiver 
 
    [ContractInvariantMethod] 
    private void ObjectInvariant() { 
        Contract.Invariant(_Receiver!= null, "The receiver  cannot be null"); 
    }; 
 
    protected Command(IReceiver receiver) { Receiver = receiver; } // Constructor with a receiver 
    public abstract void Execute(); // Execute the command 
} 
 
public abstract class Command<TArgument> : ICommand<TArgument> { // One argument 
    protected IReceiver<TArgument> Receiver; 
    [ContractInvariantMethod] 
    private void ObjectInvariant() { … }; 
    protected Command(IReceiver<TArgument> receiver) { Receiver = receiver; } 
    public abstract void Execute(TArgument arg); // Execute the command 
} 
 
public abstract class Command<TArgument1, TArgument2> :  
        ICommand<TArgument1, TArgument2> { // Two arguments 
    protected IReceiver<TArgument1, TArgument2> Receiver; 
    [ContractInvariantMethod] 
    private void ObjectInvariant() { … }; 
    protected Command(IReceiver<TArgument1, TArgument2> receiver) { Receiver = receiver; } 
    public abstract void Execute(TArgument1 arg1, TArgument2 arg2); // Execute the command 
} 
 
public abstract class Command<TArgument1, TArgument2, TArgument3> : 
        ICommand<TArgument1, TArgument2, TArgument3> { // Three arguments 
    protected IReceiver<TArgument1, TArgument2, TArgument3> Receiver; 
    [ContractInvariantMethod] 
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    private void ObjectInvariant() { … }; 
    protected Command(IReceiver<TArgument1, TArgument2, TArgument3> receiver) { 
        Receiver = receiver; 
    } 
 
    public abstract void Execute(TArgument1 arg1, TArgument2 arg2, TArgument3 arg3); 
} 
 
// … M O R E … 

A number of abstract Command components exist, each with a unique set of arguments. The arguments 

define the information that must be passed to the Execute command method. The Command 

components are more flexible than the ActionCommand components, because a developer is free to 

inject logic in the overridden Execute method that has access to the custom state of the Command 

instance.  

The IReceiver interface defines the contract of the Receiver. It has an Action method that abstracts 

the action that must be performed by the Receiver. Multiple IReceiver interfaces exist, each according 

to the number of arguments required: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public interface IReceiver { void Action(); } // No arguments 
 
public interface IReceiver<in TArgument> { void Action(TArgument arg); } // One argument 
 
public interface IReceiver<in TArgument1, in TArgument2> { // Two arguments 
    void Action(TArgument1 arg1, TArgument2 arg2); 
} 
 
public interface IReceiver<in TArgument1, in TArgument2, in TArgument3> { // Three arguments 
    void Action(TArgument1 arg1, TArgument2 arg2, TArgument3 arg3); 
} 
 
// … M O R E … 

A number of APL AutoCommand components also exist in the APL library, where each one inherits 

from an abstract APL Command component. The AutoCommand components are used to define a specific 

ConcreteCommand. An AutoCommand must be constructed with an IReceiver interface. The code 

below shows the implementation of the AutoCommand APL component: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public sealed class AutoCommand : Command { // One argument 
    public AutoCommand(IReceiver receiver) : base(receiver) { } // Construction using the receiver 
    public override void Execute() { Receiver.Action(); } // Invoking the receiver instance 
} 
 
public sealed class AutoCommand<TArgument> : Command<TArgument> { // One arguments 
    public AutoCommand(IReceiver<TArgument> receiver) : base(receiver) { } 
    public override void Execute(TArgument arg) { Receiver.Action(arg); } 
} 
 
public sealed class AutoCommand<TArgument1, TArgument2> :  
        Command<TArgument1, TArgument2> { // Two arguments 
    public AutoCommand(IReceiver<TArgument1, TArgument2> receiver) : base(receiver) { } 
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    public override void Execute(TArgument1 arg1, TArgument2 arg2) { Receiver.Action(arg1, arg2); } 
} 
 
public sealed class AutoCommand<TArgument1, TArgument2, TArgument3> :  
    Command<TArgument1, TArgument2, TArgument3> { // Three arguments 
    public AutoCommand(IReceiver<TArgument1, TArgument2, TArgument3> receiver) : base(receiver) { } 
 
    public override void Execute(TArgument1 arg1, TArgument2 arg2, TArgument3 arg3) { 
        Receiver.Action(arg1, arg2, arg3); 
    } 
} 

The above code shows that the Execute method on the AutoCommand delegates its processing to the 

internal Receiver instance. 

AutoUndoableCommand, AutoMacroCommand and AutoUndoableMacroCommand ConcreteCommand 

components also exist in the APL library. The AutoUndoableCommand component is implemented in the 

same way as the AutoCommand component, except that it also allows for the undoing of commands by 

realizing the IUndoableCommand APL interface. The AutoMacroCommand and AutoUndoableMacroCommand 

components can be used with any ICommand or IUndoableCommand interface respectively. The 

AutoMacroCommand and AutoUndoableMacroCommand components reuse the APL composite components 

by inheriting from the Composite APL component. 

The code snippet below shows the implementation of the AutoMacroCommand and the 

AutoUndoableMacroCommand implementations in the APL library: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public class AutoMacroCommand : Composite<ICommand>, IMacroCommand { 
    public void Execute() {  
        foreach(var component in List) { 
            component.GetInterface().Execute(); 
        } 
    } 
} 
 
public class AutoUndoableMacroCommand : Composite<IUndoableCommand>, IMacroUndoableCommand { 
    public void Execute() {  
        foreach(var component in List) {  
            component.GetInterface().Execute();  
        }  
    } 
 
    public void Undo() { 
        var commandsReversed = List.ToArray(); 
         
        Array.Reverse(commandsReversed); 
         
        foreach(var command in commandsReversed) { 
            command.GetInterface().Undo(); 
        } 
    } 
} 

Figure 30 shows a UML class diagram of the AutoMacroCommand APL component and its inheritance 

hierarchy. It shows how the component inherits from the Component APL component and realizes the 
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APL IMacroCommand interface. Figure 30 also shows that the IMacroCommand itself realizes the ICommand 

APL interface: 

 

Figure 30. UML class diagram of the AutoMacroCommand APL component. 

11.2.3 The Invoker component. 

The APL library also has reusable Invokers. It defines an ICommandInvoker with a contract that is 

common to most Invokers, as seen below: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public interface ICommandInvoker { 
    void Store(ICommand command); // Stores or queues the command in the invoker 
    bool Process(); // Processes the next command on the queue 
    int Count(); // Returns the number of commands in the queue 
    ICommand Peek(); // Returns the next command in the queue without popping it from the queue 
    int GetProcessedCount(); // Returns the number of commands processed 
} 

The Store method registers a Command with the Invoker. The Process method invokes the next 

unprocessed command stored in the Invoker. The rest of the methods deliver value added 
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functionality. For example, the Peek method shows what Command will be invoked next, without 

actually invoking it. 

The APL library also defines an IUndoableCommandInvoker that is an interface for an Invoker that can 

perform command rollbacks. The Undo method undoes the methods in the same sequence as they 

were called by the Invoker. The Redo method reverses the Undo command in the same sequence as they 

were rolled back. The rest of the methods, once again, define value added functionality: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public interface IUndoableCommandInvoker { 
    void Store(IUndoableCommand command); 
    bool Process(); // Processes the next command on the queue 
    void Undo();    // Undo the next command on the undo stack 
    void Redo();    // Redo the next command on the redo stack 
    int Count(); 
    IUndoableCommand Peek(); 
    int UndoCount(); 
    IUndoableCommand UndoPeek(); 
    int RedoCount(); 
    IUndoableCommand RedoPeek(); 
} 

Multiple ICommandInvoker and IUndoableCommandInvoker interfaces exist, which accommodate the 

argument needs of the client, as shown below: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public interface ICommandInvoker<TArgument> { // One argument 
    void Store(ICommand<TArgument> command); 
    bool Process(TArgument arg); 
    // … S N I P … 
} 
 
public interface ICommandInvoker<TArgument1, TArgument2> { // Two arguments 
    void Store(ICommand<TArgument1, TArgument2> command); 
    bool Process(TArgument1 arg1, TArgument2 arg2); 
    // … S N I P … 
} 
 
public interface ICommandInvoker<TArgument1, TArgument2, TArgument3> { // Three arguments 
    void Store(ICommand<TArgument1, TArgument2, TArgument3> command); 
    bool Process(TArgument1 arg1, TArgument2 arg2, TArgument3 arg3); 
    // … S N I P … 
} 
 
// … M O R E … 
 
public interface IUndoableCommandInvoker<TArgument> { … } // One argument 
public interface IUndoableCommandInvoker<TArgument1, TArgument2> { … } // Two arguments 
 
// … M O R E … 

Reusable abstract Invokers exist in the APL library, from where most of the concrete Invokers are 

derived. The BaseInvoker and BaseUndoableInvoker Invokers define abstract Invokers which 

implement the basic functionally of most Invokers: 
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C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public abstract class BaseInvoker : ICommandInvoker { 
    protected int ProcessedCount = 0; 
    protected IQueue<ICommand> Queue; // Internal command queue 
 
    [ContractInvariantMethod] 
    private void ObjectInvariant() { 
        Contract.Invariant(_Queue != null, "The queue cannot be null"); 
    } 
 
    protected BaseInvoker(IQueue<ICommand> queue) { // Constructor 
        Queue = queue; 
    } 
 
    protected BaseInvoker() { // Constructor that adapts a .Net queue to an IQueue 
        Queue = new QueueAdapter<ICommand>(); 
    } 
 
    public abstract void Store(ICommand command); 
    public abstract bool Process(); 
    public int Count() { return Queue.Count; } 
    public ICommand Peek() { return Queue.Peek(); } 
    public int GetProcessedCount() { return ProcessedCount; } 
} 
 
public abstract class BaseUndoableInvoker : IUndoableCommandInvoker { 
    protected int ProcessedCount; 
    protected IQueue<IUndoableCommand> Queue; // Internal command queue 
    protected Stack<IUndoableCommand> RedoStack; // Redo stack 
    protected Stack<IUndoableCommand> UndoStack; // Undo stack 
 
    [ContractInvariantMethod] 
    private void ObjectInvariant() { 
        Contract.Invariant(Queue != null, "The Queue cannot be null"); 
        Contract.Invariant(RedoStack!= null, "The RedoStack cannot be null"); 
        Contract.Invariant(UndoStack!= null, "The RedoStack cannot be null"); 
    }   
 
    protected BaseUndoableInvoker(IQueue<IUndoableCommand> queue) { 
        Queue = queue; 
        UndoStack = new Stack<IUndoableCommand>(); 
        RedoStack = new Stack<IUndoableCommand>(); 
    } 
 
    public abstract void Store(IUndoableCommand command); 
    public abstract bool Process(); 
    public abstract void Undo(); 
    public abstract void Redo(); 
    public int Count() { return Queue.Count; } 
    public IUndoableCommand Peek() { return Queue.Peek(); } 
    public int UndoCount() { return UndoStack.Count; } 
    public IUndoableCommand UndoPeek() { return UndoStack.Peek(); } 
    public int RedoCount() { return RedoStack.Count; } 
    public IUndoableCommand RedoPeek() { return RedoStack.Peek(); } 
    public int GetProcessedCount() { return ProcessedCount; } 
} 

Multiple BaseInvoker components exist that cater for the number of arguments required by the user: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public abstract class BaseInvoker<TArgument> : // One argument 
    ICommandInvoker<TArgument> { … }  
 
public abstract class BaseInvoker<TArgument1, TArgument2> : // Two arguments 
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    ICommandInvoker<TArgument1, TArgument2> { … } 
 
public abstract class BaseInvoker<TArgument1, TArgument2, TArgument3> : // Three arguments 
    ICommandInvoker<TArgument1, TArgument2, TArgument3> { … } 

A number of concrete Invokers are defined within the APL library that inherits from the BaseInvoker 

component, such as the SimpleInvoker and SimpleUndoableInvoker components: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public sealed class SimpleInvoker : BaseInvoker { // Reuse from the BaseInvoker 
    public SimpleInvoker() { } 
 
    public override bool Process() { // Executes the next command in the queue 
        ICommand command = null; 
 
        lock(this) { 
            if(Queue.Count > 0) command = Queue.Dequeue();  
        } 
 
        if(command != null) { 
            command.Execute(); // Execute the command 
            return true; 
        } 
 
        return false; 
    } 
 
    public override void Store(ICommand command) { 
        lock(this) {  
            Queue.Enqueue(command); 
        } 
    } 
} 
 
public sealed class SimpleUndoableInvoker : BaseUndoableInvoker { // Reuse from the BaseUndoableInvoker 
    public SimpleUndoableInvoker() { } 
 
    public override bool Process() { // Executes the next command in the queue 
        ICommand command; 
 
        lock(this) { 
            command = Queue.Dequeue(); 
        } 
  
        if(command != null) { 
            command.Execute();       // Execute the command 
            UndoStack.Push(command); // Push the command unto the UndoStack 
            ProcessedCount++; 
            return true; 
        } 
 
        return false; 
    } 
 
    public override void Store(IUndoableCommand command) { 
        Contract.Requires<ArgumentNullException>(command != null, "Argument command cannot be null"); 
         
        lock(this) {  
            Queue.Enqueue(command);  
        } 
    } 
 
    public override void Undo() { 
        if (UndoStack.Count <= 0) return; 
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        var command = UndoStack.Pop(); // Pop the command from the UndoStack 
        RedoStack.Push(command);       // Push the command unto the RedoStack 
        command.Undo();                // Undo the command 
         
        ProcessedCount--; 
    } 
 
    public override void Redo() { 
        var command = RedoStack.Pop(); // Pop the command from the RedoStack         
        UndoStack.Push(command);       // Push the command unto the UndoStack 
        command.Execute();             // Execute the command 
         
        ProcessedCount++; 
    } 
} 

The above code shows how the simple invokers implement the very basics needed for an Invoker. At 

the core of the SimpleInvoker and SimpleUndoableInvoker components is the Process method. It 

retrieves the next Command from the internal queue and invokes the command by using the Execute 

method. 
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Figure 31.  Diagram overviewing a SimpleInvoker APL component. 
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Figure 31 shows an overview of the SimpleInvoker APL component. It shows the Store public method 

pushing a Command instance into the internal queue. It also shows the Process public method 

popping the next Command instance from the internal queue and invoking the Execute method on it. 
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Figure 32. Diagram overviewing a SimpleUndoableInvoker APL component. 

The SimpleUndoableInvoker also has implementations for the Undo and Redo methods, using two stacks 

at the core of its logic. Every time a Command is invoked, it is pushed onto an undo stack. The Undo 

method pops the next executed Command from the undo stack and invokes the Undo contract on the 

Command, undoing its original Command. The undo method also pushes the Command being 
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undone onto the redo stack. The Redo method pops the next Command from the redo stack and re-

executes the Command using the Execute method of the Command. The Redo method also pushes the 

executed Command onto the undo stack, in case the client decides to undo the last executed 

Command. Figure 32 shows an overview of the SimpleUndoableInvoker APL component. 

Multiple SimpleInvoker and SimpleUndoableInvoker components exist that implement a different 

number of arguments: 

C# (APL)  
---------------------------------------------------------------------------------------------------------- 
public sealed class SimpleInvoker<Arg> :  
    BaseInvoker<Arg> { … } // One argument 
 
public sealed class SimpleInvoker<Arg1, Arg2> :  
    BaseInvoker<Arg1, Arg2> { … } // Two arguments 
// … M O R E … 

More advanced Invokers also exist in the APL library such as a BlockingInvoker and an AsyncInvoker. 

The BlockingInvoker uses a blocking queue that implements the producer/consumer pattern (Schmidt 

& Huston, 2002) (Lea, 1999). The client thus blocks on the Process method implemented in the 

BlockingInvoker component. With the AsyncInvoker, the Process method is invoked asynchronously. 

The call to the Process method thus returns immediately where the invocation on the Command is 

performed on a background thread, which was allocated from a thread pool. 

Auto Invokers also exist in the APL library. With the Invokers discussed so far, the Process method 

must be controlled by the client. The auto Invokers on the other hand take complete control of how 

and when the Process method is invoked. The auto Invokers can be seen as an Invoker server or 

service. Behind the scene, the auto Invoker implementations use the Invoker components such as the 

SimpleInvoker component or the BlockingInvoker component. 

The contract of the auto Invoker is simple, focusing on the server or service methodology: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public interface IAutoCommandInvoker { // No arguments 
    void Store(ICommand command); // Store a command 
    void Run();                   // Start processing commands  
    void Stop();                  // Stop processing commands 
    int GetProcessedCount();      // Return the number of commands that was processed so far 
} 
 
public interface IAutoUndoableCommandInvoker { // No arguments 
    void Store(IUndoableCommand command); // Store a command 
    void Undo(); // Undo an executed command 
    void Redo(); // Redo a rolled back command 
    void Run();  // Start processing commands 
    void Stop(); // Stop processing commands 
    int GetProcessedCount(); // Return the number of commands that was processed so far 
} 
 
public interface IAutoCommandInvoker<out TArgument> { // One argument 
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    void Store(ICommand<TArgument> command); // Store a command 
    void Run();                              // Start processing commands 
    void Stop();                             // Stop processing commands 
    int GetProcessedCount(); // Return the number of commands that was processed so far 
} 
 
public interface IAutoCommandInvoker<out TArgument1, out TArgument2> { // Two arguments 
    void Store(ICommand<TArgument1, TArgument2> command); // Store a command 
    void Run();              // Start processing commands 
    void Stop();             // Stop processing commands 
    int GetProcessedCount(); // Return the number of commands that was processed so far 
} 
 
// … M O R E … 
 
public interface IAutoUndoableCommandInvoker<out TArgument>  { // One argument 
    void Store(IUndoableCommand<TArgument>  command); // Store a command 
    void Undo(); // Undo an executed command 
    void Redo(); // Redo a rolled back command 
    void Run();  // Start processing commands 
    void Stop(); // Stop processing commands 
    int GetProcessedCount(); // Return the number of commands that where processed so far 
} 
 
public interface IAutoUndoableCommandInvoker<out TArgument1, out TArgument2>  { // Two arguments 
    void Store(IUndoableCommand<TArgument1, TArgument2>  command); // Store a command 
    void Undo();             // Undo an executed command 
    void Redo();             // Redo a rolled back command 
    void Run();              // Start processing commands 
    void Stop();             // Stop processing commands 
    int GetProcessedCount(); // Return the number of commands that where processed so far 
} 
 
// … M O R E … 

Once an auto Invoker is started using the Run method, it processes all Commands automatically until 

the client decides to stop the processing. Commands stored on a stopped auto Invoker are not 

processed. The AutoInvoker APL component is a concrete auto Invoker that realizes the 

IAutoCommandInvoker interface. The AutoUndoableCommandInvoker APL component is a concrete auto 

Invoker that realizes the IAutoUndoableCommandInvoker interface. 

11.3 Theoretical Examples 

The following theoretical example shows all the different permutations in which the Command 

components can be used: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
class Program { 
    static void Main() { 
 
        Console.WriteLine("Normal invoker…:"); 
        var invoker = new SimpleInvoker(); 
         
        // Store a user defined concrete command that implements the ICommand interface 
        invoker.Store(new ConcreteCommand1()); 
 
        // Store a user defined concrete command that inherits from the Command component 
        invoker.Store(new ConcreteCommand2(new Receiver())); 
 
        // Store an AutoCommand with a Receiver 
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        invoker.Store(new AutoCommand(new Receiver())); 
         
        // Store an ActionCommand with a lambda expression 
        invoker.Store(new ActionCommand(() => Console.WriteLine("Called ActionCommand.Execute()"))); 
        while(invoker.Process()) { } 
 
        Console.WriteLine(); 
        Console.WriteLine("Auto invoker…:"); 
        var autoInvoker = new AutoInvoker(); 
 
        // Invoke all three commands using an AutoInvoker 
        autoInvoker.Store(new ConcreteCommand1()); 
        autoInvoker.Store(new ConcreteCommand2(new Receiver())); 
        autoInvoker.Store(new AutoCommand(new Receiver())); 
        autoInvoker.Store(new ActionCommand(() => Console.WriteLine("Called ActionCommand.Execute()"))); 
        autoInvoker.Run(); // Runs indefinitely until the autoInvoker is stopped… 
 
        Console.ReadKey(); 
    } 
} 
 
class ConcreteCommand1 :  
        ICommand { // User defined concrete command that implements the ICommand interface 
    public void Execute() { Console.WriteLine("Called ConcreteCommand1.Execute()"); } 
} 
 
class ConcreteCommand2 :  
        Command { // Store a user defined concrete command that inherits from the Command component 
    public ConcreteCommand2(IReceiver receiver) : base(receiver) { } //  
    public override void Execute() { 
        Receiver.Action(); 
        Console.WriteLine("Called ConcreteCommand2.Execute()"); 
    } 
} 
 
class Receiver : IReceiver { 
    public void Action() { Console.WriteLine("Called Receiver.Action()"); } 
} 
 
/* Output 
Normal invoker…: 
Called ConcreteCommand1.Execute() 
Called ConcreteCommand2.Execute() 
Called Receiver.Action() 
Called Receiver.Action() 
Called ActionCommand.Execute() 
 
Auto invoker…: 
Called ConcreteCommand1.Execute() 
Called ConcreteCommand2.Execute() 
Called Receiver.Action() 
Called Receiver.Action() 
Called ActionCommand.Execute() 
*/ 

In the example above, a SimpleInvoker is instantiated. It then stores a custom ConcreteCommand1 

instance with the Invoker. The ConcreteCommand1 is implemented using the ICommand APL interface. 

The ConcreteCommand1 implementation does not use a Receiver. The next Command that is stored on 

the invoker is a ConcreteCommand2 instance, which is implemented using the Command APL component. 

The ConcreteCommand2 overrides the Execute method from where it calls the injected Receiver. Next, an 

AutoCommand instance is stored on the Invoker. An instance of Receiver is registered with the 

AutoCommand. Finally, an ActionCommand is stored on the invoker. A lambda expression is passed to the 
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ActionCommand constructor that represents the action of the Command. The invoker is then processed 

in a while loop until all of the Commands have been executed, as seen in the code snippet below: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
while(invoker.Process()) { } 

The next part of the example does basically the same as the first part, except that an AutoInvoker is 

used. The AutoInvoker instance is started after all the Commands have been stored on it with the Run 

method, as shown below: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
autoInvoker.Run(); // Runs indefinitely until the autoInvoker is stopped… 

The autoInvoker blocks indefinitely on the Run method until the client stops it in another thread. 

The output of the example shows that all the Command instances were invoked successfully. 

11.4 Outcome 

The componentization of the command design pattern is a success, because it meets all the 

requirements listed in section 1.4: 

 Completeness: The command design pattern library components cover all cases described in 

the original design pattern. 

 Usefulness: The command design pattern library components are useful because they solve 

most of the command scenarios desired by a developer. A slight drawback is the fact that the 

command interface has only one method with a fixed naming convention, namely “Execute”. 

It is thus not possible to use the reusable command pattern if multiple command methods are 

desired. This situation is, however, rare. A carefully designed command pattern should most 

often be able to use only one command method (excluding the undo and redo methods). It is 

also beneficial to extract the command method into a decoupled interface, because it promotes 

the decoupling of the ConcreteCommand from the Receiver. A developer has a large choice 

of implementation combinations from which to choose within the APL library. The ICommand 

interfaces can be used individually in order to create custom ConcreteCommands. The 

ActionCommand and Command components can also be used, which gives out-of-the-box 

ConcreteCommand solutions. Any ConcreteCommand that was created with an ICommand can 

be used with the Invoker group of components. The command design pattern library 

components are easy to understand and simple to use. 
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 Faithfulness: The implementation of the command pattern library components follows the 

original pattern described in Design Patterns (Gamma, Helm, Johnson, & Vlissides, 1994). The 

only difference is that, when using the command components, only one command pattern 

method, namely “Execute”, is available. 

 Type-safety: All the library components are fully type-safe. 

 Extended applicability: The command library components cover more cases than the 

original core command pattern. The library supplies interfaces such as IUndoableCommand, 

IMacroCommand and IMacroUndoableCommand. Although macro and undoable commands are 

discussed in Design Patterns (Gamma, Helm, Johnson, & Vlissides, 1994), they do not form part 

of the core pattern. These interfaces are used to implement ConcreteCommand classes that 

are used in undoable command and macro command scenarios (Gamma, Helm, Johnson, & 

Vlissides, 1994). ConcreteCommands also exist in the library for these scenarios, such as the 

AutoUndoableCommand, AutoMacroCommand and AutoUndoableMacroCommand components. Advanced 

invokers also exist such as the SimpleUndoableInvoker, BlockingInvoker, AsyncInvoker, 

AutoInvoker and the AutoUndoableCommandInvoker. 

 Performance: Using the command components does not have a performance impact. 

The command pattern is fully componentizable because the developer is not tasked with implementing 

any boiler plate code when using the reusable pattern component. 

The following language features are fundamental to the implementation or usage of the reusable 

command pattern components: Inheritance (Mitchell, Mitchell, & Krzysztof, 2003), Interfaces 

(Pattison & Box, 2000), Generics (Jagger, Perry, & Sestoft, 2007), Design by Contract™ (Mitchell & 

McKim, 2001), Method References (Microsoft, 2010e), Anonymous Functions (Ierusalimschy, 2003) 

and Lambda Expressions (Michaelis, 2010) 
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 C h a p t e r  1 2  

12 CHAIN OF RESPONSIBILITY 

12.1     Introduction 

The chain of responsibility design pattern allows for a certain request to be passed along a chain of 

related objects or handlers, all implementing the same interface, yet with different behaviours. Each 

one of the handlers in the chain can either process the request or pass it to the next handler in the 

chain. The handlers can be added to the chain dynamically during runtime. 

The chain of responsibility design pattern decouples the originator of a request from its receiver by 

giving multiple objects the opportunity of handling a request. A specific request is propagated along 

the dynamic chain of handlers until one accepts and processes it (Gamma, Helm, Johnson, & 

Vlissides, 1994). 

12.1.1 Structure. 

The following figure shows the formal structure of the chain of responsibility design pattern (Gamma, 

Helm, Johnson, & Vlissides, 1994): 

HandleRequest()

Handler

HandleRequest()

ConcreteHandler1

HandleRequest()

ConcreteHandler2

Client
Successor

 

Figure 33. Chain of responsibility structure. 

12.1.2 Participants. 

The classes and/or objects participating in the chain of responsibility pattern are: 
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 Handler 

The Handler declares an interface for the desired request operations. It might implement the 

link to the next successor in the chain. 

 ConcreteHandler 

The ConcreteHandler intercepts requests passed to it through the chain and handles those it is 

responsible for. If it is not responsible for that request, it forwards the request to its successor. 

It also holds a reference to the next successor in the chain. 

 Client 

The Client sends the request to a ConcreteHandler object to which it has a reference. 

12.2 Library Components 

12.2.1 The DynamicChainOfResponsibility component. 

The DynamicChainOfResponsibility component uses the built in dynamic C# language features. It 

inherits from the DynamicObject .NET class (Microsoft, 2011b) (Nagel, Evjen, Glynn, & Watson, 

2010), which is a base class for specifying dynamic behaviour (Tratt, 2009) during runtime. The 

DynamicObject class enables one to define what operations can be performed on dynamic objects and 

how to perform those operations. One cannot directly create an instance of the DynamicObject class 

because it is abstract (Musser & Stepanov, 1989). To implement the dynamic behaviour, one can 

inherit from the DynamicObject class and override necessary methods. For example, if only operations 

for setting and getting properties are needed, one can override just the TrySetMember and TryGetMember 

methods. The following code shows the implementation of the DynamicChainOfResponsibility APL 

component: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public class DynamicChainOfResponsibility : DynamicObject { 
    private readonly Dictionary<string, object> _members = new Dictionary<string, object>(); 
    private DynamicChainOfResponsibility _successor; 
 
    [ContractInvariantMethod] 
    private void ObjectInvariant() { 
        Contract.Invariant(_members != null, "The members cannot be null"); 
    } 
 
    public DynamicChainOfResponsibility() { } 
 
    public DynamicChainOfResponsibility(DynamicChainOfResponsibility successor) { 
        _successor = successor; 
    } 
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    public void SetSuccessor(DynamicChainOfResponsibility successor) { _successor = successor; } 
     
    public override bool TrySetMember(SetMemberBinder binder, object value) { 
        Contract.Requires<ArgumentNullException>(binder != null, "Argument binder cannot be null"); 
        Contract.Requires<ArgumentNullException>(value!= null, "Argument value cannot be null"); 
 
        if(!_members.ContainsKey(binder.Name)) 
            _members.Add(binder.Name, value); 
        else 
            _members[binder.Name] = value; 
 
        return true; 
    } 
 
    public override bool TryGetMember(GetMemberBinder binder, out object result) { 
        Contract.Requires<ArgumentNullException>(binder != null, "Argument binder cannot be null"); 
        if(_members.ContainsKey(binder.Name)) { 
            result = _members[binder.Name]; 
            return true; 
        } 
 
        return base.TryGetMember(binder, out result); 
    } 
 
    public override bool TryInvokeMember(InvokeMemberBinder binder, 
                                         object[] args, 
                                         out object result) { 
        Contract.Requires<ArgumentNullException>(binder != null, "Argument binder cannot be null"); 
 
        ChainOfResponsibilityEx.Handled = false; 
        var executedHandler = false; 
        result = null;         
 
        // Invoke the handler if it is present 
        if(_members.ContainsKey(binder.Name) && 
            _members[binder.Name] is Delegate) { 
            result = ((Delegate)_members[binder.Name]).DynamicInvoke(args); 
            executedHandler = true; 
        } 
 
        // If no handler exists or the handler did not handle the request, 
        // then pass it on to the successor if it exists 
        if(!ChainOfResponsibilityEx.Handled && _successor != null) { 
            return _successor.TryInvokeMember(binder, args, out result); 
        } 
 
        return executedHandler; 
    } 
 
    public override IEnumerable<string> GetDynamicMemberNames() { return _members.Keys; } 
} 

The DynamicChainOfResponsibility component uses the dynamic language features of C# (Microsoft, 

2011b). Thus any Handler method can be registered with an instance of 

DynamicChainOfResponsibility, as shown in the example below: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
handler1.HandleChar = new Action<char>(x => { // Dynamically add the ‘HandleChar’  
                                              // method to the handler1 instance 
    if(x != 'X') return; 
    Console.WriteLine("I am X"); 
    ChainOfResponsibilityEx.SetHandled(); 
}); 
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In the example above, a new method HandleChar, with one argument, is registered dynamically with the 

handler1 instance, which is an instance of DynamicChainOfResponsibility. The SetHandled method on 

the static ChainOfResponsibilityEx APL static helper class is used to notify the 

DynamicChainOfResponsibility component that the request was handled successfully. The SetHandled 

method uses a thread static flag, which is defined by the _handled field. The ThreadStatic (Microsoft, 

2010n) attribute on the _handled field tells the runtime that a unique instance of the field must exist per 

thread: 

static public class ChainOfResponsibilityEx { 
    [ThreadStatic] 
    private static bool _handled; 
    public static bool Handled { get { return _handled; } set { _handled = value; } } 
    public static void SetHandled() { Handled = true; } 
} 

The _handled field can thus be safely used by the internals of the DynamicChainOfResponsibility 

component in order to check whether the Handler handled the request: 

// If no handler exists or the handler did not handle the request, 
// then pass it on to the successor if it exists 
if(!ChainOfResponsibilityEx.Handled && _successor != null) { 
    return _successor.TryInvokeMember(binder, args, out result); 
} 

The new HandleChar method can now be used by the client, as shown below: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
handler1.HandleChar('C'); // Invoke the ‘HandleChar’ method, which was dynamicly added… 

In the example above, the DynamicChainOfResponsibility component checks whether the HandleChar 

method actually exists. If it does, then it is invoked. If it is not found, or if it was not handled, then the 

successor is invoked, which is also an instance of DynamicChainOfResponsibility. All this logic is 

processed in the TryInvokeMember method implemented on the DynamicChainOfResponsibility 

component, which is an abstract method in the DynamicObject base class (Nagel, Evjen, Glynn, & 

Watson, 2010). The TryInvokeMember method routes the invocation to the Handler, if it is present. The 

TryInvokeMember method tests whether the Handler is present by searching for the method in the 

internal _members dictionary. If no Handler exists or the Handler did not handle the request, then the 

request is passed to a successor, if one exists. The successor itself is just another instance of the 

DynamicChainOfResponsibility component that can be registered with its constructor or with the 

SetSuccessor method, as seen below: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public class DynamicChainOfResponsibility : DynamicObject { 
    // … S N I P … 
    public DynamicChainOfResponsibility(DynamicChainOfResponsibility successor) { 
        _successor = successor; 
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    } 
 
    public void SetSuccessor(DynamicChainOfResponsibility successor) {  
        _successor = successor; 
    } 
    // … S N I P … 
} 

12.3 Theoretical Examples 

The following example shows the usage of the DynamicChainOfResponsibility component. The 

example uses the DynamicChainOfResponsibilityFactory APL component with which to create 

DynamicChainOfResponsibility instances. The DynamicChainOfResponsibilityFactory component 

creates DynamicChainOfResponsibility instances with a registered default Handler: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
dynamic defaultHandler = new DynamicChainOfResponsibility(); // Create an instance of the  
                                                             // DynamicChainOfResponsibility component 
                                                             // Note the ‘dynamic’ C# keyword 

 
// Dynamically add a new ‘HandleRequest’ method to the defaultHandler object 
defaultHandler.HandleRequest = new Action<int>(x => { 
                Console.WriteLine("Default."); 
                ChainOfResponsibilityEx.SetHandled(); }); 
 
// Create a factory with the above default handler 
var factory = new DynamicChainOfResponsibilityFactory(defaultHandler); 
 
// Use the factory to create a handler 
// Dynamically add a new ‘HandleRequest’ method to the defaultHandler object 
dynamic handler1 = factory.Create();  
handler1.HandleRequest = new Action<int>(x => { 
    if(x < 0 || x >= 10) return; 
    Console.WriteLine("h1 handled request {0}", x); 
    ChainOfResponsibilityEx.SetHandled(); }); 
 
// Use the factory to create a handler 
// Dynamically add a new ‘HandleRequest’ method to the defaultHandler object 
dynamic handler2 = factory.Create();  
handler2.HandleRequest = new Action<int>(x => { 
    if(x >= 10 && x < 20) return; 
    Console.WriteLine("h2 handled request {0}", x); 
    ChainOfResponsibilityEx.SetHandled(); }); 
 
// Use the factory to create a handler 
// Dynamically add a new ‘HandleRequest’ method to the defaultHandler object 
dynamic handler3 = factory.Create(); 
handler3.HandleRequest = new Action<int>(x => { 
    if(x >= 20 && x < 30) return; 
    Console.WriteLine("h3 handled request {0}", x); 
    ChainOfResponsibilityEx.SetHandled(); }); 
 
// Set some successors 
handler1.SetSuccessor(handler2); 
handler2.SetSuccessor(handler3); 
 
// Process the request 
int[] requests = { 2, 5, 14, 22, 18, 3, 27, 20 }; 
foreach(int request in requests) { handler1.HandleRequest(request); } 
 
/* Output 
h1 handled request 2 
h1 handled request 5 
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h3 handled request 14 
h2 handled request 22 
h3 handled request 18 
h1 handled request 3 
h2 handled request 27 
h2 handled request 20 
*/ 

Handlers are registered with the component instances during runtime, using C# dynamics (Microsoft, 

2011b). The following code shows how a HandleRequest method with one argument is registered: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
// Dynamicaly add a new ‘HandleRequest’ method to the defaultHandler object 
handler1.HandleRequest = new Action<int>(x => { 
    if(x < 0 || x >= 10) return; // Return if not handled 
    Console.WriteLine("h1 handled request {0}", x); // Handle the request 
    ChainOfResponsibilityEx.SetHandled(); // Notify that the request was handled 
}); 

The logic of the Handler method is injected using lambda expressions (Microsoft, 2010i). The client 

can call the HandleRequest like any other method after registering the method, as shown below: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
handler1.HandleRequest(request); // Invoke the ‘HandleRequest’ just like any other method that 
                                 // is avaliable on the handler1 object. 
                                 // The ‘HandleRequest’ method was added to the handler1 object during 
                                 // runtime 

When a request is sent to an instance of DynamicChainOfResponsibility, it determines whether that 

specific method was registered with it. If not, it passes the request on to the successor. 

The output of the example shows that the correct Handler was called for each request by the client. 

12.4 Outcome 

The componentization of the chain of responsibility design pattern is a success because it meets all the 

requirements listed in section 1.4: 

 Completeness: The chain of responsibility design pattern library component cover all cases 

described in the original design pattern. 

 Usefulness: The chain of responsibility design pattern library component is useful because it 

solves exactly the same chain of responsibility design pattern intent as an implementation 

written by hand. With the DynamicChainOfResponsibility, ConcreteHandler algorithms are 

hooked up with the component using C# 4.0 dynamic language features. With the reusable 

component, a developer is not tasked with writing any chain of responsibility boiler plate code. 

The component is easy to use and easy to understand. 
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 Faithfulness: The DynamicChainOfResponsibility component follows a certain chain of 

responsibility variant described in Design Patterns (Gamma, Helm, Johnson, & Vlissides, 1994), 

where the usage of dynamic language features is mentioned. The 

DynamicChainOfResponsibility component, however, solves the same intent as that of the 

chain of responsibility pattern described in Design Patterns (Gamma, Helm, Johnson, & 

Vlissides, 1994). 

 Type-safety: The DynamicChainOfResponsibility component is not type-safe. It is, however, 

the explicit intent of the component to be dynamic, in order to implement a chain of 

responsibility pattern solution. 

 Extended applicability: The chain of responsibility library component does cover more cases 

than the original core chain of responsibility pattern. The DynamicChainOfResponsibility 

component is a special implementation of the pattern in which dynamic language features are 

used. The chain of responsibility library component, however, does not follow the original 

core chain of responsibility implementation. The DynamicChainOfResponsibility component, 

however, solves the same intent as the pattern described in Design Patterns (Gamma, Helm, 

Johnson, & Vlissides, 1994). 

 Performance: Using the chain of responsibility component does have a performance impact. 

Using dynamically typed features is typically slower than using statically typed 

implementations. Appendix III shows that the TryInvokeMember method defined on the 

DynamicChainOfResponsibility component will incur a large performance penalty. There is, 

however, successful research into making dynamically typed implementations as fast as 

statically typed implementations (Cuni, Ancona, & Rigo, 2009). Nevertheless, the performance 

penalty incurred when using the DynamicChainOfResponsibility component is acceptable in 

normal situations. 

The chain of responsibility pattern is fully componentizable because the developer is not tasked with 

implementing any boiler plate code when using the reusable pattern component. 

The following language features are fundamental to the implementation or usage of the reusable chain 

of responsibility pattern components: Inheritance (Mitchell, Mitchell, & Krzysztof, 2003), Generics 

(Jagger, Perry, & Sestoft, 2007), Design by Contract™ (Mitchell & McKim, 2001), Method References 

(Microsoft, 2010e), Anonymous Functions (Ierusalimschy, 2003), Lambda Expressions (Michaelis, 

2010), Reflection (Sobel & Friedman, 1996) (Forman & Forman, 2005) and Dynamic Typing (Tratt, 

2009). 
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 C h a p t e r  1 3  

13 MEMENTO 

13.1     Introduction 

In certain situations there is a need to store the internal state of an object in order for it to be restored 

back to a previous state by a user or client. 

The memento design pattern extracts and externally stores an object's internal state in order to restore 

it back to its original state sometime in the future, without violating encapsulation (Gamma, Helm, 

Johnson, & Vlissides, 1994). 

13.1.1 Structure. 

The following figure shows the formal structure of the memento design pattern (Gamma, Helm, 

Johnson, & Vlissides, 1994): 

 

 

Figure 34. Memento structure. 

13.1.2 Participants. 

The classes and/or objects participating in the memento pattern are: 

 Memento 

The Memento extracts the internal state of the Originator object and stores it locally. The 

Memento may store the entire internal state of the Originator or only a subset thereof. The 

stored internal state is protected against access by foreign objects and only the Originator can 

access it. Mementos have two interfaces. The Caretaker sees a narrow interface to the 

GetState()

SetState()

state

Memento

SetMemento(in Memento)

CreateMemento()

state

Originator
Caretaker

return new Memento(state) state = m.GetState()
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Memento. The Originator, in contrast, sees a wide interface to the Memento that lets it access 

all the data necessary to restore itself to its previous state. If possible, only the Originator that 

creates the Memento has access to the Memento’s internal state. 

 Originator 

The Originator instantiates a Memento instance by encapsulating a copy of its own recent 

internal state. The Originator is also capable of restoring its internal state using the Memento. 

 Caretaker 

The Caretaker has custody over the Memento's existence. However, it will not use or read the 

contents of a Memento or use any of its functionality. 

13.2 Library Components 

13.2.1 The Memento group of components. 

The Originator<TOriginator> generic APL component is a reusable Originator that takes in the hand 

coded part of the Originator as a generic argument. It uses the hand coded Originator to make a copy 

of its internal state and pass it on to the Memento: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public class Originator<TOriginator> : IOriginator<TOriginator> { 
    private readonly TOriginator _originator; 
    private readonly MementoRestore<TOriginator> _restore; 
 
    [ContractInvariantMethod] 
    private void ObjectInvariant() { 
        Contract.Invariant(_originator != null, "The originator cannot be null"); 
        Contract.Invariant(_restore != null, "The restore cannot be null"); 
    } 
 
    public Originator(TOriginator originator, MementoRestore<TOriginator> restore)  { 
        _originator = originator; 
        _restore = restore; 
    } 
 
    public IMemento<TOriginator> CreateMemento()  { 
        Contract.Ensures(Contract.Result<IMemento<TOriginator>>() != null);   
        var memento = GetMemento(); 
        memento.SnapshotState = _originator.DeepCopy(); // Make a copy 
        return memento; 
    } 
     
    private Memento<TOriginator> GetMemento() {  
        Contract.Ensures(Contract.Result<IMemento<TOriginator>>() != null); 
        return new Memento<TOriginator>(_restore); 
    } 
 
    public void SetState(IMemento<TOriginator> memento) {  
        Contract.Requires<ArgumentNullException>(memento != null, "Argument memento cannot be null"); 
        memento.RestoreState(_originator); 
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    } 
     
    public static Originator<TOriginator> Create(TOriginator originator, 
                                                 MementoRestore<TOriginator> set) { 
        Contract.Requires<ArgumentNullException>(originator != null,  
                                                 "Argument originator cannot be null"); 
        Contract.Requires<ArgumentNullException>(set != null, "Argument set cannot be null"); 
        Contract.Ensures(Contract.Result<Originator<TOriginator>>() != null);  
        return new Originator<TOriginator>(originator, set); 
    } 
} 

The APL prototype (Gamma, Helm, Johnson, & Vlissides, 1994) reusable component is used to make 

a copy of the Originator’s internal state, as seen in the CreateMemento method: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
memento.SnapshotState = _originator.DeepCopy(); // Make a copy 

 

Figure 35. UML class diagram of the Originator APL component. 

Figure 35 shows a UML class diagram of the Originator APL component. It shows the component’s 

realization of the IOriginator APL interface and also the available methods on the Originator 

component. Figure 35 also shows the internal state of the Originator component where it holds an 

instance of a TOriginator and a MementoRestore delegate. 

The Originator<TOriginator> component implements the IOriginator<TOriginator> interface that 

defines a contract for a standard Originator: 

 

«interface»

TOriginator

IOriginator

+ CreateMemento()  :IMemento<TOriginator>

+ SetState(memento :IMemento<TOriginator>)  :void

TOriginator

Originator

- _originator  :TOriginator {readOnly}

- _restore  :MementoRestore<TOriginator> {readOnly}

+ Create(originator :TOriginator, set :MementoRestore<TOriginator>)  :Originator<TOriginator>

+ CreateMemento()  :IMemento<TOriginator>

- GetMemento()  :Memento<TOriginator>

+ Originator(originator :TOriginator, restore :MementoRestore<TOriginator>)

+ SetState(memento :IMemento<TOriginator>)  :void
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C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public interface IOriginator<TOriginator> { 
    IMemento<TOriginator> CreateMemento(); 
    void SetState(IMemento<TOriginator> memento); 
} 

The CreateMemento method creates a new Memento in which to store a snapshot of the Originator’s 

internal state. The Memento is represented as an IMemento<TOriginator> interface that defines 

methods which manipulate the state of an Originator: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public interface IMemento<in TOriginator> { 
    TOriginator SnapshotState { set; } 
    void RestoreState(TOriginator originator); 
} 

The GetMemento private method on the Originator<TOriginator> is a simple factory that returns a new 

instance of the Memento<TOriginator> component. The Memento<TOriginator> class is a generic 

reusable APL component that implements the IMemento<in TOriginator> interface. The Memento is 

used to set the state of the Originator back to its original state. The state of the Originator is probably 

not publicly accessible. In order for the Memento<TOriginator> component to set the state back, a 

generic delegate MementoRestore instance is passed to the Originator<TOriginator> component, which 

in turn passes it to the Memento<TOriginator> component. An instance of the MementoRestore delegate 

must have access to the internal state of the Originator. The MementoRestore delegate has two 

arguments which are the original Originator and a snapshot of the Originator: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public delegate void MementoRestore<in TOriginator>(TOriginator originator, TOriginator snapshot); 

In the code below, the Restore method on the ClientOriginator example class is an example 

implementation for the MementoRestore delegate and is used to set the state of the Originator back to 

its original state: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
public static void Restore(ClientOriginator originator, ClientOriginator snapshot) { 
    Contract.Requires<ArgumentNullException>(originator != null, "Argument originator cannot be null"); 
    Contract.Requires<ArgumentNullException>(snapshot != null, "Argument snapshot cannot be null"); 
    originator._state = snapshot._state; 
} 

In the above example the Restore method is defined on the ClientOriginator class and thus has 

access to its own private state. An instance of the MementoRestore delegate on the other hand has 

access only to the specific restore method to which it is linked and thus has no access to the 

Originator’s private state. 
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Figure 36. UML class diagram of the Memento APL component. 

Figure 36 shows a UML class diagram of the Memento and Caretaker APL components. It shows the 

Memento’s realization of the IMemento interface and the Caretaker’s reference to, and usage of, an 

IMemento. 

The SetState method implemented on the Originator component sets the state of the Originator 

back to its original state, using the supplied Memento component instance: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public void SetState(IMemento<TOriginator> memento) {  
    Contract.Requires<ArgumentNullException>(memento != null, "Argument memento cannot be null"); 
    memento.RestoreState(_originator); 
} 

The Create method on the Originator component is a basic factory (Freeman, Robson, Bates, & 

Sierra, 2004), which is used to create a new instance of the Originator component using the given 

arguments. 

The Memento<TOriginator> generic APL component stores a snapshot of an instance of type 

TOriginator. It also holds an instance of the MementoRestore delegate which is used to set the 

Originator back to its original state. The MementoRestore instance must be supplied on construction 

with the Memento<TOriginator> component: 

 

«interface»

TOriginator

IMemento

«Property»

- SnapshotState  :TOriginator

+ RestoreState(originator :TOriginator)  :void

TOriginator

Memento

- _restore  :MementoRestore<TOriginator> {readOnly}

- _snapshotState  :TOriginator

«Propery»

+ SnapShotState   :TOriginator

+ Memento(set :MementoRestore<TOriginator>)

+ RestoreState(originator :TOriginator)  :void

TOriginator

Caretaker

«Property»

+ Memento  :IMemento<TOriginator>

   

+Memento
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C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public class Memento<TOriginator> : IMemento<TOriginator> { 
    private TOriginator _snapshotState; 
    private readonly MementoRestore<TOriginator> _restore; 
 
    [ContractInvariantMethod] 
    private void ObjectInvariant() { 
        Contract.Invariant(_restore != null, "The restore cannot be null"); 
    } 
 
    public Memento(MementoRestore<TOriginator> restore) { _restore = restore; } 
    public TOriginator SnapshotState { ` 
        set {   
            Contract.Requires<ArgumentNullException>(value != null,  
                                                     "Argument SnapshotState cannot be null"); 
            _snapshotState = value;  
        }  
    } 
 
    public void RestoreState(TOriginator originator) { 
        Contract.Requires<ArgumentNullException>(originator!= null,  
                                                 "Argument originator cannot be null"); 
        _ restore(originator, _snapshotState); // Restore from the snapshot using the  
                                               // MementoRestore<TOriginator> delegate that 
                                               // was supplied by the user 
    } 
} 

The RestoreState public method on the Memento component is used to restore the state of the 

Originator back to the original snap shot. The method must be supplied with the current Originator, 

which is passed to an instance of the MementoRestore delegate together with the snap shot of the 

Originator’s previous state. The MementoRestore delegate will restore the state of the Originator back 

to the state of the snap shot. 

13.3 Theoretical Examples 

The following example shows a theoretical usage of the memento reusable component. First, a 

ClientOriginator class is defined; this is the actual object whose state is going to be stored and then 

eventually restored: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
[Serializable] // Must be Serializable in order to perform the deep copy 
class ClientOriginator { 
    private string _state; 
 
    public void SwitchOff() { _state = "On"; } 
    public void SwitchOn() { _state = "Off"; } 
 
    public void PrintState() { Console.WriteLine(_state);} 
 
    // Restore the state back to the snapshot state 
    public static void Restore(ClientOriginator originator, ClientOriginator snapshot) { 
        originator._state = snapshot._state; 
    } 
} 
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The ClientOriginator has no concept of a Memento. This is managed by the reusable APL Originator 

component. The Originator component makes a copy of the ClientOriginator instance’s state, using 

the APL Memento component: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
var clientOriginator = new ClientOriginator(); 
var originator = new Originator<ClientOriginator>(clientOriginator, ClientOriginator.Restore); 
clientOriginator.SwitchOn(); 
clientOriginator.PrintState(); 
 
// (1) Store state 
 
// Create a new Caretaker 
var caretaker = new Caretaker<ClientOriginator>(); 
 
// Set the Memento on the Caretaker using the Originator 
caretaker.Memento = originator.CreateMemento(); 
 
// (2) Change state 
 
// Call SwitchOff changing the state on the ClientOriginator instance 
clientOriginator.SwitchOff(); 
 
// Show the new state 
clientOriginator.PrintState(); 
 
// (3) Restore state 
originator.SetState(caretaker.Memento); 
 
// Show the state 
clientOriginator.PrintState(); 
 
/* Output 
Off 
On 
Off 
*/ 

The Restore static method defined on the ClientOriginator class is registered through the Originator 

constructor in order for the Originator instance to make a copy of the internal state of a 

clientOriginator instance. The Restore method must follow the contract of the 

MementoRestore<TOriginator> delegate defined in the APL library. The Restore static method thus 

manages how the internal state of the ClientOriginator is restored. 

From the output, it can be seen that the final state of the clientOriginator object is restored back to 

its original state via the originator object, which is an instance of the APL Originator component. 

13.4 Outcome 

The componentization of the memento pattern is a success, because it meets all the requirements 

listed in section 1.4: 
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 Completeness: The memento library components cover all cases described in the original 

memento design pattern. 

 Usefulness: The memento library components are useful because they solve exactly the same 

intent as a memento implementation written by hand. The components are easy to use and 

easy to understand. 

 Faithfulness: The implementation of the memento pattern is slightly different from the 

original pattern described in Design Patterns (Gamma, Helm, Johnson, & Vlissides, 1994). A 

delegate is used to access and set the internal state of an Originator. Bishop has shown that 

patterns can be implemented in different ways depending upon the available language features 

(Bishop, 2007). Thus, even if the memento pattern were to be implemented by hand in C# 4.0, 

using a delegate to access the internal state of an Originator is acceptable. 

 Type-safety: The memento library components are fully type-safe. 

 Extended applicability: The memento library components do not cover more cases than the 

original memento pattern. 

 Performance: The memento components use the prototype component in order to make a 

clone of the hand written Originator. Internally the prototype component uses serialization for 

cloning, which will always be slower than a hand developed algorithm. Serialization is however 

widely used in APIs such as WCF and ORM tools, within the context of transactional 

applications, where its performance overhead is deemed to be acceptable. 

The memento pattern is fully componentizable because the developer is not tasked with implementing 

any boiler plate code when using the reusable pattern component. 

The following language features are fundamental to the implementation or usage of the reusable 

memento pattern components: Interfaces (Pattison & Box, 2000), Generics (Jagger, Perry, & Sestoft, 

2007), Design by Contract™ (Mitchell & McKim, 2001), Method References (Microsoft, 2010e), 

Anonymous Functions (Ierusalimschy, 2003), Lambda Expressions (Michaelis, 2010) and Reflection 

(Sobel & Friedman, 1996) (Forman & Forman, 2005). 
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 C h a p t e r  1 4  

14 EXISTING REUSABLE PATTERN LIBRARIES 

14.1 Prototype 

Static programming languages (Pierce, 2002) such as Java, C++, C# and Delphi are quite rigid. With 

static programming languages the behaviour of an object is defined by a class and that behaviour can 

be changed only by sub-classing. Prototype-based programming languages such as Self (Chambers, 

1992) and JavaScript (David, 2006) do not introduce the concept of a class. Instead they supply only 

objects, but enable one to add services and attributes dynamically during run-time. In Self, new objects 

are created solely from cloning. Thus, the root object is cloned and that clone can evolve over time, 

generating further clones with different services and attributes. 

As an example, the following Self code makes a copy of the account object and sends it a message to 

put 5000 into the slot called value: 

Self  
----------------------------------------------------------------------------------------------------------  
account copy value: 5000 

The .NET framework does supply a cloning operation MemberwiseClone (Microsoft, 2010p) on all 

objects. The MemberwiseClone implements a shallow copy on the calling object. It thus does not 

implement a full prototype of an object if that object references other non-primitive types (Binder, 

1999). The .NET framework also supplies an IClonable interface (Microsoft, 2010q). A class 

implementing the IClonable interface must implement a Clone method that returns an object. A 

drawback of the IClonable interface is that it is not clear whether the Clone method will do a shallow 

or deep copy of the current object and it is thus ambiguous (Abrams, 2004). 

Copyable is a dedicated framework (Stranden, 2011), written in C#, which offers a reusable C# 

prototype component for cloning .NET objects. A major advantage with the Copyable framework is 

that the cloned .NET objects do not have to be attributed with the serializable attribute (Albahari & 

Albahari, 2007). 

In Python, the library's copy module provides a deepcopy method (van Rossum, 2008) that returns a 

clone of the current object. Developers may define a special method, __deepcopy__, on an object in 

order to provide a custom cloning implementation. 
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In Smalltalk the Object class has a method, deepCopy, which is available to all objects via inheritance. 

The deepCopy method makes a deep copy, and thus a clone, of the current object (Alpert, Brown, & 

Woolf, 1998). 

In Eiffel a deep_clone method, which is defined in the Kernel Library, is available to all classes 

(Thomas & Weedon, 1997), where it performs a deep clone on the current object. The prototype 

design pattern is thus part of the Eiffel language where it is implemented in the standard library 

(Arnout, 2004). 

14.2 Singleton 

Arnout has shown that it is not possible to create a reusable singleton in Eiffel (Arnout & Bezault, 

2004) because of the lack of certain language features. 

The Unity dependency injection container framework (Microsoft, 2010o), which is part of the Patterns 

& Practices project from Microsoft, has a mechanism for acquiring a single instance for a registered 

type, as do virtually all dependency injection (Fowler, 2004) containers. With dependency injection 

(Fowler, 2004) an independent object, which is usually called an assembler, populates the state in a 

certain instance of a class with an appropriate predefined implementation for the interfaces referenced 

in that class. 

Windows Communication Foundation (WCF) also offers a singleton service (Lowy, 2007). WCF 

offers an integrated development environment for building service-oriented systems that communicate 

over the web and the enterprise (Bustamante, 2007). WCF is part of the .NET Framework. When a 

service is set as a singleton, all client messages are channelled to that same single instance. The 

singleton service lives indefinitely; it is only destroyed once the host process is killed. The singleton 

service instance is created only once, when the host is created. 

Schmidt has created a generic class that implements the singleton design pattern in the ACE (Adaptive 

Communication Environment) C++ library (Schmidt, Stal, Rohnert, & Buschmann, 2000). The 

reusable singleton C++ class uses generics in order to turn ordinary C++ classes into singletons 

optimised with the double-checked locking optimisation pattern (Schmidt & Harrison, 1996). A 

similar, yet simpler, reusable C++ singleton is made available by the TSingleton project from Google 

Code (Anilao, 2010), as seen in the code below: 

C++  
----------------------------------------------------------------------------------------------------------  
template<typename type> class Singleton {  
public:  
    // Get the instance of this singleton. 
    static type &GetInstance() {  
     
        // Assumes template type has a default constructor.  
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        static type *pTheInstance;  
     
        // Check to see if the auto pointer is empty or not.  
        if(pTheInstance == NULL) {  
            pTheInstance = new type();  
            // This will cause the pTheInstance to be deleted when  
            // program execution has ended.  
            static std::auto_ptr<type> theInstance(pTheInstance);  
        } 
 
        // Return a reference of our singleton.  
        return *(pTheInstance);  
    } 
 
protected:  
    // Constructor hidden.  
    Singleton() {} 
 
    // Copy constructor hidden.  
    Singleton(Singleton const & orig) {} 
 
    // Assignment operator hidden.  
    Singleton & operator=(Singleton const & rhs) {} 
 
    // Destructor.  
    virtual ~Singleton() {}  
} 

It can be seen from the above code that the GetInstance method will always return a singleton instance 

for the given template type. 

The Loki library has a reusable singleton template called a SingletonHolder (Alexandrescu, 2001). This 

template class lets one create a singleton instance from any C++ struct or class using a constructor 

that takes no arguments. The Loki singleton provides template guidelines that allow for the 

specification of how the singleton must be created, how it is terminated, and what threading model it 

must use (such as single threaded or multi-threaded). 

There is also a project under Google Code, called DesignByContract (Fraiteur, 2010), which uses 

PostSharp (Fraiteur, 2008) in order to weave in special code into a class that is configured with a 

Singleton attribute. The example below, from the DesignByContract (Fraiteur, 2010) project, shows the 

implementation and usage of their singleton: 

C#  
----------------------------------------------------------------------------------------------------------  
[Singleton]  
public class MySingletonCandidate {  
    // Default constructor  
    public MySingletonCandidate() { … }  
    … S N I P …  
} 
 
MySingletonCandidate obj1 = new MySingletonCandidate(); // Just use the new keyword…  
// Or  
MySingletonCandidate obj1 = MySingletonCandidate.Instance; // Use the injected Instance static property 
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In the code above, the new C# operator is replaced by code that ensures that only one instance of the 

attributed class ever exists. An Instance static property is also added to the class in cases where 

developers do not want to use the new operator. 

Scala, a type-safe functional language, allows one to instantiate singleton objects using the object 

(Odersky, Spoon, & Venners, 2011) keyword. A singleton object thus cannot be instantiated with the 

new keyword. A Scala singleton object is automatically instantiated the first time it is used and there is 

only ever one instance per process (Odersky, Spoon, & Venners, 2011): 

Scala  
----------------------------------------------------------------------------------------------------------  
// In WorldlyGreeter.scala 
  
// The WorldlyGreeter class  
class WorldlyGreeter(greeting: String) {  
    def greet() = {  
        val worldlyGreeting = WorldlyGreeter.worldify(greeting)  
        println(worldlyGreeting)  
    }  
}  
 
// The WorldlyGreeter companion object  
object WorldlyGreeter {  
    def worldify(s: String) = s + ", world!"  
}  
 
// In WorldlyApp.scala  
// A singleton object with a main method that allows  
// this singleton object to be run as an application  
object WorldlyApp {  
    def main(args: Array[String]) {  
        val wg = new WorldlyGreeter("Hello")  
        wg.greet()  
    }  
} 

In the paper, Construction with Factories (Cohen & Gil, 2007), Cohen and Gil show how the Java 

programming language can be extend with the new keyword on a constructor in order to implement a 

singleton: 

Java  
----------------------------------------------------------------------------------------------------------  
class STemplate { 
    private static STemplate instance = null;  
    public static new() { // Extension for the new keyword 
        if (instance == null)  
            instance = this(); 
 
        return instance;  
    } 
  
    STemplate() { … } 
}  
 
// … S N I P … 
STemplate sTemplate = new STemplate() // Will always return the same single instance 
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Groovy's meta-programming features allow notions or idioms such as the singleton pattern to be 

defined in a more focal way, as shown in the article Groovy Singleton Pattern (Groovy, 2011). The Groovy 

singleton example below shows functionality that keeps track of the total number of calculations that a 

calculator performs. This can be achieved by using a singleton for the calculator class where a counter 

is defined in the class that holds the counting state (Groovy, 2011). 

First a base class Calculator is defined, which performs the calculations and records the sum of the 

number of calculations that was performed. A Client class is also defined, that acts as a facade to the 

calculator singleton (Groovy, 2011): 

Groovy  
----------------------------------------------------------------------------------------------------------  
class Calculator {  
    private total = 0  
    def add(a, b) { total++; a + b }  
    def getTotalCalculations() { 'Total Calculations: ' + total }  
    String toString() { 'Calc: ' + hashCode() }  
} 
 
class Client {  
    def calc = new Calculator()  
    def executeCalc(a, b) { calc.add(a, b) }  
    String toString() { 'Client: ' + hashCode() }  
}  

Next a MetaClass that intercepts all attempts to create a Calculator object is defined. The defined 

CalculatorMetaClass MetaClass will always provide a pre-created instance. The CalculatorMetaClass is 

then registered with the Groovy system: 

Groovy  
----------------------------------------------------------------------------------------------------------  
class CalculatorMetaClass extends MetaClassImpl {  
    private final static INSTANCE = new Calculator()  
    CalculatorMetaClass() { super(Calculator) }  
    def invokeConstructor(Object[] arguments) { return INSTANCE }  
}  
 
def registry = GroovySystem.metaClassRegistry  
registry.setMetaClass(Calculator, new CalculatorMetaClass())  

One can now use instances of the Client class from within a Groovy script as shown below. A request 

to create a new Calculator class, in this case through the Client class’s constructor, will always return 

the singleton: 

Groovy  
----------------------------------------------------------------------------------------------------------  
def client = new Client()  
assert 3 == client.executeCalc(1, 2)  
println "$client, $client.calc, $client.calc.totalCalculations" 
 
client = new Client()  
assert 4 == client.executeCalc(2, 2)  
println "$client, $client.calc, $client.calc.totalCalculations"  
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/* Output  
Client: 7306473, Calc: 24230857, Total Calculations: 1  
Client: 31436753, Calc: 24230857, Total Calculations: 2  
*/ 

The Boo language has an assembly called Boo.Lang.Useful that is filled with useful classes, but which 

is not yet core to the standard of the language itself (de Oliveira, 2005). Boo is a statically typed, object-

oriented, general-purpose programming language with a Python-inspired syntax (de Oliveira, 2008). 

Boo has a key focus on language and compiler extensibility. The Boo language has features such as 

interfaces, multimethods, generators, type inference, duck typing, closures, currying, macros and first-

class functions (Rahien, 2010). The Singleton attribute, which is defined in the Boo.Lang.Useful 

library, automates or mechanises the implementation of the singleton design pattern (Ionescu, 2005). 

Attaching the singleton attribute to a Boo structure or a Boo class auto generates code that protects all 

constructors on that class. The attribute also implements a single property called Instance on the class 

that will always return a single instance of the class. 

The example below, from the article Useful things about Boo (Quesnel, 2005), shows a simple example for 

the usage of the Singleton attribute in Boo: 

Boo  
----------------------------------------------------------------------------------------------------------  
"""  
Hey, hey, what do you say?  
""" 
  
import Useful.Attributes from "Boo.Lang.Useful"  
 
[Singleton]  
class SingletonExample:  
    [property(Variable)]  
    _var as string  
     
    def constructor():  
        Variable = "Hey, hey, what do you say?"  
     
print SingletonExample.Instance.Variable // Instance will always return a single instance 

14.3 Abstract Factory 

Arnout shows that the abstract factory pattern can be fully componentized in Eiffel (Arnout, 2004). A 

slight drawback of the reusable component is that no AbstractFactory exists that holds the contracts 

of the creational operations that are defined on the AbstractProducts. 

It is also possible to register an AbstractProduct with its corresponding Product using the Unity 

dependency injection container framework (Microsoft, 2010o). The following example shows how 

Unity can be used in order to implement the abstract factory design pattern: 
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C#  
----------------------------------------------------------------------------------------------------------  
public interface IAbstractProductA { void Bar(); }  
public interface IAbstractProductB { void Foo(IAbstractProductA a); }  
 
public class ProductA1 : IAbstractProductA {  
    public void Bar() { Console.WriteLine("ProductA1: Called Bar"); }  
}  
 
public class ProductB1 : IAbstractProductB { 
    public void Bar() {  
        Console.WriteLine("ProductB1: Called Bar"); }  
        public void Foo(IAbstractProductA a) {  
        Console.WriteLine("ProductB1: Called Foo - uses " + a.GetType().Name);  
    }  
}  
 
IUnityContainer container = new UnityContainer();  
container.RegisterType<IAbstractProductA, ProductA>();  
container.RegisterType<IAbstractProductB, ProductB>();  
 
// … S N I P  
var productA = container.Resolve<IAbstractProductA>();  
productA.Bar(); 
 
var productB = container.Resolve<IAbstractProductB>();  
productB.Foo(productA); 
 
/* Output  
ProductA1: Called Bar  
ProductB1: Called Foo - uses ProductA1  
*/  

In the above code the IAbstractProductA and IAbstractProductB AbstractProducts are registered with 

the Unity framework using the RegisterType method. Each AbstractProduct is registered with its 

corresponding Product. For example, the IAbstractProductA interface is registered against the ProductA 

concrete class. The Unity framework can then be used to create a new Product instance by invoking the 

Resolve method on the container and providing it with the AbstractProduct as a generic argument. In 

the above example, no AbstractFactory and ConcreteFactory participants exist. An AbstractFactory 

defines an interface for creational operations that instantiates an AbstractProduct. A ConcreteFactory 

implements the creational operations with which to instantiate Product objects. The abstract factory 

design pattern offers an interface for creating families of related objects that assist in decoupling 

applications from the concrete implementation of an entire framework or library (Gamma, Helm, 

Johnson, & Vlissides, 1994) (McConnell, 1993). In the example, the Unity container fulfils the role of 

the AbstractFactory and ConcreteFactory participants. The Unity container (Microsoft, 2010o) satisfies 

the original intent and functionality of the abstract factory design pattern (Gamma, Helm, Johnson, & 

Vlissides, 1994). The output of the above example shows that the Unity container works as expected. 

14.4 Factory Method 

Arnout has shown that the factory method pattern is fully componentizable in Eiffel (Arnout, 2004). 

She correctly argues that the factory method is just a special case of an abstract factory using only one 

creational method for a Product. 
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The paper Better Construction with Factories (Cohen & Gil, 2007) shows how the factory method pattern, 

which is also known as a virtual constructor (Gamma, Helm, Johnson, & Vlissides, 1994), can be made 

more explicit in Java by proposing the ability for the new keyword to be manually overridden, as seen in 

the example below: 

Java  
----------------------------------------------------------------------------------------------------------  
abstract class Application {  
    List<Document> docs;  
    protected abstract new Document();  
     
    public void newDocument() {  
        // Handles the File|New menu option  
        doc = new Document();  
        docs.add(doc);  
        doc.open();  
    } 
 
    // … S N I P …  
} 
 
class MyApplication extends Application {  
    protected new Document() { // Note the new keyword 
        return new MyDocumentType(); // A concrete subtype  
    } 
 
    // … S N I P … 
}  

The above code shows an implementation of the factory method pattern with dynamically bound 

factories. Dynamically bound means, as the name suggests, without the static keyword. Syntactically, 

the invocation of a dynamically bound factory defined in the Application class for objects of class 

Document is written as application.new Document(…), where application is an instance of class 

Application. The prefix application can be dropped from inside the Document class, where it should be 

replaced with this. 

14.5 Flyweight 

Arnout has shown that the flyweight pattern is fully componentizable in Eiffel without any drawbacks 

(Arnout, 2004), relying mostly on the unconstrained genericity language feature in Eiffel.  

The Boost Flyweight Library (López Muñoz, 2008), which is part of the Boost Library, implements 

powerful reusable C++ flyweight components. The aim of the Boost Flyweight Library is to simplify 

the usage of the design pattern by providing the class template flyweight<T>, which acts as a drop-in 

replacement for const T:  

C++  
----------------------------------------------------------------------------------------------------------  
flyweight<std::string> name1; name1 = "aaa"  
flyweight<std::string> name2; name2 = "aaa"  
flyweight<std::string> name3; name3 = "bbb"  
std::out << name1; 
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The flyweights defined above are copy-able and assignable and will never store duplicate string 

instances adhering to the flyweight design pattern requirements. The flyweight<std::string> offers 

the use of common operators such as ==, !=, <, >, <=, >= with the same semantics as those of a C++ 

std::string. The flyweight<std::string> value is immutable; however, a flyweight object can be 

assigned a different value. The Boost Flyweight Library flyweight component, in fact, is a special type 

of flyweight pattern adaption called a value object (Evans, 2003) (Nilsson, 2006). A value object is 

simply a flyweight where the key that defines the flyweight and the value of the flyweight itself are the 

same.   

The Boost Flyweight Library also implements a key-value flyweight pattern (López Muñoz, 2008), 

which is the more traditional flyweight pattern, where the key and value are different. 

14.6 Adapter 

Arnout has shown that the adapter pattern cannot be componentized in Eiffel (Arnout, 2004). 

The PerfectJPattern library has a reusable component implementation for the adapter pattern (Garcia, 

2009a). The component allows for the auto adaption of methods between the Adaptee and Target, 

using different adaption strategies. The PerfectJPattern's adapter implementation thus has configurable 

strategies to adapt Target interfaces to Adaptee implementations. The available strategy 

implementations offered are ExactMatchAdaptingStrategy and NameMatchAdaptingStrategy. The default 

ExactMatchAdaptingStrategy strategy verifies and resolves Target methods that have precise method 

name and signature matches on the Adapter and Adaptee. The NameMatchAdaptingStrategy, on the 

other hand, uses a user defined mapping of Adaptee method names to Target interface method 

names, where unregistered method names are defaulted to the ExactMatchAdaptingStrategy 

implementation. 

14.7 Decorator 

Arnout has shown that the decorator pattern cannot be componentized in Eiffel (Arnout, 2004). 

The PerfectJPattern library has a reusable component implementation AbstractDecorator for the 

decorator pattern (Garcia, 2009b). The AbstractDecorator component, which has a large number of 

features, auto decorates given interfaces. Component methods not expressed by the Decorator are 

automatically passed on to the Component. Developers are thus expected to offer implementations 

only for those additional methods. 

The following code snippet from Redpath shows how a reusable decorator component can be 

implemented in Ruby (Redpath, 2009), using the language’s dynamic features: 
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Ruby 
---------------------------------------------------------------------------------------------------------- 
module Decorator 
  def initialize(decorated) 
    @decorated = decorated 
  end 
 
  def method_missing(method, *args) 
    args.empty? ? @decorated.send(method) : @decorated.send(method, args) 
  end 
end 

The Ruby Decorator in the code above defines a constructor that takes in a Decorator. This allows for 

the decorative chaining of Decorator instances. 

The following example from Redpath (Redpath, 2009) shows the use of the Ruby Decorator that 

refers to an example shown in the book Head First Design Patterns (Freeman, Robson, Bates, & Sierra, 

2004). The example shows the calculation for a cup of coffee. There is a Coffee class that defines and 

implements a cost method. For the purposes of this example the value is hard coded: 

Ruby 
---------------------------------------------------------------------------------------------------------- 
class Coffee 
  def cost 
    2 
  end 
end 

Next a WhiteCoffee class is defined in order to define the cost for a coffee with milk: 

Ruby 
---------------------------------------------------------------------------------------------------------- 
class WhiteCoffee 
  def cost 
    2.4 
  end 
end 

Decorator classes Milk, Whip and Sprinkles are defined that add their price to the coffee. An instance 

of the decorators will thus decorate the cost method with the price of the extras: 

Ruby 
---------------------------------------------------------------------------------------------------------- 
class Milk 
  include Decorator 
 
  def cost 
    @decorated.cost + 0.4 
  end 
end 
 
class Whip 
  include Decorator 
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  def cost  
    @decorated.cost + 0.2 
  end 
end 
 
class Sprinkles 
  include Decorator 
 
  def cost 
    @decorated.cost + 0.3 
  end 
end 

The decorators can then be used to cost the price of a cup of coffee with extras such milk, sprinkles 

and whip added in any combination: 

Ruby 
---------------------------------------------------------------------------------------------------------- 
Whip.new(Coffee.new).cost 
#=> 2.2 
Sprinkles.new(Whip.new(Milk.new(Coffee.new))).cost 
#=> 2.9 

14.8 Composite 

Arnout has shown that the composite pattern is fully componentizable in Eiffel (Arnout, 2004). She 

has shown that the componentization was possible mostly because of the generics language feature in 

Eiffel. 

The reusable Java composite component implementation in the PerfectJPattern Java library (Garcia, 

2009d) also uses generics, as the following example shows: 

Java 
---------------------------------------------------------------------------------------------------------- 
public interface IGraphic { 
    public void 
    draw(); 
} 
 
public class Line implements IGraphic { 
    public void draw() { theLogger.debug("Drawing a Line"); } 
    protected static void setLogger(Logger aLogger) { theLogger = aLogger; } 
    private static Logger theLogger = LoggerFactory.getLogger(Line.class); 
} 
 
public class Rectangle implements IGraphic { 
    public void draw() { theLogger.debug("Drawing a Rectangle"); }     
    protected static void setLogger(Logger aLogger) { theLogger = aLogger; } 
    private static Logger theLogger = LoggerFactory.getLogger(Rectangle.class); 
} 
 
public class Text implements IGraphic { 
    public void draw() { theLogger.debug("Drawing a Text"); } 
    protected static void setLogger(Logger aLogger) { theLogger = aLogger; } 
    private static Logger theLogger = LoggerFactory.getLogger(Text.class); 
} 
 
public final class Example { 
    public static void main(String[] anArguments) { 
        //--------------------------------------------------------------- 
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        // Create composition using the reusable Composite implementation 
        //--------------------------------------------------------------- 
        IComposite<IGraphic> myNestedComposite = new Composite<IGraphic>(IGraphic.class); 
        myNestedComposite.add(new Rectangle());                 
        myNestedComposite.add(new Line()); 
        myNestedComposite.add(new Line()); 
 
        IComposite<IGraphic> myComposite = new Composite<IGraphic>(IGraphic.class); 
        myComposite.add(new Rectangle());         
        myComposite.add(new Text()); 
        myComposite.add(new Text()); 
        myComposite.add(myNestedComposite.getComponent()); 
        
        //--------------------------------------------------------------- 
        // Acquire reference to an IGraphic view of the Composite and call  
        // business methods on it 
        //--------------------------------------------------------------- 
        IGraphic myGraphic = myComposite.getComponent(); 
        myGraphic.draw();         
    } 
} 

In the above code the Composite component is used to create two Composite instances, 

myNestedComposite and myComposite, for the IGraphic Component instance. Three Leafs are also 

implemented, namely a Line, Rectangle and a Text. Leaf instances are then added to both Composite 

instances. The Component part of the myNestedComposite Composite is then added to the myComposite 

instance, demonstrating nested composites. The draw method is then called on the Component part of 

the myComposite instance, rendering all of the Leaf instances, including the ones added to the 

myNestedComposite instance. 

14.9 State 

Arnout has shown that it is possible to implement a reusable state pattern component in Eiffel 

(Arnout, 2004). She argues, however, that the implementation is not comprehensive because the 

component does not cater for all the seven state pattern implementation variants described by Dyson 

and Anderson (Dyson & Anderson, 1997).  

14.10 Command 

Arnout has shown that the command pattern is fully componentizable in Eiffel (Arnout, 2004). She 

has shown that the main reason componentization is possible is because generics is a language feature 

in Eiffel. 

The simplest form of the command pattern (Evans, 2003) is built into C# because of the availability of 

delegates and additional language features such as anonymous methods and lambda expressions: 

C# 
---------------------------------------------------------------------------------------------------------- 
Action<string> debitAccount = x => Console.WriteLine("Debiting account number…:" + x); 
  
// Pass the action around and invoke it later… 
debitAccount("404938393"); 
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It is clear from the above example that the C# Action (Microsoft, 2010a) delegate allows for the 

implementation of a simple command pattern. The command pattern implemented in an object-

oriented language, however, is more useful if the commands can hold a certain cohesive state. 

Furthermore, the above command pattern is not user extendable, because multiple methods cannot be 

associated with the command, it can only perform one action. A command class, rather than a 

command action, is thus a more advanced and a more extendable command implementation because a 

class can hold state and it can hold multiple cohesive methods. In the last example shown on the 

previous page, no state is stored with the command. With a more advanced command implementation 

it is possible for the command instance to hold some kind of state, which can then be used when the 

command is executed. It is, however, possible to hold some kind of state on a command instance 

created as an Action in C#, because the language does support closures (J'arvi, Freeman, & Crowl, 

2007), as seen in the code snippet below: 

C# 
---------------------------------------------------------------------------------------------------------- 
DateTime dateTime = DateTime.Now; // The state stored and used by the command instance 
Action<string> debitAccount = x => Console.WriteLine("Debiting account number " + x + " on " + dateTime); 
 
// Pass the action around and invoke it later. The invoker of the command  
// does not know of it’s internal state. 
debitAccount("404938393"); 

The date and time of the debit command is given to the Action instance on creation and only used 

when the Action is invoked. The example above thus implements a more advanced command than the 

previous example. The state of the command instance, however, is not encapsulated with the 

command and is thus not cohesive (Miller, 2008) with the command, because the dateTime is not 

explicitly coupled with the action. It would thus be better to create a debit command class that holds a 

dateTime state in order to make the state more cohesive and more tightly coupled with the command 

instance. Furthermore, because the command is implemented as a command class, different command 

methods can be added to the class, where each method performs a different action for the same 

command state. 

The Lua object-oriented programming language offers fully featured closures (Ierusalimschy, 2003). 

One can write generators (functions that create functions) in Lua using functions, which are first-class 

values, and use them to create commands; as shown in the following example (Ierusalimschy, 2003): 

Lua  
----------------------------------------------------------------------------------------------------------  
function newDebitCommand ()  
    local dateTime = print(os.date("%x %X", 906000490))  
        return function ()  
            return "Debiting account number " + x + " on " + dateTime  
        end  
end 
 
command = newDebitCommand() 
print(command ()) --> "404099282" 
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The PerfectJPattern Java library (Garcia, 2009e) also has a reusable component solution for the 

command pattern, as the following example from the project shows: 

Java 
---------------------------------------------------------------------------------------------------------- 
public class Open extends AbstractReceiver<NullParameter, NullResult> { 
    public void execute() { 
        theLogger.debug("Asking user for location of document ..."); 
        theLogger.debug("Opening document"); 
    } 
     
    protected static void setLogger(Logger aLogger) { theLogger = aLogger; } 
    private static Logger theLogger = LoggerFactory.getLogger(Open.class); 
} 
 
public class Paste extends AbstractReceiver<NullParameter, NullResult> { 
    public void execute() { theLogger.debug("Pasting an object into the document"); } 
     
    protected static void setLogger(Logger aLogger) { theLogger = aLogger; } 
    private static Logger theLogger = LoggerFactory.getLogger(Open.class); 
} 
 
public final class Example { 
    public static void main(String[] anArguments) { 
        //--------------------------------------------------------------- 
        // Create simple use-cases with Open and Paste commands 
        //--------------------------------------------------------------- 
        IParameterlessInvoker myOpenInvoker = new ParameterlessInvoker(); 
        myOpenInvoker.setCommand(new ParameterlessCommand(new Open())); 
        myOpenInvoker.invoke(); 
         
        IParameterlessInvoker myPasteInvoker = new ParameterlessInvoker(); 
        myPasteInvoker.setCommand(new ParameterlessCommand(new Paste())); 
        myPasteInvoker.invoke();         
                 
        //--------------------------------------------------------------- 
        // Create macro use-case with multiple Open and Paste commands 
        // i.e. a Composite Command 
        //--------------------------------------------------------------- 
        IComposite<IParameterlessCommand> myComposite = new Composite< 
            IParameterlessCommand>(IParameterlessCommand.class); 
        myComposite.add(new ParameterlessCommand(new Open())); 
        myComposite.add(new ParameterlessCommand(new Paste())); 
        myComposite.add(new ParameterlessCommand(new Open())); 
        myComposite.add(new ParameterlessCommand(new Paste())); 
         
        IParameterlessCommand myMacroCommand = myComposite.getComponent(); 
     
        //--------------------------------------------------------------- 
        // note how Invoker is agnostic of the underlying Composite  
        // Macro Command 
        //--------------------------------------------------------------- 
        IParameterlessInvoker myMacroInvoker = new ParameterlessInvoker(); 
        myMacroInvoker.setCommand(myMacroCommand); 
        myMacroInvoker.invoke(); 
    } 
} 

The above example shows the creation of two Receivers, Open and Paste using the AbstractReceiver 

component. Instances of the Open and Paste Receivers are then registered using a 

ParameterlessCommand component with a reusable ParameterlessInvoker Invoker. The Commands are 

then executed using the Invoker instances. The Composite component is also used to create macro 
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Commands. In the above example four ParameterlessCommand instances, representing the Open and 

Paste Receivers, are registered with the Composite instance. The Composite instance, myMacroCommand, is 

then executed using a ParameterlessInvoker. 

The Functor class template defined inside the C++ Loki library (Alexandrescu, 2001) encapsulates any 

object and member function of that object, including the set of arguments belonging to that member 

function. A functor is thus a delayed invocation to a function, another functor, or a member function. It 

stores the original function and overrides the C++ operator(). An instance of a Functor can be 

executed just like any other function in C++ because of the overriding of the operator(). 

A Loki Functor object is very useful when implementing the command pattern in C++. Alexandrescu 

(Alexandrescu, 2001) argues that hand coded command patterns do not scale well. Alexandrescu 

explains that with a hand coded command pattern lots of small concrete command classes must be 

implemented. He states that a generic Functor that forwards invocations to any member function of 

any object reduces the amount of boiler plate code that must be coded. The Loki generic Functor can 

also sequence multiple actions or assemble multiple actions and execute them in a specific order, such 

as the macro command (Gamma, Helm, Johnson, & Vlissides, 1994), eliminating the need for 

developing these features by hand. 

The Loki Functor C++ component is a template that allows for function calls with up to 15 

arguments. The first template argument of the Functor is the return type. The second template 

argument of the Functor is a typelist holding the argument types. The third template argument 

defines the threading model of the allocator that is used by the Functor. 

The following example from Alexandrescu shows a simple usage of a Loki Functor. A Functor is 

instantiated that is defined to act as a function that takes in two arguments, an int and a double, and 

return a void (Alexandrescu, 2001):  

C++ 
---------------------------------------------------------------------------------------------------------- 
#include "Functor.h" 
#include <iostream> 
using namespace std; 
 
// Define a test function 
void TestFunction(int i, double d) { 
    cout << "TestFunction(" << I << ", " << d << ") called." << endl; 
} 
 
int main() { 
    Functor<void, TYPELIST_2(int, double)> cmd(TestFunction);     
    cmd(4, 4.5); // will print: "TestFunction(4, 4.5) called." 
} 

The Functor instance in the above example is invoked just like a normal function. 
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Multiple Functors can also be chained together in a single Functor instance by using the Chain function, 

as shown in the example below by Alexandrescu (Alexandrescu, 2001): 

C++ 
---------------------------------------------------------------------------------------------------------- 
void f() { 
    Functor<> cmd1(something); 
    Functor<> cmd2(somethingElse); 
    // Chain cmd1 and cmd2 as the container 
    Functor<> cmd3(Chain(cmd1, cmd2)); 
    // Equivalent to cmd1(); cmd2(); 
    cmd3(); 
} 

In the above example, calling the cmd3 Functor instance will also call the Functor instances that were 

registered with it. This allows for the usage of a macro command (Gamma, Helm, Johnson, & 

Vlissides, 1994) without implementing the boiler plate code by hand. 

The Functor also has support for argument binding. A call to BindFirst binds the first argument to a 

certain constant value, as shown in the example below by Alexandrescu (Alexandrescu, 2001): 

C++ 
---------------------------------------------------------------------------------------------------------- 
void f() { 
    // Define a Functor of three arguments 
    Functor<void, TYPELIST_3(int, int, double)> cmd1(someEntity); // Bind the first argument to 10 
    Functor<void, TYPELIST_2(int, double)> cmd2(BindFirst(cmd1, 10)); // Same as cmd1(10, 20, 5.6) 
    cmd2(20, 5.6); 
} 

Stevens's article in Dr. Dobb's Journal shows how generic implementations (Stevens, 1998) of undo and 

redo can be used with functors in order to implement the same functionality as described in Design 

Patterns (Gamma, Helm, Johnson, & Vlissides, 1994) with regard to undo and redo features on the 

command pattern. 

In the article GoF patterns in Ruby Tanguay-Carel (Tanguay-Carel, 2007) shows how a reusable 

Command component can be implemented in Ruby: 

Ruby 
---------------------------------------------------------------------------------------------------------- 
class Command 
    attr_accessor : receiver  
    def initialize receiver 
        @receiver=receiver 
        @commands=[] 
    end  
  
    def register_command *command 
        @commands.push *command 
    end  
 
    def execute 
        @commands.each{|cmd| cmd.save } 
        @commands.each{|cmd| cmd._execute } 
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        save  
        _execute  
    end  
 
    def undo 
        @commands.each{|cmd| cmd.undo } 
    end  
 
    #implement the following methods in the subclasses  
    protected  
    def save 
    end  
  
    def _execute 
    end  
end 

In the above code the reusable Command component is initialised with a Receiver. Commands can also 

be grouped together by registering children commands to a macro command. 

The reusable Invoker below is a simple Invoker that just invokes the execute or undo method of a 

Command instance (Tanguay-Carel, 2007): 

Ruby 
---------------------------------------------------------------------------------------------------------- 
module Invoker 
    attr_accessor :command  
 
    def click 
        @command.execute  
    end  
 
    def undo 
        @command.undo  
    end  
end 

The following code shows how the Command component is used to implement a command class. Note 

how the abstract TextCommand Command implements the save and undo methods. The concrete 

UppercaseCommand and IndentCommand Commands inherit from TextCommand and offer an 

implementation for the _execute method (Tanguay-Carel, 2007): 

Ruby 
---------------------------------------------------------------------------------------------------------- 
class TextCommand < Command 
    def save 
        @last_state ||= Marshal.load(Marshal.dump(@receiver.text)) 
        super 
    end 
     
    def undo 
        @receiver.text= @last_state  
        @last_state=nil 
        super  
    end  
end  
 
class UppercaseCommand < TextCommand 
    def _execute 
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        @receiver.text.upcase! 
        super  
    end  
end  
 
class IndentCommand < TextCommand 
    def _execute 
        @receiver.text="\t" + @receiver.text  
        super  
    end  
end 

The code below shows how the above UppercaseCommand and IndentCommand implementations can be 

used (Tanguay-Carel, 2007): 

Ruby 
---------------------------------------------------------------------------------------------------------- 
class Document 
    attr _accessor :text  
     
    def initialize text 
        @text = text 
    end  
end  
 
if__FILE__==$0 
    text="This is a test" 
    doc= Document.new text 
    upcase_cmd = UppercaseCommand.new doc 
    button = Object.new.extend(Invoker) 
    button.command = upcase_cmd 
 
    puts"before anything" 
    putsdoc.text 
    button.click  
    puts"after click" 
 
    putsdoc.text 
    button.undo  
    puts"after undo" 
    putsdoc.text 
 
    puts"\nNow a macro command" 
    allCmds= Command.new doc 
    indent_cmd= IndentCommand.new doc 
    allCmds.register_command upcase_cmd, indent_cmd 
  
    big_button= Object.new.extend(Invoker) 
    big_button.command= allCmds  
    puts"before anything" 
    putsdoc.text 
    big_button.click  
    puts"after click" 
    putsdoc.text 
 
    big_button.undo  
    puts"after undo" 
    putsdoc.text 
end 

The above example also shows how the Command component can be used in order to implement a 

macro command (Gamma, Helm, Johnson, & Vlissides, 1994) solution without it being necessary to 

write the boiler plate code. 
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14.11 Chain of  Responsibility 

Arnout has shown that the chain of responsibility pattern is fully componentizable in Eiffel without 

any drawbacks (Arnout, 2004), relying mostly on the unconstrained genericity language feature in 

Eiffel.  

The PerfectJPattern Java library also implements a comprehensive reusable component for the chain of 

responsibility pattern (Garcia, 2009c). 

The Commons Chain project, which is part of the Apache Commons Java framework, is another reusable 

component for the chain of responsibility pattern (O'Brien, 2004). 

Chain.NET or .NChain is a generic and reusable implementation of a chain of responsibility design 

pattern developed in C# (Stasiak, 2008). The Chain.NET library is based on the Apache Commons Chain 

(O'Brien, 2004) library for Java, which is mentioned above. The Chain.NET library merges the 

standard chain of responsibility design pattern with the command design pattern (Gamma, Helm, 

Johnson, & Vlissides, 1994) in order to implement a powerful action processing solution. 

14.12 Memento 

Arnout has shown that the memento pattern is fully componentizable in Eiffel without any drawbacks 

(Arnout, 2004), relying mostly on the unconstrained genericity language and agent features in Eiffel. 
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C h a p t e r  1 5  

15 PATTERNS, ACTIONS AND FUNCTIONS 

Some of the patterns discussed in this thesis could also be transformed into reusable components 

where the solution focuses on one well known action or function. 

For example, the command reusable pattern transformation defines an ICommand interface with a well 

known Execute method. The description of the command thus does not transpire in the command 

method name, but in the name of the command implementation itself. Thus, realizing from the 

ICommand interface, a command instance can only be implemented to perform one special task or 

command. A drawback of using the ICommand interface is thus that a user cannot cohesively combine 

methods in one command interface, which is the same drawback discussed in the previous chapter 

when using the Action delegate as a Command. 

A benefit, however, of using a well-known method is that it makes the implementation and usage of a 

reusable pattern simple. Furthermore, most command implementations perform only one special task 

and thus naturally map to one well known method name. It is thus rare to find a command interface 

with multiple cohesive (Miller, 2008) command methods. Alexandrescu has also argued that hand 

written commands are not scalable and that reusable Commands reduce the amount of boiler plate 

code that must be written (Alexandrescu, 2001). The reusable command component in the APL library 

is thus simple, scalable and useful, but it is not easily adaptable to special user requirements. 

A close relationship exists between an Action C# delegate and the ICommand interface. A C# Action can 

thus easily be converted into an ICommand interface, by using the ActionCommand component (as shown 

in the Chapter 11): 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
var concreteCommand = new ActionCommand(() => Console.WriteLine("The command was invoked!")); 
invoker.Process(concreteCommand); 

An Action C# delegate, converted into an ICommand interface, can make use of all the advanced 

command features available in the APL library. An ICommand interface can also easily be converted into 

an Action, as shown below: 

C# (APL Example) 
---------------------------------------------------------------------------------------------------------- 
Action action = concreteCommand.Execute; 
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The above mentioned conversion is also useful because a Command can now be used where an Action 

is expected. This is especially useful with other reusable components that expect an Action. 

In fact, there are more APL components where the major functionality of the pattern uses only one 

well known method, which can be an action or a function. 

An ActionDecorator exists in the APL library. The ActionDecorator holds an internal Action delegate, 

which represents the Component. The Action delegate must be registered with the ActionDecorator in 

its constructor. In this case, however, the Component has only one well known Execute method. 

Furthermore, an ActionDecoratorStrategy, which implements the decoration algorithm, must also be 

registered with the reusable component via a constructor. The ActionDecorator also realizes the 

ICommand APL interface, which enables it to be used as a Command: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public class ActionDecorator : ICommand { 
    private readonly Action _component; 
    private readonly ActionDecoratorStrategy _decoratorStrategy; 
 
    // … C O N T R A C T S … 
     
    private ActionDecorator(Action component) { _component = component; } 
    public ActionDecorator(Action component, ActionDecoratorStrategy decoratorStrategy) 
        : this(component) { 
        // … C O N T R A C T S … 
        _decoratorStrategy = decoratorStrategy; 
    } 
 
    public ActionDecorator(ICommand decorator, ActionDecoratorStrategy decoratorStrategy) 
        : this(decorator.Execute) { 
       // … C O N T R A C T S … 
        _decoratorStrategy = decoratorStrategy; 
    } 
 
    public void Execute() {  
        // … C O N T R A C T S … 
        _decoratorStrategy(_component); 
    } 
} 

The ActionDecorator does not realize any Component interface. In this case, the ICommand interface 

represents the Component. The ActionDecorator has only one well known Execute method, which 

performs the desired decoration action. The Execute method on the ActionDecorator sends the 

invocation request to the internal ActionDecoratorStrategy delegate, which receives the internal Action 

_component through its first argument: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public delegate void ActionDecoratorStrategy(Action decoratorOperation); 
public delegate void ActionDecoratorStrategy<TArg>(Action<TArg> decoratorOperation, TArg args); 
public delegate void ActionDecoratorStrategy<TArg1, TArg2>(Action<TArg1, TArg2> decoratorOperation, 
                                                           TArg1 arg1, TArg2 arg2); 
// … M O R E … 
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An ActionComposite also exists in the APL library. The ActionComposite APL component implements 

a Composite with only one well known Execute method. The logic of each Component is injected on 

an instance of the ActionComposite component by means of an Action C# delegate. The 

ActionComposite component realizes the IComponent<Action> interface that defines the contract for a 

standard Component. The ActionComposite also realizes the ICommand APL interface, which enables it 

to be used as a Command: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public sealed class ActionComposite : IComponent<Action>, ICommand { 
    // List of Components 
    private readonly List<IComponent<Action>> _components = new List<IComponent<Action>>(); 
     
    // … C O N T R A C T S … 
     
    public ActionComposite() { } 
 
    // Constructor that takes in an enumeration of Components 
    public ActionComposite(IEnumerable<IComponent<Action>> components) { 
        if(components == null) return; 
        foreach(var item in components) { _components.Add(item); } 
    } 
 
    // Constructor that takes in an enumeration of Actions 
    public ActionComposite(IEnumerable<Action> components) { 
        if(components == null) return; 
        foreach(var item in components) { _components.Add(new ActionComponent(item)); } 
    } 
 
    // Constructor that takes in a Composite 
    public ActionComposite(ActionComposite composite) { 
        if(composite == null) return; 
        _components.Add(new ActionComponent(composite.Execute)); 
    } 

 
    // Adds a Component to the Composite 
    public void Add(Action component) { 
        // … C O N T R A C T S … 
        _components.Add(new ActionComponent(component)); 
    } 
 
    public void Remove(Action component) {  
        // … C O N T R A C T S … 
        _components.Remove(new ActionComponent(component)); 
    } 
 
    internal class ActionComponent : IComponent<Action> { 
        public ActionComponent(Action action) { Target = action; } 
        public IList<IComponent<Action>> GetList() { return null; } 
        public Action GetInterface() { return Target; } 
        public Action Target { get; private set; } 
    } 
 
    // Executes the Composite by iterating through all the Components and invoking them 
    public void Execute() {  
        // … C O N T R A C T S … 
        _components.ForEach(x => x.GetInterface()());  
    } 
     
    // Returns the list of Components stored in the Composite 
    public IList<IComponent<Action>> GetList() { return _components; } 
     
    // Returns the Action of this Composite instance 
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    public Action GetInterface() {  
        // … C O N T R A C T S …  
        return Target; 
    } 
     
    // Returns the Target of this Composite instance, which is just the Execute method 
    public Action Target {  
        get {  
            // … C O N T R A C T S … 
            return Execute;  
        }  
    } 
} 

At the heart of the ActionComposite component is the list of Components of type IComponent<Action> 

that is used in the composite Execute method: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
private readonly List<IComponent<Action>> _components = new List<IComponent<Action>>(); 
 
// … S N I P … 
 
// Executes the Composite by iterating through all the Components and invoking them 
public void Execute() { 
    // … C O N T R A C T S … 
    _components.ForEach(x => x.GetInterface()()); 
} 

  

Figure 37: UML class diagram of the ActionComposite APL component. 
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Figure 37 shows a UML class diagram of the ActionComposite APL component, which shows the 

public methods of an ActionComposite component and that it realizes the ICommand and IComponent 

APL interfaces. 

An Action can be added to an instance of the ActionComposite component with the Add method, which 

is also an implementation of the IComponent<Action> interface. Internally, the Action is converted into a 

Component using the internal ActionComponent inner class: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public void Add(Action component) { 
    _components.Add(new ActionComponent(component)); // Convert the Action to a Component and add it to 
                                                     // the internal list of Components 
} 

The Execute method iterates through the list of internal Components and executes the Action on each 

one of them.  

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public void Execute() { _components.ForEach(x => x.GetInterface()()); } 

The ActionComposite thus implements a standard Composite with only one operation that represents a 

basic composition algorithm of iterating through the list and invoking each Component. 

An ActionChainOfResponsibility also exists in the APL library. The ActionChainOfResponsibility 

APL component is a simple implementation of the chain of responsibility pattern. It allows the client 

to inject a C# Action delegate for the Handler and also for the successor, which itself is also a 

Handler. The ActionChainOfResponsibility also realizes the ICommand APL interface, which enables it 

to be used as a Command: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public sealed class ActionChainOfResponsibility : ICommand { // The handler is also a command 
    private readonly Action _successor; // Successor defined as an Action delegate 
    private readonly Action _handler;   // Handler defined as an Action delegate 
 
    // … C O N T R A C T S … 
 
    public ActionChainOfResponsibility(Action handler, Action successor) : this(handler) { 
        _successor = successor; 
    } 
 
    public ActionChainOfResponsibility(ICommand handler, ICommand successor) : this(handler.Execute) { 
        _successor = successor.Execute; 
    } 
 
    public ActionChainOfResponsibility(Action handler, ICommand successor) { … } 
    public ActionChainOfResponsibility(ICommand handler, Action successor) { … } 
 
    public ActionChainOfResponsibility(Action handler) { _handler = handler; } 
    public ActionChainOfResponsibility(ICommand handler) { _handler = handler.Execute; } 
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    public void Execute() { // Execute the handler 
        // … C O N T R A C T S … 
 
        ChainOfResponsibilityEx.Handled = false; 
        if(_handler == null) 
            throw new Exception("The chain of responsibility handler cannot be null"); 
 
        _handler(); // Invoke the handler as it is just a .NET action 
 
        if(ChainOfResponsibilityEx.Handled) return; // Return of the hanlder handled the request 
        if(_successor != null) _successor(); // Invoke the successor (if necessary)                                       
    } 
}  

The injected Handler uses the APL SetHandled extension method, described in the Chapter 12, in 

order to tell the ActionChainOfResponsibility whether the request was handled or not. The reusable 

component has an Execute method that serves as the Handler method. The Execute method first 

determines whether a Handler was injected with the component, and throws an exception if not. It 

then calls the Handler, which is just an Action. If the Handler did not process the request, then the 

Successor is called, which is also just an Action. 

The ActionFactoryCreator component, as discussed in the Chapter 5, realizes both the IFactory and 

ICommand interfaces. The Create method on the component, which is an implementation of the 

IFactory interface, is thus the Creator, a name that is well known. The Execute method on the reusable 

component, which is an implementation of the ICommand interface, is the well-known method that uses 

the Creator. 

Reusable patterns also exist in the APL library that use C# Func delegates rather than C# Actions. 

A SimpleGenericAbstractFactory component also exists in the APL library. The component has only 

one creational method, which must be registered with a Factory delegate or an IFactory interface. 

Multiple implementations of the SimpleGenericAbstractFactory component exist for each 

corresponding Factory delegate or IFactory interface, where each holds a certain number of 

arguments. The SimpleGenericAbstractFactory, which is a singleton (Gamma, Helm, Johnson, & 

Vlissides, 1994), also implements the IFactory APL interface, as shown below: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public class SimpleGenericAbstractFactory<TAbstractProduct> :  
        Singleton<SimpleGenericAbstractFactory<TAbstractProduct>>, 
        IFactory<TAbstractProduct> { 
    private readonly Factory<TAbstractProduct> _factory; 
    // … C O N T R A C T S … 
 
    private SimpleGenericAbstractFactory() {}     
    public Register(Factory<TAbstractProduct> factory) { _factory = factory; } 
    public Register(IFactory<TAbstractProduct> factory) { _factory = factory.Create; } 
 
    // Convert a Func to a Factory… 
    public Register(Func<TAbstractProduct> factory) { _factory = () => factory(); } 
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    public TAbstractProduct Create() {  
        // … C O N T R A C T S … 
        return _factory(); 
    } 
} 

The creational Factory delegates and IFactory interfaces are implemented in the APL library, as shown 

in Chapter 4. Both the Factory delegates and the IFactory interfaces define method contracts that 

should return a newly created instance. A number of Factory delegates exist in the APL library, each 

with a different set of arguments: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public delegate TResult Factory<out TResult>(); 
public delegate TResult Factory<out TResult, in T>(T arg); 
public delegate TResult Factory<out TResult, in T1, in T2>(T1 arg1, T2 arg2); 
// … M O R E … 

A number of IFactory interfaces also exist in the APL library, again each with a different set of 

arguments: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public interface IFactory<out TResult> { TResult Create(); } 
public interface IFactory<out TResult, in T> { TResult Create(T arg); } 
public interface IFactory<out TResult, in T1, in T2> { TResult Create(T1 arg1, T2 arg2); } 
// … M O R E …  

The Create method on the SimpleGenericAbstractFactory, on the creational Factory delegates and on 

IFactory interface, returns a Product and thus represents a function that can be converted into a C# 

Func. The abstract factory design pattern offers an interface for creating families of related objects that 

assist in decoupling applications from the concrete implementation of an entire framework or library 

(Gamma, Helm, Johnson, & Vlissides, 1994) (McConnell, 1993). An abstract factory pattern 

implementation using the SimpleGenericAbstractFactory component has no AbstractFactory and 

ConcreteFactory participants. When using the SimpleGenericAbstractFactory, the family of related 

creational methods is replaced by a family of related registered AbstractProduct types. Thus, instead of 

creating new Products using the creational methods available on the AbstractFactory, new Products 

are created using the AbstractProduct type as a generic argument: 

C# (Example) 
---------------------------------------------------------------------------------------------------------- 
// ++++++++++  1) Traditional Abstract Factory ++++++++++ 
public interface IMyAbstractFactory { // AbstractFactory 
    IFoo CreateFoo(); // Creational method that return an AbstractProduct 
    IBar CreateBar(); // Creational method that return an AbstractProduct 
} 
 
public MyAbstractFactory : IMyAbstractFactory { // ConcreteFactory 
    IFoo CreateFoo() { return new Foo(); } 
    IBar CreateBar() { return new Bar(); } 
} 
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// Register the MyAbstractFactory ConcreteFactory with a Singleton in order for the instance to be 
// avaliable system wide… 
MyAbstractFactorySingleton.Instance.Register(new MyAbstractFactory()); 
IMyAbstractFactory factory = MyAbstractFactorySingleton.Instance.Get // Retrieve the ConcreteFactory from 
                                                                     // the Singleton… 
 
// Use the ConcreteFactory in order to create new Products, using the creational methods 
// on the AbstractFactory 
IFoo foo = factory.CreateFoo(); // Create a Product that realize IFoo 
IBar bar = factory.CreateBar(); // Create a Product that realize IBar 
 
// ++++++++++ 2) SimpleGenericAbstractFactory Abstract Factory ++++++++++ 
SimpleGenericAbstractFactory<IFoo>.Instance.Register(() => return new Foo()); // Register a Foo instance 
SimpleGenericAbstractFactory<IBar>.Instance.Register(() => return new Bar()); // Register a Bar instance 
 
// Use the SimpleGenericAbstractFactory in order to create new Products, using the AbstractProduct 
// type generic argument 
IFoo foo = SimpleGenericAbstractFactory<IFoo>.Instance.Create(); // Create a Product that realize IFoo 
IBar bar = SimpleGenericAbstractFactory<IBar>.Instance.Create(); // Create a Product that realize IBar 

In the above example, the SimpleGenericAbstractFactory reusable component fulfils the role of the 

AbstractFactory and ConcreteFactory participants. The SimpleGenericAbstractFactory component 

thus adheres to the original intent and functionality of the abstract factory pattern (Gamma, Helm, 

Johnson, & Vlissides, 1994). An abstract factory implementation using the 

SimpleGenericAbstractFactory follows the same concept when implementing an abstract factory with a 

dependency injection container framework (Fowler, 2004), as shown with the Unity container 

(Microsoft, 2010o) in Chapter 14. 

The FuncFactoryCreator component, as discussed in the Chapter 5, is exactly the same as the 

ActionFactoryCreator component, except that the Execute method is a function and not an action. 

A FuncDecorator also exists in the APL library. The FuncDecorator is a simple APL component that 

applies the decorator pattern to a well-known Execute method on the reusable component. A Func 

delegate is stored by the FuncDecorator APL component that represents the algorithm of the 

decorative method. The Execute method routes the call to a registered FuncDecoratorStrategy APL 

delegate and passes the internal Func delegate to it: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public sealed class FuncDecorator<TResult> { 
    private readonly Func<TResult> _component; 
    private readonly DecoratorStrategy<TResult> _decoratorStrategy; 
 
    // … C O N T R A C T S … 
 
    private FuncDecorator(Func<TResult> component) { 
        _component = component; 
    } 
     
    public FuncDecorator(Func<TResult> component, DecoratorStrategy<TResult> decoratorStrategy) 
        : this(component) { 
        _decoratorStrategy = decoratorStrategy; 
    } 
 
    public FuncDecorator(FuncDecorator decorator, DecoratorStrategy<TResult> decoratorStrategy) 
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        : this(component.Execute) { 
        _decoratorStrategy = decoratorStrategy; 
    } 
 
    public TResult Execute() {  
        // … C O N T R A C T S … 
        return _decoratorStrategy(_component);  
    } 
} 

Multiple FuncDecorator<TResult> components exist in the APL library, one for each of the 

corresponding Func delegates in the C# framework. 

Reusable pattern components, implemented using actions or functions which represent the main 

functionality of the pattern, are simple to implement and easy to use and understand. The usage of the 

components can be abstracted to commands, actions or functions. The components can thus take 

advantage of powerful command functionality available in the APL library, or useful functional 

programming features available in C#. Alexandrescu has also argued that generic commands are 

scalable and that reusable Commands reduce the amount of boiler plate code that must be written 

(Alexandrescu, 2001). Reusable pattern components, implemented using actions or functions, are also 

scalable because of the small amount of boiler plate code that must be written when using the 

components. A drawback with the reusable components discussed in this chapter, however, is the fact 

that they are not extendible or adaptable. Thus, any advanced requirements desired by a user, especially 

the need for cohesive (Miller, 2008) contracts, would very likely make the use of a particular 

component impossible. 

Some of the reusable pattern components shown in this chapter have not been discussed in their 

corresponding pattern chapter in this thesis, because a more extendible reusable pattern component 

has already been shown in that chapter for the pattern. Consequently, these patterns do not form part 

of the statistics shown in Chapter 16. 
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 C h a p t e r  1 6  

16 CONCLUSION 

This thesis has reviewed twelve patterns defined in Design Patterns (Gamma, Helm, Johnson, & 

Vlissides, 1994) and assessed their level of componentizability. Each pattern’s reusable component or 

components, which are implemented in C# 4.0, is discussed in detail, including the success of the 

reusable component transformation. 

All the design patterns reviewed in this thesis could be transformed into fully or partially reusable 

components, thus making their pattern implementation in C# 4.0 by a developer easier and more 

traceable. It thus stands to reason that object-oriented languages implementing the same language 

features as have been reviewed in this report should have the same level of success in transforming 

design patterns into reusable components. The following table shows a summary of the pattern 

componentization: 

Table 3: Design pattern componentization summary. 

Pattern category Pattern Complexity of 

reusable 

solution 

Number of 

language 

features used 

Success 

Creational Prototype Simple 4 Partial Success 

 Singleton Moderate 5 Success 

 Abstract Factory Complex 10 Success 

 Factory Method Simple 9 Partial Success 

Structural Flyweight Moderate  6 Success 

 Adapter Complex 10 Success 

 Decorator Complex 10 Success 

 Composite Complex 11 Success 

Behavioural State Complex 7 Success 

 Command Moderate  7 Success 

 Chain of 
Responsibility 

Simple 8 Success 

 Memento Moderate 7 Success 
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From the above table it can be seen that the componentization success rate for the patterns discussed 

in this thesis is 83.33%. Not all of the patterns shown in Design Patterns (Gamma, Helm, Johnson, & 

Vlissides, 1994), however, are discussed in this thesis. 

 

Figure 38. Componentization success rate of design patterns discussed in this thesis. 

 

Figure 39. Componentization success rate against all of the patterns available in Design Patterns. 

Figure 38 shows a pie chart of the componentization success rate of those design patterns discussed in 

this thesis. Figure 39 show the componentization success rate of design patterns discussed in this 

thesis against all of the patterns available in Design Patterns (Gamma, Helm, Johnson, & Vlissides, 

1994). Although most of the patterns that were chosen for this thesis could be converted into reusable 
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pattern components, the outcome of the pattern componentization of the rest of the patterns in Design 

Patterns (Gamma, Helm, Johnson, & Vlissides, 1994) remains unknown. That said, however, design 

patterns that have structural rules which may be implemented by the advanced language features 

available in C# 4.0 and also design patterns that are mostly behavioural, should be able to be 

componentized successfully. Arnout has shown that the decorator, adapter, template method, bridge, 

singleton, iterator, facade, and interpreter design patterns could not be componentized in Eiffel 

(Arnout, 2004). The template method, bridge and facade design patterns will also most probably not 

be componentizable in C# 4.0, chiefly because of their structural nature (Arnout, 2004). The iterator 

pattern is already built into C# 4.0. This thesis has shown that the decorator, adapter and singleton 

design patterns could be fully componentized using advanced language features in C# 4.0. Arnout has 

shown that the observer, mediator and visitor design patterns to be fully componentizable in Eiffel, 

and these patterns should also be fully componentizable in C# 4.0 because of the availability of more 

advanced language features. Arnout has also shown the memento reusable component not to be useful 

in Eiffel (Arnout, 2004), where this thesis has shown the memento component to be very useful in C# 

4.0. She has also shown the state pattern to be componentizable in Eiffel, but not comprehensively, 

where this thesis has shown the state pattern to be fully componentizable in C# 4.0. That leaves the 

builder, proxy and strategy design patterns. Arnout shows that the builder and proxy design patterns 

are componentizable in Eiffel, but not comprehensively (Arnout, 2004). Her builder component 

supports only builders that need to construct no more than two-part or three-part products. Her proxy 

component does not cover all cases described in the original proxy pattern, because remote proxies, 

protection proxies and smart references are not supported. The builder and proxy design patterns 

should have a better componentization success probability in C# 4.0, because of the availability of 

more advanced language features. Proxy library components are already available in C#, such as the 

DynamicProxy library from CastleProject (CastleProject, 2011). A proxy library component in C# 4.0, 

however, would probably suffer from the same problems mentioned by Arnout, although to a lesser 

degree. No proxy library can cater for all the different types of proxies. With some effort, however, a 

comprehensive number of proxy components, where each one specialises in a certain area, such as 

remote proxies or protection proxies, can be built. She also shows that the strategy pattern is 

componentizable yet not faithful in Eiffel (Arnout, 2004), because of the exclusive usage of Eiffel 

agents (delegates). The strategy pattern can be implemented in C# 4.0 using the same techniques 

shown in this thesis, such as duck typing (Koenig & Moo, 2005) for an advanced component and Action 

and Func delegates and the ICommand APL interface for a simpler component that uses only one well 

known method. The strategy pattern, however, just like the adapter pattern, is easy to implement 

manually. There will thus always be situations in C# 4.0 where a manually implemented strategy 

pattern would be the best choice. 

Figure 40, on the next page, shows a pie chart for the complexity break down of the pattern 

componentization effort. 
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Figure 40. Reusable pattern implementation complexity. 

For the reusable patterns implemented in the APL library, 25% of the implementations are simple, 

33.33% are moderately complex and 41.67% are complex. Advanced language features thus do not 

guarantee that all reusable pattern implementations will necessarily be simple. On the contrary, the 

most complex reusable pattern implementations in this thesis use advanced language features available 

in C# 4.0. 

The graph below shows the distribution of the language features used in the implementation of the 

reusable design pattern components in this thesis: 

 

Figure 41. Distribution of language features used in pattern componentization. 

Table 4 shows the language features that were used for the design pattern components described in 

each pattern chapter in this thesis: 
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Table 4: Language features used per pattern component. 
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Not surprisingly, generics (Jagger, Perry, & Sestoft, 2007) and design by contract™ (Mitchell & 

McKim, 2001) are the most widely used language features. They are used in the componentization of 

all 12 reusable components. Reflection (Sobel & Friedman, 1996) is the next most widely used 

language feature and is used in 11 reusable components. Inheritance (Mitchell, Mitchell, & Krzysztof, 

2003) is used in the implementation of 10 reusable components. Interfaces (Pattison & Box, 2000) are 

the next most widely used language feature and are used in 9 reusable components. Method references 

(Microsoft, 2010e), anonymous functions (Ierusalimschy, 2003) and lambda expressions (Michaelis, 

2010) are used in 8 of the reusable components. Attributes (Nagel, Evjen, Glynn, & Watson, 2010) are 

used in 5 of the reusable component implementations. Duck typing (Koenig & Moo, 2005) and meta-

programming (Perrotta, 2010) are used in 4 of the reusable component implementations. Mixins 
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(Esterbrook, 2001) are used in 2 of the reusable components. Finally, dynamic types (Tratt, 2009) are 

used in the implementation of just one of the reusable components. 

Figure 42 shows the distribution of pattern components used in other pattern componentization 

implementations. The abstract factory and factory method components use the prototype component. 

The state component uses the flyweight and singleton components. The command component uses 

the composite component. Finally, the memento component uses the prototype component. The 

figure below thus shows that it is possible for the implementation of one pattern component to use 

another reusable design pattern component. 

 

Figure 42. Distribution of pattern components used in other pattern componentization implementations. 

Problems with design patterns include traceability in the implementation, the implementation 

overhead or writability (Bosch, 1998b) (Bosch, 1998a) and maintainability (Soukup, 1995), as 

discussed at the beginning of this thesis. 

In the paper Language features meet design patterns: raising the abstraction bar it is argued that modern 

language features ameliorate all the above mentioned problems experienced in design pattern 

implementation (Bishop, 2008). This thesis has shown that modern language features also make it 

possible to improve the componentization of design patterns. 

Reusable design pattern components solve the traceability problem, because the usage of a specific 

pattern library component clearly shows what pattern is being implemented. The physical 

implementation of a specific design pattern using reusable pattern components thus makes the pattern 

easy to identify and trace. Reusable design pattern components also solve the reusability problem. 

Design patterns are used in multiple places, and thus reused, in the design of a software system. With 

reusable components a developer is not forced to implement a design pattern repeatedly in a physical 

programming language. With reusable pattern components a developer can focus on re-implementing 

the outcome of a pattern and leave the plumbing and functional implementation of the pattern to the 
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library component. Reusable pattern components also solve the implementation overhead or 

writability problem. Traditionally, design patterns force a developer to implement several methods 

with trivial behaviour. When using reusable pattern components, however, most of these methods can 

simply be reused. Reusable pattern components also solve the maintainability problem. Reusable 

design pattern components do not force a developer to implement the behavioural and structural 

boiler plate code associated with a specific design pattern. This relieves the programming burden on 

the developer, which is exacerbated by the fact that traditional design pattern implementations cannot 

be reused. 

Agerbo and Cornils have shown that there are design patterns that can be covered by a language 

construct in some, although not all, programming languages (Agerbo & Cornils, 1997). They categorise 

these design patterns as Language Dependant Design Patterns (LDDPs). As shown in the previous 

chapter, although the simplest form of the command pattern (Evans, 2003) is built into C#, it does 

not solve every possible user requirement. Furthermore, Agerbo and Cornils state that, when using a 

pattern as a Library Design Pattern (LDP), the design pattern implementation is fixed. It would thus 

not be possible to adapt the LDP in other ways desired by a user. The implementations of the pattern 

components in this thesis have shown this statement by Agerbo and Cornils to be partially incorrect. 

Most of the pattern components shown in this thesis are adaptable and should solve most of a user’s 

requirements. A few, however, are more rigid. For example, with the command component, the user 

has access to only the Execute, Undo and Redo methods on a Command interface. If a user requires 

more methods to be available on the Command interface, then they must be built in manually. 

Implementing design patterns as reusable library components is thus a step in the right direction for 

making design pattern implementations more traceable, more reusable and more productive. Design 

pattern transformations to reusable component artefacts should become more effective and simpler 

with the increase in advanced language features in main stream programming languages. Domain 

Specific Languages (DSL), functional and dynamic languages for example, open up an entire new 

dimension with regard to design pattern component transformation, as has been shown with the 

pattern components which use these language features in Chapter 14. 
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 C h a p t e r  1 7  

17 FUTURE WORK 

More research must be done in the formalisation of design patterns in order for reusable design 

patterns to reach their full potential. Design Patterns Formalization Techniques (Taibi, 2007) and Stepwise 

Refinement Validation of Design Patterns Formalized in TLA+ using the TLC Model Checker (Taibi, Herranz, & 

Moreno-Navarro, 2009) show current trends in design pattern formalisation. The structural and 

behavioural rules of design patterns are currently described informally. The formalisation of patterns is 

an attempt to formalise the structural and behavioural rules that apply to a specific design pattern. The 

formalisation of design patterns will make pattern componentization easier, because any ambiguities in 

the pattern implementation will be eliminated. Figure 43 shows the formal specification of the bridge 

design pattern (Gamma, Helm, Johnson, & Vlissides, 1994) in LePUS3: 

 

Figure 43. Bridge design pattern in LePUS3. 

Gasparis, Nicholson and Eden define LePUS3 as “a visual object-oriented design description language: 

a notation for modelling and visualizing object-oriented programs at any level of abstraction” (Eden, 

Epameinondas, & Nicholson, 2011, para. 2). Appendix IV shows the basic set of symbols used in 

LePUS3. 

In Refactoring to patterns Kerievsky shows a catalogue of refactoring rules for changing legacy code to use 

design patterns (Kerievsky, 2004). Reusable design pattern components should make these 

refactorings easier to implement and automate in advanced tools. For example, the Replace State-Altering 

Conditionals with State refactoring action could use the state reusable component, which should simplify 

the refactoring action. The Replace Conditional Dispatcher with Command, Limit Instantiation with Singleton, 

Replace Constructors with Creation Methods and Replace One/Many Distinctions with Composite refactoring 

actions (Kerievsky, 2004) could also be implemented and thus simplify using reusable pattern 

components. 
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 APPENDIX I 

In some of the reusable pattern components shown in this thesis, operations are registered against 

method contracts available on a certain interface. The registration is achieved by either passing in the 

method name as a string argument or using the MethodInfo .NET class. The code below is an extract 

from the AutoAdapter<TTarget, TAdaptee> component, showing the register methods available on it: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public void RegisterAction(string methodName, AdapterAction<TAdaptee> operation) { … } 
public void RegisterAction(MethodInfo method, AdapterAction<TAdaptee> operation) { … } 
// … M O R E … 
     
public void RegisterFunc<TResult>(string methodName, 
                                  AdapterFunc<TAdaptee, TResult> operation) { … } 
public void RegisterFunc<TResult>(MethodInfo method, 
                                  AdapterFunc<TAdaptee, TResult> operation) { … } 
// … M O R E … 

Adaptee operations can now be registered with an instance of the AutoAdapter<TTarget, TAdaptee> 

component. The example code below shows the registration of an Adaptee action against a Foo 

method available on the Target. In the example the Foo method is registered using the name of the 

method represented as a string: 

C# (APL Example) 
----------------------------------------------------------------------------------------------------------  
Adapter.RegisterAction("Foo", (x) => x("Hello World");  

The Foo method can also be registered using a MethodInfo .NET class, as shown below: 

C# (APL Example) 
----------------------------------------------------------------------------------------------------------  
Adapter.RegisterAction(typeof(TAdaptee).GetMethod("Foo"), (x) => x("Hello World"); 

Neither of the above registration methods is elegant and both rely on non type-safe and runtime 

reflection mechanisms. 

C# dynamics can be used to implement a more elegant and declarative mechanism for method 

registration. A Register property can be added to the AutoAdapter<TTarget, TAdaptee> component, as 

seen below, that returns a dynamic type: 
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C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public class AutoAdapter<TTarget, TAdaptee> : IDynamicInvoker 
    where TTarget : class { 
    private TAdaptee _adaptee; 
    // … S N I P … 
     
    public AutoAdapter(TAdaptee adaptee) { … } 
 
    // … S N I P … 
 
    public void RegisterAction(string methodName, AdapterAction<TAdaptee> operation) { … } 
    public void RegisterAction(MethodInfo method, AdapterAction<TAdaptee> operation) { … } 
    // … M O R E … 
     
    public void RegisterFunc<TResult>(string methodName, 
                                      AdapterFunc<TAdaptee, TResult> operation) { … } 
    public void RegisterFunc<TResult>(MethodInfo method, 
                                      AdapterFunc<TAdaptee, TResult> operation) { … } 
    // … M O R E … 
 
    // Register any adapter operation against a method contract on the TTarget 
    public RegisterAny(MethodInfo method, MethodInfo operation) { 
        // Validate that the operation has a valid AdapterAction or AdapterFunc and 
        // that method is avaliable on the TTarget interface 
        Validate(method, operation); 
     
        // Add the operation to the internal dictionary against the method 
        AddToDictionary(method, operation); 
    } 
 
    // Register any adapter operation against a method contract on the TTarget using 
    // C# 4.0 dynamics 
    public dynamic Register { return new AdapterMethodRegister<TTarget, TAdaptee>(this); }  
 
    // … S N I P … 
 
    public object Invoke(string methodName, object[] args) { … } 
    public TTarget Target { … } 
} 

The Register property can now be used to register any valid operation on an instance of the 

component, as shown below: 

C# (APL Example) 
----------------------------------------------------------------------------------------------------------  
Adapter.Register.Foo = (x) => x("Hello World"); 

The Register property returns and instance of the AdapterMethodRegister class as a dynamic type. The 

AdapterMethodRegister APL class inherits from the C# DynamicObject class, located in the 

System.Dynamic .NET namespace, which makes it possible to inject new behaviour dynamically during 

runtime. The code snippet below shows the implementation of the AdapterMethodRegister class: 
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C# (APL) 
----------------------------------------------------------------------------------------------------------  
public class AdapterMethodRegister<TTarget, TAdaptee>: DynamicObject {  
    private readonly AutoAdapter<TTarget, TAdaptee> _adapter; 
     
    public AutoAdapter(AutoAdapter<TTarget, TAdaptee> adapter) { _adapter = adapter; } 
 
    public override bool TrySetMember(SetMemberBinder binder, object value) { 
        // Validate that the method adhere to the signature of a AdapterAction or AdapterFunc delegate 
        Validate(binder, value); 
 
        // Register the adapter method with the adapter 
        adapter.RegisterAny(GetContractMethod(binder, value), GetAdapterOperation(binder, value)); 
    } 
 
    // … S N I P …  
} 

In the code above the TrySetMember method registers the received method on its internal instance of 

the AutoAdapter. The AdapterMethodRegister receives a method via the TrySetMember when a user tries 

to dynamically add a method on it during runtime, as seen in the previously shown 

Adapter.Register.Foo = (x) => x("Hello World") example. When called, the Register property 

always returns a new instance of the AdapterMethodRegister class, which was created with the 

underlying AutoAdapter instance: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
// Register any adapter operation against a method contract on the TTarget using 
// C# 4.0 dynamics 
public dynamic Register { return new AdapterMethodRegister<TTarget, TAdaptee>(this); }  

Although this mechanism is more elegant than the original registration methods, it is still not type-safe. 

For example, if the Foo method on the Target interface is refactored to FooBar, then the 

Adapter.Register.Foo registration is not changed to FooBar. There is thus no direct type-safe 

relationship between the Foo method available on the Target interface and the Foo method used on the 

AutoAdapter registration. Unfortunately no language feature exists in C# whereby a user can reference 

the meta-information of a method available on an interface in a type-safe manner, as shown in the 

example code below: 

C# (APL Conceptual Example) 
----------------------------------------------------------------------------------------------------------  
Adapter.RegisterAction(ITarget.Foo, (x) => x("Hello World");  

In the conceptual code above, a compile time error is generated if the Foo method on the ITarget 

interface is changed. Furthermore, if the Foo method is changed on the ITarget interface using 
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powerful refactoring tools, then the referenced Foo method in the RegisterAction method will also 

change. 

Lambda expressions (expressions trees) (Albahari & Albahari, 2007, p. 317) can be used to solve the 

type-safe registration problem. The registration syntax may be a little convoluted, the solution, 

however, is fully type-safe: 

C# (APL Example) 
----------------------------------------------------------------------------------------------------------  
Adapter.RegisterAction("Foo", (x) => x("Hello World"); // Non type-safe  
Adapter.RegisterAction(t => t.Foo, (x) => x("Hello World"); // Type-safe 

The above registration technique is thus type safe at the cost of a slightly more convoluted syntax and 

of having to do a little decomposition of the expression tree to find the specific method name that is 

being referred to. 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

217 

 

 APPENDIX II 

This appendix shows a performance test for duck typing (Koenig & Moo, 2005) used in this thesis. It 

specifically shows the performance of a method call on a dynamically created class. Each method call 

against the dynamically created class is routed to the Invoke method, which is enforced by the 

IDynamicInvoke interface, as seen below: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public sealed class AutoAbstractFactory<TInterface> : IDynamicInvoke { 
    // … S N I P …     
 
    public object Invoke(string methodName, object[] args) { 
        // … S N I P … 
        var componentOperation = GetComponentOperation(methodName, args); 
        if(componentOperation != null) { 
            return componentOperation.DynamicInvoke(args); 
        } 
 
        return null; 
    } 
} 

The test uses the AutoAbstractFactory<TInterface> reusable component. In the test two factory 

instances are created. One factory uses the AutoAbstractFactory<TInterface> component and the 

other factory instance is created normally. Each factory is used to create a Product from where a 

method is invoked on each Product instance. The method invocation on the Product created by the 

AutoAbstractFactory<TInterface> component will thus route its invocation to the Invoke method, 

which does create a performance overhead. 

In Table 5 the times listed, shown in milliseconds and measured over 10000 traversals, compare the 

two method calls. The testing was done on an Intel® Core™ i5-2520M CPU @ 2.50GHz running 

Windows 7 Professional 64-bit with 6.00 GB of RAM. In order to reduce JIT influences from the 

timings, the test program executes one method call before starting the real test. All invoked methods 

are therefore JIT’ed (Bishop & Horspool, 2008) prior to the timing test: 
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Table 5: Duck typing performance test. 

Test Normal 

Invocation 

Duck Typing 

Invocation 

1 0.0307ms 0.2440ms 

2 0.0307ms 0.2454ms 

3 0.0311ms 0.2282ms 

4 0.0311ms 0.2245ms 

5 0.0311ms 0.2261ms 

6 0.0307ms 0.2241ms 

 

It is clear from the above table that, as expected, normal method invocations in C# are faster (on 

average by 7 times), than duck typing invocations. 
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 APPENDIX III 

The following shows a performance test for the DynamicChainOfResponsibility component discussed 

in this thesis. It specifically shows the performance of a handler method call invocation, where the 

method was dynamically added to an instance of the component during runtime. Each handler 

method call against a DynamicChainOfResponsibility instance is routed to the TryInvokeMember 

method, which is enforced by the DynamicObject abstract class, as seen below: 

C# (APL) 
---------------------------------------------------------------------------------------------------------- 
public class DynamicChainOfResponsibility : DynamicObject { 
    // … S N I P … 
 
    public override bool TryInvokeMember(InvokeMemberBinder binder, 
                                         object[] args, 
                                         out object result) { 
            ChainOfResponsibilityEx.Handled = false; 
            var excecutedHandler = false; 
            result = null; 
 
            if(_members.ContainsKey(binder.Name) && 
                _members[binder.Name] is Delegate) { 
                result = ((Delegate)_members[binder.Name]).DynamicInvoke(args); // Dynamic call 
                excecutedHandler = true; 
            } 
 
            if(!ChainOfResponsibilityEx.Handled && _successor != null) { 
                return _successor.TryInvokeMember(binder, args, out result); 
            } 
 
            return excecutedHandler; 
        } 
 
        public override IEnumerable<string> GetDynamicMemberNames() { return _members.Keys; } 
    } 
 
    // … S N I P … 
} 

In the test two handlers are created. One handler uses the DynamicChainOfResponsibility component 

and the other handler is created normally. The method invocation on the 

DynamicChainOfResponsibility handler will thus route its invocation to the TryInvokeMember method, 

which does create a performance overhead. 

In Table 6 the times listed, shown in milliseconds and measured over 10000 traversals, compare the 

two handler method calls. The testing was done on an Intel® Core™ i5-2520M CPU @ 2.50GHz 

running Windows 7 Professional 64-bit with 6.00 GB of RAM. In order to reduce JIT influences from 
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the timings, the test program executes one method call before starting the real test. All invoked 

methods are therefore JIT’ed (Bishop & Horspool, 2008) prior to the timing test: 

Table 6: DynamicChainOfResponsibility performance test. 

Test Normal 

Invocation 

Dynamic 

Invocation 

1 0.0032ms 24.5492ms 

2 0.0036ms 23.7980ms 

3 0.0024ms 23.0841ms 

4 0.0032ms 24.0849ms 

5 0.0032ms 24.2783ms 

6 0.0041ms 24.1531ms 

 

It is clear from the above table that normal method invocations in C# are much faster than dynamic 

method invocations defined on the DynamicChainOfResponsibility component. 
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 APPENDIX IV 

Gasparis, Nicholson and Eden show the basic set of symbols used in LePUS3 as illustrated below 

(Gasparis & Eden, 2008): 

 

Figure 44. Basic set of symbols used in LePUS3. 
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