

Implementing a Reusable Design Pattern

Library in C#

By

Alastair van Leeuwen

M.Sc. Computer Science

Department of Computer Science

University of Pretoria

2013

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

i

ABSTRACT

Implementing a Reusable Design Pattern Library in C#

By

Alastair van Leeuwen, 2012

Design patterns in software systems are described as a universal reusable solution to a commonly recurring

problem in software design. Design patterns were, however, not intended to be reusable in terms of

code. A symptom of their non-reusability is the problems experienced with the way the

implementation of design patterns negatively affects their traceability, maintainability and contribution

to productivity. This thesis shows how design patterns can be elevated to a higher level of reusability. This

work presents design patterns as reusable components that developers can use to implement solutions

that utilise patterns, without having to implement a major part of a pattern’s structure and behaviour

anew each time. A component is a reusable software section, with possible library classes, that is

usually in source form. Previous research has shown that a high proportion of patterns (65%) can be

“componentized” in Eiffel, which leads to the idea that a language supporting the same set of features

would also have the same success in pattern componentization. This thesis has looked at the

componentization of twelve design patterns in C#. The C# language has more advanced language

features than Eiffel, including functional and dynamic language features and, as such, should lend itself

better to pattern componentization than Eiffel does. The language features that are reviewed in this

thesis are inheritance, design by contract™, attributes, method references (or delegates), anonymous

functions, lambda expressions, mixins (or extension methods), duck typing, dynamic types and meta-

programming. Each pattern’s reusable components are discussed in detail, including the success of the

reusable component transformation. All the design patterns reviewed in this thesis could be

transformed into fully or partially reusable components. Implementing design patterns using reusable

library components is thus a step in the right direction in making design pattern implementations more

traceable, reusable, maintainable and more productive. Other object-oriented languages implementing

the same or similar language features as those reviewed in this thesis should have the same level of

success in transforming design patterns into reusable components.

Keywords: design patterns, C# 4.0, language features, reusable, duck typing

Supervisor: Prof. J. Bishop

Department: Department of Computer Science, University of Pretoria

Degree: Magister Scientiae

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

ii

 ACKNOWLEDGMENTS

I am wholeheartedly grateful to my supervisor, Professor Judith Bishop, whose guidance, patience,

encouragement and assistance enabled me to cultivate an improved understanding of the subject.

I also offer my special thanks to Russell Politzky, who painstakingly reviewed the technical details of

this report.

Lastly, I offer my thanks and appreciation to all of those who helped me in any respect during the

completion of this thesis, especially to all my colleagues at Dariel Solutions who had to endure endless

discussions, ideas and thoughts on the subject matter, most especially Gareth Baars, Sugendran Pillay

and Kabelo Kgabale.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

iii

 DEDICATION

For my loving wife, who endured endless lonely nights and who offered me unconditional love,

support, patience and inspiration throughout the course of this thesis.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

iv

 TABLE OF CONTENTS

Acknowledgments ... ii

Dedication .. iii

Table of Contents .. iv

List of Figures ... viii

List of Tables .. x

Chapter 1 ...1

1 Introduction ... 1

1.1 Problems with Design Patterns ... 1

1.2 The Goal of this Thesis ... 3

1.3 Previous Solutions .. 5

1.4 Design Pattern Reusability .. 14

1.5 Reusable Design Pattern Exploration... 15

1.6 C# 4.0 and .NET .. 17

1.7 Features used to Implement Reusable Components ... 18

1.8 Contributions of this Thesis ... 31

Chapter 2 .. 32

2 Prototype .. 32

2.1 Introduction ... 32

2.2 Library Components .. 33

2.3 Theoretical Examples .. 34

2.4 Outcome... 35

Chapter 3 .. 37

3 Singleton ... 37

3.1 Introduction ... 37

3.2 Library Components .. 38

3.3 Theoretical Examples .. 40

3.4 Outcome... 42

Chapter 4 .. 44

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

v

4 Abstract Factory ... 44

4.1 Introduction ... 44

4.2 Library Components .. 45

4.3 Theoretical Examples .. 51

4.4 Outcome... 53

Chapter 5 .. 55

5 Factory Method .. 55

5.1 Introduction ... 55

5.2 Library Components .. 56

5.3 Theoretical Examples .. 62

5.4 Outcome... 64

Chapter 6 .. 66

6 Flyweight .. 66

6.1 Introduction ... 66

6.2 Library Components .. 67

6.3 Theoretical Examples .. 71

6.4 Outcome... 74

Chapter 7 .. 75

7 Adapter ... 75

7.1 Introduction ... 75

7.2 Library Components .. 76

7.3 Theoretical Examples .. 80

7.4 Outcome... 82

Chapter 8 .. 84

8 Decorator ... 84

8.1 Introduction ... 84

8.2 Library Components .. 85

8.3 Theoretical Examples .. 91

8.4 Outcome... 92

Chapter 9 .. 94

9 Composite .. 94

9.1 Introduction ... 94

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

vi

9.2 Library Components .. 95

9.3 Theoretical Examples .. 104

9.4 Outcome... 107

Chapter 10 .. 109

10 State ... 109

10.1 Introduction .. 109

10.2 Library Components .. 110

10.3 Theoretical Examples .. 122

10.4 Outcome .. 129

Chapter 11 .. 131

11 Command .. 131

11.1 Introduction .. 131

11.2 Library Components .. 132

11.3 Theoretical Examples .. 146

11.4 Outcome .. 148

Chapter 12 .. 150

12 Chain of Responsibility ... 150

12.1 Introduction .. 150

12.2 Library Components .. 151

12.3 Theoretical Examples .. 154

12.4 Outcome .. 155

Chapter 13 .. 157

13 Memento .. 157

13.1 Introduction .. 157

13.2 Library Components .. 158

13.3 Theoretical Examples .. 162

13.4 Outcome .. 163

Chapter 14 .. 165

14 Existing Reusable Pattern Libraries .. 165

14.1 Prototype ... 165

14.2 Singleton .. 166

14.3 Abstract Factory ... 170

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

vii

14.4 Factory Method .. 171

14.5 Flyweight .. 172

14.6 Adapter ... 173

14.7 Decorator ... 173

14.8 Composite .. 175

14.9 State ... 176

14.10 Command .. 176

14.11 Chain of Responsibility ... 183

14.12 Memento .. 183

Chapter 15 .. 184

15 Patterns, Actions and Functions .. 184

Chapter 16 .. 193

16 Conclusion ... 193

Chapter 17 .. 200

17 Future Work .. 200

References .. 201

Appendix I ... 213

Appendix II .. 217

Appendix III .. 219

Appendix IV .. 221

Index ... 222

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

viii

 LIST OF FIGURES

Figure 1. Prototype formal structure. .. 32

Figure 2. Singleton structure. .. 37

Figure 3. UML class diagram of the Singleton APL component. ... 39

Figure 4. UML sequence diagram for the thread static Singleton APL component example. 42

Figure 5. Abstract factory structure. .. 44

Figure 6. AutoAbstractFactory APL component overview. .. 48

Figure 7. UML sequence diagram for the AutoAbstractFactory component example. 51

Figure 8. Factory method structure. .. 55

Figure 9. UML class diagram of the ActionCreator APL component. .. 57

Figure 10. UML class diagram of the ActionFactoryCreator APL component. .. 58

Figure 11. UML class diagram of the FuncCreator APL component. ... 60

Figure 12. UML class diagram of the ActionPrototypeCreator APL component. 62

Figure 13. Flyweight structure. ... 66

Figure 14. UML class diagram of the FlyweightFactory APL component. ... 69

Figure 15. UML sequence diagram for the FlyweightFactory APL component example. 72

Figure 16. Adapter structure. .. 75

Figure 17. AutoAdapter APL component overview. ... 79

Figure 18. Decorator structure. .. 84

Figure 19. UML class diagram of the AutoDecorator APL component. .. 89

Figure 20. AutoDecorator APL component overview. ... 90

Figure 21. Composite structure. ... 94

Figure 22. AutoComposite APL component overview. ... 100

Figure 23. UML class diagram of the Composite APL component. .. 103

Figure 24. State structure. .. 109

Figure 25. UML class diagram of the State APL component. ... 111

Figure 26. UML class diagram of the FlyweightContext APL component. .. 117

Figure 27. UML class diagram of the DynamicStateEx APL component. .. 119

Figure 28. Command structure. ... 131

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

ix

Figure 29. UML class diagram of the ActionCommand and ActionUndoableCommand APL

components. .. 135

Figure 30. UML class diagram of the AutoMacroCommand APL component. 139

Figure 31. Diagram overviewing a SimpleInvoker APL component. ... 143

Figure 32. Diagram overviewing a SimpleUndoableInvoker APL component. 144

Figure 33. Chain of responsibility structure. .. 150

Figure 34. Memento structure. ... 157

Figure 35. UML class diagram of the Originator APL component. ... 159

Figure 36. UML class diagram of the Memento APL component. .. 161

Figure 37: UML class diagram of the ActionComposite APL component. .. 187

Figure 38. Componentization success rate of design patterns discussed in this thesis. 194

Figure 39. Componentization success rate against all of the patterns available in Design Patterns. 194

Figure 40. Reusable pattern implementation complexity. ... 196

Figure 41. Distribution of language features used in pattern componentization. 196

Figure 42. Distribution of pattern components used in other pattern componentization

implementations. ... 198

Figure 43. Bridge design pattern in LePUS3. .. 200

Figure 44. Basic set of symbols used in LePUS3. ... 221

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

x

 LIST OF TABLES

Table 1: Fundamental patterns identified as FDPs by Agerbo and Cornils and as cadets by Gil and

Lorenz. .. 11

Table 2: Patterns supported by language features: the LDDPs of Agerbo and Cornils and the

clichés/idioms of Gil and Lorenz. ... 12

Table 3: Design pattern componentization summary. ... 193

Table 4: Language features used per pattern component. .. 197

Table 5: Duck typing performance test. ... 218

Table 6: DynamicChainOfResponsibility performance test. .. 220

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

1

 C h a p t e r 1

1 INTRODUCTION

1.1 Problems with Design Patterns

A design pattern (Gamma, Helm, Johnson, & Vlissides, 1994) is a formal mechanism for documenting

solutions to recurring software design problems. Christopher Alexander first introduced the concept

of design patterns in civil architecture (Alexander & Ishikawa, 1977). This was later adapted to

software design. The academic and commercial interest in design patterns has shown a dramatic

growth in the last decade. Design patterns have been catalogued by a number of research projects

including Patterns languages of program design (Coplien & Schmidt, 1995), Design patterns for object-oriented

software development (Pree, 1995) and Design patterns, elements of reusable object-oriented software (Gamma, Helm,

Johnson, & Vlissides, 1994).

“A design pattern names, abstracts, and identifies the key aspects of a common design structure that

make it useful for creating a reusable object-oriented design” (Gamma, Helm, Johnson, & Vlissides,

1994, p. 3).

Design patterns can be classified according to the underlying problem that they solve. These

classifications include creational, structural, behavioural (Gamma, Helm, Johnson, & Vlissides, 1994),

concurrency (Schmidt, 1995) and architectural patterns (Avgeriou & Zdun, 2005).

Design patterns offer a number of benefits, as shown below (Chambers, Harrison, & Vlissides, 2000)

(Schmidt, 1995). Design patterns

 promote design reuse.

 have names which form a common vocabulary and improve communication within and across

software development teams.

 improve documentation.

 help one restructure a software system whether or not patterns were used up-front.

 explicitly capture knowledge that experienced developers already understand implicitly.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

I n t r o d u c t i o n

2

 may lead developers to think they know more about the solution to a problem than they

actually do.

 help with the training of new developers.

 help to transcend “programming language-centric” viewpoints.

Design patterns are mostly seen as a solution to recurring problems encountered in software design.

Not much emphasis has yet been placed on the physical implementation of design patterns in

traditional object-oriented languages. The physical implementations of design patterns do suffer from

problems.

The main difficulties with design patterns are the lack of traceability in the implementation, language

expressiveness and the implementation overhead, as shown below (Bosch, 1998b) (Bosch, 1998a):

 Traceability

The traceability of design patterns is lost because the programming language does not directly

support the underlying pattern. The physical implementation of the design pattern in the

programming language is scattered across a number of classes and is thus hard to trace.

 Reusability

Design patterns are implemented and recycled in the design of a software system. A developer is

constrained to implement a design pattern over and over in a physical programming language. A

design pattern does not give a developer the same benefits as a reusable component.

 Implementation Overhead or Writability

Design patterns force a developer to implement several methods with trivial behaviour. This leads

to a huge programming burden on the developer, made even worse by the fact that the design

pattern implementations cannot be reused. These methods are tedious to develop and maintain

without the help of powerful programming or integrated development environment (IDE) tools (Bishop,

2008).

 Maintainability

It has also been argued that using multiple patterns in the same implementation can lead to a large

cluster of mutually dependent classes (Soukup, 1995). Using a traditional object-oriented

programming language can cause maintainability problems when working with mutually dependent

classes (Soukup, 1995).

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

I n t r o d u c t i o n

3

Pinto, Amor, Fuentes and Troya state “The DPs fail providing a solution because it is necessary to

apply and implement the same design over and over, for each component” (Pinto, Amor, Fuentes, &

Troya, 2001, p. 5). This is the same as the reusability problem defined by Bosch, as discussed above

(Bosch, 1998b) (Bosch, 1998a).

Another criticism of design patterns is the fact that some patterns can be consolidated (Agerbo &

Cornils, 1998). The physical implementation of a design pattern can be confused with another pattern

because they are, in fact, closely related. An increase in the number of new design patterns will actually

threaten their original benefits. Agerbo and Cornils argue that the rapid evolution of design patterns

has hampered the benefits gained from using patterns. They note that an increase in design patterns

impairs communication within and across software development teams. Vlissides also had the same

belief, quoting Kahlil Gibran in his paper “We shall never understand one another until we reduce the

language to seven words.” (Chambers, Harrison, & Vlissides, 2000, p. 283).

I have also noticed from experience on a number of projects that I have been involved with that

design patterns are not implemented properly in object-oriented programming languages by

developers. The incorrect implementations usually do not follow the structure of the pattern as

defined in the Design Patterns (Gamma, Helm, Johnson, & Vlissides, 1994) catalogue. The incorrect

implementation can also have the wrong name, in which case it actually implements another design

pattern.

1.2 The Goal of this Thesis

The goal of this thesis is to report on the success of the design and development of a reusable design

pattern library, called Adaptive Pattern Library (APL), in C#. A reusable design pattern library solves

most of the problems mentioned above. Using a design pattern from a library makes it clear to a

developer which pattern is being implemented, thus solving the Traceability problem. It also solves

the Implementation Overhead problem because a developer is not tasked with implementing the

core of the pattern. A developer only needs to use the implementations in the pattern library. It also

directly solves the Reusability problem, because a reusable component for a specific pattern exists

and can thus be reused.

This thesis explores the implementation of reusable design pattern components in the C#

programming language. The focus of my research was to transform design patterns into reusable

artefacts so that developers would not have to implement the same design pattern core logic and

structure over and over. The concept of reusability uses Meyer’s definition as defined in Object-Oriented

Software Construction which states: “Reusability is the ability of software elements to serve for the

construction of many different applications” (Meyer, 2000, p. 7). In the context of design patterns, a

specific language feature or features can be used to implement a language library or a component

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

I n t r o d u c t i o n

4

which might solve the pattern implementation reusability problem. In this thesis I have therefore

explored the creation of a design pattern class library with reusable components in C#. It concentrates

on the design patterns defined in the book Design Patterns: Elements of Reusable Object-Oriented Software

(Gamma, Helm, Johnson, & Vlissides, 1994), which is referred to as Design Patterns in the rest of this

thesis. Four design patterns each were chosen from the structural, behavioural and creational design

pattern categories. Concurrency patterns (Schmidt, 1995) and architectural patterns (Avgeriou & Zdun,

2005) would benefit from the same techniques used in this thesis, but they were not explored.

Meyer’s “component” definition is used extensively in this thesis. His definition of “component” must

satisfy the following criteria (Meyer, 2000): A component can be used by other program elements

which are known as “clients”. The supplier of a component does not need to know who its clients are.

Clients can use a component on the sole basis of its official information. A C# class and interface thus

adheres to Meyer’s definition of a “component”. This thesis does not use the component definition

specified by Szyperski (Szyperski, 2002).

Meyer and Arnout define a componentizable design pattern as “A design pattern is componentizable if

it is possible to produce a reusable component, which provides all the functions of the pattern” (Meyer

& Arnout, 2006, p. 24). Meyer also stresses (Meyer, 2000, p. 72) that “A successful pattern cannot just

be a book description: it must be a software component or a set of components”. In this thesis, I

argue and show that a design pattern is reusable if it is implemented as a component that adheres to

the pattern’s intent and functionality and where the component is also usable and practical.

Note the difference between design reuse and software implementation reuse. The Design Patterns book

does mention that design patterns are there to create “a reusable object-oriented design” (Gamma, Helm,

Johnson, & Vlissides, 1994, p. 3). However, this reuse is in the context of design and not

implementation. Bosch and Soukup discuss the problems regarding the actual physical implementation

of design patterns, including their current lack of reusability (Bosch, 1998b) (Soukup, 1995).

Arnout remarks that from a software engineering perspective, design patterns could be seen to

represent a step backwards as regards implementation reuse, because patterns must be implemented

and re-implemented manually (Arnout, 2004).

Jézéquel, Train and Mingins note that “Patterns are not, by definition formalized descriptions. They

can’t appear as a deliverable” (Jézéquel, Train, & Mingins, 1999, p. 22). Arnout challenges this

perception, asking why one has to step back to pre-reuse times when implementing design patterns

(Arnout, 2004). My research also challenges this statement with examples of reusable design pattern

components in C#.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

I n t r o d u c t i o n

5

1.3 Previous Solutions

Others have already challenged the statement by Jezequel that design patterns are not reusable on an

implementation level. In the book Modern C++ Design: Generic Programming and Design Patterns Applied

Alexandrescu explores the reusability of design patterns using the generic features of C++

(Alexandrescu, 2001). The result is a reusable library called Loki with reusable implementation

solutions for certain design patterns. Loki is a popular class library in C++ showing that it is possible

to reuse certain design patterns in a language with similar features to those of C++.

Schmidt has successfully implemented concurrent and networking reusable design pattern

implementations in the ACE (Adaptive Communication Environment) C++ library (Schmidt, Stal,

Rohnert, & Buschmann, 2000). He has also relied heavily on C++ generics (templates) with which to

implement the reusable design patterns. For example, as part of his extensive library he has created a

generic class that implements the singleton design pattern. The reusable singleton C++ class uses

generics in order to turn ordinary C++ classes into singletons optimised with the double-checked

locking optimisation pattern (Schmidt & Harrison, 1996). The following code snippet shows an

example of the usage of the ACE singleton class in C++. The SingletonImpl class is transformed into

a singleton by the SingletonTest type definition, using the ACE_Singleton class:

C++
--
typedef ACE_Singleton<SingletonImpl, ACE_Null_Mutex> SingletonTest;

int main(int argc, char* argv[]) {
 SingletonTest singleton = SingletonTest::instance(); // Aquire a reference to the singleton instance
 // …
}

Bosch takes the standpoint that it is the task of the programming language to represent the

implementation of a design pattern as closely as possible. He does concede that it would be impossible

for a language to represent all design patterns (Bosch, 1998c). He argues further that most design

patterns have well defined semantics that could be used as the basis for defining language constructs

that explicitly support the representation of a certain design pattern in the programming language. He

complains that some engineers and researchers believe that design patterns should only be used in

software design. Bosch disagrees with these engineers and researchers and wants to see more explicit

language support or language features for design patterns. Bosch strongly disagrees that this would

increase the complexity of the language, because the language will represent the paradigm concepts

used by the developer (Bosch, 1998b). He further argues that it is, in fact, the lack of language support

for design patterns that increases the complexity. This is because a developer is forced to implement

the patterns in terms of lower level language constructs, thereby reducing traceability and

understandability. He also argues that a developer is free to use the available language constructs, but is

not forced to use them. He states that as a developer gains experience, his usage of language constructs

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

I n t r o d u c t i o n

6

increases. He finally states that it is “beneficial for a programming language to provide constructs for

representing design patterns” (Bosch, 1998b, p. 9).

Some modern languages, such as Ruby, already have some design patterns implemented in their

standard class libraries (Matsumoto, 2001). Here is an example of how to implement a singleton

(Gamma, Helm, Johnson, & Vlissides, 1994) in Ruby (Williams, 2006):

Ruby
--
require 'singleton'

class Example
 include Singleton
end

The above code snippet shows that Ruby provides a module for making classes singletons, which is

defined in the standard library inside ‘singleton.rb’. The following example shows how a singleton in

Ruby could have been implemented without the singleton standard library support (Williams, 2006):

Ruby
--
class Example
 def initialize
 # do something?
 end

 def self.instance
 return @@instance if defined? @@instance
 @@instance = new
 end
 private_class_method :new
end

MultiJava is an extension to the Java programming language that adds symmetric multiple-dispatch

(Clifton, Millstein, Leavens, & Chambers, 2006). The multiple-dispatch language feature eliminates the

need for the accept element when implementing the visitor pattern (Gamma, Helm, Johnson, &

Vlissides, 1994). Multimethods or multiple-dispatch is a special feature in certain object-oriented

programming languages where a function or method can be specialised on the type of more than one

of its arguments. Multiple-dispatch is a type of language feature that is part of The Common Lisp Object

System (CLOS) (DeMichiel & Gabriel, 1987).

The following example from Arnout shows a possible implementation in MultiJava (Clifton, Millstein,

Leavens, & Chambers, 2006) of the visitor pattern (Gamma, Helm, Johnson, & Vlissides, 1994)

without the use of the accept element (Arnout, 2004):

Java
--
public class MaintenanceVisitor {
 public void visit (Borrowable borrowable) {
 throws new Error("An abstract class cannot be instantiated.");

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

I n t r o d u c t i o n

7

 }

 public void visit (Borrowable@Book borrowable) { // Special treatment for books }
 public void visit (Borrowable@VideoRecorder borrowable) { // Special treatment for video recorder }
}

Arnout states in her Ph.D. thesis From Patterns to Components that “Design patterns are good but

components are better” (Arnout, 2004, p. 5). She argues that reusing software improves the overall

quality of software, including its correctness, maintainability and performance.

She correctly notes that design patterns are naturally reusable in software design, but not in software

implementation. Her thesis explores the componentization of design patterns. She focused mainly on

Eiffel (ECMA, 2006), but did also briefly explore the componentization of design patterns in Java and

C# (Arnout, 2004). Arnout did note, however, that not all design patterns could be componentized.

This thesis builds on Arnout’s research. C# has more advanced language features than Eiffel (Meyer,

1991) and this thesis shows that this improves the possibility for componentization of design patterns.

In the publication A Debate on Language and Tool Support for Design Patterns Chambers, Harrison and

Vlissides (Chambers, Harrison, & Vlissides, 2000) question whether languages should be extended

with features corresponding to particular patterns. They further note that design patterns “have proved

so useful that some have called for their promotion to programming language features” (Chambers,

Harrison, & Vlissides, 2000, p. 277). Chambers argues that some design patterns do have native

support in mainstream object-oriented languages. Vlissides argues that advances in computer language

features have come from abstracting what programmers do most in their existing code. He notes that

there are design patterns that naturally lend themselves towards language constructs, using the

singleton as an example:

public singleton class WindowManager { … }

The programming language implementing the singleton design pattern as a language feature will ensure

that only one instance of the object is created. The language will also handle advanced singleton issues

such as multi-threading and locking problems. For example, the language can use the double-checked

locking pattern internally with the singleton pattern in order to solve advanced locking problems

(Schmidt & Harrison, 1996). Vlissides does warn, however, that not all design patterns should be

implemented as language features. He argues that some design patterns included as a feature in a

programming language could make that language too complicated. He gives multiple-dispatch

(Stroustrup, 1994) as an example. Multiple-dispatch is a language feature that can be used to

implement the visitor pattern. He argues that current mainstream languages such as C# and Java do

not implement multiple-dispatch as a language feature because of the extra complexity. This is in

contrast to Bosch, who believes that design pattern language features do not necessarily make a

language more complex (Bosch, 1998a). Today, some of the following programming languages

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

I n t r o d u c t i o n

8

support multiple-dispatch, either directly or indirectly, as a built in language feature: Common Lisp (via

the Common Lisp Object System) (DeMichiel & Gabriel, 1987), Haskell via Multi-parameter type

classes, Dylan, Cecil, R, Groovy, Perl 6, Seed7, Clojure, C# 4.0 (Burchall, 2009) and Fortress.

The following code snippet by Burchall shows how the dynamic keyword in C# 4.0 can be used in

order to implement multiple-dispatch functionality (Burchall, 2009):

C#
--
class Program {
 class Thing { }
 class Asteroid : Thing { }
 class Spaceship : Thing { }

 static void CollideWithImpl(Asteroid x, Asteroid y) {
 Console.WriteLine("Asteroid hits an Asteroid");
 }

 static void CollideWithImpl(Asteroid x, Spaceship y) {
 Console.WriteLine("Asteroid hits a Spaceship");
 }

 static void CollideWithImpl(Spaceship x, Asteroid y) {
 Console.WriteLine("Spaceship hits an Asteroid");
 }

 static void CollideWithImpl(Spaceship x, Spaceship y) {
 Console.WriteLine("Spaceship hits a Spaceship");
 }

 static void CollideWith(Thing x, Thing y) {
 dynamic a = x;
 dynamic b = y;
 CollideWithImpl(a, b);
 }

 static void Main(string[] args) {
 var asteroid = new Asteroid();
 var spaceship = new Spaceship();
 CollideWith(asteroid, spaceship);
 CollideWith(spaceship, spaceship);
 }
}

In C# a virtual method is polymorphic (Cardelli & Wegner, 1985) only on a singular level.

Multimethods or multiple-dispatch takes polymorphism a step further, where a method is polymorphic

on multiple levels, which can be advantageous in some situations. In the above code the dynamic

keyword permits a method to be selected that is dependent on the type of arguments at runtime, not

just the connected object. In the above example the CollideWith method takes in two arguments of

type Thing. The CollideWith method passes the request to the correct CollideWithImpl during runtime,

depending on the type of argument. A CollideWith(asteroid, spaceship) request is thus passed on to

the CollideWithImpl(Asteroid x, Spaceship y) implementation that will execute the correct algorithm.

The example thus shows an implementation of genuine multiple-dispatch in C#. In the above trivial

example the CollideWith(Thing x, Thing y) method can be removed and the CollideWithImpl

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

I n t r o d u c t i o n

9

method can still be called correctly. Functionally, this solves the same problem; however the method

resolution occurs during compile time, using method overloading. The usage of the dynamic keyword

in the CollideWith(Thing x, Thing y) method allows for runtime method resolution and thus makes

multiple-dispatch possible.

The Seed7 programming language implements multimethods directly as a language feature. It is a

higher level language than Ada, C++ or Java (Mertes, 2011). In Seed7 methods are not associated with

just one type. True to the functionality of multiple-dispatch, the decision which method is executed at

runtime is dependent on the types of the arguments. In the example below, from the Seed7 manual,

the type Number is used to amalgamate numerical types. The type Number is also defined as an interface

that defines the contract behaviour for the ‘+’ operation (Mertes, 2011):

Seed7
--
const type: Number is sub object interface;
const func Number: (in Number param) + (in Number param) is DYNAMIC;

The interface type part Number can denote an Integer or a Float:

Seed7
--
const type: Integer is new struct
 var integer: val is 0;
 end struct;

type_implements_interface(Integer, Number);

const type: Float is new struct
 var float: val is 0.0;
 end struct;

type_implements_interface(Float, Number);

The following shows the implementations of the converting '+' operators:

Seed7
--
const func Float: (in Integer: a) + (in Float: b) is func
 result
 var Float: result is Float.value;
 begin
 result.val := flt(a.val) + b.val;
 end func;

const func Float: (in Float: a) + (in Integer: b) is func
 result
 var Float: result is Float.value;
 begin
 result.val := a.val + flt(b.val);
 end func;

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

I n t r o d u c t i o n

10

The following shows the implementations of the normal '+' operators that do not do any conversions:

Seed7
--
const func Integer: (in Integer: a) + (in Integer: b) is func
 result
 var Integer: result is Integer.value;
 begin
 result.val := a.val + b.val;
 end func;

const func Float: (in Float: a) + (in Float: b) is func
 result
 var Float: result is Float.value;
 begin
 result.val := a.val + b.val;
 end func;

More operators can be added to the Number type such as ‘-’ or ‘*’. More implementations can also be

added such as Complex, Decimal or Double. The Number type defined above can thus be used as a

common type for mathematical calculations.

Vlissides further argues that the problem is to decide which design patterns should be included as a

language feature and which should be excluded. Vlissides calls this the “kitchen sink problem” and

says: “While several of the more fundamental design patterns may be transliterated easily into

programming language constructs, many others cannot – and at least should not” (Chambers,

Harrison, & Vlissides, 2000, p. 284). Arnout shares the same views as Vlissides, as discussed in her

Ph.D. thesis (Arnout, 2004). She argues that some design patterns just cannot be transformed into

language features. She suggests the idea of design pattern componentization through software libraries,

arguing that libraries do not add complexity to the language as a language feature would. Arnout does

concede that certain design patterns, which could not be componentized, can be made reusable by

extending the Eiffel language (Arnout, 2004). In depth research has also been done regarding the

implementation of design patterns using aspect oriented programming (AOP). Aspect-oriented

programming is a programming concept the goal of which is to boost modularity by implementing the

separation of cross-cutting concerns (Kiczales, et al., 1997). Hannemann notes that 52% of the design

patterns defined in Design Patterns are reusable, when using aspect oriented programming (Hannemann

& Kiczales, 2002). Arnout argues that using aspects does have its weaknesses (Arnout, 2004). She

notes that it may become difficult to master a whole system where the design patterns are

implemented using aspects.

The technique of automatic code generation from models depicting design patterns can be seen as

another solution to pattern reuse. Budinsky describe a tool for generating source code from models of

design patterns (Budinski, Finnie, Yu, & Vlissides, 1996).

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

I n t r o d u c t i o n

11

Hedin has proposed that design patterns be formalised in the implementation language, using attribute

grammars (Hedin, 1997). This, however, forces the developer to learn the formalised grammar.

Agerbo and Cornils have argued that design patterns can be partitioned into the following categories

(Agerbo & Cornils, 1998):

 Fundamental Design Patterns (FDPs)

 Language Dependant Design Patterns (LDDPs)

 Related Design Patterns (RDPs)

 Library Design Patterns (LDPs)

They define Fundamental Design Patterns (FDPs) as the core patterns, which should capture good

object-oriented design on a high enough level so that they can be used in various kinds of applications.

They state that design patterns covered by language constructs are not Fundamental Design Patterns.

It is their belief that a Fundamental Design Pattern must be independent of any implementation

language. They have analysed the patterns and found that only 11 of the 23 design patterns in Design

Patterns can be classified as Fundamental Design Patterns (Agerbo & Cornils, 1997). The first column

in Table 1, by Bishop and Horspool (Bishop & Horspool, 2008), shows these Fundamental Design

Patterns:

Table 1: Fundamental patterns identified as FDPs by Agerbo and Cornils and as cadets by Gil and Lorenz.

Design Pattern FDPs Cadets

Bridge

Builder

Composite

Decorator

Mediator

Proxy

State

Adapter

Chain of Responsibility

Interpreter

Observer

Strategy

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

I n t r o d u c t i o n

12

Visitor

Abstract Factory

Flyweight

Iterator

Memento

It is noted, correctly, (Bishop & Horspool, 2008) that the list above is dated, because both the iterator

and memento design patterns can be covered by new language features that have been added to both

Java and C# (iterators and serializable respectively). There is also a strong case that the events and

delegates language features in C# are implementations of the observer design pattern (Purdy &

Richter, 2002) (Gasiūnas, Satabin, Mezini, Núñez, & Noyé, 2010).

Agerbo and Cornils also define Language Dependant Design Patterns (LDDPs). These are design

patterns that are covered by a language construct in some programming languages, but not all. For

example, multiple-dispatch can be seen as a language feature that implements the visitor design pattern

(Gamma, Helm, Johnson, & Vlissides, 1994). The first column in Table 2, by Bishop and Horspool

(Bishop & Horspool, 2008), shows the patterns that are supported by language features and defined as

LDDPs by Agerbo and Cornils.

Table 2: Patterns supported by language features: the LDDPs of Agerbo and Cornils and the clichés/idioms

of Gil and Lorenz.

Design Pattern LDDPs Clichés and Idioms

Chain of Responsibility Delegates

Command Procedure classes Classes

Facade Nested classes Encapsulation

Factory Method Virtual classes

Memento Persistence

Prototype Pattern variables Deep copy

Singleton Singular objects Module

Template Method Complete block structure Overriding

Visitor Multiple dispatch Multi-methods

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

I n t r o d u c t i o n

13

Agerbo and Cornils also define Related Design Patterns (RDP) as an application of another design

pattern. As an example, they show that the observer design pattern can be implemented using the

mediator. Another example is the interpreter pattern that uses the visitor (Agerbo & Cornils, 1998).

Agerbo and Cornils note that the more new design patterns are applied to a certain software

implementation, the more difficult it is to recognise the structure of the participating design patterns

(Agerbo & Cornils, 1997). This is known as the tracing problem (Bosch, 1998b). They further argue

that the solution to this problem could be the use of Library Design Patterns or LDPs. An LDP is a

design pattern which is implemented in a reusable library. When using LDPs in the application code, it

is possible to trace the design pattern from which the implementation ideas came. They believe that a

way of promoting the habit of using design patterns is to have the design patterns available as LDPs in

a library where they are easily accessible. They state that another benefit of having a design pattern as

an LDP is that one doesn’t have to duplicate the implementation anew each time a design pattern is

applied in a new context. Agerbo and Cornils warn that when using a pattern as an LDP the design

pattern implementation is fixed (Agerbo & Cornils, 1997). It is thus not possible to adapt an LDP for

other desired pattern scenarios.

Agerbo and Cornils have formulated the following three guidelines with regard to design patterns

(Agerbo & Cornils, 1997, p. 3):

 Design patterns covered by language constructs are not Fundamental Design Patterns (FDPs).

 Applications and variations of design patterns are not Fundamental Design Patterns (FDPs).

 A design pattern may not be an inherent object oriented way of thinking.

In the article Design Patterns vs. Language Design Gil and Lorenz have done similar research on design

patterns to that of Agerbo and Cornils, looking at how far they are from becoming actual language

features by classifying patterns in groups (Gil & Lorenz, 1998). They classified patterns as clichés,

idioms or cadets. These classifications correspond to the guidelines from the design pattern analyses of

Agerbo and Cornils. They note that cadets are current contenders for language support, whereas

clichés and idioms imitate features found in languages. It is their standpoint that design patterns should

eventually evolve into language features. This set of patterns is shown in the second column of Table

2. The second column in Table 2 shows the patterns that they have identified as still requiring language

support.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

I n t r o d u c t i o n

14

1.4 Design Pattern Reusability

The purpose of this thesis is to determine whether design patterns, as explained in Design Patterns, can

be made reusable in C#, given the features and mechanisms in the C# programming language. The

following language features and mechanisms are studied, all of which are available in C#:

 Inheritance (Mitchell, Mitchell, & Krzysztof, 2003)

 Interfaces (Pattison & Box, 2000)

 Generics (Jagger, Perry, & Sestoft, 2007)

 Design by Contract™ (Mitchell & McKim, 2001)

 Attributes (Nagel, Evjen, Glynn, & Watson, 2010)

 Method References (Microsoft, 2010e)

 Anonymous Functions (Ierusalimschy, 2003)

 Lambda Expressions (Michaelis, 2010)

 Mixins (Extension Methods) (Esterbrook, 2001) (Jesse & Xie, 2008)

 Reflection (Sobel & Friedman, 1996) (Forman & Forman, 2005)

 Duck Typing (Koenig & Moo, 2005)

 Meta-Programming (Perrotta, 2010)

 Dynamic Typing (Tratt, 2009)

The componentization process in each chapter shows how the above mentioned C# language features

helped with the implementation of the pattern components.

The original design pattern catalogue discussed in Design Patterns (Gamma, Helm, Johnson, & Vlissides,

1994) shows implementations that do not take modern language features into consideration. In the

paper On the Efficiency of Design Patterns Implementation in C# 3.0 Bishop and Horspool argue that new

language features such as delegates, generics, nested classes, reflection and built-in iteration must be

taken into consideration when implementing design patterns in C# 3.0. It is shown that the advances

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

I n t r o d u c t i o n

15

in language features make design pattern implementations more efficient and also easier to produce

and reproduce (Bishop & Horspool, 2008). It is also argued that the usage of modern language

features improves the Traceability, Reusability, Writability and Maintainability problems of

pattern implementation (Bishop, 2008). This thesis shows that modern language features are also

important when implementing reusable design pattern components.

In each chapter in this thesis that examines a design pattern, the components discussed are declared

reusable if the pattern conforms to the following criteria:

 Completeness: Does the reusable component cover all cases of the core pattern

implementation described in Design Patterns (Gamma, Helm, Johnson, & Vlissides, 1994)?

 Usefulness: Is the reusable component beneficial compared to an implementation from

scratch of the design pattern?

 Faithfulness: Is the reusable component faithful to the original pattern description?

 Type-safety: Is the reusable component type-safe?

 Extended applicability: Does the reusable component cover more cases than the original

design pattern?

 Performance: Is the performance of the reusable component acceptable?

The above mentioned criteria were also used by Arnout in her exploration of reusable design patterns

in Eiffel (Arnout, 2004). Each chapter in this thesis describing reusable design pattern

componentization ends with a discussion about the quality of the reusable component compared to

the above criteria.

1.5 Reusable Design Pattern Exploration

Each chapter in this thesis that explores the componentization of a specific design pattern does so by

dividing the exploration into the following sections:

1. Introduction
In this section a short discussion and the formal definition of the design pattern is given. It also shows

the pattern participants and the formal UML structure of the design pattern.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

I n t r o d u c t i o n

16

2. Reusable Library Implementation
This section discusses the reusable library implementations or components that were developed in C#

for this thesis, for the specific design pattern that is the subject of each chapter. It discusses their

technical implementation in detail, how they satisfy the intent of the pattern and also possible caveats.

It is possible that a design pattern does not have a reusable library implementation in C#. It is also

possible that a design pattern is only partially reusable when implemented in C#. Partial reusability

means that some parts of the pattern must still be coded by hand. Lastly, it is also possible that not all

of a pattern’s functionality or intent could be realised with a reusable component in C#.

3. Theoretical Examples
In this section formal implementation examples of the specific design pattern are given in C#, using

the reusable library components described in the previous section.

4. Outcome
This section discusses the success of the reusable library using the criteria discussed in the previous

section.

The source code shown in this thesis sometimes omits code that is seen as redundant. The “… S N I P

…” or “…” snippets are used to show that there is more code than that which is shown:

C# (APL)
--
public sealed class ActionChainOfResponsibility : ICommand { // The handler is also a command
 private readonly Action _successor; // Successor defined as an Action delegate
 private readonly Action _handler; // Handler defined as an Action delegate
 // … S N I P …
}

The ActionChainOfResponsibility class thus has more elements present, but they are not shown. The

“… M O R E …” snippet is used to express that there is more of the same coding methodology that is not

shown:

C# (APL)
--
public sealed class ActionComposite<T> : IComponent<Action<T>> { … } // One argument
public sealed class ActionComposite<T1, T2> : IComponent<Action<T1, T2>> { … } // Two
// … M O R E …

The code above thus shows that there are more ActionComposite delegates present. The “… C O N T R

A C T …” snippet indicates that there is contract code that is not shown.

C# (APL)
--
public TProduct Create() {
 // … C O N T R A C T S …
 return new TProduct();
}

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

I n t r o d u c t i o n

17

The code on the previous page thus shows that there are contracts present in the Create method that

are not shown.

Participants are the directory of the objects and classes used in a design pattern and their direct roles in

the design. All of the design pattern participants in this thesis are underscored in order to clearly

identify them as such. For example an AbstractFactory participant is thus written as AbstractFactory.

1.6 C# 4.0 and .NET

“C# (pronounced “See Sharp”) is a simple, modern, object-oriented, and type-safe programming

language. C# has its roots in the C family of languages and will be immediately familiar to C, C++ and

Java programmers.” (Microsoft, 2007, p. 1)

C# is also a memory managed programming language with hybrid functional and dynamic language

features that have evolved from C++, Delphi and Java (Jagger, Perry, & Sestoft, 2007).

This thesis uses C# 4.0 and the .NET framework version 4.0 for its design pattern research. Hejlsberg

is the principal architect of C#. He was also involved with the design of Turbo Pascal (Savitch, 1993)

and Borland Delphi (Cantu, 2008). C# forms part of the Microsoft .NET universal framework.

Since the first release of C# it has supported features such as inheritance, garbage collection, type-

safety, value types, reflection and events. New features in C# 2.0 include static classes, generics, partial

classes, covariance and contravariance for delegates, null-coalesce operator, ability to set the

accessibility of property accessors independently, nullable types, anonymous delegates and new

iterators with the yield statement (Microsoft, 2005) (Jon, 2010).

New features in C# 3.0 include (Hejlsberg & Torgersen, 2007) extension methods, LINQ, lambda

expressions, collection initialisers, object initialisers, local variable type inference, anonymous types,

partial methods and automatic properties.

New features in C# 4.0 include (Torgersen, 2008) dynamic language features, contravariant and

covariant generic types parameters, optional ref keyword when using COM, optional parameters and

named arguments and indexed properties.

Microsoft’s active commitment towards programming language improvement makes C# an attractive

choice for language research.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

I n t r o d u c t i o n

18

1.7 Features used to Implement Reusable Components

1.7.1 Design by contract™.

“Reliability is even more important in object-oriented programming than elsewhere.” (Meyer, 1992, p.

40)

Design by contract™ or DbC™ is used to enforce the behavioural and functional rules in most of the

pattern components in this thesis. DbC™ is a programming methodology where a contract is placed

on a method or a class (Meyer, 1992). Arnout has shown that DbC™ can be used successfully in Eiffel

to help componentize design patterns (Arnout, 2004).

Both a pre and a post-condition are placed on a method in order to validate the contract validity of the

method. The pre-condition on a method that is defined on a subclass, where the method overrides the

original method in the super-class, will weaken the contract because the original interface and contract

of the method must be upheld. Adding stronger conditions leads to the possibility of breaking base

class method calls and, in turn, breaking the interface. The post-condition on a method that is defined

on a subclass and that overrides the original method will strengthen the contract. The reason why a

contract is strengthened is because it doesn’t affect the interface. An invariant can also be placed on a

class to define a contract. An invariant is a predicate that will continuously maintain its truth value

during an exact sequence of operations. A subclass would weaken an invariant contract, because the

interface and contract of the base class must be upheld.

A large number of the reusable components in this thesis were originally developed in C# 3.0. A basic

yet correct DbC™ feature was implemented in C# 3.0 as part of this thesis in order to apply the

desired contracts on the patterns. A custom built DbC™ implementation was thus developed for this

thesis using the PostSharp Aspect Oriented Programming framework (Fraiteur, 2008). Aspect Oriented

Programming or AOP is a programming methodology that employs techniques to improve the

separation of concern principle (Chris, 1989). Separation of concern is a programming principle whereby

distinct features of a computer program are separated into non-overlapping pieces of functionality.

Dijkstra was the first to mention the principle of separation of concerns in his 1974 paper On the role of

scientific thought (Dijkstra, 1974). A major part of AOP is the separation of concerns with regard to Cross-

cutting concerns. Cross-cutting concerns are aspects of a program that affect or cross-cut other concerns. An

aspect is a part of a program that cross-cuts its main concerns and thus violates its separation of concerns

(Kiczales, et al., 1997). One of the benefits of AOP is that it improves the logical decoupling of

components. This can also be a drawback, in that it could create a high number of scattered classes

that would be difficult to track and maintain.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

I n t r o d u c t i o n

19

Fortunately the latest version of C#, at the time of writing this thesis, does implement design by

contract™ through library components. With the release of C# 4.0 the reusable components used in

this thesis were refactored to use the C# 4.0 design by contract™ library. DbC™ is implemented in

C# 4.0 by a Microsoft DevLabs project called Code Contracts (Microsoft, 2011a). DevLabs (Microsoft,

2011c) implement developer focused technology projects and offer them to a large developer

community well before they are officially released. Code Contracts implements all of the DbC™

requirements, including runtime contract checking, static contract checking and also documentation

generation that includes the defined contracts. Code Contracts is an offshoot of the Spec# project.

Spec# is a research project that tried to evaluate the implementation of contracts in a programming

language with features such as aliasing, delegates, call backs, inheritance and multi-threading. Spec# is

based on C# 2.0 (Barnett, Leino, & Schulte, 2005) and uses a source rewriter in order to weave the

contracts into the code. Code Contracts is the outcome of knowledge gained from Spec# in order to

evaluate which parts of the research were successful and which were not.

The following code, from the Code Contracts User Manual, shows how contracts can be added to C#

source code using the Code Contracts library (Microsoft, 2011a):

C#
--
class Rational {
 int numerator;
 int denominator;

 public Rational(int numerator, int denominator) {
 Contract.Requires(denominator != 0); // Add a Requires contract
 this.numerator = numerator;
 this.denominator = denominator;
 }

 public int Denominator {
 get {
 Contract.Ensures(Contract.Result<int>() != 0); // Add a Ensures contract
 return this.denominator;
 }
 }

 [ContractInvariantMethod] // Add an Invariant contract
 void ObjectInvariant() {
 Contract.Invariant(this.denominator != 0);
 }
}

The code above shows the implementation of the most important features of contracts, namely pre-

conditions, post-conditions and object-invariants. The code shows a subset of a Rational class with

which to model rational numbers. In order to implement an accurate rational number instance, the

denominator must be non-zero. This contract is conveyed as a pre-condition in the constructor with

the Contract.Requires statement. An object-invariant ObjectInvariant attributed with the

ContractInvariantMethod attribute ensures that the denominator is always non-zero. Finally, the

Contract.Ensures on the Denominator getter property ensures that the return value will never be zero.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

I n t r o d u c t i o n

20

1.7.2 Mixins or extension methods.

Mixins (Bracha & Cook, 1990) or extension methods (Microsoft, 2010g) allow one to enhance existing

types by adding additional methods without the need for a new derived type or altering the original

type. Extension methods are a specific variety of static methods; however, they are available as

instance methods on a certain enhanced type. There is thus no apparent difference for user code

between calling an extension method and a calling a normal method.

Using mixins is thus a technique that adds additional behaviour or functionality to an existing class.

More traditional techniques to achieve this are just to modify the existing class and add the desired

behaviour. This, however, is not always possible, as the class could be part of a third-party assembly.

Without mixins the programmer must inherit from the class in order to implement the desired

instance method on the derived class or implement the behaviour in added helper classes. Aggregation

can also be used instead of inheritance in order to achieve the same desired effect.

Mixins were first introduced at a company called Symbolics into the object-oriented Flavors (Moon,

1986) programming language. Flavors, which is an extension of Lisp, was developed by Howard

Cannon at the MIT Artificial Intelligence Laboratory for the Lisp machine and its programming

language Lisp Machine Lisp. The name “Mixin” was motivated by an ice cream shop in Massachusetts

called Steve’s Ice Cream Parlour (Esterbrook, 2001). The ice cream shop offered a special service called a

“Mixin” that adds extra items such as nuts, fudge or cookies to a basic flavour such as vanilla or

chocolate. This term was trademarked by the shop (Mariani, 1999).

Mixins, used in the correct scenarios, can help avoid well-known nuisances linked with multiple

inheritance (Balagurusamy, 2008) and boost code reuse.

The APL library uses extension methods in a number of places. For example, it is used by the

prototype reusable component in order to add a DeepCopy method to all objects:

C# (APL)
--
namespace Apl.Pattern.Gof.Creational.Prototype {
 public static class PrototypeExtention {
 static public T DeepCopy<T>(this T obj) {
 return PrototypeHelper<T>.DeepCopy(obj);
 }
 }
}

The DeepCopy method can now be used by any object that is used in an environment where the

Apl.Pattern.Gof.Creational.Prototype namespace is included. The following code shows how the

DeepCopy extension method is used by the memento pattern in order to make a snapshot of the

internal state of the Originator:

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

I n t r o d u c t i o n

21

C# (APL)
--
public IMemento<TOriginator> CreateMemento() {
 var memento = GetMemento();
 memento.SnapshotState = _originator.DeepCopy(); // Make a copy of the originator
 return memento;
}

1.7.3 Attributes.

In C# there is a technique for defining declarative tags, called attributes (Microsoft, 2010d), that can be

placed on certain entities in the source code to specify additional meta, or declarative, information. An

attribute is a special object in C# that holds meta-information that is linked to an element. A linked

element with attributed meta-information is known as the target of that attribute (Liberty, 2001). This

meta-information that the attribute contains can be acquired and used during run-time using reflection

(Hejlsberg, Torgersen, Wiltamuth, & Golde, 2010). A programmer can define their own custom

attributes. An attribute can be attached to entities such as classes, interfaces, namespaces or methods.

An attribute can also be global, where it applies to a whole module or assembly. A class in C# is an

attribute if it directly or indirectly inherits from the System.Attribute (Microsoft, 2010c) class.

There are two different types of attribute, namely intrinsic and custom (Liberty, 2001). Intrinsic

attributes are provided as a component of the Common Language Runtime (CLR) and are integrated

into .NET and C#. The second type is custom attributes (Microsoft, 2010d). Custom attributes are

attributes that are created manually for custom purposes. A programmer creates custom attributes in

order to add more declarative information to entities in the code.

For example, the Obsolete intrinsic attribute (Microsoft, 2010m) is associated with a method on a

target class to indicate that the method is deprecated. This will cause the C# compiler to issue a

warning that the method is obsolete:

C#
--
public interface IOrder {
 [System.Obsolete("Use EnterOrder instead.")]
 public void CreateOrder() {}
 public void EnterOrder() {}
}

Most systems usually make use of intrinsic attributes only. Custom attributes, however, are a useful

mechanism when used in conjunction with reflection (Smith, 1982). Custom attributes are used in

certain parts of the APL library.

The following example shows how an APL attribute StateAttribute is used to define an IMyState

State interface that is used in the implementation of a state design pattern:

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

I n t r o d u c t i o n

22

C# (APL Example)
--
[State(StateCreationStyle = StateCreationStyle.Flyweight)]
public interface IMyState {
 void Foo(IFlyweightContext<IMyState> context);
 void Bar(IFlyweightContext<IMyState> context);
}

1.7.4 Generics.

Generics (Dehnert & Stepanov, 2005) are among the most powerful new features introduced in C#

2.0. With generic programming, algorithms or logic are coded with generic types that are statically

defined. The types are defined with generic arguments that are passed through statically during

compile time. This allows the coding of templatised functions, or types, that differ only in the type

used and thereby duplication is reduced. C# generics are similar to C++ templates (Vandevoorde &

Josuttis, 2003) in concept but in implementation they are significantly different. Generics can be used

for static polymorphism. Static polymorphism involves the binding of methods to logic during

compile time (Meyer, 1986).

Generic programming was made popular by the Ada programming language (Ichbiah, et al., 1979)

when it was introduced in that language in 1983 (Musser & Stepanov, 1989). Today, generic

programming is found in programming languages such as Ada, Eiffel, Java, C#, Scala, Haskell, C++

(in the form of templates), D and Object Pascal.

Stepanov, who is the chief architect and implementer of the C++ Standard Template Library

(Stepanov & Lee, 1995), wrote: “Generic programming is about abstracting and classifying algorithms

and data structures. It gets its inspiration from Knuth and not from type theory. Its goal is the

incremental construction of systematic catalogs of useful, efficient and abstract algorithms and data

structures. Such an undertaking is still a dream” as quoted in (Stroustrup, 2007, p. 18).

Generics are used extensively in the APL library. The following code shows how generics are used

with regard to the command pattern:

C# (APL Example)
--
public interface ICommand<in TArgument> { void Execute(TArgument arg); }

class ConcreteCommand : ICommand<string> { public void Execute(string text) { Console.WriteLine(text); } }

The generic argument TArgument specifies the type of the argument to the Execute method on the

ICommand interface. The TArgument type can thus be supplied during compile time, as seen with the

ConcreteCommand example above.

Generics are also used extensively by the APL library to implement the curiously recurring template pattern

(CRTP) (G´eraud & Duret-Lutz, 2000). CRTP was first defined in C++ as an idiom by Coplien where a

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

I n t r o d u c t i o n

23

class Foo derives from a class template instantiation using Foo itself as a template argument (Coplien,

1995). The singleton APL component uses CRTP, as shown below:

C# (APL Example)
--
public class TheSingleton : Singleton<TheSingleton> {
 // … S N I P …
 private TheSingleton () { … }
 public void Foo() { … }
 public void Bar() { … }
 // … S N I P …
}

Note how the instantiated class TheSingleton is also passed to the derived class Singleton as a generic

argument, thus implementing the curiously recurring template pattern (CRTP).

1.7.5 Reflection, meta-programming and duck typing.

Reflection is the mechanism by which a computer program can query and possibly alter its own

structure and behaviour during runtime (Malenfant, Jacques, & Demers, 1996). The thought of

runtime reflection was introduced in 1982 by Brian Cantwell Smith's Ph.D. thesis, which discussed

adding structural and behavioural information to 3-Lisp (Smith, 1982).

Reflection is an integral part of C#. The following code shows how reflection can be used in C# to

instantiate an instance of a new class X and call a method Y on the instance:

C#
--
// No reflection
var x = new X();
x.Y();

// Reflection
var x = Activator.CreateInstance(null, "X");
var method = x.GetType().GetMethod("Y");
method.Invoke(x, null);

Reflection is used extensively by the APL library. For example, the AutoComposite component uses

reflection to create a new instance of the generic argument TComposite in its Create factory:

C# (APL)
--
public static AutoComposite<TComponent> Create<TComposite>()
where TComposite : IAutoComponent<TComponent> {
 var autoComposite = Activator.CreateInstance<TComposite>();
 var composite = new AutoComposite<TComponent>(autoComposite);
 // … S N I P …
 return composite;
}

Reflection is one of the most fundamental concepts of meta-programming (Klint, 1993). Meta-

programming is the creation of computer instructions that manipulate other computer instructions, or

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

I n t r o d u c t i o n

24

themselves. This manipulation can be done during compile time or run time. Reflection (Sobel &

Friedman, 1996) (Forman & Forman, 2005) is thus an important language feature employed in order

to implement meta-programming. In some programming languages, the language itself is a first-class

data type as in Forth, Rebol and Lisp (Lee & Zachary, 1995). This helps make reflection more natural

in the language.

Meta-programming is used by the APL library to implement what is known as duck typing (Koenig &

Moo, 2005). Duck typing is a type of dynamic typing where an object's current set of methods and

properties determines the valid semantics, rather than its inheritance from a particular class or

implementation of a specific interface. Duck typing refers to the duck test that was coined by James

Whitcomb Riley, which may be phrased as follows: “When I see a bird that walks like a duck and

swims like a duck and quacks like a duck, I call that bird a duck” (Flanagan, 2011, p. 213).

Simple duck typing is possible in C# 4.0 with its new dynamic language features (Nierstrasz, et al., 2005).

The following example shows how the Run method can successfully invoke both Foo and Bar on the

dyn argument:

C#
--
public class X {
 public void Foo() { }
 public void Bar() { }
}

public class Y {
 public void Foo() { }
 public void Bar() { }
}

class Program {
 private static void Run(dynamic dyn) {
 dyn.Foo();
 dyn.Bar();
 }

 private static void Main() {
 var x = new X();
 var y = new Y();
 Run(duck);
 Run(person);
 }
}

A more advanced duck typing implementation can be found in the DuckTaper third party open source

library. This library tries to bridge the gap between the dynamic and static worlds in C#, by allowing a

dynamic object to be used with a static interface.

The article Introducing ‘The C# Ducktaper’ – Bridging the dynamic world with the static world (de Smet, 2008)

explains this phenomenon with the following example:

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

I n t r o d u c t i o n

25

C#
--
interface IDuck {
 void Walk();
 void Walk(int steps);
 object Quack(string name);
 event EventHandler Walking;
}

object possibleDuck = GetDuckFrom(DuckSource.Pond); // Acquire a possibleDuck reference,
 // where possibleDuck probably does not realize
 // the IDuck interface
IDuck duck = possibleDuck.AsIf<IDuck>(); // Try to convert the reference to an IDuck interface
duck.Walking += (o, e) => { Console.WriteLine("Duck is walking"); }; // Use a method on the interface
duck.Walk(); // Use a method on the interface
Console.WriteLine(duck.Quack("Bart")); // Use a method on the interface
duck.Walk // Use a method on the interface

An object possibleDuck is acquired where its contract is unknown. The AsIf extension method, which

is part of the DuckTaper library, will try to convert the possibleDuck instance into an IDuck instance.

The AsIf extension method creates a new class during runtime that implement all of the methods of

the IDuck interface. Thereafter, every request on the duck instance delegates an invocation to the

possibleDuck instance where the method signatures are exactly the same. If no method signature is

available, an exception is thrown. The newly created instance, which implements the IDuck interface,

can be seen as a proxy (Gamma, Helm, Johnson, & Vlissides, 1994) that thunks the method request to

the appropriate target. Thunking can be seen as a wrapper function that directs an invocation to an

appropriate target (Driesen & Hölzle, 1996) (Stroustrup, 1987).

The DuckTaper library can be extended by implementing one’s own method lookup table and

forwarding an invocation request to the appropriate method in the table. This can be achieved by

using the IDynamicInvoker DuckTaper interface, as seen in the following example:

C# (APL)
--
public class AutoAdapter<TTarget, TAdaptee> : IDynamicInvoker
 where TTarget : class {
 private TAdaptee _adaptee;

 // … S N I P …

 public AutoAdapter(TAdaptee adaptee) { … }

 // … S N I P …

 public void RegisterAction(string methodName, AdapterAction<TAdaptee> operation) {
 // … C O N T R A C T S …
 Validate(methodName);
 var method = typeof(TTarget).GetMethod(methodName);
 _operationDictionary.Add(new DynamicMethod(method), operation);
 }

 public void RegisterAction(MethodInfo method, Action operation) { … }

 // … S N I P …

 public object Invoke(string methodName, object[] args) {
 // … S N I P …

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

I n t r o d u c t i o n

26

 var operation = GetAdapteeOperation(methodName, args);
 return operation != null ? operation.DynamicInvoke(_adaptee, args) : null;
 // … S N I P …
 }

 public TTarget Target {
 get { return DoubleCheckedLock<TTarget>.Create(_target, this, () => this.AsIf<TTarget>(true)); }
 }
}

The IDynamicInvoker interface enforces the implementation of the Invoke(string methodName,

object[] args) contract. Every invocation made on the reference returned by the Target property is

delegated to the Invoke method. If an AdapterAction was registered with the instance of the

AutoAdapter with the same method signature as the one received by the Invoke method, then the

AdapterAction is invoked.

AdapterAction APL delegates can be registered with the adapter using the RegisterAction methods.

The simplest RegisterAction method identifies a method just by its name:

C# (APL Example)
--
Adapter.RegisterAction("Foo", x => Console.WriteLine("Hello World" + x.FooBar());

This RegisterAction method cannot be used if method overloading is desired. This is because

multiple methods with the same name, but with different arguments, would then exist. The

RegisterAction method that is supplied with the reflective type MethodInfo can be used for method

overloading:

C# (APL Example)
--
Adapter.RegisterAction(myMethod, x => Console.WriteLine("Hello World") + x.FooBar());

The techniques shown above are used extensively by the APL library in order to create reusable design

pattern components.

The duck typing most used in the APL library is that implemented by means of the DuckTaper library.

The duck typing used is thus not a direct language feature of C#. The DuckTaper library uses reflection

and meta-programming language features in order to achieve duck typing.

1.7.6 Anonymous methods (anonymous functions).

An anonymous method (Microsoft, 2010b) or an anonymous function is an un-named method

defined inside source code and is thus not linked to an identifier. In C# an anonymous method allows

a code block to be passed as arguments instead of a standalone coded method.

Anonymous methods or functions were first added in the Lisp programming language in 1958 (Stoyan,

1984).

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

I n t r o d u c t i o n

27

Anonymous methods can be created in C# by using the delegate keyword:

C#
--
delegate void Action(string text);
Action action = delegate(string text) { Console.WriteLine(text); };

Anonymous methods can also be created in C# by using lambda expressions:

C#
--
Action action = (x) => Console.WriteLine(x);

In C# anonymous methods can only be passed as a code block to a delegate parameter.

1.7.7 Method references or delegates.

In C# a delegate (Microsoft, 2010e) is a special type that references a method signature. A delegate can

be assigned to method implementations with the same method signature. When a delegate is assigned

to a method it can be used in exactly the same way as any other normal method. A delegate can also be

used like any other reference type in C#, where it can be passed in as a method argument or be used as

a class attribute.

Any method that has the same signature as a specific delegate can be linked to that delegate. With

delegates new code can be plugged into defined classes and method calls can be changed during

runtime.

Delegates are used extensively in the APL library. For example, in the ActionCommand APL component

the Action family of delegates is used to describe the Receiver logic:

C# (APL)
--
public class ActionCommand : ICommand { // No arguments
 protected Action ExecuteReceiver;

 public ActionCommand() { }
 public ActionCommand(Action executeReceiver) { ExecuteReceiver = executeReceiver; }

 public void Execute() {
 if(ExecuteReceiver == null) return;
 ExecuteReceiver();
 }
}

C# (APL Example)
--
var concreteCommand = new ActionCommand(() => Console.WriteLine("The command was invoked!"));
invoker.Process(concreteCommand);

In the example above the code block is passed to the ActionCommand constructor with a lambda

expression (J'arvi, Freeman, & Crowl, 2007).

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

I n t r o d u c t i o n

28

1.7.8 Action and Func family of library delegates.

The C# Func group of delegates (Microsoft, 2010h) is used to embody a method that can be used as an

argument without explicitly creating a custom delegate. The referenced method must match the

method definition that is defined by this specific delegate.

The Func group of delegates is implemented in the C# standard library as shown below:

C#
--
public delegate TResult Func<T,TResult>(T arg)
public delegate TResult Func<T1,T2,TResult>(T1 arg1, T2 arg2)
public delegate TResult Func<T1,T2,T3,TResult>(T1 arg1, T2 arg2, T3 arg3)
public delegate TResult Func<T1,T2,T3,T4,TResult>(T1 arg1, T2 arg2, T3 arg3, T4 arg4)
/* … M O R E … */

A Func delegate can also be used with anonymous methods (Eric, 2007). A lambda expression

(Microsoft, 2010i) can be assigned to a Func delegate, as the below example shows:

C#
--
Func<string> function1 = () => return "Hello World";
Console.WriteLine(function1);
/* Output
Hello World
*/

Func<string, string> function2 = (x) => return x;
Console.WriteLine(function2("Hello World"));
/* Output
Hello World
*/

Func<string, string, string> function3 = (x) => return x + " " + y;
Console.WriteLine(function3("Hello", "World"));
/* Output
Hello World
*/

The Action group of delegates (Microsoft, 2010a) in the C# standard library is almost the same as the

Func delegates (Microsoft, 2010h), except that they do not have a return value. They are therefore

actions and not functions. The following example shows the usage of Action delegates together with

lambda expressions (Microsoft, 2010i):

C#
--
Action action1 = () => Console.Write("Hello World");
Action1()
/* Output
Hello World
*/

Action<string> action2 = (x) => Console.Write(x);
Action1("Hello World");
/* Output
Hello World
*/

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

I n t r o d u c t i o n

29

Action<string, string> action3 = (x) => Console.Write(x + y);
Action1("Hello", "World");
/* Output
Hello World
*/

Both the Func and Action delegates are used extensively by the APL library. For example, the

ActionCommand APL component takes an Action as a Receiver that it will invoke in its executing

method:

C# (APL Example)
--
public class ActionCommand : ICommand {
 protected Action ExecuteReceiver;

 public ActionCommand() { }
 public ActionCommand(Action executeReceiver) { ExecuteReceiver = executeReceiver; }

 public void Execute() {
 if(ExecuteReceiver == null) return;
 ExecuteReceiver();
 }
}

The Action and Func C# groups of delegates are not a language feature. They are functionality that is

available because of standard library components. The delegates are mentioned here because they are

used extensively within the APL library components. A language that offers method references or

delegates should be able to offer the same functionality as the Action and Func C# groups of delegates.

1.7.9 Dynamic typing.

C# 4.0 provides a dynamic keyword (Microsoft, 2011b) that adds dynamic typing language features in

what used to be a statically typed language. With static typing, type checking is performed by the

programming language during compile time. With dynamic typing, type checking is performed during

runtime. A dynamic language thus does not do type checking during compile time (Scott, 2009). The

type of an expression or variable is not necessarily known at compile time. Storage limitations are

verified only during run time and are overlooked at compile time. Semantic analysis thus transpires

only at run time.

The C# 4.0 programming language can be seen as both dynamic and static because it has features that

support both (Hejlsberg, Torgersen, Wiltamuth, & Golde, 2010). C# first started off as a statically

typed language. It has been transformed into a hybrid dynamically typed language in which one uses

the newly added dynamic features. In C# 4.0 an object defined as type dynamic sidesteps static type

checking entirely.

The Dynamic Language Runtime (DLR) (Hugunin, 2007) is one of the latest APIs in the .NET

Framework. It offers the mechanism that implements the dynamic type features in C# and is used

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

I n t r o d u c t i o n

30

extensively by new dynamic programming languages in .NET such as IronPython (Python Software

Foundation, 2011) and IronRuby (Ruby-Doc.Org, 2011).

The new dynamic features in the C# language are not used extensively by the APL library. This is

because design patterns are usually strongly typed by nature. The chain of responsibly (Gamma, Helm,

Johnson, & Vlissides, 1994) APL component DynamicChainOfResponsibility uses the dynamic

keyword in C#:

C# (APL Example)
--
var factory = new DynamicChainOfResponsibilityFactory();
dynamic handler = factory.Create(…);
handler.Foo(…);

The Foo method on the chain of responsibility Handler instance handler, which is of type dynamic, is

evaluated during runtime. If the Foo method is not found on the Handler then it is invoked on the

next Handler in the chain until one is found or the end of the chain is reached.

1.7.10 Lambda expressions.

A lambda expression is an anonymous function containing statements and expressions (Samko, et al.,

2006). In C# a lambda expression can be used to create expression tree types and delegates

(Torgersen, 2007). Lambda expressions offer an abridged and functional syntax for writing anonymous

methods. In C#, the arguments of a lambda expression can be explicitly or implicitly typed. The

arguments of a lambda expression may thus be explicit or inferred.

Church invented lambda expressions with his creation of lambda calculus in 1936, where all methods

are anonymous (Church, 1936). Landin's classical paper of 1965 shows that lambda calculus can be

successfully implemented and used in a procedural programming language such as ALGOL 60

(Landin, 1965).

Lambda expressions in C# use the operator => (Microsoft, 2010i). The lambda operator is read as “goes

to” (Microsoft, 2010i). Input parameters are specified by the left side of the operator. The right side of

the operator defines the statement block or expression. Lambda expressions can also be assigned to

delegates (Kennedy, 2006):

C#
--
delegate int Sum(int i);
static void Main() {
 Sum theDelegate = x => x + x;
 int i = theDelegate(15);
 Console.WriteLine("Sum : " + i); // Sum : 30
}

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

I n t r o d u c t i o n

31

The code on the previous page can be refined by replacing the Sum delegate with the Func<T, TResult>

generic delegate that is supplied by the .NET framework:

C#
--
static void Main() {
 Func<int, int> sum = x => x + x;
 int i = sum(15);
 Console.WriteLine("Sum : " + i); // Sum : 30
}

Lambda expressions are available in a large number of programming languages, especially functional

languages, such as Haskell (Thompson, 1999), Lisp (Seibel, 2004), Erlang (Armstrong, 2007), Scala

(Wampler & Payne, 2009) and F# (Smith, 2009).

The inclusion of lambda functions in C# shows its shift to a more declarative style of programming

(Lloyd, 1994) as in functional languages. Lambda expressions are used extensively in the APL library.

For example the AutoAbstractFactory APL component takes in the Factory<TResult> family of

creational delegates. The code below shows how a lambda expression () => new ProductA1() is used

to inject a creational anonymous function with the RegisterOperation for the "CreateProductA"

method available on the IAbstractFactory interface:

C# (APL Example)
--
var factory = new AutoAbstractFactory<IAbstractFactory>();
// Register a creational lambda expression representing the CreateProductA method on the AbstractFactory
factory.RegisterOperation<IAbstractProductA>("CreateProductA", () => new ProductA1());

1.8 Contributions of this Thesis

This section provides an overview of the scientific contributions of this thesis. The thesis has

 shown that modern language features are beneficial in the creation of reusable design pattern

components.

 shown that duck typing (Koenig & Moo, 2005) is a powerful language feature with which to

implement reusable design patterns.

 built on the argument that reusable design patterns are a useful solution for the traceability,

reusability, implementation overhead and maintainability problems associated with design

patterns.

 shown that it is possible to implement reusable design pattern components in C#.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

32

 C h a p t e r 2

2 PROTOTYPE

2.1 Introduction

Prototypes (Gamma, Helm, Johnson, & Vlissides, 1994) (Meyer, 2000) enable clients to select at run-

time what objects they want to create. The prototype pattern provides a simple solution for facilitating

dynamic object creation (Nierstrasz, et al., 2005) and run-time management of a registry of objects.

The intent of the prototype design pattern is to create a new instance by making a copy of an existing

prototype object during run time.

2.1.1 Structure.

The following figure shows the formal structure of the prototype design pattern:

Figure 1. Prototype formal structure.

2.1.2 Participants.

The classes and/or objects participating in the prototype design pattern are:

 Prototype

The Prototype is the class that declares the cloning interface.

Clone()

Prototype

Clone()

ConcretePrototype1

return copy of self

Operation()

Client

Clone()

ConcretePrototype2

return copy of self

p = prototype.Clone()

prototype

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

C r e a t i o n a l P a t t e r n s

33

 ConcretePrototype

The ConcretePrototype is the class that implements the cloning interface.

 Client

The Client is the user of the Prototype asking it to clone itself.

2.2 Library Components

2.2.1 The Prototype component.

The prototype component is implemented by a DeepCopy generic extension method (Microsoft, 2010g).

The DeepCopy extension method thus makes a clone from an original object. The extension method is

generic, and so the method is available on all classes of type T:

C# (APL)
--
namespace Apl.Pattern.Gof.Creational.Prototype {
 public static class PrototypeExtention {
 static public T DeepCopy<T>(this T obj) {
 Contract.Requires<ArgumentNullException>(obj != null, "Input argument obj cannot be null");
 Contract.Ensures(Contract.Result<T>() != null);
 return PrototypeHelper<T>.DeepCopy(obj);
 }
 }

 // … S N I P …
}

The actual clone or copy processing of the original object is delegated to the DeepCopy method on the

generic PrototypeHelper APL component:

C# (APL)
--
public static T DeepCopy(T obj) {
 Contract.Requires<ArgumentNullException>(obj != null, "Input argument obj cannot be null");
 Contract.Ensures(Contract.Result<T>() != null);
 var memoryStream = new MemoryStream(); // Create a new memory stream
 var binaryFormatter = new BinaryFormatter(); // Create a new binary formatter
 binaryFormatter.Serialize(memoryStream, obj); // Serialize the object to the memory stream
 memoryStream.Seek(0, SeekOrigin.Begin); // Go back to the beginning of the stream
 var copy = (T)binaryFormatter.Deserialize(memoryStream); // Deserialize the memory to an object
 memoryStream.Close(); // Close the stream
 return copy; // Return the deserialized object
}

The DeepCopy extension method first serializes the state of the prototype to a memory stream. Next, it

deserializes the memory stream back into a new copy with the original state of the Prototype. The

DeepCopy extension method uses the same technique shown by Bishop in her book C# 3.0 Design

Patterns (Bishop, 2007).

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

C r e a t i o n a l P a t t e r n s

34

The DeepCopy extension method is thus available on any object that uses the

Apl.Pattern.Gof.Creational.Prototype namespace:

C# (APL Example)
--
// Namespace that makes the DeepCopy extension method available
uses Apl.Pattern.Gof.Creational.Prototype {
 // … S N I P …
 var newFoo = foo.DeepCopy();
 // … S N I P …
}

A slight drawback of the prototype component is that the class being copied must be attributed with

the C# Serializable (Bishop, 2007) (Albahari & Albahari, 2007) (Microsoft, 2010k) attribute.

The C# NonSerialized (Albahari & Albahari, 2007) attribute can be used to control which fields of a

prototype class must not be copied:

C# (APL Example)
--
[Serializable]
class ThePrototype {
 private string _state1;
 [NonSerialized] private string _state2; // Don’t serialize this field…
 private string _state3;
 // … S N I P …
}

In the above code, the _state2 field will not be serialized when the DeepCopy method is invoked on an

instance of the ThePrototype class, thus giving more control on how the object must be cloned.

2.3 Theoretical Examples

The following example shows how the prototype component is used in a formal pattern setting. At the

heart of the prototype design pattern is the clone operation. When using the APL library the clone

operation is automatically added to all classes by using the extension method C# language feature

(Microsoft, 2010g). The hand coded implementation of the clone method is thus no longer necessary

as per the traditional pattern. The only constraint that exists is that the ConcretePrototype must be

attributed with the Serializable attribute.

In the following theoretical example, Prototype defines a Prototype with a base state:

C# (APL Example)
--
[Serializable]
abstract class Prototype {
 private readonly string _state;
 protected Prototype(string state) { _state = state; }
 public string State { get { return _state; } }
}

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

C r e a t i o n a l P a t t e r n s

35

Note that no hand coded clone method is defined on the Prototype class. Next, ConcretePrototype1

and ConcretePrototype2 classes are implemented, that define the ConcretePrototypes:

C# (APL Example)
--
[Serializable]
class ConcretePrototype1 : Prototype { public ConcretePrototype1(string state) : base(state) {} }
[Serializable]
class ConcretePrototype2 : Prototype { public ConcretePrototype2(string state) : base(state) {} }

Both of the ConcretePrototypes must have the Serializable attribute. This is because the internal

engine of the prototype component serializes and deserializes the entire prototype in order to make the

copy. The ConcretePrototypes can now use the DeepCopy extension method from the APL library in

order to make a clone of themselves:

C# (APL Example)
--
var concretePrototype1 = new ConcretePrototype1("Foo");
var copy1 = concretePrototype1.DeepCopy(); // Make a clone of the concretePrototype1 object
Console.WriteLine("Cloned : {0}", concretePrototype1.State);
var concretePrototype2 = new ConcretePrototype2("Bar");
var copy2 = concretePrototype2.DeepCopy(); // Make a clone of the concretePrototype2 object
Console.WriteLine("Cloned : {0}", concretePrototype2.State);

/*
Output:
Cloned : Foo
Cloned : Bar
*/

The output of this example shows that the state of the newly copied objects is the same as the original

state.

2.4 Outcome

The componentization of the prototype design pattern is a partial success because it meets most of the

requirements listed in section 1.4:

 Completeness: The prototype design pattern library component covers all cases described in

the original design pattern.

 Usefulness: The prototype design pattern library component is partially useful because it does

not solve all of the prototype scenarios desired by a developer. A developer can fine-tune

which parts of a Prototype instance must or must not be cloned, using the NonSerialized C#

(Albahari & Albahari, 2007) attribute. When cloning, however, deep and shallow copying

should be taken into consideration for composition, aggregation and association relationships.

Aggregation characterises a part-of or part-whole relationship. Composition is a stronger type

of association relationship. Composition generally has a strong life cycle dependency. If a class

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

C r e a t i o n a l P a t t e r n s

36

holding a composition relationship is destroyed, usually every composition instance that it

holds is destroyed as well. An association represents a weaker relationship, for example where

a container instance needs to send messages to the associated dependent instance. An

association can thus be a reference to a service instance. Ideally, when cloning an instance, a

deep copy should be performed on composition relationships and a shallow copy should be

performed on aggregation and association relationships. Unfortunately, in C# there is no

meta-information available that define the three different relationships. The reusable

component thus can only implement a deep copy.

 Faithfulness: The implementation of the prototype pattern follows a path slightly different

from the original pattern described in Design Patterns (Gamma, Helm, Johnson, & Vlissides,

1994). In Design Patterns an interface is defined with a clone method. All classes which

implement the prototype design pattern implement the prototype interface. The

implementation of the prototype pattern in the APL library injects a clone method into classes

using C# extension methods (Esterbrook, 2001) (Jesse & Xie, 2008). The end structure is the

same however, where a clone method is available on a certain class. A slight drawback is that a

class must be attributed with the Serializable C# (Albahari & Albahari, 2007) attribute in

order to participate within the reusable prototype pattern.

 Type-safety: The prototype library component is fully type-safe.

 Extended applicability: The prototype library component does not cover more cases than

the original prototype pattern.

 Performance: Serialization will always be slower than manually creating a clone algorithm for

a certain class. This is because serialization must use reflection and must thus evaluate the

meta-information of a certain object during runtime. Serialization is, however, used extensively

in C# libraries such as WCF and Object Relational Mappers (ORM), and is thus a valid

solution.

The prototype library component is partially componentized because the developer using it does not

have to implement any prototype boiler plate code. The prototype library component however can

only be used as a deep copy.

The following language features are fundamental to the implementation or usage of the reusable

prototype design pattern component: Generics (Jagger, Perry, & Sestoft, 2007), Design by Contract™

(Mitchell & McKim, 2001), Mixins (Extension Methods) (Esterbrook, 2001) (Jesse & Xie, 2008) and

Reflection (Sobel & Friedman, 1996) (Forman & Forman, 2005).

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

37

 C h a p t e r 3

3 SINGLETON

3.1 Introduction

The singleton design pattern ensures that that there is only one instance of each class and offers a

universal point of access to it (Gamma, Helm, Johnson, & Vlissides, 1994).

The intent can thus be described as:

 The ability to enforce that a class has only a single instance.

 The ability to avoid redundant instance creation, especially for stateless objects.

 The ability to manage the responsibility of maintaining universal access to the single

instance of a class.

3.1.1 Structure.

The following figure shows the formal structure of the singleton design pattern (Gamma, Helm,

Johnson, & Vlissides, 1994):

Figure 2. Singleton structure.

3.1.2 Participants.

The classes and/or objects participating in the singleton design pattern are:

 Singleton

A Singleton defines a static GetInstance operation on a class that lets clients access its unique

instance. It also governs the creation and controls the subsequent management of its own

unique instance.

-Singleton()

+GetInstance() : Singleton

-instance : Singleton

Singleton

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

C r e a t i o n a l P a t t e r n s

38

3.2 Library Components

3.2.1 The Singleton component.

The singleton component in the APL library is implemented using the curiously recurring template pattern

(Coplien, 1995). This means that the generic singleton component must be inherited from the

Singleton being implemented, as seen below:

C# (APL Example)
--
class TheSingleton : Singleton<TheSingleton> { … }

The following code shows how the reusable Singleton class is implemented in the APL library:

C# (APL)
--
public abstract class Singleton<T> : BaseSingleton<T>
 where T : class {

 // Boolean indicating a Thread Local Static Singleton
 private static readonly bool TLS;

 // Aquire a reference to a Singleton for class T
 public static T Instance {
 get {
 Contract.Ensures(Contract.Result<T>() != null);

 return TLS ? SingletonTLSCreator.Instance : SingletonCreator.Instance;
 }
 }

 static Singleton() {
 var singletonAttribute = GetAttribute();

 if(singletonAttribute != null && singletonAttribute.ThreadStatic)
 TLS = true;
 }

 // … S N I P …

 // Protected Singleton constructor
 protected Singleton() { }

 // A normal Singleton creator
 private class SingletonCreator {
 internal static readonly T Instance = CreateHelper<T>.CreateFromPrivateConstructor();
 }

 // A Thread Local Storage Singleton creator
 private class SingletonTLSCreator {
 [ThreadStatic]
 private static T _instance;

 internal static T Instance {
 // Create a Singleton instance from its private constructor if an instance
 // does not exist already
 get {
 return _instance ?? (_instance = CreateHelper<T>.CreateFromPrivateConstructor());
 }
 }
 }
}

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

C r e a t i o n a l P a t t e r n s

39

Figure 3. UML class diagram of the Singleton APL component.

Figure 3 shows a UML class diagram of the Singleton APL component.

The Singleton component implements two different singleton variants. One is per process and the

other is per thread as shown in the article A Per-Thread Singleton Class (Chaudhry, 2002) and also in the

paper Thread-Specific Storage - An Object Behavioral Pattern for Efficiently Accessing per-Thread State (Harrison

& Schmidt, 1997). The above-mentioned singleton variant is disclosed using the ThreadStatic property

on the APL SingletonAttribute attribute. The implementation of the SingletonAttribute is shown

below:

C# (APL)
--
[AttributeUsage(AttributeTargets.Class, AllowMultiple = false, Inherited = false)]
public class SingletonAttribute : System.Attribute, IPatternClassAttribute {
 public SingletonAttribute() { ThreadStatic = false; }
 public SingletonAttribute(bool threadStatic) { ThreadStatic = threadStatic; }

 public bool ThreadStatic { get; set; }
 public bool Validate(Type classType) { … }
}

The SingletonAttribute APL attribute’s bool ThreadStatic property thus defines whether the

Singleton is single per process or per thread. If it is a Singleton per process, then the single instance is

created using the SingletonCreator inner class in the Singleton component. The Singleton instance is

only created on the very first instantiation of the internal SingletonCreator. The

CreateFromPrivateConstructor method on the CreateHelper helper class creates an instance of the T

T > class

Singleton

- TLS :bool {readOnly}

«Propery»

- Instance :T

- GetAttribute() :SingletonAttribute

- GetSingletonAttributes() :IEnumerable<SingletonAttribute>

- Singleton()

Singleton()

T > class

BaseSingleton

- BaseSingleton()

BaseSingleton()

- Validate() :void

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

C r e a t i o n a l P a t t e r n s

40

class using reflection (Sobel & Friedman, 1996), because the constructor of the Singleton must be

private.

In the Singleton component, the SingletonTLSCreator inner class is used to instantiate a Singleton per

thread (Chaudhry, 2002). A mechanism known as thread local storage is used (Stein & Shah, 1992) in

which a variable is assigned per thread. The ThreadStatic (Microsoft, 2010n) attribute on the

_instance field on the SingletonTLSCreator inner class tells the runtime that a unique instance of the

field must exist per thread. The Instance property on the SingletonTLSCreator class creates an instance

of the thread static Singleton only if one does not already exist for the specific thread on which the

logic is executed.

The Singleton component also inherits from an abstract BaseSingleton<T> class that defines the most

common functionality for all APL Singleton components, such as validations:

C# (APL)
--
public abstract class BaseSingleton<T>
 where T : class {
 static BaseSingleton() { Validate(); }
 protected BaseSingleton() { }
 private static void Validate() { … }
}

3.3 Theoretical Examples

The following example shows the usage of the Singleton APL component:

C# (APL Example)
--
class TheSingleton : Singleton<TheSingleton> { private TheSingleton() { } }

class Program {
 static void Main() {
 var s1 = TheSingleton.Instance;
 var s2 = TheSingleton.Instance;

 if(s1 == s2) {
 Console.WriteLine("Objects are the same instance");
 }

 Console.ReadKey();
 }
}

/* Output
Objects are the same instance
*/

The TheSingleton hand coded class inherits from the Singleton component, passing itself as the

generic argument. The constructor must be made private because the validation in the Singleton

component throws an exception during runtime if the constructor is not private.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

C r e a t i o n a l P a t t e r n s

41

In this example, the client calls the Instance property of TheSingleton twice, storing it in two separate

variables. If no SingletonAttribute APL attribute is placed on the Singleton then the pattern variant

defaults to a singleton per process. The output shows that the variables reference the same instance,

thus the Instance property has returned the same single object.

The next example shows the usage of the Singleton component configured to return an instance per

thread:

C# (APL Example)
--
[Singleton(ThreadStatic = true)]
public class TheSingleton : Singleton<TheSingleton> {
 private TheSingleton() {
 Console.WriteLine("A new singleton was creater on thread id: " +
 Thread.CurrentThread.ManagedThreadId);
 }

 public void DoSomething() { Console.WriteLine("Doing something on thread id: " +
 Thread.CurrentThread.ManagedThreadId); }
}

public class ThreadStaticExample {
 static void Main() {
 var thread1 = new Thread(() => {
 var s1 = TheSingleton.Instance;
 s1.DoSomething();
 var s2 = TheSingleton.Instance;
 s2.DoSomething();
 if(s1 == s2) { Console.WriteLine("Objects are the same instance for thread 1"); }
 });

 var thread2 = new Thread(() => {
 var s1 = TheSingleton.Instance;
 s1.DoSomething();
 var s2 = TheSingleton.Instance;
 s2.DoSomething();
 if(s1 == s2) { Console.WriteLine("Objects are the same instance for thread 2"); }
 });

 thread1.Start();
 thread2.Start();
 Thread.Sleep(10000);

 Console.WriteLine();
 Console.Write("Press any key to exit.");
 Console.Read();
 }
}

/* Output
A new singleton was creater on thread id: 11
Doing something on thread id: 11
Doing something on thread id: 11
Objects are the same instance for thread 1
A new singleton was creater on thread id: 12
Doing something on thread id: 12
Doing something on thread id: 12
Objects are the same instance for thread 2
*/

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

C r e a t i o n a l P a t t e r n s

42

The TheSingleton class is attributed with the Singleton attribute where ThreadStatic is set to true. The

client creates two separate threads during runtime. Each thread calls the Instance property twice. The

output shows that the constructor of the Singleton instance was called twice, once for each thread.

The second call to Instance in each thread has thus not created a new instance of the TheSingleton

class, but returned the instance already allocated to the specific thread.

Figure 4. UML sequence diagram for the thread static Singleton APL component example.

Figure 4 shows a sequence diagram for the thread static Singleton APL component example.

3.4 Outcome

The componentization of the singleton design pattern is a success because it meets all the

requirements listed in section 1.4:

 Completeness: The singleton design pattern library components cover all cases described in

the original core design pattern.

 Usefulness: The singleton design pattern library component is useful because it solves all of

the singleton’s defined intent. The singleton design pattern library component is also easy to

understand and simple to use.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

C r e a t i o n a l P a t t e r n s

43

 Faithfulness: The implementation of the singleton design pattern library component mostly

follows the original pattern described in Design Patterns (Gamma, Helm, Johnson, & Vlissides,

1994). The Singleton implementation has been slightly changed where the static GetInstance

operation that lets clients access its unique instance is replaced by a static read-only Instance

property.

 Type-safety: All of the library components are fully type-safe.

 Extended applicability: The singleton library component covers more cases than the original

singleton pattern. The reusable singleton component allows a Singleton to be created per

thread.

 Performance: Using the singleton component does not have a performance impact.

A developer still needs to make the default constructor of a class private when implementing a

Singleton using the singleton library component. The singleton library component, however, is still

classified as fully componentized because the boiler plate code that must be implemented by a

developer is not significant.

The following language features are fundamental to the implementation or usage of the reusable

singleton component: Inheritance (Mitchell, Mitchell, & Krzysztof, 2003), Generics (Jagger, Perry, &

Sestoft, 2007), Design by Contract™ (Mitchell & McKim, 2001), Attributes (Nagel, Evjen, Glynn, &

Watson, 2010) and Reflection (Sobel & Friedman, 1996) (Forman & Forman, 2005).

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

44

 C h a p t e r 4

4 ABSTRACT FACTORY

4.1 Introduction

The abstract factory design pattern offers an interface for creating families of related objects that assist

in decoupling applications from the concrete implementation of an entire framework or library

(Gamma, Helm, Johnson, & Vlissides, 1994) (McConnell, 1993).

The intent can thus be described as:

 The ability to decouple the concrete family of objects from their users.

 The ability to be able to choose at runtime a concrete factory that implements creational

contracts whose sole responsibility is to instantiate a specific family of related classes.

4.1.1 Structure.

The following figure shows the formal structure of the abstract factory design pattern (Gamma, Helm,

Johnson, & Vlissides, 1994):

Figure 5. Abstract factory structure.

4.1.2 Participants.

The classes and/or objects participating in the abstract factory design pattern are:

AbstractProduct A

Product A2

Product A1

AbstractProduct B

Product B2

Product B1

CreateProductA()

CreateProductB()

AbstractFactory

CreateProductA()

CreateProductB()

ConcreteFactory1

CreateProductA()

CreateProductB()

ConcreteFactory2

«create»

«create»

«create»

«create»

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

C r e a t i o n a l P a t t e r n s

45

 AbstractFactory

An AbstractFactory defines an interface for creational operations that instantiates an

AbstractProduct.

 ConcreteFactory

A ConcreteFactory implements the creational operations with which to instantiate Product

objects.

 AbstractProduct

An AbstractProduct defines an interface for a specific type of Product object.

 Product

A Product defines a concrete product object that implements the AbstractProduct interface. It

is instantiated by the corresponding ConcreteFactory.

 Client

A Client uses the interfaces defined by the AbstractFactory and AbstractProduct participants.

4.2 Library Components

4.2.1 The AutoAbstractFactory component.

The AutoAbstractFactory APL component uses dynamic duck typing (Koenig & Moo, 2005) in order to

hook up creational methods or creational anonymous functions (Ierusalimschy, 2003) with methods

defined in an AbstractFactory contract. The AutoAbstractFactory has one generic argument

TAbstractFactory that defines the AbstractFactory contract. The implementer of the

AutoAbstractFactory must use the RegisterOperation methods to register the creational methods or

creational anonymous functions. Each RegisterOperation method validates whether the registered

creational method signature exists on the TAbstractFactory AbstractFactory interface and adds it to

the internal dictionary if it does:

C# (APL)
--
public sealed class AutoAbstractFactory<TAbstractFactory> : IDynamicInvoker
 where TAbstractFactory : class {
 private readonly Dictionary<DynamicMethod, Delegate> _operationDictionary =
 new Dictionary<DynamicMethod, Delegate>();
 private volatile TAbstractFactory _targetCache;

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

C r e a t i o n a l P a t t e r n s

46

 public AutoAbstractFactory() { _targetCache = null; } // Constructor

 [ContractInvariantMethod]
 private void ContractInvariant() {
 Contract.Invariant(operationDictionary!= null, "The dictionary cannot be null");
 // … M O R E C O N T R A C T S …
 }

 // Register methods for the Factory set of delegates:

 // Register a creational method with no arguments
 public void RegisterOperation<TResult>(string methodName, Factory<TResult> operation) {
 Contract.Requires<ArgumentException>(!string.IsNullOrEmpty(methodName) != null,
 "Argument methodName cannot be null or empty");
 Contract.Requires<ArgumentException>(operation != null,
 "Argument operation cannot be null");
 // … C O N T R A C T S …
 Validate();
 _operationDictionary.Add(new DynamicMethod(operation.Method), operation);
 }

 // Register a creational method with no arguments
 public void RegisterOperation<TResult>(MethodInfo method, Factory<TResult> operation) {
 // … C O N T R A C T S …
 Validate();
 _operationDictionary.Add(new DynamicMethod(method), operation);
 }

 // Register a creational method with one argument
 public void RegisterOperation<TResult, TArg1>(string methodName,
 Factory<TResult, TArg1> operation) { … }

 // Register a creational method with one argument
 public void RegisterOperation<TResult, TArg1>(MethodInfo method,
 Factory<TResult, TArg1> operation) { … }

 // Register a creational method with two arguments
 public void RegisterOperation<TResult, TArg1, TArg2>(string methodName,
 Factory<TResult, TArg1, TArg2> operation) { … }

 // Register a creational method with two arguments
 public void RegisterOperation<TResult, TArg1, TArg2>(MethodInfo method,
 Factory<TResult, TArg1, TArg2> operation) { … }

 // … M O R E …

 // Register methods for the IFactory set of interfaces:

 public void RegisterOperation<TResult>(string methodName, IFactory<TResult> factory) { … }
 public void RegisterOperation<TResult>(MethodInfo method, IFactory<TResult> factory) { … }
 public void RegisterOperation<TResult, TArg1>(string methodName,
 IFactory<TResult, TArg1> factory) { … }
 public void RegisterOperation<TResult, TArg1>(MethodInfo method,
 IFactory<TResult, TArg1> factory) { … }

 // … M O R E …

 public object Invoke(string methodName, object[] args) {
 Contract.Requires<ArgumentException>(!string.IsNullOrEmpty(methodName),
 "Argument path cannot be null");
 var operation = GetOperation(methodName, args);
 if(componentOperation != null) { return operation.DynamicInvoke(args); }

 throw new Exception("Creational method not found");
 }

 public TAbstractFactory Target {

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

C r e a t i o n a l P a t t e r n s

47

 get {
 Contract.Ensures(Contract.Result<TAbstractFactory>() != null);
 return DoubleCheckedLock<TAbstractFactory>.Create(
 _targetCache, this, () => this.AsIf<TAbstractFactory>(true));
 }
 }

 // … S N I P …
}

The RegisterOperation methods accept a string, which defines the creational method name, or a

MethodInfo (Microsoft, 2010j) as the type for its first argument. The second argument defines the

actual creational method. The registered method must be linked to a corresponding method on the

TAbstractFactory AbstractFactory interface. An exception is thrown if the method signature is not

found on the AbstractFactory. When a string is used to identify the method (as opposed to using a

MethodInfo), then method overloading (Meyer, 2001) is not allowed, because no argument information

is supplied and the RegisterOperation thus does not know with what method on the AbstractFactory

it must hook up with. The MethodInfo (Microsoft, 2010j) type, which is an internal .NET type, does

allow method overloading on the AbstractFactory.

Only Factory APL delegates or IFactory APL interfaces can be registered with the

AutoAbstractFactory component. Both the Factory delegates and the IFactory interfaces define

methods that return a newly created instance. A number of Factory delegates exist in the APL library,

each with a different set of arguments:

C# (APL)
--
public delegate TResult Factory<out TResult>();
public delegate TResult Factory<out TResult, in T>(T arg);
public delegate TResult Factory<out TResult, in T1, in T2>(T1 arg1, T2 arg2);
// … M O R E …

A number of IFactory interfaces also exist in the APL library also with a different set of arguments:

C# (APL)
--
public interface IFactory<out TResult> { TResult Create(); }
public interface IFactory<out TResult, in T> { TResult Create(T arg); }
public interface IFactory<out TResult, in T1, in T2> { TResult Create(T1 arg1, T2 arg2); }
// … M O R E …

The Invoke method on the AutoAbstractFactory queries the internal dictionary in order to see whether

an operation was registered for the received method signature. The method signature is part of the

Invoke method’s argument list. If one exists, the operation is invoked and the newly created instance is

returned. If a method is not found, then an exception is thrown. The validation if an implementation is

registered against a method signature on the TAbstractFactory AbstractFactory interface is thus done

only when the method is being invoked by a client.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

C r e a t i o n a l P a t t e r n s

48

The Target property on the AutoAbstractFactory returns an instance of a dynamically created class that

has implementations for all the methods on the TAbstractFactory AbstractFactory interface. Every

invocation on the instance is channelled to the Invoke method, which then calls the appropriate

creational method.

AutoAbstractFactory

OperationDictionary

Key: CreateProductA
Value: { Delegate that
creates an instance of
an IAbstractProductA}

Key: CreateProductB
Value: { Delegate that
creates an instance of
an IAbstractProductB}

Target Register Invoke

ConcreteFactory Dynamically
Created During Runtime

(Realization of IAbstractFactory)

CreateProductA CreateProductB

Figure 6. AutoAbstractFactory APL component overview.

Figure 6 shows a graphical overview of the AutoAbstractFactory component. It indicates the three

main contracts of an AutoAbstractFactory. These are: first, the registration contracts used to register

creational methods; secondly, the Target contract used to retrieve a dynamically created instance of a

ConcreteFactory during runtime and; thirdly, the Invoke contract that is used by the duck typing

(Koenig & Moo, 2005) runtime in order to invoke one of the delegates stored inside the dictionary.

The dynamically created ConcreteFactory, which realizes an AbstractFactory IAbstractFactory,

forwards all local invocations to the Invoke method on the AutoAbstractFactory instance, from where

the call is forwarded to the correct method in the dictionary. For example, a call to the CreateProductA

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

C r e a t i o n a l P a t t e r n s

49

method on the ConcreteFactory is forwarded to the Invoke method on the AutoAbstractFactory.

From there, a delegate that represents the CreateProductA method, and thus a creator of an instance

that realizes the IAbstractProductA interface, is retrieved from the dictionary and executed. The

Product result is then passed to the ConcreteFactory, from where it is passed back to the caller.

The SimpleAutoAbstractFactory component does almost exactly the same as the AutoAbstractFactory

component. However, an AbstractProduct type is registered on the SimpleAutoAbstractFactory

component and not the creational method. The AbstractProduct type is registered together with its

corresponding Product type, as can be seen in the Register<TAbstractProduct, TProduct>() method.

The Register<TAbstractProduct, TProduct>() method adds a creational method for the

AbstractProduct type in the component’s internal dictionary. In order to eliminate ambiguities, only

one creational method that returns a certain AbstractProduct type is allowed on the AbstractFactory

interface when using the SimpleAutoAbstractFactory.

The code below shows the implementation of the SimpleAutoAbstractFactory component in the APL

library:

C# (APL)
--
public sealed class SimpleAutoAbstractFactory<TAbstractFactory> : IDynamicInvoker
 where TAbstractFactory : class {
 private readonly Dictionary<Type, Factory<object>> _factoryDictionary =
 new Dictionary<Type, Factory<object>>();
 private volatile TAbstractFactory _abstractFactoryCache;

 [ContractInvariantMethod]
 private void ContractInvariant() {
 Contract.Invariant(_factoryDictionary != null, "The FactoryDictionary cannot be null");
 }

 public SimpleAutoAbstractFactory() { _abstractFactoryCache = null; }

 public void Register<TAbstractProduct, TProduct>()
 where TConcreteFactory : class, TFactoryInterface, new() {
 // … C O N T R A C T S …

 _factoryDictionary.Add(typeof(TAbstractProduct), () => new TProduct());
 }

 public TAbstractFactory Target {
 get {
 Contract.Ensures(Contract.Result<TAbstractFactory>() != null);
 return DoubleCheckedLock<TAbstractFactory>.Create(
 _abstractFactoryCache, this, () => this.AsIf<TAbstractFactory>(true));
 }
 }

 public object Invoke(string methodName, object[] args) {
 Contract.Requires<ArgumentException>(!string.IsNullOrEmpty(methodName),
 "Argument methodName cannot be null");

 // Go through all of the factory interfaces and find the method
 // with the argument contract.
 var factory = GetFactory(methodName, args);
 if(factory != null) return factory;

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

C r e a t i o n a l P a t t e r n s

50

 throw new Exception("The factory was not found.");
 }

 // … S N I P …
}

The Invoke method of the SimpleAutoAbstractFactory component queries its internal dictionary for

the ConcreteFactory which holds a method that creates, and thus returns, the specific Product. The

query is performed using the AbstractProduct type as a key. If this method is found, then it invokes

the creational method and returns the newly created Product. An exception is thrown if no method is

found. An exception is also thrown if any ambiguity is found.

For example an AbstractFactory creating two AbstractProducts can be used as follows:

C# (APL Example)
--
public interface IAbstractFactory { // AbstractFactory interface
 IProductA CreateProductA(); // Creational method that creates an IProducA AbstractProduct
 IProductB CreateProductB(); // Creational method that creates an IProducB AbstractProduct
}

var factory = new SimpleAutoAbstractFactory<IAbstractFactory>(); // Create a ConcreteFactory
factory.Register<IProductA, ProductA>(); // Register a ProductA against an IProductA AbstractProduct
factory.Register<IProductB, ProductB>(); // Register a ProductB against an IProductB AbstractProduct

The Products ProductA and ProductB are registered against the AbstractProducts they realize. Both of

the AbstractProducts in the above example are return types on creational methods defined on the

IAbstractFactory interface. The factory instance can now be used with the Target property that

returns an instance of a dynamically created ConcreteFactory, which implements the IAbstractFactory

interface. The code snippet below returns an instance of the ProductA class that was registered with the

factory instance:

C# (APL Example)
--
var productA = factory.Target.CreateProductA();

Abstract factories can also be implemented using the prototype (Gamma, Helm, Johnson, & Vlissides,

1994) (Zimmer, 1995) design pattern. For this reason a PrototypeAbstractFactory component also

exists in the APL library. This component behaves almost exactly as the SimpleAutoAbstractFactory,

except that Prototype instances, not Products types, are registered against AbstractProducts.

The registration of creational operations against a certain method available on the Target interface can

be improved by using C# dynamics or lambda expressions, as shown in Appendix I. The same

mechanism can be used for all the components in this thesis that have to register a method that will be

used in a duck typing (Koenig & Moo, 2005) environment.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

C r e a t i o n a l P a t t e r n s

51

4.3 Theoretical Examples

The following theoretical example shows the usage of the AutoAbstractFactory component defined in

the previous section. It defines two AbstractProducts IAbstractProductA and IAbstractProductB:

C# (APL Example)
--
public interface IAbstractProductA { void Bar(); } // AbstractProduct
public interface IAbstractProductB { void Foo(IAbstractProductA a); } // AbstractProduct

Figure 7 shows a sequence diagram for the AutoAbstractFactory example. The full example is shown

after the sequence diagram. It illustrates the registration of an IAbstractProductA AbstractProduct and

the subsequent creation of a Product using the Target property.

Figure 7. UML sequence diagram for the AutoAbstractFactory component example.

The example creates implementations for the AbstractProducts. Each AbstractProduct is given two

implementations:

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

C r e a t i o n a l P a t t e r n s

52

C# (APL Example)
--
[Serializable]
public class ProductA1 : IAbstractProductA { // Product
 public void Bar() { Console.WriteLine("ProductA1: Called Bar"); }
}

[Serializable]
public class ProductB1 : IAbstractProductB { // Product
 public void Bar() { Console.WriteLine("ProductB1: Called Bar"); }
 public void Foo(IAbstractProductA a) {
 Console.WriteLine("ProductB1: Called Foo - uses " + a.GetType().Name);
 }
}

[Serializable]
public class ProductA2 : IAbstractProductA { // Product
 public void Bar() { Console.WriteLine("ProductA2: Called Bar"); }
}

[Serializable]
public class ProductB2 : IAbstractProductB { // Product
 public void Foo(IAbstractProductA a) {
 Console.WriteLine("ProductA2: Called Foo - uses " + a.GetType().Name);
 }
}

An AbstractFactory interface is then defined with two methods that return each AbstractProduct. No

ConcreteFactories are defined, as they are automatically implemented by the abstract factory

components:

C# (APL Example)
--
public interface IAbstractFactory { //AbstractFactory
 IAbstractProductA CreateProductA(); // Creational Method
 IAbstractProductB CreateProductB(); // Creational Method
}

The following code shows the usage of the AutoAbstractFactory component:

C# (APL Example)
--
var factory = new AutoAbstractFactory<IAbstractFactory>();
// Register a creational lambda expression representing the CreateProductA method on the AbstractFactory
factory.RegisterOperation<IAbstractProductA>("CreateProductA", () => new ProductA1());

// Register a creational lambda expression representing the CreateProductB method on the AbstractFactory
factory.RegisterOperation<IAbstractProductB>("CreateProductB", () => new ProductB1());

var productA = factory.Target.CreateProductA(); // Create a productA using the CreateProductA method
productA.Bar(); // Use the productA instance
var productB = factory.Target.CreateProductB(); // Create a ProductB using the CreateProductB method
productB.Foo(productA); // Use the productB instance

/* Output
ProductA1: Called Bar
ProductB1: Called Foo - uses ProductA1
*/

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

C r e a t i o n a l P a t t e r n s

53

In the example above, a factory instance is created with the AutoAbstractFactory component with an

IAbstractFactory AbstractFactory interface. Both of the methods on the AbstractFactory are then

registered with the factory instance, using the RegisterOperation method. The creational method type

is defined by its name “CreateProductA” and the creational logic is injected with a lambda expression

(J'arvi, Freeman, & Crowl, 2007):

C# (APL Example)
--
factory.RegisterOperation<IAbstractProductA>("CreateProductA", () => new ProductA1());

The factory instance is then used in a client environment. The Target property is used to acquire a

dynamically created instance during runtime that realizes the IAbstractFactory AbstractFactory

interface. The AutoAbstractFactory component thus creates a new class during runtime and returns an

instance of it to the calling client. All of the invocations done through the Target property are

forwarded to the AutoAbstractFactory, where the appropriate creational logic is invoked. In the

example, two Products productA and productB are created using the Target property on the factory

instance. The Products are also used in the example.

The output shows that both of the factory calls were successful.

4.4 Outcome

The componentization of the abstract factory design pattern is a success because it meets all the

requirements listed in section 1.4:

 Completeness: The abstract factory design pattern library components cover all cases

described for the original core abstract factory design pattern in Design Patterns (Gamma, Helm,

Johnson, & Vlissides, 1994).

 Usefulness: The abstract factory design pattern library components are useful because they

solve all of the abstract factory’s defined intent. With the AutoAbstractFactory component, a

developer need only inject the creational logic with an instance of the abstract factory

component. A different abstract factory component implementation,

PrototypeAbstractFactory, exists where a Prototype is used for the creation of the Products,

giving the user a different implementation choice. The SimpleAutoAbstractFactory component

is useful when the creation of the Product can be done using the default constructor. The

abstract factory design pattern library components are simple to understand and easy to use.

 Faithfulness: The implementation of the abstract factory pattern differs from the original

pattern described in Design Patterns (Gamma, Helm, Johnson, & Vlissides, 1994). In Design

Patterns the ConcreteFactory participant is manually coded. With the AutoAbstractFactory

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

C r e a t i o n a l P a t t e r n s

54

reusable component, the ConcreteFactory is dynamically created using meta-programming

(Perrotta, 2010). The SimpleAutoAbstractFactory component implementation is also slightly

different where the default constructor is automatically used for Product creation. The

functionality and original intent, however, of the abstract factory pattern, are satisfied for all

the reusable abstract factory library components. All the abstract factory components in the

APL library offer an instance that realizes the AbstractFactory interface.

 Type-safety: The RegisterOperation methods on the AutoAbstractFactory component use

non type-safe string literals for the specification of the method names. Lambda expressions

(expressions trees) (Albahari & Albahari, 2007, p. 317) however, can be used to solve the type-

safe registration problem, as shown in Appendix I. Other than that, all the library components

are fully type-safe.

 Extended applicability: The abstract factory library components do not cover more cases

than the original abstract factory pattern.

 Performance: The abstract factory components do have a performance impact because of the

usage of duck typing (Koenig & Moo, 2005). Appendix II shows the performance impact of

duck typing. The performance impact is, however, acceptable in normal situations.

The abstract factory is fully componentizable because the developer is not tasked with implementing

any boiler plate code when using the reusable abstract factory library components.

The following language features are fundamental to the implementation or usage of the reusable

abstract factory design pattern components: Inheritance (Mitchell, Mitchell, & Krzysztof, 2003),

Interfaces (Pattison & Box, 2000), Generics (Jagger, Perry, & Sestoft, 2007), Design by Contract™

(Mitchell & McKim, 2001), Method References (Microsoft, 2010e), Anonymous Functions

(Ierusalimschy, 2003), Lambda Expressions (Michaelis, 2010), Reflection (Sobel & Friedman, 1996)

(Forman & Forman, 2005), Duck Typing (Koenig & Moo, 2005) and Meta-programming (Perrotta,

2010).

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

55

 C h a p t e r 5

5 FACTORY METHOD

5.1 Introduction

The factory method design pattern is one of the humblest creational patterns. The design pattern is

also known as the virtual constructor (Gamma, Helm, Johnson, & Vlissides, 1994). The pattern

defines an interface for creating a specific object. However, it allows subclasses to resolve which

concrete class to create. The factory method design pattern thus allows a class to delegate object

creation to its subclasses (Gamma, Helm, Johnson, & Vlissides, 1994).

The intent of the factory method pattern can be defined as:

 The ability to support polymorphic object creation.

 The ability to define a contract for instantiating objects and to let the instances of subclasses

decide which concrete objects to create.

5.1.1 Structure.

The following figure shows the formal structure of the factory method design pattern (Gamma, Helm,

Johnson, & Vlissides, 1994):

Product

ConcreteProduct1

FactoryMethod()

AnOperation()

Creator

FactoryMethod()

ConcreteCreator1

product = FactoryMethod()

«create»
return new ConcreteProduct1

ConcreteProduct2
FactoryMethod()

ConcreteCreator2
«create»

return new ConcreteProduct2

Figure 8. Factory method structure.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

C r e a t i o n a l P a t t e r n s

56

5.1.2 Participants.

The classes and/or objects participating in the factory method design pattern are:

 Product

The Product defines the interface of the objects that the factory method creates.

 ConcreteProduct

The ConcreteProduct implements the Product interface.

 Creator

The Creator defines the virtual creational operation that returns an object of type Product.

The Creator may also realize a standard implementation of the factory method that returns a

standard ConcreteProduct object.

 ConcreteCreator

The ConcreteCreator overrides the virtual factory operation in order to return an instance of a

ConcreteProduct.

5.2 Library Components

5.2.1 The ActionCreator component.

The ActionCreator APL component utilises generics (Jagger, Perry, & Sestoft, 2007) in order to

implement a reusable factory method pattern. The user must supply the ActionCreator component

with the Product and ConcreteProduct generic arguments as seen below:

C# (APL Example)
--
var concreteCreator1 = new ActionCreator<IProduct, ConcreteProduct>(x => x.Operation());

The ActionCreator component defines a specific implementation for the factory method pattern. The

ActionCreator has a public constructor that takes in an Action C# delegate (Microsoft, 2010a). The

Action delegate itself takes in the Product as an argument. The delegate, which is supplied by the

client, thus defines what action must be performed with the Product. The ActionCreator has two

public methods, Create and Execute. The Create method returns a new instance of the

ConcreteProduct. The ConcreteProduct type, which is supplied as a generic argument, must have a

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

C r e a t i o n a l P a t t e r n s

57

default constructor. This is because the ActionCreator component creates an instance of the

ConcreteProduct using the new C# keyword on the ConcreteProduct generic type, as seen below:

public TProduct Create() { return new TConcreteProduct(); }

The Execute method defines a universal method that invokes a registered action using the newly

created Product. This reusable pattern component thus generalises and componentizes one of the

most common usages of the factory method pattern.

Figure 9. UML class diagram of the ActionCreator APL component.

Figure 9 shows a UML class diagram of the ActionCreator. The ActionCreator component implements

the IFactory<TProduct> and ICommand APL interfaces that make the component more flexible and

adaptable in other pattern scenarios. Multiple ActionCreator components exist in the APL library,

where each one accommodates the different number of arguments possible for the Execute method.

The ActionCreator can only be used for a specific factory method solution where a specific method

performs a certain action on a newly created Product:

C# (APL)
--
public sealed class ActionCreator<TProduct, TConcreteProduct> : IFactory<TProduct>, ICommand
 where TConcreteProduct : TProduct, new() {
 private readonly Action<TProduct> _action;

 [ContractInvariantMethod]
 private void ContractInvariant() {
 Contract.Invariant(_action != null, "The action cannot be null");
 }

 public ActionCreator(Action<TProduct> action) {

TProduct

TConcreteProduct > TProduct, new()

ActionCreator

{leaf}

- _action :Action<TProduct> {readOnly}

+ ActionCreator(action :Action<TProduct>)

+ Create() :TProduct

+ Execute() :void

«interface»

TResult

BasicFactory::IFactory

+ Create() :TResult

«interface»

Command::

ICommand

+ Execute() :void

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

C r e a t i o n a l P a t t e r n s

58

 _action = action;
 }

 // A well known Create
 public TProduct Create() {
 return new TConcreteProduct();
 }

 // Execute which uses a Factory Method
 public void Execute() {
 _action(Create());
 }
}

The ActionFactoryCreator component is a special variant of the ActionCreator where the creation of

the Product is entrusted to an implementation of the Factory<TProduct> delegate or

IFactory<TProduct> interface. The Factory<TProduct> delegate and IFactory<TProduct> interface are

part of the APL library.

Figure 10. UML class diagram of the ActionFactoryCreator APL component.

Figure 10 shows a UML class diagram of the ActionFactoryCreator. It shows the following: first, the

registration of the Factory and Action delegates in the component’s constructor; secondly, the Create

method that routes its invocation logic to the registered _factory delegate and thirdly, the Execute

method that routes its invocation logic to the registered _action delegate. The IFactory<TProduct>

interface is converted into a Factory<TProduct> delegate in the constructor, where the interface is used.

The code snippet on the next page shows the implementation of the ActionFactoryCreator

component:

TProduct

ActionFactoryCreator

{leaf}

- _action :Action<TProduct> {readOnly}

- _factory :Factory<TProduct> {readOnly}

+ ActionFactoryCreator(factory :IFactory<TProduct>, action :Action<TProduct>)

+ ActionFactoryCreator(factory :Factory<TProduct>, action :Action<TProduct>)

+ Create() :TProduct

+ Execute() :void

«interface»

TResult

BasicFactory::IFactory

+ Create() :TResult

«interface»

Command::

ICommand

+ Execute() :void

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

C r e a t i o n a l P a t t e r n s

59

C# (APL)
--
public sealed class ActionFactoryCreator<TProduct> : IFactory<TProduct>, ICommand {
 private readonly Factory<TProduct> _factory;
 private readonly Action<TProduct> _action;

 [ContractInvariantMethod]
 private void ContractInvariant() {
 Contract.Invariant(_factory != null, "The factory cannot be null");
 Contract.Invariant(_action != null, "The action cannot be null");
 }

 // Register the action and the factory through the constructor
 public ActionFactoryCreator(IFactory<TProduct> factory, Action<TProduct> action) {
 _factory = factory.Create;
 _action = action;
 }

 // Register the action and the factory through the constructor
 public ActionFactoryCreator(Factory<TProduct> factory, Action<TProduct> action) {
 _factory = factory;
 _action = action;
 }

 public TProduct Create() { // Route the Create invocation to _ factory
 Contract.Ensures(Contract.Result<TProduct>() != null);
 return _factory();
 }

 public void Execute() { _action(Create()); } // Route the Execute invocation to the _action delegate
}

In the above code, the Create method delegates the creation of the Product to the registered _factory

delegate. This is slightly more adaptable than the original ActionCreator component, in which the

generic Product is forced to have a default constructor.

There are also multiple ActionFactoryCreator components in the APL library, each one catering for

the different number of possible arguments.

C# Action delegates (Microsoft, 2010a) define methods that take in a specific set of arguments and

that do not return anything. The APL library also has FuncCreator components that use Func

(Microsoft, 2010h) delegates rather than Action delegates:

C# (APL)
--
public sealed class FuncCreator<TProduct, TConcreteProduct, TResult> : IFactory<TProduct>
 where TConcreteProduct : TProduct, new() {
 private readonly Func<TProduct, TResult> _func

 [ContractInvariantMethod]
 private void ContractInvariant() {
 Contract.Invariant(_func != null, "The function cannot be null");
 }

 public FuncCreator(Func<TProduct, TResult> func) {
 _func = func;
 }

 public TProduct Create() {
 Contract.Ensures(Contract.Result<TProduct>() != null);

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

C r e a t i o n a l P a t t e r n s

60

 return new TConcreteProduct();
 }

 public TResult Execute() {
 return _func(Create());
 }
}

Figure 11. UML class diagram of the FuncCreator APL component.

Figure 11 shows a UML class diagram of the FuncCreator component. An Execute method is defined

on the FuncCreator that returns a certain value. The Execute method is thus a function, because it has a

return value. Note that the FuncCreator no longer implements the ICommand interface. This is because

the Execute method on the ICommand interface does not return any value and is thus not a function.

A FuncFactoryCreator also exists in the APL library. The FuncFactoryCreator component is a special

variant of the FuncCreator where the creation of the Product is entrusted to an implementation of the

Factory<TProduct> delegate or an IFactory<TProduct> interface. The execute method of a

FuncFactoryCreator is a function, and thus returns a value.

The code below shows the implementation of the FuncFactoryCreator APL component:

C# (APL)
--
public sealed class FuncFactoryCreator<TProduct, TResult> : IFactory<TProduct>
 private readonly Factory<TProduct> _factory;
 private readonly Func<TProduct, TResult> _func;

 [ContractInvariantMethod]
 private void ContractInvariant() {
 Contract.Invariant(_factory != null, "The factory cannot be null");

TProduct

TConcreteProduct > TProduct, new()

TResult

FuncCreator

{leaf}

- _func :Func<TProduct, TResult> {readOnly}

+ Create() :TProduct

+ Execute() :TResult

+ FuncCreator(func :Func<TProduct, TResult>)

«interface»

TResult

BasicFactory::IFactory

+ Create() :TResult

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

C r e a t i o n a l P a t t e r n s

61

 Contract.Invariant(_func != null, "The action cannot be null");
 }

 // Register the action and the factory through the constructor
 public ActionFactoryCreator(IFactory<TProduct> factory, Func<TProduct> func) {
 _factory = factory.Create;
 _func = func;
 }

 // Register the action and the factory through the constructor
 public ActionFactoryCreator(Factory<TProduct> factory, Func<TProduct> func) {
 _factory = factory;
 _func = func;
 }

 public TProduct Create() { // Route the Create invocation to the _factory delegate
 Contract.Ensures(Contract.Result<TProduct>() != null);
 return _factory();
 }

 public TResult Execute() { return _func(Create()); } // Route the Execute invocation to the
 // _func delegate
}

A number of FuncCreator and FuncFactoryCreator components are also present in the APL library,

each one catering for a certain set of arguments.

The last ActionCreator variant in the APL library is the ActionPrototypeCreator component. This

component serves the same function as the ActionCreator, except that a Product instance is registered

with the component during its construction:

C# (APL)
--
public sealed class ActionPrototypeCreator<TProduct> : IFactory<TProduct>, ICommand {

 private readonly TProduct _product;
 private readonly Action<TProduct> _action;

 protected ActionPrototypeCreator(TProduct product, Action<TProduct> action) {
 _product = product;
 _action = action;
 }

 public void Execute() {
 action(Create());
 }

 // Use the Prototype component in order to return a clone of the _product instance
 public TProduct Create() {
 Contract.Ensures(Contract.Result<TProduct>() != null);

 return _product.DeepCopy();
 }
}

The ActionPrototypeCreator component uses a Product instance in order to clone it in the Create

method, instead of using the Product’s default constructor or an injected factory delegate. It thus

implements an extension (Dyson & Anderson, 1997) of the factory method where the prototype pattern

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

C r e a t i o n a l P a t t e r n s

62

(Gamma, Helm, Johnson, & Vlissides, 1994) is used. The cloning mechanism uses the prototype APL

component.

Figure 12. UML class diagram of the ActionPrototypeCreator APL component.

Figure 12 shows a UML class diagram of the ActionPrototypeCreator APL component. It shows that

the component’s constructor takes in a Product, which is cloned in the Create method. It also shows

the component’s implementation of the IFactory and ICommand APL interfaces.

Once again, multiple ActionPrototypeCreator and FuncPrototypeCreator components are defined in

the APL library, depending on the number of desired arguments.

5.3 Theoretical Examples

The following example shows the usage of the ActionCreator, ActionPrototypeCreator and

ActionFactoryCreator components. The code below shows the definitions of the ConcreteProduct1

and the ConcreteProduct2 classes, both of which implement the IProduct interface and are serializable:

C# (APL Example)
--
public interface IProduct { void Operation(); }

[Serializable]
class ConcreteProduct1 : IProduct {
 public void Operation() { Console.WriteLine("Calling operation on ConcreteProduct1 …"); }
}

[Serializable]

TProduct

ActionPrototypeCreator

{leaf}

- _action :Action<TProduct> {readOnly}

- _product :TProduct {readOnly}

+ ActionPrototypeCreator(product :TProduct, action :Action<TProduct>)

+ Create() :TProduct

+ Execute() :void

«interface»

TResult

BasicFactory::IFactory

+ Create() :TResult

«interface»

Command::ICommand

+ Execute() :void

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

C r e a t i o n a l P a t t e r n s

63

class ConcreteProduct2 : IProduct {
 public void Operation() { Console.WriteLine("Calling operation on ConcreteProduct2 …"); }
}

public static class OperationHelper {
 public static void AnOperation(IProduct product) { product.Operation(); }
}

In the above example code, some action logic resides in the OperationHelper that is registered with the

ActionCreator components.

The concreteCreatorA instance, shown in the example code below, is created using the ActionCreator

component together with the AnOperation method action logic that is defined on the OperationHelper

static class. The concreteCreatorA instance is also created with the IProduct and ConcreteProduct1

generic arguments, notifying the component of its Product and ConcreteProduct types. The

concreteCreatorB instance is created using the ActionPrototypeCreator component, also with the

AnOperation method action logic that is defined on the OperationHelper static class. The

concreteCreatorB instance is also created with a ConcreteProduct2 instance that the component will

use as a Prototype. An instance of the ActionFactoryCreator component is created where both the

creational logic and action logic are injected using lambda expressions (Samko, et al., 2006):

C# (APL Example)
--
class FactoryMethodExample {
 static void Main() {
 var concreteCreatorA = new ActionCreator<IProduct, ConcreteProduct1>(OperationHelper.AnOperation);
 concreteCreatorA.Execute();

 var concreteCreatorB = new ActionPrototypeCreator<IProduct>(new ConcreteProduct2(),
 OperationHelper.AnOperation);
 concreteCreatorB.Execute();

 var concreteCreatorC = new ActionFactoryCreator<IProduct>(() => new ConcreteProduct2(),
 x => x.Operation() + "[More]");
 concreteCreatorC.Execute();

 Console.WriteLine("Press Enter to exit.");
 Console.ReadLine();
 }
}

/* Output
Calling operation on ConcreteProduct1 …
Calling operation on ConcreteProduct2 …
Calling operation on ConcreteProduct2 …[More]
*/

In the example code above, the ConcreteCreators are created and their specific Execute methods are

invoked, thus executing the desired action on each created Product. It can be seen in the output that

the Operation method on the correct ConcreteProduct is called successfully by all the

ConcreteCreators.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

C r e a t i o n a l P a t t e r n s

64

5.4 Outcome

The componentization of the factory method design pattern is a partial success because it meets some

of the requirements listed in section 1.4:

 Completeness: The factory method design pattern library components cover all cases

described in the original core design pattern.

 Usefulness: A factory method design pattern implementation is largely structural and cannot

be successfully componentized. With the ActionCreator group of components, a fully

functional factory method can be implemented, which thus makes the component reusable.

However, its usefulness is debatable, as there might be scenarios where a developer wishes to

add multiple abstract factories to the same class. Furthermore, implementing a fully functional

abstract factory by hand is a simple task and the reusable component might be an overhead in

certain scenarios. Also, a factory method usually blends into an existing class in a system

design, and is not a standalone element. For these three reasons, the componentization of the

factory method design pattern can be regarded as only partially successful. Nevertheless, there

are certain scenarios in which the ActionCreator is functionally adequate and can be regarded

as useful. An instance of an ActionCreator realizes the ICommand pattern and can be used by the

command patterns described later in this thesis.

 Faithfulness: Some elements of the implementation of the factory method pattern follow the

original pattern described in Design Patterns (Gamma, Helm, Johnson, & Vlissides, 1994). The

reusable ActionFactoryCreator component follows the original core pattern described in Design

Patterns (Gamma, Helm, Johnson, & Vlissides, 1994), except for the creational method as a

constant name, namely Execute. The ActionCreator, however, is slightly different to the

implementation mentioned in Design Patterns (Gamma, Helm, Johnson, & Vlissides, 1994)

where the default constructor of a specific ConcreteProduct type is used for the

ConcreteProduct creation. The ActionPrototypeCreator component, which uses a Prototype

for ConcreteProduct creation, is mentioned in Design Patterns (Gamma, Helm, Johnson, &

Vlissides, 1994). Using a Prototype for ConcreteProduct creation, however, does not form

part of the core factory method pattern (Gamma, Helm, Johnson, & Vlissides, 1994).

 Type-safety: All of the library components are fully type-safe.

 Extended applicability: The factory method library components cover more cases than the

original core factory method pattern in Design Patterns (Gamma, Helm, Johnson, & Vlissides,

1994). The ActionPrototypeCreator and FuncPrototypeCreator components use a Prototype in

order to create the ConcreteProduct. The Prototype usage, as a variant implementation of the

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

C r e a t i o n a l P a t t e r n s

65

factory method, is mentioned in Design Patterns (Gamma, Helm, Johnson, & Vlissides, 1994),

however not as the core implementation.

 Performance: The factory method components do not have a performance impact.

The following language features are fundamental to the implementation or usage of the reusable

factory method design pattern components: Inheritance (Mitchell, Mitchell, & Krzysztof, 2003),

Interfaces (Pattison & Box, 2000), Generics (Jagger, Perry, & Sestoft, 2007), Design by Contract™

(Mitchell & McKim, 2001), Attributes (Nagel, Evjen, Glynn, & Watson, 2010), Method References

(Microsoft, 2010e), Anonymous Functions (Ierusalimschy, 2003), Lambda Expressions (Michaelis,

2010) and Reflection (Sobel & Friedman, 1996) (Forman & Forman, 2005).

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

66

 C h a p t e r 6

6 FLYWEIGHT

6.1 Introduction

The flyweight pattern is suitable wherever there is the possibility of a large number of instances of the

same class, with some partial common state, of which the non-common part can be evaluated with

arguments. The flyweight design pattern is thus used where a large number of fine grained objects are

shared for maximum efficiency (Gamma, Helm, Johnson, & Vlissides, 1994).

6.1.1 Structure.

The following figure shows the formal structure of the flyweight design pattern (Gamma, Helm,

Johnson, & Vlissides, 1994):

GetFlyweight(in key)

Flyweight

Factory
Operation(in ExtrinsicState)

Flyweight

1

Flyweights

0..*

Operation(in ExtrinsicState)

allState

UnsharedConcreteFlyweight

Operation(in ExtrinsicState)

intrinsicState

ConcreteFlyweight

Client

if(flyweight(key) exists)

 return flyweight(key)

else {

 create new flyweight;

 add it to the pool of flyweights;

 return the new flyweight;

}

Figure 13. Flyweight structure.

6.1.2 Participants.

The classes and/or objects participating in the flyweight design pattern are:

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

S t r u c t u r a l P a t t e r n s

67

 Flyweight

A Flyweight defines an interface that flyweight objects can use in order to process messages

with extrinsic state.

 ConcreteFlyweight

The ConcreteFlyweight implements the operations of the Flyweight interface. It also stores

the intrinsic state if it exists. The stored state must be intrinsic, which means that the state

must not influence the ConcreteFlyweight object's functional context. All ConcreteFlyweight

instances must be sharable.

 UnsharedConcreteFlyweight

The Flyweight interface does not enforce sharing. A Flyweight subclass thus does not need to

be shared. UnsharedConcreteFlyweight instances are usually concrete and hold a state that

influences the object’s functional context. An UnsharedConcreteFlyweight can have a child

ConcreteFlyweight as a subclass.

 FlyweightFactory

This is the class that instantiates, controls and manages flyweight objects. It enforces the

sharing of flyweight objects through a common acquisition operation. On the demand of a

client or user, the FlyweightFactory returns an existing flyweight or creates a new one if none

exists. The FlyweightFactory thus returns an existing Flyweight, or creates a new one if none

exists, on demand.

 Client

The Client holds a reference to the Flyweights that were acquired by the FlyweightFactory. It

also regulates and probably manages and stores, or has some control over, the extrinsic state of

Flyweights.

6.2 Library Components

6.2.1 The FlyweightFactory component.

The FlyweightFactory APL component lies at the heart of the reusable flyweight pattern

implementation. The component is defined as a Singleton (Gamma, Helm, Johnson, & Vlissides,

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

S t r u c t u r a l P a t t e r n s

68

1994) that holds an internal Flyweight cache (Drepper, 2007). The code below shows the

implementation of the FlyweightFactory APL component:

C# (APL)
--
public class FlyweightFactory<TKey, TConcreteFlyweight> :
 Singleton<FlyweightFactory<TKey, TConcreteFlyweight>> { // The FlyweightFactory is a Singleton
 private IFlyweightCache<TKey, TConcreteFlyweight> _cache; // Internal Flyweight cache

 // … S N I P …

 [ContractInvariantMethod]
 private void ContractInvariant() {
 Contract.Invariant(_cache != null, "The cache cannot be null");
 }

 // Constructor is private because the FlyweightFactory is a Singleton
 private FlyweightFactory(DictionaryType type) { CreateCache(type); }

 // Constructor is private because the FlyweightFactory is a Singleton
 private FlyweightFactory() : this(DictionaryType.BinaryTree) { }

 public TConcreteFlyweight GetFlyweight(TKey key) {
 Contract.Requires<ArgumentNullException>(key!= null, "Argument key cannot be null");
 Contract.Ensures(Contract.Result<TConcreteFlyweight>() != null);
 TConcreteFlyweight flyweight;

 lock(this) {
 if(!GetFlyweight(key, out flyweight)) { // Get a Flyweight object for the given key
 Construct(key, out flyweight); // If the Flyweight does not exist create it…
 _cache.Add(key, flyweight); // … and add it into the internal cache
 }
 }

 return flyweight;
 }

 public TConcreteFlyweight this[TKey key] { get { return GetFlyweight(key); } }
 public int Count { get { return _cache.Count; } } // Get the number of Flyweight objects in the cache

 protected virtual void Construct(TKey key, out TConcreteFlyweight flyweight) {
 Contract.Requires<ArgumentNullException>(key!= null, "Argument key cannot be null");
 Contract.Ensures(flyweight != null);

 var args = new object[1];
 args[0] = key;

 flyweight = CreateHelper<TConcreteFlyweight>.CreateFromPrivateConstructor(args);
 }

 private void CreateCache(DictionaryType type) {
 Contract.Ensures(cache != null);

 var factory = new FlyweightCacheFactory<TKey, TConcreteFlyweight>();
 _cache = factory.Create(type);
 }

 private IFlyweightCache<TKey, TConcreteFlyweight> GetCache() { return _cache; }

 private bool GetFlyweight(TKey key, out TConcreteFlyweight flyweight) {
 Contract.Ensures(flyweight != null);

 return _cache.TryGetValue(key, out flyweight);
 }
}

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

S t r u c t u r a l P a t t e r n s

69

Figure 14. UML class diagram of the FlyweightFactory APL component.

Figure 14 shows a UML class diagram of the FlyweightFactory. This diagram shows how the

FlyweightFactory is associated with the IFlyweightCache interface that is used to register and retrieve

ConcreteFlyweight instances according to a certain key. The diagram also shows the

DictionaryFlyweightCache that is a realization of the IFlyweightCache interface.

The reusable APL Singleton component is used to enforce the singleton nature of the

FlyweightFactory component. The FlyweightFactory component takes two generic arguments TKey

and TConcreteFlyweight. TKey defines the key type of the Flyweight where TConcreteFlyweight defines

the actual instance of the Flyweight. The FlyweightFactory thus creates only one specific

ConcreteFlyweight type, which is defined by the TConcreteFlyweight generic argument. The TKey

generic argument defines the key type that is used to determine what specific ConcreteFlyweight

instance must be returned.

The IFlyweightCache interface defines the contract of the internal flyweight cache. The actual

implementation of the IFlyweightCache can be any desired data structure (Knuth, 1968) (Wirth, 1976),

Singleton

TKey

TConcreteFlyweight

FlyweightFactory

- _cache :IFlyweightCache<TKey, TConcreteFlyweight>

«Propery»

- Count :int

Construct(key :TKey, flyweight :TConcreteFlyweight*) :void

- CreateCache(type :DictionaryType) :void

- FlyweightFactory(type :DictionaryType)

- FlyweightFactory()

- GetCache() :IFlyweightCache<TKey, TConcreteFlyweight>

+ GetFlyweight(key :TKey) :TConcreteFlyweight

- GetFlyweight(key :TKey, flyweight :TConcreteFlyweight*) :bool

«indexer»

+ this(key :TKey) :TConcreteFlyweight

TKey

TTheFlyweight

DictionaryFlyweightCache

- _dictionary :IDictionary<TKey, TTheFlyweight> {readOnly}

«Propery»

- Count :int

+ Add(key :TKey, value :TTheFlyweight) :void

+ ContainsKey(key :TKey) :bool

+ Create(type :DictionaryType) :DictionaryFlyweightCache<TKey, TTheFlyweight>

+ Create(dictionary :IDictionary<TKey, TTheFlyweight>) :DictionaryFlyweightCache<TKey, TTheFlyweight>

- DictionaryFlyweightCache(dictionary :IDictionary<TKey, TTheFlyweight>)

- DictionaryFlyweightCache(type :DictionaryType)

DictionaryFlyweightCache()

+ Remove(key :TKey) :bool

+ TryGetValue(key :TKey, value :TTheFlyweight*) :bool

«interface»

TKey

TTheFlyweight

IFlyweightCache

«Property»

- Count :int

+ Add(key :TKey, theFlyweight :TTheFlyweight) :void

+ ContainsKey(key :TKey) :bool

+ Remove(key :TKey) :bool

+ TryGetValue(key :TKey, theFlyweight :TTheFlyweight*) :bool

-_cache

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

S t r u c t u r a l P a t t e r n s

70

such as a dictionary (Weiss, 1999), or any associative array with fast lookups to avoid performance

implications.

The code below shows the implementation of the DictionaryFlyweightCache component:

C# (APL)
--
class DictionaryFlyweightCache<TKey, TTheFlyweight> : IFlyweightCache<TKey, TTheFlyweight> {
 private readonly IDictionary<TKey, TTheFlyweight> _dictionary;

 public DictionaryFlyweightCache(IDictionary<TKey, TTheFlyweight> dictionary) {
 _dictionary = dictionary;
 }

 // … S N I P …
 public void Add(TKey key, TTheFlyweight value) { _dictionary.Add(key, value); }
 public bool ContainsKey(TKey key) { return _dictionary.ContainsKey(key); }

 public bool TryGetValue(TKey key, out TTheFlyweight value) {
 return _dictionary.TryGetValue(key, out value);
 }

 // … S N I P …
}

In the above code snippet, the _dictionary variable itself can be a standard C# runtime .NET

SortedDictionary (Microsoft, 2010l) or a Dictionary (Microsoft, 2010f). In .NET a SortedDictionary

is a red black binary tree (Leiserson, Rivest, & Stein, 2001) and a Dictionary is a hash table

(Tenenbaum, Langsam, & Augenstein, 1990). The flyweight cache can hold any desired data structure,

as long as it adheres to the IFlyweightCache contract.

The GetFlyweight public method or C# [] operator defined on the FlyweightFactory component is

used to return a specific ConcreteFlyweight instance by supplying it with the key:

C# (APL)
--
public TConcreteFlyweight this[TKey key] { get { return GetFlyweight(key); } }

public TConcreteFlyweight GetFlyweight(TKey key) {
 Contract.Requires<ArgumentNullException>(key!= null, "Argument key cannot be null");
 Contract.Ensures(Contract.Result<TConcreteFlyweight>() != null);
 TConcreteFlyweight flyweight;

 // Use double checked locking pattern
 if (!GetFlyweight(key, out flyweight)) {
 lock (GetCache()) {
 if (!GetFlyweight(key, out flyweight)) { // Get a Flyweight object for the given key
 Construct(key, out flyweight); // If the Flyweight does not exist create it…
 _cache.Add(key, flyweight); // …and add it to the internal cache
 }
 }
 }

 return flyweight;
}

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

S t r u c t u r a l P a t t e r n s

71

The acquisition of the ConcreteFlyweight first checks whether the ConcreteFlyweight exists in the

local cache. If the ConcreteFlyweight object does not exist, then a new ConcreteFlyweight is created.

The key is passed to the ConcreteFlyweight’s constructor, where it can be used in the construction

logic. The newly created ConcreteFlyweight object is then added into the local cache. The

FlyweightFactory component also has some value added public methods, such as Count, which returns

the number of ConcreteFlyweight objects in the cache:

C# (APL)
--
public int Count { get { return _cache.Count; } }

6.3 Theoretical Examples

The following theoretical example shows the usage of the FlyweightFactory component in the APL

library:

C# (APL Example)
--
interface IFlyweight { void Operation(); }

class ConcreteFlyweight : IFlyweight {
 private readonly int _state;

 // The Key is an ‘int’ thus a private constructor that takes one argument of type ‘int’ must exist
 private ConcreteFlyweight(int state) { _state = state; }
 public override void Operation() { Console.WriteLine("ConcreteFlyweight: " + _state); }
}

class UnsharedConcreteFlyweight : IFlyweight {
 private readonly int _state;

 public UnsharedConcreteFlyweight(int state) { _state = state; }
 public override void Operation() { Console.WriteLine("UnsharedConcreteFlyweight: " + _state); }
}

class Program {
 static void Main() {
 // Creat an instance of a FlyweightFactory for a ‘ConcreteFlyweight’ with an ‘int’ key
 var factory = FlyweightFactory<int, ConcreteFlyweight>.Instance;

 Flyweight f1 = factory[1973]; // Get the Flyweight for instance for ‘1973’
 f1.Operation(); // Use the Flyweight

 Flyweight f2 = factory[1973]; // Get the Flyweight for instance for ‘1973’
 f2.Operation(); // Use the Flyweight

 // Check if the instances are the same
 if(f1 == f2) { Console.WriteLine("Objects are the same instance"); }

 Flyweight f3 = factory[2006]; // Get the Flyweight for instance for ‘2006’
 f3.Operation(); // Use the Flyweight

 var f4 = new UnsharedConcreteFlyweight(2009); // Create a UnsharedConcreteFlyweight
 f4.Operation();
 }
}

/*
ConcreteFlyweight: 1973
ConcreteFlyweight: 1973

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

S t r u c t u r a l P a t t e r n s

72

Objects are the same instance
ConcreteFlyweight: 2006
UnsharedConcreteFlyweight: 2004
*/

Figure 15. UML sequence diagram for the FlyweightFactory APL component example.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

S t r u c t u r a l P a t t e r n s

73

Figure 15 shows a UML sequence diagram for the flyweight theoretical example discussed in this

section. It shows how the IFlyweightCache<TKey, TTheFlyweight> interface is used to register and

retrieve ConcreteFlyweights instances via an instance of a FlyweightFactory.

The IFlyweight interface, shown in the example, defines the desired Flyweight contract. A

ConcreteFlyweight ConcreteFlyweight is defined that implements the IFlyweight interface. A private

constructor is defined on the ConcreteFlyweight ConcreteFlyweight that takes in the key as an

argument.

In the example, the ConcreteFlyweight ConcreteFlyweight holds intrinsic state where the state is

computed using the key received from the private constructor. A ConcreteFlyweight will not always

hold intrinsic state. In the case where a ConcreteFlyweight does hold intrinsic state, then the state

must be computed from the given key. There is always thus a direct coupling between the given key

and a ConcreteFlyweight’s intrinsic state. In the example the ConcreteFlyweights are created and

managed with the reusable FlyweightFactory APL component:

C# (APL Example)
--
var flyweight1 = flyweightFactory[1973]; // Get the Flyweight for instance for ‘1973’
flyweight1.Operation(); // Use the Flyweight

var flyweight2 = flyweightFactory[1973]; // Get the Flyweight for instance for ‘1973’
flyweight2.Operation(); // Use the Flyweight

The FlyweightFactory is also a reusable generic singleton (Gamma, Helm, Johnson, & Vlissides, 1994)

component. The first generic argument defines the key and the second argument defines the

ConcreteFlyweight. A reference to the Singleton is acquired by supplying all the generic arguments

and using the Instance property:

C# (APL Example)
--
// Creat an instance of a FlyweightFactory for a ‘ConcreteFlyweight’ with an ‘int’ key
var flyweightFactory = FlyweightFactory<int, ConcreteFlyweight>.Instance;

The flyweightFactory can then be used to acquire a desired Flyweight by passing it a specific key:

C# (APL Example)
--
var flyweight1 = flyweightFactory[1973]; // Get the Flyweight for instance for ‘1973’

The example shows that the flyweight1 and flyweight2 Flyweights returned by the flyweightFactory

are the same object instance and thus the FlyweightFactory component is working correctly.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

S t r u c t u r a l P a t t e r n s

74

An UnsharedConcreteFlyweight UnsharedConcreteFlyweight, that is not shared and thus not used by

the flyweight pattern, is also defined in the example. The Flyweight interface does not enforce sharing,

which is thus optional. A Flyweight subclass, therefore, does not need to be shared.

UnsharedConcreteFlyweight instances are concrete Flyweights and hold a state that influences the

object’s functional context. It is possible that an UnsharedConcreteFlyweight might have child

ConcreteFlyweights as subclasses.

6.4 Outcome

The componentization of the flyweight design pattern is a success, because it meets all the

requirements listed in section 1.4:

 Completeness: The flyweight design pattern library component covers all cases described in

the original core design pattern.

 Usefulness: The flyweight design pattern library component is useful, because it solves all of

the flyweight scenarios desired by a developer and implement the pattern’s defined intent. The

flyweight library component is simple to understand and easy to use.

 Faithfulness: The implementation of the flyweight pattern follows the original pattern

described in Design Patterns (Gamma, Helm, Johnson, & Vlissides, 1994).

 Type-safety: All of the library components are fully type-safe.

 Extended applicability: The flyweight library component does not cover more cases than the

original flyweight pattern.

 Performance: The flyweight component does not have a performance impact.

The flyweight pattern is fully componentizable because the developer is not tasked with implementing

any boiler plate code when using the reusable flyweight components.

The following language features are fundamental in the implementation or usage of the reusable

flyweight design pattern components: Inheritance (Mitchell, Mitchell, & Krzysztof, 2003), Interfaces

(Pattison & Box, 2000), Generics (Jagger, Perry, & Sestoft, 2007), Design by Contract™ (Mitchell &

McKim, 2001), Attributes (Nagel, Evjen, Glynn, & Watson, 2010) and Reflection (Sobel & Friedman,

1996) (Forman & Forman, 2005).

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

S t r u c t u r a l P a t t e r n s

75

 C h a p t e r 7

7 ADAPTER

7.1 Introduction

An interface is normally used to decouple the client from the implementation. It can happen that

different interfaces exist for the same underlying functionality, usually in different frameworks. The

adapter design pattern converts the contract and message flows from one interface to another.

The intent is thus to convert the interface of a class to an interface that clients expect. The adapter

pattern makes it possible for classes to communicate with each other where it would otherwise not

have been possible (Gamma, Helm, Johnson, & Vlissides, 1994).

7.1.1 Structure.

The following figure shows the formal structure of the adapter design pattern (Gamma, Helm,

Johnson, & Vlissides, 1994):

Request()

Target

Request()

Adapter

SpecificRequest()

Adaptee

adaptee.SpecificRequest()

adaptee

*

Client

Figure 16. Adapter structure.

7.1.2 Participants.

 The classes and/or objects participating in the adapter design pattern are:

 Target

The Target declares the interface that the Client uses.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

S t r u c t u r a l P a t t e r n s

76

 Adapter

The Adapter converts or adapts the interface of the Adaptee to the Target interface.

 Adaptee

The Adaptee declares a current interface that needs adapting in order to be useful for the

Client.

 Client

The Client can use only objects implementing the Target interface.

7.2 Library Components

7.2.1 The AutoAdapter component.

The AutoAdapter APL component adapts registered AdapterAction and AdapterFunc delegates to

methods available on a Target. It does so by dynamically routing a method invocation on an instance

of the component to the appropriate method stored inside its internal dictionary (Weiss, 1999). The

dictionary stores delegates associated with a certain method on the Target. The method behaviour is

registered using the RegisterAction and RegisterFunc methods defined on the AutoAdapter

component, as seen below:

C# (APL)
--
public class AutoAdapter<TTarget, TAdaptee> : IDynamicInvoker // The IDynamicInvoker interface forces
 // the implementation of the duck typing
 // Invoke method
 where TTarget : class {
 private readonly Dictionary<DynamicMethod, Delegate> _operationDictionary =
 new Dictionary<DynamicMethod, Delegate>(); // Internal operation dictionary

 private TAdaptee _adaptee; // The adaptee instance
 private volatile TTarget _target; // Internal target cache

 [ContractInvariantMethod]
 private void ContractInvariant() {
 Contract.Invariant(_operationDictionary != null, "The operationDictionary cannot be null");
 Contract.Invariant(_adaptee != null, "The adaptee cannot be null");
 }

 // Constructor
 public AutoAdapter(TAdaptee adaptee) {
 _target = null;
 _adaptee = adaptee;
 }

 // Register an AdapterAction with no arguments
 public void RegisterAction(MethodInfo method, AdapterAction<TAdaptee> operation) { … }

 // Register an AdapterAction with no arguments

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

S t r u c t u r a l P a t t e r n s

77

 public void RegisterAction(string methodName, AdapterAction<TAdaptee> operation) { … }

 // Register an AdapterAction with one argument
 public void RegisterAction(MethodInfo method, AdapterAction<TAdaptee, TArg1> operation) { … }

 // Register an AdapterAction with one argument
 public void RegisterAction<TArg1>(string methodName, AdapterAction<TAdaptee, TArg1> operation) { … }

 // … M O R E …

 // Register a AdapterFunc with no arguments
 public void RegisterFunc<TResult, TArg1>(MethodInfo method,
 AdapterFunc<TAdaptee, TArg1, TResult> operation) { … }

 // Register a AdapterFunc with no arguments
 public void RegisterFunc<TResult>(string methodName,
 AdapterFunc<TAdaptee, TResult> operation) { … }

 // Register a AdapterFunc with one argument
 public void RegisterFunc<TResult, TArg1>(MethodInfo method,
 AdapterFunc<TAdaptee, TArg1, TResult> operation) { … }

 // Register a AdapterFunc with one argument
 public void RegisterFunc<TResult, TArg1>(string methodName,
 AdapterFunc<TAdaptee, TArg1, TResult> operation) { … }

 // … M O R E …

 // The following method, which is required by the IDynamicInvoker interface, maps the recieved
 // method signature to a delegate stored in the internal dictionary.
 // If a delegate is found with the same method signature then it is invoked and its result
 // is returned.
 public object Invoke(string methodName, object[] args) {
 Contract.Requires<ArgumentException>(!string.IsNullOrEmpty(path),
 "Argument methodName cannot be null");

 // Get a delegate from the internal dictionary with a matching method signature
 var operation = GetAdapterOperation(methodName, args);

 // Invoke the delegate and return its result
 if (operation != null)
 return operation.DynamicInvoke(_adaptee, args);

 throw new Exception("No adapter method found");
 }

 // Dynamicly create an instance during runtime that realizes the TTarget interface and return it
 // to the calling Client
 public TTarget Target {
 get {
 Contract.Ensures(Contract.Result<TTarget>() != null);

 return DoubleCheckedLock<TTarget>.Create(_target, this, () => this.AsIf<TTarget>(true));
 }
 }
}

The RegisterAction set of methods registers a specific AdapterAction against a certain method

available on the Target. The method name must be passed through as a string or a C# reflection

MethodInfo type, as seen in the example code below:

C# (APL Example)
--
adapter.RegisterAction<string>("Request", (x, y) => x.TheRequest(); Console.WriteLine(y));

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

S t r u c t u r a l P a t t e r n s

78

A number of RegisterAction methods are defined on the component, each specifying a specific

number of arguments. A number of AdapterAction delegates also exist in the library, where each relates

to the number of arguments needed:

C# (APL)
--
public delegate void AdapterAction<in TAdaptee>(TAdaptee adaptee);
public delegate void AdapterAction<in TAdaptee, in T>(TAdaptee adaptee, T arg);
public delegate void AdapterAction<in TAdaptee, in T1, in T2>(TAdaptee adaptee, T1 arg1, T2 arg2);
public delegate void AdapterAction<in TAdaptee, in T1, in T2, in T3>(TAdaptee adaptee,
 T1 arg1, T2 arg2, T3 arg3);

// … M O R E …

The first argument to all of the above AdapterAction delegates defines the Adaptee that is registered

with the AutoAdapter component. The user thus has access to the registered Adaptee instance when

formulating the adapter logic for a specific method. In the example above, the x variable in the lambda

expression (KJärvi & Freeman, 2008) denotes the Adaptee instance and the y variable denotes the only

argument available on the Request method. The injected adapter lambda expression (x, y) =>

x.TheRequest(); Console.WriteLine(y) thus first calls the TheRequest method on the Adaptee and

then writes the contents of the y argument to the console.

The RegisterFunc set of methods does exactly the same as the RegisterAction methods, except that it

registers AdapterFunc delegates. An AdapterFunc defines a return value and is thus used to adapt

functions. A number of RegisterFunc methods are defined on the component, each specifying a

specific number of arguments. A number of RegisterFunc delegates also exist in the library, where each

relates to the number of arguments needed:

C# (APL)
--
public delegate TResult AdapterFunc<in TAdaptee, out TResult>(TAdaptee adaptee);
public delegate TResult AdapterFunc<in TAdaptee, in T, out TResult>(TAdaptee adaptee, T arg);
public delegate TResult AdapterFunc<in TAdaptee, in T1, in T2, out TResult>(TAdaptee adaptee, T1 arg1, T2
arg2);
public delegate TResult AdapterFunc<in TAdaptee, in T1, in T2, in T3, out TResult>(TAdaptee adaptee, T1
arg1, T2 arg2, T3 arg3);

// … M O R E …

The Target property returns an interface proxied by the dynamic duck typing (Koenig & Moo, 2005)

engine:

C# (APL Example)
--
adapter.Target.Request();

Each call by the client to a certain method on the auto generated Target is intercepted by the Invoke

method on the AutoAdapter component, as seen in the following code:

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

S t r u c t u r a l P a t t e r n s

79

C# (APL)
--
public object Invoke(string methodName, object[] args) {
 // … C O N T R A C T S …

 // Get a delegate from the internal dictionary with a matching method signature
 var operation = GetAdapterOperation(methodName, args);

 // Invoke the delegate and return its result
 if (operation != null)
 return operation.DynamicInvoke(_adaptee, args);

 throw new Exception("No adapter method found");
}

AutoAdapter

OperationDictionary

Key: OperationA
Value: { Delegate ...}

Key: OperationB
Value: { Delegate ... }

Target Register Invoke

Target Dynamically Created
During Runtime

OperationA OperationB

Adaptee

Figure 17. AutoAdapter APL component overview.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

S t r u c t u r a l P a t t e r n s

80

The Invoke method matches a registered Adapter method from the internal dictionary, with the

method signature received from its arguments. If an Adapter method is found in the internal

dictionary that matches the method signature, then the call is routed to it and the result returned.

Figure 17 shows a graphical overview of the AutoAdapter component. It shows the three main

contracts of an AutoAdapter, namely Target, Register and Invoke. The registration set of contracts is

used to register Target methods that use the internal Adaptee instance together with Adapter logic in

the body of the method. The figure also shows the Target contract, which is used to retrieve a

dynamically created instance of a Target during runtime. Finally, Figure 17 shows the Invoke method

used by the duck typing runtime (Koenig & Moo, 2005). The dynamically created Target forwards all

local invocations to the invoke method on the AutoAdapter instance, from where the call is forwarded

to the correct delegate in the dictionary. For example, a call to the OperationA method on the Target is

forwarded to the Invoke method on the AutoAdapter. From there, a delegate that represents an

OperationA is retrieved from the dictionary and is executed. The result, if any, is passed back to the

caller.

The registration of Adapter operations against a certain method available on the Target interface can

be improved by using C# dynamics or lambda expressions, as shown in Appendix I. The same

mechanism can be used for all the components in this thesis that have to register a method that will be

used in a duck typing (Koenig & Moo, 2005) environment.

7.3 Theoretical Examples

The following example shows the usage of the AutoAdapter component. An AutoAdapter instance is

created with an Adaptee instance. The Adaptee instance has internal state, together with a

SpecificRequest method that takes one string argument. The ITarget Target has one Request method

that also takes in one string argument. In the following example a lambda expression (x, y) =>

x.SpecificRequest(y) is registered against the Request method available on the ITarget Target:

C# (APL Example)
--
public interface ITarget { void Request(string arg); }

public class Adaptee {
 private string _state;

 public Adaptee(string state) { _state = state; }

 public void SpecificRequest(string arg) {
 Console.WriteLine("Called SpecificRequest() : " + state "|" + arg);
 }
}

public static void Run() {
 var adaptee = new Adaptee("[State]");
 var adapter = new AutoAdapter<ITarget, Adaptee>(adaptee); // Creates an Adapter for Target ITarget

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

S t r u c t u r a l P a t t e r n s

81

 // Register the lambda expression against the "Request" method on the Target interface
 adapter.RegisterAction<string>("Request", (x, y) => x.SpecificRequest(y));

 // Delegates the call to the injected AdapterAction
 adapter.Target.Request("[External Data]");
}

/* Output
Called SpecificRequest() : [State]|[External Data]
*/

In the above example the adapter.Target.Request invocation delegates the call to the injected

AdapterAction lambda expression.

The next example shows another usage of the AutoAdapter and is almost identical to the previous

example. In this example, however, the Request method on the Target ITarget returns a string. The

example thus shows the registration and usage of an AdapterFunc delegate:

C# (APL Example)
--
public interface ITarget { string Request(string arg); }

public class Adaptee {
 private string _state;

 public Adaptee(string state) { _state = state; }

 public string SpecificRequest(string arg) {
 Console.WriteLine("Called SpecificRequest() : " + state "|" + arg);
 return "[" + arg + "]";
 }
}

public static void Run() {
 var adaptee = new Adaptee("[State]");
 var adapter = new AutoAdapter<ITarget, Adaptee>(adaptee); // Creates an Adapter for Target ITarget

 // Register the lambda expression against the "Request" method on the Target interface
 adapter.RegisterFunc<string, string>("Request", (x, y) => x.SpecificRequest(y));

 // Delegates the call to the injected AdapterFunc
 string ret = adapter.Target.Request("[External Data]");
 Console.WriteLine("Ret : " + ret);
}

/* Output
Called SpecificRequest() : [State]|[External Data]
Ret : [[External Data]]
*/

The next example shows how multiple Adapter methods, in this case using an AdapterAction and an

AdapterFunc delegate, can be registered with the AutoAdapter component:

C# (APL Example)
--
public interface ITarget {
 void Request1();
 string Request2(string arg1);
}

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

S t r u c t u r a l P a t t e r n s

82

public class Adaptee {
 private string _state;

 public Adaptee(string state) {
 _state = state;
 }

 public void SpecificRequest1() { Console.WriteLine("Called SpecificRequest1()"); }

 public string SpecificRequest2(string arg) {
 Console.WriteLine("Called SpecificRequest2() : " + state "|" + arg);
 return "[" + arg + "]";
 }
}

public static void Run() {
 var adaptee = new Adaptee("[State]");
 var adapter = new AutoAdapter<ITarget, Adaptee>(adaptee); // Creates an Adapter for Target ITarget

 // Register the adaptee.SpecificRequest method against the "Request" method on the Target interface
 adapter.RegisterAction<string>("Request1", (x, y) => x.SpecificRequest(y));

 // Register the lambda expression against the "Request" method on the Target interface
 adapter.RegisterFunc<string, string>("Request2", (x, y) => x.SpecificRequest(y));

 // Delegates the call to the injected AdapterAction
 adapter.Target.Request1();

 // Delegates the call to the injected AdapterFunc
 string ret = adapter.Target.Request2("[External Data]");
 Console.WriteLine("Ret : " + ret);
}

/* Output
Called SpecificRequest1()
Called SpecificRequest2() : [State]|[External Data]
Ret : [[External Data]]
*/

The output shows that all of the Adapters were called successfully.

7.4 Outcome

The componentization of the adapter design pattern is a success, because it meets all the requirements

listed in section 1.4:

 Completeness: The adapter design pattern library component cover all cases described in the

original core design pattern.

 Usefulness: The adapter design pattern library component is useful, because it solves most of

the adapter scenarios desired by a developer. The AutoAdapter component solves the standard

criteria for an Adapter, and is not overly complex to use. A developer is only tasked with

defining the Target interface and injecting the adapting methods. A developer thus does not

have to implement the Adapter boiler plate code manually. However, in some scenarios,

implementing an Adapter manually might still be appropriate, especially to maintain the

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

S t r u c t u r a l P a t t e r n s

83

cohesion of the adapter algorithms. A manually implemented Adapter, in most cases, is also

simple to implement and does not need much boiler plate code.

 Faithfulness: The implementation of the reusable AutoAdapter component differs from the

original pattern described in Design Patterns (Gamma, Helm, Johnson, & Vlissides, 1994). In the

original implementation the Adapter is hand coded with the corresponding methods that

implement the Adaptee. With the reusable AutoAdapter component, the Adapter class is

dynamically created during runtime using meta-programming (Perrotta, 2010). The methods

are injected with the component using anonymous functions (Ierusalimschy, 2003) and lambda

expressions (Michaelis, 2010). The outcome of the component is, however, the same as the

original pattern and implements its defined intent.

 Type-safety: The string literals used when registering the adapter methods are not type-safe.

Lambda expressions (expressions trees) (Albahari & Albahari, 2007, p. 317) however, can be

used to solve the type-safe registration problem, as shown in Appendix I. Other than that, the

library component is fully type-safe.

 Extended applicability: The adapter library component does not cover more cases than the

original adapter pattern.

 Performance: The adapter library component does have a performance impact because of the

usage of duck typing (Koenig & Moo, 2005). Appendix II shows the performance impact of

duck typing. The performance impact is, however, acceptable in normal situations.

The adapter pattern is fully componentizable because the developer is not tasked with implementing

any boiler plate code when using the reusable pattern component.

The following language features are fundamental to the implementation or usage of the reusable

adapter design pattern components: Inheritance (Mitchell, Mitchell, & Krzysztof, 2003), Interfaces

(Pattison & Box, 2000), Generics (Jagger, Perry, & Sestoft, 2007), Design by Contract™ (Mitchell &

McKim, 2001), Method References (Microsoft, 2010e), Anonymous Functions (Ierusalimschy, 2003),

Lambda Expressions (Michaelis, 2010), Reflection (Sobel & Friedman, 1996) (Forman & Forman,

2005), Duck Typing (Koenig & Moo, 2005) and Meta-programming (Perrotta, 2010).

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

84

 C h a p t e r 8

8 DECORATOR

8.1 Introduction

The decorator design pattern bestows additional behaviour on an object dynamically during runtime. It

thus provides a flexible alternative to sub-classing for extending object behaviour (Gamma, Helm,

Johnson, & Vlissides, 1994).

8.1.1 Structure.

The following figure shows the formal structure of the decorator design pattern (Gamma, Helm,

Johnson, & Vlissides, 1994):

Figure 18. Decorator structure.

8.1.2 Participants.

The classes and/or objects participating in the decorator design pattern are:

 Component

A Component declares the interface for Decorator instances. The operations declared in the

interface will thus have behaviour dynamically added during runtime.

Operation()

Component

Operation()

ConcreteComponent

Operation()

Decorator

Component

Operation()

addedBehavior()

ConcreteDecoratorB

Operation()

addedState

ConcreteDecoratorA

component.Operation()

decorator.Operation();

AddedBehavior()

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

S t r u c t u r a l P a t t e r n s

85

 ConcreteComponent

A ConcreteComponent declares an instance that implements the Component interface.

 Decorator

A Decorator holds and manages an association to a Component instance. A Decorator also

implements the Component interface.

 ConcreteDecorator

A ConcreteDecorator also implements the operations defined by its Component's interface. A

decorated operation combines the behaviour of the Decorator and the Component instance in

order to add functionality dynamically. A ConcreteDecorator thus adds new behaviour to the

Component.

8.2 Library Components

8.2.1 The AutoDecorator component.

The AutoDecorator APL component maps registered delegates to methods available on the

Component interface. The AutoDecorator holds a dictionary of delegates with a corresponding

DynamicMethod instance as the key. The AutoDecorator also inherits from the Decorator APL

component, which stores an internal reference to a certain Component and realizes the dynamic duck

typing (Koenig & Moo, 2005) IDynamicInvoker interface. On the Decorator APL component, the

internally stored Component type is defined by the TComponent generic argument. The Decorator

component is abstract, with an abstract Invoke method, which is used by the duck typing (Koenig &

Moo, 2005) engine. The abstract Invoke method must be overridden by a base class. The code snippet

below shows the implementation of the abstract Decorator component:

C# (APL)
--
public abstract class Decorator<TComponent> : // TComponent defines the component participant
 IDynamicInvoker // Used for duck typing and forces the implementation
 // of the Invoke method
 where TComponent : class {

 // Internal reference to a component participant
 protected TComponent Component;

 [ContractInvariantMethod]
 private void ContractInvariant() {
 Contract.Invariant(Component != null, "The internal component cannot be null");
 }

 // Constructor that takes a component

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

S t r u c t u r a l P a t t e r n s

86

 protected Decorator(TComponent component) {
 Component = component;
 }

 // … S N I P …

 // Used for duck typing
 public abstract object Invoke(string methodName, object[] args);
}

The AutoDecorator APL component implements the overridden Invoke method, which takes in as

arguments the method name of a certain invocation and its arguments. The Invoke method checks

whether a delegate for the certain method signature exists in the internal dictionary. If one does exist, it

is executed and the result returned:

C# (APL)
--
public class AutoDecorator<TComponent> : Decorator<TComponent> // Uses the Decorator component
 where TComponent : class {
 private readonly Dictionary<DynamicMethod, Delegate> _operationDictionary =
 new Dictionary<DynamicMethod, Delegate>(); // Internal method dictionary.
 // A delegate stored in this dictionary
 // is mapped to a method on the TComponent
 // contract.
 // The Invoke method executes the appropriate
 // delegate stored in the dictionary by
 // matching the method names.

 private volatile TComponent _targetCache; // Dynamicly generated TComponent instance that
 // is generated during runtime

 public AutoDecorator(TComponent component) : base(component) {
 // … S N I P …
 }

 // Register methods.
 // Four different type of delegates can be registered:
 // Action : .Net Action
 // Func : .Net Func (function)
 // ActionDecoratorStrategy : APL action decorator strategy delegate
 // FuncDecoratorStrategy : APL function decorator strategy delegate

 // Register an Action with no arguments
 public void (MethodInfo method, Action operation) { … }

 // Register an Action with no arguments
 public void RegisterAction RegisterAction(string methodName, Action operation) { … }

 // Register an Action with one argument
 public void RegisterAction<TArg1>(MethodInfo method, Action<TArg1> operation) { … }

 // Register an Action with one argument
 public void RegisterAction<TArg1>(string methodName, Action<TArg1> operation) { … }

 // … M O R E …

 // Register a Func with no arguments
 public void RegisterFunc<TResult>(MethodInfo method, Func<TTResult> operation) { … }

 // Register a Func with no arguments
 public void RegisterFunc<TResult>(string methodName, Func<TResult> operation) { … }

 // Register a Func with one argument
 public void RegisterFunc<TArg1, TResult>(MethodInfo method, Func<TArg1, TResult> operation) { … }

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

S t r u c t u r a l P a t t e r n s

87

 // Register a Func with one argument
 public void RegisterFunc<TArg1, TResult>(string methodName, Func<TArg1, TResult> operation) { … }

 // … M O R E …

 // Register an ActionDecoratorStrategy delegate with no arguments
 public void RegisterStrategy(MethodInfo method, ActionDecoratorStrategy decoratorStrategy) { … }

 // … M O R E …

 // Register a FuncDecoratorStrategy delegate with no arguments
 public void RegisterStrategy<TResult>(MethodInfo method,
 FuncDecoratorStrategy<TResult> decoratorStrategy) { … }

 // … M O R E …

 // The Invoke method routes an invocation on the dynamicly created TComponent instance
 // returned by the Target property to an appropriate delegate stored in the internal dictionary
 public override object Invoke(string methodName, object[] args) {
 Contract.Requires<ArgumentException>(!string.IsNullOrEmpty(methodName),
 "Argument methodName cannot be null");

 // Call the decorator strategy that can be an ActionDecoratorStrategy or FuncDecoratorStrategy
 var decoratorStrategy = GetDecoratorStrategy(methodName, args);
 if(decoratorStrategy != null) {
 var internalComponentOperation = GetInternalComponentOperation(methodName, decoratorStrategy);
 return InvokeDecoratorStrategy(decoratorStrategy, internalComponentOperation, args);
 }

 // Else - just call both the component method and
 // the registered method normally as an Action or Func
 var componentMethod = GetComponentMethod(methodName, args);
 var registeredMethod = GetRegisteredMethod(methodName, args);
 object ret = null;

 if(componentMethod != null) { ret = componentMethod.DynamicInvoke(args); }
 if(registeredMethod != null) { ret = registeredMethod.DynamicInvoke(args); }

 If(componentMethod == null && registeredMethod == null) {
 throw new Exception("No method found to invoke.");
 }

 // If it is a Func, the registered method’s return value
 // takes precedence over the component method’s return value
 return ret;
 }

 public TComponent Target {
 get {
 Contract.Ensures(Contract.Result<TComponent>() != null);
 return DoubleCheckedLock<TComponent>.Create(_targetCache, this,
 () => this.AsIf<TComponent>(true));
 }
 }

 //… M O R E …
}

Four different types of delegates can be registered with the AutoDecorator<TComponent> component

against a specific method available on the TComponent Component. These delegates are a Func

(Microsoft, 2010h), Action (Microsoft, 2010a), FuncDecoratorStrategy and ActionDecoratorStrategy.

The FuncDecoratorStrategy and ActionDecoratorStrategy are APL delegates.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

S t r u c t u r a l P a t t e r n s

88

The ActionDecoratorStrategy delegate takes in an Action as its first argument. The rest of the

arguments in an ActionDecoratorStrategy define the number of arguments on the underlying

Operation that is decorated:

C# (APL)
--
public delegate void ActionDecoratorStrategy(Action decoratorOperation);
public delegate void ActionDecoratorStrategy<TArg>(Action<TArg> decoratorOperation, TArg args);
public delegate void ActionDecoratorStrategy<TArg1, TArg2>(Action<TArg1, TArg2> decoratorOperation,
 TArg1 arg1, TArg2 arg2);
//… M O R E …

The following example shows the usage of the ActionDecoratorStrategy delegate:

C# (APL Example)
--
// ActionDecoratorStrategy example:
// x is an Action representing the method being decorated on the internal TComponent Component
// y is a string that represents the argument of the decorated method
//
// Thus decorator.Target.Foo("Hello World") does:
//
// x(y) - - - > this.Component("Hello World");
// Console.WriteLine("More" + y) - - - > Console.WriteLine("More" + "Hello World");

decorator.RegisterStrategy<string>("Foo", (x, y) => { x(y); Console.WriteLine("More" + y); });

The example above shows how a lambda expression is used to register an ActionDecoratorStrategy

with an AutoDecorator instance. In the lambda expression, the x argument represents a specific method

on the internal Component instance referenced by the AutoDecorator. The y argument represents the

argument type of the specific method on the Component instance. The string template argument

thus tells the ActionDecoratorStrategy that the method being decorated on the Component interface

has one argument, which is of type string. Thus, in this case, the method is void Foo(string str).

The Foo method does not return any value; it is thus not a function. The injected lambda expression

first makes a call to x(y). The x(y) call is translated into an invocation on the Foo(string str) method

on the internally stored Component instance, with y as the string argument. The second decorative

part of the lambda expression writes a comment to the console, using the y string argument.

The FuncDecoratorStrategy is almost exactly the same as the ActionDecoratorStrategy, except that it

takes in a Func as its first argument and not an Action, as shown below:

C# (APL)
--
public delegate TResult DecoratorStrategy<TResult>(Func<TResult> decoratorOperation);
public delegate TResult DecoratorStrategy<TArg, TResult>(Func<TArg, TResult> decoratorOperation,
 TArg arg);
public delegate TResult DecoratorStrategy<TArg1, TArg2, TResult>(
 Func<TArg1, TArg2, TResult> decoratorOperation, TArg1 arg1, TArg2 arg2);
public delegate TResult DecoratorStrategy<TArg1, TArg2, TArg3, TResult>(
 Func<TArg1, TArg2, TArg3, TResult> decoratorOperation, TArg1 arg1, TArg2 arg2, TArg3 arg3);

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

S t r u c t u r a l P a t t e r n s

89

An ActionDecoratorStrategy represents a decorative expression for a method on the Component

interface that does not return anything. A FuncDecoratorStrategy, on the other hand, represents a

decorative expression for a method on the Component interface that does return something. The first

argument for both the ActionDecoratorStrategy and FuncDecoratorStrategy delegates represents the

same operation on the Component which is being decorated, where the operation is available on the

Component reference that is stored internally on an AutoDecorator instance. These delegates make it

possible to write advanced decorator algorithms that can be registered with an AutoDecorator instance.

Figure 19. UML class diagram of the AutoDecorator APL component.

Figure 19 shows a UML class diagram of the APL AutoDecorator component. It shows all the different

types of registration methods available on the AutoDecorator. Figure 19 also shows the Target

property, which is used to acquire, during runtime, an auto generated instance that realizes the

Component interface. Finally, the figure shows the Invoke method that is used by the duck typing

(Koenig & Moo, 2005) runtime. All method invocations on the auto generated Component instance

are routed to the Invoke method. The Invoke method then routes the invocation to the appropriate

registered operation.

Figure 20 shows an overview of the AutoDecorator APL component. The register set of methods

registers a new decoration operation into the internal dictionary. Each registered operation is

associated with one method defined on the Component interface. The Target property returns a

IDynamicInvoker

TComponent > class

Decorator

Component :TComponent

Decorator(component :TComponent)

+ Invoke(methodName :string, args :object[]) :object

TComponent > class

AutoDecorator

- _operationDictionary :Dictionary<DynamicMethod, Delegate> {readOnly}

- _targetCache :volatile TComponent

«Propery»

- Target :TComponent

- AutoDecorator(component :TComponent)

+ Invoke(methodName :string, args :object[]) :object

+ RegisterAction(... :) :void

+ RegisterFunc(... :) :void

+ RegisterStrategy(... :) :void

< TComponent->TComponent >

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

S t r u c t u r a l P a t t e r n s

90

runtime generated instance that realizes the Component interface. Each invocation on the instance is

routed through to the Invoke method on the AutoDecorator instance. The Invoke method then routes

the call to the appropriate operation stored in the internal operation dictionary.

AutoDecorator

OperationDictionary

Key: OperationA
Value: { Delegate ...}

Key: OperationB
Value: { Delegate ... }

Target Register Invoke

Target Dynamically Created
During Runtime (Realization of

the Component interface)

OperationA OperationB

Component

Figure 20. AutoDecorator APL component overview.

The registration of operations against a certain method available on the Component interface can be

improved by using C# dynamics or lambda expressions, as shown in Appendix I. The same

mechanism can be used for all the components in this thesis that have to register a method that will be

used in a duck typing (Koenig & Moo, 2005) environment.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

S t r u c t u r a l P a t t e r n s

91

8.3 Theoretical Examples

The following example shows the usage of the AutoDecorator APL component. The IComponent

interface defines the methods of the Component, some with arguments and others with return values:

C# (APL Example)
--
public interface IComponent {
 void Operation1(); // No arguments and no return value
 void Operation2(string arg); // One argument and no return value
 uint Operation3(); // No argument and one return value
 uint Operation4(string arg); // One argument and one return value
}

A ConcreteComponent is also defined, implementing the IComponent contract:

C# (APL Example)
--
public class ConcreteComponent : IComponent {
 public void Operation1() { Console.Write("a"); }
 public void Operation2(string arg) { Console.Write("a" + arg); }
 public uint Operation3() { return 10; }
 public uint Operation4(string arg) { Console.Write("a"); return 10; }
}

The example creates a ConcreteDecorator decorator1, and injects a decorative algorithm for each

method on the Component using the RegisterStrategy set of methods on the AutoDecorator instance.

Each decorative algorithm is injected using a lambda expression. An instance of the

ConcreteComponent is used to construct the decorator1 object, as seen below:

C# (APL Example)
--
static public void Main() {
 var concreteComponent = new ConcreteComponent();
 var decorator1 = new AutoDecorator<IComponent>(concreteComponent); // Create a decorator

 // Register a decorative expression for "Operation1" (no direct decoration in this case)
 decorator1.RegisterStrategy("Operation1", x => x());

 // Register a decorative expression for "Operation2"
 decorator1.RegisterStrategy<string>(concreteComponent.Operation2,
 (x, y) => { x(y); Console.Write("b" + y); });

 // Register a decorative expression for "Operation3"
 decorator1.RegisterOperation("Operation3", x => x() + 2);

 // Register a decorative expression for "Operation4"
 decorator1.RegisterOperation<string, uint>("Operation4",
 (x, y) => { Console.Write("b" + y); return x(y) + 2; });

 // Use decorator1
 Console.WriteLine("Decorator 1:");
 Console.Write("Operation1: "); decorator1.Target.Operation1(); Console.WriteLine();
 Console.Write("Operation2: "); decorator1.Target.Operation2("c"); Console.WriteLine();
 Console.Write("Operation3: "); Console.Write(decorator1.Target.Operation3()); Console.WriteLine();
 Console.Write("Operation4: "); Console.Write(decorator1.Target.Operation4("c")); Console.WriteLine();

 // Use decorator2
 var decorator2 = new AutoDecorator<IComponent>(decorator1.Target); // Link to decorator1
 Console.WriteLine(); Console.WriteLine("Decorator 2:");

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

S t r u c t u r a l P a t t e r n s

92

 decorator2.RegisterOperation(concreteComponent.Operation3, x => x() * 4);
 Console.Write("Operation3: "); Console.Write(decorator2.Target.Operation3()); Console.WriteLine();
}

/* Output
Decorator 1:
Operation1: a
Operation2: acbc
Operation3: 12
Operation4: bca12

Decorator 2:
Operation3: 48
*/

Each method on the ConcreteDecorator decorator1 in the example is called, some with passed-in

arguments. The Target property on the AutoDecorator is used to acquire a dynamically generated

instance that implements the IComponent contract. All the requests made on the instance are forwarded

to an instance of the AutoDecorator component, where they are processed. The output shows that all

the methods on the decorator1 object were processed correctly.

The example also creates a ConcreteDecorator decorator2 using the decorator1 instance, and injects a

decorative algorithm using a lambda expression for Operation3. The output shows that Operation3 on

the decorator2 object was processed correctly.

8.4 Outcome

The componentization of the decorator design pattern is a success because it meets all of the

requirements listed in section 1.4:

 Completeness: The decorator design pattern library components cover all cases described in

the original core design pattern.

 Usefulness: The decorator design pattern library components are useful because they solve all

of the decorator scenarios desired by a developer. The components serve the same

functionality as a hand written decorator; however, a developer does not have to write the

decorator boiler plate code by hand. With the AutoDecorator group of components, a

developer is only responsible for implementing the Component and hooking up the decorative

algorithms. The AutoDecorator group of components are relatively simple and easy to use.

 Faithfulness: The implementation of the AutoDecorator group of components deviates from

the original pattern described in Design Patterns (Gamma, Helm, Johnson, & Vlissides, 1994).

The implementation makes use of dynamic duck typing (Koenig & Moo, 2005) and meta-

programming (Perrotta, 2010) in order to hook up decorative algorithms within an

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

S t r u c t u r a l P a t t e r n s

93

AutoDecorator instance which, in return, auto generates a ConcreteDecorator instance. The

end result and intent of the decorator library components are, however, the same.

 Type-safety: The Register methods on the AutoDecorator component use non type-safe

string literals for the specification of the method names. Lambda expressions (expressions

trees) (Albahari & Albahari, 2007, p. 317) however, can be used to solve the type-safe

registration problem, as shown in Appendix I. Other than that, all the library components are

fully type-safe.

 Extended applicability: The decorator library components do not cover more cases than the

original decorator pattern.

 Performance: The decorator library components do have a performance impact because of

the usage of duck typing (Koenig & Moo, 2005). Appendix II shows the performance impact of

duck typing. The performance impact is, however, acceptable in normal situations.

The decorator pattern is fully componentizable because the developer is not tasked with implementing

any boiler plate code when using the reusable pattern components.

The following language features are fundamental to the implementation or usage of the reusable

decorator design pattern components: Inheritance (Mitchell, Mitchell, & Krzysztof, 2003), Interfaces

(Pattison & Box, 2000), Generics (Jagger, Perry, & Sestoft, 2007), Design by Contract™ (Mitchell &

McKim, 2001), Method References (Microsoft, 2010e), Anonymous Functions (Ierusalimschy, 2003),

Lambda Expressions (Michaelis, 2010), Reflection (Sobel & Friedman, 1996) (Forman & Forman,

2005), Duck Typing (Koenig & Moo, 2005) and Meta-programming (Perrotta, 2010).

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

94

 C h a p t e r 9

9 COMPOSITE

9.1 Introduction

The composite design pattern distinguishes objects in a certain tree-like structure to represent a part-

whole hierarchy. The recursive tree-like structure allows single objects and compositions of objects to

be treated uniformly by a client or user (Gamma, Helm, Johnson, & Vlissides, 1994).

9.1.1 Structure.

The following figure shows the formal structure of the composite design pattern (Gamma, Helm,

Johnson, & Vlissides, 1994):

Operation()

Add(in Component)

Remove(in Component)

GetChild(in int)

Component

Operation()

Leaf
Operation()

Add(in Component)

Remove(in Component)

GetChild(in int)

Composite

1

Children

*

forall g in children

 g.Operation()

 Figure 21. Composite structure.

9.1.2 Participants.

The classes and/or objects participating in the composite pattern are:

 Component

A Component defines the interface for every instance used in the composition. It also defines

the interface for retrieving, using and controlling each one of its child components. It might

also implement the default behaviour for the operations defined in the desired Component

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

S t r u c t u r a l P a t t e r n s

95

contract. A Component might also declare an interface and the implementation for retrieving,

using and controlling the component’s parent recursively.

 Leaf

A Leaf is an instance that implements the behaviour of the interface defined in the

Component, but it has no children. It is thus known as a primitive instance in the

composition.

 Composite

A Composite is an instance that implements the behaviour of the interface defined in the

Component. It also holds references to child Components.

 Client

A Client holds a reference to a Component interface through which it uses the Composite's

functionality.

9.2 Library Components

9.2.1 The AutoComposite component.

The AutoComposite reusable component implements a Composite for a specific Component that is

represented by a generic argument TComponent. At the heart of the AutoComposite is a list of child

Components, which is of type List<IComponent<TComponent>>. The IComponent interface is part of the

APL library. The AutoComposite also holds a dictionary of composite strategy function delegates,

composite function delegates and normal operations for methods that are present on the TComponent

interface. Composite strategy function delegates and composite functions delegates are used to register

algorithms that participate in the composite pattern, against methods present on the TComponent

Component. Note that only the methods on the TComponent interface that participate in the composite

pattern and are tagged with the CompositeMethodAttribute APL attribute can be registered on the

AutoComposite component with a composite strategy function delegate or composite function delegate.

The composite function delegates stored in the internal dictionary use a special CompositeFunc APL

delegate. The composite strategy delegates stored in the internal dictionary use a special

CompositeStrategy APL delegate. A certain method on the TComponent Component that participates in

the composite pattern can be registered by means of either a CompositeFunc delegate or a

CompositeStrategy delegate or as a C# Action or Func. The method must, however, be tagged with the

CompositeMethodAttribute APL attribute. C# Action or Func registered methods are invoked as normal

actions or functions by the AutoComposite on each Component stored in the internal list. A method on

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

S t r u c t u r a l P a t t e r n s

96

the TComponent Component that is attributed with the CompositeMethodAttribute APL attribute will

thus always join the composite pattern.

It is possible that a certain Component, where the Component is defined by the TComponent generic

argument, might have methods that should not be part of the composite pattern. Methods on the

TComponent Component that do not participate in the composite pattern must be registered as C#

Actions or Funcs and these methods must not be tagged with the CompositeMethodAttribute APL

attribute on the Component.

An exception is thrown in the Invoke method of the AutoComposite if no registered implementation is

found for a method on the TComponent. Furthermore, at least one of the methods on the TComponent

generic argument must be registered with an AutoComposite instance as a composite method. Thus, at

least one of the methods on the TComponent Component must be tagged with the

CompositeMethodAttribute APL attribute. The code below shows the implementation of the

AutoComposite in the APL library:

C# (APL)
--
public interface IComponent<T> {
 IList<IComponent<T>> GetList();
 T GetInterface();
}

public class AutoComposite<TComponent> : IDynamicInvoker, IComponent<TComponent>
 where TComponent : class {
 private readonly List<IComponent<TComponent>> _components;
 private readonly Dictionary<DynamicMethod, Delegate> _operationDictionary;
 private volatile TComponent _target; // Target cache

 [ContractInvariantMethod]
 private void ContractInvariant() {
 Contract.Invariant(_components != null, "The components list cannot be null");
 Contract.Invariant(_operationDictionary != null, "The operationDictionary cannot be null");
 }

 public AutoComposite() {
 _components = new List<IComponent<TComponent>>();
 _operationDictionary = new Dictionary<DynamicMethod, Delegate>();
 }

 public AutoComposite(List<IComponent<TComponent>> components) : this() { … }

 // Register methods.
 // Four different type of delegates can be registered:
 // Action : .Net Action
 // Func : .Net Func (function)
 // CompositeStrategy : APL composite strategy delegate
 // CompositeFunc : APL composite func delegate

 // Register an Action with no arguments
 public void RegisterAction(MethodInfo method, Action operation) { … }

 // Register an Action with no arguments
 public void RegisterAction(string methodName, Action operation) { … }

 // Register an Action with one argument

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

S t r u c t u r a l P a t t e r n s

97

 public void RegisterAction<TArg1>(MethodInfo method, Action<TArg1> operation) { … }

 // Register an Action with one argument
 public void RegisterAction<TArg1>(string methodName, Action<TArg1> operation) { … }

 // … M O R E …
 // Register a Func with no arguments
 public void RegisterFunc<TResult>(MethodInfo method, Func<TTResult> operation) { … }

 // Register a Func with no arguments
 public void RegisterFunc<TResult>(string methodName, Func<TResult> operation) { … }

 // Register a Func with one argument
 public void RegisterFunc<TArg1, TResult>(MethodInfo method, Func<TArg1, TResult> operation) { … }

 // Register a Func with one argument
 public void RegisterFunc<TArg1, TResult>(string methodName, Func<TArg1, TResult> operation) { … }

 // … M O R E …
 // Register a CompositeStrategy with no arguments
 public void RegisterStrategy<TResult>(MethodInfo method,
 CompositeStrategy<TResult> compositeStrategy) { … }

 // Register a CompositeStrategy with no arguments
 public void RegisterStrategy<TResult>(string methodName,
 CompositeStrategy<TResult> compositeStrategy) { … }

 // Register a CompositeStrategy with one argument
 public void RegisterStrategy<TArg1, TResult>(MethodInfo method,
 CompositeStrategy<TArg1, TResult> compositeStrategy) { … }

 // Register a CompositeStrategy with one argument
 public void RegisterStrategy<TArg1, TResult>(string methodName,
 CompositeStrategy<TArg1, TResult> compositeStrategy) { … }

 // … M O R E …
 // Register a CompositeFunc with no arguments
 public void RegisterCompositeFunc<TResult>(MethodInfo operation,
 CompositeFunc<TComponent, TResult> compositeFunc) { … }

 // Register a CompositeFunc with no arguments
 public void RegisterCompositeFunc<TResult>(string operation,
 CompositeFunc<TComponent, TResult> compositeFunc) { … }

 // … M O R E …
 // Register a CompositeStrategy with one argument
 public void RegisterCompositeFunc<TArg1, TResult>(MethodInfo operation,
 CompositeFunc<TComponent, TArg1, TResult> compositeFunc) { … }

 // Register a CompositeStrategy with one argument
 public void RegisterCompositeFunc<TArg1, TResult>(string operation,
 CompositeFunc<TComponent, TArg1, TResult> compositeFunc) { … }

 // … M O R E …
 public object Invoke(string methodName, object[] args) {
 Contract.Requires<ArgumentException>(!string.IsNullOrEmpty(methodName),
 "Argument methodName cannot be null");

 // Step 1 : Are there any registered component methods?
 if(HasComponentMethodToInvoke(methodName, args)) {
 // If it is a CompositeStrategy registered method, then execute it…
 var strategy = GetCompositeStrategy(methodName, args);
 if(strategy != null) {
 object ret = null;
 _components.ForEach(x => { ret = InvokeStrategy(x, methodName, args, strategy, ret); });
 return ret;
 }

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

S t r u c t u r a l P a t t e r n s

98

 // Step 2 : Or if it is a CompositeFunc registered method, then execute it…
 var func = GetCompositeFunc(methodName, args);
 if(func != null) { return func.DynamicInvoke(GetFuncArguments(args)); }

 // Step 3 : Or just a Func or Action but must still participate in the composite pattern
 var method = GetNormalComponentMethod(methodName, args);
 if (method != null) { // Call it on each method in the list, ignore the return value if Func
 _components.ForEach(x => { method.DynamicInvoke(args);});
 return null;
 }
 }

 // Are there any non registered component methods?
 if(HasNonComponentMethodToInvoke(methodName, args)) {
 // If it is not a component method, just execute it normally…
 var method = GetNonComponentMethod(methodName, args);
 if (method != null) { return method.DynamicInvoke(args); }
 }

 throw new Exception("The method " + methodName + " is not registered.");
 }

 public TComponent Target {
 get {
 Contract.Ensures(Contract.Result<TComponent>() != null);
 _target = DoubleCheckedLock<TComponent>.Create(_target, this,
 () => this.AsIf<TComponent>(true));
 return _target;
 }
 }

 public IList<IComponent<TComponent>> GetList() { return _components; }
 public TComponent GetInterface() { return Target; }

 // … S N I P …
}

The IComponent<T> APL interface, shown on page 96, defines a method that returns the list of

Components and a method that returns the Component interface. The IComponent<T> interface also

injects extension methods with the ComponentExtend APL class as shown below:

C# (APL)
--
public static class ComponentExtend {
 public static int GetCount<T>(this IComponent<T> component) { … }
 public static void Add<T>(this IComponent<T> composite, IComponent<T> element) { … }
 public static void Remove<T>(this IComponent<T> component, T obj) { … }
 public static IComponent<T> Remove<T, TArg>(this IComponent<T> component,
 RemoveCompare<T, TArg> removeCompare, TArg arg) { … }
 public static void ForEach<T>(this IComponent<T> composite, Action<T> action) { … }
 public static IEnumerator GetEnumerator<T>(this IComponent<T> component) { … }
 public static IComponent<T> Find<T>(this IComponent<T> component, T obj) { … }
 public static IComponent<T> Find<T, TArg>(this IComponent<T> component,
 FindCompare<T, TArg> findCompare, TArg arg) { … }
}

The AutoComposite<TComponent> component thus offers the above composite extension methods

because it realizes the IComponent<TComponent> interface.

The RegisterStrategy set of methods, defined on the AutoComposite<TComponent> component, is used

to register a CompositeStrategy delegate that is associated with a certain method on the Component.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

S t r u c t u r a l P a t t e r n s

99

The code below shows the implementation of the delegate, where the T generic argument denotes the

return type of the composite method. Multiple CompositeStrategy delegates exist in the APL library,

where each delegate caters for a different set of arguments:

C# (APL)
--
public delegate T CompositeStrategy<T>(T leftValue, T rightValue);
public delegate T CompositeStrategy<TArg1, T>(TArg1 arg1, T leftValue, T rightValue);
public delegate T CompositeStrategy<TArg1, TArg2, T>(TArg1 arg1, TArg2 arg2, T leftValue, T rightValue);
// … M O R E …

The example code below shows how a summation lambda expression (l, r) => l + r is registered

on an instance of the AutoComposite component against the Operation method. The Operation method,

which returns an int, is declared on the example ITheComponent Component:

C# (APL Example)
--
var composite1 = new AutoComposite<ITheComponent>();
composite1.RegisterStrategy<int>("Operation", (l, r) => l + r);

The AutoComposite component will thus apply the injected CompositeStrategy algorithm to all of the

Components in its internal list for the specific registered method. The registered method using the

CompositeStrategy delegate will thus always participate in the composite pattern. It is important to

note that the CompositeStrategy delegate can only be applied to functions. The usage of the (l, r) =>

l + r expression by the AutoComposite component can be explain as follows: The l value is the value

at which the Component iteration is currently. The r value is what the method invocation for the

current Component in the iteration has returned. The expression, which in this case is a summation, is

evaluated and its result will either be the l value for the next iteration or the overall return value.

The RegisterCompositeFunc method is used to register CompositeFunc delegates that are also associated

with a certain method on the Component that participates in the composite pattern. The

CompositeFunc set of delegates takes in the IComponent<TComponent> as its first argument and the rest of

the arguments are determined by the number of arguments on the Component method itself. The

IComponent<TComponent> interface has a GetInterface method, from where the instance of the

TComponent contract can be acquired. The CompositeFunc delegate thus gives the user the ability to inject

a powerful composite algorithm that can utilise the contract of a full Component. The code below

shows some of the CompositeFunc delegates that are available in the APL library, where each one caters

for a certain number of arguments:

C# (APL)
--
public delegate TResult CompositeFunc<TComponent, out TResult>(IComponent<TComponent> component); // None
public delegate TResult CompositeFunc<TComponent, in T, out TResult>(// One
 IComponent<TComponent> component, T arg);
public delegate TResult CompositeFunc<TComponent, in T1, in T2, out TResult>(// Two
 IComponent<TComponent> component, T1 arg1, T2 arg2);
// … M O R E …

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

S t r u c t u r a l P a t t e r n s

100

AutoComposite

OperationDictionary

Key: OperationA
Value: { Delegate ...}

Key: OperationB
Value: { Delegate ... }

Target Register Invoke

Target Dynamically Created
During Runtime (Realization of

the Component interface)

OperationA OperationB

Collection of Components

Figure 22. AutoComposite APL component overview.

Figure 22 shows an overview of the AutoComposite APL component. The register set of methods

registers a new operation on the internal dictionary. Each registered operation has an association with

one, and only one, method defined on the Component interface. The Target property returns a

runtime generated instance that realizes the Component interface. Each invocation on the instance is

routed through to the Invoke method on the AutoComposite instance. The Invoke method instance then

routes the call to the appropriate operation stored in the internal operation dictionary.

The following code shows how the CompositeFunc can be used in order to inject a composite algorithm

with an instance of the AutoComposite component. The code shows the registration of a lambda

expression that must be used for the Operation method that is defined on a certain Component

interface:

C# (APL Example)
--
// In the lambda expression below c defines the Component and
// arg defines the argument of the "Operation" method
// The first template argument – int – is the type of the single argument on the "Operation" method
// The second template argument – string – is the return type of the "Operation" method
// The "Operation" method is avaliable on the Component

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

S t r u c t u r a l P a t t e r n s

101

composite.RegisterCompositeFunc<int, string>("Operation", (c, arg) => {
 var stringBuilder = GetStringBuilder(arg, c.GetInterface().Name, c.GetCount());
 c.ForEach(x => stringBuilder.Append(x.GetInterface().Operation(arg + 2)));
 return stringBuilder.ToString(); });

In the example above, the Operation method has one argument of type int and it returns a value of

type string. The injected lambda expression has access to the Composite instance that is passed in as

the first argument. The user can thus inject complex composite algorithms without writing the

necessary composite pattern plumping code.

The Target property on the AutoComposite returns an instance of a dynamically created class that

implements the TComponent contract. All calls on the instance are first intercepted by the Invoke

method which receives the runtime name of the method and the runtime arguments. The Invoke

method first tests to see whether the received method must participate in the Composite pattern, by

looking for a CompositeStrategy delegate in the internal dictionary with the same method signature. If

a delegate is found, it is invoked together with all the Composite’s registered Components, as shown

in the code snippet below found within the Invoke method:

C# (APL)
--
// If it is a CompositeStrategy registered method, then execute it…
var strategy = GetCompositeStrategy(methodName, args);
if(strategy != null) {
 object ret = null;
 _components.ForEach(x => { ret = InvokeStrategy(x, methodName, args, strategy, ret); });
 return ret;
}

If no strategy is found, then the Invoke method determines whether a relevant CompositeFunc delegate

is available for the given method in the internal dictionary:

C# (APL)
--
// If it is a CompositeFunc registered method, then execute it…
var func = GetCompositeFunc(methodName, args);
if(func != null) { return func.DynamicInvoke(GetFuncArguments(args)); }

If no CompositeStrategy or CompositeFunc is found, then the relevant method on all of the internally

stored Components is invoked:

C# (APL)
--
// Or just a Func or Action but must still participate in the composite pattern
var method = GetNormalComponentMethod(methodName, args);
if (method != null) { // Call it on each method in the list, ignore the return value if Func
 components.ForEach(x => { method.DynamicInvoke(args);});
 return null;
}

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

S t r u c t u r a l P a t t e r n s

102

A registered method on the internally stored Composite doesn’t participate in the composite pattern if

it is not attributed with the CompositeMethodAttribute attribute. In this case, the Invoke method just

invokes the registered method normally and the internal list of Components is thus ignored:

C# (APL)
--
// Are there any non registered component methods?
if(HasNonComponentMethodToInvoke(methodName, args)) {
 // If it is not a component method, just execute it normally…
 var method = GetNonComponentMethod(methodName, args);
 if (method != null) { return method.DynamicInvoke(args); }
}

9.2.2 The Composite component.

The Composite APL component is a simple component that is used in a curiously recurring template pattern

(Coplien, 1995) environment. It takes in one generic argument that defines the underlying user coded

Component. It also implements the IComponent<T> APL interface, giving it access to the large set of

Component extension methods.

The code snippet below shows the implementation of the Composite APL component:

C# (APL)
--
public abstract class Composite<T> : IComponent<T> {
 protected List<IComponent<T>> List = new List<IComponent<T>>();
 protected void SetComposite(T composite) { Target = composite; }
 public IList<IComponent<T>> GetList() { return List; }
 public T GetInterface() { return Target; }
 public T Target { get; private set; }
 public int GetCount() { return List.Count; }
}

The Composite<T> component stores the list of Components internally. A developer now has access to

a large number of standard Composite functionalities, including an enumerator to a list of

Components. Component methods can now be added to the base hand coded Composite by a

developer.

Developers need only concentrate on the algorithms of the methods defined in the user coded

concrete Composite, and thus do not have to implement the entire pattern structure by hand:

C# (APL Example)
--
public interface {
 public string Operation(int depth)
}

public class TheComposite : Composite<ITheComponent>, ITheComponent { // Using CRTP
 public TheComposite(string name) {
 Name = name;
 SetComposite(this);
 }

 public string Name { get; set; }

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

S t r u c t u r a l P a t t e r n s

103

 // Implementation of the ‘Operation’ method that is defined on the ITheComponent interface
 public string Operation(int depth) {
 var stringBuilder = new StringBuilder(new String('-', depth));
 stringBuilder.Append("Set " + Name + " length :" + GetCount() + "\n");
 this.ForEach(x => stringBuilder.Append(x.Display(depth + 2)));
 return stringBuilder.ToString();
 }
}

A Leaf participant may also be added by using the Leaf APL component, where it implements the

IComponent<T> interface for a certain Component contract T:

C# (APL)
--
public abstract class Leaf<T> : IComponent<T> {
 private T _component;

 protected void SetComponent(T component) {
 Contract.Requires<ArgumentNullException>(component != null, "Argument component cannot be null");
 _component = component;
 }

 public IList<IComponent<T>> GetList() { return new List<IComponent<T>>(); } // Return an empty list
 public T GetInterface() { return _component; }
 public T Target { get { return _component; } }
 public int GetCount() { return 0; }
}

Figure 23. UML class diagram of the Composite APL component.

Figure 23 shows a UML class diagram of the Composite APL component. It shows the Composite and

Leaf components and also their realization of the IComponent APL interface. A Leaf can easily be

created using the Leaf APL component together with the curiously recurring template pattern (G´eraud &

T

Composite

List :List<IComponent<T>>

«Property»

+ Target :T

+ GetCount() :int

+ GetInterface() :T

+ GetList() :IList<IComponent<T>>

SetComposite(composite :T) :void

«interface»

T

IComponent

+ GetInterface() :T

+ GetList() :IList<IComponent<T>>

T

Leaf

- _component :T

«Property»

+ Target :T

+ GetCount() :int

+ GetInterface() :T

+ GetList() :IList<IComponent<T>>

SetComponent(component :T) :void

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

S t r u c t u r a l P a t t e r n s

104

Duret-Lutz, 2000). The methods of the T contract must, however, be implemented manually, as seen

in the code below:

C# (APL Example)
--
public class TheLeaf : Leaf<ITheComponent>, ITheComponent {
 public TheLeaf () { SetComponent(this); }
 public string NonCompositeOperation() { … }
}

9.3 Theoretical Examples

The first theoretical example shows the usage of the AutoComposite APL component. The Component

contract is implemented with the ITheComponent interface, which implements the IComponent<T> APL

interface. The ITheComponent Component has one Operation method that returns an int. The

Operation method participates in the composite pattern. A Component can also have methods that are

not used in the Composite pattern; however, this is not shown in this example. Only the methods that

participate in the composite pattern should be attributed with the CompositeMethodAttribute attribute.

A Leaf is also defined, which inherits from the Leaf<T> APL component:

C# (APL Example)
--
public interface ITheComponent : IComponent<ITheComponent> {
 [CompositeMethod]
 int Operation();
}

public class ConcreteLeaf : Leaf<ITheComponent>, ITheComponent {
 private readonly int _value;

 public ConcreteLeaf(int value) {
 SetComponent(this);
 _value = value;
 }

 public int Operation() { return _value; }
}

class Program {
 static void Main() {
 var composite1 = new AutoComposite<ITheComponent>();
 composite1.RegisterStrategy<int>("Operation", (l, r) => l + r);
 var leaf1 = new ConcreteLeaf(10);
 composite1.Add(leaf1);
 var leaf2 = new ConcreteLeaf(12);
 composite1.Add(leaf2);

 var composite2 = new AutoComposite<ITheComponent>();
 composite2.RegisterStrategy<int>("Operation", (l, r) => l + r);
 var leaf3 = new ConcreteLeaf(18);
 composite2.Add(leaf3);
 var leaf4 = new ConcreteLeaf(22);
 composite2.Add(leaf4);

 // Add a composite2 to a composite1, which creates a tree-like structure
 composite1.Add(composite2.Target);
 var leaf5 = new ConcreteLeaf(45);
 composite1.Add(leaf5);

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

S t r u c t u r a l P a t t e r n s

105

 // Add and remove a leaf
 var leaf6 = new ConcreteLeaf(9);
 composite1.Add(leaf6);
 composite1.Remove(leaf6);

 // Calculate the value
 int value = composite1.Target.Operation();
 Console.WriteLine("Value = " + value);
 }
}

/* Output
Value = 116
*/

In the above example, no Composites are hand coded. Both the composite1 and composite2 instances

are implemented by new instances of the AutoComposite component. A CompositeStrategy is injected

on the Operation method, using a lambda expression, on each Composite instance:

C# (APL Example)
--
var composite1 = new AutoComposite<ITheComponent>();
composite1.RegisterStrategy<int>("Operation", (l, r) => l + r);

var composite2 = new AutoComposite<ITheComponent>();
composite2.RegisterStrategy<int>("Operation", (l, r) => l + r);

A couple of Leaf instances are also registered on the composite1 and composite2 Components. The

composite2 instance is also added to the composite1 instance, as seen below:

C# (APL Example)
--
composite1.Add(composite2.Target);

Finally, the Operation method is called on the composite1 Composite that runs through all of the

added Components. The Target property on the AutoComposite uses duck typing (Koenig & Moo, 2005)

in order to map the Operation method to the injected CompositeStrategy, which in this case is the

lambda expression (l, r) => l + r:

C# (APL Example)
--
int value = composite1.Target.Operation();

The output shows that the correct value was calculated and returned by the Operation invocation.

The final example shows the usage of the Composite APL component. It is almost the same as the

previous example, except that the Composite component is used instead of the AutoComposite

component. The ConcreteComposite inherits from the Composite component and is thus able to reuse

most of the component’s Composite functionality. The Composite only has to implement the

Operation method:

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

S t r u c t u r a l P a t t e r n s

106

C# (APL Example)
--
public interface ITheComponent : IComponent<ITheComponent> {
 [CompositeMethod]
 int Operation();
}

public class ConcreteComposite : Composite<ITheComponent>, ITheComponent {
 public ConcreteComposite() { SetComposite(this); }

 public int Operation() {
 int sum = 0;
 this.ForEach(x => sum = sum + x.Operation());
 return sum;
 }
}

public class ConcreteLeaf : Leaf<ITheComponent>, ITheComponent {
 private readonly int _value;

 public ConcreteLeaf(int value) {
 _value = value;
 SetComponent(this);
 }

 public int Operation() { return _value; }
}

class Program {
 static void Main() {
 var composite1 = new ConcreteComposite();
 var leaf1 = new ConcreteLeaf(10);
 composite1.Add(leaf1);
 var leaf2 = new ConcreteLeaf(12);
 composite1.Add(leaf2);

 var composite2 = new ConcreteComposite();
 var leaf3 = new ConcreteLeaf(18);
 composite2.Add(leaf3);
 var leaf4 = new ConcreteLeaf(22);
 composite2.Add(leaf4);

 // Add a composite2 to a composite1, which creates a tree-like structure
 composite1.Add(composite2.Target);
 var leaf5 = new ConcreteLeaf(45);
 composite1.Add(leaf5);

 // Add and remove a leaf
 var leaf6 = new ConcreteLeaf(9);
 composite1.Add(leaf6);
 composite1.Remove(leaf6);

 // Recursively display tree
 int value = composite1.Operation();
 Console.WriteLine("Value = " + value);
 Console.ReadLine();
 }
}

/* Output
Value = 116
*/

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

S t r u c t u r a l P a t t e r n s

107

In the above example, a developer has access to the Component list inside the user coded Operation

method. The Operation method iterates through all of the registered Components and calculates their

sum and returns the value:

C# (APL Example)
--
public int Operation() {
 int sum = 0;
 this.ForEach(x => sum = sum + x.Operation());
 return sum;
}

In the last full example, instances of the Composite ConcreteComposite class are created normally and

Leaves are added using the inherited Add method, as shown below:

C# (APL Example)
--
var composite1 = new ConcreteComposite();
var leaf1 = new ConcreteLeaf(10);
composite1.Add(leaf1);

The output of the example is the same as the previous one, showing that the composite1.Operation()

invocation was successful.

9.4 Outcome

The componentization of the composite design pattern is a success because it meets all the

requirements listed in section 1.4:

 Completeness: The composite design pattern library components cover all cases described in

the original design pattern.

 Usefulness: The composite design pattern library components are useful because they solve

all of the composite scenarios desired by a developer. The components serve the same

functionality as a hand written composite, without a developer having to write the composite

boiler plate code by hand. With the AutoComposite component a developer is responsible only

for implementing the Component and Leaf participants and hooking up the composite

algorithms. With the Composite component a developer is also responsible only for

implementing the Component and Leaf participants and implementing the composite

methods. Both of the components are relatively simple and easy to use.

 Faithfulness: The AutoComposite reusable pattern component follows an implementation that

differs from the original core pattern described in Design Patterns (Gamma, Helm, Johnson, &

Vlissides, 1994). With the AutoComposite component, the Composite is generated during

runtime using duck typing (Koenig & Moo, 2005) and meta-programming (Perrotta, 2010). The

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

S t r u c t u r a l P a t t e r n s

108

Composite component implementation follows the same implementation as the original pattern

described in Design Patterns.

 Type-safety: The registration methods on the AutoComposite component use non type-safe

string literals for the specification of the method names. Lambda expressions trees (Albahari &

Albahari, 2007, p. 317) however, can be used to solve the type-safe registration problem, as

shown in Appendix I. Other than that, all the library components are fully type-safe.

 Extended applicability: The composite library components do not cover more cases than

the original composite pattern.

 Performance: The composite library components do have a performance impact because of

the usage of duck typing (Koenig & Moo, 2005). Appendix II shows the performance impact of

duck typing. The performance impact is, however, acceptable in normal situations.

The composite pattern is fully componentizable, because the developer is not tasked with

implementing any boiler plate code when using the reusable pattern components.

The following language features are fundamental to the implementation or usage of the reusable

composite design pattern components: Inheritance (Mitchell, Mitchell, & Krzysztof, 2003), Interfaces

(Pattison & Box, 2000), Generics (Jagger, Perry, & Sestoft, 2007), Design by Contract™ (Mitchell &

McKim, 2001), Attributes (Nagel, Evjen, Glynn, & Watson, 2010), Method References (Microsoft,

2010e), Anonymous Functions (Ierusalimschy, 2003), Lambda Expressions (Michaelis, 2010),

Reflection (Sobel & Friedman, 1996) (Forman & Forman, 2005), Duck Typing (Koenig & Moo, 2005)

and Meta-programming (Perrotta, 2010).

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

109

 C h a p t e r 1 0

10 STATE

10.1 Introduction

The state design pattern (Gamma, Helm, Johnson, & Vlissides, 1994) tackles the challenge of how an

object implements an interface differently according to the state it is in. This problem is sometimes

incorrectly implemented using conditional statements such as if and switch. The pattern adheres to

the refactoring rule of Replace Conditional with Polymorphism (Fowler, Beck, Brant, Opdyke, & Roberts,

1999, pp. 255-259) that states “Move each leg of the conditional to an overriding method in a subclass. Make the

original method abstract”. The state design pattern shows an elegant object-oriented solution that is closed

to change, yet open to extension (Meyer, 2000).

The pattern permits an object to change its functionality according to its internal state. It will thus

appear as though the object has changed its class (Gamma, Helm, Johnson, & Vlissides, 1994). The

intent is, therefore, to offer an unsophisticated and adaptable mechanism for an object to delegate

messages to different concrete implementations depending on the state of the underlying object.

10.1.1 Structure.

The following figure shows the formal structure of the state design pattern (Gamma, Helm, Johnson,

& Vlissides, 1994):

Figure 24. State structure.

10.1.2 Participants.

The classes and/or objects participating in the state design pattern are:

Handle()

State

Handle()

ConcreteState2

Request()

Context

Handle()

ConcreteState1

state

state.Handle()

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

B e h a v i o u r a l P a t t e r n s

110

 Context

The Context declares the interface that will be used by clients or users. It also holds, manages

and uses an instance of the subclass of a ConcreteState that controls the present desired state.

 State

A State declares an interface that implements the operations in a ConcreteState, which is

associated with a distinctive state of the Context.

 ConcreteState

A ConcreteState implements the operations declared in the State interface. It holds the actual

state linked with a Context instance.

10.2 Library Components

10.2.1 The State component.

The APL IState interface defines a standard reusable contract for a State. The interface defines useful

methods such as setting and getting the underlying State instance, as seen below:

C# (APL)
--
public interface IState<TState> : IAutoState<TState> {
 void SetState(IState<TState> state); // Sets the state to the new IState state instance
 void SetState<TConcreteState>() where TConcreteState : TState; // Sets the state to TConcreteState
 void SetStateContext(IStateContext<TState> stateContext); // Sets a new Context
 TState GetTarget(); // Get a Target
 void SetTarget(TState state); // Set the Target
}

The APL IState interface also implements the IAutoState<TState> APL interface in order for an

implementer of the IState interface to make use of the extension methods made available by the

IAutoState<TState> APL interface. The implementer of the IState<TState> interface must implement

all of the methods defined on the interface. The implementation can, however, delegate the processing

to the relevant extension method that is made available on the IAutoState<TState> interface.

The State<TState> APL component implements a part of a ConcreteState that must be used in a

curiously recurring template pattern (CRTP) (Coplien, 1995) setting. Figure 25 shows a UML class diagram

of the State APL group of components, which illustrates the following four items: First, it illustrates

the implementation hierarchy of the IState interface and the State component; secondly, the

StateContext component’s usage of the State component (discussed later in this chapter) and the

StateContext component’s implementation of the IStateContext interface; thirdly, the State

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

B e h a v i o u r a l P a t t e r n s

111

component’s usage of the IState interface, which it uses to change the state of a StateContext

instance and, fourthly, the dominance of the state getter and setter methods on the components.

Figure 25. UML class diagram of the State APL component.

The State<TState> component, which realizes the IState<TState> APL interface, implements a certain

extension of the state design pattern (Dyson & Anderson, 1997) where it holds an internal reference to

the State’s Context through an IStateContext<TState> APL interface, as illustrated in Figure 25. A

State instance thus holds a reference back to its Context instance. This makes it possible for a

ConcreteState to change the state, delegating the state change request to its holding Context:

C# (APL)
--
public abstract class State<TState> : IState<TState> {
 private IStateContext<TState> _stateContext;

 public void SetStateContext(IStateContext<TState> stateContext) {
 Contract.Requires<ArgumentNullException>(stateContext!= null,
 "Argument stateContext cannot be null");
 _stateContext = stateContext;

«interface»

TState

IStateContext

«Property»

- State :TState

+ SetState(state :TState) :void

+ SetState() :void

«interface»

TState

TContextInterface

IStateContext

«Property»

- Contract :TContextInterface

TState > IAutoState<TState>
TContextInterface

StateContext

- _stateLogic :State<TState> = new State<TState>() {readOnly}

«Property»

+ Contract :TContextInterface

+ State :TState

+ Create() :IStateContext<TState, TContextInterface>

+ SetContract(contract :TContextInterface) :void

+ SetState(state :TState) :void

+ SetState() :void

- Validate() :void

«interface»

TState

IState

+ GetTarget() :TState

+ SetState(state :IState<TState>) :void

+ SetState() :void

+ SetStateContext(stateContext :IStateContext<TState>) :void

+ SetTarget(state :TState) :void

TState

State

- _stateContext :IStateContext<TState>

«Property»

+ Target :TState

GetStateContext() :IStateContext<TState>

+ GetTarget() :TState

+ SetState(state :IState<TState>) :void

+ SetState() :void

+ SetStateContext(stateContext :IStateContext<TState>) :void

+ SetTarget(state :TState) :void

«interface»

TState

IAutoState

-_stateContext

-_stateLogic

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

B e h a v i o u r a l P a t t e r n s

112

 Validate();
 }

 public IStateContext<TState> GetStateContext() {
 Contract.Ensures(Contract.Result<IStateContext<TState>>() != null);
 return _stateContext;
 }

 public void SetState(IState<TState> state) {
 Contract.Requires<ArgumentNullException>(state != null,
 "Argument state cannot be null");
 Contract.Requires<ArgumentNullException>(_stateContext!= null,
 "The internal stateContext cannot be null");
 _stateContext.SetState(state.GetTarget());
 }

 public void SetState<TConcreteState>()
 where TConcreteState : TState {
 Contract.Requires<ArgumentNullException>(_stateContext!= null,
 "The internal stateContext cannot be null");
 _stateContext.SetState<TConcreteState>();
 }

 // … S N I P …

 public TState Target { get; set; }

 public TState GetTarget() {
 Contract.Ensures(Contract.Result<TState>() != null);
 return Target;
 }

 public void SetTarget(TState state) {
 Contract.Requires<ArgumentNullException>(state != null,
 "Argument state cannot be null");
 Target = state;
 }
}

The SetState method changes the Context’s state to the new desired state, where the state can be

passed in with either a generic argument or as an IState<TState> APL interface. The TState generic

argument of the State<TState> component defines the State participant of the state pattern. The

TConcreteState generic argument that is passed to the SetState defines a ConcreteState participant

and must be of type TState. The SetStateContext method changes the Context reference of the

ConcreteState. This can only be done after the Context’s state has been set to reference the State, as

the SetStateContext will validate this rule. The SetTarget method registers the TState State whereas

the GetTarget method retrieves it. The SetTarget and GetTarget methods are used only in a scenario

where the creator and user of the component are separated and the user does not have access to the

TState. The user can thus gain access to the TState by using the GetTarget method.

In the example below, the example ConcreteState class is defined in a curiously recurring template pattern

(Coplien, 1995) setting. The ConcreteState class implements the user defined ITheState interface,

which define the HandleState1 and HandleState2 methods as its contract. The ConcreteState class can

now use the inherited SetState method in order to change the state on the Context:

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

B e h a v i o u r a l P a t t e r n s

113

C# (APL Example)
--
public class ConcreteState : State<ITheState>, ITheState {
 public void HandleState1() {
 // … S N I P …
 SetState<MyConcreteStateB>(); // Change the state to MyConcreteStateB
 // … S N I P …
 }

 public void HandleState2() { … }
}

The IStateContext<TState> APL interface defines the contract for a standard Context. It defines

methods whereby the state of the context can be changed. The TState generic argument defines the

State participant and it can be retrieved with the State property:

C# (APL)
--
public interface IStateContext<TState> {
 void SetState(TState state); // Sets the State using a TState instance
 void SetState<TConcreteState>() where TConcreteState : TState; // Sets the State using TConcreteState
 TState State { get; } // Gets the State
}

The StateContext<TState, TContextInterface> APL component defines a standard Context. It is

defined with two generic arguments TState and TContextInterface. The TState generic argument must

be a specific State implementation, and the TContextInterface must be a Context interface. The

StateContext<TState, TContextInterface> component realizes the IStateContext<TState,

TContextInterface> APL interface. The TState generic argument must be of type IAutoState<TState>

because it must have the standard injected State functionality:

C# (APL)
--
public abstract class StateContext<TState, TContextInterface> : IStateContext<TState, TContextInterface>
 where TState : IAutoState<TState> {
 public TState State { get; private set; }

 public void SetState(TState state) {
 System.Diagnostics.Contracts.Contract.Requires<ArgumentNullException>(state != null,
 "Argument state cannot be null");

 // … S N I P …
 State = state;
 state.SetStateContext(this); // After setting the state on the context,
 // set the context on the state
 }

 public void SetState<TConcreteState>() where TConcreteState : TState {
 SetState(StateFactory<TConcreteState, TState>.Create());
 }

 public void SetContract(TContextInterface contract) {
 System.Diagnostics.Contracts.Contract.Requires<ArgumentNullException>(state != null,
 "Argument state cannot be null");

 Contract = contract;

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

B e h a v i o u r a l P a t t e r n s

114

 }

 public TContextInterface Contract { get; private set; }

 static public IStateContext<TState, TContextInterface> Create<TStateContext, TConcreteState>()
 where TStateContext : StateContext<TState, TContextInterface>, TContextInterface
 where TConcreteState : State<TState>, TState {
 System.Diagnostics.Contracts.Contract.Ensures(
 Contract.Result<IStateContext<TState, TContextInterface>>() != null);

 Validate<TConcreteState>();
 return StateContextFactory<TStateContext, TConcreteState, TState, TContextInterface>.Create();
 }

 // … S N I P …
}

The State auto property, as seen in the implementation code above, holds the current State instance of

the Context. The internal state cannot be set with the State property; it must be set with the public

SetState method. The SetState method sets the state of the Context instance and also sets the

Context on the State instance. A State instance holds a reference back to its Context, in order for the

state to be changed.

The StateFactory APL component, which is used in the SetState<TConcreteState> method on the

StateContext component, is used to create a normal instance of the ConcreteState. Different types of

ConcreteState creational strategies exist in the APL library, such as Normal, Singleton and Flyweight.

The StateFactory APL component just creates a normal instance of a certain ConcreteState. The

SingletonStateFactory APL component creates a singleton instance of a certain ConcreteState and the

FlyweightStateFactory creates ConcreteState instances in a flyweight pattern setting (Gamma, Helm,

Johnson, & Vlissides, 1994). The ConcreteState creational strategies adhere to the creational patterns

discussed in Design Patterns with regard to the state pattern (Gamma, Helm, Johnson, & Vlissides,

1994).

The different creational strategies available are Normal, Singleton and Flyweight and are defined on the

StateCreationStyle enumerator:

C# (APL)
--
public enum StateCreationStyle {
 Normal, // The State class is a normal instance and holds a reference back to the context
 Singleton, // The state class is a Singleton and doesn't hold any context reference
 Flyweight // The state class is a Flyweight and doesn't hold any context reference
}

The StateCreationStyle enumerator is used when the StateAttribute is tagged on a State interface, as

shown later in this section.

The StateContext component is used in a curiously recurring template pattern (Coplien, 1995) setting, as

shown below:

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

B e h a v i o u r a l P a t t e r n s

115

C# (APL Example)
--
public interface ITheContextInterface { void Request(); }

public class Context : StateContext<ITheState, IContextInterface>, ITheContextInterface { // Using CRTP
 // … S N I P …

 public void Request() { // Implementation of the ‘Request’ method on the ITheContextInterface

 // … S N I P …
 SetState<ConcreteState1>; // Switch to state ConcreteState1
 // … S N I P …
 State.HandleState1(); // Invoke the HandleState1 method on the state instance
 // … S N I P …
 SetState<ConcreteState2>; // Switch to state ConcreteState2
 // … S N I P …
 State.HandleState3(); // Invoke the HandleState3 method on the state instance
 // … S N I P …
 State.HandleState2(); // Invoke the HandleState2 method on the state instance
 // … S N I P …
 SetState<ConcreteState3>; // Switch to state ConcreteState3
 // … S N I P …
 }
}

The above example shows the usage of the StateContext<TState, TContextInterface> component.

The user must supply the State interface and the Context interface through generic arguments when

using the StateContext component. In this example, the ITheState interface defines the State contract

and the TContextInterface interface defines the Context contract. The user defined Context class must

implement the Context interface. The Context concrete instance, thus, must implement the method of

the ITheContextInterface, which in this case is Request. The Request method implements the necessary

state transitions using the State property inherited from the StateContext component.

A SingletonStateContext component also exists in the APL library. It performs exactly the same

functionality as the StateContext except that it uses a SingletonStateFactory to create an instance of a

certain ConcreteState:

C# (APL)
--
public void SetState<TConcreteState>() where TConcreteState : TState {
 Validate<TConcreteState>();
 SetState(SingletonStateFactory<TConcreteState, TState>.Create());
}

The SetState method validates that the TConcreteState is indeed a singleton (Gamma, Helm, Johnson,

& Vlissides, 1994) by checking some standard singleton rules. The developer of the TConcreteState

does not have to implement a full singleton by hand. The TConcreteState must only be implemented

in such a way that the SingletonStateFactory can use it as a singleton:

C# (APL Example)
--
public class ConcreteStateA : ITheState {
 // Must be set to private in order to pass validations
 private ConcreteStateA() { }

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

B e h a v i o u r a l P a t t e r n s

116

 public void HandleState1(IStateContext<IState> context) {
 // … S N I P …

 // Switches the state to a Singleton ConcreteStateB using the context argument
 context.SetState<ConcreteStateB>();
 }

 public void HandleState2(IStateContext<IState> context) { … }
}

In the above example, ConcreteStateA is set to private in order to prohibit intermittent instance

creation of the ConcreteStateA class. The validation in the SetState method on the

SingletonStateContext component fails if its TConcreteState’s constructor is not private. The

ConcreteStateA implementation can also no longer inherit from the State APL component. This is

because the State component holds a reference back to a certain Context. An instance of the State

component thus holds its own internal state, which makes a State component instance impossible to

share with multiple Context instances; therefore it cannot be a Singleton. A Singleton ConcreteState

must be shareable and must hold no state. The Context must, therefore, be passed to the

ConcreteState through the arguments of the handler methods, as shown in the example below:

C# (APL Example)
--
[State(StateCreationStyle = StateCreationStyle.Singleton)] // The state interface is used as a singleton
public interface ITheState {
 // State handle…
 void HandleState1();

 // Another state handle…
 void HandleState2(IStateContext<IState> context); // Pass in the Context’s state
}

It is the developer’s responsibility to code the State contract and the ConcreteState implementation of

that contract. The developer must also define the creational style for the State with the StateAttribute

APL attribute. The SingletonStateContext will, however, validate if the ConcreteState was

implemented correctly. The SingletonStateContext will thus validate that the ConcreteState holds only

one constructor that is private, with no arguments, and that it does not hold any state.

The FlyweightStateContext APL component performs the same functionality as the StateContext and

SingletonStateContext. It does, however, ensure that the ConcreteStates are also Flyweights (Gamma,

Helm, Johnson, & Vlissides, 1994). The FlyweightStateContext forces the ConcreteStates to be

Flyweights through its SetState method:

C# (APL)
--
// Set the state using a flyweightkey
public void SetState<TConcreteState, TFlyweightKey>(TFlyweightKey flyweightKey)
 where TConcreteState : TState {
 Validate(flyweightKey); // Validate if the new state is possible…
 // Sets the new state using the flyweightKey argument
 SetState(FlyweightStateFactory<TConcreteState, TFlyweightKey>.Create(flyweightKey));
}

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

B e h a v i o u r a l P a t t e r n s

117

Figure 26. UML class diagram of the FlyweightContext APL component.

Figure 26 shows a UML class diagram of the FlyweightContext APL component and the APL

interfaces it implements.

The ConcreteStates must be implemented by the developer in order for them to be used by the APL

flyweight components. This means that the developed ConcreteStates must follow the same kind of

rules as the singleton ConcreteStates. The ConcreteStates can have a state, but the state must be

«interface»

TState

IStateContext

«Property»

- State :TState

+ SetState(state :TState) :void

+ SetState() :void

«interface»

TState

IFlyweightContext

+ SetState(flyweightKey :TFlyweightKey) :void

«interface»

TState

TContextInterface

IFlyweightContextEx

TState
TContextInterface

FlyweightContext

«Property»

+ Contract :TContextInterface

+ State :TState

+ Create(flyweightKey :TFlyweightKey) :IFlyweightContextEx<TState, TContextInterface>

+ SetContract(contract :TContextInterface) :void

+ SetState(state :TState) :void

+ SetState(flyweightKey :TFlyweightKey) :void

+ SetState() :void

- Validate() :void

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

B e h a v i o u r a l P a t t e r n s

118

related to the key of the Flyweight, because their instances must be shareable. A ConcreteState’s

constructor must also be private, in order to protect the creation of the class. The ConcreteState’s

private constructor must, however, take one argument that represents the key of the Flyweight. The

APL flyweight components use this keyed private constructor in order to create a unique instance of a

ConcreteState that is related to the key:

C# (APL Example)
--
public class MyConcreteStateA : ITheState {
 private Setting Setting = Setting.SettingA;

 // Private constructor with a Flyweight key.

 private MyConcreteStateA(Setting setting) { Setting = setting; }
 public override void HandleState1(IFlyweightContext<IMyState> context) { … }
 public override void HandleState2(IFlyweightContext<IMyState> context) { … }
}

An IFlyweightContext<TState> interface must be passed to a handler in order for it to make state

changes. The IFlyweightContext<TState> interface adds an extra SetState method to the

IStateContext<TState> interface, which also supplies the Flyweight key as a generic argument:

C# (APL)
--
public interface IFlyweightContext<TState> : IStateContext<TState> {
 void SetState<TConcreteState, TFlyweightKey>(TFlyweightKey flyweightKey)
 where TConcreteState : TState;
}

It is now possible for the user or ConcreteState to change the state by using the Context:

C# (APL Example)
--
context.SetState<ConcreteState, Key>(Key.Value1);

In the above example the key is an enumerator on which Value1 is a variable.

A ConcreteState can also be defined without having to inherit from the State<TState> APL

component. C# does not allow multiple inheritance (Balagurusamy, 2008). A C# class can thus only

inherit from one base class. This limits the possibilities for applying multiple patterns on a certain class

if only the curiously recurring template pattern (Coplien, 1995) is available. The state pattern in the APL

library gives the developer the option to implement the IAutoState<TState> interface on a

ConcreteState instead of inheriting from the State<TState> APL component. The IAutoState<TState>

interface injects the same standard State functionality as the State<TState> component, by using C#

extension methods (Esterbrook, 2001) (Jesse & Xie, 2008):

C# (APL Example)
--
public class ConcreteState : IAutoState<ITheState>, ITheState {
 public void HandleState1() {
 // … S N I P …

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

B e h a v i o u r a l P a t t e r n s

119

 this.SetState<MyConcreteStateB, IMyState>();
 // … S N I P …
 }

 public void HandleState2() { … }
}

The extension methods are injected with the DynamicStateEx static APL class, whereby they implement

all the methods on the IState<TState> APL interface.

The code below shows the implementation of the IAutoState<TState> interface:

C# (APL)
--
public interface IAutoState<TState> { } // Just an empty interface

The IAutoState<TState> APL interface is empty because all the methods it injects are defined in the

extension methods. Figure 27 shows a UML class diagram of the DynamicStateEx APL static class. The

IAutoState<TState> interface thus allows for the automatic inclusion of those state pattern methods on

a certain State implementation without using inheritance.

Figure 27. UML class diagram of the DynamicStateEx APL component.

The code below shows the implementation of the DynamicStateEx extension method in the APL

library:

C# (APL)
--
public static class DynamicStateEx {
 public static TState GetTarget<TState>(this IAutoState<TState> obj) { … }

 public static void SetState<TConcreteState, TState>(this IAutoState<TState> obj)
 where TConcreteState : TState { … }

 public static void SetStateContext<TState>(this IAutoState<TState> obj,
 IStateContext<TState> stateContext) { … }

 public static void SetTarget<TState>(this IAutoState<TState> obj, TState state) { … }
}

A State implemented with the IAutoState<TState> APL interface can be used as a participant in

another design pattern using APL components, because multiple interface implementations are

DynamicStateEx

«extension»

+ GetTarget() :TState

+ SetState() :void

+ SetStateContext(stateContext :IStateContext<TState>) :void

+ SetTarget(state :TState) :void

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

B e h a v i o u r a l P a t t e r n s

120

allowed in C#. A State implemented using the curiously recurring template pattern (Coplien, 1995) cannot

be a combined with another design pattern using inheritance only APL components. This is because

the curiously recurring template pattern uses inheritance, and multiple inheritance is not allowed in C#. For

example, a State can be defined as a Decorator and a Composite, as the following code snippet shows:

C# (Example)
--
public class MyState : Composite<ITheComponent<T>>, ITheComponent<T>, // APL class using CRTP
 IAutoState<TState>, // APL interface
 IAutoDecorator { // APL interface
 // … S N I P …
}

In the above example, the MyState class is made a State and a Decorator by using APL interfaces. The

MyState class is made a decorator by the IAutoDecorator APL interface, which is not discussed in this

thesis. The APL interfaces use C# extension methods in order to inject the desired boiler plate

reusable pattern code. The MyState class is also made a Composite by using an APL composite

component using CRTP (Coplien, 1995). The implementation would not have been possible if more

than one pattern injected its boiler plate code using the curiously recurring template pattern (Coplien, 1995),

as seen below:

C# (Error Example)
--
public class MyState : Composite<ITheComponent<T>>, ITheComponent<T>, // APL class using CRTP
 State<TState>, // APL class using CRTP (error)
 IAutoDecorator { // APL interface
 // … S N I P …
}

In the above code, the MyState class inherits from both the Composite and State APL classes. This

scenario is not allowed, because multiple inheritance is illegal in C# (Balagurusamy, 2008).

An IAutoStateContext<TState> also exists in the APL library, which allows the use of an interface

instead of the StateContect<TState> component. The DynamicStateContextEx static class injects the

necessary standard Context functionality by using C# extension methods, as shown below:

C# (APL)
--
public interface IAutoStateContext<TState> { // None } // Just an empty interface

public static class DynamicStateContextEx {
 public static TState GetState<TState>(this IAutoStateContext<TState> autoStateContext) {
 // … S N I P …
 }

 public static void SetState<TState>(this IAutoStateContext<TState> autoStateContext, TState state) {
 // … S N I P …
 }

 public static void SetState<TState, TConcreteState>(this IAutoStateContext<TState> autoStateContext)
 where TConcreteState : TState { … }

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

B e h a v i o u r a l P a t t e r n s

121

 private static IStateContext<TState> GetStateContext<TState>(
 IAutoStateContext<TState> autoStateContext) { … }
}

The following example shows how the IAutoStateContext can be used when creating a Context:

C# (APL Example)
--
public class Context : IAutoStateContext<ITheState>, IContextInterface { // No CRTP
 public void Request() {
 // … S N I P …
 this.GetState().HandleState1(); // The GetState method is auto injected
 // … S N I P …
 this.SetState<IMyState, MyConcreteStateA>(); // The SetState method is auto injected
 // … S N I P …
 this.GetState().HandleState2(); // The GetState method is auto injected
 // … S N I P …
 this.GetState().HandleState3();// The GetState method is auto injected
 // … S N I P …
 }
}

The example above shows how the Context has access to State functionalities such as SetState and

GetState, which are auto injected by the IAutoStateContext<TState> APL interface.

Different creational strategies can also be used when using the IAutoState and IAutoStateContext

interfaces, by using the AutoStateContextFactory APL component and other library factories. When

using the auto state interfaces, the state creational strategy must be supplied by using the

StateCreationStyle property on the State attribute:

C# (APL Example)
--
[State(StateCreationStyle = StateCreationStyle.Singleton)] // The state instance will be a singleton
public interface ITheState : IAutoState<ITheState> {
 void HandleState1(IAutoStateContext<IMyState> context);
 void HandleState2(IAutoStateContext<IMyState> context);
}

Note, however, that the Context must be supplied to the state handler when using the singleton or

flyweight (Gamma, Helm, Johnson, & Vlissides, 1994) pattern, because the ConcreteState itself cannot

hold any state. The ITheState State defined above can thus be used to implement ConcreteState

participants, as shown in the example below:

C# (APL Example)
--
public class ConcreteStateA : ITheState {
 public void HandleState1(IAutoStateContext<IMyState> context) {
 // … S N I P …
 context.SetState<IMyState, MyConcreteStateB>(); // This will create a singleton MyConcreteStateB
 }

 public void HandleState2(IAutoStateContext<IMyState> context) { … }
}

The ConcreteState can now be used by the state factories in order to create it:

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

B e h a v i o u r a l P a t t e r n s

122

C# (APL Example)
--
var contextFactory = new AutoStateContextFactory<MyConcreteStateA, IMyState>();
var context = contextFactory.Create<Context, IContextInterface>();

The SetState used in the HandleState1 handler on the ConcreteState in the example on the previous

page also uses the internal APL state factories. In this case the ITheState State is defined as a

Singleton. The SetState method will thus return a Singleton instance.

A flyweight (Gamma, Helm, Johnson, & Vlissides, 1994) pattern can also be used as a creational

strategy for the ConcreteStates in the example on the previous page. The StateCreationStyle on the

ITheState handler must be changed to Flyweight and the ConcreteState must be given a private

constructor that takes in one Flyweight key:

C# (APL Example)
--
[State(StateCreationStyle = StateCreationStyle.Flyweight)] // The state instance will be a flyweight
public interface ITheState : IAutoState<ITheState> {
 void HandleState1(IAutoFlyweightContext<IMyState> context);
 void HandleState2(IAutoFlyweightContext<IMyState> context);
}

The IAutoFlyweightContext APL interface must also be used instead of the IFlyweightContext, because

the FlyweightFactory APL component needs a key in order to create a Flyweight. This key is used by

the private constructor of the ConcreteFlyweight during its construction.

10.3 Theoretical Examples

The following example shows the usage of the State<TState> APL component. First, the State

implementation must be defined with an appropriate creational style which, in this case, is

StateCreationStyle.Normal. A creational style of Normal means that the ConcreteState instance is

created normally and thus will not be shared. The State interface in this example has two handlers or

methods HandleState1 and HandleState2. The State interface must also implement the IState<TState>

APL interface, which realizes standard state functionality:

C# (APL Example)
--
[State(StateCreationStyle = StateCreationStyle.Normal)] // Defines a Normal State
public interface IMyState : IState<IMyState> {
 void HandleState1();
 void HandleState2();
}

Two ConcreteState classes are defined in the example. Both implement the user defined IMyState

State interface. The two ConcreteState classes also inherit from the State<TState> APL component,

which itself implements the methods on the IState<TState> APL interface. In the example on the next

page both the MyConcreteStateA class and MyConcreteStateB class are defined in a curiously recurring

template pattern (Coplien, 1995) setting:

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

B e h a v i o u r a l P a t t e r n s

123

C# (APL Example)
--
public class MyConcreteStateA : State<IMyState>, IMyState { // The state is implemented using CRTP
 public void HandleState1() {
 Console.WriteLine("Calling HandleState1 from state A");
 SetState<MyConcreteStateB>(); // Set the State to MyConcreteStateB
 }

 public void HandleState2() { Console.WriteLine("Calling HandleState2 from state A"); }
}

public class MyConcreteStateB : State<IMyState>, IMyState {
 public void HandleState1() { Console.WriteLine("Calling HandleState1 from state B"); }
 public void HandleState2() { Console.WriteLine("Calling HandleState2 from state B"); }
}

In the code above, the HandleState1 handler on the MyConcreteStateA State class changes the state on

the Context to MyConcreteStateB. The handler is able to perform a state change task because it has

access to the Context through the inherited State<TState> component.

A Context class Context is also implemented. The Context class inherits from the

StateContext<TState, TContext> APL component, which injects standard Context functionality. In the

example below the Context class is thus defined in a curiously recurring template pattern (Coplien, 1995)

setting:

C# (APL Example)
--
public interface IContextInterface : IContext { void Request(); }

public class Context : StateContext<IMyState, IContextInterface>, IContextInterface { // Using CRTP
 private Context() { }

 public void Request() {
 State.HandleState2();
 State.HandleState1();
 State.HandleState2();
 }
}

An instance of the Context class is then created using a factory on the StateContext<TState,

TContext> component. The factory must be supplied with the Context type and the ConcreteState

type, which are used to set the initial state of the Context instance:

C# (APL Example)
--
var context = Context.Create<Context, MyConcreteStateA>(); // Create context instance using a factory
 // with an initial state of MyConcreteStateA
// Invoke ‘Request’ on the context instance
context.Contract.Request();

// Change the state of the context to MyConcreteStateA
context.SetState<MyConcreteStateA>();

// Invoke ‘Request’ on the context instance
context.Contract.Request();

Console.Write("Press any key to exit.");
Console.Read();

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

B e h a v i o u r a l P a t t e r n s

124

/* Output
Calling HandleState2 from state A
Calling HandleState1 from state A
Calling HandleState2 from state B
Calling HandleState2 from state A
Calling HandleState1 from state A
Calling HandleState2 from state B
*/

In the code above, a Context instance is created with an initial state of MyConcreteStateA. The Request

method on the context instance is then called, whereupon the state is changed to MyConcreteStateB by

one of the handlers. The state is changed to MyConcreteStateA again and the Request method on the

context instance is called for the last time. From the output it can be seen that the state processing was

handled correctly.

The next example is almost exactly the same as the previous one, except that a singleton (Gamma,

Helm, Johnson, & Vlissides, 1994) creational style is used for the ConcreteStates. In this example the

StateCreationStyle enumerator on the IState State interface is set to Singleton, informing the internal

factories of the APL library that they should treat the ConcreteStates as singletons. The ConcreteState

instances now will not hold intrinsic state to the Context any more:

C# (APL Example)
--
[State(StateCreationStyle = StateCreationStyle.Singleton)] // The state interface is used as a singleton
public interface IState {
 void HandleState1(IStateContext<IState> context); // The context is passed in as an argument
 void HandleState2(IStateContext<IState> context); // The context is passed in as an argument
}

public class ConcreteStateA : IState {
 private ConcreteStateA() { }
 public void HandleState1(IStateContext<IState> context) {
 Console.WriteLine("Calling HandleState1 from state A");
 context.SetState<ConcreteStateB>();
 }

 public void HandleState2(IStateContext<IState> context) {
 Console.WriteLine("Calling HandleState2 from state A");
 }
}

public class ConcreteStateB : IState {
 private ConcreteStateB() { }
 public void HandleState1(IStateContext<IState> context) {
 Console.WriteLine("Calling HandleState1 from state B");
 }

 public void HandleState2(IStateContext<IState> context) {
 Console.WriteLine("Calling HandleState2 from state B");
 }
}

The ConcreteStates no longer inherit from the State<TState> APL component, because they must be

shareable and thus cannot hold any intrinsic state, such as the Context. The Context is thus passed to

the handler through a method as an argument by means of the IStateContext<TState> APL interface.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

B e h a v i o u r a l P a t t e r n s

125

The Context implementation in this example does almost exactly the same as in the previous example,

except that the Context instance must be passed to the handlers:

C# (APL Example)
--
public interface IContextInterface { void Request(); }

public class Context : SingletonStateContext<IState, IContextInterface>, IContextInterface {
 private Context() { }

 public void Request() {
 State.HandleState2(this); // The context is passed as an argument
 State.HandleState1(this); // The context is passed as an argument
 State.HandleState1(this); // The context is passed as an argument
 }
}

The client performs the same steps as in the previous example. From the output it can be seen that the

handlers were processed correctly:

C# (APL Example)
--
var context = Context.Create<Context, ConcreteStateA>(); // Create context instance using a factory
 // with an initial state of MyConcreteStateA
context.Contract.Request(); // Invoke ‘Request’ on the context instance
context.SetState<ConcreteStateA>(); // Change the state of the context to MyConcreteStateB
context.Contract.Request(); // Invoke ‘Request’ on the context instance
Console.Write("Press any key to exit.");
Console.Read();

/* Output:
Calling HandleState2 from state A
Calling HandleState1 from state A
Calling HandleState2 from state B
Calling Handlestate2 from state A
Calling HandleState1 from state A
Calling HandleState2 from state B
*/

The next example shows how the state design pattern can be implemented using a Flyweight creational

style. Once again a State contract is defined, this time with the StateCreationStyle set to Flyweight.

The Context instance that is passed to the handlers must also be of type IFlyweightContext<TState>.

The IFlyweightContext<TState> APL interface must be passed to the handlers as an argument, because

the interface holds a state transition contract that uses the flyweight pattern:

C# (APL Example)
--
[State(StateCreationStyle = StateCreationStyle.Flyweight)]
public interface IMyState {
 void HandleState1(IFlyweightContext<IMyState> context);
 void HandleState2(IFlyweightContext<IMyState> context);
}

The key used for the Flyweights in the example is an enum holding five items, as seen below:

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

B e h a v i o u r a l P a t t e r n s

126

C# (APL Example)
--
public enum Setting {
 SettingA,
 SettingB,
 SettingC,
 SettingD,
 SettingE
}

A base class BaseConcreteState is defined that implements the IMyState State. The BaseConcreteState

class also holds the intrinsic state of the Flyweight, which in this case is exactly the same as the

Flyweight key. The BaseConcreteState base class also implements the non-public constructor that is

used by the Flyweight factory:

C# (APL Example)
--
public abstract class BaseConcreteState : IMyState {
 protected Setting Setting = Setting.SettingA;

 protected BaseConcreteState(Setting setting) { Setting = setting; }
 public abstract void HandleState1(IFlyweightContext<IMyState> context);
 public abstract void HandleState2(IFlyweightContext<IMyState> context);
}

Two ConcreteStates are also defined that inherit from the BaseConcreteState and implement the

IMyState State:

C# (APL Example)
--
public class MyConcreteStateA : BaseConcreteState {
 private MyConcreteStateA(Setting setting) : base(setting) { }

 public override void Handlestate1(IFlyweightContext<IMyState> context) {
 Console.WriteLine("Calling HandleState1 from state A");
 context.SetState<MyConcreteStateB, Setting>(Setting.SettingA);
 }

 public override void HandleState2(IFlyweightContext<IMyState> context) {
 Console.WriteLine("Calling HandleState2 from state A");
 }
}

public class MyConcreteStateB : BaseConcreteState {
 private MyConcreteStateB(Setting setting) : base(setting) { }

 public override void HandleState1(IFlyweightContext<IMyState> context) {
 Console.WriteLine("Calling HandleState1 from state B");
 }

 public override void HandleState2(IFlyweightContext<IMyState> context) {
 Console.WriteLine("Calling HandleState2 from state B");
 }
}

The Context class is implemented in the same way as in the two previous examples, except that the

Context class inherits from the FlyweightContext<TState, TContext> APL component, which adds the

necessary Flyweight functionality:

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

B e h a v i o u r a l P a t t e r n s

127

C# (APL Example)
--
public interface IContextInterface { void Request(); }

public class Context : FlyweightContext<IMyState, IContextInterface>, IContextInterface {
 private Context() { }

 public void Request() {
 State.HandleState1(this);
 State.HandleState2(this);
 State.HandleState1(this);
 }
}

The client performs the same steps as in the previous two examples. From the output it can be seen

that the state handlers were processed correctly:

C# (APL Example)
--
var context = Context.Create<Context, MyConcreteStateA, Setting>(Setting.SettingD);
context.Contract.Request();
context.SetState<MyConcreteStateA, Setting>(Setting.SettingA);
context.Contract.Request();
Console.Write("Press any key to exit.");
Console.Read();

/* Output
Calling HandleState2 from state A
Calling HandleState1 from state A
Calling HandleState2 from state B
Calling HandleState2 from state A
Calling HandleState1 from state A
Calling HandleState2 from state B
*/

The next and final example shows the usage of the IAutoState<TState> APL interface. A State contract

is defined that implements the IAutoState<TState> interface, which is configured with a Normal

creational style. The IAutoState<TState> APL interface injects a standard set of State functionality with

the help of C# extension methods. The ConcreteState implementations of the IMyState interface thus

do not have to inherit from the State<TState> APL component:

C# (APL Example)
--
[State(StateCreationStyle = StateCreationStyle.Normal]
public interface IMyState : IAutoState<IMyState> { // IAutoState injects state functionality
 void HandleState1();
 void HandleState2();
}

Both the ConcreteState implementations, MyConcreteStateA and MyConcreteStateB, thus only have to

implement the State contract:

C# (APL Example)
--
public class MyConcreteStateA : IMyState {
 public void HandleState1() {
 Console.WriteLine("Calling HandleState1 from state A");
 this.SetState<MyConcreteStateB, IMyState>();

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

B e h a v i o u r a l P a t t e r n s

128

 }

 public void HandleState2() {
 Console.WriteLine("Calling HandleState2 from state A");
 }
}

public class MyConcreteStateB : IMyState {
 public void HandleState1() {
 Console.WriteLine("Calling HandleState1 from state B");
 }

 public void HandleState2() {
 Console.WriteLine("Calling HandleState2 from state B");
 }
}

The Context in this example does not inherit from a Context APL class. Instead, it implements the

IAutoStateContext<IState> interface, which injects the necessary Context functionality with C#

extension methods. This allows the Context class to be combined with other reusable pattern

components:

C# (APL Example)
--
public interface IContextInterface { void Request(); }

public class Context : IAutoStateContext<IMyState>, IContextInterface { // IAutoStateContext injects
 // context functionality
 public void Request() {
 this.GetState().HandleState2();
 this.GetState().HandleState1();
 this.GetState().HandleState2);
 }
}

The Context class in the above example code can also be made a Singleton, where the Singleton

component is used in a curiously recurring template pattern (Coplien, 1995) setting:

C# (APL Example)
--

public class Context : Singleton<Context>, IAutoStateContext<IMyState>, IContextInterface {
 private Context() { }
 public void Request() { … }
}

The client performs the same steps in this final example as in the previous examples. The client does,

however, use the AutoStateContextFactory APL component in order to create an instance of the

Context class.

From the output it can be seen that the handlers were processed correctly:

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

B e h a v i o u r a l P a t t e r n s

129

C# (APL Example)
--
var contextFactory = new AutoStateContextFactory<MyConcreteStateA, IMyState>();
var context = contextFactory.Create<Context, IContextInterface>();
context.Contract.Request();
context.SetState<MyConcreteStateA>();
context.Contract.Request();
Console.Write("Press any key to exit.");
Console.Read();

/* Output
Calling HandleState2 from state A
Calling HandleState1 from state A
Calling HandleState2 from state B
Calling HandleState2 from state A
Calling HandleState1 from state A
Calling HandleState2 from state B
*/

10.4 Outcome

The componentization of the state design pattern is a success because it meets all the requirements

listed in section 1.4:

 Completeness: The state design pattern library components cover all cases described in the

original design pattern.

 Usefulness: The state design pattern library components are useful because they solve most

of the state scenarios desired by a developer. The developer is free to define the state interface

as he sees fit and can then use it with the reusable state components. The state plumbing

functionality is reusable; a developer is only tasked with implementing the state specific

structures and algorithms. The state design pattern library components are relatively easy to

understand and to implement.

 Faithfulness: The implementation of the state pattern follows the original pattern described in

Design Patterns (Gamma, Helm, Johnson, & Vlissides, 1994).

 Type-safety: All of the library components are fully type-safe.

 Extended applicability: The state library components cover more cases than the original

core state pattern in Design Patterns (Gamma, Helm, Johnson, & Vlissides, 1994), whereby a

State participant can be implemented as a flyweight or a singleton.

 Performance: Using the state components does not have a performance impact.

Dyson and Anderson have shown that the state design pattern can be broken up into the following

extensions or refinements: state object, state member, pure state, exposed state, state-driven,

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

B e h a v i o u r a l P a t t e r n s

130

transitions owner-driven, transitions and default state (Dyson & Anderson, 1997). The state reusable

component can be used to implement all of the above mentioned extensions or refinements, except

for the exposed state pattern. The exposed state pattern, however, is a special state pattern where the

state interface changes according to the state the Context is in. The exposed state pattern thus should

best be solved with dynamic language features. At the heart of the rest of the patterns discusses by

Design Patterns (Gamma, Helm, Johnson, & Vlissides, 1994) and by Dyson and Anderson (Dyson &

Anderson, 1997) is a rigid State interface.

The state pattern is fully componentizable because the developer is not tasked with implementing any

boiler-plate code when using the reusable pattern component.

The following language features are fundamental to the implementation or usage of the reusable state

design pattern components: Inheritance (Mitchell, Mitchell, & Krzysztof, 2003), Interfaces (Pattison &

Box, 2000), Generics (Jagger, Perry, & Sestoft, 2007), Design by Contract™ (Mitchell & McKim,

2001), Attributes (Nagel, Evjen, Glynn, & Watson, 2010), Mixins (Extension Methods) (Esterbrook,

2001) (Jesse & Xie, 2008) and Reflection (Sobel & Friedman, 1996) (Forman & Forman, 2005).

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

B e h a v i o u r a l P a t t e r n s

131

 C h a p t e r 1 1

11 COMMAND

11.1 Introduction

The command design pattern decouples strongly related clients from particular behaviours. It makes

changes to the participant relationships easier and lessens the complexity of the interfaces.

The command design pattern packages a client request in an object called a command. This allows for

different requests for the same command contract. The command objects can be queued or logged

and may support undoable operations (Gamma, Helm, Johnson, & Vlissides, 1994).

11.1.1 Structure.

The following figure shows the formal structure of the command design pattern (Gamma, Helm,

Johnson, & Vlissides, 1994):

Invoker
Execute()

Command

Execute()

state

ConcreteCommand

Action()

Receiver
Receiver

Client

receiver.Action()

Figure 28. Command structure.

11.1.2 Participants.

The classes and/or objects participating in the command pattern are:

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

B e h a v i o u r a l P a t t e r n s

132

 Command

The Command defines an interface for the command operations or actions.

 ConcreteCommand

A ConcreteCommand implements the operations defined in the Command and is the link

between a Receiver object and a command action.

 Client

A Client or user creates, holds and manages a ConcreteCommand object and passes it to a

Receiver.

 Invoker

The Invoker directs a Command or queue of Commands to execute a certain action in their

interface.

 Receiver

Operations in a ConcreteCommand might delegate all or some of the command actions to an

associated Receiver.

11.2 Library Components

11.2.1 The ActionCommand component.

At the heart of the reusable Command component is the ICommand interface. The APL library defines a

number of ICommand interfaces as seen in the code snippet below:

C# (APL)
--
public interface ICommand { void Execute(); } // No arguments

public interface ICommand<in TArgument> { void Execute(TArgument arg); } // One argument

public interface ICommand<in TArgument1, in TArgument2> { // Two arguments
 void Execute(TArgument1 arg1, TArgument2 arg2);
}

public interface ICommand<in TArgument1, in TArgument2, in TArgument3> { // Three arguments
 void Execute(TArgument1 arg1, TArgument2 arg2, TArgument3 arg3);
}

// … M O R E …

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

B e h a v i o u r a l P a t t e r n s

133

Each ICommand interface has an Execute method that represents the action of the command. Different

ICommand interfaces are defined with a unique set of arguments that can be passed to its Execute

method.

Interfaces are also defined in the APL library for undoable Commands, macro Commands and macro

undoable Commands (Gamma, Helm, Johnson, & Vlissides, 1994), each with its unique set of

arguments:

C# (APL)
--
public interface IUndoableCommand : ICommand { void Undo(); }

public interface IUndoableCommand<in TArgument1> : ICommand<TArgument1> {
 void Undo(TArgument1 arg1);
}

public interface IUndoableCommand<in TArgument1, in TArgument2> : ICommand<TArgument1, TArgument2> {
 void Undo(TArgument1 arg1, TArgument2 arg2);
}

// … M O R E …

public interface IMacroCommand : ICommand, IComponent<ICommand> {
 [CompositeMethod]
 new void Execute();
}

public interface IMacroCommand<in TArgument1> : ICommand,
 IComponent<ICommand< TArgument1>> {
 [CompositeMethod]
 new void Execute(TArgument1 arg1);
}

// … M O R E …

public interface IMacroUndoableCommand : IUndoableCommand,
 IComponent<IUndoableCommand> {
 [CompositeMethod]
 new void Undo();
}

public interface IMacroUndoableCommand<in TArgument1> :
 IUndoableCommand< TArgument1>,
 IComponent<IUndoableCommand< TArgument1>> {
 [CompositeMethod]
 new void Undo();
}

// … M O R E …

The macro Commands implement the IComponent interface because they use the APL reusable

composite components.

The ActionCommand APL component is used to create ConcreteCommand instances. The logic of the

Receiver that is invoked inside the Execute method of a ConcreteCommand is injected with a C#

Action (Microsoft, 2010a). Multiple reusable implementations for an ActionCommand exist in the APL

library, one for each corresponding APL ICommand interface:

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

B e h a v i o u r a l P a t t e r n s

134

C# (APL)
--
public class ActionCommand : ICommand { // No arguments
 protected Action ExecuteReceiver;

 public ActionCommand() { }

 public ActionCommand(Action executeReceiver) { ExecuteReceiver = executeReceiver; }

 public void Execute() {
 if(ExecuteReceiver == null) return;

 ExecuteReceiver();
 }
}

public class ActionCommand<T1> : ICommand<T1> { // One argument
 protected Action<T1> ExecuteReceiver;

 public ActionCommand() { }

 public ActionCommand(Action<T1> executeReceiver) { ExecuteReceiver = executeReceiver; }

 public void Execute(T1 arg1) {
 if(ExecuteReceiver == null) return;

 ExecuteReceiver(arg1);
 }
}

// … M O R E …

public class ActionUndoableCommand : ActionCommand, IUndoableCommand { // No arguments
 protected Action UndoReceiver;

 public ActionUndoableCommand() { }

 public ActionUndoableCommand(Action executeReceiver, Action undoReceiver) : base(executeReceiver) {
 UndoReceiver = undoReceiver;
 }

 public void Undo() {
 if(UndoReceiver == null) return;

 UndoReceiver();
 }
}

public class ActionUndoableCommand<T1> : ActionCommand<T1>, IUndoableCommand<T1> { // One argument
 protected Action<T1> UndoReceiver;

 public ActionUndoableCommand() { }

 public ActionUndoableCommand(Action<T1> executeReceiver, Action<T1> undoReceiver)
 : base(executeReceiver) {
 UndoReceiver = undoReceiver;
 }

 public void Undo(T1 arg1) {
 if(UndoReceiver == null) return;

 UndoReceiver(arg1);
 }
}

// … M O R E …

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

B e h a v i o u r a l P a t t e r n s

135

Figure 29 shows a UML class diagram of the ActionCommand and ActionUndoableCommand APL

components; this figure also depicts the hierarchy and available methods.

Figure 29. UML class diagram of the ActionCommand and ActionUndoableCommand APL components.

The usage of the ActionCommand is relatively simple. An Action that represents the Receiver is supplied

during the construction of an ActionCommand. The ActionCommand ConcreteCommand instance is then

ready to be processed by an Invoker. In the following code snippet, given as an example, the Action is

injected with a lambda expression (Michaelis, 2010). The ActionCommand ConcreteCommand instance

is then processed by an Invoker:

C# (APL Example)
--
var concreteCommand = new ActionCommand(() => Console.WriteLine("The command was invoked!"));
invoker.Process(concreteCommand);

The usage of the ActionUndoableCommand APL component takes on an extra undo Action. The undo

Action tells an instance of the ActionUndoableCommand component what action to perform when the

Command must be undone:

C# (APL Example)
--
var concreteCommand = new ActionUndoableCommand(() => ServerSingleton.Instance.ClientConnections++,
 () => ServerSingleton.Instance.ClientConnections--);
invoker.Process(concreteCommand);
invoker.Undo(concreteCommand);

«interface»

ICommand

+ Execute() :void

ActionCommand

ExecuteReceiver :Action

+ ActionCommand()

+ ActionCommand(executeReceiver :Action)

+ Execute() :void

«interface»

IUndoableCommand

+ Undo() :void

ActionUndoableCommand

UndoReceiver :Action

+ ActionUndoableCommand()

+ ActionUndoableCommand(executeReceiver :Action, undoReceiver :Action)

+ Undo() :void

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

B e h a v i o u r a l P a t t e r n s

136

In the above undoable example the concreteCommand is used to increase the number of connections on

a hypothetical server. The concreteCommand can also be undone because it implements the

IUndoableCommand APL interface. An undo Action is injected with a lambda expression (Michaelis,

2010) during its construction. Calling the Undo method on the Invoker invokes the undo injected

action logic on the concreteCommand.

ActionMacroCommand and ActionMacroUndoableCommand components also exist in the APL library, which

realize the IMacroCommand and IMacroUndoableCommand APL interfaces. These action macro Command

components are almost exactly the same as the above-mentioned action Command components,

except that they allow the ConcreteCommands to exist in a composite environment, as defined in

Design Patterns (Gamma, Helm, Johnson, & Vlissides, 1994). The composite pattern is applied on the

macro Commands using APL composite components.

11.2.2 The Command component.

The Command group of APL components differs from the ActionCommand in that the Command

components are abstract. The components define an abstract Execute method that must be

overridden in the derived class. The Receiver is also not a C# Action (Microsoft, 2010a) but is an

IReceiver APL interface, as seen in the code below:

C# (APL)
--
public abstract class Command : ICommand { // No arguments
 protected IReceiver Receiver; // Internal receiver

 [ContractInvariantMethod]
 private void ObjectInvariant() {
 Contract.Invariant(_Receiver!= null, "The receiver cannot be null");
 };

 protected Command(IReceiver receiver) { Receiver = receiver; } // Constructor with a receiver
 public abstract void Execute(); // Execute the command
}

public abstract class Command<TArgument> : ICommand<TArgument> { // One argument
 protected IReceiver<TArgument> Receiver;
 [ContractInvariantMethod]
 private void ObjectInvariant() { … };
 protected Command(IReceiver<TArgument> receiver) { Receiver = receiver; }
 public abstract void Execute(TArgument arg); // Execute the command
}

public abstract class Command<TArgument1, TArgument2> :
 ICommand<TArgument1, TArgument2> { // Two arguments
 protected IReceiver<TArgument1, TArgument2> Receiver;
 [ContractInvariantMethod]
 private void ObjectInvariant() { … };
 protected Command(IReceiver<TArgument1, TArgument2> receiver) { Receiver = receiver; }
 public abstract void Execute(TArgument1 arg1, TArgument2 arg2); // Execute the command
}

public abstract class Command<TArgument1, TArgument2, TArgument3> :
 ICommand<TArgument1, TArgument2, TArgument3> { // Three arguments
 protected IReceiver<TArgument1, TArgument2, TArgument3> Receiver;
 [ContractInvariantMethod]

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

B e h a v i o u r a l P a t t e r n s

137

 private void ObjectInvariant() { … };
 protected Command(IReceiver<TArgument1, TArgument2, TArgument3> receiver) {
 Receiver = receiver;
 }

 public abstract void Execute(TArgument1 arg1, TArgument2 arg2, TArgument3 arg3);
}

// … M O R E …

A number of abstract Command components exist, each with a unique set of arguments. The arguments

define the information that must be passed to the Execute command method. The Command

components are more flexible than the ActionCommand components, because a developer is free to

inject logic in the overridden Execute method that has access to the custom state of the Command

instance.

The IReceiver interface defines the contract of the Receiver. It has an Action method that abstracts

the action that must be performed by the Receiver. Multiple IReceiver interfaces exist, each according

to the number of arguments required:

C# (APL)
--
public interface IReceiver { void Action(); } // No arguments

public interface IReceiver<in TArgument> { void Action(TArgument arg); } // One argument

public interface IReceiver<in TArgument1, in TArgument2> { // Two arguments
 void Action(TArgument1 arg1, TArgument2 arg2);
}

public interface IReceiver<in TArgument1, in TArgument2, in TArgument3> { // Three arguments
 void Action(TArgument1 arg1, TArgument2 arg2, TArgument3 arg3);
}

// … M O R E …

A number of APL AutoCommand components also exist in the APL library, where each one inherits

from an abstract APL Command component. The AutoCommand components are used to define a specific

ConcreteCommand. An AutoCommand must be constructed with an IReceiver interface. The code

below shows the implementation of the AutoCommand APL component:

C# (APL)
--
public sealed class AutoCommand : Command { // One argument
 public AutoCommand(IReceiver receiver) : base(receiver) { } // Construction using the receiver
 public override void Execute() { Receiver.Action(); } // Invoking the receiver instance
}

public sealed class AutoCommand<TArgument> : Command<TArgument> { // One arguments
 public AutoCommand(IReceiver<TArgument> receiver) : base(receiver) { }
 public override void Execute(TArgument arg) { Receiver.Action(arg); }
}

public sealed class AutoCommand<TArgument1, TArgument2> :
 Command<TArgument1, TArgument2> { // Two arguments
 public AutoCommand(IReceiver<TArgument1, TArgument2> receiver) : base(receiver) { }

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

B e h a v i o u r a l P a t t e r n s

138

 public override void Execute(TArgument1 arg1, TArgument2 arg2) { Receiver.Action(arg1, arg2); }
}

public sealed class AutoCommand<TArgument1, TArgument2, TArgument3> :
 Command<TArgument1, TArgument2, TArgument3> { // Three arguments
 public AutoCommand(IReceiver<TArgument1, TArgument2, TArgument3> receiver) : base(receiver) { }

 public override void Execute(TArgument1 arg1, TArgument2 arg2, TArgument3 arg3) {
 Receiver.Action(arg1, arg2, arg3);
 }
}

The above code shows that the Execute method on the AutoCommand delegates its processing to the

internal Receiver instance.

AutoUndoableCommand, AutoMacroCommand and AutoUndoableMacroCommand ConcreteCommand

components also exist in the APL library. The AutoUndoableCommand component is implemented in the

same way as the AutoCommand component, except that it also allows for the undoing of commands by

realizing the IUndoableCommand APL interface. The AutoMacroCommand and AutoUndoableMacroCommand

components can be used with any ICommand or IUndoableCommand interface respectively. The

AutoMacroCommand and AutoUndoableMacroCommand components reuse the APL composite components

by inheriting from the Composite APL component.

The code snippet below shows the implementation of the AutoMacroCommand and the

AutoUndoableMacroCommand implementations in the APL library:

C# (APL)
--
public class AutoMacroCommand : Composite<ICommand>, IMacroCommand {
 public void Execute() {
 foreach(var component in List) {
 component.GetInterface().Execute();
 }
 }
}

public class AutoUndoableMacroCommand : Composite<IUndoableCommand>, IMacroUndoableCommand {
 public void Execute() {
 foreach(var component in List) {
 component.GetInterface().Execute();
 }
 }

 public void Undo() {
 var commandsReversed = List.ToArray();

 Array.Reverse(commandsReversed);

 foreach(var command in commandsReversed) {
 command.GetInterface().Undo();
 }
 }
}

Figure 30 shows a UML class diagram of the AutoMacroCommand APL component and its inheritance

hierarchy. It shows how the component inherits from the Component APL component and realizes the

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

B e h a v i o u r a l P a t t e r n s

139

APL IMacroCommand interface. Figure 30 also shows that the IMacroCommand itself realizes the ICommand

APL interface:

Figure 30. UML class diagram of the AutoMacroCommand APL component.

11.2.3 The Invoker component.

The APL library also has reusable Invokers. It defines an ICommandInvoker with a contract that is

common to most Invokers, as seen below:

C# (APL)
--
public interface ICommandInvoker {
 void Store(ICommand command); // Stores or queues the command in the invoker
 bool Process(); // Processes the next command on the queue
 int Count(); // Returns the number of commands in the queue
 ICommand Peek(); // Returns the next command in the queue without popping it from the queue
 int GetProcessedCount(); // Returns the number of commands processed
}

The Store method registers a Command with the Invoker. The Process method invokes the next

unprocessed command stored in the Invoker. The rest of the methods deliver value added

AutoMacroCommand

+ Execute() :void

«interface»

Command::ICommand

+ Execute() :void

«interface»

Command::

IMacroCommand

+ Execute() :void

T

Composite::Composite

List :List<IComponent<T>>

«Property»

+ Target :T

+ GetCount() :int

+ GetInterface() :T

+ GetList() :IList<IComponent<T>>

SetComposite(composite :T) :void

«interface»

T

Composite::IComponent

+ GetInterface() :T

+ GetList() :IList<IComponent<T>>

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

B e h a v i o u r a l P a t t e r n s

140

functionality. For example, the Peek method shows what Command will be invoked next, without

actually invoking it.

The APL library also defines an IUndoableCommandInvoker that is an interface for an Invoker that can

perform command rollbacks. The Undo method undoes the methods in the same sequence as they

were called by the Invoker. The Redo method reverses the Undo command in the same sequence as they

were rolled back. The rest of the methods, once again, define value added functionality:

C# (APL)
--
public interface IUndoableCommandInvoker {
 void Store(IUndoableCommand command);
 bool Process(); // Processes the next command on the queue
 void Undo(); // Undo the next command on the undo stack
 void Redo(); // Redo the next command on the redo stack
 int Count();
 IUndoableCommand Peek();
 int UndoCount();
 IUndoableCommand UndoPeek();
 int RedoCount();
 IUndoableCommand RedoPeek();
}

Multiple ICommandInvoker and IUndoableCommandInvoker interfaces exist, which accommodate the

argument needs of the client, as shown below:

C# (APL)
--
public interface ICommandInvoker<TArgument> { // One argument
 void Store(ICommand<TArgument> command);
 bool Process(TArgument arg);
 // … S N I P …
}

public interface ICommandInvoker<TArgument1, TArgument2> { // Two arguments
 void Store(ICommand<TArgument1, TArgument2> command);
 bool Process(TArgument1 arg1, TArgument2 arg2);
 // … S N I P …
}

public interface ICommandInvoker<TArgument1, TArgument2, TArgument3> { // Three arguments
 void Store(ICommand<TArgument1, TArgument2, TArgument3> command);
 bool Process(TArgument1 arg1, TArgument2 arg2, TArgument3 arg3);
 // … S N I P …
}

// … M O R E …

public interface IUndoableCommandInvoker<TArgument> { … } // One argument
public interface IUndoableCommandInvoker<TArgument1, TArgument2> { … } // Two arguments

// … M O R E …

Reusable abstract Invokers exist in the APL library, from where most of the concrete Invokers are

derived. The BaseInvoker and BaseUndoableInvoker Invokers define abstract Invokers which

implement the basic functionally of most Invokers:

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

B e h a v i o u r a l P a t t e r n s

141

C# (APL)
--
public abstract class BaseInvoker : ICommandInvoker {
 protected int ProcessedCount = 0;
 protected IQueue<ICommand> Queue; // Internal command queue

 [ContractInvariantMethod]
 private void ObjectInvariant() {
 Contract.Invariant(_Queue != null, "The queue cannot be null");
 }

 protected BaseInvoker(IQueue<ICommand> queue) { // Constructor
 Queue = queue;
 }

 protected BaseInvoker() { // Constructor that adapts a .Net queue to an IQueue
 Queue = new QueueAdapter<ICommand>();
 }

 public abstract void Store(ICommand command);
 public abstract bool Process();
 public int Count() { return Queue.Count; }
 public ICommand Peek() { return Queue.Peek(); }
 public int GetProcessedCount() { return ProcessedCount; }
}

public abstract class BaseUndoableInvoker : IUndoableCommandInvoker {
 protected int ProcessedCount;
 protected IQueue<IUndoableCommand> Queue; // Internal command queue
 protected Stack<IUndoableCommand> RedoStack; // Redo stack
 protected Stack<IUndoableCommand> UndoStack; // Undo stack

 [ContractInvariantMethod]
 private void ObjectInvariant() {
 Contract.Invariant(Queue != null, "The Queue cannot be null");
 Contract.Invariant(RedoStack!= null, "The RedoStack cannot be null");
 Contract.Invariant(UndoStack!= null, "The RedoStack cannot be null");
 }

 protected BaseUndoableInvoker(IQueue<IUndoableCommand> queue) {
 Queue = queue;
 UndoStack = new Stack<IUndoableCommand>();
 RedoStack = new Stack<IUndoableCommand>();
 }

 public abstract void Store(IUndoableCommand command);
 public abstract bool Process();
 public abstract void Undo();
 public abstract void Redo();
 public int Count() { return Queue.Count; }
 public IUndoableCommand Peek() { return Queue.Peek(); }
 public int UndoCount() { return UndoStack.Count; }
 public IUndoableCommand UndoPeek() { return UndoStack.Peek(); }
 public int RedoCount() { return RedoStack.Count; }
 public IUndoableCommand RedoPeek() { return RedoStack.Peek(); }
 public int GetProcessedCount() { return ProcessedCount; }
}

Multiple BaseInvoker components exist that cater for the number of arguments required by the user:

C# (APL)
--
public abstract class BaseInvoker<TArgument> : // One argument
 ICommandInvoker<TArgument> { … }

public abstract class BaseInvoker<TArgument1, TArgument2> : // Two arguments

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

B e h a v i o u r a l P a t t e r n s

142

 ICommandInvoker<TArgument1, TArgument2> { … }

public abstract class BaseInvoker<TArgument1, TArgument2, TArgument3> : // Three arguments
 ICommandInvoker<TArgument1, TArgument2, TArgument3> { … }

A number of concrete Invokers are defined within the APL library that inherits from the BaseInvoker

component, such as the SimpleInvoker and SimpleUndoableInvoker components:

C# (APL)
--
public sealed class SimpleInvoker : BaseInvoker { // Reuse from the BaseInvoker
 public SimpleInvoker() { }

 public override bool Process() { // Executes the next command in the queue
 ICommand command = null;

 lock(this) {
 if(Queue.Count > 0) command = Queue.Dequeue();
 }

 if(command != null) {
 command.Execute(); // Execute the command
 return true;
 }

 return false;
 }

 public override void Store(ICommand command) {
 lock(this) {
 Queue.Enqueue(command);
 }
 }
}

public sealed class SimpleUndoableInvoker : BaseUndoableInvoker { // Reuse from the BaseUndoableInvoker
 public SimpleUndoableInvoker() { }

 public override bool Process() { // Executes the next command in the queue
 ICommand command;

 lock(this) {
 command = Queue.Dequeue();
 }

 if(command != null) {
 command.Execute(); // Execute the command
 UndoStack.Push(command); // Push the command unto the UndoStack
 ProcessedCount++;
 return true;
 }

 return false;
 }

 public override void Store(IUndoableCommand command) {
 Contract.Requires<ArgumentNullException>(command != null, "Argument command cannot be null");

 lock(this) {
 Queue.Enqueue(command);
 }
 }

 public override void Undo() {
 if (UndoStack.Count <= 0) return;

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

B e h a v i o u r a l P a t t e r n s

143

 var command = UndoStack.Pop(); // Pop the command from the UndoStack
 RedoStack.Push(command); // Push the command unto the RedoStack
 command.Undo(); // Undo the command

 ProcessedCount--;
 }

 public override void Redo() {
 var command = RedoStack.Pop(); // Pop the command from the RedoStack
 UndoStack.Push(command); // Push the command unto the UndoStack
 command.Execute(); // Execute the command

 ProcessedCount++;
 }
}

The above code shows how the simple invokers implement the very basics needed for an Invoker. At

the core of the SimpleInvoker and SimpleUndoableInvoker components is the Process method. It

retrieves the next Command from the internal queue and invokes the command by using the Execute

method.

SimpleInvoker

Command Queue

Command

Store Process

En
q

u
eu

e
C

o
m

m
an

d

Command

Command

...

D
eq

u
eu

e
C

o
m

m
an

d

Command

Exe
cu

te

Figure 31. Diagram overviewing a SimpleInvoker APL component.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

B e h a v i o u r a l P a t t e r n s

144

Figure 31 shows an overview of the SimpleInvoker APL component. It shows the Store public method

pushing a Command instance into the internal queue. It also shows the Process public method

popping the next Command instance from the internal queue and invoking the Execute method on it.

SimpleUndoableInvoker

Command Queue

Command

Store Process

En
q

u
eu

e
C

o
m

m
an

d

Command

Command

...

D
eq

u
eu

e
C

o
m

m
an

d

Command

Execute

Undo Redo

Undo Stack

Command

...

Redo Stack

Command

...

Pu
sh

 C
om

m
an

d

Exe
cu

te

Push
 C

om
m

an
d

Po
p

Co
m

m
an

d

U
n

d
o

P
o

p
 C

o
m

m
an

d

P
u

sh
 C

o
m

m
an

d

Figure 32. Diagram overviewing a SimpleUndoableInvoker APL component.

The SimpleUndoableInvoker also has implementations for the Undo and Redo methods, using two stacks

at the core of its logic. Every time a Command is invoked, it is pushed onto an undo stack. The Undo

method pops the next executed Command from the undo stack and invokes the Undo contract on the

Command, undoing its original Command. The undo method also pushes the Command being

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

B e h a v i o u r a l P a t t e r n s

145

undone onto the redo stack. The Redo method pops the next Command from the redo stack and re-

executes the Command using the Execute method of the Command. The Redo method also pushes the

executed Command onto the undo stack, in case the client decides to undo the last executed

Command. Figure 32 shows an overview of the SimpleUndoableInvoker APL component.

Multiple SimpleInvoker and SimpleUndoableInvoker components exist that implement a different

number of arguments:

C# (APL)
--
public sealed class SimpleInvoker<Arg> :
 BaseInvoker<Arg> { … } // One argument

public sealed class SimpleInvoker<Arg1, Arg2> :
 BaseInvoker<Arg1, Arg2> { … } // Two arguments
// … M O R E …

More advanced Invokers also exist in the APL library such as a BlockingInvoker and an AsyncInvoker.

The BlockingInvoker uses a blocking queue that implements the producer/consumer pattern (Schmidt

& Huston, 2002) (Lea, 1999). The client thus blocks on the Process method implemented in the

BlockingInvoker component. With the AsyncInvoker, the Process method is invoked asynchronously.

The call to the Process method thus returns immediately where the invocation on the Command is

performed on a background thread, which was allocated from a thread pool.

Auto Invokers also exist in the APL library. With the Invokers discussed so far, the Process method

must be controlled by the client. The auto Invokers on the other hand take complete control of how

and when the Process method is invoked. The auto Invokers can be seen as an Invoker server or

service. Behind the scene, the auto Invoker implementations use the Invoker components such as the

SimpleInvoker component or the BlockingInvoker component.

The contract of the auto Invoker is simple, focusing on the server or service methodology:

C# (APL)
--
public interface IAutoCommandInvoker { // No arguments
 void Store(ICommand command); // Store a command
 void Run(); // Start processing commands
 void Stop(); // Stop processing commands
 int GetProcessedCount(); // Return the number of commands that was processed so far
}

public interface IAutoUndoableCommandInvoker { // No arguments
 void Store(IUndoableCommand command); // Store a command
 void Undo(); // Undo an executed command
 void Redo(); // Redo a rolled back command
 void Run(); // Start processing commands
 void Stop(); // Stop processing commands
 int GetProcessedCount(); // Return the number of commands that was processed so far
}

public interface IAutoCommandInvoker<out TArgument> { // One argument

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

B e h a v i o u r a l P a t t e r n s

146

 void Store(ICommand<TArgument> command); // Store a command
 void Run(); // Start processing commands
 void Stop(); // Stop processing commands
 int GetProcessedCount(); // Return the number of commands that was processed so far
}

public interface IAutoCommandInvoker<out TArgument1, out TArgument2> { // Two arguments
 void Store(ICommand<TArgument1, TArgument2> command); // Store a command
 void Run(); // Start processing commands
 void Stop(); // Stop processing commands
 int GetProcessedCount(); // Return the number of commands that was processed so far
}

// … M O R E …

public interface IAutoUndoableCommandInvoker<out TArgument> { // One argument
 void Store(IUndoableCommand<TArgument> command); // Store a command
 void Undo(); // Undo an executed command
 void Redo(); // Redo a rolled back command
 void Run(); // Start processing commands
 void Stop(); // Stop processing commands
 int GetProcessedCount(); // Return the number of commands that where processed so far
}

public interface IAutoUndoableCommandInvoker<out TArgument1, out TArgument2> { // Two arguments
 void Store(IUndoableCommand<TArgument1, TArgument2> command); // Store a command
 void Undo(); // Undo an executed command
 void Redo(); // Redo a rolled back command
 void Run(); // Start processing commands
 void Stop(); // Stop processing commands
 int GetProcessedCount(); // Return the number of commands that where processed so far
}

// … M O R E …

Once an auto Invoker is started using the Run method, it processes all Commands automatically until

the client decides to stop the processing. Commands stored on a stopped auto Invoker are not

processed. The AutoInvoker APL component is a concrete auto Invoker that realizes the

IAutoCommandInvoker interface. The AutoUndoableCommandInvoker APL component is a concrete auto

Invoker that realizes the IAutoUndoableCommandInvoker interface.

11.3 Theoretical Examples

The following theoretical example shows all the different permutations in which the Command

components can be used:

C# (APL Example)
--
class Program {
 static void Main() {

 Console.WriteLine("Normal invoker…:");
 var invoker = new SimpleInvoker();

 // Store a user defined concrete command that implements the ICommand interface
 invoker.Store(new ConcreteCommand1());

 // Store a user defined concrete command that inherits from the Command component
 invoker.Store(new ConcreteCommand2(new Receiver()));

 // Store an AutoCommand with a Receiver

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

B e h a v i o u r a l P a t t e r n s

147

 invoker.Store(new AutoCommand(new Receiver()));

 // Store an ActionCommand with a lambda expression
 invoker.Store(new ActionCommand(() => Console.WriteLine("Called ActionCommand.Execute()")));
 while(invoker.Process()) { }

 Console.WriteLine();
 Console.WriteLine("Auto invoker…:");
 var autoInvoker = new AutoInvoker();

 // Invoke all three commands using an AutoInvoker
 autoInvoker.Store(new ConcreteCommand1());
 autoInvoker.Store(new ConcreteCommand2(new Receiver()));
 autoInvoker.Store(new AutoCommand(new Receiver()));
 autoInvoker.Store(new ActionCommand(() => Console.WriteLine("Called ActionCommand.Execute()")));
 autoInvoker.Run(); // Runs indefinitely until the autoInvoker is stopped…

 Console.ReadKey();
 }
}

class ConcreteCommand1 :
 ICommand { // User defined concrete command that implements the ICommand interface
 public void Execute() { Console.WriteLine("Called ConcreteCommand1.Execute()"); }
}

class ConcreteCommand2 :
 Command { // Store a user defined concrete command that inherits from the Command component
 public ConcreteCommand2(IReceiver receiver) : base(receiver) { } //
 public override void Execute() {
 Receiver.Action();
 Console.WriteLine("Called ConcreteCommand2.Execute()");
 }
}

class Receiver : IReceiver {
 public void Action() { Console.WriteLine("Called Receiver.Action()"); }
}

/* Output
Normal invoker…:
Called ConcreteCommand1.Execute()
Called ConcreteCommand2.Execute()
Called Receiver.Action()
Called Receiver.Action()
Called ActionCommand.Execute()

Auto invoker…:
Called ConcreteCommand1.Execute()
Called ConcreteCommand2.Execute()
Called Receiver.Action()
Called Receiver.Action()
Called ActionCommand.Execute()
*/

In the example above, a SimpleInvoker is instantiated. It then stores a custom ConcreteCommand1

instance with the Invoker. The ConcreteCommand1 is implemented using the ICommand APL interface.

The ConcreteCommand1 implementation does not use a Receiver. The next Command that is stored on

the invoker is a ConcreteCommand2 instance, which is implemented using the Command APL component.

The ConcreteCommand2 overrides the Execute method from where it calls the injected Receiver. Next, an

AutoCommand instance is stored on the Invoker. An instance of Receiver is registered with the

AutoCommand. Finally, an ActionCommand is stored on the invoker. A lambda expression is passed to the

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

B e h a v i o u r a l P a t t e r n s

148

ActionCommand constructor that represents the action of the Command. The invoker is then processed

in a while loop until all of the Commands have been executed, as seen in the code snippet below:

C# (APL Example)
--
while(invoker.Process()) { }

The next part of the example does basically the same as the first part, except that an AutoInvoker is

used. The AutoInvoker instance is started after all the Commands have been stored on it with the Run

method, as shown below:

C# (APL Example)
--
autoInvoker.Run(); // Runs indefinitely until the autoInvoker is stopped…

The autoInvoker blocks indefinitely on the Run method until the client stops it in another thread.

The output of the example shows that all the Command instances were invoked successfully.

11.4 Outcome

The componentization of the command design pattern is a success, because it meets all the

requirements listed in section 1.4:

 Completeness: The command design pattern library components cover all cases described in

the original design pattern.

 Usefulness: The command design pattern library components are useful because they solve

most of the command scenarios desired by a developer. A slight drawback is the fact that the

command interface has only one method with a fixed naming convention, namely “Execute”.

It is thus not possible to use the reusable command pattern if multiple command methods are

desired. This situation is, however, rare. A carefully designed command pattern should most

often be able to use only one command method (excluding the undo and redo methods). It is

also beneficial to extract the command method into a decoupled interface, because it promotes

the decoupling of the ConcreteCommand from the Receiver. A developer has a large choice

of implementation combinations from which to choose within the APL library. The ICommand

interfaces can be used individually in order to create custom ConcreteCommands. The

ActionCommand and Command components can also be used, which gives out-of-the-box

ConcreteCommand solutions. Any ConcreteCommand that was created with an ICommand can

be used with the Invoker group of components. The command design pattern library

components are easy to understand and simple to use.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

B e h a v i o u r a l P a t t e r n s

149

 Faithfulness: The implementation of the command pattern library components follows the

original pattern described in Design Patterns (Gamma, Helm, Johnson, & Vlissides, 1994). The

only difference is that, when using the command components, only one command pattern

method, namely “Execute”, is available.

 Type-safety: All the library components are fully type-safe.

 Extended applicability: The command library components cover more cases than the

original core command pattern. The library supplies interfaces such as IUndoableCommand,

IMacroCommand and IMacroUndoableCommand. Although macro and undoable commands are

discussed in Design Patterns (Gamma, Helm, Johnson, & Vlissides, 1994), they do not form part

of the core pattern. These interfaces are used to implement ConcreteCommand classes that

are used in undoable command and macro command scenarios (Gamma, Helm, Johnson, &

Vlissides, 1994). ConcreteCommands also exist in the library for these scenarios, such as the

AutoUndoableCommand, AutoMacroCommand and AutoUndoableMacroCommand components. Advanced

invokers also exist such as the SimpleUndoableInvoker, BlockingInvoker, AsyncInvoker,

AutoInvoker and the AutoUndoableCommandInvoker.

 Performance: Using the command components does not have a performance impact.

The command pattern is fully componentizable because the developer is not tasked with implementing

any boiler plate code when using the reusable pattern component.

The following language features are fundamental to the implementation or usage of the reusable

command pattern components: Inheritance (Mitchell, Mitchell, & Krzysztof, 2003), Interfaces

(Pattison & Box, 2000), Generics (Jagger, Perry, & Sestoft, 2007), Design by Contract™ (Mitchell &

McKim, 2001), Method References (Microsoft, 2010e), Anonymous Functions (Ierusalimschy, 2003)

and Lambda Expressions (Michaelis, 2010)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

150

 C h a p t e r 1 2

12 CHAIN OF RESPONSIBILITY

12.1 Introduction

The chain of responsibility design pattern allows for a certain request to be passed along a chain of

related objects or handlers, all implementing the same interface, yet with different behaviours. Each

one of the handlers in the chain can either process the request or pass it to the next handler in the

chain. The handlers can be added to the chain dynamically during runtime.

The chain of responsibility design pattern decouples the originator of a request from its receiver by

giving multiple objects the opportunity of handling a request. A specific request is propagated along

the dynamic chain of handlers until one accepts and processes it (Gamma, Helm, Johnson, &

Vlissides, 1994).

12.1.1 Structure.

The following figure shows the formal structure of the chain of responsibility design pattern (Gamma,

Helm, Johnson, & Vlissides, 1994):

HandleRequest()

Handler

HandleRequest()

ConcreteHandler1

HandleRequest()

ConcreteHandler2

Client
Successor

Figure 33. Chain of responsibility structure.

12.1.2 Participants.

The classes and/or objects participating in the chain of responsibility pattern are:

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

B e h a v i o u r a l P a t t e r n s

151

 Handler

The Handler declares an interface for the desired request operations. It might implement the

link to the next successor in the chain.

 ConcreteHandler

The ConcreteHandler intercepts requests passed to it through the chain and handles those it is

responsible for. If it is not responsible for that request, it forwards the request to its successor.

It also holds a reference to the next successor in the chain.

 Client

The Client sends the request to a ConcreteHandler object to which it has a reference.

12.2 Library Components

12.2.1 The DynamicChainOfResponsibility component.

The DynamicChainOfResponsibility component uses the built in dynamic C# language features. It

inherits from the DynamicObject .NET class (Microsoft, 2011b) (Nagel, Evjen, Glynn, & Watson,

2010), which is a base class for specifying dynamic behaviour (Tratt, 2009) during runtime. The

DynamicObject class enables one to define what operations can be performed on dynamic objects and

how to perform those operations. One cannot directly create an instance of the DynamicObject class

because it is abstract (Musser & Stepanov, 1989). To implement the dynamic behaviour, one can

inherit from the DynamicObject class and override necessary methods. For example, if only operations

for setting and getting properties are needed, one can override just the TrySetMember and TryGetMember

methods. The following code shows the implementation of the DynamicChainOfResponsibility APL

component:

C# (APL)
--
public class DynamicChainOfResponsibility : DynamicObject {
 private readonly Dictionary<string, object> _members = new Dictionary<string, object>();
 private DynamicChainOfResponsibility _successor;

 [ContractInvariantMethod]
 private void ObjectInvariant() {
 Contract.Invariant(_members != null, "The members cannot be null");
 }

 public DynamicChainOfResponsibility() { }

 public DynamicChainOfResponsibility(DynamicChainOfResponsibility successor) {
 _successor = successor;
 }

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

B e h a v i o u r a l P a t t e r n s

152

 public void SetSuccessor(DynamicChainOfResponsibility successor) { _successor = successor; }

 public override bool TrySetMember(SetMemberBinder binder, object value) {
 Contract.Requires<ArgumentNullException>(binder != null, "Argument binder cannot be null");
 Contract.Requires<ArgumentNullException>(value!= null, "Argument value cannot be null");

 if(!_members.ContainsKey(binder.Name))
 _members.Add(binder.Name, value);
 else
 _members[binder.Name] = value;

 return true;
 }

 public override bool TryGetMember(GetMemberBinder binder, out object result) {
 Contract.Requires<ArgumentNullException>(binder != null, "Argument binder cannot be null");
 if(_members.ContainsKey(binder.Name)) {
 result = _members[binder.Name];
 return true;
 }

 return base.TryGetMember(binder, out result);
 }

 public override bool TryInvokeMember(InvokeMemberBinder binder,
 object[] args,
 out object result) {
 Contract.Requires<ArgumentNullException>(binder != null, "Argument binder cannot be null");

 ChainOfResponsibilityEx.Handled = false;
 var executedHandler = false;
 result = null;

 // Invoke the handler if it is present
 if(_members.ContainsKey(binder.Name) &&
 _members[binder.Name] is Delegate) {
 result = ((Delegate)_members[binder.Name]).DynamicInvoke(args);
 executedHandler = true;
 }

 // If no handler exists or the handler did not handle the request,
 // then pass it on to the successor if it exists
 if(!ChainOfResponsibilityEx.Handled && _successor != null) {
 return _successor.TryInvokeMember(binder, args, out result);
 }

 return executedHandler;
 }

 public override IEnumerable<string> GetDynamicMemberNames() { return _members.Keys; }
}

The DynamicChainOfResponsibility component uses the dynamic language features of C# (Microsoft,

2011b). Thus any Handler method can be registered with an instance of

DynamicChainOfResponsibility, as shown in the example below:

C# (APL Example)
--
handler1.HandleChar = new Action<char>(x => { // Dynamically add the ‘HandleChar’
 // method to the handler1 instance
 if(x != 'X') return;
 Console.WriteLine("I am X");
 ChainOfResponsibilityEx.SetHandled();
});

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

B e h a v i o u r a l P a t t e r n s

153

In the example above, a new method HandleChar, with one argument, is registered dynamically with the

handler1 instance, which is an instance of DynamicChainOfResponsibility. The SetHandled method on

the static ChainOfResponsibilityEx APL static helper class is used to notify the

DynamicChainOfResponsibility component that the request was handled successfully. The SetHandled

method uses a thread static flag, which is defined by the _handled field. The ThreadStatic (Microsoft,

2010n) attribute on the _handled field tells the runtime that a unique instance of the field must exist per

thread:

static public class ChainOfResponsibilityEx {
 [ThreadStatic]
 private static bool _handled;
 public static bool Handled { get { return _handled; } set { _handled = value; } }
 public static void SetHandled() { Handled = true; }
}

The _handled field can thus be safely used by the internals of the DynamicChainOfResponsibility

component in order to check whether the Handler handled the request:

// If no handler exists or the handler did not handle the request,
// then pass it on to the successor if it exists
if(!ChainOfResponsibilityEx.Handled && _successor != null) {
 return _successor.TryInvokeMember(binder, args, out result);
}

The new HandleChar method can now be used by the client, as shown below:

C# (APL Example)
--
handler1.HandleChar('C'); // Invoke the ‘HandleChar’ method, which was dynamicly added…

In the example above, the DynamicChainOfResponsibility component checks whether the HandleChar

method actually exists. If it does, then it is invoked. If it is not found, or if it was not handled, then the

successor is invoked, which is also an instance of DynamicChainOfResponsibility. All this logic is

processed in the TryInvokeMember method implemented on the DynamicChainOfResponsibility

component, which is an abstract method in the DynamicObject base class (Nagel, Evjen, Glynn, &

Watson, 2010). The TryInvokeMember method routes the invocation to the Handler, if it is present. The

TryInvokeMember method tests whether the Handler is present by searching for the method in the

internal _members dictionary. If no Handler exists or the Handler did not handle the request, then the

request is passed to a successor, if one exists. The successor itself is just another instance of the

DynamicChainOfResponsibility component that can be registered with its constructor or with the

SetSuccessor method, as seen below:

C# (APL)
--
public class DynamicChainOfResponsibility : DynamicObject {
 // … S N I P …
 public DynamicChainOfResponsibility(DynamicChainOfResponsibility successor) {
 _successor = successor;

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

B e h a v i o u r a l P a t t e r n s

154

 }

 public void SetSuccessor(DynamicChainOfResponsibility successor) {
 _successor = successor;
 }
 // … S N I P …
}

12.3 Theoretical Examples

The following example shows the usage of the DynamicChainOfResponsibility component. The

example uses the DynamicChainOfResponsibilityFactory APL component with which to create

DynamicChainOfResponsibility instances. The DynamicChainOfResponsibilityFactory component

creates DynamicChainOfResponsibility instances with a registered default Handler:

C# (APL Example)
--
dynamic defaultHandler = new DynamicChainOfResponsibility(); // Create an instance of the
 // DynamicChainOfResponsibility component
 // Note the ‘dynamic’ C# keyword

// Dynamically add a new ‘HandleRequest’ method to the defaultHandler object
defaultHandler.HandleRequest = new Action<int>(x => {
 Console.WriteLine("Default.");
 ChainOfResponsibilityEx.SetHandled(); });

// Create a factory with the above default handler
var factory = new DynamicChainOfResponsibilityFactory(defaultHandler);

// Use the factory to create a handler
// Dynamically add a new ‘HandleRequest’ method to the defaultHandler object
dynamic handler1 = factory.Create();
handler1.HandleRequest = new Action<int>(x => {
 if(x < 0 || x >= 10) return;
 Console.WriteLine("h1 handled request {0}", x);
 ChainOfResponsibilityEx.SetHandled(); });

// Use the factory to create a handler
// Dynamically add a new ‘HandleRequest’ method to the defaultHandler object
dynamic handler2 = factory.Create();
handler2.HandleRequest = new Action<int>(x => {
 if(x >= 10 && x < 20) return;
 Console.WriteLine("h2 handled request {0}", x);
 ChainOfResponsibilityEx.SetHandled(); });

// Use the factory to create a handler
// Dynamically add a new ‘HandleRequest’ method to the defaultHandler object
dynamic handler3 = factory.Create();
handler3.HandleRequest = new Action<int>(x => {
 if(x >= 20 && x < 30) return;
 Console.WriteLine("h3 handled request {0}", x);
 ChainOfResponsibilityEx.SetHandled(); });

// Set some successors
handler1.SetSuccessor(handler2);
handler2.SetSuccessor(handler3);

// Process the request
int[] requests = { 2, 5, 14, 22, 18, 3, 27, 20 };
foreach(int request in requests) { handler1.HandleRequest(request); }

/* Output
h1 handled request 2
h1 handled request 5

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

B e h a v i o u r a l P a t t e r n s

155

h3 handled request 14
h2 handled request 22
h3 handled request 18
h1 handled request 3
h2 handled request 27
h2 handled request 20
*/

Handlers are registered with the component instances during runtime, using C# dynamics (Microsoft,

2011b). The following code shows how a HandleRequest method with one argument is registered:

C# (APL Example)
--
// Dynamicaly add a new ‘HandleRequest’ method to the defaultHandler object
handler1.HandleRequest = new Action<int>(x => {
 if(x < 0 || x >= 10) return; // Return if not handled
 Console.WriteLine("h1 handled request {0}", x); // Handle the request
 ChainOfResponsibilityEx.SetHandled(); // Notify that the request was handled
});

The logic of the Handler method is injected using lambda expressions (Microsoft, 2010i). The client

can call the HandleRequest like any other method after registering the method, as shown below:

C# (APL Example)
--
handler1.HandleRequest(request); // Invoke the ‘HandleRequest’ just like any other method that
 // is avaliable on the handler1 object.
 // The ‘HandleRequest’ method was added to the handler1 object during
 // runtime

When a request is sent to an instance of DynamicChainOfResponsibility, it determines whether that

specific method was registered with it. If not, it passes the request on to the successor.

The output of the example shows that the correct Handler was called for each request by the client.

12.4 Outcome

The componentization of the chain of responsibility design pattern is a success because it meets all the

requirements listed in section 1.4:

 Completeness: The chain of responsibility design pattern library component cover all cases

described in the original design pattern.

 Usefulness: The chain of responsibility design pattern library component is useful because it

solves exactly the same chain of responsibility design pattern intent as an implementation

written by hand. With the DynamicChainOfResponsibility, ConcreteHandler algorithms are

hooked up with the component using C# 4.0 dynamic language features. With the reusable

component, a developer is not tasked with writing any chain of responsibility boiler plate code.

The component is easy to use and easy to understand.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

B e h a v i o u r a l P a t t e r n s

156

 Faithfulness: The DynamicChainOfResponsibility component follows a certain chain of

responsibility variant described in Design Patterns (Gamma, Helm, Johnson, & Vlissides, 1994),

where the usage of dynamic language features is mentioned. The

DynamicChainOfResponsibility component, however, solves the same intent as that of the

chain of responsibility pattern described in Design Patterns (Gamma, Helm, Johnson, &

Vlissides, 1994).

 Type-safety: The DynamicChainOfResponsibility component is not type-safe. It is, however,

the explicit intent of the component to be dynamic, in order to implement a chain of

responsibility pattern solution.

 Extended applicability: The chain of responsibility library component does cover more cases

than the original core chain of responsibility pattern. The DynamicChainOfResponsibility

component is a special implementation of the pattern in which dynamic language features are

used. The chain of responsibility library component, however, does not follow the original

core chain of responsibility implementation. The DynamicChainOfResponsibility component,

however, solves the same intent as the pattern described in Design Patterns (Gamma, Helm,

Johnson, & Vlissides, 1994).

 Performance: Using the chain of responsibility component does have a performance impact.

Using dynamically typed features is typically slower than using statically typed

implementations. Appendix III shows that the TryInvokeMember method defined on the

DynamicChainOfResponsibility component will incur a large performance penalty. There is,

however, successful research into making dynamically typed implementations as fast as

statically typed implementations (Cuni, Ancona, & Rigo, 2009). Nevertheless, the performance

penalty incurred when using the DynamicChainOfResponsibility component is acceptable in

normal situations.

The chain of responsibility pattern is fully componentizable because the developer is not tasked with

implementing any boiler plate code when using the reusable pattern component.

The following language features are fundamental to the implementation or usage of the reusable chain

of responsibility pattern components: Inheritance (Mitchell, Mitchell, & Krzysztof, 2003), Generics

(Jagger, Perry, & Sestoft, 2007), Design by Contract™ (Mitchell & McKim, 2001), Method References

(Microsoft, 2010e), Anonymous Functions (Ierusalimschy, 2003), Lambda Expressions (Michaelis,

2010), Reflection (Sobel & Friedman, 1996) (Forman & Forman, 2005) and Dynamic Typing (Tratt,

2009).

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

B e h a v i o u r a l P a t t e r n s

157

 C h a p t e r 1 3

13 MEMENTO

13.1 Introduction

In certain situations there is a need to store the internal state of an object in order for it to be restored

back to a previous state by a user or client.

The memento design pattern extracts and externally stores an object's internal state in order to restore

it back to its original state sometime in the future, without violating encapsulation (Gamma, Helm,

Johnson, & Vlissides, 1994).

13.1.1 Structure.

The following figure shows the formal structure of the memento design pattern (Gamma, Helm,

Johnson, & Vlissides, 1994):

Figure 34. Memento structure.

13.1.2 Participants.

The classes and/or objects participating in the memento pattern are:

 Memento

The Memento extracts the internal state of the Originator object and stores it locally. The

Memento may store the entire internal state of the Originator or only a subset thereof. The

stored internal state is protected against access by foreign objects and only the Originator can

access it. Mementos have two interfaces. The Caretaker sees a narrow interface to the

GetState()

SetState()

state

Memento

SetMemento(in Memento)

CreateMemento()

state

Originator
Caretaker

return new Memento(state) state = m.GetState()

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

B e h a v i o u r a l P a t t e r n s

158

Memento. The Originator, in contrast, sees a wide interface to the Memento that lets it access

all the data necessary to restore itself to its previous state. If possible, only the Originator that

creates the Memento has access to the Memento’s internal state.

 Originator

The Originator instantiates a Memento instance by encapsulating a copy of its own recent

internal state. The Originator is also capable of restoring its internal state using the Memento.

 Caretaker

The Caretaker has custody over the Memento's existence. However, it will not use or read the

contents of a Memento or use any of its functionality.

13.2 Library Components

13.2.1 The Memento group of components.

The Originator<TOriginator> generic APL component is a reusable Originator that takes in the hand

coded part of the Originator as a generic argument. It uses the hand coded Originator to make a copy

of its internal state and pass it on to the Memento:

C# (APL)
--
public class Originator<TOriginator> : IOriginator<TOriginator> {
 private readonly TOriginator _originator;
 private readonly MementoRestore<TOriginator> _restore;

 [ContractInvariantMethod]
 private void ObjectInvariant() {
 Contract.Invariant(_originator != null, "The originator cannot be null");
 Contract.Invariant(_restore != null, "The restore cannot be null");
 }

 public Originator(TOriginator originator, MementoRestore<TOriginator> restore) {
 _originator = originator;
 _restore = restore;
 }

 public IMemento<TOriginator> CreateMemento() {
 Contract.Ensures(Contract.Result<IMemento<TOriginator>>() != null);
 var memento = GetMemento();
 memento.SnapshotState = _originator.DeepCopy(); // Make a copy
 return memento;
 }

 private Memento<TOriginator> GetMemento() {
 Contract.Ensures(Contract.Result<IMemento<TOriginator>>() != null);
 return new Memento<TOriginator>(_restore);
 }

 public void SetState(IMemento<TOriginator> memento) {
 Contract.Requires<ArgumentNullException>(memento != null, "Argument memento cannot be null");
 memento.RestoreState(_originator);

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

B e h a v i o u r a l P a t t e r n s

159

 }

 public static Originator<TOriginator> Create(TOriginator originator,
 MementoRestore<TOriginator> set) {
 Contract.Requires<ArgumentNullException>(originator != null,
 "Argument originator cannot be null");
 Contract.Requires<ArgumentNullException>(set != null, "Argument set cannot be null");
 Contract.Ensures(Contract.Result<Originator<TOriginator>>() != null);
 return new Originator<TOriginator>(originator, set);
 }
}

The APL prototype (Gamma, Helm, Johnson, & Vlissides, 1994) reusable component is used to make

a copy of the Originator’s internal state, as seen in the CreateMemento method:

C# (APL)
--
memento.SnapshotState = _originator.DeepCopy(); // Make a copy

Figure 35. UML class diagram of the Originator APL component.

Figure 35 shows a UML class diagram of the Originator APL component. It shows the component’s

realization of the IOriginator APL interface and also the available methods on the Originator

component. Figure 35 also shows the internal state of the Originator component where it holds an

instance of a TOriginator and a MementoRestore delegate.

The Originator<TOriginator> component implements the IOriginator<TOriginator> interface that

defines a contract for a standard Originator:

«interface»

TOriginator

IOriginator

+ CreateMemento() :IMemento<TOriginator>

+ SetState(memento :IMemento<TOriginator>) :void

TOriginator

Originator

- _originator :TOriginator {readOnly}

- _restore :MementoRestore<TOriginator> {readOnly}

+ Create(originator :TOriginator, set :MementoRestore<TOriginator>) :Originator<TOriginator>

+ CreateMemento() :IMemento<TOriginator>

- GetMemento() :Memento<TOriginator>

+ Originator(originator :TOriginator, restore :MementoRestore<TOriginator>)

+ SetState(memento :IMemento<TOriginator>) :void

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

B e h a v i o u r a l P a t t e r n s

160

C# (APL)
--
public interface IOriginator<TOriginator> {
 IMemento<TOriginator> CreateMemento();
 void SetState(IMemento<TOriginator> memento);
}

The CreateMemento method creates a new Memento in which to store a snapshot of the Originator’s

internal state. The Memento is represented as an IMemento<TOriginator> interface that defines

methods which manipulate the state of an Originator:

C# (APL)
--
public interface IMemento<in TOriginator> {
 TOriginator SnapshotState { set; }
 void RestoreState(TOriginator originator);
}

The GetMemento private method on the Originator<TOriginator> is a simple factory that returns a new

instance of the Memento<TOriginator> component. The Memento<TOriginator> class is a generic

reusable APL component that implements the IMemento<in TOriginator> interface. The Memento is

used to set the state of the Originator back to its original state. The state of the Originator is probably

not publicly accessible. In order for the Memento<TOriginator> component to set the state back, a

generic delegate MementoRestore instance is passed to the Originator<TOriginator> component, which

in turn passes it to the Memento<TOriginator> component. An instance of the MementoRestore delegate

must have access to the internal state of the Originator. The MementoRestore delegate has two

arguments which are the original Originator and a snapshot of the Originator:

C# (APL)
--
public delegate void MementoRestore<in TOriginator>(TOriginator originator, TOriginator snapshot);

In the code below, the Restore method on the ClientOriginator example class is an example

implementation for the MementoRestore delegate and is used to set the state of the Originator back to

its original state:

C# (APL Example)
--
public static void Restore(ClientOriginator originator, ClientOriginator snapshot) {
 Contract.Requires<ArgumentNullException>(originator != null, "Argument originator cannot be null");
 Contract.Requires<ArgumentNullException>(snapshot != null, "Argument snapshot cannot be null");
 originator._state = snapshot._state;
}

In the above example the Restore method is defined on the ClientOriginator class and thus has

access to its own private state. An instance of the MementoRestore delegate on the other hand has

access only to the specific restore method to which it is linked and thus has no access to the

Originator’s private state.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

B e h a v i o u r a l P a t t e r n s

161

Figure 36. UML class diagram of the Memento APL component.

Figure 36 shows a UML class diagram of the Memento and Caretaker APL components. It shows the

Memento’s realization of the IMemento interface and the Caretaker’s reference to, and usage of, an

IMemento.

The SetState method implemented on the Originator component sets the state of the Originator

back to its original state, using the supplied Memento component instance:

C# (APL)
--
public void SetState(IMemento<TOriginator> memento) {
 Contract.Requires<ArgumentNullException>(memento != null, "Argument memento cannot be null");
 memento.RestoreState(_originator);
}

The Create method on the Originator component is a basic factory (Freeman, Robson, Bates, &

Sierra, 2004), which is used to create a new instance of the Originator component using the given

arguments.

The Memento<TOriginator> generic APL component stores a snapshot of an instance of type

TOriginator. It also holds an instance of the MementoRestore delegate which is used to set the

Originator back to its original state. The MementoRestore instance must be supplied on construction

with the Memento<TOriginator> component:

«interface»

TOriginator

IMemento

«Property»

- SnapshotState :TOriginator

+ RestoreState(originator :TOriginator) :void

TOriginator

Memento

- _restore :MementoRestore<TOriginator> {readOnly}

- _snapshotState :TOriginator

«Propery»

+ SnapShotState :TOriginator

+ Memento(set :MementoRestore<TOriginator>)

+ RestoreState(originator :TOriginator) :void

TOriginator

Caretaker

«Property»

+ Memento :IMemento<TOriginator>

+Memento

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

B e h a v i o u r a l P a t t e r n s

162

C# (APL)
--
public class Memento<TOriginator> : IMemento<TOriginator> {
 private TOriginator _snapshotState;
 private readonly MementoRestore<TOriginator> _restore;

 [ContractInvariantMethod]
 private void ObjectInvariant() {
 Contract.Invariant(_restore != null, "The restore cannot be null");
 }

 public Memento(MementoRestore<TOriginator> restore) { _restore = restore; }
 public TOriginator SnapshotState { `
 set {
 Contract.Requires<ArgumentNullException>(value != null,
 "Argument SnapshotState cannot be null");
 _snapshotState = value;
 }
 }

 public void RestoreState(TOriginator originator) {
 Contract.Requires<ArgumentNullException>(originator!= null,
 "Argument originator cannot be null");
 _ restore(originator, _snapshotState); // Restore from the snapshot using the
 // MementoRestore<TOriginator> delegate that
 // was supplied by the user
 }
}

The RestoreState public method on the Memento component is used to restore the state of the

Originator back to the original snap shot. The method must be supplied with the current Originator,

which is passed to an instance of the MementoRestore delegate together with the snap shot of the

Originator’s previous state. The MementoRestore delegate will restore the state of the Originator back

to the state of the snap shot.

13.3 Theoretical Examples

The following example shows a theoretical usage of the memento reusable component. First, a

ClientOriginator class is defined; this is the actual object whose state is going to be stored and then

eventually restored:

C# (APL Example)
--
[Serializable] // Must be Serializable in order to perform the deep copy
class ClientOriginator {
 private string _state;

 public void SwitchOff() { _state = "On"; }
 public void SwitchOn() { _state = "Off"; }

 public void PrintState() { Console.WriteLine(_state);}

 // Restore the state back to the snapshot state
 public static void Restore(ClientOriginator originator, ClientOriginator snapshot) {
 originator._state = snapshot._state;
 }
}

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

B e h a v i o u r a l P a t t e r n s

163

The ClientOriginator has no concept of a Memento. This is managed by the reusable APL Originator

component. The Originator component makes a copy of the ClientOriginator instance’s state, using

the APL Memento component:

C# (APL Example)
--
var clientOriginator = new ClientOriginator();
var originator = new Originator<ClientOriginator>(clientOriginator, ClientOriginator.Restore);
clientOriginator.SwitchOn();
clientOriginator.PrintState();

// (1) Store state

// Create a new Caretaker
var caretaker = new Caretaker<ClientOriginator>();

// Set the Memento on the Caretaker using the Originator
caretaker.Memento = originator.CreateMemento();

// (2) Change state

// Call SwitchOff changing the state on the ClientOriginator instance
clientOriginator.SwitchOff();

// Show the new state
clientOriginator.PrintState();

// (3) Restore state
originator.SetState(caretaker.Memento);

// Show the state
clientOriginator.PrintState();

/* Output
Off
On
Off
*/

The Restore static method defined on the ClientOriginator class is registered through the Originator

constructor in order for the Originator instance to make a copy of the internal state of a

clientOriginator instance. The Restore method must follow the contract of the

MementoRestore<TOriginator> delegate defined in the APL library. The Restore static method thus

manages how the internal state of the ClientOriginator is restored.

From the output, it can be seen that the final state of the clientOriginator object is restored back to

its original state via the originator object, which is an instance of the APL Originator component.

13.4 Outcome

The componentization of the memento pattern is a success, because it meets all the requirements

listed in section 1.4:

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

B e h a v i o u r a l P a t t e r n s

164

 Completeness: The memento library components cover all cases described in the original

memento design pattern.

 Usefulness: The memento library components are useful because they solve exactly the same

intent as a memento implementation written by hand. The components are easy to use and

easy to understand.

 Faithfulness: The implementation of the memento pattern is slightly different from the

original pattern described in Design Patterns (Gamma, Helm, Johnson, & Vlissides, 1994). A

delegate is used to access and set the internal state of an Originator. Bishop has shown that

patterns can be implemented in different ways depending upon the available language features

(Bishop, 2007). Thus, even if the memento pattern were to be implemented by hand in C# 4.0,

using a delegate to access the internal state of an Originator is acceptable.

 Type-safety: The memento library components are fully type-safe.

 Extended applicability: The memento library components do not cover more cases than the

original memento pattern.

 Performance: The memento components use the prototype component in order to make a

clone of the hand written Originator. Internally the prototype component uses serialization for

cloning, which will always be slower than a hand developed algorithm. Serialization is however

widely used in APIs such as WCF and ORM tools, within the context of transactional

applications, where its performance overhead is deemed to be acceptable.

The memento pattern is fully componentizable because the developer is not tasked with implementing

any boiler plate code when using the reusable pattern component.

The following language features are fundamental to the implementation or usage of the reusable

memento pattern components: Interfaces (Pattison & Box, 2000), Generics (Jagger, Perry, & Sestoft,

2007), Design by Contract™ (Mitchell & McKim, 2001), Method References (Microsoft, 2010e),

Anonymous Functions (Ierusalimschy, 2003), Lambda Expressions (Michaelis, 2010) and Reflection

(Sobel & Friedman, 1996) (Forman & Forman, 2005).

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

165

 C h a p t e r 1 4

14 EXISTING REUSABLE PATTERN LIBRARIES

14.1 Prototype

Static programming languages (Pierce, 2002) such as Java, C++, C# and Delphi are quite rigid. With

static programming languages the behaviour of an object is defined by a class and that behaviour can

be changed only by sub-classing. Prototype-based programming languages such as Self (Chambers,

1992) and JavaScript (David, 2006) do not introduce the concept of a class. Instead they supply only

objects, but enable one to add services and attributes dynamically during run-time. In Self, new objects

are created solely from cloning. Thus, the root object is cloned and that clone can evolve over time,

generating further clones with different services and attributes.

As an example, the following Self code makes a copy of the account object and sends it a message to

put 5000 into the slot called value:

Self
--
account copy value: 5000

The .NET framework does supply a cloning operation MemberwiseClone (Microsoft, 2010p) on all

objects. The MemberwiseClone implements a shallow copy on the calling object. It thus does not

implement a full prototype of an object if that object references other non-primitive types (Binder,

1999). The .NET framework also supplies an IClonable interface (Microsoft, 2010q). A class

implementing the IClonable interface must implement a Clone method that returns an object. A

drawback of the IClonable interface is that it is not clear whether the Clone method will do a shallow

or deep copy of the current object and it is thus ambiguous (Abrams, 2004).

Copyable is a dedicated framework (Stranden, 2011), written in C#, which offers a reusable C#

prototype component for cloning .NET objects. A major advantage with the Copyable framework is

that the cloned .NET objects do not have to be attributed with the serializable attribute (Albahari &

Albahari, 2007).

In Python, the library's copy module provides a deepcopy method (van Rossum, 2008) that returns a

clone of the current object. Developers may define a special method, __deepcopy__, on an object in

order to provide a custom cloning implementation.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

E x i s t i n g R e u s a b l e P a t t e r n L i b r a r i e s

166

In Smalltalk the Object class has a method, deepCopy, which is available to all objects via inheritance.

The deepCopy method makes a deep copy, and thus a clone, of the current object (Alpert, Brown, &

Woolf, 1998).

In Eiffel a deep_clone method, which is defined in the Kernel Library, is available to all classes

(Thomas & Weedon, 1997), where it performs a deep clone on the current object. The prototype

design pattern is thus part of the Eiffel language where it is implemented in the standard library

(Arnout, 2004).

14.2 Singleton

Arnout has shown that it is not possible to create a reusable singleton in Eiffel (Arnout & Bezault,

2004) because of the lack of certain language features.

The Unity dependency injection container framework (Microsoft, 2010o), which is part of the Patterns

& Practices project from Microsoft, has a mechanism for acquiring a single instance for a registered

type, as do virtually all dependency injection (Fowler, 2004) containers. With dependency injection

(Fowler, 2004) an independent object, which is usually called an assembler, populates the state in a

certain instance of a class with an appropriate predefined implementation for the interfaces referenced

in that class.

Windows Communication Foundation (WCF) also offers a singleton service (Lowy, 2007). WCF

offers an integrated development environment for building service-oriented systems that communicate

over the web and the enterprise (Bustamante, 2007). WCF is part of the .NET Framework. When a

service is set as a singleton, all client messages are channelled to that same single instance. The

singleton service lives indefinitely; it is only destroyed once the host process is killed. The singleton

service instance is created only once, when the host is created.

Schmidt has created a generic class that implements the singleton design pattern in the ACE (Adaptive

Communication Environment) C++ library (Schmidt, Stal, Rohnert, & Buschmann, 2000). The

reusable singleton C++ class uses generics in order to turn ordinary C++ classes into singletons

optimised with the double-checked locking optimisation pattern (Schmidt & Harrison, 1996). A

similar, yet simpler, reusable C++ singleton is made available by the TSingleton project from Google

Code (Anilao, 2010), as seen in the code below:

C++
--
template<typename type> class Singleton {
public:
 // Get the instance of this singleton.
 static type &GetInstance() {

 // Assumes template type has a default constructor.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

E x i s t i n g R e u s a b l e P a t t e r n L i b r a r i e s

167

 static type *pTheInstance;

 // Check to see if the auto pointer is empty or not.
 if(pTheInstance == NULL) {
 pTheInstance = new type();
 // This will cause the pTheInstance to be deleted when
 // program execution has ended.
 static std::auto_ptr<type> theInstance(pTheInstance);
 }

 // Return a reference of our singleton.
 return *(pTheInstance);
 }

protected:
 // Constructor hidden.
 Singleton() {}

 // Copy constructor hidden.
 Singleton(Singleton const & orig) {}

 // Assignment operator hidden.
 Singleton & operator=(Singleton const & rhs) {}

 // Destructor.
 virtual ~Singleton() {}
}

It can be seen from the above code that the GetInstance method will always return a singleton instance

for the given template type.

The Loki library has a reusable singleton template called a SingletonHolder (Alexandrescu, 2001). This

template class lets one create a singleton instance from any C++ struct or class using a constructor

that takes no arguments. The Loki singleton provides template guidelines that allow for the

specification of how the singleton must be created, how it is terminated, and what threading model it

must use (such as single threaded or multi-threaded).

There is also a project under Google Code, called DesignByContract (Fraiteur, 2010), which uses

PostSharp (Fraiteur, 2008) in order to weave in special code into a class that is configured with a

Singleton attribute. The example below, from the DesignByContract (Fraiteur, 2010) project, shows the

implementation and usage of their singleton:

C#
--
[Singleton]
public class MySingletonCandidate {
 // Default constructor
 public MySingletonCandidate() { … }
 … S N I P …
}

MySingletonCandidate obj1 = new MySingletonCandidate(); // Just use the new keyword…
// Or
MySingletonCandidate obj1 = MySingletonCandidate.Instance; // Use the injected Instance static property

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

E x i s t i n g R e u s a b l e P a t t e r n L i b r a r i e s

168

In the code above, the new C# operator is replaced by code that ensures that only one instance of the

attributed class ever exists. An Instance static property is also added to the class in cases where

developers do not want to use the new operator.

Scala, a type-safe functional language, allows one to instantiate singleton objects using the object

(Odersky, Spoon, & Venners, 2011) keyword. A singleton object thus cannot be instantiated with the

new keyword. A Scala singleton object is automatically instantiated the first time it is used and there is

only ever one instance per process (Odersky, Spoon, & Venners, 2011):

Scala
--
// In WorldlyGreeter.scala

// The WorldlyGreeter class
class WorldlyGreeter(greeting: String) {
 def greet() = {
 val worldlyGreeting = WorldlyGreeter.worldify(greeting)
 println(worldlyGreeting)
 }
}

// The WorldlyGreeter companion object
object WorldlyGreeter {
 def worldify(s: String) = s + ", world!"
}

// In WorldlyApp.scala
// A singleton object with a main method that allows
// this singleton object to be run as an application
object WorldlyApp {
 def main(args: Array[String]) {
 val wg = new WorldlyGreeter("Hello")
 wg.greet()
 }
}

In the paper, Construction with Factories (Cohen & Gil, 2007), Cohen and Gil show how the Java

programming language can be extend with the new keyword on a constructor in order to implement a

singleton:

Java
--
class STemplate {
 private static STemplate instance = null;
 public static new() { // Extension for the new keyword
 if (instance == null)
 instance = this();

 return instance;
 }

 STemplate() { … }
}

// … S N I P …
STemplate sTemplate = new STemplate() // Will always return the same single instance

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

E x i s t i n g R e u s a b l e P a t t e r n L i b r a r i e s

169

Groovy's meta-programming features allow notions or idioms such as the singleton pattern to be

defined in a more focal way, as shown in the article Groovy Singleton Pattern (Groovy, 2011). The Groovy

singleton example below shows functionality that keeps track of the total number of calculations that a

calculator performs. This can be achieved by using a singleton for the calculator class where a counter

is defined in the class that holds the counting state (Groovy, 2011).

First a base class Calculator is defined, which performs the calculations and records the sum of the

number of calculations that was performed. A Client class is also defined, that acts as a facade to the

calculator singleton (Groovy, 2011):

Groovy
--
class Calculator {
 private total = 0
 def add(a, b) { total++; a + b }
 def getTotalCalculations() { 'Total Calculations: ' + total }
 String toString() { 'Calc: ' + hashCode() }
}

class Client {
 def calc = new Calculator()
 def executeCalc(a, b) { calc.add(a, b) }
 String toString() { 'Client: ' + hashCode() }
}

Next a MetaClass that intercepts all attempts to create a Calculator object is defined. The defined

CalculatorMetaClass MetaClass will always provide a pre-created instance. The CalculatorMetaClass is

then registered with the Groovy system:

Groovy
--
class CalculatorMetaClass extends MetaClassImpl {
 private final static INSTANCE = new Calculator()
 CalculatorMetaClass() { super(Calculator) }
 def invokeConstructor(Object[] arguments) { return INSTANCE }
}

def registry = GroovySystem.metaClassRegistry
registry.setMetaClass(Calculator, new CalculatorMetaClass())

One can now use instances of the Client class from within a Groovy script as shown below. A request

to create a new Calculator class, in this case through the Client class’s constructor, will always return

the singleton:

Groovy
--
def client = new Client()
assert 3 == client.executeCalc(1, 2)
println "$client, $client.calc, $client.calc.totalCalculations"

client = new Client()
assert 4 == client.executeCalc(2, 2)
println "$client, $client.calc, $client.calc.totalCalculations"

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

E x i s t i n g R e u s a b l e P a t t e r n L i b r a r i e s

170

/* Output
Client: 7306473, Calc: 24230857, Total Calculations: 1
Client: 31436753, Calc: 24230857, Total Calculations: 2
*/

The Boo language has an assembly called Boo.Lang.Useful that is filled with useful classes, but which

is not yet core to the standard of the language itself (de Oliveira, 2005). Boo is a statically typed, object-

oriented, general-purpose programming language with a Python-inspired syntax (de Oliveira, 2008).

Boo has a key focus on language and compiler extensibility. The Boo language has features such as

interfaces, multimethods, generators, type inference, duck typing, closures, currying, macros and first-

class functions (Rahien, 2010). The Singleton attribute, which is defined in the Boo.Lang.Useful

library, automates or mechanises the implementation of the singleton design pattern (Ionescu, 2005).

Attaching the singleton attribute to a Boo structure or a Boo class auto generates code that protects all

constructors on that class. The attribute also implements a single property called Instance on the class

that will always return a single instance of the class.

The example below, from the article Useful things about Boo (Quesnel, 2005), shows a simple example for

the usage of the Singleton attribute in Boo:

Boo
--
"""
Hey, hey, what do you say?
"""

import Useful.Attributes from "Boo.Lang.Useful"

[Singleton]
class SingletonExample:
 [property(Variable)]
 _var as string

 def constructor():
 Variable = "Hey, hey, what do you say?"

print SingletonExample.Instance.Variable // Instance will always return a single instance

14.3 Abstract Factory

Arnout shows that the abstract factory pattern can be fully componentized in Eiffel (Arnout, 2004). A

slight drawback of the reusable component is that no AbstractFactory exists that holds the contracts

of the creational operations that are defined on the AbstractProducts.

It is also possible to register an AbstractProduct with its corresponding Product using the Unity

dependency injection container framework (Microsoft, 2010o). The following example shows how

Unity can be used in order to implement the abstract factory design pattern:

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

E x i s t i n g R e u s a b l e P a t t e r n L i b r a r i e s

171

C#
--
public interface IAbstractProductA { void Bar(); }
public interface IAbstractProductB { void Foo(IAbstractProductA a); }

public class ProductA1 : IAbstractProductA {
 public void Bar() { Console.WriteLine("ProductA1: Called Bar"); }
}

public class ProductB1 : IAbstractProductB {
 public void Bar() {
 Console.WriteLine("ProductB1: Called Bar"); }
 public void Foo(IAbstractProductA a) {
 Console.WriteLine("ProductB1: Called Foo - uses " + a.GetType().Name);
 }
}

IUnityContainer container = new UnityContainer();
container.RegisterType<IAbstractProductA, ProductA>();
container.RegisterType<IAbstractProductB, ProductB>();

// … S N I P
var productA = container.Resolve<IAbstractProductA>();
productA.Bar();

var productB = container.Resolve<IAbstractProductB>();
productB.Foo(productA);

/* Output
ProductA1: Called Bar
ProductB1: Called Foo - uses ProductA1
*/

In the above code the IAbstractProductA and IAbstractProductB AbstractProducts are registered with

the Unity framework using the RegisterType method. Each AbstractProduct is registered with its

corresponding Product. For example, the IAbstractProductA interface is registered against the ProductA

concrete class. The Unity framework can then be used to create a new Product instance by invoking the

Resolve method on the container and providing it with the AbstractProduct as a generic argument. In

the above example, no AbstractFactory and ConcreteFactory participants exist. An AbstractFactory

defines an interface for creational operations that instantiates an AbstractProduct. A ConcreteFactory

implements the creational operations with which to instantiate Product objects. The abstract factory

design pattern offers an interface for creating families of related objects that assist in decoupling

applications from the concrete implementation of an entire framework or library (Gamma, Helm,

Johnson, & Vlissides, 1994) (McConnell, 1993). In the example, the Unity container fulfils the role of

the AbstractFactory and ConcreteFactory participants. The Unity container (Microsoft, 2010o) satisfies

the original intent and functionality of the abstract factory design pattern (Gamma, Helm, Johnson, &

Vlissides, 1994). The output of the above example shows that the Unity container works as expected.

14.4 Factory Method

Arnout has shown that the factory method pattern is fully componentizable in Eiffel (Arnout, 2004).

She correctly argues that the factory method is just a special case of an abstract factory using only one

creational method for a Product.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

E x i s t i n g R e u s a b l e P a t t e r n L i b r a r i e s

172

The paper Better Construction with Factories (Cohen & Gil, 2007) shows how the factory method pattern,

which is also known as a virtual constructor (Gamma, Helm, Johnson, & Vlissides, 1994), can be made

more explicit in Java by proposing the ability for the new keyword to be manually overridden, as seen in

the example below:

Java
--
abstract class Application {
 List<Document> docs;
 protected abstract new Document();

 public void newDocument() {
 // Handles the File|New menu option
 doc = new Document();
 docs.add(doc);
 doc.open();
 }

 // … S N I P …
}

class MyApplication extends Application {
 protected new Document() { // Note the new keyword
 return new MyDocumentType(); // A concrete subtype
 }

 // … S N I P …
}

The above code shows an implementation of the factory method pattern with dynamically bound

factories. Dynamically bound means, as the name suggests, without the static keyword. Syntactically,

the invocation of a dynamically bound factory defined in the Application class for objects of class

Document is written as application.new Document(…), where application is an instance of class

Application. The prefix application can be dropped from inside the Document class, where it should be

replaced with this.

14.5 Flyweight

Arnout has shown that the flyweight pattern is fully componentizable in Eiffel without any drawbacks

(Arnout, 2004), relying mostly on the unconstrained genericity language feature in Eiffel.

The Boost Flyweight Library (López Muñoz, 2008), which is part of the Boost Library, implements

powerful reusable C++ flyweight components. The aim of the Boost Flyweight Library is to simplify

the usage of the design pattern by providing the class template flyweight<T>, which acts as a drop-in

replacement for const T:

C++
--
flyweight<std::string> name1; name1 = "aaa"
flyweight<std::string> name2; name2 = "aaa"
flyweight<std::string> name3; name3 = "bbb"
std::out << name1;

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

E x i s t i n g R e u s a b l e P a t t e r n L i b r a r i e s

173

The flyweights defined above are copy-able and assignable and will never store duplicate string

instances adhering to the flyweight design pattern requirements. The flyweight<std::string> offers

the use of common operators such as ==, !=, <, >, <=, >= with the same semantics as those of a C++

std::string. The flyweight<std::string> value is immutable; however, a flyweight object can be

assigned a different value. The Boost Flyweight Library flyweight component, in fact, is a special type

of flyweight pattern adaption called a value object (Evans, 2003) (Nilsson, 2006). A value object is

simply a flyweight where the key that defines the flyweight and the value of the flyweight itself are the

same.

The Boost Flyweight Library also implements a key-value flyweight pattern (López Muñoz, 2008),

which is the more traditional flyweight pattern, where the key and value are different.

14.6 Adapter

Arnout has shown that the adapter pattern cannot be componentized in Eiffel (Arnout, 2004).

The PerfectJPattern library has a reusable component implementation for the adapter pattern (Garcia,

2009a). The component allows for the auto adaption of methods between the Adaptee and Target,

using different adaption strategies. The PerfectJPattern's adapter implementation thus has configurable

strategies to adapt Target interfaces to Adaptee implementations. The available strategy

implementations offered are ExactMatchAdaptingStrategy and NameMatchAdaptingStrategy. The default

ExactMatchAdaptingStrategy strategy verifies and resolves Target methods that have precise method

name and signature matches on the Adapter and Adaptee. The NameMatchAdaptingStrategy, on the

other hand, uses a user defined mapping of Adaptee method names to Target interface method

names, where unregistered method names are defaulted to the ExactMatchAdaptingStrategy

implementation.

14.7 Decorator

Arnout has shown that the decorator pattern cannot be componentized in Eiffel (Arnout, 2004).

The PerfectJPattern library has a reusable component implementation AbstractDecorator for the

decorator pattern (Garcia, 2009b). The AbstractDecorator component, which has a large number of

features, auto decorates given interfaces. Component methods not expressed by the Decorator are

automatically passed on to the Component. Developers are thus expected to offer implementations

only for those additional methods.

The following code snippet from Redpath shows how a reusable decorator component can be

implemented in Ruby (Redpath, 2009), using the language’s dynamic features:

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

E x i s t i n g R e u s a b l e P a t t e r n L i b r a r i e s

174

Ruby
--
module Decorator
 def initialize(decorated)
 @decorated = decorated
 end

 def method_missing(method, *args)
 args.empty? ? @decorated.send(method) : @decorated.send(method, args)
 end
end

The Ruby Decorator in the code above defines a constructor that takes in a Decorator. This allows for

the decorative chaining of Decorator instances.

The following example from Redpath (Redpath, 2009) shows the use of the Ruby Decorator that

refers to an example shown in the book Head First Design Patterns (Freeman, Robson, Bates, & Sierra,

2004). The example shows the calculation for a cup of coffee. There is a Coffee class that defines and

implements a cost method. For the purposes of this example the value is hard coded:

Ruby
--
class Coffee
 def cost
 2
 end
end

Next a WhiteCoffee class is defined in order to define the cost for a coffee with milk:

Ruby
--
class WhiteCoffee
 def cost
 2.4
 end
end

Decorator classes Milk, Whip and Sprinkles are defined that add their price to the coffee. An instance

of the decorators will thus decorate the cost method with the price of the extras:

Ruby
--
class Milk
 include Decorator

 def cost
 @decorated.cost + 0.4
 end
end

class Whip
 include Decorator

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

E x i s t i n g R e u s a b l e P a t t e r n L i b r a r i e s

175

 def cost
 @decorated.cost + 0.2
 end
end

class Sprinkles
 include Decorator

 def cost
 @decorated.cost + 0.3
 end
end

The decorators can then be used to cost the price of a cup of coffee with extras such milk, sprinkles

and whip added in any combination:

Ruby
--
Whip.new(Coffee.new).cost
#=> 2.2
Sprinkles.new(Whip.new(Milk.new(Coffee.new))).cost
#=> 2.9

14.8 Composite

Arnout has shown that the composite pattern is fully componentizable in Eiffel (Arnout, 2004). She

has shown that the componentization was possible mostly because of the generics language feature in

Eiffel.

The reusable Java composite component implementation in the PerfectJPattern Java library (Garcia,

2009d) also uses generics, as the following example shows:

Java
--
public interface IGraphic {
 public void
 draw();
}

public class Line implements IGraphic {
 public void draw() { theLogger.debug("Drawing a Line"); }
 protected static void setLogger(Logger aLogger) { theLogger = aLogger; }
 private static Logger theLogger = LoggerFactory.getLogger(Line.class);
}

public class Rectangle implements IGraphic {
 public void draw() { theLogger.debug("Drawing a Rectangle"); }
 protected static void setLogger(Logger aLogger) { theLogger = aLogger; }
 private static Logger theLogger = LoggerFactory.getLogger(Rectangle.class);
}

public class Text implements IGraphic {
 public void draw() { theLogger.debug("Drawing a Text"); }
 protected static void setLogger(Logger aLogger) { theLogger = aLogger; }
 private static Logger theLogger = LoggerFactory.getLogger(Text.class);
}

public final class Example {
 public static void main(String[] anArguments) {
 //---

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

E x i s t i n g R e u s a b l e P a t t e r n L i b r a r i e s

176

 // Create composition using the reusable Composite implementation
 //---
 IComposite<IGraphic> myNestedComposite = new Composite<IGraphic>(IGraphic.class);
 myNestedComposite.add(new Rectangle());
 myNestedComposite.add(new Line());
 myNestedComposite.add(new Line());

 IComposite<IGraphic> myComposite = new Composite<IGraphic>(IGraphic.class);
 myComposite.add(new Rectangle());
 myComposite.add(new Text());
 myComposite.add(new Text());
 myComposite.add(myNestedComposite.getComponent());

 //---
 // Acquire reference to an IGraphic view of the Composite and call
 // business methods on it
 //---
 IGraphic myGraphic = myComposite.getComponent();
 myGraphic.draw();
 }
}

In the above code the Composite component is used to create two Composite instances,

myNestedComposite and myComposite, for the IGraphic Component instance. Three Leafs are also

implemented, namely a Line, Rectangle and a Text. Leaf instances are then added to both Composite

instances. The Component part of the myNestedComposite Composite is then added to the myComposite

instance, demonstrating nested composites. The draw method is then called on the Component part of

the myComposite instance, rendering all of the Leaf instances, including the ones added to the

myNestedComposite instance.

14.9 State

Arnout has shown that it is possible to implement a reusable state pattern component in Eiffel

(Arnout, 2004). She argues, however, that the implementation is not comprehensive because the

component does not cater for all the seven state pattern implementation variants described by Dyson

and Anderson (Dyson & Anderson, 1997).

14.10 Command

Arnout has shown that the command pattern is fully componentizable in Eiffel (Arnout, 2004). She

has shown that the main reason componentization is possible is because generics is a language feature

in Eiffel.

The simplest form of the command pattern (Evans, 2003) is built into C# because of the availability of

delegates and additional language features such as anonymous methods and lambda expressions:

C#
--
Action<string> debitAccount = x => Console.WriteLine("Debiting account number…:" + x);

// Pass the action around and invoke it later…
debitAccount("404938393");

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

E x i s t i n g R e u s a b l e P a t t e r n L i b r a r i e s

177

It is clear from the above example that the C# Action (Microsoft, 2010a) delegate allows for the

implementation of a simple command pattern. The command pattern implemented in an object-

oriented language, however, is more useful if the commands can hold a certain cohesive state.

Furthermore, the above command pattern is not user extendable, because multiple methods cannot be

associated with the command, it can only perform one action. A command class, rather than a

command action, is thus a more advanced and a more extendable command implementation because a

class can hold state and it can hold multiple cohesive methods. In the last example shown on the

previous page, no state is stored with the command. With a more advanced command implementation

it is possible for the command instance to hold some kind of state, which can then be used when the

command is executed. It is, however, possible to hold some kind of state on a command instance

created as an Action in C#, because the language does support closures (J'arvi, Freeman, & Crowl,

2007), as seen in the code snippet below:

C#
--
DateTime dateTime = DateTime.Now; // The state stored and used by the command instance
Action<string> debitAccount = x => Console.WriteLine("Debiting account number " + x + " on " + dateTime);

// Pass the action around and invoke it later. The invoker of the command
// does not know of it’s internal state.
debitAccount("404938393");

The date and time of the debit command is given to the Action instance on creation and only used

when the Action is invoked. The example above thus implements a more advanced command than the

previous example. The state of the command instance, however, is not encapsulated with the

command and is thus not cohesive (Miller, 2008) with the command, because the dateTime is not

explicitly coupled with the action. It would thus be better to create a debit command class that holds a

dateTime state in order to make the state more cohesive and more tightly coupled with the command

instance. Furthermore, because the command is implemented as a command class, different command

methods can be added to the class, where each method performs a different action for the same

command state.

The Lua object-oriented programming language offers fully featured closures (Ierusalimschy, 2003).

One can write generators (functions that create functions) in Lua using functions, which are first-class

values, and use them to create commands; as shown in the following example (Ierusalimschy, 2003):

Lua
--
function newDebitCommand ()
 local dateTime = print(os.date("%x %X", 906000490))
 return function ()
 return "Debiting account number " + x + " on " + dateTime
 end
end

command = newDebitCommand()
print(command ()) --> "404099282"

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

E x i s t i n g R e u s a b l e P a t t e r n L i b r a r i e s

178

The PerfectJPattern Java library (Garcia, 2009e) also has a reusable component solution for the

command pattern, as the following example from the project shows:

Java
--
public class Open extends AbstractReceiver<NullParameter, NullResult> {
 public void execute() {
 theLogger.debug("Asking user for location of document ...");
 theLogger.debug("Opening document");
 }

 protected static void setLogger(Logger aLogger) { theLogger = aLogger; }
 private static Logger theLogger = LoggerFactory.getLogger(Open.class);
}

public class Paste extends AbstractReceiver<NullParameter, NullResult> {
 public void execute() { theLogger.debug("Pasting an object into the document"); }

 protected static void setLogger(Logger aLogger) { theLogger = aLogger; }
 private static Logger theLogger = LoggerFactory.getLogger(Open.class);
}

public final class Example {
 public static void main(String[] anArguments) {
 //---
 // Create simple use-cases with Open and Paste commands
 //---
 IParameterlessInvoker myOpenInvoker = new ParameterlessInvoker();
 myOpenInvoker.setCommand(new ParameterlessCommand(new Open()));
 myOpenInvoker.invoke();

 IParameterlessInvoker myPasteInvoker = new ParameterlessInvoker();
 myPasteInvoker.setCommand(new ParameterlessCommand(new Paste()));
 myPasteInvoker.invoke();

 //---
 // Create macro use-case with multiple Open and Paste commands
 // i.e. a Composite Command
 //---
 IComposite<IParameterlessCommand> myComposite = new Composite<
 IParameterlessCommand>(IParameterlessCommand.class);
 myComposite.add(new ParameterlessCommand(new Open()));
 myComposite.add(new ParameterlessCommand(new Paste()));
 myComposite.add(new ParameterlessCommand(new Open()));
 myComposite.add(new ParameterlessCommand(new Paste()));

 IParameterlessCommand myMacroCommand = myComposite.getComponent();

 //---
 // note how Invoker is agnostic of the underlying Composite
 // Macro Command
 //---
 IParameterlessInvoker myMacroInvoker = new ParameterlessInvoker();
 myMacroInvoker.setCommand(myMacroCommand);
 myMacroInvoker.invoke();
 }
}

The above example shows the creation of two Receivers, Open and Paste using the AbstractReceiver

component. Instances of the Open and Paste Receivers are then registered using a

ParameterlessCommand component with a reusable ParameterlessInvoker Invoker. The Commands are

then executed using the Invoker instances. The Composite component is also used to create macro

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

E x i s t i n g R e u s a b l e P a t t e r n L i b r a r i e s

179

Commands. In the above example four ParameterlessCommand instances, representing the Open and

Paste Receivers, are registered with the Composite instance. The Composite instance, myMacroCommand, is

then executed using a ParameterlessInvoker.

The Functor class template defined inside the C++ Loki library (Alexandrescu, 2001) encapsulates any

object and member function of that object, including the set of arguments belonging to that member

function. A functor is thus a delayed invocation to a function, another functor, or a member function. It

stores the original function and overrides the C++ operator(). An instance of a Functor can be

executed just like any other function in C++ because of the overriding of the operator().

A Loki Functor object is very useful when implementing the command pattern in C++. Alexandrescu

(Alexandrescu, 2001) argues that hand coded command patterns do not scale well. Alexandrescu

explains that with a hand coded command pattern lots of small concrete command classes must be

implemented. He states that a generic Functor that forwards invocations to any member function of

any object reduces the amount of boiler plate code that must be coded. The Loki generic Functor can

also sequence multiple actions or assemble multiple actions and execute them in a specific order, such

as the macro command (Gamma, Helm, Johnson, & Vlissides, 1994), eliminating the need for

developing these features by hand.

The Loki Functor C++ component is a template that allows for function calls with up to 15

arguments. The first template argument of the Functor is the return type. The second template

argument of the Functor is a typelist holding the argument types. The third template argument

defines the threading model of the allocator that is used by the Functor.

The following example from Alexandrescu shows a simple usage of a Loki Functor. A Functor is

instantiated that is defined to act as a function that takes in two arguments, an int and a double, and

return a void (Alexandrescu, 2001):

C++
--
#include "Functor.h"
#include <iostream>
using namespace std;

// Define a test function
void TestFunction(int i, double d) {
 cout << "TestFunction(" << I << ", " << d << ") called." << endl;
}

int main() {
 Functor<void, TYPELIST_2(int, double)> cmd(TestFunction);
 cmd(4, 4.5); // will print: "TestFunction(4, 4.5) called."
}

The Functor instance in the above example is invoked just like a normal function.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

E x i s t i n g R e u s a b l e P a t t e r n L i b r a r i e s

180

Multiple Functors can also be chained together in a single Functor instance by using the Chain function,

as shown in the example below by Alexandrescu (Alexandrescu, 2001):

C++
--
void f() {
 Functor<> cmd1(something);
 Functor<> cmd2(somethingElse);
 // Chain cmd1 and cmd2 as the container
 Functor<> cmd3(Chain(cmd1, cmd2));
 // Equivalent to cmd1(); cmd2();
 cmd3();
}

In the above example, calling the cmd3 Functor instance will also call the Functor instances that were

registered with it. This allows for the usage of a macro command (Gamma, Helm, Johnson, &

Vlissides, 1994) without implementing the boiler plate code by hand.

The Functor also has support for argument binding. A call to BindFirst binds the first argument to a

certain constant value, as shown in the example below by Alexandrescu (Alexandrescu, 2001):

C++
--
void f() {
 // Define a Functor of three arguments
 Functor<void, TYPELIST_3(int, int, double)> cmd1(someEntity); // Bind the first argument to 10
 Functor<void, TYPELIST_2(int, double)> cmd2(BindFirst(cmd1, 10)); // Same as cmd1(10, 20, 5.6)
 cmd2(20, 5.6);
}

Stevens's article in Dr. Dobb's Journal shows how generic implementations (Stevens, 1998) of undo and

redo can be used with functors in order to implement the same functionality as described in Design

Patterns (Gamma, Helm, Johnson, & Vlissides, 1994) with regard to undo and redo features on the

command pattern.

In the article GoF patterns in Ruby Tanguay-Carel (Tanguay-Carel, 2007) shows how a reusable

Command component can be implemented in Ruby:

Ruby
--
class Command
 attr_accessor : receiver
 def initialize receiver
 @receiver=receiver
 @commands=[]
 end

 def register_command *command
 @commands.push *command
 end

 def execute
 @commands.each{|cmd| cmd.save }
 @commands.each{|cmd| cmd._execute }

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

E x i s t i n g R e u s a b l e P a t t e r n L i b r a r i e s

181

 save
 _execute
 end

 def undo
 @commands.each{|cmd| cmd.undo }
 end

 #implement the following methods in the subclasses
 protected
 def save
 end

 def _execute
 end
end

In the above code the reusable Command component is initialised with a Receiver. Commands can also

be grouped together by registering children commands to a macro command.

The reusable Invoker below is a simple Invoker that just invokes the execute or undo method of a

Command instance (Tanguay-Carel, 2007):

Ruby
--
module Invoker
 attr_accessor :command

 def click
 @command.execute
 end

 def undo
 @command.undo
 end
end

The following code shows how the Command component is used to implement a command class. Note

how the abstract TextCommand Command implements the save and undo methods. The concrete

UppercaseCommand and IndentCommand Commands inherit from TextCommand and offer an

implementation for the _execute method (Tanguay-Carel, 2007):

Ruby
--
class TextCommand < Command
 def save
 @last_state ||= Marshal.load(Marshal.dump(@receiver.text))
 super
 end

 def undo
 @receiver.text= @last_state
 @last_state=nil
 super
 end
end

class UppercaseCommand < TextCommand
 def _execute

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

E x i s t i n g R e u s a b l e P a t t e r n L i b r a r i e s

182

 @receiver.text.upcase!
 super
 end
end

class IndentCommand < TextCommand
 def _execute
 @receiver.text="\t" + @receiver.text
 super
 end
end

The code below shows how the above UppercaseCommand and IndentCommand implementations can be

used (Tanguay-Carel, 2007):

Ruby
--
class Document
 attr _accessor :text

 def initialize text
 @text = text
 end
end

if__FILE__==$0
 text="This is a test"
 doc= Document.new text
 upcase_cmd = UppercaseCommand.new doc
 button = Object.new.extend(Invoker)
 button.command = upcase_cmd

 puts"before anything"
 putsdoc.text
 button.click
 puts"after click"

 putsdoc.text
 button.undo
 puts"after undo"
 putsdoc.text

 puts"\nNow a macro command"
 allCmds= Command.new doc
 indent_cmd= IndentCommand.new doc
 allCmds.register_command upcase_cmd, indent_cmd

 big_button= Object.new.extend(Invoker)
 big_button.command= allCmds
 puts"before anything"
 putsdoc.text
 big_button.click
 puts"after click"
 putsdoc.text

 big_button.undo
 puts"after undo"
 putsdoc.text
end

The above example also shows how the Command component can be used in order to implement a

macro command (Gamma, Helm, Johnson, & Vlissides, 1994) solution without it being necessary to

write the boiler plate code.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

E x i s t i n g R e u s a b l e P a t t e r n L i b r a r i e s

183

14.11 Chain of Responsibility

Arnout has shown that the chain of responsibility pattern is fully componentizable in Eiffel without

any drawbacks (Arnout, 2004), relying mostly on the unconstrained genericity language feature in

Eiffel.

The PerfectJPattern Java library also implements a comprehensive reusable component for the chain of

responsibility pattern (Garcia, 2009c).

The Commons Chain project, which is part of the Apache Commons Java framework, is another reusable

component for the chain of responsibility pattern (O'Brien, 2004).

Chain.NET or .NChain is a generic and reusable implementation of a chain of responsibility design

pattern developed in C# (Stasiak, 2008). The Chain.NET library is based on the Apache Commons Chain

(O'Brien, 2004) library for Java, which is mentioned above. The Chain.NET library merges the

standard chain of responsibility design pattern with the command design pattern (Gamma, Helm,

Johnson, & Vlissides, 1994) in order to implement a powerful action processing solution.

14.12 Memento

Arnout has shown that the memento pattern is fully componentizable in Eiffel without any drawbacks

(Arnout, 2004), relying mostly on the unconstrained genericity language and agent features in Eiffel.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

184

C h a p t e r 1 5

15 PATTERNS, ACTIONS AND FUNCTIONS

Some of the patterns discussed in this thesis could also be transformed into reusable components

where the solution focuses on one well known action or function.

For example, the command reusable pattern transformation defines an ICommand interface with a well

known Execute method. The description of the command thus does not transpire in the command

method name, but in the name of the command implementation itself. Thus, realizing from the

ICommand interface, a command instance can only be implemented to perform one special task or

command. A drawback of using the ICommand interface is thus that a user cannot cohesively combine

methods in one command interface, which is the same drawback discussed in the previous chapter

when using the Action delegate as a Command.

A benefit, however, of using a well-known method is that it makes the implementation and usage of a

reusable pattern simple. Furthermore, most command implementations perform only one special task

and thus naturally map to one well known method name. It is thus rare to find a command interface

with multiple cohesive (Miller, 2008) command methods. Alexandrescu has also argued that hand

written commands are not scalable and that reusable Commands reduce the amount of boiler plate

code that must be written (Alexandrescu, 2001). The reusable command component in the APL library

is thus simple, scalable and useful, but it is not easily adaptable to special user requirements.

A close relationship exists between an Action C# delegate and the ICommand interface. A C# Action can

thus easily be converted into an ICommand interface, by using the ActionCommand component (as shown

in the Chapter 11):

C# (APL Example)
--
var concreteCommand = new ActionCommand(() => Console.WriteLine("The command was invoked!"));
invoker.Process(concreteCommand);

An Action C# delegate, converted into an ICommand interface, can make use of all the advanced

command features available in the APL library. An ICommand interface can also easily be converted into

an Action, as shown below:

C# (APL Example)
--
Action action = concreteCommand.Execute;

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

P a t t e r n s , A c t i o n s a n d F u n c t i o n s

185

The above mentioned conversion is also useful because a Command can now be used where an Action

is expected. This is especially useful with other reusable components that expect an Action.

In fact, there are more APL components where the major functionality of the pattern uses only one

well known method, which can be an action or a function.

An ActionDecorator exists in the APL library. The ActionDecorator holds an internal Action delegate,

which represents the Component. The Action delegate must be registered with the ActionDecorator in

its constructor. In this case, however, the Component has only one well known Execute method.

Furthermore, an ActionDecoratorStrategy, which implements the decoration algorithm, must also be

registered with the reusable component via a constructor. The ActionDecorator also realizes the

ICommand APL interface, which enables it to be used as a Command:

C# (APL)
--
public class ActionDecorator : ICommand {
 private readonly Action _component;
 private readonly ActionDecoratorStrategy _decoratorStrategy;

 // … C O N T R A C T S …

 private ActionDecorator(Action component) { _component = component; }
 public ActionDecorator(Action component, ActionDecoratorStrategy decoratorStrategy)
 : this(component) {
 // … C O N T R A C T S …
 _decoratorStrategy = decoratorStrategy;
 }

 public ActionDecorator(ICommand decorator, ActionDecoratorStrategy decoratorStrategy)
 : this(decorator.Execute) {
 // … C O N T R A C T S …
 _decoratorStrategy = decoratorStrategy;
 }

 public void Execute() {
 // … C O N T R A C T S …
 _decoratorStrategy(_component);
 }
}

The ActionDecorator does not realize any Component interface. In this case, the ICommand interface

represents the Component. The ActionDecorator has only one well known Execute method, which

performs the desired decoration action. The Execute method on the ActionDecorator sends the

invocation request to the internal ActionDecoratorStrategy delegate, which receives the internal Action

_component through its first argument:

C# (APL)
--
public delegate void ActionDecoratorStrategy(Action decoratorOperation);
public delegate void ActionDecoratorStrategy<TArg>(Action<TArg> decoratorOperation, TArg args);
public delegate void ActionDecoratorStrategy<TArg1, TArg2>(Action<TArg1, TArg2> decoratorOperation,
 TArg1 arg1, TArg2 arg2);
// … M O R E …

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

P a t t e r n s , A c t i o n s a n d F u n c t i o n s

186

An ActionComposite also exists in the APL library. The ActionComposite APL component implements

a Composite with only one well known Execute method. The logic of each Component is injected on

an instance of the ActionComposite component by means of an Action C# delegate. The

ActionComposite component realizes the IComponent<Action> interface that defines the contract for a

standard Component. The ActionComposite also realizes the ICommand APL interface, which enables it

to be used as a Command:

C# (APL)
--
public sealed class ActionComposite : IComponent<Action>, ICommand {
 // List of Components
 private readonly List<IComponent<Action>> _components = new List<IComponent<Action>>();

 // … C O N T R A C T S …

 public ActionComposite() { }

 // Constructor that takes in an enumeration of Components
 public ActionComposite(IEnumerable<IComponent<Action>> components) {
 if(components == null) return;
 foreach(var item in components) { _components.Add(item); }
 }

 // Constructor that takes in an enumeration of Actions
 public ActionComposite(IEnumerable<Action> components) {
 if(components == null) return;
 foreach(var item in components) { _components.Add(new ActionComponent(item)); }
 }

 // Constructor that takes in a Composite
 public ActionComposite(ActionComposite composite) {
 if(composite == null) return;
 _components.Add(new ActionComponent(composite.Execute));
 }

 // Adds a Component to the Composite
 public void Add(Action component) {
 // … C O N T R A C T S …
 _components.Add(new ActionComponent(component));
 }

 public void Remove(Action component) {
 // … C O N T R A C T S …
 _components.Remove(new ActionComponent(component));
 }

 internal class ActionComponent : IComponent<Action> {
 public ActionComponent(Action action) { Target = action; }
 public IList<IComponent<Action>> GetList() { return null; }
 public Action GetInterface() { return Target; }
 public Action Target { get; private set; }
 }

 // Executes the Composite by iterating through all the Components and invoking them
 public void Execute() {
 // … C O N T R A C T S …
 _components.ForEach(x => x.GetInterface()());
 }

 // Returns the list of Components stored in the Composite
 public IList<IComponent<Action>> GetList() { return _components; }

 // Returns the Action of this Composite instance

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

P a t t e r n s , A c t i o n s a n d F u n c t i o n s

187

 public Action GetInterface() {
 // … C O N T R A C T S …
 return Target;
 }

 // Returns the Target of this Composite instance, which is just the Execute method
 public Action Target {
 get {
 // … C O N T R A C T S …
 return Execute;
 }
 }
}

At the heart of the ActionComposite component is the list of Components of type IComponent<Action>

that is used in the composite Execute method:

C# (APL)
--
private readonly List<IComponent<Action>> _components = new List<IComponent<Action>>();

// … S N I P …

// Executes the Composite by iterating through all the Components and invoking them
public void Execute() {
 // … C O N T R A C T S …
 _components.ForEach(x => x.GetInterface()());
}

Figure 37: UML class diagram of the ActionComposite APL component.

ActionComposite

{leaf}

- _components :List<IComponent<Action>> = new List<ICompo... {readOnly}

«Propery»

+ Target :Action

+ ActionComposite()

+ ActionComposite(components :IEnumerable<IComponent<Action>>)

+ ActionComposite(components :IEnumerable<Action>)

+ ActionComposite(composite :ActionComposite)

+ Add(component :Action) :void

+ Execute() :void

+ GetInterface() :Action

+ GetList() :IList<IComponent<Action>>

+ Remove(component :Action) :void

«interface»

T

IComponent

+ GetInterface() :T

+ GetList() :IList<IComponent<T>>

ActionComposite::ActionComponent {Inner Class}

«Property»

+ Target :Action

+ ActionComponent {Inner Class}(action :Action)

+ GetInterface() :Action

+ GetList() :IList<IComponent<Action>>

«interface»

Command::ICommand

+ Execute() :void

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

P a t t e r n s , A c t i o n s a n d F u n c t i o n s

188

Figure 37 shows a UML class diagram of the ActionComposite APL component, which shows the

public methods of an ActionComposite component and that it realizes the ICommand and IComponent

APL interfaces.

An Action can be added to an instance of the ActionComposite component with the Add method, which

is also an implementation of the IComponent<Action> interface. Internally, the Action is converted into a

Component using the internal ActionComponent inner class:

C# (APL)
--
public void Add(Action component) {
 _components.Add(new ActionComponent(component)); // Convert the Action to a Component and add it to
 // the internal list of Components
}

The Execute method iterates through the list of internal Components and executes the Action on each

one of them.

C# (APL)
--
public void Execute() { _components.ForEach(x => x.GetInterface()()); }

The ActionComposite thus implements a standard Composite with only one operation that represents a

basic composition algorithm of iterating through the list and invoking each Component.

An ActionChainOfResponsibility also exists in the APL library. The ActionChainOfResponsibility

APL component is a simple implementation of the chain of responsibility pattern. It allows the client

to inject a C# Action delegate for the Handler and also for the successor, which itself is also a

Handler. The ActionChainOfResponsibility also realizes the ICommand APL interface, which enables it

to be used as a Command:

C# (APL)
--
public sealed class ActionChainOfResponsibility : ICommand { // The handler is also a command
 private readonly Action _successor; // Successor defined as an Action delegate
 private readonly Action _handler; // Handler defined as an Action delegate

 // … C O N T R A C T S …

 public ActionChainOfResponsibility(Action handler, Action successor) : this(handler) {
 _successor = successor;
 }

 public ActionChainOfResponsibility(ICommand handler, ICommand successor) : this(handler.Execute) {
 _successor = successor.Execute;
 }

 public ActionChainOfResponsibility(Action handler, ICommand successor) { … }
 public ActionChainOfResponsibility(ICommand handler, Action successor) { … }

 public ActionChainOfResponsibility(Action handler) { _handler = handler; }
 public ActionChainOfResponsibility(ICommand handler) { _handler = handler.Execute; }

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

P a t t e r n s , A c t i o n s a n d F u n c t i o n s

189

 public void Execute() { // Execute the handler
 // … C O N T R A C T S …

 ChainOfResponsibilityEx.Handled = false;
 if(_handler == null)
 throw new Exception("The chain of responsibility handler cannot be null");

 _handler(); // Invoke the handler as it is just a .NET action

 if(ChainOfResponsibilityEx.Handled) return; // Return of the hanlder handled the request
 if(_successor != null) _successor(); // Invoke the successor (if necessary)
 }
}

The injected Handler uses the APL SetHandled extension method, described in the Chapter 12, in

order to tell the ActionChainOfResponsibility whether the request was handled or not. The reusable

component has an Execute method that serves as the Handler method. The Execute method first

determines whether a Handler was injected with the component, and throws an exception if not. It

then calls the Handler, which is just an Action. If the Handler did not process the request, then the

Successor is called, which is also just an Action.

The ActionFactoryCreator component, as discussed in the Chapter 5, realizes both the IFactory and

ICommand interfaces. The Create method on the component, which is an implementation of the

IFactory interface, is thus the Creator, a name that is well known. The Execute method on the reusable

component, which is an implementation of the ICommand interface, is the well-known method that uses

the Creator.

Reusable patterns also exist in the APL library that use C# Func delegates rather than C# Actions.

A SimpleGenericAbstractFactory component also exists in the APL library. The component has only

one creational method, which must be registered with a Factory delegate or an IFactory interface.

Multiple implementations of the SimpleGenericAbstractFactory component exist for each

corresponding Factory delegate or IFactory interface, where each holds a certain number of

arguments. The SimpleGenericAbstractFactory, which is a singleton (Gamma, Helm, Johnson, &

Vlissides, 1994), also implements the IFactory APL interface, as shown below:

C# (APL)
--
public class SimpleGenericAbstractFactory<TAbstractProduct> :
 Singleton<SimpleGenericAbstractFactory<TAbstractProduct>>,
 IFactory<TAbstractProduct> {
 private readonly Factory<TAbstractProduct> _factory;
 // … C O N T R A C T S …

 private SimpleGenericAbstractFactory() {}
 public Register(Factory<TAbstractProduct> factory) { _factory = factory; }
 public Register(IFactory<TAbstractProduct> factory) { _factory = factory.Create; }

 // Convert a Func to a Factory…
 public Register(Func<TAbstractProduct> factory) { _factory = () => factory(); }

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

P a t t e r n s , A c t i o n s a n d F u n c t i o n s

190

 public TAbstractProduct Create() {
 // … C O N T R A C T S …
 return _factory();
 }
}

The creational Factory delegates and IFactory interfaces are implemented in the APL library, as shown

in Chapter 4. Both the Factory delegates and the IFactory interfaces define method contracts that

should return a newly created instance. A number of Factory delegates exist in the APL library, each

with a different set of arguments:

C# (APL)
--
public delegate TResult Factory<out TResult>();
public delegate TResult Factory<out TResult, in T>(T arg);
public delegate TResult Factory<out TResult, in T1, in T2>(T1 arg1, T2 arg2);
// … M O R E …

A number of IFactory interfaces also exist in the APL library, again each with a different set of

arguments:

C# (APL)
--
public interface IFactory<out TResult> { TResult Create(); }
public interface IFactory<out TResult, in T> { TResult Create(T arg); }
public interface IFactory<out TResult, in T1, in T2> { TResult Create(T1 arg1, T2 arg2); }
// … M O R E …

The Create method on the SimpleGenericAbstractFactory, on the creational Factory delegates and on

IFactory interface, returns a Product and thus represents a function that can be converted into a C#

Func. The abstract factory design pattern offers an interface for creating families of related objects that

assist in decoupling applications from the concrete implementation of an entire framework or library

(Gamma, Helm, Johnson, & Vlissides, 1994) (McConnell, 1993). An abstract factory pattern

implementation using the SimpleGenericAbstractFactory component has no AbstractFactory and

ConcreteFactory participants. When using the SimpleGenericAbstractFactory, the family of related

creational methods is replaced by a family of related registered AbstractProduct types. Thus, instead of

creating new Products using the creational methods available on the AbstractFactory, new Products

are created using the AbstractProduct type as a generic argument:

C# (Example)
--
// ++++++++++ 1) Traditional Abstract Factory ++++++++++
public interface IMyAbstractFactory { // AbstractFactory
 IFoo CreateFoo(); // Creational method that return an AbstractProduct
 IBar CreateBar(); // Creational method that return an AbstractProduct
}

public MyAbstractFactory : IMyAbstractFactory { // ConcreteFactory
 IFoo CreateFoo() { return new Foo(); }
 IBar CreateBar() { return new Bar(); }
}

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

P a t t e r n s , A c t i o n s a n d F u n c t i o n s

191

// Register the MyAbstractFactory ConcreteFactory with a Singleton in order for the instance to be
// avaliable system wide…
MyAbstractFactorySingleton.Instance.Register(new MyAbstractFactory());
IMyAbstractFactory factory = MyAbstractFactorySingleton.Instance.Get // Retrieve the ConcreteFactory from
 // the Singleton…

// Use the ConcreteFactory in order to create new Products, using the creational methods
// on the AbstractFactory
IFoo foo = factory.CreateFoo(); // Create a Product that realize IFoo
IBar bar = factory.CreateBar(); // Create a Product that realize IBar

// ++++++++++ 2) SimpleGenericAbstractFactory Abstract Factory ++++++++++
SimpleGenericAbstractFactory<IFoo>.Instance.Register(() => return new Foo()); // Register a Foo instance
SimpleGenericAbstractFactory<IBar>.Instance.Register(() => return new Bar()); // Register a Bar instance

// Use the SimpleGenericAbstractFactory in order to create new Products, using the AbstractProduct
// type generic argument
IFoo foo = SimpleGenericAbstractFactory<IFoo>.Instance.Create(); // Create a Product that realize IFoo
IBar bar = SimpleGenericAbstractFactory<IBar>.Instance.Create(); // Create a Product that realize IBar

In the above example, the SimpleGenericAbstractFactory reusable component fulfils the role of the

AbstractFactory and ConcreteFactory participants. The SimpleGenericAbstractFactory component

thus adheres to the original intent and functionality of the abstract factory pattern (Gamma, Helm,

Johnson, & Vlissides, 1994). An abstract factory implementation using the

SimpleGenericAbstractFactory follows the same concept when implementing an abstract factory with a

dependency injection container framework (Fowler, 2004), as shown with the Unity container

(Microsoft, 2010o) in Chapter 14.

The FuncFactoryCreator component, as discussed in the Chapter 5, is exactly the same as the

ActionFactoryCreator component, except that the Execute method is a function and not an action.

A FuncDecorator also exists in the APL library. The FuncDecorator is a simple APL component that

applies the decorator pattern to a well-known Execute method on the reusable component. A Func

delegate is stored by the FuncDecorator APL component that represents the algorithm of the

decorative method. The Execute method routes the call to a registered FuncDecoratorStrategy APL

delegate and passes the internal Func delegate to it:

C# (APL)
--
public sealed class FuncDecorator<TResult> {
 private readonly Func<TResult> _component;
 private readonly DecoratorStrategy<TResult> _decoratorStrategy;

 // … C O N T R A C T S …

 private FuncDecorator(Func<TResult> component) {
 _component = component;
 }

 public FuncDecorator(Func<TResult> component, DecoratorStrategy<TResult> decoratorStrategy)
 : this(component) {
 _decoratorStrategy = decoratorStrategy;
 }

 public FuncDecorator(FuncDecorator decorator, DecoratorStrategy<TResult> decoratorStrategy)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

P a t t e r n s , A c t i o n s a n d F u n c t i o n s

192

 : this(component.Execute) {
 _decoratorStrategy = decoratorStrategy;
 }

 public TResult Execute() {
 // … C O N T R A C T S …
 return _decoratorStrategy(_component);
 }
}

Multiple FuncDecorator<TResult> components exist in the APL library, one for each of the

corresponding Func delegates in the C# framework.

Reusable pattern components, implemented using actions or functions which represent the main

functionality of the pattern, are simple to implement and easy to use and understand. The usage of the

components can be abstracted to commands, actions or functions. The components can thus take

advantage of powerful command functionality available in the APL library, or useful functional

programming features available in C#. Alexandrescu has also argued that generic commands are

scalable and that reusable Commands reduce the amount of boiler plate code that must be written

(Alexandrescu, 2001). Reusable pattern components, implemented using actions or functions, are also

scalable because of the small amount of boiler plate code that must be written when using the

components. A drawback with the reusable components discussed in this chapter, however, is the fact

that they are not extendible or adaptable. Thus, any advanced requirements desired by a user, especially

the need for cohesive (Miller, 2008) contracts, would very likely make the use of a particular

component impossible.

Some of the reusable pattern components shown in this chapter have not been discussed in their

corresponding pattern chapter in this thesis, because a more extendible reusable pattern component

has already been shown in that chapter for the pattern. Consequently, these patterns do not form part

of the statistics shown in Chapter 16.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

193

 C h a p t e r 1 6

16 CONCLUSION

This thesis has reviewed twelve patterns defined in Design Patterns (Gamma, Helm, Johnson, &

Vlissides, 1994) and assessed their level of componentizability. Each pattern’s reusable component or

components, which are implemented in C# 4.0, is discussed in detail, including the success of the

reusable component transformation.

All the design patterns reviewed in this thesis could be transformed into fully or partially reusable

components, thus making their pattern implementation in C# 4.0 by a developer easier and more

traceable. It thus stands to reason that object-oriented languages implementing the same language

features as have been reviewed in this report should have the same level of success in transforming

design patterns into reusable components. The following table shows a summary of the pattern

componentization:

Table 3: Design pattern componentization summary.

Pattern category Pattern Complexity of

reusable

solution

Number of

language

features used

Success

Creational Prototype Simple 4 Partial Success

 Singleton Moderate 5 Success

 Abstract Factory Complex 10 Success

 Factory Method Simple 9 Partial Success

Structural Flyweight Moderate 6 Success

 Adapter Complex 10 Success

 Decorator Complex 10 Success

 Composite Complex 11 Success

Behavioural State Complex 7 Success

 Command Moderate 7 Success

 Chain of
Responsibility

Simple 8 Success

 Memento Moderate 7 Success

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

C o n c l u s i o n

194

From the above table it can be seen that the componentization success rate for the patterns discussed

in this thesis is 83.33%. Not all of the patterns shown in Design Patterns (Gamma, Helm, Johnson, &

Vlissides, 1994), however, are discussed in this thesis.

Figure 38. Componentization success rate of design patterns discussed in this thesis.

Figure 39. Componentization success rate against all of the patterns available in Design Patterns.

Figure 38 shows a pie chart of the componentization success rate of those design patterns discussed in

this thesis. Figure 39 show the componentization success rate of design patterns discussed in this

thesis against all of the patterns available in Design Patterns (Gamma, Helm, Johnson, & Vlissides,

1994). Although most of the patterns that were chosen for this thesis could be converted into reusable

Success
83.33%

Partial
Success
16.67%

Failed
0%

Success
43.48%

Partial
Success
8.70%

Failed
0%

Not
Discussed

47.83%

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

C o n c l u s i o n

195

pattern components, the outcome of the pattern componentization of the rest of the patterns in Design

Patterns (Gamma, Helm, Johnson, & Vlissides, 1994) remains unknown. That said, however, design

patterns that have structural rules which may be implemented by the advanced language features

available in C# 4.0 and also design patterns that are mostly behavioural, should be able to be

componentized successfully. Arnout has shown that the decorator, adapter, template method, bridge,

singleton, iterator, facade, and interpreter design patterns could not be componentized in Eiffel

(Arnout, 2004). The template method, bridge and facade design patterns will also most probably not

be componentizable in C# 4.0, chiefly because of their structural nature (Arnout, 2004). The iterator

pattern is already built into C# 4.0. This thesis has shown that the decorator, adapter and singleton

design patterns could be fully componentized using advanced language features in C# 4.0. Arnout has

shown that the observer, mediator and visitor design patterns to be fully componentizable in Eiffel,

and these patterns should also be fully componentizable in C# 4.0 because of the availability of more

advanced language features. Arnout has also shown the memento reusable component not to be useful

in Eiffel (Arnout, 2004), where this thesis has shown the memento component to be very useful in C#

4.0. She has also shown the state pattern to be componentizable in Eiffel, but not comprehensively,

where this thesis has shown the state pattern to be fully componentizable in C# 4.0. That leaves the

builder, proxy and strategy design patterns. Arnout shows that the builder and proxy design patterns

are componentizable in Eiffel, but not comprehensively (Arnout, 2004). Her builder component

supports only builders that need to construct no more than two-part or three-part products. Her proxy

component does not cover all cases described in the original proxy pattern, because remote proxies,

protection proxies and smart references are not supported. The builder and proxy design patterns

should have a better componentization success probability in C# 4.0, because of the availability of

more advanced language features. Proxy library components are already available in C#, such as the

DynamicProxy library from CastleProject (CastleProject, 2011). A proxy library component in C# 4.0,

however, would probably suffer from the same problems mentioned by Arnout, although to a lesser

degree. No proxy library can cater for all the different types of proxies. With some effort, however, a

comprehensive number of proxy components, where each one specialises in a certain area, such as

remote proxies or protection proxies, can be built. She also shows that the strategy pattern is

componentizable yet not faithful in Eiffel (Arnout, 2004), because of the exclusive usage of Eiffel

agents (delegates). The strategy pattern can be implemented in C# 4.0 using the same techniques

shown in this thesis, such as duck typing (Koenig & Moo, 2005) for an advanced component and Action

and Func delegates and the ICommand APL interface for a simpler component that uses only one well

known method. The strategy pattern, however, just like the adapter pattern, is easy to implement

manually. There will thus always be situations in C# 4.0 where a manually implemented strategy

pattern would be the best choice.

Figure 40, on the next page, shows a pie chart for the complexity break down of the pattern

componentization effort.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

C o n c l u s i o n

196

Figure 40. Reusable pattern implementation complexity.

For the reusable patterns implemented in the APL library, 25% of the implementations are simple,

33.33% are moderately complex and 41.67% are complex. Advanced language features thus do not

guarantee that all reusable pattern implementations will necessarily be simple. On the contrary, the

most complex reusable pattern implementations in this thesis use advanced language features available

in C# 4.0.

The graph below shows the distribution of the language features used in the implementation of the

reusable design pattern components in this thesis:

Figure 41. Distribution of language features used in pattern componentization.

Table 4 shows the language features that were used for the design pattern components described in

each pattern chapter in this thesis:

Simple
25.00%

Moderate
33.33%

Complex
41.67%

In
h

er
it

an
ce

, 1
0

G
en

er
ic

s,
 1

2

D
b

C
, 1

2

M
ix

in
s,

 2

R
ef

le
ct

io
n

, 1
1

In
te

rf
ac

es
, 9

A
tt

ri
b

u
te

s,
 5

M
et

h
o

d

R
ef

er
en

ce
s,

 8

A
n

o
n

ym
o

u
s

Fu
n

ct
io

n
s,

 8

La
m

b
d

as
, 8

D
u

ck
 T

yp
in

g,
 4

M
et

a-
p

ro
gr

am
m

in
g,

 4

D
yn

am
ic

 T
yp

es
, 1

0

2

4

6

8

10

12

14

N
u

m
b

e
r

o
f

P
at

te
rn

s

Language Feature

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

C o n c l u s i o n

197

Table 4: Language features used per pattern component.
P

a
tt

e
rn

 c
a
te

g
o

ry

D
e
si

g
n

 p
a
tt

e
rn

In
h

e
ri

ta
n

c
e

G
e
n

e
ri

c
s

D
e
si

g
n

 b
y
 c

o
n

tr
a
c
t™

M
ix

in
s

R
e
fl

e
c
ti

o
n

In
te

rf
a
c
e
s

A
tt

ri
b

u
te

s

M
e
th

o
d

 r
e
fe

re
n

c
e
s

A
n

o
n

y
m

o
u

s
fu

n
c
ti

o
n

s

L
a
m

b
d

a
 e

x
p

re
ss

io
n

s

D
u

c
k

 t
y
p

in
g

M
e
ta

-p
ro

g
ra

m
m

in
g

D
y
n

a
m

ic
 t

y
p

e
s

Creational Prototype

 Singleton

 Abstract
Factory

 Factory Method

Structural Flyweight

 Adapter

 Decorator

 Composite

Behavioural State

 Command

 Chain of
Responsibility

 Memento

Not surprisingly, generics (Jagger, Perry, & Sestoft, 2007) and design by contract™ (Mitchell &

McKim, 2001) are the most widely used language features. They are used in the componentization of

all 12 reusable components. Reflection (Sobel & Friedman, 1996) is the next most widely used

language feature and is used in 11 reusable components. Inheritance (Mitchell, Mitchell, & Krzysztof,

2003) is used in the implementation of 10 reusable components. Interfaces (Pattison & Box, 2000) are

the next most widely used language feature and are used in 9 reusable components. Method references

(Microsoft, 2010e), anonymous functions (Ierusalimschy, 2003) and lambda expressions (Michaelis,

2010) are used in 8 of the reusable components. Attributes (Nagel, Evjen, Glynn, & Watson, 2010) are

used in 5 of the reusable component implementations. Duck typing (Koenig & Moo, 2005) and meta-

programming (Perrotta, 2010) are used in 4 of the reusable component implementations. Mixins

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

C o n c l u s i o n

198

(Esterbrook, 2001) are used in 2 of the reusable components. Finally, dynamic types (Tratt, 2009) are

used in the implementation of just one of the reusable components.

Figure 42 shows the distribution of pattern components used in other pattern componentization

implementations. The abstract factory and factory method components use the prototype component.

The state component uses the flyweight and singleton components. The command component uses

the composite component. Finally, the memento component uses the prototype component. The

figure below thus shows that it is possible for the implementation of one pattern component to use

another reusable design pattern component.

Figure 42. Distribution of pattern components used in other pattern componentization implementations.

Problems with design patterns include traceability in the implementation, the implementation

overhead or writability (Bosch, 1998b) (Bosch, 1998a) and maintainability (Soukup, 1995), as

discussed at the beginning of this thesis.

In the paper Language features meet design patterns: raising the abstraction bar it is argued that modern

language features ameliorate all the above mentioned problems experienced in design pattern

implementation (Bishop, 2008). This thesis has shown that modern language features also make it

possible to improve the componentization of design patterns.

Reusable design pattern components solve the traceability problem, because the usage of a specific

pattern library component clearly shows what pattern is being implemented. The physical

implementation of a specific design pattern using reusable pattern components thus makes the pattern

easy to identify and trace. Reusable design pattern components also solve the reusability problem.

Design patterns are used in multiple places, and thus reused, in the design of a software system. With

reusable components a developer is not forced to implement a design pattern repeatedly in a physical

programming language. With reusable pattern components a developer can focus on re-implementing

the outcome of a pattern and leave the plumbing and functional implementation of the pattern to the

P
ro

to
ty

p
e,

 0

Si
n

gl
et

o
n

, 0

A
b

st
ra

ct

Fa
ct

o
ry

, 1

Fa
ct

o
ry

 M
et

h
o

d
,

1

Fl
yw

ei
gh

t,
 0

A
d

ap
te

r,
 0

D
ec

o
ra

te
r,

 0

C
o

m
p

o
si

te
, 0

St
at

e,
 2

C
o

m
m

an
d

, 1

C
h

ai
n

 O
f

R
es

p
o

n
si

b
ili

ty
, 0

M
em

en
to

, 1

0

0.5

1

1.5

2

2.5

D
e

si
gn

 P
at

te
rn

C

o
m

p
o

n
e

n
ts

 U
se

d

Design Pattern

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

C o n c l u s i o n

199

library component. Reusable pattern components also solve the implementation overhead or

writability problem. Traditionally, design patterns force a developer to implement several methods

with trivial behaviour. When using reusable pattern components, however, most of these methods can

simply be reused. Reusable pattern components also solve the maintainability problem. Reusable

design pattern components do not force a developer to implement the behavioural and structural

boiler plate code associated with a specific design pattern. This relieves the programming burden on

the developer, which is exacerbated by the fact that traditional design pattern implementations cannot

be reused.

Agerbo and Cornils have shown that there are design patterns that can be covered by a language

construct in some, although not all, programming languages (Agerbo & Cornils, 1997). They categorise

these design patterns as Language Dependant Design Patterns (LDDPs). As shown in the previous

chapter, although the simplest form of the command pattern (Evans, 2003) is built into C#, it does

not solve every possible user requirement. Furthermore, Agerbo and Cornils state that, when using a

pattern as a Library Design Pattern (LDP), the design pattern implementation is fixed. It would thus

not be possible to adapt the LDP in other ways desired by a user. The implementations of the pattern

components in this thesis have shown this statement by Agerbo and Cornils to be partially incorrect.

Most of the pattern components shown in this thesis are adaptable and should solve most of a user’s

requirements. A few, however, are more rigid. For example, with the command component, the user

has access to only the Execute, Undo and Redo methods on a Command interface. If a user requires

more methods to be available on the Command interface, then they must be built in manually.

Implementing design patterns as reusable library components is thus a step in the right direction for

making design pattern implementations more traceable, more reusable and more productive. Design

pattern transformations to reusable component artefacts should become more effective and simpler

with the increase in advanced language features in main stream programming languages. Domain

Specific Languages (DSL), functional and dynamic languages for example, open up an entire new

dimension with regard to design pattern component transformation, as has been shown with the

pattern components which use these language features in Chapter 14.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

200

 C h a p t e r 1 7

17 FUTURE WORK

More research must be done in the formalisation of design patterns in order for reusable design

patterns to reach their full potential. Design Patterns Formalization Techniques (Taibi, 2007) and Stepwise

Refinement Validation of Design Patterns Formalized in TLA+ using the TLC Model Checker (Taibi, Herranz, &

Moreno-Navarro, 2009) show current trends in design pattern formalisation. The structural and

behavioural rules of design patterns are currently described informally. The formalisation of patterns is

an attempt to formalise the structural and behavioural rules that apply to a specific design pattern. The

formalisation of design patterns will make pattern componentization easier, because any ambiguities in

the pattern implementation will be eliminated. Figure 43 shows the formal specification of the bridge

design pattern (Gamma, Helm, Johnson, & Vlissides, 1994) in LePUS3:

Figure 43. Bridge design pattern in LePUS3.

Gasparis, Nicholson and Eden define LePUS3 as “a visual object-oriented design description language:

a notation for modelling and visualizing object-oriented programs at any level of abstraction” (Eden,

Epameinondas, & Nicholson, 2011, para. 2). Appendix IV shows the basic set of symbols used in

LePUS3.

In Refactoring to patterns Kerievsky shows a catalogue of refactoring rules for changing legacy code to use

design patterns (Kerievsky, 2004). Reusable design pattern components should make these

refactorings easier to implement and automate in advanced tools. For example, the Replace State-Altering

Conditionals with State refactoring action could use the state reusable component, which should simplify

the refactoring action. The Replace Conditional Dispatcher with Command, Limit Instantiation with Singleton,

Replace Constructors with Creation Methods and Replace One/Many Distinctions with Composite refactoring

actions (Kerievsky, 2004) could also be implemented and thus simplify using reusable pattern

components.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

201

 REFERENCES

Abrams, B. (2004, May 3). Should we obsolete ICloneable (The SLAR on System.ICloneable). Retrieved from

blogs.msdn.com: http://blogs.msdn.com/b/brada/archive/2004/05/03/125427.aspx

Agerbo, E., & Cornils, A. (1997). Theory of language support for design patterns. Aarhus, Denmark: Aarhus

University.

Agerbo, E., & Cornils, A. (1998). How to preserve the benefits of design patterns. 13th ACM

SIGPLAN conference on object-oriented programming, systems, languages, and applications. 33, pp. 134-

143. Vancouver, Canada: ACM.

Albahari, J., & Albahari, B. (2007). C# 3.0 in a nutshell. Sebastopol, CA: O'Reilly Media.

Alexander, C., & Ishikawa, S. S. (1977). A pattern language: Towns, buildings, construction. Oxford, United

Kingdom: Oxford University Press.

Alexandrescu, A. (2001). Modern C++ design: Generic programming and design patterns applied. Boston, MA:

Addison-Wesley Professional.

Alpert, S., Brown, K., & Woolf, B. (1998). The design patterns Smalltalk companion. Boston, MA: Addison-

Wesley Professional.

Anilao, C. B. (2010, November 3). TSingleton: The templated singleton. Retrieved from code.google.com:

http://code.google.com/p/tsingleton/

Armstrong, J. (2007). Programming Erlang: Software for a concurrent world. Raleigh, NC: Pragmatic

Bookshelf.

Arnout, K. (2004). From patterns to components. Zurich, Switzerland: Swiss Federal Institute of

Technology.

Arnout, K., & Bezault, E. (2004, April). How to get a singleton in Eiffel? Journal of Object Technology, 75–

95. Retrieved from http://www.jot.fm/issues/issue_2004_04/article5/

Avgeriou, P., & Zdun, U. (2005). Architectural patterns revisited — A pattern language. In R.

Morrison, 10th European conference on pattern languages of programs (EuroPlop 2005) (pp. 1-39).

Paphos, Cyprus: Springer.

Balagurusamy, E. (2008). Programming in C#. New Delhi, India: Tata McGraw-Hill Education.

Barnett, M., Leino, R. K., & Schulte, W. (2005). The Spec# programming system: An overview. In G.

Barthe, Construction and analysis of safe, secure, and interoperable smart devices (Vol. 3362, pp. 49-69).

Marseille, France: Springer.

Binder, R. V. (1999). Testing object-oriented systems: models, patterns, and tools. Boston, MA: Addison-Wesley

Professional.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

202

Bishop, J. (2007). C# 3.0 design patterns. Sebastopol, CA: O'Reilly Media.

Bishop, J. (2008). Language features meet design patterns: Raising the abstraction bar. Proceedings of the

2nd international workshop on the role of abstraction in software engineering, 1-7.

Bishop, J., & Horspool, R. N. (2008). On the efficiency of design patterns implemented in C# 3.0. In

R. F. Paige, Objects, components, models and patterns (Lecture notes in business information processing) (Vol.

11, pp. 356-372). Zurich, Switzerland: Springer.

Bosch, J. (1998a). Design patterns & frameworks: On the issue of language support. In Á. Frohner

(Ed.), Workshop on Language Support for Design Patterns and Object-Oriented Frameworks (LSDF),

ECOOP. 1357, pp. 133-136. London, United Kingdom: Springer.

Bosch, J. (1998b). Design patterns as language constructs. Journal of object-oriented programming, 11(2), 18-

32.

Bosch, J. (1998c). Specifying frameworks and design patterns as architectural fragments. Proceedings:

Technology of object-oriented languages (TOOLS 27). 0, pp. 268-277. Beijing, China: IEEE Computer

Society.

Bracha, G., & Cook, W. (1990). Mixin-based inheritance. OOPSLA/ECOOP '90 Proceedings of the

European conference on object-oriented programming systems, languages, and applications (pp. 303-311).

Ottawa, Canada: ACM.

Budinski, F., Finnie, M., Yu, P., & Vlissides, J. (1996). Automatic code generation from design

patterns. IBM Systems Journal, 35(2), 151-171.

Burchall, L. (2009, August 13). Multimethods in C# 4.0 with 'dynamic'. Retrieved from blogs.msdn.com:

http://blogs.msdn.com/b/laurionb/archive/2009/08/13/multimethods-in-c-4-0-with-

dynamic.aspx

Bustamante, M. L. (2007). Learning WCF: A hands-on guide. Sebastopol, CA: O'Reilly Media.

Cantu, M. (2008). Essential Pascal. New York, NY: CreateSpace.

Cardelli, L., & Wegner, P. (1985). On understanding types, data abstraction, and polymorphism.

Computing surveys, 471-522.

CastleProject. (2011). DynamicProxy. Retrieved from www.castleproject.org:

http://www.castleproject.org/dynamicproxy/index.html

Chambers, C. (1992). The design and implementation of the SELF Compiler, an optimizing compiler for object-

oriented programming languages. Palo Alto, CA: Stanford University.

Chambers, C., Harrison, B., & Vlissides, J. O. (2000). A debate on language and tool support for

design patterns. Proceedings of the 27th ACM SIGPLAN-SIGACT symposium on principles of

programming languages (pp. 277-289). Boston, MA: ACM.

Chaudhry, P. (2002, May 1). A per-thread singleton class. Dr Dobbs. Retrieved from

http://drdobbs.com/184401516

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

203

Chris, R. (1989). Elements of functional programming. Wokingham, United Kingdom, U.K.: Addison-

Wesley Longman.

Church, A. (1936, April). An unsolvable problem of elementary number theory. American Journal of

Mathematics, 58, 345-363.

Clifton, C., Millstein, T., Leavens, G. T., & Chambers, C. (2006, May). MultiJava: Design rationale,

compiler implementation, and applications. ACM Trans. Program. Lang. Syst., 28(3), 517-575.

Cohen, T., & Gil, J. (2007, July-August). Better construction with Factories. Journal of Object Technology,

103-123. Retrieved from http://www.jot.fm/issues/issue_2007_07/article3/

Coplien, J. O. (1995). Curiously recurring template patterns. C++ Report, 24-27.

Coplien, J. O., & Schmidt, D. (1995). Patterns languages of program design. Boston, MA: Addison-Wesley.

Cuni, A., Ancona, D., & Rigo, A. (2009). Faster than C#: Efficient implementation of dynamic

languages on .NET. ICOOOLPS'09. (pp. 26-33). Genoa, Italy: ACM.

David, F. (2006). JavaScript: The Definitive Guide. Sebastopol, CA: O'Reilly & Associates. Retrieved from

ISBN 0-596-10199-6

de Oliveira, R. B. (2005, October 2). Boo.Lang.Useful. Retrieved from docs.codehaus.org:

http://docs.codehaus.org/display/BOO/Boo.Lang.Useful

de Oliveira, R. B. (2008, January 2). http://docs.codehaus.org/display/BOO/Home. Retrieved from

docs.codehaus.org: http://docs.codehaus.org/display/BOO/Home

de Smet, B. (2008, November 10). Introducing “The C# Ducktaper” – Bridging the dynamic world with the static

world. Retrieved from Bartdesmet:

http://bartdesmet.net/blogs/bart/archive/2008/11/10/introducing-the-c-ducktaper-

bridging-the-dynamic-world-with-the-static-world.aspx

Dehnert, J. C., & Stepanov, A. (2005). Fundamentals of generic programming. In M. Jazayeri, R. Loos,

& D. R. Musser, Generic programming (Vol. 1766, pp. 1-11). Wadern, Germany: Springer.

DeMichiel, L. G., & Gabriel, R. P. (1987). The common lisp object system: an overview. ECOOP. 276,

pp. 151-170. Paris, France: Springer.

Dijkstra, E. W. (1974, August). On the role of scientific thought. In E. W. Dijkstra, Selected writings on

computing: A personal perspective (pp. 60-66). New York, NY: Springer-Verlag.

Drepper, U. (2007, November). What every programmer should know about memory. Retrieved from

people.redhat.com: http://people.redhat.com/drepper/cpumemory.pdf

Driesen, K., & Hölzle, U. (1996). The direct cost of virtual function calls in C++. SIGPLAN Not.,

31(10), 306-323.

Dyson, P., & Anderson, B. (1997). State patterns. In C. Martin R., D. Riehle, & F. Buschmann, Pattern

languages of program design 3 (pp. 271-294). Boston, MA: Addison-Wesley.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

204

ECMA. (2006, June). ECMA International: Standard ECMA-367 —Eiffel: Analysis, design and programming

language. Retrieved from www.ecma-international.org: http://www.ecma-

international.org/publications/standards/Ecma-367.htm

Eric, L. (2007, January 10). Lambda expressions vs. anonymous methods. Retrieved from

http://blogs.msdn.com: http://blogs.msdn.com/b/ericlippert/archive/2007/01/10/lambda-

expressions-vs-anonymous-methods-part-one.aspx

Esterbrook, C. (2001, April 1). Using Mix-ins with Python. Linux Journal. Retrieved from

http://www.linuxjournal.com/article/4540

Evans, E. (2003). Domain-driven design: Tackling complexity in the heart of software. Boston, MA: Addison-

Wesley Professional.

Flanagan, D. (2011). JavaScript: The definitive guide. Sebastopol, CA: O'Reilly Media.

Forman, I. R., & Forman, N. (2005). Java reflection in action. Greenwich, CT: Manning.

Fowler, M. (2004, January 23). Inversion of control containers and the dependency injection pattern. Retrieved

from martinfowler.com: http://martinfowler.com/articles/injection.html

Fowler, M., Beck, K., Brant, J., Opdyke, W., & Roberts, D. (1999). Refactoring: Improving the design of

existing code. Boston, MA: Addison-Wesley Professional.

Fraiteur, G. (2008). User-friendly aspects with compile-time imperative semantics in .NET: An

overview of PostSharp. Seventh International Conference on Aspect-Oriented Software Development

(AOSD). Brussels, Belgium: ACM.

Fraiteur, G. (2010, February 4). DesignByContract. Retrieved from code.google.com:

http://code.google.com/p/postsharp-user-plugins/wiki/DesignByContract

Freeman, E., Robson, E., Bates, B., & Sierra, K. (2004). Head first design patterns. Sebastopol, CA:

O'Reilly Media.

G´eraud, T., & Duret-Lutz, R. (2000). Generic programming redesign of patterns. Proceedings of the 5th

European conference on pattern languages of programs (EuroPLoP'2000). Irsee, Germany: Springer.

Retrieved from http://www.coldewey.com/europlop2000

Gamma, E., Helm, R., Johnson, R., & Vlissides, R. (1994). Design patterns, elements of reusable object-oriented

software. Boston, MA: Addison-Wesley.

Garcia, G. A. (2009a, February 28). Componentized adapter pattern. Retrieved from

perfectjpattern.sourceforge.net: http://perfectjpattern.sourceforge.net/dp-adapter.html

Garcia, G. A. (2009b, February 28). Componentized decorator pattern. Retrieved from

perfectjpattern.sourceforge.net: http://perfectjpattern.sourceforge.net/dp-decorator.html

Garcia, G. A. (2009c, February 28). Componentized chain of responsibility pattern. Retrieved from

perfectjpattern.sourceforge.net: http://perfectjpattern.sourceforge.net/dp-

chainofresponsibility.html

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

205

Garcia, G. A. (2009d, February 28). Componentized composite pattern. Retrieved from

perfectjpattern.sourceforge.net: http://perfectjpattern.sourceforge.net/dp-composite.html

Garcia, G. A. (2009e, February 28). Componentized command pattern. Retrieved from

perfectjpattern.sourceforge.net: http://perfectjpattern.sourceforge.net/dp-command.html

Gasiūnas, V., Satabin, L., Mezini, M., Núñez, A., & Noyé, J. (2010). Declarative events for object-oriented

programming. Technical Report, INRIA. Retrieved from http://hal.inria.fr/inria-00494645/en/

Gasparis, E. N., & Eden, A. (2008). LePUS3: An object-oriented design description language.

Proceedings of 5th international conference on diagrammatic representation and inference (Diagrams’08) (pp.

364-367). Herrsching, Germany: Springer.

Gil, J., & Lorenz, D. H. (1998, March). Design patterns vs. language design. Computer, 31(3), 118-120.

Groovy. (2011). Singleton pattern. Retrieved from groovy.codehaus.org:

http://groovy.codehaus.org/Singleton+Pattern

Hannemann, J., & Kiczales, G. (2002, November). Design pattern implementation in Java and

AspectJ. SIGPLAN Not., 37(11), 161-173.

Harrison, T., & Schmidt, D. C. (1997). Thread-specific storage - An object behavioral pattern for efficiently

accessing per-thread state. Washington, DC: Washington University.

Hedin, G. (1997). Language support for design patterns using attribute extensions. Aarhus, Denmark: Aarhus

University.

Hejlsberg, A., & Torgersen, M. (2007, March). C# 3.0 new features. Retrieved from

http://msdn.microsoft.com: http://msdn.microsoft.com/en-us/library/bb308966.aspx

Hejlsberg, A., Torgersen, M., Wiltamuth, S., & Golde, P. (2010). C# programming language (Covering C#

4.0) (4th ed.). Boston, MA: McGraw Hill Professional.

Hugunin, J. (2007, April 30). A dynamic language runtime (DLR). Retrieved from http://blogs.msdn.com:

http://blogs.msdn.com/b/hugunin/archive/2007/04/30/a-dynamic-language-runtime-

dlr.aspx

Ichbiah, J. D., Krieg-Brueckner, B., Wichmann, B. A., Barnes, J. G., Roubine, O., & Heliard, J. (1979).

Rationale for the design of the Ada® programming language. SIGPLAN Not., 14(6b), 1-261.

Ierusalimschy, R. (2003). Programming in Lua. Rio de Janeiro, Brazil: Lua.org.

Ionescu, S. (2005, May 26). SingletonAttribute. Retrieved from http://docs.codehaus.org:

http://docs.codehaus.org/display/BOO/SingletonAttribute

Jagger, J., Perry, N., & Sestoft, P. (2007). Annotated C# standard. San Francisco, CA: Morgan

Kaufmann.

J'arvi, J., Freeman, J., & Crowl, L. (2007). Lambda expressions and closures: Wording for monomorphic lambdas.

The C++ Standards Committee. Retrieved from www.open-

std.org/jtc1/sc22/wg21/docs/papers/2007/n2413.pdf

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

206

Jesse, L., & Xie, D. (2008). Programming C# 3.0. Sebastopol, CA: O'Reilly Media.

Jézéquel, J. M., Train, M., & Mingins, C. (1999). Design patterns and contracts. Boston, MA: Addison-

Wesley Longman.

Jon, S. (2010). C# in depth. Greenwich, CT: Manning.

Kennedy, A. (2006, November 6). C# is a functional programming language. Retrieved from

http://fop.cs.nott.ac.uk/: http://fop.cs.nott.ac.uk/fun/nov-06/FunPm.pdf

Kerievsky, J. (2004). Refactoring to patterns. Boston, MA: Addison-Wesley Professional.

Kiczales, G., Lamping, J., Mehdhekar, A., Maeda, C., Lopes, C. V., Loingtier, J., & Irwin, J. (1997).

Aspect-oriented programming. ECOOP'97 — Object-oriented programming (pp. 220-242).

Jyväskylä, Finland: Springer.

KJärvi, J., & Freeman, J. (2008). Lambda functions for C++0x. SAC '08 (pp. 178-183). Fortaleza,

Brazil: ACM.

Klint, P. (1993). A meta-environment for generating programming environments. ACM transactions on

software engineering and methodology (TOSEM), 2(2), 176-201.

Knuth, D. (1968). The art of computer programming (Vol. 1). Bonston, MA: Addison-Wesley.

Koenig, A., & Moo, B. E. (2005). Templates and duck typing. Dr. Dobbs. Retrieved from

http://drdobbs.com/184401971

Landin, P. (1965). A correspondence between ALGOL 60 and Church's lambda-notation.

Communications of the ACM, 8, 89–101.

Lea, D. (1999). Concurrent programming in Java: Design principles and patterns. Boston, MA: Addison-Wesley

Longman.

Lee, A. H., & Zachary, J. L. (1995). Reflections on metaprogramming. IEEE transactions on software

engineering, 883-893.

Leiserson, C. E., Rivest, R. L., & Stein, C. (2001). Introduction to algorithms. Boston, MA: MIT Press.

Liberty, J. (2001). Programming C#. Sebastopol, CA: O'Reilly Media.

Lloyd, J. W. (1994). Practical advantages of declarative programming. Joint conference on declarative

programming (GULP-PRODE '94). Peñiscola, Spain.

López Muñoz, J. M. (2008, August 13). Boost.Flyweight Tutorial. Retrieved from http://www.boost.org:

http://www.boost.org/doc/libs/1_40_0/libs/flyweight/doc/tutorial/index.html

Lowy, J. (2007). Programming WCF services. Sebastopol, CA: O'Reilly Media.

Malenfant, J., Jacques, M., & Demers, F. N. (1996). A tutorial on behavioral reflection and its

implementation. In G. Kiczales (Ed.), Proceedings of the reflection '96 conference, (pp. 1-20). Xerox

Palo Alto Research Center, San Francisco, CA.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

207

Mariani, J. (1999). Mix-Ins (Steve's ice cream, Boston, 1975). In J. Mariani, The encyclopedia of american

food and drink: With more than 500 recipes for american classics (p. 166). New York, NY: Lebhar-

Friedman.

Matsumoto, Y. (2001). Ruby in a nutshell. Sebastopol, CA: O'Reilly Media.

McConnell, S. (1993). Code complete: A practical handbook of software construction. Redmond, WA: Microsoft

Press.

Mertes, T. (2011, October 14). Seed7 - The extensible programming language. Retrieved from

seed7.sourceforge.net: http://seed7.sourceforge.net/manual/objects.htm#multiple_dispatch

Meyer, B. (1986). Genericity vs inheritance. OOPSLA (First ACM conference on object-oriented programming

systems, languages and applications) (pp. 391–405). Portland, OR: ACM.

Meyer, B. (1991). Eiffel : The language. Upper Saddle River, NJ: Prentice Hall.

Meyer, B. (1992, October). Applying “Design by contract”. Computer (IEEE), 40–51.

Meyer, B. (2000). Object-oriented software construction. Upper Saddle River, NJ: Prentice Hall.

Meyer, B. (2001). Overloading vs object technology. Journal of object-oriented programming (JOOP), 14(4), 3-

7.

Meyer, B., & Arnout, K. (2006). Componentization: the Visitor example. Computer, 23-30.

Michaelis, M. (2010). Essential C# 4.0 (4th ed.). Sebastopol, CA: Addison-Wesley.

Microsoft. (2005). What's new in the C# 2.0 language and compiler. Retrieved from

http://msdn.microsoft.com: http://msdn.microsoft.com/en-us/library/7cz8t42e(VS.80).aspx

Microsoft. (2007). C# language specification. Retrieved from http://msdn.microsoft.com:

http://download.microsoft.com/download/3/8/8/388e7205-bc10-4226-b2a8-

75351c669b09/CSharp%20Language%20Specification.doc

Microsoft. (2010a). Action(of T) delegate. Retrieved from http://msdn.microsoft.com:

http://msdn.microsoft.com/en-us/library/018hxwa8.aspx

Microsoft. (2010b). Anonymous methods (C# programming guide). Retrieved from

http://msdn.microsoft.com: http://msdn.microsoft.com/en-us/library/0yw3tz5k.aspx

Microsoft. (2010c). Attribute class. Retrieved from http://msdn.microsoft.com:

http://msdn.microsoft.com/en-us/library/system.attribute.aspx

Microsoft. (2010d). Attributes (C# and Visual Basic). Retrieved from http://msdn.microsoft.com:

http://msdn.microsoft.com/en-us/library/z0w1kczw(v=VS.100).aspx

Microsoft. (2010e). Delegates (C# programming guide). Retrieved from http://msdn.microsoft.com:

http://msdn.microsoft.com/en-us/library/ms173171(v=VS.100).aspx

Microsoft. (2010f). Dictionary(of TKey, TValue) class. Retrieved from http://msdn.microsoft.com:

http://msdn.microsoft.com/en-us/library/xfhwa508.aspx

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

208

Microsoft. (2010g, October). Extension methods (C# programming guide). Retrieved from

http://msdn.microsoft.com: http://msdn.microsoft.com/en-us/library/bb383977.aspx

Microsoft. (2010h). Func(of T, TResult) delegate. Retrieved from http://msdn.microsoft.com:

http://msdn.microsoft.com/en-us/library/bb549151.aspx

Microsoft. (2010i). Lambda expressions (C# programming guide). Retrieved from

http://msdn.microsoft.com: http://msdn.microsoft.com/en-us/library/bb397687.aspx

Microsoft. (2010j). MethodInfo class. Retrieved from http://msdn.microsoft.com:

http://msdn.microsoft.com/en-us/library/system.reflection.methodinfo.aspx

Microsoft. (2010k). SerializableAttribute Class. Retrieved from http://msdn.microsoft.com:

http://msdn.microsoft.com/en-us/library/system.serializableattribute.aspx

Microsoft. (2010l). SortedDictionary(Of TKey, TValue) Class. Retrieved from http://msdn.microsoft.com:

http://msdn.microsoft.com/en-us/library/f7fta44c.aspx

Microsoft. (2010m). The Obsolete attribute. Retrieved from http://msdn.microsoft.com:

http://msdn.microsoft.com/en-us/library/aa664623(v=vs.71).aspx

Microsoft. (2010n). ThreadStaticAttribute Class. Retrieved from http://msdn.microsoft.com:

http://msdn.microsoft.com/en-us/library/system.threadstaticattribute(VS.71).aspx

Microsoft. (2010o, April). Microsoft Unity 2.0. Retrieved from msdn.microsoft.com:

http://msdn.microsoft.com/en-us/library/ff663144.aspx

Microsoft. (2010p, September). Object.MemberwiseClone Method. Retrieved from msdn.microsoft.com:

http://msdn.microsoft.com/en-us/library/system.object.memberwiseclone.aspx

Microsoft. (2010q, September). ICloneable.Clone Method. Retrieved from msdn.microsoft.com:

http://msdn.microsoft.com/en-us/library/system.icloneable.clone(v=VS.100).aspx

Microsoft. (2011a). DevLabs: Code contracts. Retrieved from http://msdn.microsoft.com:

http://msdn.microsoft.com/en-us/devlabs/dd491992.aspx

Microsoft. (2011b). Using Type dynamic (C# Programming Guide). Retrieved from

http://msdn.microsoft.com: http://msdn.microsoft.com/en-us/library/dd264736.aspx

Microsoft. (2011c). Welcome to DevLabs. Retrieved from http://msdn.microsoft.com:

http://msdn.microsoft.com/en-us/devlabs/cc950527

Miller, J. (2008, October). Patterns in practice: Cohesion and coupling. Retrieved from msdn.microsoft.com:

http://msdn.microsoft.com/en-us/magazine/cc947917.aspx

Mitchell, J. C., Mitchell, & Krzysztof, A. (2003). Concepts in programming languages. New York, NY:

Cambridge University Press.

Mitchell, R., & McKim, J. (2001). Design by contract, by example. Proceedings of the 39th international

conference and exhibition on technology of object-oriented languages and systems (TOOLS39) (p. 430).

Washington, DC: IEEE Computer Society.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

209

Moon, D. A. (1986). Object-oriented programming with Flavors. Conference proceedings on object-oriented

programming systems, languages and application (OOPLSA '86) (pp. 1-8). Portland, OR: ACM.

Musser, D. R., & Stepanov, A. A. (1989). The Ada generic library: Linear list processing packages. New York,

NY: Springer-Verlag.

Nagel, C., Evjen, B., Glynn, J., & Watson, K. (2010). Professional C# 4.0 and .NET 4. Birmingham,

United Kingdom: Wrox Press.

Nierstrasz, O., Bergel, A., Denker, M., Ducasse, S., Gälli, M., & Wuyts, R. (2005). On the revival of

dynamic languages. In Software composition (Vol. 3628, pp. 1-13). Berlin, Germany: Springer.

Nilsson, J. (2006). Applying domain-driven design and patterns: With examples in C# and .NET. Boston, MA:

Addison-Wesley.

O'Brien, T. M. (2004). Jakarta commons cookbook. Sebastopol, CA: O'Reilly Media.

Odersky, M., Spoon, L., & Venners, B. (2011). Programming in Scala: A comprehensive step-by-step. Bury St

Edmunds, United Kingdom: Artima.

Pattison, T., & Box, D. (2000). Programming distributed applications with COM & Microsoft Visual Basic.

Redmond, WA: Microsoft Press.

Perrotta, P. (2010). Metaprogramming Ruby: Program like the Ruby pros (1st ed.). Raleigh, NC, and Dallas,

TX: The Pragmatic Programmers, LLC.

Pierce, B. C. (2002). Types and programming languages . Boston, MA: MIT Press.

Pinto, M., Amor, M., Fuentes, L., & Troya, M. J. (2001). Run-time coordination of components:

Design patterns vs. component & aspect based platforms. European conference on object-oriented

programming (ECOOP 2001 workshop on advanced separation of concerns). Budapest, Hungary:

Springer.

Pree, W. (1995). Design patterns for object-oriented software development. Boston, MA: Addison-Wesley.

Purdy, D., & Richter, J. (2002, January). Exploring the observer design pattern. Retrieved from

msdn.microsoft.com: http://msdn.microsoft.com/en-us/library/ee817669.aspx

Python Software Foundation. (2011, October 30). Python v2.7.2 documentation. Retrieved from

http://docs.python.org/: http://docs.python.org/

Quesnel, P. (2005, October 31). Useful things about Boo. Retrieved from docs.codehaus.org:

http://docs.codehaus.org/display/BOO/Useful+things+about+Boo

Rahien, A. (2010). DSLs in Boo: Domain specific languages in .NET. Shelter Island, NY: Manning.

Reade, C. (1989). Elements of functional programming. Boston, MA: Addison-Wesley Longman.

Redpath, L. (2009, February 15). http://lukeredpath.co.uk/blog/decorator-pattern-with-ruby-in-8-lines.html.

Retrieved from http://lukeredpath.co.uk: http://lukeredpath.co.uk/blog/decorator-pattern-

with-ruby-in-8-lines.html

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

210

Ruby-Doc.Org. (2011, October 7). Ruby-Doc.Org. Retrieved from http://www.ruby-doc.org/:

http://www.ruby-doc.org/

Samko, V., Willcock, J., Järvi, J., Gregor, D., Lumsdaine, A., & Stroustrup, B. (2006, September).

Lambda expressions and closures for C++. Sci. Comput. Program.(9), 762-772. Retrieved from

http://www.open-std.org: http://www.open-

std.org/jtc1/sc22/wg21/docs/papers/2006/n1968.pdf

Savitch, W. (1993). Turbo Pascal 7.0. Boston, MA: Addison Wesley.

Schmidt, D. C. (1995). Using design patterns to develop reusable object-oriented communication

software. Communications of the ACM, 38(10), 65-74.

Schmidt, D. C., & Harrison, T. (1996). Double-checked locking - An optimization pattern for

efficiently initializing and accessing thread-safe objects. 3rd Annual Pattern Languages Design

Conference. Monticello, IL.

Schmidt, D. C., & Huston, S. D. (2002). C++ network programming, Volume 2: Systematic reuse with ACE

and frameworks (1 edition ed.). Boston, MA: Addison-Wesley Professional.

Schmidt, D. C., Stal, M., Rohnert, H., & Buschmann, F. (2000). Pattern-oriented software architecture:

Patterns for concurrent and networked objects. New York, NY: John Wiley & Sons.

Scott, M. L. (2009). Programming language pragmatics. San Francisco, CA: Morgan Kaufmann.

Seibel, P. (2004). Practical common Lisp. New York, NY: Apress.

Sobel, J. M., & Friedman, D. P. (1996). An introduction to reflection-oriented programming. In G.

Kiczales (Ed.), Proceedings of reflection’96, (pp. 263-288). San Francisco, CA.

Soukup, J. (1995). Implementing patterns. In J. Coplien, & D. Schmidt, Pattern languages of program design

(pp. 395-412). New York, NY: ACM Press/Addison-Wesley.

Stasiak, P. (2008). Chain.NET. Retrieved from nchain.sourceforge.net:

http://nchain.sourceforge.net/license.html

Stein, D., & Shah, D. (1992). Implementing lightweight threads. Summer ’92 USENIX (pp. 1-10). San

Antonio, TX: USENIX.

Stepanov, A., & Lee, M. (1995). The standard template library. Palo Alto, CA: Hewlett Packard

Laboratories.

Stevens, A. (1998). C++ class template library that implements undo operations of interactive

programs. Dr.Dobb's. Retrieved from http://drdobbs.com/cpp/184410722

Stoyan, H. (1984). Early LISP history (1956-1959). Proceedings of the 1984 ACM symposium on LISP and

functional programming (pp. 299-310). Austin, TX: ACM.

Stranden, H. (2011, 06 03). Copyable: A framework for copying or cloning .NET objects. Retrieved from

Circles & Crosses: http://ox.no/software/copyable

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

211

Stroustrup, B. (1987). Multiple inheritance for C++. Proc. European UNIX user’s group, (pp. 189-208).

Helsinki, Finland.

Stroustrup, B. (1994). The design and evolution of C++. New York, NY: ACM Press/Addison-Wesley.

Stroustrup, B. (2007). Evolving a language in and for the real world: C++ 1991-2006. Proceedings of the

third ACM SIGPLAN conference on history of programming languages (pp. 4-1, 4-59). San Diego, CA:

ACM.

Szyperski, C. (2002). Component software: Beyond object-oriented programming. Boston, MA: Addison-Wesley

Longman.

Taibi, T. (2007). Design patterns formalization techniques. Hershey, PA: IGI.

Taibi, T., Herranz, A., & Moreno-Navarro, J. J. (2009, March-April). Stepwise refinement validation of

design patterns formalized in TLA+ using the TLC model checker. Journal of object technology,

8(2), 137-161.

Tanguay-Carel, M. (2007). GoF patterns in Ruby. Retrieved from www.scribd.com:

http://www.scribd.com/doc/396559/gof-patterns-in-ruby

Tenenbaum, A. M., Langsam, Y., & Augenstein, M. J. (1990). Data structures using C. Upper Saddle

River, NJ: Prentice-Hall.

Thomas, P. G., & Weedon, R. A. (1997). Object-oriented programming in Eiffel. Boston, MA: Addison-

Wesley.

Thompson, S. (1999). Haskell: The craft of functional programming. Boston, MA: Addison-Wesley

Longman.

Torgersen, M. (2007). Querying in C#: How language integrated query (LINQ) works. OOPSLA '07

Companion to the 22nd ACM SIGPLAN conference on object-oriented programming systems and

applications companion (pp. 852-853). Montreal, Quebec, Canada: ACM.

Torgersen, M. (2008). New features in C# 4.0. Microsoft. Retrieved from

http://msdn.microsoft.com/en-us/vcsharp/ff628440

Tratt, L. (2009). Dynamically typed languages. Advances in computers, 77, 149-184.

van Rossum, G. (2008, February 21). Python library reference. Retrieved from docs.python.org:

http://docs.python.org/release/2.5.2/lib/lib.html

Vandevoorde, D., & Josuttis, N. M. (2003). C++ Templates: The complete guide. Boston, MA: Addison-

Wesley.

Wampler, D., & Payne, A. (2009). Programming Scala: Scalability = functional programming + objects. Boston,

MA: O'Reilly Media.

Weiss, M. A. (1999). Data structures and problem solving with C++. Boston, MA: Addison-Wesley

Longman.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

212

Williams, C. (2006 , 10 31). Patterns in Ruby: Singleton Pattern. Retrieved from Ruby Buzz Forum:

http://www.artima.com/forums/flat.jsp?forum=123&thread=182870

Wirth, N. (1976). Algorithms + data structures = programs (1St Edition edition ed.). New Delhi, India:

Prentice Hall of India Pvt. Limited.

Zimmer, W. (1995). Relationships between design patterns. In Pattern languages of program design (pp. 345-

364). New York, NY: ACM Press/Addison-Wesley.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

213

 APPENDIX I

In some of the reusable pattern components shown in this thesis, operations are registered against

method contracts available on a certain interface. The registration is achieved by either passing in the

method name as a string argument or using the MethodInfo .NET class. The code below is an extract

from the AutoAdapter<TTarget, TAdaptee> component, showing the register methods available on it:

C# (APL)
--
public void RegisterAction(string methodName, AdapterAction<TAdaptee> operation) { … }
public void RegisterAction(MethodInfo method, AdapterAction<TAdaptee> operation) { … }
// … M O R E …

public void RegisterFunc<TResult>(string methodName,
 AdapterFunc<TAdaptee, TResult> operation) { … }
public void RegisterFunc<TResult>(MethodInfo method,
 AdapterFunc<TAdaptee, TResult> operation) { … }
// … M O R E …

Adaptee operations can now be registered with an instance of the AutoAdapter<TTarget, TAdaptee>

component. The example code below shows the registration of an Adaptee action against a Foo

method available on the Target. In the example the Foo method is registered using the name of the

method represented as a string:

C# (APL Example)
--
Adapter.RegisterAction("Foo", (x) => x("Hello World");

The Foo method can also be registered using a MethodInfo .NET class, as shown below:

C# (APL Example)
--
Adapter.RegisterAction(typeof(TAdaptee).GetMethod("Foo"), (x) => x("Hello World");

Neither of the above registration methods is elegant and both rely on non type-safe and runtime

reflection mechanisms.

C# dynamics can be used to implement a more elegant and declarative mechanism for method

registration. A Register property can be added to the AutoAdapter<TTarget, TAdaptee> component, as

seen below, that returns a dynamic type:

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

214

C# (APL)
--
public class AutoAdapter<TTarget, TAdaptee> : IDynamicInvoker
 where TTarget : class {
 private TAdaptee _adaptee;
 // … S N I P …

 public AutoAdapter(TAdaptee adaptee) { … }

 // … S N I P …

 public void RegisterAction(string methodName, AdapterAction<TAdaptee> operation) { … }
 public void RegisterAction(MethodInfo method, AdapterAction<TAdaptee> operation) { … }
 // … M O R E …

 public void RegisterFunc<TResult>(string methodName,
 AdapterFunc<TAdaptee, TResult> operation) { … }
 public void RegisterFunc<TResult>(MethodInfo method,
 AdapterFunc<TAdaptee, TResult> operation) { … }
 // … M O R E …

 // Register any adapter operation against a method contract on the TTarget
 public RegisterAny(MethodInfo method, MethodInfo operation) {
 // Validate that the operation has a valid AdapterAction or AdapterFunc and
 // that method is avaliable on the TTarget interface
 Validate(method, operation);

 // Add the operation to the internal dictionary against the method
 AddToDictionary(method, operation);
 }

 // Register any adapter operation against a method contract on the TTarget using
 // C# 4.0 dynamics
 public dynamic Register { return new AdapterMethodRegister<TTarget, TAdaptee>(this); }

 // … S N I P …

 public object Invoke(string methodName, object[] args) { … }
 public TTarget Target { … }
}

The Register property can now be used to register any valid operation on an instance of the

component, as shown below:

C# (APL Example)
--
Adapter.Register.Foo = (x) => x("Hello World");

The Register property returns and instance of the AdapterMethodRegister class as a dynamic type. The

AdapterMethodRegister APL class inherits from the C# DynamicObject class, located in the

System.Dynamic .NET namespace, which makes it possible to inject new behaviour dynamically during

runtime. The code snippet below shows the implementation of the AdapterMethodRegister class:

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

215

C# (APL)
--
public class AdapterMethodRegister<TTarget, TAdaptee>: DynamicObject {
 private readonly AutoAdapter<TTarget, TAdaptee> _adapter;

 public AutoAdapter(AutoAdapter<TTarget, TAdaptee> adapter) { _adapter = adapter; }

 public override bool TrySetMember(SetMemberBinder binder, object value) {
 // Validate that the method adhere to the signature of a AdapterAction or AdapterFunc delegate
 Validate(binder, value);

 // Register the adapter method with the adapter
 adapter.RegisterAny(GetContractMethod(binder, value), GetAdapterOperation(binder, value));
 }

 // … S N I P …
}

In the code above the TrySetMember method registers the received method on its internal instance of

the AutoAdapter. The AdapterMethodRegister receives a method via the TrySetMember when a user tries

to dynamically add a method on it during runtime, as seen in the previously shown

Adapter.Register.Foo = (x) => x("Hello World") example. When called, the Register property

always returns a new instance of the AdapterMethodRegister class, which was created with the

underlying AutoAdapter instance:

C# (APL)
--
// Register any adapter operation against a method contract on the TTarget using
// C# 4.0 dynamics
public dynamic Register { return new AdapterMethodRegister<TTarget, TAdaptee>(this); }

Although this mechanism is more elegant than the original registration methods, it is still not type-safe.

For example, if the Foo method on the Target interface is refactored to FooBar, then the

Adapter.Register.Foo registration is not changed to FooBar. There is thus no direct type-safe

relationship between the Foo method available on the Target interface and the Foo method used on the

AutoAdapter registration. Unfortunately no language feature exists in C# whereby a user can reference

the meta-information of a method available on an interface in a type-safe manner, as shown in the

example code below:

C# (APL Conceptual Example)
--
Adapter.RegisterAction(ITarget.Foo, (x) => x("Hello World");

In the conceptual code above, a compile time error is generated if the Foo method on the ITarget

interface is changed. Furthermore, if the Foo method is changed on the ITarget interface using

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

216

powerful refactoring tools, then the referenced Foo method in the RegisterAction method will also

change.

Lambda expressions (expressions trees) (Albahari & Albahari, 2007, p. 317) can be used to solve the

type-safe registration problem. The registration syntax may be a little convoluted, the solution,

however, is fully type-safe:

C# (APL Example)
--
Adapter.RegisterAction("Foo", (x) => x("Hello World"); // Non type-safe
Adapter.RegisterAction(t => t.Foo, (x) => x("Hello World"); // Type-safe

The above registration technique is thus type safe at the cost of a slightly more convoluted syntax and

of having to do a little decomposition of the expression tree to find the specific method name that is

being referred to.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

217

 APPENDIX II

This appendix shows a performance test for duck typing (Koenig & Moo, 2005) used in this thesis. It

specifically shows the performance of a method call on a dynamically created class. Each method call

against the dynamically created class is routed to the Invoke method, which is enforced by the

IDynamicInvoke interface, as seen below:

C# (APL)
--
public sealed class AutoAbstractFactory<TInterface> : IDynamicInvoke {
 // … S N I P …

 public object Invoke(string methodName, object[] args) {
 // … S N I P …
 var componentOperation = GetComponentOperation(methodName, args);
 if(componentOperation != null) {
 return componentOperation.DynamicInvoke(args);
 }

 return null;
 }
}

The test uses the AutoAbstractFactory<TInterface> reusable component. In the test two factory

instances are created. One factory uses the AutoAbstractFactory<TInterface> component and the

other factory instance is created normally. Each factory is used to create a Product from where a

method is invoked on each Product instance. The method invocation on the Product created by the

AutoAbstractFactory<TInterface> component will thus route its invocation to the Invoke method,

which does create a performance overhead.

In Table 5 the times listed, shown in milliseconds and measured over 10000 traversals, compare the

two method calls. The testing was done on an Intel® Core™ i5-2520M CPU @ 2.50GHz running

Windows 7 Professional 64-bit with 6.00 GB of RAM. In order to reduce JIT influences from the

timings, the test program executes one method call before starting the real test. All invoked methods

are therefore JIT’ed (Bishop & Horspool, 2008) prior to the timing test:

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

218

Table 5: Duck typing performance test.

Test Normal

Invocation

Duck Typing

Invocation

1 0.0307ms 0.2440ms

2 0.0307ms 0.2454ms

3 0.0311ms 0.2282ms

4 0.0311ms 0.2245ms

5 0.0311ms 0.2261ms

6 0.0307ms 0.2241ms

It is clear from the above table that, as expected, normal method invocations in C# are faster (on

average by 7 times), than duck typing invocations.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

219

 APPENDIX III

The following shows a performance test for the DynamicChainOfResponsibility component discussed

in this thesis. It specifically shows the performance of a handler method call invocation, where the

method was dynamically added to an instance of the component during runtime. Each handler

method call against a DynamicChainOfResponsibility instance is routed to the TryInvokeMember

method, which is enforced by the DynamicObject abstract class, as seen below:

C# (APL)
--
public class DynamicChainOfResponsibility : DynamicObject {
 // … S N I P …

 public override bool TryInvokeMember(InvokeMemberBinder binder,
 object[] args,
 out object result) {
 ChainOfResponsibilityEx.Handled = false;
 var excecutedHandler = false;
 result = null;

 if(_members.ContainsKey(binder.Name) &&
 _members[binder.Name] is Delegate) {
 result = ((Delegate)_members[binder.Name]).DynamicInvoke(args); // Dynamic call
 excecutedHandler = true;
 }

 if(!ChainOfResponsibilityEx.Handled && _successor != null) {
 return _successor.TryInvokeMember(binder, args, out result);
 }

 return excecutedHandler;
 }

 public override IEnumerable<string> GetDynamicMemberNames() { return _members.Keys; }
 }

 // … S N I P …
}

In the test two handlers are created. One handler uses the DynamicChainOfResponsibility component

and the other handler is created normally. The method invocation on the

DynamicChainOfResponsibility handler will thus route its invocation to the TryInvokeMember method,

which does create a performance overhead.

In Table 6 the times listed, shown in milliseconds and measured over 10000 traversals, compare the

two handler method calls. The testing was done on an Intel® Core™ i5-2520M CPU @ 2.50GHz

running Windows 7 Professional 64-bit with 6.00 GB of RAM. In order to reduce JIT influences from

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

220

the timings, the test program executes one method call before starting the real test. All invoked

methods are therefore JIT’ed (Bishop & Horspool, 2008) prior to the timing test:

Table 6: DynamicChainOfResponsibility performance test.

Test Normal

Invocation

Dynamic

Invocation

1 0.0032ms 24.5492ms

2 0.0036ms 23.7980ms

3 0.0024ms 23.0841ms

4 0.0032ms 24.0849ms

5 0.0032ms 24.2783ms

6 0.0041ms 24.1531ms

It is clear from the above table that normal method invocations in C# are much faster than dynamic

method invocations defined on the DynamicChainOfResponsibility component.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

221

 APPENDIX IV

Gasparis, Nicholson and Eden show the basic set of symbols used in LePUS3 as illustrated below

(Gasparis & Eden, 2008):

Figure 44. Basic set of symbols used in LePUS3.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

222

 INDEX

.

.NChain See Chain.NET

.NET

dynamic typing 30

used for pattern research 17

3

3-Lisp

reflection, meta-programming and duck typing 23

A

Abstract factory

conclusion 193, 197, 198

existing reusable pattern libraries 170

fully componentizable 54

introduction 44, 171, 190

outcome 53

shown as a FDP 12

structure 44

AbstractFactory (Participant)

AutoAbstractFactory component 47

AutoAbstractFactory graphical overview 48

AutoAbstractFactory theoretical example 53

existing reusable pattern libraries 170

introduction 45

outcome 54

reusable design pattern exploration 17

SimpleAutoAbstractFactory component 49

SimpleAutoAbstractFactory example 50, 52

AbstractProduct (Participant)

example implementation 51

existing reusable pattern libraries 170, 171

introduction 45

SimpleAutoAbstractFactory component 49

SimpleAutoAbstractFactory example 50

theoretical example 51

ACE See Adaptive Communication Environment

singleton C++ component 5

ACE_Singleton 5

Action

action and func family of library delegates 28

ActionCreator implementation 56

command implementation 133, 135, 137

conclusion 195

existing reusable pattern libraries 177

implementation of ActionFactoryCreator 58

implementation of AutoComposite 95

implementation of AutoDecorator 87, 88

implementation of FuncCreator 59

method references or delegates 27

patterns, actions and functions 184, 185, 188, 189

used in APL library 29

ActionChainOfResponsibility (Component)

patterns, actions and functions 188, 189

ActionChainOfResponsibilityFactory (Component)

reusable design pattern exploration 16

ActionCommand (Component)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

223

action and func family of library delegates 29

command implementation 133, 136, 137

command outcome 148

diagram 135

method references or delegates 27

patterns, actions and functions 184

ActionComposite (Component)

diagram 188

patterns, actions and functions 186, 187, 188

reusable design pattern exploration 16

ActionCreator (Component) 61

factory method outcome 64

implementation 56, 58

implementation of ActionFactoryCreator 59

theoretical example 62, 63

ActionDecorator (Component)

patterns, actions and functions 185

ActionDecoratorStrategy (Component)

implementation of AutoDecorator 87, 88

patterns, actions and functions 185

ActionFactoryCreator (Component)

factory method outcome 64

implementation 58

multiple implementations 59

patterns, actions and functions 189, 191

theoretical example 62, 63

ActionMacroCommand (Component)

command implementation 136

ActionMacroUndoableCommand (Component)

command implementation 136

ActionPrototypeCreator (Component)

factory method outcome 64

implementation 61

theoretical example 62, 63

UML diagram 62

ActionUndoableCommand (Component)

diagram 135

Ada

generic programming 22

higher level language 9

Adaptee (Participant)

adapter implementation 78, 80

adapter introduction 76

appendix I 213

existing reusable pattern libraries 173

Adapter

conclusion 193, 195, 197

existing reusable pattern libraries 173

introduction 75

outcome 82, 83

shown as a cadet 11

structure 75

Adapter (Component)

adapter implementation 81

Adapter (Participant)

adapter implementation 80, 82

adapter introduction 76

adapter outcome 82, 83

existing reusable pattern libraries 173

AdapterAction (Component)

adapter implementation 77, 78, 81

implementation 76

AdapterFunc (Component)

adapter implementation 78, 81

implementation 76

Adaptive Communication Environment (Library)

existing reusable pattern libraries 166

previous solutions 5

Adaptive Pattern Library

the goal of this thesis 3

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

224

Aggregation

instead of inheritance 20

ALGOL 60

lambda expression 30

Aliasing

Spec# 19

Anonymous delegates

feature in C# 2.0 17

Anonymous function See Anonymous method

adapter outcome 83

chain of responsibility outcome 156

command outcome 149

composite outcome 108

conclusion 197

decorator outcome 93

design pattern reusability 14

factory method outcome 65

lambda expressions 30

memento outcome 164

Anonymous method

existing reusable pattern libraries 176

features used to implement reusable components 26

lambda expression 30

Anonymous types

feature in C# 3.0 17

AOP See Aspect-oriented programming

Apache commons (Library)

existing reusable pattern libraries 183

Apache commons chain (Library)

existing reusable pattern libraries 183

Aspect oriented programming

design by contract 18

previous solutions 10

Aspects

design by contract 18

AsyncInvoker (Component)

command implementation 145

command outcome 149

Attribute

conclusion 197

design pattern reusability 14

factory method outcome 65

features used to implement reusable components 21

flyweight outcome 74

state outcome 130

AutoAbstractFactory (Component)

appendix II 217

graphical overview 48

implementation 45

lambda expression 31

outcome 53

theoretical example 51, 52

AutoAdapter (Component)

adapter implementation 81

adapter outcome 82, 83

appendix I 213

diagram 80

implementation 76, 78

theoretical example 80

uses duck-typing 26

AutoCommand (Component)

command implementation 137, 138

command theoretical example 147

AutoComposite (Component)

component implementation 98, 100

composite outcome 107

composite theoretical example 105

example 99

features used to implement reusable components 23

implementation 95

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

225

overview 100, 108

theoretical example 104

AutoDecorator (Component) 87

decorator introduction 86, 93

decorator theoretical example 91, 92

diagram 89

implementation 85, 88, 89

theoretical example 91

AutoInvoker (Component)

command implementation 146

command outcome 149

command theoretical example 148

AutoMacroCommand (Component)

command implementation 138

command outcome 149

Automatic properties

feature in C# 3.0 17

AutoStateContextFactory (Component)

state implementation 121

state theoretical example 128

AutoUndoableCommand (Component)

command implementation 138

command outcome 149

AutoUndoableCommandInvoker (Component)

command implementation 146

command outcome 149

AutoUndoableMacroCommand (Component)

command implementation 138

command outcome 149

B

BaseInvoker (Component)

command implementation 140, 141, 142

BaseUndoableInvoker (Component)

command implementation 140

Blocking queue

command implementation 145

BlockingInvoker (Component)

command implementation 145

command outcome 149

Boo

existing reusable pattern libraries 170

Boost flyweight library

existing reusable pattern libraries 172

Borland Delphi

C# has evolved from 17

designed by Hejlsberg 17

existing reusable pattern libraries 165

Bridge

future work 200

shown as a FDP and cadet 11

Builder

conclusion 195

shown as a FDP and cadet 11

C

C

family of languages 17

C#

existing reusable pattern libraries 165

C++

C family of languages 17

C# has evolved from 17

curiously recurring template pattern 22

existing reusable pattern libraries 165, 167, 172, 179

exploring reusable design patterns 5

higher level language 9

standard template library 22

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

226

Cadet

pattern classification 13

Call backs

Spec# 19

Caretaker (Component)

diagram 161

Caretaker (Participant)

memento introduction 158

CastleProject (Library)

conclusion 195

Cecil

built in multiple-dispatch 8

Chain of responsibility

conclusion 193, 197

dynamic typic 30

existing reusable pattern libraries 183

introduction 150

outcome 155, 156

shown as a cadet 11

shown as a LDDP 12

structure 150

Chain.NET (Library)

existing reusable pattern libraries 183

ChainOfResponsibilityEx (Component)

implementation 153

Christopher Alexander 1

Civil architecture 1

Cliché

pattern classification 13

patterns supported by language features 12

Client (Participant)

adapter introduction 76

chain of responsiblity introduction 151

command introduction 132

composite introduction 95

introduction 33, 45

outcome 67

Clojure

built in multiple-dispatch 8

Clone

existing reusable pattern libraries 165

prototype component 33

CLOS See The Common Lisp Object System

Closure

existing reusable pattern libraries 170

Coalesce operator

feature in C# 2.0 17

Code block

anonymous method 27

Code Contracts (Library)

design by contract 19

Code generation

patterns from models 10

Cohesive

existing reusable pattern libraries 177

patterns, actions and functions 192

Collection initialisers

feature in C# 3.0 17

COM

optional ref keyword in C# 4.0 17

Command

conclusion 193, 197, 198, 199

existing reusable pattern libraries 176

generics 22

introduction 131

outcome 148, 149

shown as a LDDP, cliché and idiom 12

structure 131

Command (Component)

command implementation 136, 137

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

227

Command (Implementation)

command implementation 133, 135

Command (Participant)

command implementation 136, 137, 139, 140, 143, 144,

145, 146

command introduction 132

command theoretical example 146, 147, 148

conclusion 199

existing reusable pattern libraries 180, 181

patterns, actions and functions 184, 185, 186, 188

Commons chain (Library)

existing reusable pattern libraries 183

Completeness

design pattern reusability 15

Component (Component)

AutoDecorator implementation 85

Component (Participant)

component implementation 96, 98

composite implementation 95, 101, 102, 103

composite introduction 94

composite outcome 107

composite theoretical example 104, 105, 107

decorator introduction 84

decorator outcome 92

decorator theoretical example 91

existing reusable pattern libraries 173, 176

implementation of AutoDecorator 88, 89

overview of AutoComposite 100

patterns, actions and functions 185, 186, 187, 188

ComponentExtend (Component)

component implementation 98

Composite

conclusion 193, 197, 198

existing reusable pattern libraries 175

introduction 94

outcome 107

shown as a FDP and cadet 11

structure 94

Composite (Component)

command implementation 138

composite theoretical example 105

diagram 103

implementation 102

state implementation 120

Composite (Participant)

component implementation 101

composite implementation 95, 102

composite introduction 95

composite outcome 107

composite theoretical example 104, 105, 107

existing reusable pattern libraries 176, 178

patterns, actions and functions 186, 188

state implementation 120

CompositeFunc (Component)

component implementation 99, 100, 101

composite implementation 95, 101

CompositeMethodAttribute (Component)

component implementation 96

composite implementation 95, 102

composite theoretical example 104

CompositeStrategy (Component)

component implementation 98, 101

composite implementation 95, 101

composite theoretical example 105

ConcreteCommand (Participant)

command implementation 133, 135, 136, 137, 138

command introduction 132

command outcome 148, 149

ConcreteComponent (Participant)

decorator introduction 85

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

228

decorator theoretical example 91

ConcreteCreator (Participant)

introduction 56

theoretical example 63

ConcreteDecorator (Participant)

decorator introduction 85

decorator theoretical example 92

ConcreteFactory (Participant)

AutoAbstractFactory graphical overview 48

introduction 45

outcome 53

SimpleAutoAbstractFactory component 50

SimpleAutoAbstractFactory example 50

ConcreteFlyweight (Participant)

flyweight theoretical example 73

implementation of FlyweightFactory 71

introduction 67

state implementation 122

theoretical example 73

UML diagram of FlyweightFactory 69

ConcreteHandler (Participant)

chain of responsibility outcome 155

chain of responsiblity introduction 151

ConcreteProduct (Participant)

ActionCreator implementation 56

factory method outcome 64

introduction 56

theoretical example 63

ConcretePrototype (Participant)

introduction 33

theoretical example 34, 35

ConcreteState (Component)

state implementation 112

ConcreteState (Participant)

state implementation 111, 112, 114, 115, 116, 117, 121

state introduction 110

state theoretical example 122, 123, 124, 126, 127

Context (Component)

state theoretical example 123

Context (Participant)

state implementation 111, 112, 113, 115, 116, 118, 120,

121

state introduction 110

state outcome 130

state theoretical example 123, 124, 125, 126, 128

Contravariance for delegates

feature in C# 2.0 17

Contravariant generic type

feature in C# 4.0 17

Covariance

feature in C# 2.0 17

Covariant generic type

feature in C# 4.0 17

Creator (Participant)

introduction 56

patterns, actions and functions 189

Cross-cuts See Cross-cutting concerns

Cross-cutting concerns

design by contract 18

CRTP See Curiously recurring template pattern, See Curiously

recurring template pattern

Curiously recurring template pattern

composite implementation 102

generics 22, 103

singleton component 38

state implementation 110, 112, 114, 118, 120

state theoretical example 122, 128

Currying

existing reusable pattern libraries 170

Custom attribute

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

229

features used to implement reusable components 21

D

D

generic programming 22

Data structure

standard template library 22

DbC See Design by Contract

Decorator

conclusion 193, 195, 197

existing reusable pattern libraries 173

introduction 84

outcome 92

shown as a FDP and cadet 11

structure 84

Decorator (Component)

implementation 85

Decorator (Participant)

decorator introduction 85

decorator theoretical example 91, 92

existing reusable pattern libraries 173, 174

state implementation 120

Default state

state outcome 130

Delegate (C# keyword)

anonymous method 27

features used to implement reusable components 27

lambda expression 30

language feature in C# to implement a pattern with 14

language feature in C# used for observer 12

Spec# 19

Delphi See Borland Delphi

Dependency injection

existing reusable pattern libraries 166, 170, 191

Design by contract

adapter outcome 83

chain of responsibility outcome 156

command outcome 149

composite outcome 108

conclusion 197

decorator outcome 93

design pattern reusability 14

factory method outcome 65

features used to implement reusable components 18

flyweight outcome 74

memento outcome 164

prototype outcome 36

state outcome 130

Design pattern

benefits 1

drawbacks 2

formalised in language 11

Design reuse

the goal of this thesis 4

DesignByContract (Library)

existing reusable pattern libraries 167

Dictionary 70

DictionaryFlyweightCache (Component)

implementation of FlyweightFactory 70

DLR See Dynamic Language Runtime

Domain specific language

conclusion 199

Double-checked locking

existing reusable pattern libraries 166

in singleton pattern 7

used by C++ singleton 5

Duck typing

abstract factory outcome 54

adapter implementation 78, 80

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

230

adapter outcome 83

appendix II 217, 218

composite outcome 107, 108

composite theoretical example 105

conclusion 195, 197

contributions of this thesis 31

decorator introduction 85

decorator outcome 93

decorator theoretical example 92

design pattern reusability 14

existing reusable pattern libraries 170

features used to implement reusable components 24

implementation of AutoDecorator 89

in the APL library 26

DuckTaper (Library)

AsIf extension method 25

extending the library 25

features used to implement reusable components 24

Dylan

built in multiple-dispatch 8

Dynamic (keyword in C#)

dynamic typing 29

DynamicChainOfResponsibility example 30

implement multiple-dispatch with 8

Dynamic language

dynamic typing 29

feature in C# 4.0 17

Dynamic language runtime

dynamic typing 29

Dynamic type

chain of responsibility outcome 156

conclusion 198

design pattern reusability 14

Dynamically bound

existing reusable pattern libraries 172

DynamicChainOfResponsibility (Component)

appendix III 219, 220

chain of responsibility outcome 155, 156

chain of responsibility theoretical example 155

dynamic typing 30

implementation 151, 152, 153

DynamicObject

chain of responsibility implementation 151, 153

DynamicProxy (Library)

conclusion 195

DynamicStateContextEx (Component)

state implementation 120

DynamicStateEx (Component)

diagram 119

state implementation 119

E

Eiffel

conclusion 195

design by contract 18

design pattern reusability 15

existing reusable pattern libraries 166, 170, 171, 172,

173, 175, 176, 183

extending the language 10

generic programming 22

used in thesis by Arnout 7

Erlang

lambda expression 31

Event (keyword in C#)

feature in C# 1.0 17

language feature in C# used for observer 12

Exposed state

state outcome 129

Expression tree

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

231

lambda expression 30

Extended applicability

design pattern reusability 15

Extension (to a pattern)

implementation of ActionPrototypeCreator 61

state implementation 111

state outcome 129

Extension method See Mixins

feature in C# 3.0 17

state implementation 119

F

F#

lambda expression 31

Facade

shown as a LDDP, cliché and idiom 12

Factory (Component)

AutoAbstractFactory implementation 47

implementation of ActionFactoryCreator 58

implementation of FuncFactoryCreator 60

lambda expression 31

patterns, actions and functions 189

Factory method

conclusion 193, 197, 198

introduction 55

outcome 64, 65

shown as a LDDP 12

structure 55

Faithfulness

design pattern reusability 15

FDP See Fundamental Design Patterns

Fine grained objects

flyweight introduction 66

Flavors

mixins or extension methods 20

Flyweight

conclusion 193, 197, 198

existing reusable pattern libraries 172

introduction 66

outcome 74

shown as a FDP 12

state implementation 122

structure 66

Flyweight (Component)

state theoretical example 125

Flyweight (Participant)

flyweight theoretical example 73

implementation of FlyweightFactory 69

introduction 67

state implementation 116, 118, 122

state theoretical example 125, 126

FlyweightContext (Component)

diagram 117

state theoretical example 126

FlyweightFactory (Component)

flyweight theoretical example 73

implementation 67, 70, 71

UML diagram 69

FlyweightFactory (Participant)

outcome 67

theoretical implementation 71

FlyweightStateContext (Component)

state implementation 116

FlyweightStateFactory (Component)

state implementation 114

Formalisation of patterns

future work 200

Fortress

built in multiple-dispatch 8

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

232

From patterns to components

previous solutions 7

Func

action and func family of library delegates 28

conclusion 195

implementation of AutoDecorator 87, 88

implementation of FuncCreator 59

patterns, actions and functions 189, 190, 192

used in APL library 29

FuncCreator (Component)

implementation 59

multiple components 61

FuncDecorator (Component)

patterns, actions and functions 191, 192

FuncDecoratorStrategy (Component)

implementation of AutoDecorator 87, 89

patterns, actions and functions 191

FuncDecoratorStrategy (Components)

implementation of AutoDecorator 88

FuncFactoryCreator (Component)

implementation of FuncFactoryCreator 60

multiple components 61

patterns, actions and functions 191

FuncPrototypeCreator (Component) 62

factory method outcome 64

Functional language

existing reusable pattern libraries 168

lambda expression 31

Functional programming

patterns, actions and functions 192

Functor

existing reusable pattern libraries 179

Fundamental Design Pattern

classified in design patterns 11

guidelines with regards to design pattern classification 13

previous solution 11

G

Garbage collection

feature in C# 1.0 17

Generator

existing reusable pattern libraries 170, 177

Generics

adapter outcome 83

chain of responsibility outcome 156

command outcome 149

composite outcome 108

conclusion 197

design pattern reusability 14

existing reusable pattern libraries 166, 176

factory method outcome 65

feature in C# 2.0 17

features used to implement reusable components 22

language feature in C# to implement a pattern with 14

memento outcome 164

prototype outcome 36

state outcome 130

used in C++ 5

Google code

existing reusable pattern libraries 166, 167

Grammar

for formalised design pattern 11

Groovy

built in multiple-dispatch 8

existing reusable pattern libraries 169

H

Handler (Participant)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

233

chain of responsibility implementation 152, 153

chain of responsibility theoretical example 155

chain of responsiblity introduction 151

dynamic typing 30

patterns, actions and functions 188, 189

Haskell

built in multiple-dispatch 8

generic programming 22

lambda expression 31

I

IAutoCommandInvoker (Component)

command implementation 146

IAutoDecorator (Component)

state implementation 120

IAutoFlyweightContext (Component)

state implementation 122

IAutoState (Component)

implementation 110

state implementation 118, 119, 121

state theoretical example 127

IAutoStateContext (Component)

state implementation 120, 121

state theoretical example 128

IAutoUndoableCommandInvoker (Component)

command implementation 146

IClonable

existing reusable pattern libraries 165

ICommand (Component) 62

command implementation 132, 133, 138, 139

command outcome 148

command theoretical example 147

conclusion 195

existing patterns, actions and functions 184

factory method outcome 64

generics 22

implementation of ActionCreator 57

implementation of FuncCreator 60

patterns, actions and functions 185, 186, 188, 189

ICommandInvoker (Component)

command implementation 139, 140

IComponent (Component)

component implementation 98, 99

composite implementation 102, 103

composite theoretical example 104

patterns, actions and functions 186, 187, 188

Idiom

pattern classification 13

patterns supported by language features 12

IFactory (Component) 62

AutoAbstractFactory implementation 47

implementation of ActionCreator 57

implementation of ActionFactoryCreator 58

implementation of FuncFactoryCreator 60

patterns, actions and functions 189

IFlyweightCache (Component)

FlyweightFactory UML diagram 69

implementation of FlyweightFactory 69

IFlyweightContext (Component)

state implementation 118, 122

state theoretical example 125

IMacroCommand (Component)

command implementation 139

command outcome 149

IMacroUndoableCommand (Component)

command outcome 149

IMemento (Component)

memento implementation 160, 161

Implementation overhead

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

234

conclusion 198, 199

pattern drawbacks 2

the goal of this thesis 3

Indexed properties

feature in C# 4.0 17

Inheritance

adapter outcome 83

chain of responsibility outcome 156

command outcome 149

composite outcome 108

conclusion 197

decorator outcome 93

design pattern reusability 14

factory method outcome 65

feature in C# 1.0 17

flyweight outcome 74

Spec# 19

state outcome 130

Integrated development environment 2

Intel

appendix II 217

Interface

adapter outcome 83

Boo 170

command outcome 149

composite outcome 108

conclusion 197

decorator outcome 93

design pattern reusability 14

factory method outcome 65

flyweight outcome 74

memento outcome 164

state outcome 130

Interpreter

shown as a cadet 11

Intrinsic attribute

features used to implement reusable components 21

Invariant

design by contract 18

Invoker (Component)

command outcome 148

Invoker (Implementation)

command implementation 135, 136

Invoker (Participant)

command implementation 139, 140, 142, 143, 146

command introduction 132

command theoretical example 147

existing reusable pattern libraries 178, 181

Invokers (Participant) 140, 145

IOriginator (Component)

memento implementation 159

IReceiver (Component)

command implementation 136, 137

IronPython

dynamic programming language 30

IronRuby

dynamic programming language 30

IState (Component)

implementation 110, 111

state implementation 111, 112, 119

state theoretical example 122, 124

IStateContext (Component)

implementation 110

state implementation 113, 118

state theoretical example 124

Iterator

shown as a FDP 12

IUndoableCommand (Component)

command implementation 136, 138

command outcome 149

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

235

IUndoableCommandInvoker (Component)

command implementation 140

J

Java

C family of languages 17

C# has evolved from 17

existing reusable pattern libraries 165, 168, 172, 175

extended by MultiJava 6

generic programming 22

higher level language 9

iterator and memento with new language features 12

no built in multiple-dispatch 7

used in thesis by Arnout 7

JavaScript

existing reusable pattern libraries 165

K

Kitchen sink problem

defined by Vlissides 10

L

Lambda expression

adapter implementation 81

adapter outcome 83

anonymous method 27

chain of responsibility outcome 156

component implementation 99

composite theoretical example 105

conclusion 197

creational anonymous function 31

decorator outcome 93

design pattern reusability 14

existing reusable pattern libraries 176

factory method outcome 65

feature in C# 3.0 17

features used to implement reusable components 30

found in programming languages 31

lambda calculus 30

memento outcome 164

method references or delegates 27

operator => 30

usage of an Action delegate 28

Language dependant design patterns

conclusion 199

previous solution 11

table of LDDP's 12

LDDP See Language Dependant Design Patterns

LDP See Library Design Patterns

Leaf (Component)

composite implementation 103

composite theoretical example 104

example 103

Leaf (Participant)

composite introduction 95

composite outcome 107

composite theoretical example 104, 105, 107

example of Leaf component 103

existing reusable pattern libraries 176

LePUS3

appendix IV 221

future work 200

Library Design Pattern

conclusion 199

Library Design Patterns

previous solution 11

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

236

solution to tracing problem 13

LINQ

feature in C# 3.0 17

Lisp

anonymous methods 26

built in multiple-dispatch 8

lambda expression 31

mixins or extension methods 20

Lisp machine lisp

mixins or extension methods 20

Locking

in singleton 7

Loki

existing reusable pattern libraries 167, 179

previous solutions 5

Lua

existing reusable pattern libraries 177

M

Macro command

existing reusable pattern libraries 180, 181, 182

Maintainability

conclusion 198, 199

modern language feature helps with 15

pattern drawbacks 2

Mediator

conclusion 195

implementing an observer with regards to a RDP 13

shown as a FDP and cadet 11

Memento

conclusion 193, 195, 197, 198

existing reusable pattern libraries 183

introduction 157

mixins or extension methods 20

outcome 163, 164

shown as a cliché and idiom 12

shown as a FDP 12

structure 157

theoretical example 162

Memento (Component)

diagram 161

memento implementation 160, 162

theoretical example 163

Memento (Participant)

memento implementation 160, 161

memento introduction 157

theoretical example 163

MementoRestore (Component)

theoretical example 163

Memory managed

C# programming language is 17

Meta-information

attributes 21

Meta-programming 197

adapter outcome 83

composite outcome 108

decorator outcome 93

design pattern reusability 14

existing reusable pattern libraries 169

features used to implement reusable components 23

used in APL library 24

Method reference

adapter outcome 83

chain of responsibility outcome 156

command outcome 149

composite outcome 108

conclusion 197

decorator outcome 93

delegate (C# keyword) 27

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

237

design pattern reusability 14

factory method outcome 65

memento outcome 164

Microsoft

existing reusable pattern libraries 166

Microsoft DevLabs

design by contract 19

MIT artificial intelligence laboratory

mixins or extension methods 20

Mixin

conclusion 197

design pattern reusability 14

features used to implement reusable components 20

prototype outcome 36

state outcome 130

Modern C++ design

previous solutions 5

Modern language features

contributions of this thesis 31

MultiJava

previous solutions 6

Multimethods See Multiple-dispatch

existing reusable pattern libraries 170

Multiple inheritance

mixins or extension methods 20

Multiple-dispatch

as language feature 7

implemented by MultiJava 6

in connection with LDDPs 12

Multi-threaded

existing reusable pattern libraries 167

Multi-threading

in singleton 7

Spec# 19

N

Named arguments

feature in C# 4.0 17

Nested class

language feature in C# to implement a pattern with 14

NonSerialized 34

prototype component usefulness 35

Nullable types

feature in C# 2.0 17

O

Object initialisers

feature in C# 3.0 17

Object Pascal

generic programming 22

Object relational mapper

prototype component performance 36

Object-oriented

Boo 170

C# language 17

conclusion 193

design 1

existing reusable pattern libraries 177

multiple-dispatch 6

native support for patterns 7

Object-oriented software construction

the goal of this thesis 3

Observer

as a RDP using a mediator 13

conclusion 195

implemented as language feature in C# 12

shown as a cadet 11

Optional parameters

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

238

feature in C# 4.0 17

Originator (Component)

implementation 158

memento implementation 159, 161

memento theoretical example 163

Originator (Participant)

memento implementation 159, 160, 161, 162

memento introduction 158

memento outcome 164

memento theoretical example 163

ORM See Object Relational Mappers

P

Partial classes

feature in C# 2.0 17

Partial methods

feature in C# 3.0 17

Participant

reusable design pattern exploration 17

Pattern

architectural 1, 4

concurrency 1, 4

Patterns & Practices

existing reusable pattern libraries 166

PerfectJPattern

existing reusable pattern libraries 173, 175, 178, 183

Performance

design pattern reusability 15

Perl

built in multiple-dispatch 8

Polymorphic

used in multiple-dispatch 8

Polymorphism

static polymorphism 22

used in multiple-dispatch 8

Post-condition

design by contract 18

PostSharp (Library)

design by contract 18

existing reusable pattern libraries 167

Pre-condition

design by contract 18

Procedural language

lambda expression 30

Producer/consumer pattern

command implementation 145

Product (Participant) 171

abstract factory outcome 53

ActionCreator implementation 57

appendix II 217

AutoAbstractFactory graphical overview 49

existing reusable pattern libraries 170, 171

implementation of ActionCreator 57

implementation of ActionFactoryCreator 58, 59

implementation of ActionPrototypeCreator 61

introduction 45, 56

patterns, actions and functions 190

SimpleAutoAbstractFactory component 49

SimpleAutoAbstractFactory example 51

theoretical example 63

Products (Participant)

AutoAbstractFactory theoretical example 53

SimpleAutoAbstractFactory example 50

Protection proxy

conclusion 195

Prototype

component 33

component completeness 35

component extended applicability 36

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

239

component faithfulness 36

component type-safety 36

component usefulness 35

conclusion 193, 197, 198

existing reusable pattern libraries 165

introduction 32

outcome 35

shown as a LDDP, cliché and idiom 12

theoretical example 34

Prototype (Participant)

abstract factory outcome 53

component usefulness 35

factory method outcome 64

introduction 32

prototype component 33

theoretical example 34, 63

PrototypeAbstractFactory (Component) 50

outcome 53

PrototypeHelper (Component)

prototype component 33

Proxy

conclusion 195

IDuck interface 25

shown as a FDP and cadet 11

Pure state

state outcome 129

Python

existing reusable pattern libraries 165, 170

R

R

built in multiple-dispatch 8

RDP See Related Design Patterns

Receiver (Participant)

action and func family of library delegates 29

command implementation 137

command introduction 132

command outcome 148

command theoretical example 147

existing reusable pattern libraries 178, 181

method references or delegates 27

Refactoring

state introduction 109

Refinements

state outcome 129

Reflection

adapter implementation 77

adapter outcome 83

chain of responsibility outcome 156

conclusion 197

design pattern reusability 14

factory method outcome 65

feature in C# 1.0 17

features used to implement reusable components 23

flyweight outcome 74

language feature in C# to implement a pattern with 14

memento outcome 164

prototype outcome 36

state outcome 130

Related design patterns

description of 13

previous solution 11

Reliability

quote by Bertrand Meyer 18

Remote proxy

conclusion 195

Reusability

modern language feature helps with 15

pattern drawbacks 2

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

240

Reusable

the goal of this thesis 3

Ruby

existing reusable pattern libraries 173, 180

singleton build into 6

singleton example 6

S

Scala

existing reusable pattern libraries 168

generic programming 22

lambda expression 31

Seed7

built in multiple-dispatch 8

multiple-dispatch example 9

Self

existing reusable pattern libraries 165

Semantic analysis

dynamic typing 29

Separation of concern principle

design by contract 18

Serializable 34

prototype component faithfulness 36

prototype theoretical example 34

Serialization

prototype component performance 36

SimpleAutoAbstractFactory (Component)

implementation 49, 50

outcome 53

SimpleGenericAbstractFactory (Component)

patterns, actions and functions 189

SimpleInvoker (Component)

command implementation 142, 143, 144, 145

command theoretical example 147

SimpleUndoableInvoker (Component)

command implementation 142, 143, 144, 145

command outcome 149

overview 145

Singleton 43

as language feature 7

component 38

conclusion 193, 195, 197, 198

curiously recurring template pattern 23

existing reusable pattern libraries 166, 167, 168, 169

introduction 37

outcome 42

reusable C++ 5

shown as a LDDP, cliché and idiom 12

state implementation 115

structure 37

variants 39

Singleton (Component)

component implementation 38

curiously recurring template pattern 23

implementation of FlyweightFactory 69

implementation variants 39

instance per thread example 41

sequance diagram 42

state implementation 116

state theoretical example 124, 128

theoretical example 40

thread local storage 40

Singleton (Participant)

flyweight theoretical example 73

implementation of FlyweightFactory 67

instance creation 39

introduction 37

outcome 43

singleton component 38

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

241

state implementation 122

state theoretical example 128

thread local storage 41

SingletonAttribute (Component)

singleton implementation 39

thread local storage 41

SingletonStateContext (Component)

state implementation 115

SingletonStateFactory (Component)

state implementation 114, 115

SingletonTLSCreator (Component)

thread local storage 40

Smalltalk

existing reusable pattern libraries 166

Smart reference

conclusion 195

Software design

mentioned by Arnout 7

Software engineering 4

SortedDictionary 70

Spec#

design by contract 19

State

conclusion 193, 195, 197, 198

existing reusable pattern libraries 176

introduction 109

outcome 129

shown as a FDP and cadet 11

structure 109

State (Component)

implementation 110, 111

state implementation 113, 114, 116, 118, 120

state theoretical example 122, 123, 124, 127

State (Implementation)

state implementation 114

State (Participant)

state implementation 111, 112, 113, 115, 116, 118, 119,

121, 122

state introduction 110

state theoretical example 122, 123, 124, 125, 126, 127

State member

state outcome 129

State object

state outcome 129

StateAttribute (Component)

state implementation 114

StateContext (Component)

implementation 111

state implementation 113, 114, 115, 116, 120

state theoretical example 123

State-driven

state outcome 129

StateFactory (Component)

state implementation 114

Static classes

feature in C# 2.0 17

Statically typed

dynamic typing 29

existing reusable pattern libraries 170

Steve’s ice cream parlour

mixins or extension methods 20

Strategy

conclusion 195

shown as a cadet 11

Subclass

design by contract 18

Sub-classing

decorator outcome 84

Super-class

design by contract 18

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

242

Symbolics

mixins or extension methods 20

T

Target (Participant) 173

adapter implementation 76, 77, 78, 80, 81

adapter introduction 75

adapter outcome 82

appendix I 213, 215

existing reusable pattern libraries 173

theoretical example 80

Template method

shown as a LDDP, cliché and idiom 12

Templates See Generics

The Common Lisp Object System

previous solutions 6

ThreadStatic

singleton 39

thradstatic singleton example 42

Thunking 25

Traceability

conclusion 198

modern language feature helps with 15

pattern drawbacks 2

standpoint by Bosch 5

the goal of this thesis 3

Tracing problem

solution with a LDP 13

Transitions owner-driven

state outcome 130

Transitions state

state outcome 130

Turbo Pascal

designed by Hejlsberg 17

Type checking

dynamic typing 29

Type inference

existing reusable pattern libraries 170

feature in C# 3.0 17

Type-safe

C# 4.0 and .Net 17

existing reusable pattern libraries 168

Type-safety

design pattern reusability 15

feature in C# 1.0 17

U

UML

diagram of ActionCommand 135

diagram of ActionComposite 188

diagram of ActionCreator 57

diagram of ActionFactoryCreator 58

diagram of ActionPrototypeCreator 62

diagram of ActionUndoableCommand 135

diagram of AutoDecorator 89

diagram of AutoMacroCommand 139

diagram of Composite component 103

diagram of DynamicStateEx 119

diagram of FlyweightContext 117

diagram of FlyweightFactory 69

diagram of FuncCreator 60

diagram of memento 161

diagram of originator 159

flyweight theoretical example 73

reusable design pattern exploration 15

state diagram 110

Unconstrained genericity

existing reusable pattern libraries 183

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

243

Unity (Library)

existing reusable pattern libraries 166, 170, 171

UnsharedConcreteFlyweight (Participant)

flyweight theoretical example 74

outcome 67

Usefulness

design pattern reusability 15

V

Value types

feature in C# 1.0 17

Virtual constructor

existing reusable pattern libraries 172

Visitor

conclusion 195

implemented using MultiJava 6

in connection with LDDPs 12

shown as a cadet 12

shown as a LDDP, cliché and idiom 12

W

WCF See Windows Communication Foundation

prototype component performance 36

Weave

Spec# 19

Windows 7

appendix II 217

appendix III 219

Windows Communication Foundation

existing reusable pattern libraries 166

Writability

conclusion 198, 199

modern language feature helps with 15

pattern drawbacks See Implementation Overhead

Y

Yield statement

feature in C# 2.0 17

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

