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The continual advance in manufacturing processes has resulted in significantly more 

compact, high performance, devices.  Consequently, heat extraction has become the limiting 

factor, and of primary concern.  Therefore, a substantial amount of research has been done 

regarding high efficiency micro heat exchangers, employing novel working fluids. 

This dissertation numerically investigated the thermal behaviour of microchannel 

elements cooled by Newtonian and non-Newtonian fluids, with the objective of maximising 

thermal conductance subject to constraints.  This was done, firstly, for a two-dimensional 

simple microchannel, and secondly, for a three-dimensional complex microchannel.  A 

numerical model was used to solve the governing equations relating to the flow and 

temperature fields for both cases.  The geometric configuration of each cooling channel was 

optimised for Newtonian and non-Newtonian fluids, at a fixed inlet velocity and heat 

transfer rate.  In addition, the effect of porosity on thermal conductance was investigated. 

Geometric optimisation was employed to the simple and complex microchannels, 

whereby an optimal geometric ratio (height versus length) was found to maximise thermal 

conductance.  Moreover, analysis indicated that the bifurcation point of the complex 

microchannel could be manipulated to achieve a higher thermal conductance. 

In both cases, it was found that the non-Newtonian fluid characteristics resulted in a 

significant variation in thermal conductance as inlet velocity was increased.  The 
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characteristics of a dilatant fluid greatly reduced thermal conductance on account of shear-

thickening on the boundary surface.  In contrast, a pseudoplastic fluid showed increased 

thermal conductance. 

A comparison of the simple and complex microchannel showed an improved thermal 

conductance resulting from greater flow access to the conductive area, achieved by the 

complex microchannel. 

Therefore, it could be concluded that a complex microchannel, in combination with a 

pseudoplastic working fluid, substantially increased the thermal conductance and efficiency, 

as opposed to a conventional methodology. 

Keywords: Non-Newtonian fluid; Thermal conductance; Geometric optimisation; 

Microchannel; Complex geometry 
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Chapter 1 Introduction 

 Background 1.1  

Advances in the field of electronic manufacturing and design have resulted in a drive to 

increase the density of electronic systems, resulting in a higher heat generation density [1].  

This has ensued in a requirement for novel methods of extracting more heat from smaller 

systems and increasing the efficiency of existing heat extraction systems. 

For more than a decade, this drive has resulted in a significant amount of research being 

done in the field of microchannel heat exchangers and microchannel materials [2–5] in 

order to maximise the heat transfer density rate. 

The microchannel heat exchangers are merely small heat exchangers, which transfer heat 

from the given system to a working fluid.  Heat can be transferred by means of three 

mechanisms, namely: 

 Thermal conduction: Energy is transferred as a result of microscopic vibration and 

collision of particles within a body, as a result of a temperature gradient.  Thermal 

conduction can take place within virtually any matter. 

 Convection: Energy is transferred as a result of fluid movements.  Convection 

cannot take place within a solid, as particle movement is restricted. 
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 Thermal radiation: Energy is transferred by means of electromagnetic waves, 

which require no medium to propagate.  All matter with a temperature above that of 

absolute zero will emit thermal radiation. 

In a microchannel heat exchanger heat, is predominantly transferred by means of 

conduction and convection. 

More recently, researchers have become interested in the conductive and convective 

impact of using various unconventional working fluids, including nanofluids to enhance 

microchannel cooling capacity.   

Some research has been done regarding the flow of non-Newtonian fluids in microchannels 

in a heat transfer environment.  These are fluids of which the flow properties diverge from 

standard Newtonian fluids.  The most prevalent case is where the viscosity of the fluid is 

dependent on the shear rate. 

 Scope of Study 1.2  

This dissertation focuses on the use of non-Newtonian fluids as a working fluid in a 

microchannel, with the goal to geometrically optimise the microchannel so as to maximise 

thermal conductance.  The possible advantages of a complex microchannel, whereby a 

dendritic flow structure is developed, are investigated and compared to those of a simple 

(conventional) microchannel. 

The scope of study can be broken down into the following deliverables: 

 Investigate non-Newtonian flow and heat transfer characteristics in a simple 

microchannel; 

 Investigate geometric optimisation of a two-dimensional simple microchannel; 

 Investigate non-Newtonian flow and heat transfer characteristics in a complex 

microchannel; 

 Investigate optimisation of a two-dimensional complex microchannel; 

 Investigate optimisation of a three-dimensional complex microchannel. 
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Chapter 2 Literature 

 Introduction 2.1  

The aim of this chapter is to give the reader a brief overview of the key concepts related to 

the dissertation.  Section 2.2 commences with a background of non-Newtonian fluids, 

including the various categories and the non-Newtonian governing equations.  A brief 

explanation is given of the power-law model, used to describe non-Newtonian viscosity, as 

well as a description of the non-Newtonian Reynolds number.  This is followed by a 

background of complex flow structures in Section 2.3, including a brief overview of 

constructal theory and the resulting outcomes.  Then, finally microchannels and geometrical 

optimisation are discussed in Sections 2.4 and 2.5 respectively. 

 Non-Newtonian Fluids 2.2  

Other than water and air, most fluids found in nature do not adhere to the standard 

Newtonian characteristics.  Typical examples in the human body are blood and mucus.  

Many different examples can be found in nature, such as suspensions of clay (Kaolin), mud 

slurries, lava and snow.  Various manmade substances exhibit non-Newtonian behaviour 

such as toothpaste, ketchup, paint and molten rubber [6]. 
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A non-Newtonian fluid is defined as a fluid that does not exhibit standard behaviour with 

the application of a shear stress.  Fluid particles build up a micro-structure, which may 

become so dominant as to affect the macro-structure of the fluid.  In this manner, the 

micro-structure is responsible for the unique physical characteristics and a non-linear stress-

strain or stress-shear relationship.  Therefore, the slope of a shear stress versus shear rate 

curve is not constant, i.e. the viscosity of non-Newtonian fluids is not constant.   

2.2.1   Categories of Non-Newtonian Fluids 

Non-Newtonian fluids include fluids such as blood, blood plasma, syrup and Bingham plastic, 

which can be categorised according to the following rheological characteristics [6–9]: 

 Shear-thinning 

 Shear-thickening 

 Thixotropic 

 Rheopectic 

 Viscoplasticity 

 Viscoelasticity 

2.2.1.1  Shear-thinning 

Fluids such as ketchup or toothpaste exhibit shear-thinning characteristics, in which case 

once a stress is applied, the fluid viscosity decreases.  As a result, the fluid may form peaks 

and drip in large drops when poured, but flows freely under pressure.  Bingham plastics 

seem to have shear-thinning and viscoelastic characteristics (see Section 2.2.1.6). 

2.2.1.2  Shear-thickening 

The opposite case is also possible where a fluid might flow freely under a low stress 

condition, however, once pressure is applied, the fluid builds resistance.  Typical examples 

are mixtures of water and corn starch (Maizena), kaolin (clay) or slurry.  Once a shear force 

has been applied, the particles in suspension are forced together, increasing the friction and 

thus a microstructure is formed.  The water is forced out and one is left with a fluid that can 
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withstand a significantly higher shear stress.  In certain extreme cases, it may even be 

possible to walk across such a fluid. 

2.2.1.3  Thixotropic 

The fluid, which is found to be viscous and thick under normal conditions, thins with the 

application of shear stress over a time period, thereby resembling shear-thinning 

characteristics.  Upon standing, the fluid regains its yield strength and becomes more 

viscous again.  The yield strength of the fluid significantly increases with the time of rest 

before a shear force is added [10].  Scot-Blair (1992) states that if this recovery is very rapid, 

the phenomenon is observed as structural viscosity (shear-thinning); if slow, it is observed 

as thixotropic [11]. 

2.2.1.4  Rheopectic 

This is a fluid in which the stress needs to be increased in order to maintain the specific 

strain rate, hence the opposite of a thixotropic fluid.  With an increase in shear rate, the 

viscosity of the fluid decreases gradually [11]. 

2.2.1.5  Viscoplasticity 

These fluids behave plastically up to a specific yield stress, thereafter viscous flow is 

experienced.  The fluid exhibits both viscous (time dependent) and plastic (load history 

dependent) characteristics [12]. 

2.2.1.6  Viscoelasticity 

Elastic materials instantaneously deform with an addition of stress, where viscous fluids 

materials resist shear.  Thus in viscoelastic fluids, there is an instantaneous elastic response, 

but the deformation also increases with time [13].  They show viscous behaviour in constant 

shear [14], and then “relax” to elastic behaviour. 

Non-Newtonian fluid effects are varied and unusual and highly dependent on the specific 

microstructure.  Therefore, there are many different models of suspensions and polymeric 

fluids (highly elastic material laced with polymers), each encapsulating a specific observed 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

6 

 

effect [6].  Consequently, many of these models are designed with only a set of 

characteristics in mind and are not generally applicable to non-Newtonian fluids. 

2.2.2   Governing Equations 

The continuum approximation, which underlies the models, assumes that the dimensions of 

the flow field are far greater than those of the microstructure [6]. 

Conservation of mass 

Assuming the fluid is incompressible, when examining the rate of change of momentum 

within a volume of fluid, the conservation of mass will yield the following: 

       (2.1) 

where   indicates the velocity field. 

Momentum 

Manipulating the momentum equation yields: 

  
  

  
         (2.2) 

where 
 

  
 

 

  
    ,   is the fluid density,   the stress tensor and   external forces. 

In the case of incompressible fluids, the stress tensor can be split into an isotropic part and 

pressure field. 

           (2.3) 

Thus the momentum equation becomes:  

  
  

  
            (2.4) 

However, this is identical to that of a Newtonian fluid, therefore, in order to account for the 

non-Newtonian characteristics, the deviatoric stress tensor     is related to the fluid 
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properties.  This is often done by relating the deviatoric stress to the rate of strain tensor 

 ̇  defined in [6] as: 

  ̇      (  )         ̇   
   

   
 

   

   
 (2.5) 

Some authors may add slight variations or include additional elements such as temperature, 

pressure, the strain tensor    , or particulate concentration.  

Energy 

In the case where the fluid is temperature dependent and where temperature may change, 

an energy equation is required.  This is very important when modelling certain fluids such as 

snow (ice) or syrup, which may be Newtonian under fixed conditions but their viscosities are 

severely affected by temperature.  Assuming thermal expansion is negligible, the energy 

equation is found to be: 

   
  

  
 

 

 
    ̇      (   ) (2.6) 

where  ,   and   is specific heat, conductivity and Temperature respectively.  Any additional 

minor heat sources have been ignored, thus yielding an energy equation that describes the 

temperature field which forms as a result of advection, diffusion and frictional heating.  This 

may affect the fluid microstructure, material properties, and consequently, fluid flow, 

according to the constitutive law. 

2.2.3   Constitutive Models 

In a classic Newtonian fluid, the deviatoric stress is linearly proportional to the rate of strain, 

where the coefficient of proportionality is viscosity: 

          ̇  (2.7) 

This, however, is not the case in a non-Newtonian fluid, where the shear stress is not 

directly proportional to the strain rate.  In this case, the shear stress is determined by the 

microstructure of the fluid.  Hence a more complex model is required, which is capable of 
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reflecting the macroscopic effects produced by the microstructure.  Several different 

methods can be found in literature, the following are four different methods [6]: 

 

 Theoretical “kinetic” approach 

In this approach, a model of the molecular anatomy of the fluid is assembled and a kinetic 

theory built for the fluid microstructure.  This can be done by investigating the flow around 

an idealised model polymer or emulsion droplet and the generation of constitutive 

equations for a dilute suspension through averaging procedures.  Other possible methods 

include the representation of the fluid microstructure as a network of interacting elements.  

This kinetic method has, however, only recently become possible, yet it is still only 

applicable in simple fluids.  A further drawback is that the mathematics is based upon 

physical approximations instead of asymptotic analysis [6].  

 

 Phenomenological approach 

This approach makes use of a model equation that describes how one would imagine the 

fluid microstructure will affect flow.  This method was the first to be used in non-Newtonian 

fluids [6]. 

 

 Improved phenomenological approach 

This approach was introduced in an attempt to improve upon the phenomenological 

approach.  The method requires the writing down of the simplest kind of constitutive model 

that possesses the symmetries of the fluid[6]. 

 

 Practical approach 

The fourth approach is experimental.  One is to perform various experiments on the fluid 

and postulate a plausible stress-strain relationship.  This is thus an empirical approach, 

which focuses merely on the macroscopic effects of the fluid, disregarding the 

microstructure.  The advantage is that a reasonably accurate approximation can be obtained 
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from complex fluids, which would otherwise be exceedingly difficult or even impossible to 

model.  The major drawback is, however, that the model is derived according to specific 

experimental conditions [6]. 

2.2.4   Temperature Dependence 

Many non-Newtonian fluid microstructures are temperature dependent, thus the simplest 

manner to account for this is to define the viscosity as a function of temperature, such as 

the Arrhenius exponential dependence [6]: 

  ( )        (
 

  
) (2.8) 

where    is the viscosity at a reference temperature,   the universal gas law and   the 

activation energy.  Liquids are said to be strong if the viscosity is Arrhenius, and fragile if the 

viscosity is faster-than-Arrhenius [15]. 

2.2.5   Concentration Dependence 

In suspensions, the concentration of the particles within the fluid may have a major impact 

on the microstructure, and therefore, the viscosity of the fluid.  A fluid may in fact be 

Newtonian at lower concentrations, however, as the concentration is increased, it becomes 

non-Newtonian [16].  The Einstein relationship estimates the viscosity of the fluid in a dilute 

suspension of rigid spheres and solvent viscosity   .  Subsequently, the Einstein-Roscoe 

relation was developed in an attempt to extend the relation to mediums with higher 

concentrations [6].  The Einstein and Einstein-Roscoe relations are given below [6], [17]: 

      (  
 

 
 ) (2.9) 

     (  
 

    
)
  

 (2.10) 
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where   and    indicate particle concentration and maximum packing fraction, 

respectively, and   used for empirical matching. 

Particle concentration has an additional effect on the yield strength of a viscoplastic fluid.  It 

was noted that particles migrate away from areas with higher shear rates, thus the fluid at 

the centre of a channel will tend to have a lower viscosity than the walls where higher shear 

is experienced.  It was found that very dilute polymer solutions can cause damping of the 

radial and cross-flow normal stresses and increase in the axial normal stress very close to 

the wall [6], [18].  In a cross-section, fluid with a lower viscosity will migrate towards the 

outer wall, while the high viscosity fluid remains in the centre.  This produces a self-

lubricating action [19]. 

In order to model concentration variations, the following conservation equation can be 

used: 

 
  

  
   (     )    (2.11) 

         
   (  ̇) (2.12) 

 
       ̇  

   

 
 
  

  
   

(2.13) 

Where    and    are fluxes resulting from particle collision and spatially varying viscosity.     

and   are experimental constants and   particle radius. 

2.2.6   Hysteresis 

Hysteresis is a phenomenon often overlooked [6].  As the fluid microstructure changes, it 

does not necessarily reform in exactly the same manner again, and is said to disintegrate.  

This occurs in thixotropic fluid when shear-thinning occurs and the microstructure breaks 

down, it will not necessarily reform in the same manner, thus a hysteresis loop [11] occurs.  

Sudden changes to a fluid (flow rate or application of stress) may induce hysteresis in a fluid 

[19].  Hysteresis may also occur if the yield strength itself is time dependent [6]. 
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2.2.7   Power-law Model 

Non-Newtonian fluids are commonly referred to as power-law fluids, as a result of the 

Ostwald de Waele power-law model [6], [20], [21], which attempts to describe the viscosity 

as a power function as follows: 

  ( ̇)    ̇    (2.14) 

where   is the consistency and   the index.  The higher the value of  , the more viscous the 

fluid.  The index provides a measure for deviation from Newtonian behaviour, as the further 

the index is from unity, the more pronounced the non-Newtonian characteristics of the fluid 

will be. 

   = 1:  Reverts to Newtonian fluid 

   > 1:  Shear-thickening (viscosity increases with deformation) 

   < 1:  Shear-thinning 

This empirical model is useful to fit to data, however it does not capture the results of yield 

stress, as would be found in the case of a viscoplastic fluid.  One of the most common 

models that incorporate yield stress is the Herschel-Bulkley model [6], [22], given as: 

    (  ̇    
  

 ̇
)  ̇   For       (2.15) 

 ̇    For       (2.16) 

where the parameter    is the yield stress.  The Bingham fluid model can be obtained by 

substituting     into equation (2.15).  In this model, once the yield stress is overcome, the 

fluid flows as a Newtonian fluid, with strain rate proportional to the difference between the 

applied stress and yield stress [6]. 
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2.2.8   Reynolds Number 

The Reynolds number of a fluid is the ratio between inertial and viscous forces, and gives an 

indication of the particular flow regime of the fluid.  The Reynolds number for a Newtonian 

fluid can readily be calculated using the following equation [23]: 

        
    ̅

     
 (2.17) 

where   is the dynamic shear viscosity,   the density,   the diameter and   ̅ the average 

velocity. 

However, as the viscosity of non-Newtonian fluids is not constant, the Reynolds number for 

a non-Newtonian fluid is more complex to calculate.  As a result, generalised equations were 

introduced to account for the viscosity characteristics. 

Metzner and Reed [7], [15], [16] introduced a generalized Reynolds number for a pure 

power-law fluid: 

                
     ̅   

 (
    

  )
 

    

 
(2.18) 

where   is the prefactor or consistency of the power-law.  The equations for calculating a 

more complex viscosity relation, such as the Herschel-Bulkley relations, becomes 

exceedingly more complex.  The generalised Reynolds number for laminar and fully 

developed duct flow, for non-Newtonian fluids with a viscosity relation following the 

Herschel-Bulkley equation, was determined to be [23]:  

 
            

      ̅   

(
  

 (
 
  ̅)

 

  (
    

  )
 

     
  (    )

  (
 
  ̅)

   

)

 
(2.19) 

with  
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  (

   ̅
 )

 

    (
   ̅
 )

    (
   ̅
 )

 

    (
   ̅
 )

 (2.20) 

And     the constant viscosity in the very high shear rate range. 
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 Complex Flow Structures 2.3  

A complex flow structure attempts to break away from the standard flow design in an 

attempt to mimic natural design found in biological bodies and systems [24] [25].  The main 

objective is to promote higher flow access for maximising heat transfer while minimising 

flow resistance.  The design movement is towards dendritic flow structures.  These tree-type 

flow structures present the greatest relation between the volume that must be bathed and 

the port through which the stream enters or exits the volume [24].  Tree-type designs were 

proposed by constructal theory and have become useful in various applications, such as 

electronic cooling where space is limited.  

2.3.1   Constructal Theory 

Constructal theory is a principle-based method for constructing mechanisms in order to 

achieve their objectives optimally [26].  This is done by optimising volume shape, starting 

with the smallest element and progressing further.  Constructal theory attempts to find this 

optimum by making use of various different methods.  It is, therefore, not a method in itself, 

but a mind-set where the construction is not a given, but an outcome.  In this manner, it has 

been proven that nature tends to the optimal solution.  It is defined as: “For a flow system 

to persist in time (to survive) it must evolve in such a way that it provides easier and easier 

access to the currents that flow through it” [26]. 

The svelteness number is an indication of the performance of a flow system, defined as 

follows [27], [28]: 

    
                          

                          
 (2.21) 

   is a property of the global flow architecture.  When    exceeds a number of 10, local 

losses become negligible in comparison with the distributed losses.  These losses include 

junctions, bifurcations and bends. 
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As the constructal law and dendritic flow system attempts to find the optimal solution 

between various design parameters, priorities are placed upon the design variables.  It is 

found to be better to optimise for a small flow resistance with a modest flow-uniformity and 

heat transfer.  This, however, is application specific. 

2.3.2   Bifurcation 

By utilising Constructal theory, an optimal ratio can be found for the tube diameters and 

lengths as well as an optimal angle of bifurcation.  The optimal ratio equates to        

     and             for laminar fully developed flow and an optimal angle of 750, see 

Figure 2.1 [24], [29], [30]. 

 

Figure 2.1 - Y-shaped construct of round tubes [24] 

 

In a study done on the femoral arteries of hamsters [31], it was observed that the angles of 

multiple junctures along an artery will differ as depicted in Figure 2.2.  The angle was obtuse 
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at the first juncture and progressively more acute for subsequent junctions.   In the study, it 

was, however, not possible to find an optimal mathematical solution that matched the 

natural design.  Changing viscosity, as well as the energy equation used, was deemed to be 

the main cause thereof. 

 

Figure 2.2 - Observed bifurcation junction angles in hamster artery [31] 

 

It is especially important to minimise required energy use in biological systems, therefore 

nature itself has been optimised.  Theoretical arguments suggest that in order to minimise 

the expenditure of energy the total volume blood flow should be minimised, and 

concurrently, the radii of arterial segments at bifurcations which follow a power-law [32]: 

   
 

   
 
   

 
 (2.22) 

where   ,    and    are the radii of the parent, larger and smaller daughter segment 

respectively and   is the bifurcation exponent.  It is widely considered near optimum for 

    for non-pulsate flow [32] and a necessary condition for equal shear stress for 

bifurcations [33] but not sufficient.  With this exponent, it is possible to implement constant 

shear stress throughout the system, however, at the cost of flow homogeneity.  Uneven 

splitting of flow is amplified by short frequently bifurcating segments of micro-vessels and, 

in turn, leads to a heterogeneous velocity field.  The extent of phase separation is greatest 

in vessels of diameter < 30μm, and sensitive to the bifurcation angle [34]. 
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Four cases are depicted below, the first with constant flow and the second two with uniform 

shear stress.

 

Figure 2.3 - Model generated by constrained constructive optimisation. Upper seeds (random sequences) for 
boundary conditions with pre-set terminal pressure and flow and lower seeds for pre-set terminal pressure and 
uniform shear stress [32] 

 

2.3.2.1  Constrained Constructive Optimisation 

Constrained constructive optimisation (CCO) is a model used to construct detailed optimal 

tree networks (Figure 2.3), according to a bifurcation law.  Figure 2.4 depicts a tree structure 

created using CCO.  CCO assumes a constant viscosity, which in the case of a non-Newtonian 

fluid such as blood is incorrect. However, it was found that, in this application, the effects on 
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shear stress induced by shear-rate-dependent viscosity are in the order of a few percent and 

may, therefore, for most purposes, be assumed negligible [33].  

 

Figure 2.4 - Arterial tree model created with CCO [33] 

 

The results obtained with CCO, under the constant viscosity assumption, closely match 

experimental data from a pig’s left common carotid artery [33].  Interestingly, however, a 

study proposing an expansion of the initial work by Murray in Ref [30] indicates that if 

viscosity were assumed constant, the analysis would imply that only symmetric bifurcations 

are possible, leaving little room for heterogeneity [35]. 

Initial work by Murray proposes that the vascular system should be such that energy 

required (work) to maintain a specific required blood volume at a flow rate, should be 

minimised [30].  Murray’s law states that the vascular tree is designed in order to balance 

the metabolic energy of a given blood volume and the energy required for blood flow, and is 

based on a minimisation principle for dissipated power [30].  It has been tested extensively 
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and appears valid in large arteries, even though it does not provide an accurate description 

of microcirculation [30]. 

2.3.3   Cross-section 

With time, the duct cross-section of most natural biological systems tends towards a circular 

shape.  Employing constructal theory and the freedom to morph, it can be found that a 

system will tend to minimum flow resistance, which would yield a polygon with the number 

of sides tending to infinity.  Thus it yields a duct with a circular cross-section [28].  The 

design is, however, robust in nature and a polygonal cross-section with 10 sides performs 

nearly as well.  

The cross-sectional size plays a major role in the total volume of fluid flow, as well as the 

fluid resistance.  As the cross-section is increased, the flow resistance is lowered to the 

fourth power, which is represented by     
   and volume increased quadratically (   

 ) 

[24].  The terms    and    encompass all remaining factors.  Thus the optimal ration 

between these opposing constraints would depend on the specific objective.  The weight of 

the vessel/tube may be critical in the application, resulting in a higher flow resistance 

required.  Similarly, the cost of fluid could impose a restriction on the total volume, hence 

the diameter.  This is the case in the human body, where a trade-off is made between 

pumping power required (human heart) versus total blood volume.  If vessels’ cross-sections 

were to be smaller, a significantly larger heart would be required, however, less blood is 

necessary and vice versa [30].  

2.3.4   Dendritic Heat Exchangers 

According to the constructal theory, in order to maximise performance of a flow system, 

each volume element should perform at the same highest possible level of performance.  

The result is a heat exchanger with tree-shaped flow.   
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2.3.4.1  Trees Over Rectangular Area 

A balanced parallel or counter-flow heat exchanger has two identical trees mated together.  

It is assumed the trees are in excellent thermal contact with each other.  A tree is made up 

of many channels of decreasing sizes, where a channel has a length   , diameter    and 

           . 

In constructal design, the smallest scale is primordial: the construction of the entire flow 

architecture starts with the smallest element scale (     ) [24], [36].  Larger constructs are 

made by pairing these smallest elements.  Dichotomy is thus an outcome and not as a result 

of assumptions.  The channel lengths are given by the relation mentioned above:           

and the optimal ratio between diameters as            .  This yields a heat exchanger as 

depicted in Figure 2.5. 

 

Figure 2.5 - Parallel flow of tree-shaped streams distributed over a square area [36] 

 

The performance of such a tree design heat exchanger surpasses that of a conventional 

parallel tube heat exchanger [36].  It was found in [36] that for small mass flow rates, the 
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tree complexity (higher  ) has little impact on the effectiveness.  However, at higher mass 

flow rates the effectiveness increases with complexity, in a diminishing factor.  Thus if the 

pumping power is available, it may significantly improve the heat exchanger performance by 

increasing the complexity.  Complexity, however, is optimised, not maximised [27], [36]. 

2.3.4.2  Disk-Shaped Tree Structures 

In search of a simpler and more compact configuration, Heitor and Reis [26] investigated 

flow in a tram shaped as a disc between the centre and the rim.  These discs are placed in 

thermal contact with each other, forming a cross-flow as one flows from the centre 

outwards and the other inwards to the centre.  It was found that a larger cross-sectional 

area with smaller radial distance yielded improved performance, which leads the fluid 

through a tree network of radial and quasi-radial ducts as shown in Figure 2.6.  

The counter-flow heat exchanger consists of two trees, sandwiched together.  Optimal tree 

architectures are based on the assumption that the ducts are slender enough with a 

Reynolds number sufficiently small that the flow in the ducts is fully developed and laminar, 

with negligible junction losses [36].  The layouts of the ducts have three features, namely 

the number of ports on the rim (  ), the number of pairing levels (  ) and the number of 

ducts connected to the centre (  ), of which only two are degrees of freedom [24], [36].  

Optimal tree structures can be found in Ref [37]. 
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Figure 2.6 - Tree network of channels spread on a disk [24]. 

 

2.3.4.3  Square-Shaped Tree Structures 

A simplification of the round disk shape is to make use of a tree between a point and a line, 

described in [37] obtained via path minimisation.  The architecture follows the same 

principle as in Figure 2.6, as the fluid flows from a centre point to a side and vice versa.  The 

structure is made up of four identical quadrants (Figure 2.7(a)), which are added together.  

This results in an overlap of the ducts at the diagonals.  If the structure is optimised 

numerically, the two diagonal ducts bow slightly to produce the result seen in Figure 2.7 (b) 

[24].  This design, however, has only one degree of freedom, being the number of 

bifurcations [37]. 
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Figure 2.7 - (a) Construction of minimal-length tree between a line and a point [37]; (b) Qualitative 
presentation of the minimal-resistance tree of channels connecting a square rim with its centre [24] 

 

2.3.5   Cost of Computing 

It was found in [37] that it is possible to rapidly generate near-optimal tree structures by 

simply minimising the length of each duct for each area element.  The performance of these 

minimal-length trees is 10-20% inferior to that of fully optimised equilibrium structures, but 

the cost of computing is orders of magnitude smaller, especially when the number of pairing 

levels increase [27]. 

 

(a) (b
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 Microchannels 2.4  

A rapidly increasing requirement to achieve higher heat transfer density rate, especially of 

electronic devices, has promoted research into the field of microchannels and microchannel 

materials.  This has resulted in research being done in order to more accurately predict the 

heat transfer coefficients in microchannels as well as the correlation between experimental 

en theoretical results [2], [5], [38]. 

Li and Peterson [39] numerically determined an optimum shape microchannel, which was 

found to significantly improve heat transfer performance.  Unlike hypothesised, the authors 

found the optimal microchannel to hold the advantage to be a feasibly manufacturing 

design.  Further research by Bello-Ochende et al. in Ref [40] employed constructal theory 

principles in order to obtain an optimal microchannel, minimising peak wall temperatures. 

The research has extended towards the fluid-flow within the microchannel in a heat transfer 

environment.  Toh et al. found numerically in Ref [3] that lowering the Reynolds number 

results in lower frictional losses as a result of a reduced viscosity of the water.  This would 

subsequently lower the pumping power required. 

Microchannels hold the potential to enhance the heat extraction from electronic devices, 

which will promote the development of smaller, higher-performance electronic devices. 
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 Geometrical Optimisation 2.5  

A practical form of constructal theory is found in geometrical optimisation, whereby the 

geometric ratio of a geometry is to be optimised.  The optimisation is constrained by a 

certain parameter, usually total volume or cross-sectional area, and optimised according to 

an objective function, typically heat transfer, by changing the geometric ratio.   

The heat transfer characteristics in a microchannel show that the geometric aspect ratio has 

a significant effect on the efficiency of microchannel heat sinks.  In [41], Bello-Ochende et al. 

utilised geometric optimisation in order to determine the optimal configuration for a three-

dimensional microchannel.  The total volume was fixed by the length and cross-sectional 

area constraints.  This allowed the only design parameter to be in the form of the cross-

sectional shape and the ratio of the internal thickness of the vertical and horizontal 

substrate.  The authors found that, using geometric optimisation through scale analysis and 

intersecting the asymptotes method, an optimal ratio exists in order to maximise heat 

transfer over a fixed pressure drop.  Later, in Bello-Ochende et al. [40], an optimal geometry 

for a microchannel was numerically determined.   

 Conclusion 2.6  

In this chapter a background was given on literature related to the dissertation.  Non-

Newtonian fluids, the characteristics thereof sand relevant equations were given.  This 

included the Ostwald de Waele power-law model predicting the viscosity and Reynolds 

number.  Complex flow structures, with the focus on constructal theory, were discussed.  A 

brief overview of research done on microchannels was put forward.  Finally, geometrical 

optimisation was discussed, which will be employed in this dissertation. 
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Chapter 3 Numerical 

Modelling 

 Introduction 3.1  

This chapter attempts to give an overview of the numerical modelling techniques employed 

in order to solve a specific engineering problem.  The governing equations used to 

characterise the flow and energy transfer are put forward in Section 3.3.  A brief overview is 

given of the finite volume discretisation method in Section 3.4.  Finally, the SIMPLE 

algorithm, used for solving the governing equations, is discussed in Section 3.5. 

Numerical analysis was done with the use of computational fluid dynamics (CFD) software, 

namely StarCCM+, which was selected for its robustness, high quality mesh generation and 

ability to model non-Newtonian fluids. 
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 Procedural Overview 3.2  

The numerical modelling can be broken down into three sections, namely: 

Pre-processing: In order to simulate a system, a CFD model which accurately captures the 

physical model must be created.  Boundary conditions and material 

properties are defined according to the physical model.   

Once the geometry has been created, it is subdivided into small volumes, 

referred to as cells.  These cells are used to calculate the discretised 

governing equations at each point.  The mesh, which is the collection of 

cells, is refined at certain key areas according to heat transfer or fluid 

flow. 

Processing: Once the model has been created simulation takes place, where the 

discretised governing equations are solved numerically. 

Post-Processing: This stage involves the collection and evaluation of data obtained.  In 

addition to the raw data, the user has access to various visual 

representations, including flow and temperature fields. 

 Governing Equations 3.3  

The governing equations are a set of partial differential equations, mathematically 

representing the conservation laws of physics.  The laws are captured in the conservation of 

mass (continuity), momentum and energy. 

3.3.1   Conservation of Mass (Continuity) 

The equation for the conservation of mass is given by Ref [42] 
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  (  ⃑⃑ )    (3.1) 

where   is the density,   the time and  ⃑⃑  the velocity vector. 

Thus for a steady-state solution, equation (3.1) is reduced to: 

  (  ⃑⃑ )    (3.2) 

3.3.2   Conservation of Momentum 

The conservation of momentum equations, the Navier-Stokes equations, relate Newton’s 

second law, in which the rate of change of momentum of a fluid is proportional to the forces 

applied.  For incompressible flow, neglecting the gravitational effect, the equation is given 

by: 

  ( ⃑⃑    ⃑⃑ )            ⃑⃑  (3.3) 

where   is the total pressure and   the dynamic viscosity. 

3.3.3   Conservation of Energy 

The conservation of energy equation is derived from the first law of thermodynamics, which 

states that the rate of change of energy of a system is equal to the sum of the work and 

heat added to the system:  in standard form, the equation becomes [42]: 

  
  

  
    (   )    (3.4) 

where   and   is the thermal conductivity and temperature of the fluid respectively and   

the dissipation function given by: 
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(3.5) 

where   represents the coefficient of bulk viscosity.  For incompressible flow at low velocity, 

the dissipation function can be neglected, thus equation (3.5) becomes: 

    ( ⃑⃑    )     
   (3.6) 

where          ⁄       ⁄       ⁄  and    is the specific heat capacity. 

For a volume occupied by a solid, the energy equation reduces to: 

    
     (3.7) 

Flow is assumed steady, laminar, incompressible and two-dimensional with negligible heat 

transfer due to radiation and natural convection.  Buoyancy forces are considered negligible. 

 Finite Volume Method 3.4  

StarCCM+ makes use of the finite volume discretisation method in order to discretise the 

integral form of the governing equations.  The result is a set of equations which can be 

solved for each control volume or cell.  The segregated flow and segregated fluid 

temperature models of StarCCM+ are used to simulate the fluid flow and energy in 

conjunction with a second-order upwind scheme to model the convection-diffusion effect in 

the transport equations.  The segregated models allow the equations to be solved 

simultaneously in an explicit manner [43]. 

The finite volume method is similar to the finite difference method, with the advantage that 

the control volumes, thus the mesh, need not be structured.  In addition, the numerical flux 

is conserved from one discretised cell to its neighbour, which makes the scheme attractive 
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for CFD analysis [44].  The governing equations are solved at these special locations, 

typically, the nodes with a control volume surrounding them.  The discretised governing 

equations used by StarCCM+ take on the following form [43]: 

Conservation of mass (continuity) equation 

 ∑ ̇   ∑( ̇ 
   ̇ 

 )   

  

 
(3.8) 

where  ̇ 
  is the uncorrected face mass flow rate with flow correction  ̇ 

 . 

Momentum equation 

From the Navier-Stokes equations, it is possible to obtain a finite volume discretised 

equation for momentum: 

 
 

  
(    )   ∑[  (    )   ]

 
   ∑(    )  ∑   

   

 
(3.9) 

where   is the position vector,   the velocity and    grid velocity,   represents volume,   is 

the viscous stress tensor,   is the face area vector and   the identity matrix. 

Energy equation 

 
 

  
(    )   ∑{[  (    )  𝒒     (   )]   }

 
 (     )  

 

 
(3.10) 

 SIMPLE Algorithm 3.5  

The semi-implicit method for pressure-linked equations (SIMPLE) algorithm was originally 

put forward by Patankar and Spalding (1972) [42], [45], [46].  The algorithm makes use of 

correction factors to calculate the pressure on a staggered grid.  The sequence of operations 

for the SIMPLE algorithm is given by Figure 3.1 [42], [45]:  
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Start

STEP 1:  Solve the 
discretised momentum 

equations

STEP 2:  Solve pressure 
correction equation

STEP 3:  Correct pressure 
and velocities

STEP 4:  Solve all other 
discretised transport 

equations

Convergence?

Stop

Set
p* = p, u* = u

v* = v, w* = w, Φ* = Φ 

Initial guess p*, u*, v*, w*, Φ*

u*, v*, w*

 ’

p, u, v, w, Φ

Φ

Yes

No

 

Figure 3.1 - SIMPLE algorithm 
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 Non-Newtonian Fluid 3.6  

In order to model non-Newtonian fluid characteristics, the Ostwald de Waele power-law 

model [6], [20], [21] was used, according to which viscosity is a function of consistency ( ) 

and the power-law index ( ) 

  ( ̇)    ̇    (3.11) 

Three index ( ) values were used, namely: 

         Pseudoplastic (shear-thinning) 

        Newtonian 

         Dilatant (shear-thickening)  

 

This allowed for testing of both dilatant and pseudoplastic non-Newtonian fluids compared 

to the benchmark Newtonian fluid.  The goal was to simulate with both a shear-thickening 

and shear-thinning non-Newtonian fluid as to determine the effectiveness thereof as a 

working fluid. 

It was found with preliminary simulation that by using a higher consistency factor  , the 

overall viscosity of the fluid increased.  Therefore, it allowed for better testing with regard 

to the shear-thinning and -thickening action, whereby the viscosity is increased or 

decreased in the presence of shear force.  Subsequently, a consistency of 20     
 

 ⁄  [47] 

was used, which closely resembles the consistency of human blood [11]. 

 Conclusion 3.7  

In this section, the numerical modelling process was discussed.  This included an overview of 

the numerical procedure to be followed.  The governing equations responsible for the flow 

and heat transfer were described and subsequently given in their discretised form, 

accompanied with an explanation of the finite volume discretisation method used by the 

CFD software.  The process undertaken by the SIMPLE algorithm in order to numerically 
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solve the governing equations was put forward.  Finally, the numerical method for 

implementing the non-Newtonian fluid viscosity with accompanied parameters was briefly 

discussed.  The range for the power-law exponents was fixed for     *0.5, 1, 1.5+ with 

accompanied consistency of 20     
 

 ⁄ . 
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Chapter 4 Optimisation and 

Automation 

 Introduction 4.1  

In this chapter, firstly, the optimisation process (Section 4.2) is discussed and the objective 

function, namely thermal conductance, is put forward.  This is followed by the automation 

process (Section 4.3) required to automate the CFD software, the reason it was required and 

the implementation thereof. 

 Optimisation 4.2  

The phenomenon of optimisation has become more prevalent in research fields, where the 

efficiency of a system is to be maximised according to a given set of constraints.  In this 

dissertation, geometric optimisation was conducted, in which the geometry of the 

microchannel was to be optimised to enhance heat transfer.  This included the modification 

of the geometric ratio (height versus length) or in the case of a complex microchannel, the 

bifurcation point. 
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An objective function was required to evaluate the optimisation goal, being to maximise 

heat transfer through the microchannel, at various inlet velocities and porosity values, 

utilising Newtonian and non-Newtonian fluids.  Thus, thermal conductance was 

programmed as the objective function.  Thermal conductance in dimensionless form, for a 

two-dimensional model, is defined as follows [41]: 

   
    

  (        )
 

 

   (        )
 (4.1) 

    
 

     
 (4.2) 

here   is defined as the heat flux,    the thermal conductivity of the fluid,   the length of 

the computational domain, and    the excess temperature.  Manipulating equation (7.3) 

yields the following for a constant heat flux across the characteristic length  
 

 ⁄ : 

   
 

 
 

 ⁄     
 

(4.3) 

where the thermal conductance is now a function of    alone.  

Similarly for a three-dimensional case the thermal conductance can be given as: 

   
 

 3
1

   
 

(4.4) 

where  3
1

 is given as the characteristic length. 

Thermal conductance is a dimensionless form of expressing the ratio of the heat transfer 

rate to largest excess temperature, expected to occur in the exit plane of the microchannel.  

The dimensionless thermal resistance,  , is given by the reciprocal of thermal conductance: 

   
 

 
 (4.5) 

As each the design variable could be isolated and investigated independently the 

optimisation problem was rendered unimodal.  Thus optimisation algorithms were 
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redundant and a simple line search methodology could be employed to obtain the optimal 

configuration, for each flow configuration. 

 Automation 4.3  

CFD software is generally written to simulate a specific model, of which the parameters are 

clearly defined and only a few iterations are required.  This is done manually by the user and 

typically requires the manipulation of the geometry of the model in a GUI (graphical user 

interface) fashion, followed by redefining of the boundary conditions and mesh parameters.  

However, in the case of an optimisation problem, numerous iterations of design parameter 

augmentation and geometry updates are required.  Consequently, this method of user input 

becomes extremely cumbersome and time consuming.  It is therefore a requirement to 

automate the CFD software. 

As StarCCM+ is written in the Java language [9, 18], it is possible to control StarCCM+ with 

the use of a Java macro script.  A macro script was written such that it allowed the user to 

completely automate the simulations and iterate through various alterations of the design 

parameters.  

Figure 4.1 illustrates the entire simulation process, which would be automated by means of 

the macro script.  As the optimisation only required iteration through various, pre-

determined, geometries and corresponding inlet velocities, two separate macro scripts were 

created.  The first, as indicated in Figure 4.1, created all the geometries, which were 

exported.  Secondly, another macro script was written to import the geometries, initialise 

the mesh and design parameters, run the simulation and export the data.  This was iterated 

for each geometric configuration and inlet velocity.   

The use of two separate macro scripts held numerous advantages, including: 

 Increased robustness and stability:  it was found after several iterations that the 

software became increasingly more unstable, if the geometry creation was included 

in the simulation iteration. 
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 Significant resource efficiency:  as both geometric and inlet velocity iterations were 

conducted, the resources required by the software to modify the geometry within 

each iteration were significantly greater. 

 Computational time-saving:  as each successive inlet velocity was to iterate through 

a set of identical geometries, a considerable amount of CPU time was saved by 

recycling the exported geometries. 

 Ease of debugging:  separate macro scripts allowed for easier debugging and fault-

finding. 
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Figure 4.1 - Java macro script 
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 Conclusion 4.4  

In this chapter, the process of numerical optimisation with its requirements was given.  It 

was stated that, as the problem was essentially unimodal, the use of optimisation 

algorithms was not required.  The objective function, being thermal conductance, was 

defined for both a two-dimensional and three-dimensional problem.  The objective function 

was to be maximised.  However, as the optimisation routine required a significant amount 

of CFD configurations to be simulated, an automation process was required.  In order to 

achieve this, two Java macro scripts were written.  It was found best to make use of two 

separate macro scripts, which improved the stability of the routine, improved the resource 

efficiency and reduced computational time requirements.  The process followed by the 

macro script was illustrated in this chapter. 
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Chapter 5 Simple 

Microchannel 

 Introduction 5.1  

Chapter 5 is dedicated to the analysis of the simple microchannel.  The two-dimensional 

numerical model is related to the physical model in Section 5.2, by means of the boundary 

conditions.  CFD solutions are heavily dependent on the mesh quality; therefore, it is 

essential to conduct a mesh refinement study to ensure mesh independence.  The mesh 

independence study is described in Section 5.2.1, followed by the numerical simulation.  

Finally, the optimisation results are given and discussed in Section 5.4. 

 Computational Model 5.2  

Consider a section of microchannel with a total area (A) fixed at 1   10-4 m as shown in 

Figure 5.1.  The height, length and duct diameter are given by  ,   and   respectively.  The 

ratio between the area of the solid and fluid is constrained by the porosity ratio (φ).  A 

uniform heat transfer rate (q) is applied to the solid from the top and bottom and heat is 

extracted by the working fluid. 
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Figure 5.1 - Microchannel configuration 

 

A numerical model was created in StarCCM+ to accurately resemble the microchannel 

configuration given in Figure 5.1.  A three-dimensional model, with unit thickness in the  

 -direction, was created.  The fluid flow was simulated in the   -plane only.  This was to 

simulate a two-dimensional microchannel.  The result was a microchannel as follows: 
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Figure 5.2 - Simple microchannel numerical representation 

 

The inlet boundary condition was set to a velocity inlet: 

  ⃑⃑      (5.1) 

       (5.2) 

with no slip occurring on the walls of the channel and a pressure outlet was defined for the 

fluid outlet.  The thermal boundary condition consisted of uniform heat flux, calculated to 

ensure a constant total heat transfer rate (1 ), which was applied to the top and bottom of 

the solid: 

   

  

  
      (5.3) 

The remaining boundaries were modelled as symmetry planes with free slip, so as to 

represent an infinite channel, of which a two-dimensional section in the   -plane was 

considered.  Thus it can be stated that: 

 
  ⃑⃑ 

 (   )
   (5.4) 
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 (   )
   (5.5) 

Convergence of the solution was met once the residuals, which included of energy, 

continuity and velocity, were below 10-4. 

5.2.1   Mesh Refinement 

In order to accurately model the physics of the flow and heat transfer through the 

microchannel, a structured mesh, using predominantly hexahedral cells, was used.  The 

StarCCM+ trimmer cell mesher provided a robust and efficient mesh with surface 

refinement [43].  Region-specific meshing was employed where a higher level of mesh 

refinement was done in the fluid region.   

As the model was created to simulate the flow of non-Newtonian fluid, the mesh required 

adequate refinement in areas such as the walls where the shear force was higher, thus 

enabling the model to accurately capture the non-Newtonian characteristics in these 

regions.  Consequently, prism layers were added (Figure 5.3) along the fluid-solid interface 

to accurately model the fluid boundary layer and non-Newtonian characteristics, as well as 

the heat transfer over the interface. 

With the purpose of obtaining mesh-independent numerical solutions, a mesh refinement 

study was conducted.  It was found that 15 prism layers were able to capture the fluid 

boundary layer, as depicted in Figure 5.4.  As mentioned, it was required to reduce the cell 

size of the fluid region, while the cell size of the solid region could be increased, thereby 

reducing redundant computational time. 

Once scaling with regard to regions and the prism layers were added, the cell size was 

systematically reduced in order to ascertain the point at which mesh independence would 

be obtained.  A summary of the study is captured in Table 5.1.  The StarCCM+ meshing tool 

makes use of a base size, from which all mesh calculations are done, thus assisting in 

systematically reducing the cell size of the mesh.  It can be seen that 30912 cells produced a 

1.76% change in the result, after which a doubling in the amount of cells merely produced a 
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0.6% and subsequently 0.3% change.  Thus a mesh of 30 912 cells was deemed satisfactory 

to ensure mesh independence.  The result was a mesh as depicted in Figure 5.5. 

 

Table 5.1 Mesh refinement study: simple microchannel 

Cells Base size (m) Thermal Resistance % change 

21400 2.2   10-4 50.7984 - 

25586 2.0   10-4 50.6758 0.241 

30912 1.8   10-4 49.7835 1.761 

66304 1.6   10-4 49.4732 0.623 

117400 1.4   10-4 49.3278 0.294 
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Figure 5.3 - Simple microchannel prism layer mesh 

 

 

Figure 5.4 - Simple microchannel velocity profile generated by StarCCM+ 
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Figure 5.5 - Simple microchannel mesh 

 Numerical Results and Discussion 5.3  

The steady-state numerical results, simulating both Newtonian and non-Newtonian fluids, 

are given in this section.  As mentioned, convergence is only achieved once the residuals 

decrease below 10-4.  Subsequently, the temperature field error is reduced to a value of 10-4 

as well.  An example of the residuals is given in Figure 5.6.  It can be seen that the residual 

for energy has decreased below 10-4 and remained constant, while the momentum and 

continuity residuals have reduced below 10-5.  This was deemed sufficiently accurate. 
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Figure 5.6 - Residuals plot generated by StarCCM+ indicating convergence 

 

Figure 5.7 to Figure 5.9 below depict the temperature field for the three fluids with varying 

power-law exponents (  = {0.5; 1; 1.5}).  It can be seen that the maximum temperature is 

nearly 9 degrees Kelvin lower when the pseudoplastic fluid is used, compared to the dilatant 

fluid.  This equates to a 13% rise in excess temperature (the difference between fluid inlet 

and maximum microchannel temperature).  Similarly, the maximum temperature of the 

microchannel with a Newtonian working fluid is nearly 3 degrees Kelvin higher than that of 

the pseudoplastic fluid, an approximate 5% rise in excess temperature.  This indicates the 

role non-Newtonian characteristics may have upon the heat transfer capabilities of a 

microchannel. 
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Figure 5.7 - Simple microchannel temperature field (Pseudoplastic fluid,   = 0.5) 

 

Figure 5.8 - Simple microchannel temperature field (Newtonian fluid,   = 1) 
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Figure 5.9 - Simple microchannel temperature field (Dilatant fluid,   = 1.5) 

 

Figure 5.10, generated by StarCCM+, plots the fluid velocity at the various nodes in the 

working fluid channel.  It indicates the flow field at a specific point, where the flow is fully 

developed.  It can be observed that the shear-thinning action of the pseudoplastic fluid (a) 

results in increased fluid velocity in the boundary layer, as opposed to the Newtonian fluid.  

In contrast, the dilatant fluid experiences a shear-thickening in this boundary layer region, 

where shear force is increased at the wall.  This reduces the fluid velocity at the fluid-solid 

interface.  However, as continuity is to be maintained, the fluid furthest from the boundary 

is forced to increase in velocity.  The result is a less homogeneous velocity field, with higher 

peak fluid velocity in the centre of the channel. 

It can be seen that the peak fluid velocity of the dilatant fluid tends towards 0.1m/s, where 

that of the pseudoplastic fluid is merely 0.0825 m/s.  This results in an increase of fluid 

velocity of 17%, in order to maintain continuity, and subsequently, the flow rate. 
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Figure 5.10 - The fluid flow velocity distribution extracted from StarCCm+ for pseudoplastic (a); Newtonian (b) 
and dilatant (c) fluid  

(c) 

(b) 

(a) 
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 Simple Microchannel Optimisation 5.4  

The objective was to obtain an optimal geometric configuration, which maximises the 

thermal conductance derived in Section 4.2.  The ratio between the channel height and 

length is manipulated such that heat transfer is maximised, while the area of the two-

dimensional microchannel is constrained. 

5.4.1   Mathematical Formulation 

In order to perform geometric optimisation, an expression for the duct diameter   is 

required as a function of the geometric ratio, given by  / . 

If stated that the porosity ratio   is a measure of the ratio between the solid and fluid, then 

for two-dimensional analysis, it can be stated that: 

   
  

 
 (5.6) 

The respective areas can be given as: 

                 (5.7) 

                   (   ) (5.8) 

                       (5.9) 

Now, if   is fixed, then equation (5.6) can be written as: 

   
 (   )

  
 (5.10) 

     
   

 
 (5.11) 

or  
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   (  
 

 
) (5.12) 

Manipulating to solve for   yields the following: 

   
( )

   
 (5.13) 

And from equation (5.7): 

   
 

 
 (5.14) 

Thus combining equation (5.13) and (5.14), it is possible to obtain an equation for   in 

relation to  ,   and  : 

 
( )

   
 

 

 
 (5.15) 

    
 

 
(   ) (5.16) 

where the geometric ratio of     is left as a design variable. 

For this model, three different materials with known thermal coefficients were tested, 

namely silicon, aluminium and copper. 
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 Numerical Results and Discussion 5.5  

The flow was simulated at various inlet velocity ranges for porosity ratios of     ,     and 

   .  Three materials with known thermal conductivity were used as the solid material, 

namely silicon (            ), aluminium (            ) and copper (   

         ).  A constant heat transfer rate of    was applied to the top and bottom 

boundary of the solid.  This was done for three power-law exponents in order to obtain a 

comparison between Newtonian and non-Newtonian fluid.  For each fluid-solid 

configuration, geometric optimisation was done so as to obtain a maximum global thermal 

conductance, from which an optimal duct was found, as illustrated in Figure 5.11.  

Compared to Figure 5.7, it can be seen that the exit temperature of the fluid is substantially 

higher in the optimal configuration. 

As the Reynolds number is a function of viscosity and is affected by non-Newtonian fluids 

(see Section 2.2.8), the thermal conductance of the various configurations and fluids is 

compared according to a fixed inlet velocity. 

Figure 5.12 indicates the process of geometric optimisation, whereby an optimal geometric 

ratio     is obtained for silicon for a porosity of      and          inlet velocity.  The 

optimal ratio     in Figure 5.12 is shown to vary only slightly at    ,     and     for the 

pseudoplastic, Newtonian and dilatant fluid respectively.  However, the Newtonian 

characteristics can be seen to have a larger effect on the excess temperature, at these 

optimum values. 
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Figure 5.11 - Temperature distribution and boundary layer formation of characteristic geometry 

 

 

Figure 5.12 - Optimal simple microchannel geometric configuration sensitivity for silicon and three fluids (   = 
0.05     ;   = 0.95) 
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The optimal geometric ratio     is found to be dependent on the inlet velocity.  Figure 5.13 

indicates this relation, for an inlet velocity range of 0.014     (         150) to           

(         700).  As the inlet velocity, and therefore   , is increased, the thermal boundary 

layer thickness is reduced and the two boundary layers only converge further downstream.  

Thus the optimal configuration is lengthened.  Consequently, it can be stated that as        

thus       .  A further increase of   beyond the optimum will result in an overworked 

fluid, and       will systematically rise again as seen in Figure 5.12.  In addition, Figure 5.13 

indicates that the     ratio is less sensitive to inlet velocity increase as the porosity is 

decreased (i.e. the percentage of fluid in relation to solid is increased).  Therefore, at a 

porosity of    , the     ratio remains fairly constant throughout the inlet velocity range. 

 

Figure 5.13 - Optimal configuration change as a result of inlet velocity increase for a silicon substrate using a 
Newtonian working fluid 

 

As the inlet velocity is increased, the optimal       obtained is seen to decrease.  Figure 

5.14 indicates the asymptotic nature of the temperature to inlet velocity.  It can be 

concluded, from this figure, that a further increase in inlet velocity will have a decreasing 
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effect on the excess temperature.  As a higher inlet velocity increases the pressure drop and 

required pumping power, it will merely reduce overall system efficiency. 

 

 

Figure 5.14 - Excess temperature change as a result of inlet velocity and porosity increase for a Newtonian 
fluid in silicon 

 

The thermal conductance, derived above, for silicon in the range of         ⁄       

           and              is summarised in Figure 5.15.  As the velocity increases, the 

thermal conductance increases approximately linearly for a Newtonian fluid.  However, at 

higher inlet velocities, the effect of the non-Newtonian characteristics becomes more 

pronounced.  It was found that at higher inlet velocities, the dilatant (shear-thickening; 

       ) characteristics result in a reduced thermal conductance.  This may be attributed 

to the action of shear-thickening, where force is increased at the wall, which in, turn leads 

to a thickening of the dilatant fluid.  As a result, the heat transfer coefficient at the wall is 

reduced and heat transfer is significantly impaired, resulting in a decrease in thermal 

conductance of 13% from the benchmark Newtonian fluid.  The opposite effect is found 
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with a pseudoplastic fluid, whereby a shear-thinning action is experienced at the wall, 

further increasing the heat transfer coefficient and resulting in an increase in the thermal 

conductance.  Figure 5.15 captures this divergence from the Newtonian fluid.  This 

phenomenon will be accentuated as the viscosity (higher consistency  ) of the fluid is 

increased. 

 

Figure 5.15 - The optimal thermal conductance, in silicon, as a function of the power-law exponents and 
velocity (  = 0.8) 

 

A summary of data concerning the sensitivity of thermal conductance to the thermal 

conductivity of the solid material used in the microchannel, as well as the porosity ratio, is 

given in Figure 5.16.  The figure illustrates that the effect of a variation in the solid material 

thermal conductivity, from          of silicon to          of copper, accounts for 

only an approximate    increase in global thermal conductance.  This leads to the 

conclusion that the thermal conductance is insensitive to the solid material used.  However, 

as seen in Figure 5.16, a decrease in porosity leads to a higher mass flow rate and, in turn, 

results in a higher thermal conductance.   
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Figure 5.16 substantiates the conclusion that the heat transfer mechanism at play within the 

microchannel is predominantly convectively driven.  Although the conductivity of the solid 

material will contribute, the limiting factor is the convective capability of the working fluid 

and its ability to remove energy from the system. 

 

Figure 5.16 - Thermal conductance sensitivity to solid material and porosity variations for a Newtonian fluid 

 

Granted that the increased thermal conductance for a pseudoplastic fluid over a Newtonian 

fluid is relatively small at low inlet velocities (or       ), the fluid holds the advantage of 

becoming less viscous as shear force is increased, typically at locations such as a wall or 

where high flow resistance is encountered.  Thus the pseudoplastic nature of the fluid will 

result in a reduced viscosity, which, in turn, will result in lower flow resistance.  As a 

consequence, the total pressure drop across a system can be significantly reduced, thereby 

increasing system efficiency.  In Figure 5.17 the pressure drop with each fluid was 

normalized to a reference value, namely the pressure drop for the dilatant fluid at an inlet 

velocity of 0.062    .  Thus Figure 5.17 indicates the substantial increase in normalised 

pressure drop across the microchannel for a dilatant fluid (  = 1.5) compared to a 
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Newtonian fluid and conversely the reduced pressure drop incurred by a pseudoplastic (  = 

0.5) fluid.  The pseudoplastic non-Newtonian characteristic results in a significantly lower 

pressure drop across the microchannel.  The increased pressure drop is accompanied by an 

increased maximum fluid velocity encountered by the dilatant fluid.  This phenomenon is 

discussed and depicted above in Section 5.3 and Figure 5.10 respectively. 

 

 

Figure 5.17 - Normalised pressure drop for pseudoplastic versus Newtonian fluid 
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Chapter 6 2D Complex 

Microchannel 

 Introduction 6.1  

In Chapter 6, the two-dimensional complex microchannel is discussed.  The model, as well 

as complications encountered, is briefly discussed in Section 6.2 concluding with the 

reasoning behind abandoning the model. 

 Model 6.2  

Following on the results obtained for the two-dimensional simple microchannel, the non-

Newtonian flow in a complex microchannel was to be simulated.  This would allow for 

comparison between the effectiveness of a simple versus complex microchannel.  As a 

result, the configuration depicted in Figure 6.1 was modelled using StarCCM+. 
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Figure 6.1 - 2D Complex microchannel 

 

Preliminary simulations, however, highlighted a critical error.  As the heat flux is supplied 

from the top and bottom of the microchannel, the fluid bifurcating isolated a triangular 

shape of the solid material between the fluid branches.  Thus a numerical result was 

obtained as illustrated in Figure 6.2.  This further resulted in a dramatic increase in excess 

temperature as the effective conductive heat transfer area was reduced, rendering only the 

outer wall of the working fluid effective. 

As a result of the preliminary findings, it was decided to abandon any further investigation 

into two-dimensional complex microchannels and rather advance to a three-dimensional 

model, where conduction would eliminate the possibility of insulating the triangular region. 
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Figure 6.2 - Two-dimensional complex microchannel temperature field 
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Chapter 7 3D Complex 

Microchannel 

 Introduction 7.1  

In Chapter 7, the three-dimensional complex microchannel is discussed and simulation 

results given.  The computational model with mesh refinement is discussed in Section 7.2.  

The complex microchannel is optimised in terms of the geometric ratio (Section 7.4) as well 

as the bifurcation point in Section 7.5. 

 Computational Model 7.2  

Now consider a three-dimensional microchannel as depicted in Figure 7.1.  This physical 

model can be deconstructed into several individual microchannel elements, as seen in 

Figure 7.2.  The element, depicted in Figure 7.2, has a total volume ( ) fixed at  

2  10-7   .  The depth is fixed at 0.002   yielding a total microchannel cross-sectional area 

of 1   10-4   .  A uniform heat transfer rate ( ) is applied to the solid from the top and 

bottom and heat extracted by the fluid.  

The equations for conservation of mass, momentum and energy equations are respectively: 
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  (  ⃑⃑ )    (7.1) 

  ( ⃑⃑    ⃑⃑ )            ⃑⃑  (7.2) 

    ( ⃑⃑    )     
   (7.3) 

where          ⁄       ⁄       ⁄ , the Cartesian coordinates (   ) and velocity 

component (   ) are defined in Figure 7.2.  The variables are defined in the nomenclature.  

For a volume occupied by a solid, the momentum (7.2) and energy (7.3) reduce to: 

  ⃑⃑    (7.4) 

    
     (7.5) 

 

 

Figure 7.1 - Complex microchannel, the physical model 
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Figure 7.2 - Section view of complex microchannel, the computational model 

 

A three-dimensional model was created in StarCCM+, accurately resembling Figure 7.2, in 

order to simulate non-Newtonian flow through the complex microchannel.  As the 

microchannel element was symmetrical in the  -axis, only half of the channel need be 

simulated, as illustrated in Figure 7.3.  This dramatically reduced computational time, with 

no detrimental effect on the accuracy. 

The boundary conditions for the model were set as follows: 

The inlet boundary condition was set to inlet velocity: 

  ⃑⃑      (7.6) 

𝑦 𝑣 

𝑥 𝑢 
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       (7.7) 

No-slip boundary conditions were set on the fluid-wall interface.  A pressure outlet 

boundary was defined for both the exits.  The thermal boundary condition consisting of 

uniform heat flux, calculated to ensure a constant total heat transfer rate (  ), was applied 

to the top and bottom of the solid: 

    
  

  
     (7.8) 

The remaining four boundaries (sides) were modelled as symmetry planes with free slip, as 

to represent an infinite channel, thus 

 
  ⃑⃑ 

 (   )
   (7.9) 

 
  

 (   )
   (7.10) 

 

Figure 7.3 - Complex microchannel numerical model 
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Convergence of the solution was met once the residuals, which included energy, continuity 

and velocity, were below 10-4. 

7.2.1   Mesh Refinement 

A mesh refinement study, which included extensive mesh refinement and optimisation, was 

conducted.  As the three-dimensional model occupied a larger volume, along with the 

bifurcation of the fluid, the model required significantly more cells than that of a two-

dimensional case.  For this reason, aggressive mesh optimisation techniques were 

incorporated to reduce the required cells and refine where needed. 

It was found that a structured mesh required less nodes than an unstructured mesh, with 

the additional advantage of lower cell skewness, and was therefore used.  The StarCCM+ 

trimmer mesher was used with fluid-region refinement, prism layers and high cell growth.  

In order to ensure a high quality mesh at the sharp angles of the bifurcation, prism-layer 

reduction was enabled, which decreased the amount of prism layers at an acute angle.  This 

ensured that a higher quality mesh was preserved. 

Once it was certain that the prism-layers captured the entire boundary layer, the cell size 

was systematically reduced in order to obtain mesh independence.  Table 7.1 gives a 

summary of the mesh refinement study.  Using the StarCCM+ mesher, it was possible to set 

a base size, from which all the cell sizes were calculated.  It was found that the simulation 

results converged for a mesh of more than 146 245 cells, accounting for a mere 0.08% 

change if the number of cells was doubled, as opposed to a 0.45% change in result if the 

number of cells was to be halved.  Thus a mesh of 146 245 cells was deemed sufficient to 

obtain mesh independence.   

The result was a mesh as depicted in Figure 7.4.  As can be seen, extensive mesh refinement 

was conducted around the fluid region, with the cell size increasing further into the solid 

region.  Figure 7.5 indicates the mesh refinement and prism layers in the fluid region. 
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Table 7.1 Mesh refinement study: complex microchannel 

Cells Base size (mm)        % change 

26043 1.4 12.677368 - 

32210 1.2 12.560608 0.921 

46424 1.0 12.710358 -1.192 

77903 0.8 12.684174 0.206 

146245 0.6 12.626709 0.453 

338342 0.4 12.636658 -0.079 

 

 
Figure 7.4 - Complex microchannel mesh 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

69 

 

 

Figure 7.5 - Mesh refinement in the fluid region 

 Complex Microchannel Optimisation 7.3  

In this section, an attempt was made to optimise the complex microchannel, as to maximise 

the thermal conductance, and subsequently, investigate the effectiveness of a non-

Newtonian working fluid compared to that of a Newtonian.  The complex microchannel can 

be optimised in two fashions, namely by optimising the bifurcation point, and secondly, by 

optimising the geometric ratio.  Both these cases will be investigated independently.  

However, as the mathematical model is generic, it is discussed in Section 7.3.1. 

7.3.1   Mathematical Formulation 

The fluid channel branches are fixed at the optimum position to minimise flow resistance, 

which has been found to be     
 

 ⁄    with the duct diameters being     
 

 ⁄    [24], 

[29], [30] for laminar flow.  The height ( ) and length ( ) are design parameters and are free 
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to morph, subject to the global constraint of volume.  The ratio between the fluid and solid 

material is constrained by the porosity ratio ( ).   

The length of the branches is given by: 

       (7.11) 

    
      (7.12) 

 

   
 

 

 
     

    
 

 
 

(7.13) 

The angle of bifurcation is represented by   

       (
   

   

)  (7.14) 

Substituting equations (7.12) and (7.13) into (7.14) yields the following angle: 

       (
     

(   ) 
) (7.15) 

As indicated above, the porosity ratio (φ) is a measure of the ratio between the solid and 

fluid: 

   
  
  

 (7.16) 

Where the solid volume can be given by 

          (7.17) 

Now, if the depth of the section of microchannel is  , and the fluid channel   ⁄  (see Figure 

7.2), then    can be approximated as: 

        
 

 
(          ) (7.18) 

Taking into account the optimal diameter and length ratio given above: 
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 ⁄    (7.19) 

     
 

 ⁄    (7.20) 

From equation (7.12), the length    can be written as: 

 (  
    

 
 

 ⁄
)      (7.21) 

       (7.22) 

    (  
    

 
 

 ⁄
) (7.23) 

Substituting into equation (7.18) yields: 

        
 

 
  ( 

 
 ⁄    

 (   ) 

     
) (7.24) 

Thus, equation (7.16) can be manipulated to: 

     
  

  
( 

 
 ⁄    

 (   )

    
) (7.25) 

As the porosity value is fixed, it can be used to determine the diameter of the duct 

branches.  Therefore, equation (7.25) can be rewritten as follows: 

    
  (   )

( 
 

 ⁄   
 (   )

    )
 

(7.26) 
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 Geometric Ratio Optimisation 7.4  

As the objective is to obtain an optimal geometric ratio in order to maximise thermal 

conductance, subject to the global constraints of volume and porosity, the ratio     is set 

as a design parameter and free to morph.  The bifurcation point, defined by the parameter 

 , is constrained to a constant value subject to equation (7.20) in order to minimise flow 

resistance. 

The parameters   and   are design parameters calculated in the macro, using equation 

(7.15) and (7.23) respectively.  However, as they are interdependent, the solutions to the 

parameters are solved iteratively in the macro, to a specified accuracy. 

An extract from the macro is given in Figure 7.6 below: 

 

Figure 7.6 - Macro Extract 

 

Figure 7.7 and Figure 7.8 illustrate the variation in geometric ratio, whereby the geometry is 

elongated.  The bifurcation point is, however, maintained constant to satisfy the equation 

(7.20). 
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Figure 7.7 - Complex microchannel     = 2 

 

 

Figure 7.8 - Complex microchannel     = 0.2 
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7.4.1   Numerical Results and Discussion 

The three-dimensional flow through a complex microchannel was simulated at various inlet 

velocity ranges for porosity ratios of     ,     and     .  The material used for the 

microchannel was silicon with known thermal conductivity (            ).  A constant 

heat transfer rate (  ) was applied to the top and bottom boundary of the solid.  This was 

done for the same three fluids, as in the simple case, with power-law exponents  

(                 ) in order to obtain a comparison between Newtonian (   ) and 

non-Newtonian fluids.  Geometric optimisation was done for each fluid-solid configuration 

to obtain a maximum global thermal conductance.  The numerical result obtained is an 

optimised complex microchannel, such as depicted in Figure 7.9. 

 

Figure 7.9 - Optimal geometry 

 

Figure 7.10 indicates the process of geometric optimisation whereby an optimal geometric 

ratio     for the complex microchannel is obtained, for a porosity of     and an inlet 

velocity of         .  From the figure, it can be seen that the optimal geometric ratio     

is     for both the pseudoplastic (     ) and Newtonian (   ) fluid, where it is     for a 

dilatant fluid (     ).  This is only a slight variation.  However, the non-Newtonian 

characteristic of the dilatant fluid can be seen to have a significant effect on the excess 

temperature. 
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As in the case of the two-dimensional simple microchannel, the optimal complex geometric 

ratio is seen to be highly dependent on the inlet velocity.  Figure 7.11 indicates this relation 

for an inlet velocity range from 0.3     (        340) to 0.1     (        1100).  Again it 

can be seen that the optimal geometry is lengthened with the increase in inlet velocity 

(       thus      0).  As the heat transfer is convectively driven, a decrease of   below 

the optimum will allow an underworked fluid to escape the heat transfer domain, resulting 

in an increased excess temperature (     ) in the conductive space.  Similarly, a further 

increase of   beyond the optimum will result in an overworked fluid, and       will 

systematically rise again as seen in Figure 7.10. 

 

Figure 7.10 - Excess temperature versus geometric ratio at inlet velocity of 0.07     and   = 0.9 
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Figure 7.11 - Optimal geometric ratio as a function of inlet velocity for a Newtonian fluid 

 

It is clear from Figure 7.11 that the     ratio is less sensitive to variation in inlet velocity as 

the porosity is decreased (i.e. the percentage of fluid in relation to solid is increased).  Thus 

at a porosity of     , the     ratio remains fairly constant throughout the inlet velocity 

range. 

It was found that as the inlet velocity increased, the optimal       obtained decreased, 

however, in Figure 7.12, this relation can be seen to have an asymptotic nature.  Thus it can 

be concluded that an additional increase in inlet velocity will have a reduced effect on 

     .  As a higher inlet velocity increases the pressure drop and required pumping power, 

it will merely reduce overall system efficiency. 
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Figure 7.12 - Optimal       versus inlet velocity for a Newtonian fluid at various porosity ratios 

 

The thermal conductance, derived above for the range of    3   ⁄                and 

           , is summarised in Figure 7.13 and Figure 7.14.  At lower inlet velocities, the 

thermal conductance increases approximately linearly.  However, at higher inlet velocities, 

the effect of the non-Newtonian characteristics becomes more pronounced.  It can be seen 

from Figure 7.13 that the dilatant fluid (       ) characteristics result in a reduced thermal 

conductivity.  This may be attributed to the action of shear-thickening, where at the wall, 

the shear force is increased, which leads to a thickening of the dilatant fluid.  The bifurcation 

of the complex structure leads to a further increase in shear force, decreasing the thermal 

conductance of the fluid.  As a result, the heat transfer coefficient at the wall is reduced and 

heat transfer is significantly impaired, causing a decrease in thermal conductance of     

from the benchmark Newtonian fluid. 

In contrast, the shear-thinning action experienced at the wall for a pseudoplastic fluid, leads 

to an increased fluid velocity at the thermal boundary, therefore increasing the convective 

heat transfer coefficient at the fluid-solid interface.  As seen in Figure 7.13, this results in an 

increased thermal conductance.  This divergence pattern between the dilatant and 
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pseudoplastic fluid will be accentuated as the viscosity (higher consistency  ) of the fluid is 

increased. 

 

Figure 7.13 - Divergence in thermal conductance for the power-law exponents as a function of inlet velocity 
(      ) 

 

Figure 7.14 indicates the effect of porosity on the thermal conductance.  Reducing the 

porosity leads to a higher mass flow rate, which, in turn, leads to a higher thermal 

conductance.  It can be noted that the divergence pattern between the fluids is similar for 

all porosities, however, slightly more pronounced at the lower value of     . 

Figure 7.15 illustrates the significant increase in normalised pressure drop across the 

complex microchannel for a dilatant fluid (     ) compared to a Newtonian fluid and 

conversely the dramatic reduction in normalised pressure drop (     ) for a pseudoplastic 

fluid (     ). Therefore, it can be stated for a complex microchannel as well, that the total 

pressure drop across a system can be significantly reduced with the use of a pseudoplastic 

fluid.  Coupled with the increase in thermal conductance achieved by a pseudoplastic fluid, 

albeit small, such reduced pressure drop may bring about significantly increased system 

efficiency. 
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Figure 7.14 - A comparison of thermal conductance between various configurations as a function of velocity 

 

Figure 7.15 - Normalised pressure drop versus inlet velocity,   = 0.95 
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 Bifurcation Point Optimisation 7.5  

For the bifurcation point optimisation, consider a microchannel element as depicted in 

Figure 7.2, where the geometric ratio     is fixed to a constant value, leaving the 

bifurcation point (     ) free to morph.  The objective is to find the optimal point at which 

bifurcation occurs, in order to maximise thermal conductance subject to the constraint of 

volume and aspect ratio, and so doing, investigate the effect of utilising a non-Newtonian 

working fluid. 

The model used for the complex ratio optimisation was modified to allow the factor  , 

which defined the bifurcation point, to be manipulated.  The geometric ratio     was set to 

a constant value of    . 

Thus from Section 7.3.1, the diameter of the branches are given as: 

    
(   ) 

( 
 

 ⁄   
 (   )

    )
    

 ⁄    
(7.27) 

where   is a design parameter and free to morph. 

Figure 7.16 and Figure 7.17 below indicate the bounds in which optimisation was 

conducted.  The optimal value for   in each case was found to be between      and    , in 

which it was allowed to vary. 
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Figure 7.16 - Complex microchannel   = 0.05 

 

Figure 7.17 - Complex microchannel   = 0.9 
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7.5.1   Numerical Results and Discussion 

Flow through the complex microchannel was simulated for two porosity values, namely      

and    .  Again the three power-law fluid exponents were used (   {           }), 

simulating Newtonian and non-Newtonian flow.  The objective was to determine the 

optimal point at which the flow channel should bifurcate, so as to maximise the thermal 

conductance and obtain a relation between inlet velocity and bifurcation point.  Again 

silicon (            ) was used as solid for the microchannel. 

By allowing the bifurcation point ( ) to morph to its optimum value, the following data in 

Figure 7.18 was obtained.  It can be noted that as the inlet velocity is increased, so   is 

reduced.  Thus, the bifurcation point is moved closer to the fluid inlet.  In this manner, the 

fluid has access to a greater area of the conductive space, increasing the total heat transfer 

capacity of the working fluid.  However, as the inlet velocity is decreased,   is increased, 

decreasing the dichotomous area of the fluid.  This prevents the fluid from being 

overworked, in which case the excess temperature of the solid in the exit plane will 

increase.  This phenomenon can be observed in Figure 7.19, where if the bifurcation point   

is further increased from the optimum point, the excess temperature increases.  Similarly, if 

  is reduced below this point, the fluid is underworked and heat transfer capacity is lost as 

the fluid escapes the convective space, again resulting in a rise in excess temperature. 

It can be seen in Figure 7.18 that the porosity ratio has an effect on the bifurcation point.  A 

decrease in porosity (higher percentage fluid) results in a lower optimum  .  In addition, it 

can be observed that the bifurcation point becomes increasingly less sensitive to velocity 

increases, as the porosity is reduced. 
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Figure 7.18 - Bifurcation point versus inlet velocity for a Newtonian fluid 

 

Figure 7.19 - Excess temperature variation as a function of bifurcation point for   = 0.95 for the various 
power-law exponents 
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Figure 7.19 indicates the effect of the power-law exponent distinguishing from dilatant, 

Newtonian and pseudoplastic fluid.  It can be noted that the bifurcation point remains fairly 

constant with the change in fluid properties, however, the excess temperature is reduced. 

Similarly, in Figure 7.20, the increase in inlet velocity as well as a lower porosity value will 

reduce the overall excess temperature, which can be directly attributed to the increase in 

the mass flow rate of the fluid. 

As in the previous sections, it can be observed in Figure 7.21 that the thermal conductance 

is increased as the inlet velocity increases.  This occurs as the excess temperature is lowered 

through an increased heat transfer rate.  Furthermore, the shear-thickening characteristic of 

the dilatant fluid again becomes more evident at higher inlet velocities where shear force at 

the walls and bifurcation point is increased, reducing the heat transfer ability of the fluid. 

By comparing the thermal conductance of the optimal bifurcation point to that of the 

optimal geometry ratio in Figure 7.14, it can be observed that by manipulating the optimal 

bifurcation point alone has a lesser contribution upon increasing the thermal conductance 

than the geometric ratio.  However, when used in conjunction, an optimal geometry can be 

obtained. 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

85 

 

 

Figure 7.20 - Excess temperature versus inlet velocity for a Newtonian fluid 

 

Figure 7.21 - Thermal conductance dependence on porosity and the power-law exponents as a function of 
inlet velocity 
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Chapter 8 Comparison of 

Simple and Complex 

Microchannel 

An identical process of geometric optimisation was followed for both microchannel models.  

It is observed from the results obtained that a similar trend persisted in both cases, whereby 

an optimal geometric ratio for each inlet velocity existed.  At this ratio, the excess 

temperature was minimised and thermal conductance was maximised.  However, it was 

found that the complex microchannel produced a higher thermal conductivity at similar 

condition.  Figure 8.1 summarises this enhanced thermal conductance obtained from the 

complex microchannel, as opposed to a simple microchannel.  In addition, when comparing 

Figure 5.11 to Figure 7.9, it can be noted that the highest temperature for the simple 

microchannel is found at the exit plane, i.e. at the furthest point from the fluid.  In Figure 7.9 

– the complex microchannel – the fluid is directed to this specific point, which assists in 

reducing the specific hot spot temperature and increasing the thermal conductance of the 

microchannel.  Thus, the complex structure allows the fluid greater access to the conductive 

space, resulting in a lower excess temperature and maximising thermal conductance. 
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Figure 8.1 - Thermal conductance of a simple microchannel (silicon) compared to a complex microchannel for 
porosity of 0.9 

 

Figure 8.2 indicates that the normalised pressure drop for the complex microchannel is only 

marginally larger than that of the simple microchannel.  This is achieved by utilising the 

optimal duct length and diameter ratio for the complex microchannel.  Moreover, at a 

higher inlet velocity, the optimal geometric ratio for a simple microchannel is small (low  /  

ratio).  This results in a very elongated geometry whereby the channel diameter is reduced 

and flow resistance is increased.  A comparison between Figure 5.13 and Figure 7.11 shows 

that the geometric ratio for a simple microchannel is significantly lower than that of the 

complex microchannel.  Consequently, it can be extrapolated that at higher inlet velocities, 

the pressure drop across a simple microchannel may surpass that of a complex 

microchannel. 
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Figure 8.2 - Normalised pressure drop for a simple microchannel compared to a complex microchannel (silicon, 
  = 0.95) 
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Chapter 9 Scale Analysis 

The numerical results obtained were compared to those of Bello-Ochende et al. [41], where 

results were based on a three-dimensional microchannel heat sink with heat flux from 

below.  By manipulating the Reynolds number, it is possible to write it as a function of the 

Bejan number: 

The Bejan number [40][24] is given by: 

    
   

 
 ⁄

  
 (9.1) 

The Reynolds number for Newtonian fluid flow through a three-dimensional microchannel, 

with characteristic length  
 

 ⁄ , can be written as: 

    
   

 
 ⁄

 
 (9.2) 

and the pressure drop over a flow section is given by: 

    
 

 
         (9.3) 

    (
  

 
)

 
 ⁄

 (9.4) 

Now, substituting equation (9.4) into (9.2) yields: 
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 (
  
 )

 
 ⁄

 
 

 ⁄

 
 (9.5) 

which can be manipulated to: 

    
(   )

 
 ⁄

 
(
   

 
 ⁄

  
)

 
 ⁄

  (9.6) 

Thus, from equation (9.1), the Reynolds number can be defined as follows: 

    (
  

 
)

 
 ⁄

(  )
 

 ⁄   (9.7) 

which can be rewritten as: 

    (
 

  
)

 
 ⁄

(  )
 

 ⁄  (
  

  
)

 
 ⁄

  (9.8) 

In Ref [41] Bello-Ochende et al. predict, using theoretical analysis, that the maximum 

thermal conductance is given by: 

                          (9.9) 

From Figure 9.1, the computational model leads to a thermal conductance relation as a 

function of Reynolds number as follows: 

                 (9.10) 

           ((
  

  
)

 
 ⁄

)

    

     (
  

  
)
   

 (9.11) 

              (9.12) 

Thus the data obtained shows similar trends as found in Bello-Ochende et al. [41] and [40]. 
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Similarly, the results for the simple microchannel show comparable tendencies to those of 

Bello-Ochende et al.  The maximum thermal conductance for the simple microchannel can 

be stated as: 

               (9.13) 

 

 

Figure 9.1 - 𝑪 𝒂𝒙 versus Reynolds number (Complex results) 
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Chapter 10 Summary, 

Conclusion and 

Recommendations 

 Summary 10.1  

In this dissertation, the effect of utilising a non-Newtonian working fluid, as opposed to a 

Newtonian, in a microchannel was investigated.  The objective was to employ geometric 

optimisation techniques in order to maximise the thermal conductance of both a simple and 

complex microchannel, over a range of flow configurations.  The result was an optimised 

microchannel, for both the simple and complex case, which could be used to critically 

evaluate the effect of a non-Newtonian power-law working fluid as well as the effect of a 

complex as opposed to a simple microchannel. 
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 Conclusion 10.2  

It was found that an optimum geometry existed for each velocity inlet and porosity value, 

whereby the thermal conductance was maximised.  Furthermore, the thermal conductance 

can be enhanced by increasing the velocity or decreasing the porosity value (i.e. higher ratio 

of fluid to solid).  A dilatant (shear-thickening) non-Newtonian fluid (       ) proved to 

greatly reduce the thermal conductivity. 

The pseudoplastic non-Newtonian (shear-thinning;      ) effect on the thermal 

conductance was, in both models, only marginally increased over that of the Newtonian 

fluid (   ).  However, as this effect was achieved in areas of higher shear stress, such as at 

the wall, the fluid became less viscous and hence the pressure drop over the channel would 

reduce.  This should reduce the pumping requirements of such a fluid and, in addition to the 

marginal increase in thermal conductance, may significantly increase the efficiency of the 

system. 

In conclusion, the analysis shows that a complex microchannel affords the working fluid 

greater access to the conductive space and therefore increases the thermal conductance of 

the microchannel to a substantial extent. 

 Recommendations 10.3  

The work done in this dissertation focussed on the maximising of heat transfer with the use 

of non-Newtonian fluids in a complex microchannel.  It was coincidently found that the 

power-law exponent had a pronounced effect on the pressure drop across the 

microchannel.  It would therefore be recommended that the research be extended into the 

effect of firstly, using a complex microchannel as opposed to conventional designs, as well 

as the effect the power-law exponent could have upon the flow resistance, the objective 

being to minimise the flow resistance while maximising the thermal conductance of a 

microchannel. 
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In addition, the dissertation focussed on a microchannel experiencing a constant heat 

transfer rate, cooled by the working fluid entering over a range of inlet velocities.  

Therefore, it can be recommended that the study be extended to investigate the effect of a 

non-Newtonian fluid, in a complex microchannel, with a constant pressure drop across the 

channel.  This will require the application of a constant heat flux on the microchannel. 
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Appendix A 

Macro Scripts 

Geometry Update 

// STAR-CCM+ macro: Complex_updateGeom.java 1 

package macro; 2 

import java.util.*; 3 

import java.lang.Math.*; 4 

import star.cadmodeler.*; 5 

import star.common.*; 6 

import star.base.neo.*; 7 

public class Complex_updateGeom extends StarMacro { 8 

  public void execute() { 9 

    execute0(); 10 

  } 11 

  private void execute0() { 12 

    Simulation simulation_0 =  13 

      getActiveSimulation(); 14 

    CadModel cadModel_0 =  15 

      ((CadModel) simulation_0.get(SolidModelManager.class).getObject("3D-CAD Model 1")); 16 

 double r = 1.5;   //r = 0.8 for k 17 

 double Hb = 1; 18 

 double Lb = 1; 19 
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 double D1 = 1; 20 

 double D2 = 1; 21 

 double D3 = 1; 22 

 double L1 = 1; 23 

 double L2 = 1; 24 

 double L3 = 1; 25 

 double Theta2 = 0; 26 

 double Theta = 75; 27 

 double phi = 0.9; 28 

 double k = 1; 29 

 double k1 = 0; 30 

 double A = 0.0001; 31 

 double des = 1/3; 32 

 double err = 100; 33 

 while (r <= 1.5) {    // (r <= 1.5) (k <= 0.95) 34 

   double val = (A/r);   // 35 

   Lb = Math.sqrt(val); 36 

   Hb = r*Lb; 37 

   while (err > 0.00001) { 38 

   k1 = 1/(1 + (Math.cos(Math.toRadians(Theta)))/(Math.pow(2,des))); 39 

     //Set if using H/L as design paramater 40 

   double temp = 0.42*Hb/((1-k1)*Lb); 41 

   Theta = Math.toDegrees(Math.atan(temp)); 42 

   err = Math.abs((k-k1)/k1); 43 

   k = k1;    44 

   } 45 

   Theta2 = 360-Theta*2; 46 

   L1 = k*Lb;    47 

   L2 = (Lb - L1)/(Math.cos(Math.toRadians(Theta))); 48 

   L3 = L2; 49 

   D2 = (1-phi)*Hb/(Math.pow(2,des)*k + 2*(1-k)/Math.cos(Math.toRadians(Theta))); 50 

   D1 = Math.pow(2,des)*D2; 51 

   D3 = D2; 52 

// Set Parameter 53 

   //Sketch 1 54 

      Sketch sketch_0 =  55 

        ((Sketch) cadModel_0.getFeatureManager().getObject("Sketch 1")); 56 

      LengthDimension LengthDimension_1 =  57 

        ((LengthDimension) sketch_0.getConstraintManager().getObject("LengthDimension 58 

1")); 59 
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      LengthDimension_1.getLength().setValue(Hb); 60 

   LengthDimension LengthDimension_2 =  61 

        ((LengthDimension) sketch_0.getConstraintManager().getObject("LengthDimension 62 

2")); 63 

      LengthDimension_2.getLength().setValue(Lb); 64 

   //Sketch 2 65 

      Sketch sketch_1 =  66 

        ((Sketch) cadModel_0.getFeatureManager().getObject("Sketch 2")); 67 

      LengthDimension LengthDimension_3 =  68 

        ((LengthDimension) sketch_1.getConstraintManager().getObject("LengthDimension 69 

1")); 70 

      LengthDimension_3.getLength().setValue(L1); 71 

      LengthDimension LengthDimension_4 =  72 

        ((LengthDimension) sketch_1.getConstraintManager().getObject("LengthDimension 73 

2")); 74 

      LengthDimension_4.getLength().setValue(L2); 75 

      LengthDimension LengthDimension_5 =  76 

        ((LengthDimension) sketch_1.getConstraintManager().getObject("LengthDimension 77 

3")); 78 

      LengthDimension_5.getLength().setValue(L3); 79 

   AngleDimension AngleDimension_1 =  80 

     ((AngleDimension) sketch_1.getConstraintManager().getObject("AngleDimension 81 

1")); 82 

   AngleDimension_1.getAngle().setValue(Theta2); 83 

   LengthDimension LengthDimension_6 =  84 

     ((LengthDimension) 85 

sketch_1.getConstraintManager().getObject("LengthDimension 4")); 86 

   LengthDimension_6.getLength().setValue(D1); 87 

   LengthDimension LengthDimension_7 =  88 

     ((LengthDimension) 89 

sketch_1.getConstraintManager().getObject("LengthDimension 8")); 90 

   LengthDimension_7.getLength().setValue(D2); 91 

   LengthDimension LengthDimension_8 =  92 

     ((LengthDimension) 93 

sketch_1.getConstraintManager().getObject("LengthDimension 9")); 94 

   LengthDimension_8.getLength().setValue(D3); 95 

      cadModel_0.update(); 96 

cadModel_0.exportModel(resolvePath("…Insert Path…/Complex_Phi_" + phi + "_r-ratio_" + 97 

r + ".x_b")); 98 

   r = r + 0.05; 99 
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   double rnew = r*100; 100 

   rnew = Math.round(rnew); 101 

   r = rnew/100; 102 

   err = 100; 103 

 } 104 

  } 105 

 106 
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Simulate and Export 

// STAR-CCM+ macro: Complex_to_csv_k.java 1 

package macro; 2 

import java.util.*; 3 

import java.lang.Math.*; 4 

import java.io.*; 5 

import java.nio.*; 6 

import star.common.*; 7 

import star.base.neo.*; 8 

import star.base.report.*; 9 

import star.vis.*; 10 

import star.meshing.*; 11 

import star.energy.*; 12 

import star.flow.*; 13 

public class Complex_to_csv_k extends StarMacro { 14 

  BufferedWriter bwout = null; 15 

  public void execute() { 16 

    execute0(); 17 

  } 18 

  private void execute0() { 19 

    Simulation simulation_0 = 20 

      getActiveSimulation(); 21 

 double r = 0.8; 22 

 double q = 0; 23 

 double L = 0; 24 

 double Phi = 0.95; 25 

 double v = 0.08; 26 

 double k = 0.05; 27 

 double A = 0.0001; 28 

 while (v >= 0.08) { 29 

 // Set velocity 30 

  Region region_5 =  31 

    simulation_0.getRegionManager().getRegion("Fluid"); 32 

     Boundary boundary_5 =  33 

          region_5.getBoundaryManager().getBoundary("Inlet"); 34 

 35 

  VelocityMagnitudeProfile velocityMagnitudeProfile_0 =  36 
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    boundary_5.getValues().get(VelocityMagnitudeProfile.class); 37 

 velocityMagnitudeProfile_0.getMethod(ConstantScalarProfileMethod.class).getQuan38 

tity().setValue(v); 39 

  while (k <= 0.3) { 40 

    double val = (A/r); // In order to scale for equal total heat flux, replace "1" 41 

with r 42 

    L = Math.sqrt(val); 43 

    double As = L*0.0004; 44 

    q = 0.5/As; 45 

// Remove Parts 46 

    Scene scene_3 = 47 

   simulation_0.getSceneManager().getScene("Geometry Scene 1"); 48 

    //PartDisplayer partDisplayer_10 = 49 

   //((PartDisplayer) scene_3.getHighlightDisplayer()); 50 

    CadPart cadPart_5 = 51 

   ((CadPart) 52 

simulation_0.get(SimulationPartManager.class).getPart("Fluid")); 53 

//    PartSurface partSurface_14 = 54 

//   cadPart_5.getPartSurfaceManager().getPartSurface("Inlet"); 55 

//    PartSurface partSurface_15 = 56 

//   cadPart_5.getPartSurfaceManager().getPartSurface("Wall_fluid"); 57 

//    PartSurface partSurface_16 = 58 

//   cadPart_5.getPartSurfaceManager().getPartSurface("Outlet"); 59 

//    PartSurface partSurface_17 = 60 

//   cadPart_5.getPartSurfaceManager().getPartSurface("Symmetry"); 61 

//    partDisplayer_10.getParts().setObjects(partSurface_14, partSurface_15, 62 

partSurface_16, partSurface_17); 63 

    LeafMeshPart cadPart_6 = 64 

   ((LeafMeshPart) 65 

simulation_0.get(SimulationPartManager.class).getPart("Solid")); 66 

//    PartSurface partSurface_18 = 67 

//   cadPart_6.getPartSurfaceManager().getPartSurface("Faces"); 68 

//    PartSurface partSurface_19 = 69 

//   cadPart_6.getPartSurfaceManager().getPartSurface("Sides"); 70 

//    PartSurface partSurface_20 = 71 

//   cadPart_6.getPartSurfaceManager().getPartSurface("Heatflux"); 72 

//    PartSurface partSurface_21 = 73 

//   cadPart_6.getPartSurfaceManager().getPartSurface("Wall_fluid"); 74 

 75 

//    PartSurface partSurface_22 = 76 
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//   cadPart_6.getPartSurfaceManager().getPartSurface("Symmetry"); 77 

//    partDisplayer_10.getParts().setObjects(partSurface_14, partSurface_15, 78 

partSurface_16, partSurface_17, partSurface_18, partSurface_19, partSurface_20, 79 

partSurface_21); 80 

    simulation_0.get(SimulationPartManager.class).removeParts(new 81 

NeoObjectVector(new Object[] {cadPart_5, cadPart_6})); 82 

 83 

//    partDisplayer_10.getParts().setObjects(); 84 

// Import Parts 85 

    PartImportManager partImportManager_0 = 86 

   simulation_0.get(PartImportManager.class); 87 

partImportManager_0.importCadPart(resolvePath("C:\\Users\\User\\Documents\\Masters\88 

\StarCCM\\Bodies\\Complex\\Complex_Phi_new" + Phi +"_k-ratio_" + k +".x_b"), 89 

"SharpEdges", 30.0, 2, true, true); // Complex_r_" + r + ".xb" 90 

    simulation_0.getSceneManager().createGeometryScene("Geometry Scene", 91 

"Outline", "Geometry", 1); 92 

    Scene scene_1 = 93 

   simulation_0.getSceneManager().getScene("Geometry Scene 2"); 94 

    scene_1.initializeAndWait(); 95 

    PartDisplayer partDisplayer_4 = 96 

   ((PartDisplayer) scene_1.getCreatorDisplayer()); 97 

    partDisplayer_4.initialize(); 98 

    PartDisplayer partDisplayer_3 = 99 

   ((PartDisplayer) scene_1.getDisplayerManager().getDisplayer("Outline 100 

1")); 101 

    partDisplayer_3.initialize(); 102 

    scene_1.open(true); 103 

    PartDisplayer partDisplayer_5 = 104 

   ((PartDisplayer) scene_1.getHighlightDisplayer()); 105 

    partDisplayer_5.initialize(); 106 

    PartDisplayer partDisplayer_6 = 107 

   ((PartDisplayer) 108 

scene_1.getDisplayerManager().getDisplayer("Geometry 1")); 109 

    partDisplayer_6.initialize(); 110 

    CurrentView currentView_1 = 111 

   scene_1.getCurrentView(); 112 

    currentView_1.setInput(new DoubleVector(new double[] 113 

{0.07071067800000001, 0.014142135500000005, 0.002500000000000001}), new 114 

DoubleVector(new double[] {0.07071067800000001, 0.014142135500000005, 115 
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0.28128299403815615}), new DoubleVector(new double[] {0.0, 1.0, 0.0}), 116 

0.07277696533501173, 0); 117 

    CadPart cadPart_1 = 118 

   ((CadPart) 119 

simulation_0.get(SimulationPartManager.class).getPart("Body 1")); 120 

//    PartSurface partSurface_0 = 121 

//   cadPart_1.getPartSurfaceManager().getPartSurface("Sides"); 122 

//    PartSurface partSurface_1 = 123 

//   cadPart_1.getPartSurfaceManager().getPartSurface("Heatflux"); 124 

//    PartSurface partSurface_2 = 125 

//   cadPart_1.getPartSurfaceManager().getPartSurface("Faces"); 126 

//    partDisplayer_5.getParts().setObjects(partSurface_0, partSurface_1, 127 

partSurface_2); 128 

    CadPart cadPart_2 = 129 

   ((CadPart) 130 

simulation_0.get(SimulationPartManager.class).getPart("Fluid")); 131 

//    PartSurface partSurface_3 = 132 

//   cadPart_2.getPartSurfaceManager().getPartSurface("Inlet"); 133 

//    PartSurface partSurface_4 = 134 

//   cadPart_2.getPartSurfaceManager().getPartSurface("Wall_fluid"); 135 

//    PartSurface partSurface_5 = 136 

//   cadPart_2.getPartSurfaceManager().getPartSurface("Outlet"); 137 

//    PartSurface partSurface_6 = 138 

//   cadPart_2.getPartSurfaceManager().getPartSurface("Faces"); 139 

//    partDisplayer_5.getParts().setObjects(partSurface_3, partSurface_4, 140 

partSurface_5, partSurface_6); 141 

//    partDisplayer_5.getParts().setObjects(partSurface_0, partSurface_1, 142 

partSurface_2); 143 

//    partDisplayer_5.getParts().setObjects(partSurface_3, partSurface_4, 144 

partSurface_5, partSurface_6, partSurface_0, partSurface_1, partSurface_2); 145 

// Generate Subtract boolean & rename 146 

    MeshActionManager meshActionManager_0 = 147 

   simulation_0.get(MeshActionManager.class); 148 

        LeafMeshPart leafMeshPart_3 =  149 

        (LeafMeshPart) meshActionManager_0.subtractParts(new 150 

NeoObjectVector(new Object[] {cadPart_1, cadPart_2}), cadPart_1, "Discrete");     151 

//    partDisplayer_5.getParts().setObjects(partSurface_0, partSurface_1, 152 

partSurface_2); 153 

    simulation_0.get(SimulationPartManager.class).removeParts(new 154 

NeoObjectVector(new Object[] {cadPart_1})); 155 
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//    partDisplayer_5.getParts().setObjects(); 156 

//    partDisplayer_5.getParts().setObjects(partSurface_3, partSurface_4, 157 

partSurface_5, partSurface_6); 158 

    Region region_0 = 159 

   simulation_0.getRegionManager().getRegion("Fluid"); 160 

    cadPart_2.setRegion(region_0); 161 

//    PartSurface partSurface_7 = 162 

//   cadPart_3.getPartSurfaceManager().getPartSurface("Faces"); 163 

//    PartSurface partSurface_8 = 164 

//   cadPart_3.getPartSurfaceManager().getPartSurface("Sides"); 165 

//    PartSurface partSurface_9 = 166 

//   cadPart_3.getPartSurfaceManager().getPartSurface("Heatflux"); 167 

//    PartSurface partSurface_10 = 168 

//   cadPart_3.getPartSurfaceManager().getPartSurface("Wall_fluid"); 169 

//    partDisplayer_5.getParts().setObjects(partSurface_7, partSurface_8, 170 

partSurface_9, partSurface_10); 171 

    leafMeshPart_3.setPresentationName("Solid"); 172 

    Region region_1 = 173 

   simulation_0.getRegionManager().getRegion("Solid"); 174 

    leafMeshPart_3.setRegion(region_1); 175 

// Create volume control 176 

    MeshContinuum meshContinuum_0 = 177 

   ((MeshContinuum) 178 

simulation_0.getContinuumManager().getContinuum("Mesh 1")); 179 

    VolumeSource volumeSource_0 = 180 

   ((VolumeSource) 181 

meshContinuum_0.getVolumeSources().getObject("Volumetric Control Fluid")); 182 

    CadPart cadPart_4 = 183 

   ((CadPart) 184 

simulation_0.get(SimulationPartManager.class).getPart("Fluid")); 185 

    volumeSource_0.getPartGroup().setObjects(cadPart_4); 186 

    //VolumeSource volumeSource_1 = 187 

   //((VolumeSource) 188 

meshContinuum_0.getVolumeSources().getObject("Volumetric Control Solid")); 189 

//    LeafMeshPart leafMeshPart_5 = 190 

//   ((LeafMeshPart) 191 

simulation_0.get(SimulationPartManager.class).getPart("Solid")); 192 

//    volumeSource_1.getPartGroup().setObjects(leafMeshPart_5); 193 

// Mesh 194 

    MeshPipelineController meshPipelineController_0 = 195 
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   simulation_0.get(MeshPipelineController.class); 196 

 197 

    meshPipelineController_0.generateVolumeMesh(); 198 

// Stopping Criterion 199 

    StepStoppingCriterion stepStoppingCriterion_0 = 200 

   ((StepStoppingCriterion) 201 

simulation_0.getSolverStoppingCriterionManager().getSolverStoppingCriterion("Maximum 202 

Steps")); 203 

    stepStoppingCriterion_0.setMaximumNumberSteps(1500); 204 

// Set Heatflux 205 

    Scene scene_2 = 206 

   simulation_0.getSceneManager().getScene("Scalar Scene 1"); 207 

    PartDisplayer partDisplayer_7 = 208 

   ((PartDisplayer) scene_2.getHighlightDisplayer()); 209 

    partDisplayer_7.getParts().setObjects(); 210 

    Boundary boundary_0 = 211 

   region_1.getBoundaryManager().getBoundary("Heatflux"); 212 

    HeatFluxProfile heatFluxProfile_0 = 213 

   boundary_0.getValues().get(HeatFluxProfile.class); 214 

heatFluxProfile_0.getMethod(ConstantScalarProfileMethod.class).getQuantity().setValue(q)215 

; 216 

// Clear and Run Solution   217 

    Solution solution_0 = 218 

   simulation_0.getSolution(); 219 

    solution_0.clearSolution(); 220 

    ResidualPlot residualPlot_0 = 221 

   ((ResidualPlot) 222 

simulation_0.getPlotManager().getObject("Residuals")); 223 

    residualPlot_0.setTitleFont(new java.awt.Font("SansSerif", 0, 12)); 224 

    simulation_0.getSimulationIterator().run(); 225 

    scene_1.close(true); 226 

    simulation_0.getSceneManager().deleteScenes(new NeoObjectVector(new 227 

Object[] {scene_1})); 228 

    scene_2.close(true); 229 

    // Writing reports to .csv 230 

    try { 231 

 // Collecting the simualtion file name             232 

   String simulationName = simulation_0.getPresentationName(); 233 

 simulation_0.println("Simulation Name:" + simulationName); 234 

// Open Buffered Input and Output Readers 235 
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// Creating file with name "<sim_file_name>+report.csv"     236 

   bwout = new BufferedWriter(new 237 

FileWriter(resolvePath(simulationName + "_Phi_" + Phi + "v_0.1-238 

0.03_NEWPHI_k.csv"),true)); 239 

   bwout.write("Phi " + Phi + " k " + k + " v " + v + ",     Value,        Unit,   240 

\n");  // k value listed 241 

   Collection<Report> reportCollection =  242 

simulation_0.getReportManager().getObjects(); 243 

for (Report thisReport : reportCollection){ 244 

String  fieldLocationName = thisReport.getPresentationName(); 245 

Double fieldValue = thisReport.getReportMonitorValue(); 246 

String fieldUnits = thisReport.getUnits().toString(); 247 

// Printing to chek in output window 248 

simulation_0.println("Field Location :" + fieldLocationName); 249 

simulation_0.println("     Field Value :" + fieldValue); 250 

simulation_0.println("      Field Units :" + fieldUnits); 251 

simulation_0.println(""); 252 

// Write Output file as "sim file name"+report.csv 253 

    bwout.write( fieldLocationName + ",    " +fieldValue + ",    " + 254 

fieldUnits +"\n"); 255 

   } 256 

   bwout.close(); 257 

  } catch (IOException iOException) { 258 

  } 259 

// New r/k value     260 

    k = k + 0.05; //r = r + 0.1; 261 

    double knew = k*1000; 262 

    knew = Math.round(knew); 263 

    k = knew/1000; 264 

  } 265 

// New Velocity   266 

  v = v - 0.01; 267 

  double vnew = v*10000; 268 

  vnew = Math.round(vnew); 269 

  v = vnew/10000; 270 

      k = 0.7;  // Reset r/k 271 

 } 272 

  }273 
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