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ABSTRACT: A series of ferrocenyl (Fc = ferrocenyl; fc = ferrocen-1,1'-diyl) and biferrocenyl (Bfc = 1',1''-biferrocenyl; bfc 
= 1',1''-biferrocen-1,1'''-diyl) mono- and biscarbene tungsten(0) complexes of the type [(CO)5W=C(OMe)R] (1, R = Fc; 3, R 
= Bfc) and [(CO)5W=C(OMe)-R'-(OMe)C=W(CO)5] (2, R' = fc; 4, R' = bfc) were synthesized according to the classical 
synthetic methodology by reacting W(CO)6 with LiR (R = Fc, fc, bfc), followed by a subsequent alkylation using methyl 
trifluoromethanesulfonate. Electrochemical investigations were carried out on these complexes to get a closer insight into the 
electronic properties of 1 - 4. The ferrocenyl and biferrocenyl moieties in 1 – 4 show reversible one electron redox events. It 
was further found that the Fischer carbene unit is reducible in an electrochemical one electron transfer process. For the 
tungsten carbonyl moieties, irreversible oxidation processes were found. In addition, charge transfer studies were performed on 1 
- 4 by the use of in situ UV-Vis-NIR and infrared spectroelectrochemical techniques. During the UV-Vis-NIR investigations 
typical low energy transitions for the mixed-valent biferrocenyl unit were found. A further observed high energy NIR 
absorption is attributed to a metal-metal charge transfer transition between the tungsten carbonyl fragment and the 
ferrocenyl/biferrocenyl group in the corresponding oxidized states, which can be described as class II systems according to 
Robin and Day. This assignment was verified by infrared spectroelectrochemical studies. The electrochemical investigations 
are supported by DFT calculations.  The structural properties of 1 - 4 in the solid state were investigated by single-crystal X-
ray diffraction studies showing no substituent effects on bond lengths and angles. The biferrocenyl derivatives exhibit syn-
conformation of the ferrocenyl and carbene building blocks. 
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INTRODUCTION  

Since the first synthesis of transition metal alkyidene 
complexes of type (CO)5M=C(OMe)R (M = Cr, W) by Fischer 
and Maasböl in the early-1960s, this family of compounds 
received popularity, as they are fascinating molecules and 
powerful tools in organic and organometallic chemistry.1 The 
Dötz benzannulation reaction and the Aumann reaction 
procedure, a simple approach to metallaolefins, are examples 
of their varied application in chemistry.2 By incorporating a 
ferrocenyl substituent with known applications in molecular 
sensors,3 energy transfer processes4 and anti-cancer drugs,5 the 
application of Fischer carbene complexes could be extended 
beyond their traditional use as ligands employed for organic 
transformations6 and as auxiliary ligands in catalysis,7 to design 
new push-pull systems with interesting non-linear optical (NLO) 
properties.8  It is well known that the ferrocenyl moiety as a 
redox-active group displays high stability in the neutral as well 
as the oxidized state during one-electron transfer processes.9 
Such ferrocenyl systems are ideal for studying electronic 
interactions by applying electrochemical and 
spectroelectrochemical techniques; these are efficient 
instruments to investigate charge transfer transitions between 
the separated metal entities.10 This phenomenon is almost 
unexplored in Fischer carbene complexes.11 Moreover, studies 
in general concerning ferrocenyl- and biferrocenyl-
functionalized Fischer carbene complexes are limited in the 
literature.12,13  

We report herein the synthesis and characterization of a series 
of ferrocenyl (1, 2) and biferrocenyl (3, 4) tungsten(0) Fischer 
carbene complexes. Concerning the investigation of charge 
transfer transitions between the metallocenyl increments and 
the Fischer carbene units, the electrochemical and 
spectroelectrochemical properties of these species are 
discussed. These investigations are supported by 
computational studies.  

 

 

Results and Discussion 

Synthesis and Characterization. The tungsten Fischer 
carbene complexes 1 – 4 were prepared using the classical 
Fischer carbene synthetic methodology in which W(CO)6 was 
reacted with LiR (R = Fc, fc, bfc; Fc = ferrocenyl, fc = 
ferrocen-1,1'-diyl, bfc = 1',1''-biferrocen-1,1'''diyl) to form the 
corresponding metal acylate, followed by a subsequent 
alkylation via addition of methyl trifluoromethanesulfonate 
(MeOTf) (Scheme 1, Experimental Section). Complex 1 has 
been previously prepared,14 but single X-ray diffraction data 
have not been reported.   

The lithiated ferrocenyl/biferrocenyl species were generated in 
situ from ferrocene or dibromobiferrocene by lithiation or 
lithium-bromine exchange reaction according to literature 
procedures (Scheme 1). 15,16 After purification by column 
chromatography, complexes 1 - 4 could be isolated as deep red 
to dark maroon solids and are very stable in the solid state as 
well as in solution toward moisture and air.  

Complexes 1 - 4 were characterized by elemental analysis, IR 
and NMR (1H, 13C{1H}) spectroscopy, X-ray diffraction and 
mass spectrometry. Electronic effects of the carbene 
substituents can be followed in solution by IR and especially 
NMR spectroscopy. The electron withdrawing effect of the 
pentacarbonyl metal carbene moiety leads to a significant 
downfield shift of the resonances for the Hα protons (Figure 1) 
in 1 – 4 (4.80 – 5.00 ppm), compared to the value for 
ferrocene (4.15 ppm).17 This is attributed to the π-
delocalization of the positive formal charge onto the 
ferrocenyl substituent which aids in stabilizing the 
electrophilic carbene carbon atom, in addition to its inductive 
donating effect (Figure 1).  
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Scheme 1. Reaction conditions: (a) (i) tetrahydrofuran (thf), -80 oC, 1.06 eq tBuLi, 1 eq W(CO)6; (ii) dichloromethane (CH2Cl2), -
50 oC, 3 eq MeOTf. (b) (i)  n-hexane, 2 eq nBuLi/TMEDA (1:1); (ii) thf, -60 oC, 2 eq W(CO)6; (iii) CH2Cl2, -30 oC, 6 eq MeOTf. (c) 
(i)  thf, -40 oC, 2.0 eq nBuLi; (ii) 2 eq W(CO)6; (iii) CH2Cl2, -30 oC, 6 eq MeOTf. 
 

 

Figure 1. Stabilization of Fischer carbene complexes with a 
ferrocenyl group. 

 

A comparison of the Hα 
1H NMR signals between complexes 1 

– 4 as well as the ν(CO) stretching frequencies (A1") reveal no 
significant differences, due to similarity of the carbene 
complexes (Table 1). 

Electrochemistry and Molecular Orbital Analysis. The 
electrochemical studies of Fischer carbene complexes 1 – 4 
were carried out under an argon atmosphere in 
dichloromethane solutions containing [NnBu4][B(C6F5)4] (0.1 
M) as supporting electrolyte and were supported by DFT 
calculations (computational details are given in the 
Experimental Section). Spectroelectrochemical investigations 
of 1 - 4 were carried out using an OTTLE18 (= Optically 
Transparent Thin Layer Electrochemistry) cell (Experimental 
Section). 
During the electrochemical studies of 1, three significant 
redox events could be observed. One reversible event was 
detected for 1 at E0' = 300 mV, similar as detected 
previously,11 which can be assigned to the 
ferrocenyl/ferrocenium (Fc/Fc+) redox process (Table 2, 

Figures 2 and SI-1). The significant anodic shift of this redox 
event, relative to ferrocene, demonstrates the electron 
withdrawing effect of the Fischer carbene moiety. 
Computational studies were carried out to verify the nature of 
the observed redox processes. The solvent effects on the 
ionization energies were taken into account with the conductor 
like screening model (COSMO) using ε = ∞ (Table 3, Figure 
3). 
 
Table 1. Selected NMR data and the infrared ν(CO) stretching 
frequencies (A1

") of Fischer carbenes 1 – 4 (Figure SI-5). 

Compd. 
Hα δ  

1H [ppm] 

Ccarbene δ 

13C{1H} [ppm] 

A1''ν(CO) 

[cm-1] 

1 4.99 307.73 2063 

2 5.01 310.72 2063 

3 4.83 307.36 2062 

4 4.83 308.72 2062 

 

As a result from the DFT calculations, the oxidation potential 
for the first oxidation in 1 was calculated to 0.3 V (Table 3). 
Considering the moderate level of theory, the theoretical value 
is in good agreement compared with the experimental value 
(Eox-onset = 0.22 V) as well as with other considerations 
regarding a correlation between the electrochemical 
measurement and ionization energies.19  
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generation of the monocationic species 1+ a decrease of these 
bands takes place together with an increase of absorptions at 
1956 cm-1 and 2076 cm-1, respectively (Table 4 and Figure 5, 
top left). The limited shift of the W(CO)5 carbonyl stretching 
frequencies on oxidation is the result of conjugative and 
inductive effects that operate in stabilizing the positive charge 
on the iron nucleus  
by the metal carbene. Hence, the reduced back-bonding 
abilities of the Fc+ substituent to the carbonyl carbon atoms 
(compared to neutral Fc) leads to an increasing of the CO 
bond strengths and results in larger stretching frequencies 
(Figure 5). The observed carbonyl stretching frequencies are 
in good agreement with the calculated infrared spectra for 1 
and the corresponding monocation (Figure SI-4). Moreover, 
the difference (Δν = 13 cm-1) between the two observed 
frequencies, 2063 cm-1 (1) and 2076 cm-1 (1+), for the total 
symmetrical carbonyl stretching mode (A1", vide supra, Figure 
SI-5) differs only slightly from the corresponding value for the 
predicted vibrations of 1 and 1+ (Δν = 19 cm-1, Figure SI-4, 
Table 4). Furthermore, the small magnitude of the carbonyl 
band shifts, compared to shifts of more than 100 cm-1 for a 
metal carbonyl-based oxidation, indicates an iron based 
oxidation process and a valence trapped situation in 1+. 
Calculation of the spin density distribution for 1+ confirms this 
conclusion (Figure 3). Thus, the interaction between the 
ferrocenyl unit and the tungsten carbene increment can be 
described with a weakly coupled class II system according to 
Robin and Day.24  
The absorption behavior of 2+ during the oxidation of 
molecule 2 is similar to the corresponding Fischer 
monocarbene complex 1 (Table 4, Figure SI-6). Absorptions at 
3670 cm-1 and 8000 cm-1 could be noticed and are assigned to 
a ligand field transition and an electronic interaction between 
the tungsten carbene units and the iron center, too (MMCT, 
vide supra). The latter transition was observed as being more 
intense as the corresponding absorption for 1+, due to the 
second Fischer carbene substituent on the ferrocenyl moiety. 
During the infrared spectroelectrochemical investigations of 2, 
a band at 1959 cm-1 as well as a broad absorption at 2071 cm-1, 
the carbonyl stretching frequency (A1", vide supra), could be 
found upon generation of 2+ (Figure 4, Table 4). However, the 
width of the latter band suggests a superposition of two 
absorptions close together (Figure 5) and would be consistent 
with a class II electronic coupling behavior according to Robin 
and Day (vide supra).24 A comparison between the observed 
(Δν1/2) and the calculated band width at half height (Δν1/2(theo)) 
of the MMCT absorption supports this classification (Table 4). 

An enhancement of ferrocenyl complex 1 to a biferrocenyl 
Fischer carbene complex 3 leads to an occurrence of two 
(Figure SI-7) absorptions in the NIR range during the 
generation of cation 3+. Characteristic for biferrocenyl systems 
is the observation of an inter valence charge transfer (IVCT) 
band close together with another absorption on the low energy 
side of the ICVT absorption (Table 4, Figure SI-7). Tuczek et 
al. attributed this intrabiferrocenyl transition (IBT), around 
3800 cm-1 for 3+, to a further intervalence charge transfer 
transition.26,29 However, the latter absorption is very narrow 
compared to the corresponding value of Δν1/2(theo) (Table 4, 
Figure SI-7). An assignment to a LMCT or a charge transfer 
assisted ligand field transition is also not uncommon.25,30 

Furthermore, a similar absorption band, which was found for 
1+ and 2+, attributed to an electronic interaction between the 
tungsten carbonyl moiety and the iron center, is observed as an 
ill-pronounced shoulder that could be resolved into a separate 
peak in a deconvolution procedure (Figure SI-7, Table 4). The 
infrared spectroelectrochemical investigations of 3 support this 
observation, since upon formation of 3+ the initial ν(CO) 
frequencies (Table 4) shift by only a few wavenumbers to 
higher energies (1935 cm-1 and 2065 cm-1, Figure 5). Thus, in 
combination with the electrochemical results, the first 
oxidation in 3 takes primarily place at the terminal ferrocenyl 
unit. During the generation of 32+ the low energy absorptions 
in the NIR range disappear and further transitions could be 
detected at 3510 cm-1 (LF) and around 8200 cm-1 (Table 4, 
Figure SI-7). The latter transition is also associated to a metal-
metal charge transfer between the tungsten increment and the 
Bfc unit. The corresponding infrared absorption behavior 
during the formation of 32+ verifies this conclusion, similar as 
observed for 1+ (vide supra, Figure 5). 

A second tungsten Fischer complex fragment on the 
biferrocenyl building block leads to three NIR absorptions for 
monocationic 4+ (Table 4, Figure 6). The two transitions at 
lower energies are typical for such mixed-valent biferrocenyl 
species (vide supra). The intensities are higher as observed for 
3+ but weaker than for symmetrical electron donor substituted 
biferrocenyl systems.31 The third absorption around 8900 cm-1 
can be assigned again to a MMCT transition, caused by an 
electronic interaction of the tungsten units with the 
biferrocenyl group in 4+. Within the infrared 
spectroelectrochemical studies of 4, a shifting of the initial 
ν(CO) stretching frequencies from 1930 cm-1 and 2063 cm-1 to 
formal 1941 cm-1 and 2065 cm-1 is characteristic, whereas an 
increase of a shoulder at 2071 cm-1 could be observed (Figure 
5). This suggests a main localization of positive charge in the 
biferrocenyl fragment within the infrared timescale 
corresponding to a weakly coupled class II system according 
to Robin and Day.24 Further oxidation to the dicationic 42+ 
leads to absorptions at 1945 cm-1 and an increasing band at 
2071cm-1 (A1"), thus the small magnitude of carbonyl band 
shift indicates again a limited delocalization of the positive 
charge between tungsten moieties and the iron centers (vide 
supra). This is consistent with the detection of an increasing 
NIR absorption at 7870 cm-1 (MMCT) upon decreasing of the 
low energy transitions, caused from intra biferrocenyl 
electronic interactions, during the formation of 42+ (Table 3, 
Figure 6). Finally, a very weak ligand field transition could be 
observed at 3600 cm-1, similar as described previously (vide 
supra, Table 4 and Figure 6).9f,10b,27  
 
Crystallography. The molecular structures of 111,25 and 2 – 4 
in the solid state have been determined by single-crystal X-ray 
diffraction analysis. 
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4, R' = bfc), is reported with the aim of investigating low 
energy charge transfer transitions between the transition metal 
carbonyl fragment and the (oxidized) carbene substituents. For 
this reason, ferrocenyl and biferrocenyl mono- and bismethox-
bismethoxycarbene tungsten(0) complexes 1 – 4 were 
prepared and characterized spectroscopically in solution. 
Furthermore, the structural properties of 1 - 4 in the solid state 
were investigated by single-crystal X-ray diffraction studies 
whereby the biferrocenyl derivatives 3 and 4 exhibit a syn-
conformation of ferrocenyl and carbene moiety. The results 
reveal no substituent effects in the bond-lengths and angles.  

The electrochemical studies reveal reversible one electron 
redox events for the ferrocenyl/biferrocenyl moieties. 
Moreover, an electrochemical one electron transfer reaction 
could be found for the reduction of the Fischer carbene units. 
For the tungsten carbonyl moieties, irreversible oxidation 
processes could be detected. During the UV-Vis-NIR 
spectroelectrochemical investigations typical low energy 
absorptions for the mixed-valent biferrocenyl unit were found. 
A further observed high energy NIR absorption was attributed 
to a metal-metal charge transfer transition between the 
tungsten carbonyl increment and the ferrocenyl/biferrocenyl 
unit in the corresponding oxidized state and is reported herein 
for the first time. Finally, verification was made within 
infrared spectroelectrochemical studies by which the 
electronic interactions in the corresponding cationic species 
can be described as those of weakly coupled class II systems 
according to Robin and Day. 

Experimental Section 

General Information 

All operations were carried out under an inert atmosphere of 
nitrogen or argon gas using standard Schlenk techniques. 
Solvents were dried by refluxing over sodium metal (n-hexane 
and tetrahydrofuran) or phosphorous pentoxide 
(dichloromethane) and were distilled under nitrogen prior to 
use. Chemicals were used without further purification unless 
stated elsewhere. Dibromobiferrocene was synthesized 
according to a literature procedure.15 Tetra-n-butylammonium 
tetrakis(pentafluorophenyl)borate was prepared by metathesis 
of lithium tetrakis(pentafluorophenyl)borate etherate (Boulder 
Scientific) with tetra-n-butylammonium bromide according 
the a published procedure.34 Purification with column 
chromatography was done using Silica gel 60 (0.0063 – 
0.200mm) as stationary phase. A Bruker AVANCE 500 
spectrometer was used for NMR recordings. 1H NMR spectra 
were recorded at 500.30 MHz and 13C{1H} NMR spectra at 
125.80 MHz. The signal of the solvent was used as reference: 
1H, CDCl3 at 7.26 ppm and 13C{1H}, CDCl3 at 77.16 ppm. 
Infrared spectra were obtained with a Thermo Nicolet 200 FT-
IR spectrometer using a NaCl cell and dichloromethane as 
solvent. Only the vibration bands in the carbonyl stretching 
region (1600 - 2200 cm-1) were recorded. The melting points 
were determined using a Gallenkamp MFB 595 010 M 
melting point apparatus. Microanalyses were performed by 
using a Thermo FLASHEA 1112 Series instrument. High-
resolution mass spectra were recorded with a Bruker 
micrOTOF QII with an Apollo II ESI source. 
 

Synthesis of Fischer carbene complexes 1 – 4 

[(CO)5W=C(OMe)Fc] (1) 
Ferrocene (3.0 mmol, 0.56 g) was monolithiated according to 
a literature procedure in tetrahydrofuran (thf) with tBuLi (3.2 
mmol).14 The solution was cooled to -80 oC and W(CO)6 (3.0 
mmol, 1.06 g) was added in a single portion. The color of the 
solution turned deep red upon addition. The reaction mixture 
was stirred isotherm for 30 min and then allowed to reach 
room temperature within 1 h. The solvent was changed to 
dichloromethane (CH2Cl2), cooled to -50 oC and methyl 
trifluoromethanesulfonate (9.9 mmol, 1.09 mL) added.  The 
reaction mixture was removed from the cold bath and stirred 
overnight at ambient temperature. Purification of the product 
was performed by using column chromatography and n-
hexane as initial eluent. The polarity of the eluent was 
increased by adding small portions of CH2Cl2. Yield 1.44g 
(87%), dark red crystals. Anal. Calcd. for C17H12FeO6W 
(551.98): C, 36.99; H, 2.20; found C, 36.94; H, 2.12. Mp: 
153°C. NMR (CDCl3) 

1H: 4.99 (m, 2H, Hα), 4.84 (m, 2H, Hß), 
4.27 (s, 5H, Cp), 4.53 (s, 3H, CH3). 

13C{1H}: 307.73(Ccarbene), 
202.34(Ctrans), 198.03(Ccis), 95.23(Cipso), 75.06(Cα), 73.25(Cß), 
70.80(Cp), 68.60(CH3). IR ν(CO) (n-hexane): 2063 m (A1"), 
1974 w (B), 1946 s (A1'), 1935 vs (E). FAB-MS [m/z]: 551.95 
[M+]. 

 

[{(CO)5W=C(OMe)}2fc] (2) 
Dilithiation of ferrocene (3.0 mmol, 0.56 g) was done 
according to methods previously reported with an 1:1 
nBuLi/TMEDA solution in n-hexane (6.5 mmol) overnight at 
ambient temperature. Afterward, the solvent was removed by 
filtration via cannula and the remaining dilithioferrocene was 
redissolved in tetrahydrofuran. The resulting solution was 
cooled to -60 oC and W(CO)6 (6.0 mmol, 2.11 g) was added in 
a single portion. After 1 h of isothermal stirring the solution 
was warmed up to room temperature within 60 min. All 
volatiles were removed, the residue was redissolved in CH2Cl2 

and methyl trifluoromethanesulfonate (20.0 mmol, 2.41 mL) 
was added at -30 oC after which the reaction solution 
darkened. The resulting mixture was stirred overnight at 
ambient temperature. Purification of the crude product was 
performed by column chromatography using n-hexane as 
initial eluent. The polarity of the eluent was increased by 
adding small portions of dichloromethane. Yield 1.51g (85%), 
dark purple solid. Anal. Calcd. for C24H14FeO12W2 (917.91): 
C, 31.40; H, 1.54; found C, 30.92; H, 1.42. Mp: 195°C. NMR 
(CDCl3) 

1H: 5.01 (m, 4H, Hα), 4.82 (m, 4H, Hß), 4.54 (s, 6H, 
CH3). 

13C{1H}: 310.72 (Ccarbene), 202.07 (Ctrans), 197.66 (Ccis), 
96.07 (Cipso), 76.58 (Cα), 74.93 (Cß), 69.09 (CH3). IR ν(CO) 
(n-hexane): 2063 m (A1"), 1974 w (B), 1940 vs (A1'overlap E). 
FAB-MS [m/z]: 917.89 [M+]. 

 
[(CO)5W=C(OMe)Bfc] (3) and [{(CO)5W=C(OMe)}2Bfc] (4) 
Dibromobiferrocene14,15 (3.0 mmol, 1.58 g) was dissolved in 
50 mL of tetrahydrofuran and nBuLi (6.0 mmol) was added 
slowly at -40 oC. After 30 min of isothermal stirring, W(CO)6 
(6.0 mmol, 2.11 g) was added in a single portion. The solution 
was kept at -40 °C for an additional hour and then allowed to 
reach room temperature within 1 h. Afterward, the solvent was 
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changed to dichloromethane and methyl trifluoromethanesul-
trifluoromethanesulfonate (20.0 mmol, 2.41 mL) was added at 
-30 oC. The reaction mixture was removed from the cold bath 
and stirred overnight at ambient temperature. Purification of 
the product was performed by column chromatography using 
n-hexane as initial eluent. The polarity of the eluent was 
increased by adding small portions of dichloromethane. 
Complexes 3 and 4 were purified and separated with column 
chromatography and gradient elution. 

Compound 3: Yield 0.96g (40%), red brown crystals. Anal. 
Calcd. for C27H20Fe2O6W (736.01): C, 44.06; H, 2.74; found 
C, 43.95; H, 2.68. Mp: 166°C. NMR (CDCl3) 

1H: 4.83 (m, 2H, 
Hipso1α), 4.64 (m, 2H, Hipso1ß), 4.47 (m, 2H, Hipso2α), 4.32 (m, 
2H, Hipso2ß), 4.27 (m, 2H, Hipso3α), 4.26 (m, 2H, Hipso3ß), 3.97 (s, 
5H, Cp), 4.24 (s, 3H, CH3).  13C{1H}: 307.36(Ccarbene), 
202.48(Ctrans), 198.13(Ccis), 95.96(Cipso1),88.24 (Cipso2), 80.67 
(Cipso3), 75.06 (Cipso1α), 73.25(Cipso1ß), 70.17 (Cipso2α), 
68.47(Cipso2ß), 68.12 (Cipso3α), 66.46(Cipso3ß), 69.43(Cp), 
53.47(CH3).  IR ν(CO) (n-hexane): 2062 m (A1"), 1972 w (B), 
1943 s (A1'), 1932 vs (E). FAB-MS [m/z]: 735.95 [M+]. 

Compound 4: Yield 0.99g (30%), dark brown crystals. Anal. 
Calcd. for C36H26Fe2O12W2 (1101.94): C, 37.06; H, 2.02; 
found C, 37.08; H, 2.05. Mp: 232°C (decomp.). NMR (CDCl3) 
1H: 4.83 (m, 4H, Hipso1α), 4.62 (m, 4H, Hipso1ß), 4.44 (m, 4H, 
Hipso2α), 4.32 (m, 4H, Hipso2ß), 4.30 (s, 6H, CH3). 

13C{1H}: 
308.72(Ccarbene), 202.29(Ctrans), 198.03(Ccis), 96.05(Cipso1),84.98 
(Cipso2), 75.98 (Cipso1α), 74.12(Cipso1ß), 70.70 (Cipso2α), 
68.43(Cipso2ß), 67.97(CH3). IR ν(CO) (n-hexane): 2062 m 
(A1"), 1972 w (B), 1943 s (A1'), 1932 vs (E).  FAB-MS [m/z]: 
1101.88 [M+]. 

Electrochemistry. The electrochemical measurements were 
carried out under an argon atmosphere on 1.0 mmol·L-1 
dichloromethane solutions containing 0.1 mol·L-1 of 
[NnBu4][B(C6F5)4] as supporting electrolyte utilizing a 
Voltalab 10 electrochemical laboratory from Radiometer 
analytical.34 Furthermore, an OTTLE (= Optically Transparent 
Thin Layer Electrochemistry) cell placed in a Varian Cary 
5000 UV-VIS/NIR absorption spectrometer or in a Thermo 
Nicolet 200 FT-IR spectrometer was used in 
spectroelectrochemical measurements.18 For voltammetry, a 
three electrode cell with a platinum counter electrode, a glassy 
carbon working electrode and a Ag/Ag+ reference electrode 
was used. The working electrode was prepared by polishing 
with a Buehler micro cloth using Buehler diamond pastes with 
decreasing sizes (1 to 0.25 μm). The Ag/Ag+ reference 
electrode was constructed from a silver wire inserted into a 
luggin capillary with a vycor tip containing a solution of 0.01 
mol·L-1 AgNO3 as well as 0.1 mol·L-1 [NnBu4][B(C6F5)4] in 
acetonitrile. This luggin capillary was inserted into a second 
luggin capillary with vycor tip filled with a 0.1 mol·L-1 
[NnBu4][B(C6F5)4] solution in dichloromethane. Successive 
experiments under the same experimental conditions showed 
that all formal reduction and oxidation potentials were 
reproducible within 5 mV. Experimentally potentials were 
referenced against a Ag/Ag+ reference electrode but the results 
are presented referenced against the FcH/FcH+ couple (E1/2 = 
0.0 V) as required by IUPAC.35  When decamethylferrocene 
was used as an internal standard, the experimentally measured 
potential was converted in to E vs FcH/FcH+ by addition of -

0.61 V.37 The cyclic voltammograms were taken after typical 
two scans and are considered to be steady state cyclic 
voltammograms, in which the signal pattern differs not from 
the initial sweep. Finally, the experimental data were 
processed on Microsoft Excel worksheets. 

Computational Details. All quantum chemical calculations 
were performed with TURBOMOLE 6.3.1.37 After the initial 
guess the Kohn-Sham equations were converged in the small 
def-SV(P)38 basis set using a damping factor of 20 and Fermi 
smearing. After this step a geometry optimization was 
performed. Next the structures were optimized at the 
PB86/def2-TZVP37,39 level of theory using the m5 grid. In all 
calculations density fitting was applied.40 The final stationary 
points were characterized by analyzing the hessian matrix.41 
The final energy evaluations were performed with the 
B3LYP38,42 hybrid functional in combination with the def2-
TZVP basis set. To include the solvent effects the COSMO43 
solvation model with ε = ∞ was applied. The reported relative 
energies include the zero point energy correction from the gas 
phase at the BP86/def2-TZVP level of theory. 
 

Single-Crystal X-ray Diffraction Analysis. Crystal data for 1 
– 4 are summarized in Table SI-1 (Supporting Information). 
Data were collected with an Oxford Gemini S diffractometer 
at 100 K using Mo-Kα (λ = 0.71073 Å) radiation. The 
structures were solved by direct methods using SHELXS-97 
and refined by full matrix least-square procedures on F2 using 
SHELXL-97.44,45 All non-hydrogen atoms were refined 
anisotropically and a riding model was employed in the 
refinement of the hydrogen atom positions.  

Crystallographic data (excluding structure factors) for the 
structures in this paper have been deposited with the 
Cambridge Crystallographic Data Centre, CCDC, 12 Union 
Road, Cambridge CB21EZ, UK. Copies of the data can be 
obtained free of charge on quoting the depository numbers 
CCDC-949877 (1), 949876 (2), 949878 (3) and 949875 (4) 
(Fax: +44-1223-336-033; E-Mail: deposit@ccdc.cam.ac.uk, 
http://www.ccdc.cam.ac.uk). 
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Figure SI-1. Cyclic voltammograms (multi scan) of 1. 
Figure SI-2. Cyclic voltammogram (multi scan) of 2. 
Figure SI-3. UV-Vis spectra of 1 at rising potentials. 
Figure SI-4. Calculated ν(CO) stretching frequencies of 1 and 
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Figure SI-5. Visualization of calculated ν(CO) vibration mode 
for 1 at 2045 cm-1. 
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Figure SI-1. Cyclic voltammograms (multi scan) of 1. Scan 

rates: 100 mVs-1 (top) and 500 mV-1 (bottom) in dichloromethane 
solutions (1.0 mmol.L-1) at 25 °C, supporting electrolyte 
[NnBu4][B(C6F5)4] (0.1 M). 
 

 

 

 

Figure SI-2. Cyclic voltammogram (multi scan) of 2. Scan rate: 

100 mVs-1 in dichloromethane solutions (1.0 mmol.L-1) at 25 °C, 
supporting electrolyte [NnBu4][B(C6F5)4] (0.1 M). 
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Figure SI-3. UV-Vis spectra of 1 at rising potentials (0 to 

700 mV). All potentials vs Ag/AgCl at 25 °C in 
dichloromethane, supporting electrolyte [NnBu4][B(C6F5)4] (0.1 

M). Arrows indicate increasing or decreasing as well as 
shifting absorptions. 
 
 
 
 
 
 

 
Figure SI-4. Calculated ν(CO) stretching frequencies of 1 and 
1+. Computational details are given in the Experimental Section. 
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Figure SI-5. Visualization of calculated ν(CO) vibration mode 
for 1 at 2045 cm-1 (A1

", Figure SI-2). 
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Figure SI-6. UV-Vis/NIR spectra of 2 at rising potentials (-

100 to 1000 mV). Top:  300 – 800 nm. Middle: 500 – 3000 nm. 
Bottom: deconvolution of NIR absorptions at 1000 mV, using 
three distinct overlapping transitions with Gaussian shapes 
(dashed line indicates MMCT absorptions, dotted line 
corresponds to absorptions caused by interactions between 
ligand and metal, dotted dashed line represents ligand field 
transitions). All potentials vs Ag/AgCl at 25 °C in 
dichloromethane, supporting electrolyte [NnBu4][B(C6F5)4] (0.1 
M). Arrows indicate increasing or decreasing as well as 
shifting absorptions. 
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Figure SI-7. UV-Vis/NIR spectra of 3 at rising potentials 

(left: -100 to 400 mV; right: 400 to 1000 mV). Top:  300 – 800 
nm. Middle: 500 – 3000 nm. Bottom (left): deconvolution of NIR 
absorptions at 400 mV, using three distinct overlapping 
transitions with Gaussian shapes. Bottom (right): 
deconvolution of NIR absorptions at 1000 mV, using three 

distinct overlapping transitions with Gaussian shapes (dashed 
line indicates IVCT (grey) or MMCT (black) absorptions, dotted 
line corresponds to absorptions caused by interactions between 
ligand and metal (black) as well as intrabiferrocenyl 
transitions (IBT, grey), dotted-dashed line represents ligand 
field transitions). All potentials vs Ag/AgCl at 25 °C in 
dichloromethane, supporting electrolyte [NnBu4][B(C6F5)4] (0.1 
M). Arrows indicate increasing or decreasing as well as 
shifting absorptions. 
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Figure SI-8. UV-Vis spectra of 4 at rising potentials (left: -

100 to 600 mV; right: 600 to 1050 mV). All potentials vs 
Ag/AgCl at 25 °C in dichloromethane, supporting electrolyte 
[NnBu4][B(C6F5)4] (0.1 M). Arrows indicate increasing or 
decreasing as well as shifting absorptions. 
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Table SI-1. Data Collection and Crystal Structure Details for 

1 – 4. 

 
1 2 3 4 

Chemical formula C17H12FeO6W C24H14FeO12W2 C27H20Fe2O6W C34H22Fe2O12W2 

Formula weight 551.97 917.90 735.98 1101.92 

Crystal system, 

space group 
orthorhombic, 
Pca21 

orthorhombic, 
Pbcn 

triclinic, 
P–1 

monoclinic, 
P21/n 

a [Å] 20.2216(14) 13.5817(8) 7.2565(3) 10.4968(3) 

b [Å] 6.9527(5) 14.2798(8) 22.2626(7) 13.1509(3) 

c [Å] 11.7231(9) 13.2044(6) 31.8703(10) 11.9019(3) 

α, β, γ [°] 
 

 
105.358(3), 
95.673(3), 
98.626(3) 

97.546(2) 

V [Å3] 
1648.2(2) 2560.9(2) 4856.5(3) 1628.74(7) 

ρcalc. [g cm-3] 2.224 2.381 2.013 2.247 

F(000) 1048 1712 2848 0.71073 A 

Crystal dimensions [mm] 0.4 x 0.2 x 0.05 0.4 x 0.4 x 0.01 0.40 x 0.28 x 0.02 0.40 x 0.40 x 0.40 

Z 4 4 8 2 

Max., min. transmission 1.000, 0.592 1.000, 0.386 0.890, 0.200 0.1426, 0.1426 

µ [mm-1] 7.884 9.585 5.946 7.979 

θ [°] 3.10–25.25 3.09–25.23 2.90–25.25 3.10–25.24 

Index ranges –24 ≤ h ≤ 20 –10 ≤ h ≤ 16 –8 ≤ h ≤ 8 –12 ≤ h ≤ 12 

 
–5 ≤ k ≤ 8 –17 ≤ k ≤ 17 –26 ≤ k ≤ 26 –15 ≤ k ≤ 15 

 
–13 ≤ l ≤ 14 –15 ≤ l ≤ 15 –38 ≤ l ≤ 38 –11 ≤ l ≤ 14 

Total/unique reflections 6596/2749 8750/2302 45035/17555 11708/2938 

Completeness to F² 98.5 % 99.2 % 99.7 % 99.2 % 

Data/restraints/parameters 2749/371/227 2302/308/182 17555/466/1297 2938/121/226 

Rint 0.0510 0.0726 0.0405 0.0332 

R1, wR2, [I ≥ 2σ (I)] 0.0519, 0.1287 0.0564, 0.1372 0.0356, 0.0760 0.0184, 0.0414 

R1, wR2 (all data) 0.0581, 0.1337 0.0673, 0.1457 0.0463, 0.0802 0.0204, 0.0422 

Goodness-of-fit (S) on F2  1.061 1.049 1.033 1.075 

Largest diff. peak and hole [e Å-3] 4.828, –1.400 2.760, –1.980 2.662, –1.273 0.562, –0.487 

Absolute structure parameter1: 0.30(2) for 1. 
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