

Towards an integrative modelling technique

between business and information system

development

by

Pieter Joubert

Submitted in fulfilment of the requirements for the degree

Philosophiae Doctor (Information Technology)

In the Faculty of Engineering, Built Environment and Information Technology

at the

University of Pretoria

Pretoria, South Africa 2012

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Abstract

Candidate: Pieter Joubert

Promoters: Prof C de Villiers

Prof JH Kroeze

Department: Informatics

Degree: Philosophiae Doctor (Information Technology)

Keywords: Information systems development, modelling, modelling

techniques, grounded theory, design science research

There are many situations during information system development (ISD) where there

is a need to do modelling on a business level before more detailed and robust

modelling are done on the technical system level. Most business level modelling uses

some form of natural language constructs which are, on the one hand, easy to use by

untrained users, but which are too vague and ambiguous to be used in subsequent

systems level modelling by systems analysts, on the other hand. The goal of this study

is to develop an integrative modelling technique that is easy enough to be used by

most business users with little training, but robust and structured enough to be used

in subsequent ISD modelling. The term “integrative” in the title refers to the fact that

this technique attempts to bridge the current gap between modelling on a business

level and modelling on a technical level.

The research consists of two major phases. During the first phase, an integrative

modelling technique is developed using a grounded approach. The data that is used

for analysis is a representative example of the major ISD modelling techniques used

currently. For instance, to represent all the UML techniques, the UML 2 standard is

used. The purpose of this first phase is to understand what the fundamental concepts

and relationships in ISD are and to develop an integrative technique based on that.

During the second phase, the resultant artefact created by the first phase is evaluated

and improved using the design science research approach. This artefact is used in a

i

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

representative set of business modelling situations to evaluate its applicability and

suitability as an integrative modelling technique between business and ISD.

The integrative modelling technique is evaluated from three perspectives: how it

represents business rules, how it handled various aspects of ISD and how it

represents requirements expressed as use cases. These evaluations used the two main

design criteria of ease of use for users and at the same time adequate levels of

expressive power so that the model can be easily translated into existing ISD

modelling languages.

The integrative modelling technique developed identified the following three levels of

modelling entities and their relationships:

• Base entities (corresponding to the morphological level in linguistics)

• Structure entities (corresponding to the syntactical level in linguistics)

• Role entities (corresponding to the semantic level in linguistics)

The contribution of this research is to provide a better understanding of the

fundamental entities in business and ISD modelling and their relationships in order to

improve informal, mostly textual, business modelling.

ii

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

I declare that

“Towards an integrative modelling technique between business and information

system development” is my own work and that all the sources that I have used or

quoted have been indicated and acknowledged by means of complete references.

P Joubert

iii

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Acknowledgements

To my supervisors, Prof Carina de Villiers and Prof Jan Kroeze, for their unending

patience with my many “wanderings in the desert”. Without your guidance and

support, this would have been impossible.

To my wife, Elsabe, for never ever complaining about all the many hours not spent

with her and for always creating an environment conducive to study.

To God for showing me who I really am – the good, the bad and the ugly.

iv

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Overview of table of contents

Part 1
Introduction

Part 2
Literature review

Part 3
Research

Part 4

Conclusion

Part 5

Supporting
information

Chapter 1
Introduction

Chapter 2
Theoretical
foundations

Chapter 3
Business rules

Chapter 4
Part-whole

relationships

Chapter 5
Linguistic analysis of

ISD modelling

Chapter 6
Research approach

Chapter 7
The proposed

integrative modelling
technique

Chapter 9
Conclusion

Bibliography

Chapter 8
Demonstration,

implementation and
evaluation of proposed
integrative modelling

technique

Appendix A
Derivation of proposed
integrative modelling
technique

v

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Table of contents

1. Introduction .. 2

1.1 Introduction .. 3

1.2 Background .. 4

1.3 Motivation for this study.. 7

1.3.1 ISD problems .. 7

1.3.2 Business and ISD modelling problems ... 10

1.3.3 Comparison with other disciplines ... 13

1.4 Research approach ... 15
1.4.1 Problem statement and research questions ... 15

1.4.2 Research methodology ... 16

1.4.3 The basis for the proposed integrative technique ... 18

1.4.4 Scope and limitations .. 19

1.5 Layout of thesis .. 20
1.6 Conclusion ... 21
2. Theoretical foundations ... 23

2.1 Introduction .. 24
2.2 Information .. 24
2.3 Systems theory ... 26

2.3.1 Systems thinking ... 26

2.3.2 System characteristics ... 31

2.3.3 System hierarchies .. 32

2.3.4 Complex engineering systems .. 36

2.3.5 System complexity ... 38

2.3.6 System control .. 40

2.4 Enterprise architecture ... 41
2.4.1 Background ... 41

2.4.2 Fundamental concepts .. 42

2.4.3 Zachman rows ... 44

2.4.4 Zachman columns ... 45

2.5 Conclusion ... 46
3. Business rules ... 48

3.1 Introduction .. 49
3.2 Business rules and ISD .. 50

vi

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3.3 Types of business rules .. 52
3.3.1 The Business Rules Group’s classification .. 52

3.3.2 Other business rule classifications .. 58

3.3.3 Summary of business rule types ... 59

3.4 Business rule relationships... 60
3.5 Business rule representation .. 61
3.6 Conclusion ... 65
4. Part-whole relationships.. 67

4.1 Introduction .. 68
4.2 Background .. 68
4.3 Overview .. 71
4.4 Part-whole classifications .. 73

4.4.1 Classical mereology and classical extended mereology 74

4.4.2 The Opdahl et al. framework .. 74

4.4.3 The Gerstl and Pribbenow framework .. 77

4.5 Part-whole relationships in ISD ... 78
4.6 Conclusion ... 80
5. A linguistic analysis of IS modelling .. 82

5.1 Introduction .. 83
5.2 Linguistics and IS modelling ... 83

5.2.1 Morphology .. 84

5.2.2 Syntax ... 97

5.2.3 Semantics .. 101

5.2.4 Pragmatics .. 113

5.3 Conclusion ... 115
6. Research approach .. 119

6.1 Introduction .. 120
6.2 Research objectives, statement and questions ... 120
6.3 Research design ... 121

6.3.1 Research philosophy ... 121

6.3.2 The grounded approach .. 125

6.3.3 Data collection .. 128

6.4 Design science research ... 131
6.4.1 Background ... 131

6.4.2 Research methodology ... 132

6.4.3 Research output .. 135

vii

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

6.4.4 Research guidelines .. 136

6.4.5 Design Science Research Theory ... 137

6.5 The journey .. 139
6.5.1 Part 1 – Grounded approach ... 139

6.5.2 Part 2 – Design science research .. 147

6.6 Conclusion ... 147
7. The Proposed Integrative Modelling Technique... 149

7.1 Introduction .. 149
7.2 Overview of the modelling technique .. 150
7.3 The modelling technique in detail ... 151

7.3.1 Base entities .. 152

7.3.2 Structure entities ... 173

7.3.3 Role entities .. 184

7.4 Conclusion ... 211
8. Demonstration, implementation and evaluation of proposed integrative

modelling language .. 214

8.1 Introduction .. 215
8.2 Case study .. 215
8.3 Demonstration and evaluation per perspective .. 219

8.3.1 Perspective 1: Business rules .. 219

8.3.2 Perspective 2: ISD modelling ... 230

8.3.3 Perspective 3: Requirements modelling using use cases 237

8.4 Implementation of the technique as software .. 241
8.5 Linking the integrative technique back to existing ISD techniques 247
8.6 Conclusion ... 252
9. Conclusion .. 254

9.1 Introduction .. 254
9.2 Answering the research questions.. 255

9.2.1 Is there a gap between business and ISD that current modelling cannot
fill? .. 256

9.2.2 What are the fundamental constructs of any integrative modelling
technique between business and ISD? .. 256

9.2.3 What are the properties and attributes of these fundamental constructs? ... 257

9.2.4 What are the relationships between these fundamental constructs? 259

viii

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

9.2.5 Can it be demonstrated that the proposed technique does indeed integrate
business and existing modelling techniques better than existing business
modelling techniques? .. 260

9.3 Evaluation of the research.. 260
9.3.1 Grounded approach evaluation ... 260

9.3.2 Design science research evaluation .. 266

9.4 Contribution of the research .. 270
9.5 Future research ... 271
9.6 Concluding remarks ... 273
10. Appendix A: Derivation of basic concepts of integrated modelling language.. 276

10.1 Introduction .. 277
10.2 The grounded analysis codes ... 277

10.2.1 Agent .. 278

10.2.2 Thing ... 283

10.2.3 Action ... 288

10.2.4 Event ... 293

10.2.5 Location .. 296

10.2.6 View .. 297

10.2.7 Relationship .. 300

10.2.8 Language .. 307

10.2.9 Rule ... 309

10.3 Conclusion ... 311
11. Bibliography ... 312

ix

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

List of figures

Figure 2-1: The formal systems model – Checkland ... 32
Figure 3-1: Example of a rule dependency diagram .. 62
Figure 3-2: Example of an S-C graph .. 65
Figure 4-1: Concept ladder .. 72
Figure 6-1: The three domains of real.. 124
Figure 6-2: The domains of science and philosophy with respect to the real, the actual
and the empirical .. 124
Figure 6-3: Design science research cycles ... 132
Figure 6-4: Example of creating codes in ATLAS.ti ... 144
Figure 6-5: Linking a code (“modelling language”) with its original quotations 144
Figure 6-6: A list of codes before axial coding.. 145
Figure 6-7: A comprehensive network of codes in ATLAS.ti 146
Figure 6-8: A specific network of codes in ATLAS.ti... 147
Figure 7-1: A high-level overview of the modelling entities 151
Figure 7-2: Modelling base entities ... 154
Figure 7-3: Types of actors .. 155
Figure 7-4: The composite relationships of actors ... 158
Figure 7-5: The components of objects ... 166
Figure 7-6: Modelling structure entities .. 175
Figure 7-7: ATM example of relationships (graphical representation) 183
Figure 7-8: ATM example – withdraw money (graphical representation) 184
Figure 7-9: Role entities related to their corresponding base entities 189
Figure 7-10: The composite relationships between actions 192
Figure 8-1: Example of class diagram developed from model 237
Figure 8-2: Example of use case .. 238
Figure 8-3: Example screen: “Add actor” .. 242
Figure 8-4: Example screen: “Display actors”... 242
Figure 8-5: Example screen: “Synonym warning” .. 243
Figure 8-6: Example screen: “Model phrases and sentences” 244
Figure 8-7: Example screen: “Relationship changes” ... 245
Figure 8-8: Display relationships of an object – textual format 246
Figure 8-9: Display relationships of an object – visual format 247
Figure 9-1: A high-level overview of the ISD modelling entities 257
Figure 10-1: Agent-related codes... 278
Figure 10-2: Thing-related codes ... 284
Figure 10-3: Action-related codes ... 289
Figure 10-4: Event-related codes ... 294
Figure 10-5: Location-related codes .. 296
Figure 10-6: View-related codes .. 298
Figure 10-7: Relationship-related main codes ... 300
Figure 10-8: Relationship properties-related codes ... 301
Figure 10-9: General relationship-related codes .. 301
Figure 10-10: Agent relationship-related codes ... 302
Figure 10-11: Action relationship-related codes .. 302
Figure 10-12: Language-related codes... 307
Figure 10-13: Rule-related codes ... 309

x

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

List of tables
Table 1-1: Research question map ... 16
Table 1-2: The outputs of design science research .. 17
Table 2-1: The differences between the hard and soft system approaches 30
Table 2-2: General system hierarchies ... 35
Table 2-3: Managerial system hierarchies ... 36
Table 2-4: Zachman rows and columns ... 43
Table 3-1: Business rule types ... 59
Table 4-1: Mapping ontological constructs to conceptual modelling constructs 70
Table 4-2: The revised Henderson-Sellers and Barbier's framework of characteristics
of whole-part relationships .. 76
Table 5-1: Predications .. 102
Table 6-1: Data analysis: Glaser and Strauss compared .. 127
Table 6-2: Modelling techniques to be studied .. 130
Table 6-3: Design science research methodology ... 133
Table 6-4: The outputs of design science research .. 135
Table 6-5: Archetypes of IT applications .. 135
Table 6-6: Example of recording concepts during the first attempt 141
Table 6-7: Example of the development of codes during the first attempt 141
Table 6-8: Example of open coding using Excel highlighting referencing of code
sources.. 142
Table 6-9: Example of linking a code (“action”) back to its original concepts 142
Table 6-10 Theory types and components of proposed integrative technique 148
Table 7-1: ATM example – base entities ... 155
Table 7-2: ATM example – relationships .. 182
Table 7-3: ATM example of action – login to ATM ... 183
Table 7-4: ATM example of action – withdraw money .. 183
Table 7-5: Examples of complement roles .. 187
Table 7-6: Base and role entity analysis, Example 1 ... 209
Table 7-7: Base and role entity analysis, Example 2 ... 210
Table 7-8: Base and role entity analysis, Example 3 ... 210
Table 7-9: Base and role entity analysis, Example 4 ... 211
Table 7-10: Base and role entity analysis, Example 5 ... 211
Table 8-1: The ATMS withdrawal use case translated into proposed technique 239
Table 8-2: Comparison between existing techniques and integrative technique 252
Table 9-1: Eight components of an IS design theory ... 266

xi

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Acronyms

ALC/OLC Agent/object life cycles

AOR Agent-object relationship

ARIS Architecture of integrated information systems

ARM Agent relationship modelling

BOM Bill of Material

BPMN Business Process Modelling Notation

BRM Business rule management

CASE Computer-aided software engineering

CAQDAS Computer-assisted qualitative data analysis software

COTS Commercial off-the-shelf (products)

CPM Critical path method

CRUD Create, read, update and delete

DFD Data flow diagram

DSRM Design science research methodology

ECA Event, condition and action

EOF End of file

ERA External receiver actor

ERD Entity-relationship diagram

EU European Union

GERAM Generalised enterprise reference architecture and methodology

GST General systems theory

GUI Graphical user interface

HCI Human-computer interaction

ICEIMT International Conference on Enterprise Integration Modelling

Technology

IDEAS Interoperability Development for Enterprise Applications and

Software

IDEF0 Integration Definition for Function Modelling

IDEF1 Information Modelling Methodology

IDEF1X Integration Definition for Information Modelling

IDEF3 Process Description Capture Method

xii

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

IDEF5 Integrated Definition for Ontology Description Capture Method

IEM Integrated enterprise modelling

I/O Input-output (interface)

IS Information system

ISD Information system development

JAD Joint application design

JRP Joint requirements planning

KB Knowledge base

LAN Local-area network

LAP Language action perspective

NoE Network of excellence

ODP Open distributed processing

OO Object orientation

PDA Personal digital assistant

PERT Program evaluation and review technique

RAD Role activity diagrams

RUP Rational unified process

SDLC Systems development life cycle

SQL Structured Query Language

SSADM Structured systems analysis and design method

SSM Soft System Methodology

TOGAF The Open Group Architecture Framework

UEML Unified Enterprise Modelling Language

UML Unified Modelling Language

WAN Wide-area network

xiii

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Part 1

Introduction

1

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

1. Introduction

Part 1

Introduction

Part 2
Literature review

Part 3
Research

Part 4

Conclusion

Part 5

Supporting
information

Chapter 1
Introduction

Chapter 2
Theoretical
foundations

Chapter 3
Business rules

Chapter 4
Part-whole

relationships

Chapter 5
Linguistic analysis of

ISD modelling

Chapter 6
Research approach

Chapter 7
The proposed

integrative modelling
technique

Chapter 9
Conclusion

Bibliography

Chapter 8
Demonstration,

implementation and
evaluation of proposed
integrative modelling

technique

Appendix A
Derivation of proposed
integrative modelling
technique

1.1 Introduction
1.2 Background
1.3 Motivation for this study
1.3.1 ISD problems
1.3.2 Comparison with other

disciplines
1.4 Research approach
1.4.1 Problem statement and

research questions
1.4.2 Research methodology
1.4.3 The basis for the

integrative technique
1.4.4 Scope and limitations
1.5 Layout of thesis
1.6 Conclusion

2

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

1.1 Introduction

The researcher, in his work experience, has found that one of the problems hampering

information systems development (ISD) is the lack of a truly integrated modelling

technique or set of techniques. Truly integrated modelling techniques will support

modelling during all the phases of the ISD life cycle, from business analysis and

systems design to development, and ultimately the maintenance of the resultant

system. Integration does not pose such a huge problem during the later phases of

system design and development. Techniques such as the Unified Modelling Language

(UML) provide for modelling integration during the later phases of the ISD life cycle

more than adequately.

The problem investigated in this study is specifically the integration between

modelling for business and modelling for ISD. For example, how can we model

business rules for an organisation so that business users can easily understand and use

it, while at the same time that model has enough expressive power to create a design

enabling programmers to implement those same business rules in an information

system?

The integration problem has another side to it. Not only is there an integration

problem between the business side and ISD, but also between different aspects of

business modelling. Zur, Muehlen and Indulska (2010:39) refer to research that point

to representational weaknesses in process modelling languages. They speculate that

business rule modelling languages can overcome these weaknesses, but the

integration of rule and process modelling is seen as problematic. They refer to a

recent study showing that organisations frequently supplement their business process

modelling notation (BPMN) models with business rules in textual annotations.

Similarly, Recker (2010) found in a study on the use of BPMN that a major problem

is support in articulating business rules.

Excellent modelling languages and techniques exist for ISD, but very few of them

can be simply applied to business modelling. Wilcox and Gurau (2003) identify a

number of problems with integration definition for function modelling (IDEF) for

3

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

business modelling and then propose UML instead, but then with the provision that it

must be extended with an extension like the Eriksson-Penker Business Extensions.

The problems are mostly related to complexity, with most business users finding it

too difficult to express their business needs in an ISD language or technique, or

expressiveness, with users not being able to model everything they require (Recker,

2010). In practice, most business modelling is done in unstructured text format,

which leads to unclear, ambiguous descriptions.

Business and ISD modelling is (like architecture, business, education, law and

medicine) fundamentally concerned with design and the new, but fast-growing,

research approach of design science research as used in this research (Purao et al.,

2008). The purpose of this study is to take a step in the direction of creating an

integrative modelling technique that bridges the gap between business and ISD

modelling. It is done by a two-step process:

• The first step is to develop a grounded understanding of the fundamental

constructs of business and ISD modelling, trying to answer the question: What

must be modelled in business and ISD?

• The second step is to evaluate and improve the integrative modelling technique

that was developed in the first step, using design science research.

1.2 Background

Iivari, Hirscheim and Klein (2001b) point to the emphasis in ISD literature on

improving ISD by the use of new tools, techniques, methods or methodologies. As a

result of this emphasis, there is a proliferation of ISD paradigms, approaches,

methodologies, methods, techniques and tools. This causes many problems for

researchers and practitioners alike. If there are so many tools, techniques, paradigms

and approaches, which ones should be used and how can decisions be made about

them (Wand and Wang, 1996; Wyssusek, 2006)?

More specifically, Wyssusek (2006:64) considers conceptual modelling and models

to be “… among the most fundamental means” in ISD. They developed out of the

4

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

need of artificial intelligence to represent knowledge; systems analysis and database

development to represent information system problems independent of specific

implementations thereof; and programming languages to be more human-centred than

technology-centred.

Conceptual ISD modelling is done by using various techniques, ranging from object-

oriented techniques like UML diagrams, holistic techniques like soft system

methodology (SSM)-rich pictures, data techniques like entity-relationship diagrams

(ERDs); process techniques like IDEF0 and BPMN; and many more. These

techniques have many commonalities between them, but also many differences. Some

of the differences are more obvious, such as concepts existing in one technique but

not in another. Other differences are more subtle, such as the concept being called a

different name in different techniques or represented differently in different

techniques.

What is obvious is that new ISD modelling techniques were developed over the years

pragmatically to solve some specific problem area. ERD and normalisation were

developed to formalise the modelling of data and databases to overcome the problems

faced with databases at that time (such as creating, updating and deleting anomalies)

(Chen, 1976). A good current example is BPMN, which was developed to model

processes in an organisation. It was developed to overcome the lack of

standardisation in current process modelling techniques (Recker, 2010).

In practice, one of the main problems experienced by practitioners and students of

business and ISD modelling is how to integrate all of the various ISD modelling

techniques. When using more than one of these techniques in the same context, how,

for example, do the corresponding concepts of agent in agent-object relationship

(AOR), external agent in data flow diagrams (DFD) and actor in use case diagrams

relate to each other? And even more confusing, how do the corresponding concepts of

use case and system in use case modelling, behaviour in class diagrams, process in

DFD, IDEF0 and BPMN, transformation in SSM, activity in activity diagrams; how

in Zachman, and many other action-oriented concepts relate?

5

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

This need for integration exists in a number of dimensions. Firstly, it is needed to

integrate modelling techniques across phases. Currently, most ISD projects will start

with some form of use case modelling (or a textual requirements specification) to do

the requirements analysis. Moving from that to system analysis and design modelling

using either UML, ERD, DFD and/or any other modelling diagrams is not a trivial

exercise. There is a big jump from the unstructured text in use case narratives and

textual specifications to the detail needed in a technical level class or entity diagram.

For instance, in a study on practical experiences with eliciting classes from use case

descriptions, Cox and Phalp (2007:1286) concluded the following: “It can be

construed that there is a lack of detailed guidance about moving from a use case

description to elements of design.”

Secondly, there is a need to integrate between different areas of modelling (Shen

et al., 2004). For instance, the link between process modelling and systems modelling

is not well defined. Similarly, modelling the organisation in enterprise architecture

and seamlessly integrating that with all other models is problematic (see discussion

on Unified Enterprise Modelling Language (UEML) in section 1.3.1).

Thirdly, there is a need to integrate the techniques between non-technical business

use (e.g. to define business rules and to define enterprise architectures) and technical

IT use (e.g. specifying systems interfaces and designing information system

applications).

The purpose of this research is to make a contribution towards the integration of

business and ISD modelling techniques. To achieve this, an integrated model for

business and ISD modelling that provides integration across phases, between areas

and between usages will be developed (by analysing current business and ISD

modelling practices as embodied in typical ISD modelling techniques). The

development and evaluation of this model will be used to contribute to a better

understanding of how ISD techniques can be integrated with business modelling

techniques.

6

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

1.3 Motivation for this study

1.3.1 ISD problems

It is clear from the literature that a number of problems exist in ISD. The first and

main problem relates to the sheer number of different approaches, methodologies

and techniques in ISD. Iivari, Hirschheim and Klein (2001a:180) have identified

four ISD paradigms and eleven approaches to ISD, and further point out the

“… unabated proliferation of new methods and tools for developing information

systems...”. They refer to research by Jayaratna (1994) showing the existence of over

1000 ISD methodologies already in 1994. This situation caused Avison and

Fitzgerald (2006:566) to call this a “methodology jungle” and to ask: “Where to now

for development methodologies?” (Avison and Fitzgerald, 2003:79). Oei et al.

(1992:2) call it the “YAMA Syndrome” (yet another modelling approach).

Iivari et al. (2001a) created a hierarchical four-tier framework in an attempt to

categorise all of these concepts. The four tiers are the following: ISD paradigms, ISD

approaches, ISD methods and methodologies, and ISD techniques.

• ISD paradigms are the highest tier and involve issues related to the philosophical

underpinnings of ISD where ontology, epistemology, methodology and ethics are

considered. Examples of ISD paradigms are functionalism, social relativism, neo-

humanism and radical structuralism.

• ISD approaches follow from the previous tier and consider goals, guiding

principles, fundamental concepts and principles of the ISD process. Examples of

ISD approaches are object orientation (OO) and SSM.

• ISD methods and methodologies are based on ISD approaches and consider

issues such as the relationships between techniques and detailed ISD processes.

Examples are ETHICS, OOAD and IE.

• ISD techniques consider detailed concepts and notations. Examples include the

techniques in UML, CATWOE, ERD and BPMN. ISD modelling is on this level.

7

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Similarly, Adams and Avison (2003) reviewed more than 80 ISD techniques in their

paper. Avison and Fitzgerald (2006) highlight the main ISD techniques in use today.

They identified 37 techniques grouped into seven categories. For researchers, and

especially practitioners, the situation becomes difficult. Which paradigm, approach,

methodology and/or technique should be used?

The second problem relates to the usefulness of methodologies and techniques.

Iivari et al. (2001a) show a considerable questioning of the value of ISD

methodologies in the literature. They refer to studies that show that a significant

number of organisations do not use standard methodologies and those who do, use in-

house-developed methodologies. Similar sentiments are raised by Adams and Avison

(2003), showing that methodologies are too complex, need special skills, are not

flexible, are expensive and do not necessarily result in better productivity.

ISD techniques, in contrast, are seen more positively and can give any of the

following benefits in the development of systems (Adams and Avison, 2003):

• Making the solution to a problem more manageable

• Guiding the problem situation, giving structure and order

• Providing focus and direction

• Providing tools to represent the situation

• Providing a means of communication between stakeholders

In spite of the benefits, Adams and Avison (2003) show that ISD techniques may

result in similar confusions as is the case with methodologies and tools. For instance,

the same technique can be promoted in several domains, the same technique can have

different names in different methodologies, and the same technique can have different

modelling symbols in different methodologies.

A third problem that flows directly from the first is the issue of standardisation and

integration. Because of the proliferation of techniques, methodologies and

approaches, no clear universal standards exist. This has caused, among other things,

an attempt to unify modelling techniques and languages.

8

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

The most successful attempt has been the unification of techniques for modelling

software by means of UML. It is very successful in the software modelling area, but

has limited capabilities when doing business modelling. Noran (2003) points out the

desirability of modelling the software system and its corresponding business, and

then shows that UML can only effectively model business if it is complemented by

design patterns and specific extensions to capture business processes (Noran, 2004).

In the last few years, a major problem, similar to the proliferation issue discussed

above, has arisen in modelling the organisation or business. Many enterprise

architectures, languages and tools (like GERAM, IDEF, ARIS, IEM and the Zachman

Framework) have been developed, but the language and modelling interoperability

between them is very low, meaning that it is not easy to translate information from

one enterprise model (or tool) to another. During the International Conference on

Enterprise Integration Modelling Technology (ICEIMT) of 1997, this problem

motivated the idea of developing UEML.

Fundamentally, UEML should act as an intermediate language that will integrate a

wide variety of existing modelling languages. Projects to develop UEML have been

sponsored by the European Union’s 5th Framework Programme (FP5) on Research

and Development, and these projects have been ongoing since the conference (Anaya,

et al., 2010).

One of the projects related to UEML is the European thematic network project,

Interoperability Development for Enterprise Applications and Software (IDEAS).

One of its deliverables was a gap analysis, which highlighted areas for research,

technology development and standardisation. The need for more research into

enterprise modelling ontology and theory was highlighted in this report. UEML

development is currently continued with the Interop-NoE Network of Excellence

funded by the EU’s FP6 producing versions 2.0 and 2.1 of UEML (Anaya et al.,

2010).

This study attempts to contribute, among other things, to shedding more light on the

fundamental ontological constructs that must be modelled during ISD.

9

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

1.3.2 Business and ISD modelling problems

Gailly and Poels (2007:407) define the goal of business modelling as follows: “... to

create semantically faithful and pragmatically usable representations of business

domain artefacts (e.g. transactions, processes, value chains).” In this section, business

modelling problems are discussed from the viewpoint of general business domain

modelling and the more specific viewpoints of business process modelling,

requirements modelling and business rules modelling. Finally, problems related to

linking business and systems modelling are discussed.

1.3.2.1 General business modelling

Chen-Burger, Robertson and Stader (2000) show that, in spite of a number of

significant successes, business domain modelling has a number of problems:

availability of expertise, lack of a comprehensive evaluation method (most methods

only provide procedures and some measurement criteria), the fact that most methods

are informal or semi-informal, the time pressure to validate models by hand, lack of

knowledge transfer between developers and managers and very complex dynamic

aspects of modelling.

The inability to model various business aspects could have serious results. Gordijn

and Akkermans (2002) state that some of the main reasons for the failure of

e-business initiatives are that the business ideas were not stated very well (using some

form of modelling) and stakeholders could not assess the ideas properly.

Some of the major industry players are working on improving their modelling tools.

For instance, IBM introduced its UML profile, a component of Rational Unified

Process (RUP), to extend RUP’s capability to model businesses (Johnston, 2004).

1.3.2.2 Business process modelling

Russell et al. (2006) indicate that activity diagrams in UML 2.0 have limitations in

modelling business processes. They share these limitations with most business

process modelling techniques. Specifically, they cannot capture many of the natural

constructs found in business processes.

10

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

According to Aguilar-Saven (2004), although business process modelling is

researched extensively, it still has problems. It is not well structured or classified and

there is a lot of confusion related to terminology. Recker et al. (2004) show that

although process modelling has improved over the years concerning ontological

completeness (using BPMN as the current standard in process modelling) it still has a

few potential shortcomings.

Mayr, Kop and Esberger (2007) state that business process modelling and

requirements modelling should be based on the same notions and principles because

they both occur early in the system development life cycle (SDLC).

1.3.2.3 Requirements modelling

According to Sinha et al. (2009:327), natural language remains the main way of

specifying requirements. The adoption of more formal requirements modelling has

been slow, mainly because of the “high entry barrier for customer participation”.

Ghanbary and Day (2009) state that business requirements, specifically for web

development projects, are modelled mostly using development techniques like UML

and RUP. They consider current modelling tools and techniques to be incapable of

fully capturing business requirements and communicating them to all stakeholders.

Some of the specific problems with the current modelling tools and techniques are the

following:

• They are unable to present the overall requirements of the system. It is not easy to

trace and determine the impact of any change on the whole system.

• The literature of these tools does not adequately explain how to translate pictorial

diagrams into actual programming code.

• There is no formal way to ensure that the requirements captured and the

requirements that the users want are the same. A major factor is that the current

models are not easily understandable by business.

• There is a lack of support for non-functional requirements.

• The current techniques do not have mechanisms to help prioritise processes.

11

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

• As complexity of processes increase, the models become more and more

confusing to involved parties and many tools have problems in properly showing

models over many pages.

Shaker (2010) states that information system (IS) requirements are often defined by

users, developers and customers using the features of the system, as well as the

functional and non-functional distinguishable characteristics relevant to stakeholders.

In current practice, this feature-oriented stakeholder’s view is not obvious in

development artefacts. He therefore proposes feature-oriented requirements

modelling instead of the current goal- and object-oriented modelling.

Winter, Hayes and Colvin (2010:41) attempt “to bridge the gap between an informal

language description and a formal model”. They do this by incrementally building

behaviour trees from functional requirements and merging these trees to form a more

complete model.

According to Mayr and Kop (2002:1–2), the main reason why IS projects have

incomplete or inadequate requirement models is because “... conceptual models are

too complex and abstract as to be easily understood and validated by average users...

Requirements engineering therefore, should start with collecting this knowledge and

representing it in a way the end user understands and is able to validate.”

1.3.2.4 Linking business and system modelling

Tyndale-Biscoe et al. (2002) presented their findings on a project related to improved

business modelling of components using UML. Their work attempts to overcome two

main problems experienced in extant modelling techniques: optimised linking

between the business model and the systems model, and models that are as

comprehensible to business experts as they are to system modellers.

Odeh and Kamm (2003) show how difficult it is to find a bridge between a model of

a business and the corresponding model of an IT system. The challenge is to find a

translation or conversion between the two models. They propose that these two

models should be independent, and postulate that a weakness of UML and RUP as

12

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

bridging models is that they consider business and IT system models to be dependent.

They then illustrate that a direct translation between the two sets of models is

difficult, if not impossible, without an intensive interpretation process.

1.3.2.5 Conclusion

In this subsection, business and ISD modelling problems were considered from a

number of perspectives. The problems can be summarised into two main issues:

providing business stakeholders with techniques and tools for modelling their

business environments, issues and requirements that are easy enough for them to use,

while providing ISD stakeholders with adequate information to do further systems

analysis and design.

1.3.3 Comparison with other disciplines

This study initially started out as an investigation into how ISD modelling can be

improved to aid in better communication between all the parties involved in ISD.

However, after intensive study of ISD modelling, the researcher realised that the real

current problem is not how to model IS, but what should be modelled and what the

underlying modelling theory is. Once one knows what to model, the fundamental

modelling theory – the how-to model – would follow logically from that.

When other disciplines are considered in terms of modelling or representation, certain

things are clear. Many disciplines do not have the same problems in representation

that ISD have. There are various reasons for that, but a fundamental reason is that

these disciplines have a clear understanding of what they have to represent and how

these things are related. As a result of this, they have a consistent, standard way of

representing these things.

When considering music, for example, it is clear that, in spite of the numerous

notations available in various cultures, they all represent the fundamental dimensions

or parameters of music, namely pitch, tempo, melody, harmony, rhythm, loudness,

timbre, etc. These fundamental dimensions of music, in turn, are based on the

13

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

fundamental properties of sound waves such as amplitude and frequency, the

properties of time such as slow, fast and off-beat, and emotional qualities in humans

such as joyful, sad and solemn. Because of the standardisation of the Western clef

notation, it is possible to play music today composed hundreds of years ago, teach

students music theory as well as practice in a consistent manner globally, and to

easily translate music notation into actual music, electronically, and vice versa.

Similarly, in architecture, the fundamental, three-dimensional, spatial aspects of a

building are represented in the architectural drawings. The architect-designed plan for

a building normally consists of a single “blueprint” with complementary plans tightly

integrated with the main plan. The building plan is a representation of a three-

dimensional artefact that has mainly a space aspect. Therefore, the representation can

be done by just considering length, width and height. Interestingly, the two-

dimensional “shorthand” version of the plan is the main plan, considering only length

and width. The height dimension is taken care of by handling each level as a separate

plan (two-dimensional) and by a supplementary plan (two-dimensional) of front, side

and back views.

All parties involved with the building of a house work from the same set of plans. For

instance, the architect designs the house in the eventual format but without a lot of the

detail. The architectural draughtsman adds the detail, like the thickness of the walls

and the direction in which the door will actually open. The client approves these

plans. A fairly detailed estimate of the building costs can be made based on the plans.

The builder uses the plans to determine his quote for the job. All the different

subcontractors work according to the plan. The municipality approves the design

using the plan. The bank decides on the loan amount, based on the plan.

If one considers representation or modelling for the purposes of ISD, the picture is

quite different. The number of techniques, but more so the number of categories,

illustrates the problem. Information systems (IS) are seen, and therefore represented,

either as data, processes, objects, linguistic actions, and many more concepts. All of

these views assume different “building blocks” for IS. Are they all correct or is there

a fundamental underlying structure to business and information systems?

14

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

1.4 Research approach

The research approach followed in this study is discussed in detail in Chapter 6.

1.4.1 Problem statement and research questions

The problem statement of this study is:

The current modelling techniques do not bridge the gap between business and ISD.

The main research question is:

Can an integrative modelling technique be developed to bridge the gap between

business and ISD?

The subresearch questions are the following:

• Is there a gap between business and ISD that current modelling cannot fill?

• What are the fundamental constructs of any integrative modelling technique

between business and ISD?

• What are the properties and attributes of these fundamental constructs?

• What are the relationships between these fundamental constructs?

• Can it be demonstrated that the proposed technique does indeed integrate

business and modelling techniques better than existing business modelling

techniques?

The research questions are answered in the thesis as a whole, but are also answered

explicitly in the following parts of the thesis:

15

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Question Section/s where answered
Is there a gap between business and ISD that current
modelling cannot fill?

1.3.2

What are the fundamental constructs of any integrative
modelling technique between business and ISD?

7.2 and 7.3

What are the properties and attributes of these
fundamental constructs?

7.2 and 7.3

What are the relationships between these fundamental
constructs?

7.2 and 7.3

Can it be demonstrated that the proposed technique
does indeed integrate business and modelling
techniques better than existing business modelling
techniques?

8.3, 8.4 and Appendix A

Table 1-1: Research question map

1.4.2 Research methodology

The research approach followed in this study is design science research. This

approach provides another view that complements the positivist and interpretive

perspectives of IS research. It distinguishes between natural science and the science

of the artificial, and concentrates on phenomena that are created (designed artefacts),

rather than objects occurring naturally. Designed artefacts can be, among other

things, algorithms, human-computer interaction (HCI) constructs, ISD methodologies

and ISD techniques. Design science research involves the following steps (Geerts,

2011):

• Problem identification and motivation

• Defining the objectives of a solution

• Design and development

• Demonstration

• Evaluation

• Communication

Vaishnavi and Kuechler (2004) developed a taxonomy of design science research

output (see Table 1-2).

16

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

 Output Description
1 Constructs The conceptual vocabulary of a domain
2 Models A set of propositions or statements expressing

relationships between constructs
3 Methods A set of steps used to perform a task – how-to

knowledge
4 Instantiations The operationalisation of constructs, models

and methods
5 Better theories Artefact construction as analogous to

experimental natural science
Vaishnavi and Kuechler (2004)

Table 1-2: The outputs of design science research

The artefact of this study is an integrative modelling technique between business and

ISD. In terms of the design science research outputs as defined in Table 1-2, this

modelling technique can be seen to incorporate the first three outputs: constructs, a

model and (to some extent) a method.

Venable (2006) emphasises theories and theorising in design science research and

shows, from the literature, the concept of a “kernel theory” that are drawn from

natural science, social science and mathematics to provide a theoretical base for the

research.

The research in this study comprised two major steps. The first step determined the

fundamental underlying concepts and their relationships for business and ISD

modelling. This was done using a grounded approach to analysing the main existing

business and ISD modelling techniques as well as using linguistics as a kernel theory.

This analysis eventually developed into the proposed integrative modelling technique

proposed in this research.

The second step was to evaluate and refine the proposed modelling technique using

design science research. To evaluate the artefact, it was compared with a number of

existing integrative modelling techniques and evaluated based on specific design

criteria. Furthermore, various case studies were used to illustrate the application of

the proposed modelling technique. The case studies incorporated organisational,

business and IT aspects and also the different phases of a system development life

cycle.

17

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

1.4.3 The basis for the proposed integrative technique

The proposed integrative modelling technique that was used and evaluated in this

study is the result of an in-depth qualitative data analysis of existing business and ISD

techniques. The main techniques of the past, the main techniques that are currently

popular as well as lesser-known techniques were chosen to give as broad a range of

techniques as possible. Only representational techniques were considered1. The ISD

approaches and techniques studied were adapted from Avison and Fitzgerald (2006).

1. Holistic techniques: The soft system methodology (SSM) represents the holistic

approach, emphasising the techniques such as rich pictures, root definitions

(CATWOE) and conceptual models.

2. Data techniques: Entity modelling and Structured Query Language (SQL)

represent the data approaches to ISD modelling.

3. Process techniques: The techniques to represent the process are data flow

diagramming, decision trees, decision tables, various IDEF techniques and

BPMN. Certain techniques that fall under the process approach, such as action

diagrams and entity life cycles, will rather be studied under their object-oriented

counterparts.

4. Object-oriented techniques: All the diagrams of UML, such as class diagrams,

use case diagrams, interaction diagrams, sequence diagrams, state chart diagrams

and activity diagrams, are considered as representative of the object-oriented

approach.

5. Project management techniques: PERT and Gantt charts represent the project

management approach.

6. Organisational techniques: No representational techniques.

7. People techniques: No representational techniques.

8. Enterprise architecture techniques: The Zachman framework will represent

enterprise architecture techniques.

1 Two types of techniques are described by Avison and Fitzgerald (2006). Representational techniques
describe ways of modelling some universe of discourse, while process techniques describe a set of
actions to achieve a certain goal, e.g. the joint requirements planning (JRP) technique describes how to
get requirements but not how to represent or model them.

18

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

9. Linguistic techniques: Language action perspective (LAP) will represent the

linguistic techniques.

1.4.4 Scope and limitations

In this study, anything that has a bearing on the various aspects of systems and their

development were considered; not only pure ISD issues. It therefore includes the

following:

1. Aspects typically found in the SDLC phases of systems

2. The business aspects related to IS like business process management

3. Organisational aspects found in the enterprise architecture domain

Not all the ISD modelling techniques in existence were considered. In the first place

space limitations did not allow the inclusion of all techniques in existence. Secondly,

because certain techniques are very similar, only one representative technique per

category was studied.

The resultant integrative technique was not evaluated in a full-scale, real-life

situation, but was evaluated using a comprehensive case study, as well representative

examples.

19

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

1.5 Layout of thesis

Part 1

Introduction

Part 2
Literature review

Part 3
Research

Part 4

Conclusion

Part 5

Supporting
information

Chapter 1
Introduction

Chapter 2
Theoretical
foundations

Chapter 3
Business rules

Chapter 4
Part-whole

relationships

Chapter 5
Linguistic analysis of

ISD modelling

Chapter 6
Research approach

Chapter 7
The proposed

integrative modelling
technique

Chapter 9
Conclusion

Bibliography

Chapter 8
Demonstration,

implementation and
evaluation of proposed
integrative modelling

technique

Appendix A
Derivation of proposed
integrative modelling
technique

The literature review forms the basis for

determining the integrative modelling

language proposed in this thesis as well as

forming the basis of some “kernel theories”

(Venable, 2006). The following main

concepts are covered: theoretical

foundations (e.g. systems theory), business

rules, theory of part-whole relationships, and

linguistic analysis of ISD modelling.

Firstly, the two research approaches used in

the thesis, namely grounded theory and

design science research, are discussed. It

involves looking at the research strategy,

research philosophy, research methodology,

research design and how it was applied.

Secondly, the proposed integrative

modelling language is described.

Thirdly, following the design science

research process, the proposed integrative

modelling technique is demonstrated, a

possible implementation is discussed and the

technique is evaluated.

The study is concluded and the results

evaluated within the bigger picture of ISD.

Other areas of research potentially flowing

from this study are also discussed.

20

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

1.6 Conclusion

In this chapter, it was shown that a number of problems exist in ISD modelling. The

first is the sheer number of approaches, methodologies and techniques in ISD. The

second is the usefulness of methodologies and techniques. The third is the lack of

standardisation and integration. In comparison with many other disciplines, ISD does

not have a clear view of what and how to model ISD-related objects and issues.

The purpose of this research is to consider only one of these modelling integration

areas, namely the integration between business and ISD modelling, and attempt to

develop an integrative technique to bridge that gap. The purpose was not to develop

“yet another modelling technique”, but to understand the integration problem better

and to move towards a better understanding of modelling integration between

business and ISD.

To achieve this goal, a two-pronged research approach was followed. Firstly, to

ensure that the technique was based on sound underlying modelling constructs and

relationships, a grounded approach was followed in developing the integrative

technique, using a representative set of ISD modelling techniques. Secondly, the

resultant integrative technique was evaluated and improved using a design science

approach.

In order to provide a theoretical foundation for the grounded approach analysis,

Part 2 provides a literature review of a few fundamental underlying areas on the

question at hand. These areas are general theoretical foundations (information,

systems theory and enterprise architecture), business rules, part-whole relationships,

and linguistics.

21

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Part 2

Literature Review

22

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Part 1

Introduction

Part 2
Literature review

Part 3
Research

Part 4

Conclusion

Part 5

Supporting
information

Chapter 1
Introduction

Chapter 2
Theoretical
foundations

Chapter 3
Business rules

Chapter 4
Part-whole

relationships

Chapter 5
Linguistic analysis of

ISD modelling

Chapter 6
Research approach

Chapter 7
The proposed

integrative modelling
technique

Chapter 9
Conclusion

Bibliography

Chapter 8
Demonstration,

implementation and
evaluation of proposed
integrative modelling

technique

Appendix A
Derivation of proposed
integrative modelling
technique

2. Theoretical foundations

2.1 Introduction

2.2 Information

2.3 Systems theory

 2.3.1 Systems thinking

 2.3.2 Systems characteristics

 2.3.3 Systems hierarchies

 2.3.4 Complex engineering systems

 2.3.5 Systems complexity

 2.3.6 Systems control

2.4 Enterprise architecture

 2.4.1 Background

 2.4.2 Fundamental concepts

 2.4.3 Zachman rows

 2.4.4 Zachman columns

 2.4.5 Conclusion

23

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

2.1 Introduction

In Part 2 of this thesis, a literature review is done as a basis for further research. In

this chapter, three theoretical foundations of business and ISD are discussed:

information, systems theory and enterprise architecture.

In ISD two different “worlds” come together: business and IS. Both business and IS

are fundamentally information “processors”, and therefore the basics of information

are discussed as the first theoretical foundation.

Business and IS further are related because they can both be considered to be

systems. Patching (1990) defines a system, using Collins Standard Reference

Dictionary, as “a group of things or parts working together or connected in some way

as to form a whole”. Significantly, information systems are, by name and definition,

systems. Therefore, in this chapter, the second theoretical foundation to be reviewed

in the literature is systems theory.

To understand what the components of business and IS are, as well as their

relationships, it is further needed to study enterprise architecture as the third

theoretical foundation.

In later chapters, the other three foundational areas to be reviewed in the literature –

business rules, part-whole relationships and linguistics – are discussed.

2.2 Information

One approach to understanding information is to relate it to semiotics (the study of

signs). Signs can be the obvious “visual” signs that most people understand

intuitively, like traffic signs, as well as drawings, pictures and photographs. It can

also be non-visual signs like words, sounds, objects, acts, odours, gestures and body

language, even thoughts. Signs are any objects that stands for some other object, for

example, a red robot means “stop” (Chandler, 2007). Signs can be used together with

other signs to form coding systems that are used to enable communication between

agents.

24

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Some examples of coding systems, with their required number of symbols, are as

follows (Gitt, 1997):

• Binary code used in electronic information processing (two symbols)

• Genetic code (the four letters A, C, G, T)

• Decimal code (the 10 digits 0-9)

• Hebrew alphabet (22 letters)

• Latin alphabet (26 letters)

• International flag code (26 flags)

• Chinese writing (> 50 000 symbols)

Coding systems are not created arbitrarily, but they are optimised according to

criteria such as pictorial appeal (e.g. hieroglyphics), small number of symbols (e.g.

Braille), speed of writing (e.g. shorthand), ease of writing (e.g. cuneiform), ease of

sensing (e.g. Braille), ease of transmission (e.g. Morse code) and technological

legibility (e.g. bar codes) (Gitt, 1997).

The choice of code also depends on the medium of transmission (Gitt, 1997):

• Acoustic transmission (e.g. natural spoken languages, mating calls of animals,

musical instruments)

• Optical transmission (e.g. written languages, technical drawings, flashing signals

produced by living organisms like fireflies, flag signals, bar codes, sign language

for the deaf, body language, bee gyrations)

• Tactile transmission (e.g. Braille)

• Magnetic transmission (e.g. magnetic tape and disk)

• Electronic transmission (e.g. telephone, radio and TV)

• Chemical transmission (e.g. genetic code, hormonal system)

• Olfactory transmission (e.g. pheromones emitted by some animals)

• Electrochemical transmission (e.g. nervous system).

Information can be transmitted or stored in material media only when a language is

available. There are different kinds of languages (Gitt, 1997):

25

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

• Natural languages

• Artificial communication languages, such as Esperanto, flag codes and traffic

signs

• Formal artificial languages, such as mathematical calculi, chemical symbols,

musical notation, algorithmic languages and programming languages

• Special languages found in living organisms, such as genetic languages, bee

gyrations, pheromonal languages and hormonal languages

2.3 Systems theory

This chapter consists of the following parts: firstly, the fundamental concepts of

systems thinking are discussed and the characteristics of systems are explained. This

is followed by a section on different kinds of system hierarchies and one on complex

engineering systems. After that, system complexity is considered, followed by the

related subject of system control or cybernetics.

2.3.1 Systems thinking

In this section, it is shown how systems thinking went through an evolution moving

from closed-system thinking (considering mainly systems in physics and astronomy),

to open-system thinking (considering systems in all disciplines) to soft-system

thinking (considering human activity systems), and currently to living system

thinking (considering different levels of living things). Note that open- and closed-

systems thinking together are considered to be “hard” systems thinking.

Introna (1996:33) shows that metaphors are actively used in most ISD methodologies.

The major ISD metaphor is that of “system”. Although he acknowledges the benefits

of this metaphor, Introna also warns that the “system” metaphor is limited and has

probably been overused to the extent that “the map is now the territory”. He wonders

what would happen if non-engineering metaphors like “novel” and “battle” would be

used to describe IS. However, in this thesis, the major metaphor of “system” will still

be used.

26

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

2.3.1.1 Hard systems

Although systems thinking has been around for a long time, it was formalised when

Von Bertalanffy (1950) observed how different areas of study (such as physics,

biology, medicine, psychology and social science) were all changing from studying

elementary units or atoms to studying “wholeness”. This applied to inanimate things,

living beings and social phenomena. These observations gave rise to what is known

as the general systems theory (GST). GST identified general system laws applicable

to all systems across different fields of study. According to Wang (2004:394), “GST

covers the discussion of both mechanistic/close/non-living systems and

organic/open/living systems”.

For Von Bertalanffy, the father of modern systems thinking, the concept of

“wholeness” or “gestalt” or “organism” is central in GST (Von Bertalanffy, 1950;

Wang, 2004). A number of related concepts flow from this. First is the concept of a

dynamic open (vs. a static closed) system, where materials enter and leave a system.

Second is the concept of equifinality, where a final state may be reached from

different initial states and in different ways. Thirdly, GST has a central assumption

called the nonsummativity assumption, which states that the whole is greater than the

sum of its parts (Wang, 2004).

GST is applied to almost every discipline of study, for instance, to total quality

management (Wang, 2004), organisations (Wang, 2004), criminal justice (Bernard,

Poaline III and Pare, 2005), human sciences (Mansour, 2002) and even grounded

theory (Stillman, 2006).

In modelling organisations, for instance, GST makes a number of assumptions.

Firstly, an organisation is seen as having a goal (externally given desired steady state

such as maximising shareholders wealth) and purposes (internally given on two

levels: organisational level such as growth and individual level such as increasing

personal income). Secondly, organisations are seen as higher-order living (concrete)

systems, maintaining order by lowering their entropy with energy and material

received through the system boundary. Thirdly, humans (seen by many theorists to be

27

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

the basic unit of an organisation) have similar goals and purposes to that of the

organisation (Wang, 2004).

According to Woodburn (1988), systems thinking in the Western world developed in

the 1960s with the emergence of a number of system-based methodologies described

as either systems engineering or systems analysis. These approaches used computer

models to explore the behaviour of specific systems with the result that the fields of

application for systems thinking were limited to well-structured situations. In these

situations, the choice of system and system boundary caused few problems and

enough knowledge existed to incorporate theories into the models to explain relevant

phenomena.

Woodburn (1988) says that the case for systems thinking can be argued as follows:

• The world around us is complex, but there is evidence of much natural order.

There is also man-made order, e.g., rules of the road.

• Man is involved in a quest to enhance the quality of life by controlling events in

the world outside and is also driven to seek ways to introduce increasing amounts

of order into his environment.

• Until recently, additional new order created through intervention has been at

lower levels of organisation or complexity.

• As problems at lower levels are overcome, attention is turned to higher levels of

organisation or complexity.

• The idea of a system is an intellectual construct that is considered to generate

(intellectual) order.

• Models of these systems can be developed and compared to perceived reality.

• Models can be developed in the form of sets of interrelated activities using

ordinary language or in the form of mathematical symbols.

Checkland (1999) provides the four fundamental ideas of systems thinking. These

ideas are based on those of Patching (1990), where he clarifies how systems differ

from a simplified collection of parts without a common identity and how interaction

28

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

between the parts is achieved and controlled. These fundamental ideas are the

following:

1. Emergent properties. To distinguish an entity from its environment, it must have

properties that emerge out of the single whole that are not properties of the

collection of parts (Checkland, 1999). Emergence is the display of new attributes

in the end product when the component parts of the system are connected

(Patching, 1990).

2. Layered structured. Entities with emergent properties can have smaller entities

with emergent properties which are also systems (Checkland, 1999). Each of

these systems forms part of a hierarchy of systems, with the subsystems in turn

displaying emergent properties. In man-made systems, this hierarchy is fairly

obvious, e.g. a personal computer. However, the extent of the hierarchy will

depend on the perspective being taken and any system might be part of a wider

system that has some controlling influence, e.g. the personal computer could be

part of the communication system of an organisation, or the cultural system of the

country (Patching, 1990).

3. Processes of communication. The entity must be able to find out about its

environment (Checkland, 1999). To function as a whole, there must also be some

form of communication between the system components. Each subsystem

receives inputs, which stimulate further activity to produce outputs, passing this

either to other subsystems or to the environment (Patching, 1990).

4. Control. The entity must be able to respond to its environment (Checkland, 1999).

Many of the communication messages are concerned with control. Control is the

means by which a whole entity retains its identity and/or performance under

changing circumstances. Control is normally dependent on feedback about how

the system is performing (Patching, 1990).

2.3.1.2 Soft systems

During the 1970s, mainly as a result of work done by Checkland (2000), a different

use of the idea “system”, the so-called “soft system”, emerged. At the centre of this

approach is the concept of a human activity system modelled by using ordinary

language rather than mathematical symbols. It can be used in poorly structured

29

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

situations where the choice of system and the delineation of system boundaries are

controversial.

The terms hard and soft are comparative ones used to distinguish between methods

of examination that address clearly defined problems and others that are used when

the problem is not clear at the outset, and a preliminary investigation is required to

identify and select the problems to be solved.

To distinguish between these two approaches, Checkland (2000) referred to them as

the hard systems approach and the soft systems approach. The differences between

these two approaches are summarised in Table 2-1 below (using Woodburn (1988)

and Patching (1990)):

Hard approach Soft approach
The world is made up of systems. The world is problematic.
We can study the world
systematically.

We can study the world systemically, i.e. by
thinking about it by means of a system of
inquiry.

An objective for the system can be
taken as given.

An objective for the system cannot be taken
as given.

Can be applied in well-structured
situations.

Can be applied in poorly structured
situations.

Systems are seen as physical entities. Systems are seen as purely intellectual
constructs, nothing more.

Asks the question: How do we
achieve the objective?

Asks the question: What do we do to achieve
an improvement?

Woodburn (1988) and Patching (1990)

Table 2-1: The differences between the hard and soft system approaches

2.3.1.4 Living systems

A more recent theory, the living system theory, in concept already proposed by Miller

in 1965, is derived from open systems theory. It proposes hypotheses and processes

applicable to eight different levels of living things: “... cells, organs, organism, group,

organisation, communities, societies and supranational systems.” It is very influential

in the study of social systems and has led to many social theories and frameworks

(Wang, 2004:394–395).

30

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

2.3.2 System characteristics

For the study of ISD, and especially modelling between two systems (IS and

organisation), it is necessary to understand the basic characteristics of systems.

Patching (1990) discusses these characteristics by using Checkland’s formal systems

model (see Figure 2-1):

• The system represented by the model has an ongoing purpose, i.e. it exists for a

reason, and achieves some transformation or change.

• There are measures of performance that can be used as a basis for measuring

efficiency, so that the system can be shown to be effective.

• There is some mechanism for control or regulation, and a decision-making

process.

• It has components that are themselves systems, i.e. systems can be broken down

into subsystems. According to Wang (2004), subsystems can be classified into

three categories: matter energy, information and combinations of both.

• It has components that interact.

• It exists as part of a wider system or systems in an environment with which it

interacts.

• It has a boundary that encloses the area that the regulating mechanism has under

control.

• It has resources for its own use under the control of the regulating mechanism.

• It has some expectation of continuity and can be expected to recover from

disturbances.

31

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Patching (1990)

Figure 2-1: The formal systems model – Checkland

2.3.3 System hierarchies

When dealing with IS and organisations, various categories of systems are involved.

For instance, human stakeholders working for various organisations are involved in

creating IS, based on a specific methodology and set of modelling techniques. All of

these underlined concepts are different categories of systems and are categorised in

this section.

Subsystem

Subsystem

Subsystem

Subsystem

Subsystem

Boundary

Input

Interaction

System

 Resources/continuity/measures/performance

Means of

regulation

and control

Output

Environment

TRANSFORMATION

32

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

This section is divided into three parts: The first lists some high-level categories or

types of systems. The next two come from Martinelli (2001), who analysed and

classified 19 of the most well-known systems taxonomies and hierarchies. He

classified these taxonomies and hierarchies according to their utility to management

in two main categories: general hierarchies and managerial hierarchies.

2.3.3.1 High-level categories of systems

Patching (1990) distinguishes between four types of systems:

• Natural systems: Those that occur naturally in the universe, e.g. galaxies, humans

and animals.

• Designed systems: These are man-made concrete systems, e.g. computers, central

heating systems, jet engines, etc. This category also includes abstract systems

such as mathematics, art, music, philosophy, etc.

• Social and cultural systems: These systems are formed by human beings coming

together, either naturally in families, communities, nations or deliberately in

clubs, companies, etc.

• Human activity systems: Systems where human beings are undertaking activities

that achieve some purpose. These systems would normally include other types,

such as social, man-made and natural systems.

Human activity systems can be regarded as open systems, as there is a continual

interaction with, and a reliance on, the surrounding environment. Unlike man-made

constructions, these can be viewed from a number of different perspectives, each of

which would result in a different model. While the subsystems of man-made systems

are readily identifiable, these are generally in the form of activities when considering

human activity systems. Some of these activities may be observable, but others are

taking place as mental processes. Similar problems arise when considering other

factors such as communication, boundaries, decision and control mechanisms,

interactions with the environment and measures of performance. A human activity

system is usually modelled as a series of activities plus an accompanying social

system that will have a strong bearing on whether or not certain changes will be

accepted (Patching, 1990).

33

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Another way in which systems can be classified is as concrete systems in physical

space and time, consisting of interrelated objects, conceptual systems, consisting of

basic units of words or symbols, and abstract systems, which have relationships

instead of objects as the underlying unit. Concrete systems can be further divided into

living (organic) and non-living (mechanistic) systems (Wang, 2004).

2.3.3.2 General hierarchies

According to Martinelli (2001) general hierarchies can further be divided into two

categories (see Table 2-2 below): those stressing system complexity and those

emphasising system-environment interactions.

Hierarchies stressing
system complexity

These hierarchies attempt to
classify all systems from
lowest to the highest level of
complexity.

Combining elements from all of these hierarchies
gives the following list:

• Static
• Simple dynamic
• Homeostat
• Cells
• Organs
• Plants
• Animals
• Humans
• Groups
• Organisations
• Communities
• Societies
• Supranational systems
• Transcendental systems

Hierarchies emphasising
system-environment
interactions

These hierarchies consider to
what extent the system
interacts with its
environment.

One set of hierarchies gives, in summary, various
degrees of the following:

• Open systems
• Relatively closed systems
• Closed systems

Another hierarchy considers the ability of the system
to cope with environmental changes:

• Autarchic (primitive) systems
• Symbiont (bureaucratic, centralised) systems
• Dominant (competitive, decentralised) systems
• Heuristic (emergent) systems
Another hierarchy considers the ruling programme

34

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

of the system and the response to the milieu

• Automatic, sequential
• Controlled, regulated
• Adaptive, self-optimising
• Self-learning and self-organising

Martinelli (2001)

Table 2-2: General system hierarchies

2.3.3.3 Managerial hierarchies

According to Martinelli (2001), managerial hierarchies can be further divided into

two categories (see Table 2-3 below): those focusing on decision levels and those

considering intrasystem and system-milieu interactions.

Hierarchies focusing on
decision levels

The first set of hierarchies can be illustrated by the
well-known hierarchy in Martinelli (2001):

• Production
• Operational
• Tactical
• Strategic

A second hierarchy considers the self-government of
systems:

• Externally governed systems
• Systems with embedded goals and controls
• Self-learning systems
• Self-governing systems
• Systems with multiple deciders

A third hierarchy considers self-organising behaviour:

• Rigidly controlled
• Deterministic
• Purposive
• Heuristic
• Purposeful

A fourth hierarchy considers the “seven essential
elements of any organisation”:

• Physical means
• Processes and flows
• Functions

35

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

• People and leadership
• Organisational structure
• Policy, strategy, programmes
• Identity, mission, distant goals

Hierarchies considering
intrasystem and system-
milieu interactions

Hierarchies are organised
according to the increasing
complexity of the internal
interactions between the
subsystems of an enterprise.

The following is a representative example:

• Non-systems
• Static
• Simple dynamic
• Feedback dynamic
• Multilevel
• Autopoietic
• Adaptive
• Evolutionary

Martinelli (2001)

Table 2-3: Managerial system hierarchies

2.3.4 Complex engineering systems

Information systems can also be seen as complex engineering systems – systems that

are designed by humans and have both significant human and technical complexity

(Magee and De Weck, 2004). On a more pragmatic level, this view can help us

towards a practical understanding of IS. Magee and De Weck (2004) created a

taxonomy for the qualitative assessment of complex engineering systems. The

attributes of this taxonomy are the following:

• Degree of complexity on four levels: part/component, group/subassembly,

machine/apparatus, plant/equipment

• Branch of the economy, e.g. mining, energy generation and manufacturing

• Realm of existence: real or virtual

• Boundary: open or closed

• Origin: natural or artificial

• Time dependence: static or dynamic

• System states: continuous, discrete or hybrid

• Human control: autonomous, human in the loop or mixed

36

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

• Human wants, such as shelter, food, transportation, communication, security,

longevity and health, entertainment, aesthetic pleasure, education, and social,

emotional, spiritual and curiosity

• Ownership on three dimensions: single or multiple, for-profit or not-for-profit,

and private or governmental control

• Functional type (described in the next paragraph)

Functional type is the combination of outputs (operands) and processes (manipulators

or actions). Actions can be executed on the following operands:

• Matter (M) – physical objects, including organisms that exist unconditionally

• Energy (E) – stored work that can be used to power a process in the future

• Information (I) – any informational object

• Value (monetary) (V) – monetary and intrinsic-value objects used for exchange

The five basic actions are:

• Transform or process – transform objects into new objects

• Transport or distribute – change the location of objects

• Store or house – provide buffers in the network by holding objects over time

• Exchange or trade – exchange objects mainly via the value operand

• Control or regulate – drive objects from some actual state to a desired state

The above classification of operands and actions has formed an integral part in the

integrative modelling technique created in this study. Understanding that only one of

the five types of actions can be executed on any object helped to structure the

modelling technique more precisely. For instance, the only actions that can be done

on a report (an Information (I) operand) is to transform it (e.g. summarise it),

transport it (e.g. courier it to recipients), store it (e.g. place in archive), exchange it

(e.g. sell it to another organisation) and control it (e.g. do quality control on the

contents).

37

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

2.3.5 System complexity

In the previous section, IS was classified as a complex engineering system, and most

authors consider ISD to be complex indeed (Xia and Lee, 2005). The many IS project

failures also attest to this fact (as highlighted by the Chaos reports of the Standish

Group over the years). Similarly, organisations are becoming more and more

complex in the rapid changing global economy. In this section, complexity is

considered in more detail.

2.3.5.1 Complexity in organisations

Backlund (2002:13) states that complexity is a qualitative concept, although various

attempts have been made to define it quantitatively. He defines it as “… the perceived

effort that is required to understand and cope with the system.” It implies that the

complexity of an object can change without the object changing, e.g. when a person

gets more experience of the object. He defines the structure of an organisation as

complex when one or more of the following is true: (1) it consists of many

components, (2) there are many relations between the components, (3) these relations

are not symmetric, and (4) the arrangement of the components is not symmetric. He

further defines the processes of an organisation to be complex when one or mostly

more of the following are true: (1) many “parts” of the organisation are involved in

the process, (2) there are many steps in the process and the matter/energy or the

information reaches many states or is transformed many times, and (3) there are many

different kinds of matter/energy or information involved in the process (Backlund,

2002).

At every point where information is received and not just moved further in an

organisation or information system, information can be added, disappear, processed,

elaborated, summarised, selected, etc. The efficiency of the information transfer

process is indirectly proportional to the complexity of the information system. The

less information left from the original reaching the decider, the more complex the

information system. Normally information is abstracted as it moves hierarchically

upwards in the organisation and made more detailed as it moves downward. One

measure of efficiency is the relationship between the total amount of information

38

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

received by the highest level of the organisation and the total amount of information

created or received by the organisation. Another measure of efficiency is the number

of times a piece of information passes through a component that uses it proportional

to the average number of components. In summary, the more complex a system, the

more connections, the more information, and the more time are required (Backlund,

2002:39).

Lewis (1994) applies chaos theory and its offspring, complexity theory, to

organisations and specifically the management of change. A system (e.g.

organisation) can be in one of three zones. In the stability zone (1), there is stability

and predictability, but no change. In the complexity zone (2), systems adapt, learn and

grow. In the chaos zone (3), there is chaos and unpredictability and there are too

many changes for learning to take place.

2.3.5.2 Complexity in IS and ISD

Xia and Lee (2005) developed a conceptual framework for ISD project complexity on

two dimensions: the distinction between structural and dynamic complexity and the

distinction between organisational and technological complexity. Structural

complexity has to do with variety and the interdependency of project elements, while

dynamic complexity has to do with the uncertainty caused by changes in the

environment. Organisational complexity relates to the organisational environments

around the project, while technological complexity relates to the complexity of the

technological environment, including platform, techniques, languages, methodologies

and system integration.

Similarly, Benbya and McKelvey (2006:21) uses complexity theory to define IS as

complex adaptive systems that can self-organise, self-optimise and are balanced

between order and chaos. They developed a generalised adaptation framework

applicable to ISD, based on the following seven “first principles” of system

adaptation:

• Tensions in the environment stimulate adaptive order creation (e.g. the conflicting

realities of the different stakeholders in ISD).

39

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

• If internal complexity is higher than external complexity, adaptive order creation

occurs (e.g. building information systems that are able to evolve).

• In a changing environment, higher internal change rates are adaptively

advantageous (e.g. quickened learning action loops).

• The design of subunits that are nearly autonomous increases complexity and the

rate of adaptive response (e.g. modular and object-oriented design).

• Small positive feedback may result in significant order creation (e.g. development

spirals).

• Coping advantageously with multiple causes is needed for complexity (e.g.

understanding that not only technological changes, but also organisational and

institutional changes influence ISD).

• Rhythmic alternation of causal dominance is better than balance for functional

adaptive response (e.g. the influence of design experts vs. user stakeholders).

2.3.6 System control

Closely related to system complexity is the concept of system control. The only way

to manage complexity is to control the system in relation to its environment. This is

considered in this section.

To control a process, the controller needs to have sufficient internal variety to

represent it (the law of requisite variety). The variety of an organisation will always

be less than the variety of the environment. Therefore, for organisations to be

successful, they should at least have the variety needed to respond to the behaviour

the environment is currently exhibiting, or will in future exhibit (Backlund, 2002).

Related to systems theory is the field of cybernetics, which is the study of control

systems. A differentiation is made between first-order and second-order cybernetics

(Geyer, 1995).

First-order cybernetics is an engineering approach and studies control systems and

feedback loops with specific application in controlling intelligent machines. It

considers specifically negative feedback loops (naturally or constructed) where the

40

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

output of a system is compared with a predefined goal, and if there is deviation from

the goal, corrective action is taken. The thermostat of an air-conditioner is a typical

example. Efforts to apply first-order cybernetics to, for instance, social sciences were

met with resistance, claiming it to be too simplistic and mechanistic (Geyer, 1995).

Second-order cybernetics mostly deals with living systems and specifically includes

the observer in the system. These systems have a “will of their own”, are more

difficult to control, rather use positive feedback loops, and are able to reflect on

themselves and on their interactions with their environments. The main concepts of

second-order cybernetics are self-organisation, self-reference (knowing about itself),

self-steering, autocatalysis (having processes which cause the creation of systems of

higher levels of complexity) and autopoiesis (self-production) (Geyer, 1995).

IS and organisations can both be seen as falling under the category of second-order

cybernetics and are therefore more difficult to control and manage.

2.4 Enterprise architecture

2.4.1 Background

The Zachman framework is used to describe the architecture of an enterprise because

it concentrates more on the contents of such an architecture rather than the process of

creating one (as is done in, for instance, The Open Group Architecture Framework

(TOGAF)). The original framework (Zachman, 1987) has since been extended (Sowa

and Zachman, 1992). The Zachman Framework is considered the de facto standard

when specifying architectures and describing the artefacts supporting them by

enterprise architecture frameworks like TOGAF (The Open Group, 2007).

The framework describes and specifies the artefacts that are important and necessary

to build successful information systems (Martin, Roberston and Springer, 2005). An

artefact can be classified as any element that is part of a functioning ICT system. It

can include any elements such as requirements documentation, manuals or even a

software module (Schach, 2004).

41

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

2.4.2 Fundamental concepts

The Zachman Framework can also be considered as a reference system containing a

categorisation of those artefacts (Martin et al., 2005). The Zachman framework is a

taxonomy of system specifications and how they fit together (Sowa and Zachman,

1992).

The Zachman Framework is a two-dimensional matrix consisting of six rows and six

columns, giving 36 cells that could contain possible representations of artefacts. The

columns consist of questions or uncertainties that must be addressed. The six rows of

the framework contain a collection of specific functions performed by the main

stakeholders who were part of the process to develop ICT systems. Zachman

compares the rows to the stakeholders who are involved in the building of a house.

The horizontal dimension or rows consist of a planner, owner, designer, builder

and subcontractor. The vertical dimension of the columns is also known as

“focuses”. Martin et al. call the questions “interrogatives”. The horizontal dimension

is also sometimes known as “perspectives” (Zachman, 1987; Martin et al., 2005).

The rest of the cells in the Zachman Framework contain mechanisms that put into

perspective all the different role-players (perspectives) and the most important facets

or characteristics (focuses) that must be addressed during the SDLC (see Table 2-4).

42

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

P
e
r
s
p
e
c
t
i
v
e

Data
What?

Function
How?

Network
Where?

People
Who?

Time
When?

Motivation
Why?

Planner –
Scope

Owner –
Enterprise

Designer –
System

Builder –
Technology

Subcontractor –
Components

Functioning
System

Zachman (1999)

Table 2-4: Zachman rows and columns

The concept of primitives has also been identified by Sowa and Zachman (1992). A

primitive can be described as the smallest building block of a cell and can be used on

its own. Once defined, the primitives can be combined into other more meaningful

structures or diagrams (Sowa and Zachman, 1992; Frankel et al., 2003). The concept

of primitives is important and will be used to classify examples of artefacts in each

Zachman cell.

One Zachman cell could consist of a set of primitives such as narrative descriptions,

attributes and types or instances of objects which would serve the purpose of

enhancing the description of the cell. Once the primitives have been identified, it

should also be possible to store the primitives in a repository for possible future

extraction for reporting purposes.

As soon as the primitives of Zachman cells are related together, the resulting structure

is defined as a composite. This was also identified by Sowa and Zachman (1992)

when they described the integration of cells within one Zachman row in order to

describe the perspectives of a specific stakeholder. The concept of a composite is

described further to show how it is possible to combine cells of different rows

together and not only cells within one row, as Sowa and Zachman suggest.

Focus

43

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

2.4.3 Zachman rows

2.4.3.1 Row 1: Planner or scope

The scope or parameters within which the ICT system must operate is decided in

Row 1. Concepts discussed here are of a strategic nature and one of the actions is to

determine the boundaries of the organisation and how ICT systems will be used

within the organisation. The external environment must also be analysed and

captured. Any budget constraints must be adhered to. The planner view could also

determine how all the components fit together (Sowa and Zachman, 1992; Zachman,

1987).

2.4.3.2 Row 2: Owner or enterprise

All the activities that are important to the business are described in Row 2. The level

of obtaining data is high and all the business activities must eventually link to show

the business value of what will be achieved if the business activity is performed.

Techniques such as business process modelling are important in Row 2. The

perspective can show how external policies are interpreted and applied within the

organisation (Sowa and Zachman, 1992; Zachman, 1987).

2.4.3.3 Row 3: Designer or system

The level of detail specified in Row 3 remains on a conceptual level and is classified

as a logical level, since more detail is specified in Row 3 than Row 2. Important to

note is that the level of detail in Row 3 is not yet physical. The requirements of the

user are specified (Zachman, 1999).

This row is a first step in creating application architecture. System analysis and

design techniques will be used effectively in Row 3 (Sowa and Zachman, 1992).

2.4.3.4 Row 4: Builder or technology

The concepts used in Row 4 are inclined to be more of a physical nature, together

with some logical views. The physical hardware used in the system is specified. The

44

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

physical system must be designed together with the connected network, as well as

services and devices (Sowa and Zachman, 1992; Zachman, 1987).

2.4.3.5 Row 5: Subcontractor or components

Row 5 would contain the physical concepts that are used to implement executable

code. The physical concepts can include any detailed specifications. A component is

the physical piece of code or software, database or executable that is developed and

used by programmers (Schach, 2004). All the commercial off-the-shelf (COTS)

products can form part of Row 5.

2.4.3.6 Row 6: Functioning system

The level of detail in Row 6 is also of a physical nature. The actual ICT system has

been created and all the concepts created are tangible (Zachman, 1987). It can be

argued that Row 6 can be ignored, since it is not part of the architecture of developing

an ICT system.

2.4.4 Zachman columns

2.4.4.1 Column 1: Data/What?

Physical and conceptual things important to the business are described in this

column. These things could be all the nouns used to describe it. An example is “bill

of materials” (Zachman, 1987).

2.4.4.2 Column 2: Function/How?

All the actions performed by the business are included in this column. The verbs

used to describe the functions could be indications of all the functions performed by

the organisation. It is the process of how important things of the business get

transformed by the business (Zachman, 1987).

45

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

2.4.4.3 Column 3: Network/Where?

All the locations or places where activities are performed are described in this

column (Zachman, 1987).

2.4.4.4 Column 4: People/Who?

The types of human resources that are needed to initiate or perform an activity are

described in this column (Zachman, 1987).

2.4.4.5 Column 5: Time/When?

This is an indication of when activities must be initiated, performed and be

concluded. Scheduling and sequencing aspects should be the focus of this column.

Specific time periods could also be described here. Event modelling could also be

used (Sowa and Zachman, 1992; Zachman, 1987).

Column 5 (time) and column 4 (people) have a close correlation with each other,

since the parameters within which a task must be completed indicate the number of

resources that would be necessary to complete the task. If a 24-hour availability is

required, sufficient personnel would be required to address questions and issues that

could arise (Sowa and Zachman, 1992).

2.4.4.6 Column 6: Motivation/Why?

All the reasons of why activities are important and must be performed are indicated

in this column (Zachman, 1987).

2.5 Conclusion

In this chapter, three theoretical foundations were investigated: information, systems

theory and enterprise architecture.

46

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

One of the key aspects of business and ISD modelling is information, and an

understanding of some fundamental principles of information is needed. Information

can be seen as signs forming a coding system with the purpose of communication.

Modelling can be seen as a very specific, specialised coding system for

communication in organisations and ISD.

System theory is used later in the thesis to explain some of the concepts and

constructs of the proposed modelling technique. For instance, both an organisation

(called an “institutional actor” in the modelling technique) and an information system

(called an “artificial actor” in the modelling technique) can be considered to be

systems and exhibit all of the characteristics of systems. Furthermore, the Magee and

De Weck (2004) taxonomy provides a very useful way of classifying the actions in

business and IS and will be used extensively towards that end.

Enterprise architecture is a formalised way of describing enterprises, their IS, their

information and their technology, and therefore formed the third part of the

theoretical foundation. The Zachman framework was used as the representative

example and illustrated that enterprise architecture can be viewed from two

dimensions: the perspectives of various role-players and the main foci of the

enterprise.

The main way in which organisations are controlled is by means of business rules,

providing the systems control discussed in this chapter. In the next chapter, business

rules are considered in more detail.

47

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3. Business rules

Part 1

Introduction

Part 2
Literature review

Part 3
Research

Part 4

Conclusion

Part 5

Supporting
information

Chapter 1
Introduction

Chapter 2
Theoretical
foundations

Chapter 3
Business rules

Chapter 4
Part-whole

relationships

Chapter 5
Linguistic analysis of

ISD modelling

Chapter 6
Research approach

Chapter 7
The proposed

integrative modelling
technique

Chapter 9
Conclusion

Bibliography

Chapter 8
Demonstration,

implementation and
evaluation of proposed
integrative modelling

technique

Appendix A
Derivation of proposed
integrative modelling
technique

3.1 Introduction
3.2 Business rules and ISD
3.3 Types of business rules
 3.3.1 The Business Rules
 Group’s classification
 3.3.2 Other business rule
 classifications
 3.3.3 Summary of business rule types
3.4 Business rule relationships
3.5 Business rule representation
3.6 Conclusion

48

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3.1 Introduction

Business rules are one of the major means by which a system “organisation” controls

itself, and a major part of ISD is to elicit business rules and to embed them into an IS

subsystem of the organisation with the purpose of enabling the control of a part of the

organisation. For instance, business rules embedded in the financial IS, together with

the business rules embedded in the manual procedures in the financial department,

assures control of the financial subsystem of the organisation.

Business rules have gained prominence over the last few years. They are seen as

important assets of organisations that should be managed carefully (Ram and Khatri,

2005). Business rules can also be seen as an important (maybe the most important)

link between business and IS (Bajec and Krisper, 2005).

There is no generally accepted standard definition for business rules (Hamza and

Fayad, 2005). Many definitions for business rules have been proposed, for instance,

that business rules:

• are units of business knowledge (Odell, 1998 in Hamza and Fayad, 2005);

• are constraints or tests designed to maintain the integrity of data (Ross, 1997 in

Steinke and Nickolette, 2003);

• are statements that aim to influence or guide behaviour and information in an

organisation (Von Halle, 2002);

• define how the business is actually run (Steinke and Nickolette, 2003);

• define or constrain some aspect of a business (Hay and Healy, 2000);

• determine business structure (Hay and Healy, 2000);

• influence the behaviour of an organisation (Hay and Healy, 2000);

• are statements that influence business behaviour towards desired objectives

(Steinke and Nickolette, 2003); and

• are assertions that constrain patterns of enterprise behaviour (Morabito et al.,

2001 in Bajec and Krisper, 2005).

In essence, business rules are statements that govern the structure and behaviour of

various business components.

49

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Some characteristics of business rules are as follows (Bajec and Krisper, 2005):

• They exist in various forms, from simple to very complex and dynamic.

• They can originate:

- internally, mostly derived from strategic processes, determining the

organisation’s vision, goals and policies; or

- externally, from government, industry or specific professional rules as well

as natural timeless facts (Herbst, 1996).

• They can be based on explicit (formalised knowledge in the form of principles,

procedures, facts, figures, rules and formulas) or tacit knowledge (knowledge that

is difficult to see and express).

• They can be found in documents, procedures, policies, regulations, user manuals

and IS.

• Explicit business rules are a manifestation of a richer underlying implicit

knowledge.

Steinke and Nickolette (2003) consider a business rule good if it has the following

characteristics:

• Declarative: It is not stated in a procedural manner.

• Precise: The meaning of the rule is clear.

• Atomic: The rule contains one concept only.

• Consistent: There are no conflicting rules.

• Non-redundant: No information is repeated.

• Business-oriented: It is stated in business terminology.

• Owned by the business: Business people are able to maintain the business rules.

3.2 Business rules and ISD

Information systems normally implement a large number of business rules. For

example, 627 business rules in a 12 000-line COBOL application and 809 in a

30 000-line COBOL application (Fu et al., 2004).

50

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

A typical information system has three elements: an interface (usually GUI),

application code/logic and a database. Business rules can be stored in any of these

three elements. This can cause various problems with the maintenance of business

rules. Steinke and Nickolette (2003) propose that a further layer be introduced to

manage business rules.

Business rules also require explicit treatment during ISD to ensure IS agility,

otherwise the rules do not reflect real business. This results in applications that do not

meet business needs, a lack of documentation on business rules, business rules that

are buried in program code, business logic that is hard to maintain and business rules

that are hard to control (Bajec and Krisper, 2005). The majority of IS business rules

are not explicitly modelled during analysis and design. These rules are only implicitly

specified in system models and implicitly embedded in application program code and

database structures (Ram and Khatri, 2005).

Updating an implemented set of constraints is not easy, because the mapping between

high-level constraints and their implementation in various software artefacts are not

explicitly done and maintained (Fu et al., 2004). Therefore, business rules captured in

an information system initially can be adequate, but may get outdated of sync later

on. There is thus a need for a formal approach towards capturing and managing

business rules (Ram and Khatri, 2005).

Various conceptual models have been proposed to capture the meaning and structure

of business rules, but most of them only capture a limited range of constraint types.

This has given rise to the development of constraint definition languages. These

languages are, however, more oriented towards logical than conceptual design and

are difficult for users to understand (Ram and Khatri, 2005).

According to Bajec and Krisper (2005), business rule management (BRM) is needed

to manage information about business rules’ evolution and coordinate their changes

centrally.

51

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3.3 Types of business rules

Various types of business rules are identified in the literature and various attempts

have been made to classify these rules. The Business Rules Group’s classification has

become the de facto classification of business rules and forms the basis of the

classification used in this study (Hay and Healy, 2000). This classification, together

with some other classifications, is also discussed in this section.

3.3.1 The Business Rules Group’s classification

The Business Rules Group classifies business rules as follows (Hay and Healy,

2000):

• Terms: define a thing or data about it

• Facts: indicate connections between terms

• Constraints (or action assertions): allow or prohibit actions

• Derivations (or inferences): define the transformation of knowledge from one

form to another, for instance, formulas

Other similar classifications can easily be related to the Business Rules Group’s

classification. For instance, Von Halle (2002) identifies at least six different kinds of

statements that qualify as business rules:

• Terms that define a noun phrase (term)

• Facts that connect noun phrases into sensible and relevant observations (fact)

• Rules that calculate mathematical results (derivation)

• Rules that constrain the population of facts (constraint)

• Rules that test facts to arrive at a newly discovered fact (derivation)

• Rules that test facts to initiate action (constraint)

Similarly, Perkins (2000) classifies business rules as follows:

• Definitions of business terms (term)

• Data integrity constraints (fact)

52

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

• Mathematical and functional derivations (derivation)

• Logical inferences (derivation)

• Processing sequences (constraint)

• Relationships between facts about the business (fact)

3.3.1.1 Terms

The Business Rules Group defines a “term” as a word or phrase that has a specific

meaning for the business. A term can be of two types:

• Business terms, words or phrases that have specific meaning for a business in

designated contexts, e.g. “reservation”, “booking” and “rental request”

• Common terms, which are words in everyday language using their commonly

accepted meanings, e.g. “car”, “city”, etc. (Hay and Healy, 2000)

Terms can also be classified as follows:

• Type, defining abstract categories of things like “car model”, “walk-in rental” and

“customer”

• Literal, describing instances of things like “General Motors” and “5000”

Business rules are mostly stated in terms of types, but can occasionally refer to

specific instances (Hay and Healy, 2000).

Two specific types of terms are the following:

• Sensors, which represent the presence of something that constantly detects and

reports changing values from the outside world, e.g. temperature reading

• Clocks, which are special types of sensors that reports the passage of time; a clock

always has one value, the “current time” (Hay and Healy, 2000)

53

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3.3.1.2 Facts

Von Halle (2002) defines “facts” as the relationships between different entities and

between an entity and its attributes. Similarly, Steinke and Nickolette (2003) define

“facts” as the connections between items.

The Business Rules Group defines facts as associations between two or more terms.

For example, the fact “a customer may request a model of car from a rental branch on

a date” uses four terms: “customer”, “car model”, “rental branch”, “date”. Facts can

be stated in many ways, for instance, “each contract may be with a customer” can

also be stated as “each customer may be the renter in many contracts” (Hay and

Healy, 2000).

The Business Rules Group divides facts in two sets of classifications (Hay and Healy,

2000):

• The first classification distinguishes between a base fact, a fact that is simply

stated, and a derived fact, the value of which is computed (mathematical

calculation) or inferred from other business rules.

• The second classification defines facts as attributes, where facts are attributes of

other terms (e.g. “the colour of the product is blue”), generalisation, where facts

are super-types of one or more terms (e.g. “a rental branch manager as a type of

employee”), and participation, where facts are the relationship between other

terms (e.g. “a rental group is composed of car models”).

3.3.1.3 Constraints

One of the most common ways of seeing business rules is to see them as business

constraints (Fu et al., 2004; Ram and Khatri, 2005; and Hamza and Fayad, 2005).

Constraints describe the conditions under which an organisation operates. They are

normally very volatile as a result of changes to legislative regulations, government

policy and business conditions. It is observed that the majority of constraints are

defined in terms of business concepts or objects. An example of a constraint is “all

54

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

customers whose total business within the last year is greater than x are eligible for

y% discount on all orders”. This example is stated in terms of business objects such

as “customer”, “total business”, “discount” and “order”. (Fu et al., 2004).

Existence rules define how business objects should be created and destroyed (Hamza

and Fayad, 2005).

The Business Rules Group defines constraints (action assertions) as statements

concerning some dynamic aspect of the business indicating the results that actions

can produce: “must”, “should”, “must not”. An action assertion is composed of an

anchor object, any kind of business rule and one or more correspondent objects,

either another business rule or some specified action. For example: “A car (anchor

object – a term) must have a registration number (correspondent object – a fact)”

(Hay and Healy, 2000).

The Business Rules Group divides constraints in three sets of classifications (Hay and

Healy, 2000):

• The first classification is according to action assertion class. A condition is an

assertion that if something is true, another business rule will apply, e.g. “if

customer is credit-worthy, give loan”. An integrity constraint is an assertion that

must always be true, e.g. “a car must be registered”. An authorisation defines a

specific prerogative or privilege in the form “only x may do y”, where x is

typically a user and y an action. For example, “only a branch manager of the

‘losing’ branch may assign a car for transfer to another branch”.

• The second classification classifies constraints according to action assertion type.

Some of these are enablers and timers: Enablers, if true, permits or leads to the

existence of the correspondent object. Timers test, enable or create if a specified

threshold has been satisfied, e.g. “if customer is three months in arrears, then …”.

• The third classification distinguishes between an action-controlling assertion,

which describes what must or must not happen, and an action-influencing

assertion, which notifies or serves as guidelines in the human activity system.

55

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Steinke and Nickolette (2003) identify two types of constraints: Integrity constraints,

which must always be true, and conditions, which may be true or false.

Ram and Khatri (2005) focus on set-based, static, explicit constraints that restrict the

cardinality of a set:

• The attribute constraint specifies the number of attribute values that an entity in

an entity class can take. An attribute can be mandatory or optional, and multi-

valued or single-valued. For example, “each student must have exactly one

student number” implies a single-valued, required attribute, while “each student

must have no more than two home addresses” implies an optional, multi-valued

attribute.

• The class constraint specifies the number of members in a given class, based on a

specific predicate. For example, “there can be between five and seven faculty

members with a position of professor in the department”.

• Constraints based on interaction relationships:

- The interaction participation constraint restricts the number of interaction

instances of a relationship that a given combination of entities can

participate in. The constraints can be total or partial. For example, “an

instructor is allowed to place a maximum of three different reservations for a

given book and a course”.

- The interaction projection constraint specifies the number of distinct entity

combinations that can appear in the relationship instances. For example, “the

library can accommodate reservations on at most 200 books, regardless of

the instructors and the books”.

- The interaction co-occurrence constraint restricts the number of distinct

entity combinations that can co-occur with a given entity combination in an

interaction relationship. For example, “instructors are not allowed to reserve

the same book for more than two courses that they teach”.

- The interaction appearance constraint restricts the number of roles that an

entity can play and only applies to recursive interaction relationships. For

example, “each course has prerequisites and can also be a prerequisite for

another course”.

56

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Wan-Kadir and Loucopoulos (2004) define the structure of a mandatory constraint as

follows:

<subject> MUST [NOT] <fact> [IF <condition>]

<subject? MAY <fact> ONLY IF <fact>

Herbst (1996) sees the structure of a business rule as the three basic components of

event, condition and action (ECA) extended as follows:

• Event – when does a business rule have to be processed?

• Condition – what has to be checked?

• Then-action – what has to be done if the condition is true?

• Else-action – what has to be done if the condition is false?

For example:

ON (damage-field entered) OR (damage-cause entered)

IF (damage-field = ‘private third party insurance’) AND

(damage-cause = ‘damage of a car in use’) AND

(third-party-insurance-type = ‘family’, ‘single’ or ‘senior’)

THEN issue error message “Damages of cars in use are ….”

3.3.1.4 Derivations

Derivations show how and why information is derived from other information

(Hamza and Fayad, 2005), apply logic to create new pieces of information (Von

Halle, 2002), derive values based on one or more business rules (Steinke and

Nickolette, 2003), and infer facts from some other facts (Odell in Ram and Khatri,

(2005).

The Business Rules Group defines “derivations” as either (Hay and Healy, 2000)

mathematical calculations, e.g. “total cost is charge rate multiplied by hours” or

inference, e.g. “the car’s rental rate is the same as the car group’s rental rate”.

57

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Wan-Kadir and Loucopoulos (2004) define the structure of a computation as follows:

<value> IS COMPUTED AS <algorithm>.

They define the structure of an inference as follows:

IF <condition> THEN <fact>.

3.3.2 Other business rule classifications

Over and above the types of business rules specified by the Business Rules Group,

other types of business rules can also be identified.

According to Perkins (2000), a business statement is a simple declaration in business

language stating strategic business rules such as critical success factors, the enterprise

mission, goals, policies, objectives, strategies, performance measures, information

needs, functions and events.

Steinke and Nickolette (2003) classify business rules on a business statement level as

follows:

• Mandates: published policies that must be followed, otherwise consequences will

be faced, e.g. pay VAT.

• Policies: published policies that should be followed to implement the

organisational rules, e.g. mission statements. A business policy is a general

statement or direction for an organisation (Ram and Khatri, 2005). For example:

“We only rent cars in legal, roadworthy condition to our customers.” Each policy

may be composed of more detailed policies (Hay and Healy, 2000).

• Guidelines: rules followed, depending on some judgment, e.g. management style.

Steinke and Nicolette (2003) define guidelines as the “shoulds” of the

organisation and mandates as the “musts” of the organisation.

58

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Wan-Kadir and Loucopoulos (2004) define the structure of a guideline as follows:

<subject> SHOULD [NOT] <fact> [IF <condition>]

Kardasis and Loucopoulos (2004) identify three views for approaching IS analysis:

the intentional view, operational view and IS view. These views give rise to the

following types of business rules:

• Intentional rules: Business rules from a business context perspective. They can be

laws, external regulations, principles and good practices specifying the way an

organisation does business. These rules are normally expressed as natural

language statements.

• Operational rules: Business rules from a business process perspective. They

prescribe action on the occurrence of some business event or describe valid states

of an organisation's information entities. These rules are normally expressed in

some rule language.

• IS architecture rules: Business rules from an IS implementation perspective.

3.3.3 Summary of business rule types

The following table summarises the different business rule types:

Type Explanation Source
Terms Word or phrases that have specific

meanings for businesses in designated
contexts.

(Hay and Healy, 2000)

Facts The relationships between different entities
and between an entity and its attributes.

(Von Halle, 2000)

Constraints Statements about some dynamic aspect of
the business indicating the results that
actions can produce.

(Hay and Healy, 2000)

Derivations Business rules derived from other business
rules and information.

(Hamza and Fayad, 2005)

Business
statements

A declaration in business language stating
strategic business rules.

(Perkins, 2000)

Mandates Published policies that must be followed,
otherwise consequences will be faced.

(Steinke and Nickolette, 2003)

Policies Published policies that must be followed to
implement organisational rules.

(Steinke and Nickolette, 2003)

Guidelines Rules followed, depending on some
judgment.

(Steinke and Nickolette, 2003)

Table 3-1: Business rule types

59

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3.4 Business rule relationships

Hamza and Fayad (2005) consider businesses to consist of business objects (like

objects and processes) plus business rules. A business change means that either one

or more business objects or one or more business rules have changed. Business

objects and business rules can be classified according to their stability (probability to

change) as stable, partially stable or unstable.

Bajec and Krisper (2005) identify the following business components related to

business rules: business goals, processes or activities, ECA structures (meaning,

when event happens, and conditions are met, execute activity), business rule

descriptions, business terms, business concepts, business actors and resources (e.g.

organisation unit, business function or business role). These components are related

to business rules in many ways. For instance, business rules support the achievement

of business goals, trigger activities, define ECA structures, are described in business

rule descriptions, define business concepts, are the responsibilities of business actors

and are related to resources. Business rules also relate to other business rules, for

instance, one business rule supports another business rule or is in conflict with

another.

Rosca and D’Attilio (2001) provide an example of sets of business rules applied to a

business action. For instance, business action calculate discount can be supported by

the following business rules: “orders > 500 get 30% discount”; “orders > 100

receive 15% discount for preferred customers”; and “orders < 100 receive 10%

discount”. Business actions are seen as fairly stable, while business rules can change

frequently.

According to Steinke and Nicolette (2003), a business rule is not a passive, static

element. It is triggered by an event, an action, an operation, a condition or a

parameter. To really understand a business rule, one should understand the cause and

effect on the event.

60

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Poo (1999) defines an event as a set of activities that are performed either fully or not

at all (depending on preconditions), after it was invoked by a stimulus (actor or point

in time reached by system) and it has an effect on the state of a system by creating or

deleting objects and/or changing the state of exiting objects.

Herbst (1996) states that the environment of business rules consists of processes, data

model components, organisational units and IS components.

In summary, businesses consist of the following:

• Events invoked by some actor or a point in time

• Actions (e.g. processes and activities) caused by these events

• Business rules constraining events and actions

• Business objects (e.g. actors and resources)

All of these business components are related to each other and to themselves (i.e.

business rules are also related to other business rules).

3.5 Business rule representation

Business rules are represented in various formats from natural language statements to

formalised rule languages (Ram and Khatri, 2005).

Hamza and Fayad (2005) suggest the reuse of business rules, but also contend that it

is complex and hard to achieve. They suggest that to accomplish this, business rules

should semantically be abstracted and generalised.

Hamza and Fayad (2005) propose a rule dependency diagram showing the

relationships between rules and business objects, as well as between rules and other

rules. (See Figure 3-1 for an example of a rule dependency diagram.)

61

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Renting Negotiation

AntAgreement

Negotiation

AnyAgreement

LineItem

R0

R1

R2

Hamza and Fayad (2005)

Figure 3-1: Example of a rule dependency diagram

Fu et al. (2004) define constraint business rules in terms of structures and constraints

and use structure-constraint (S-C) graphs to represent them.

A structure is defined as follows by Fu et al (2004):

• It is an intension for a set of data.

• It can be primitive or a composite of other structures; in other words, not only flat

but nested structures are also allowed.

• It has a depth, which is the number of nested structures it consists of.

• It must be acyclical, i.e. not be a component of itself.

• It has a domain:

- Primitive structure – the set of values from which the structure draws its

instances.

- Composite structure – the Cartesian product of its components’ domains.

• It has a state at a specific time – the subset of the domain that the structure has at

that time.

62

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

For example, the structure that a mobile phone service provider can use to record

orders received from its customers is as follows (Fu et al., 2004):

order(customer(id, name, status),

service(network, freeTime),

recommender(id, name, status))

The composite structures are order, customer, service and recommender; and the

primitive structures are id, name, status and freeTime. The depth of order is 2,

customer is 1 and id is 0.

Fu et al. (2004) represent constraints using predicate logic with two restrictions: they

only use a small subset of predefined predicates (like ENUMERATE, EQUAL,

ATMOST and SUBSUME) and they use meta-level elements (like network and

freeTime) in predicates. To represent nested structures, they use path expressions

(like service.freeTime).

For the mobile phone example above, the following are possible constraints (shown

in formal predicate logic and informal textual representations):

C1. ENUMERATE(network, {Vodafone, Orange, O2, T-Mobile}) – The company uses

the following networks: Vodafone, Orange, O2, and T-Mobile.

C2. ENUMERATE(freeTime,{300, 600}) – The company offers two categories of free

talk time: 300 and 600 minutes.

C3. EQUAL(service.freeTime, 600) EQUAL(service.network, Vodafone) – Only

Vodafone customers are entitled to 600 minutes’ free talk time.

C4. EQUAL(order.service.network, O2) ATMOST(order.customer, 10 000) – The

maximum number of O2 services available for ordering is 10 000.

C5. ENUMERATE(status, {current, temporary, historic}) – The status of a customer

is one of the following: current, temporary or historic.

C6. ATMOST(recommender, 3, customer) – A recommender can recommend at most

three services.

C7. ATMOST(customer, 3, service) – A customer can subscribe to up to three

services.

63

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

C8. SUBSUME(customer, recommender) – A recommender must be an existing

customer.

Constraints can be related to structures and these relations can be represented using

S-C graphs. An S-C graph is created from a set of structures (S) and a set of

constraints (C) (see Figure 3-2).

Constraints can be related to structures as follows (Fu et al., 2004):

• Directly related if the constraint is related to the structure itself, e.g. C5 is directly

related to status.

• Indirectly related if the constraint is related to any components of the structure,

e.g. C5 is indirectly related to customer and recommender.

• Implicitly related if it does not exist, but can be deduced from existing

constraints, e.g. from current constraints we can deduce: C9.

ATMOST(order.recommender, 9, order.service).

64

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Fu et al. (2004)

Figure 3-2: Example of an S-C graph

3.6 Conclusion

Business rules are statements that govern the structure and behaviour of various

business components. They are very important in the context of analysing, designing

and developing IS, but also in businesses in order to model strategic, tactical and

operational business rules.

Business rules are mostly classified as terms, facts, constraints (action assertions) or

derivations. Some research has gone into the structure of the various types of business

rules. Business rules are linked to other business objects such as actors and resources,

actions such as processes, activities and events invoked by actor and time.

C8

C5
C6

C4

C7

C1 C3

C2

status

name

id

order

customer recommender

network

service

freeTime

65

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Businesses are defined by business rules and these business rules are incorporated

into IS as follows:

• Business objects (e.g. actors and resources) are described by terms, facts and

derivations, which are mostly embedded in databases and files.

• Events and actions (e.g. processes and activities) are described by constraints

and are mostly embedded in programs and manual system procedures.

The goal of this study is to develop an integrative modelling language between

business and ISD. Because business rules are such an important link between

business and ISD, it must be possible to represent all types of business rules using

this integrative technique. A major part of evaluating the proposed integrative

technique in this research would be to consider the relative ease with which business

rules can be modelled by it and how easy it is to convert these models into ISD

models.

Another issue that is important to understand in the relationships between business

and ISD is the concept of part-whole relationships where objects consist of

subobjects. This is discussed in the next chapter.

66

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Part 1

Introduction

Part 2
Literature review

Part 3
Research

Part 4

Conclusion

Part 5

Supporting
information

Chapter 1
Introduction

Chapter 2
Theoretical
foundations

Chapter 3
Business rules

Chapter 4
Part-whole

relationships

Chapter 5
Linguistic analysis of

ISD modelling

Chapter 6
Research approach

Chapter 7
The proposed

integrative modelling
technique

Chapter 9
Conclusion

Bibliography

Chapter 8
Demonstration,

implementation and
evaluation of proposed
integrative modelling

technique

Appendix A
Derivation of proposed
integrative modelling
technique

4. Part-whole relationships

4.1 Introduction
4.2 Background
4.3 Overview
4.4 Part-whole classifications
 4.4.1 Classical mereology and
 classical extended
 mereology
 4.4.2 The Opdahl et al.
 frameworks
 4.4.3 The Gerstl and
 Pribbenow framework
4.5 Part-whole relationships in

ISD
4.6 Conclusion

67

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4.1 Introduction

The issue of part-whole and related relations is a very important one in IS modelling.

Guizzardi (2011:1) states: “Parthood is a relation of fundamental importance in

conceptual modelling.” Kilov and Sack (2009:101) postulate: “One of the most

important concepts in system thinking is that of a composition relationship.”

Modelling techniques use various mechanisms to indicate part-whole relationships.

For instance, in both data flow diagrams and IDEF0 diagrams, one context-level

process, representing the whole system, gets expanded into two or more processes,

which in turn get expanded until one has primitive processes that cannot be expanded

any more. In UML, systems and modules are represented by packages containing all

of their constituent parts, and in class diagrams aggregation and composition can be

modelled with specific symbols.

In this chapter the Bunge-Weber-Wand ontology will, firstly, be used to provide a

context and introduction to the discussion on part-whole relationships. This ontology

describes various ontological constructs, among them relationships, and then

specifically the composite construct, which relates directly to part-whole

relationships. Secondly, the related concepts of mereology, part-whole relations,

partonomies, ontology and taxonomy are discussed to provide an overview of part-

whole relationships. Thirdly, three specific part-whole frameworks are discussed to

illustrate some older and more recent thinking on part-whole relationships. Finally,

part-whole relationships in IS modelling is also discussed.

4.2 Background

Wand, Storey and Weber (1999) developed an ontology based on Bunge’s ontology

that they use to formally analyse the relationship construct. This ontology (called the

Bunge-Weber-Wand ontology) is a key reference work in the theory of object

orientation. It can briefly be summarised as follows (describing various ontological

constructs):

68

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

• The world is made up of things (concrete or conceptual) that possess properties

(properties of conceptual things are called attributes).

• Humans conceive things by means of models of things (which are conceptual

things). This implies that different models of the same thing can exist and that not

every property will necessarily be represented by an attribute.

• A thing is an instance of a certain type of thing.

• A functional schema can be defined as a view of a set of related things. For

instance, a person can be viewed as a student, employee or lecturer.

• A set of values of attribute functions of a thing at a certain point in time represent

the state of the thing at that point in time.

• Wand (1996), in an earlier work, also defined the construct “event” as the

transformation of a thing from one state to another. Events can be identified as

either external (due to the actions of other things) or internal (due to

transformation inside the thing).

• Restrictions on the possible combinations of the components of a functional

schema are called laws.

• Things interact when one may cause changes to the other.

• Mutual properties are properties that exist in two or more things. Interaction

implies a mutual property in the interacting things. For example, a company that

has employees must have a mutual property such as “work-for-company”.

• Two things may associate to form another thing. Things are composite if they are

the combination of two or more things, otherwise they are considered simple. For

instance, the things in a composite can be component-of or part-of the composite

thing.

• Wand (1996), in an earlier work, also defined the construct “system” as a

composite made of interacting things. This implies that the environment of the

system is the things not in the system with which the system interacts and that a

subsystem is a part of another composite system.

• “A property of a composite thing is inherited if and only if it is a property of any

of its components; otherwise, it is emergent,” (Wand et al., 1999:504). A related

postulate states that every composite has emergent properties.

• Relationships between things are categorised by some researchers as either

topological (also called connection) relationships, for instance, a husband and

69

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

wife interacts, or mereological (also called part-of relationships), for instance,

husband and wife are part of the family.

See Table 4-1 for a mapping of ontological constructs to conceptual modelling

constructs.

Ontological construct Commonly used
construct

Proposed generic conceptual
modelling construct

Thing Entity
Object

Instance

Property No direct representation No direct representation
Attribute representing an
intrinsic property

Attribute (of an entity or
an object)

Attribute (type: intrinsic)

Attribute representing a
mutual property

Relationship (binary or
n-ary)
Reference attribute

Attribute (type: mutual)

Interaction attribute
representing a binding
mutual property

Relationship
Reference attribute
Message connection
Service request

Attribute (type: mutual,
binding)

Class Entity type
Object class

Class

Kind Entity type
Object class

Class

Natural kind Object type Class
Simple thing Entity

Object
Instance (type: simple)

Composite thing Aggregate entity or
object

Instance (type: composite)

Connection attribute
representing a binding
mutual property

Relationship Attribute (type: mutual,
binding, topological)

Component-of attribute
representing a binding
mutual property

Relationship
Part-of

Attribute (type: mutual,
binding, mereological)

Wand et al. (1999)

Table 4-1: Mapping ontological constructs to conceptual modelling constructs

All ISD modelling involves (using Bunge-Weber-Wand ontology terminology) firstly

identifying ontological constructs like actors, processes, data stores and objects.

Secondly, it involves identifying the relationships between these ontological

constructs. For instance, a client (actor) can have (relationship) many invoices

(objects). This chapter specifically considers the class of relationships where one

70

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

entity is part of another entity, the so called part-whole relationships (mereological

relationships in the Bunge-Weber-Wand ontology).

The reason for specifically considering these relationships is because of the difficulty

of identifying part-whole relationships in practice. One of the more challenging parts

of a modelling a system is to determine how to decompose the different parts of a

system in a consistent, repeatable, non-subjective way. Many of the traditional

decomposition techniques have no clear rules on how to decompose systems

consistently. Wand et al. (1999:495) state: “While both entities and relationships are

fundamental to conceptual modelling, relationships prove to be more problematical.”

In the next section, various fields of study related to part-whole relationships are

discussed to provide a more formalised background to understanding how the various

modelling constructs are related.

4.3 Overview

Under the heading of part-whole, the following concepts are of interest: mereology,

part-whole relations, partonomies, ontology and taxonomy.

According to the Stanford Encyclopaedia of Philosophy (Varzi, 2010:1),

“mereology” is “the theory of parthood relations: of the relations of part to whole and

the relations of part to part within a whole”. It involves any part or portion of a

specific entity or object. Some examples are as follows:

• The screen is part of the laptop (the part is attached to the whole).

• The laptop case is part of the laptop (the part is detached from the whole).

• The front part of the office is mine (the part is arbitrarily demarcated within the

whole).

• Mauritius is part of Africa (the part is disconnected from the whole).

• The corner is part of the table (the part is immaterial).

• The four corner points are part of the circumference of the square (the parts are

immaterial).

71

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

• The first half of the game was the best (the part is a temporal subset of the whole).

• Humanity is part of personhood (the part is a property of the whole).

• Metal is part of cars (the part is a material constitution).

• Eggs are part of pancakes (the part is a mixture composition).

• Preparing lectures is part of being a good lecturer (the part is a conceptual

inclusion).

According to Gerstl and Pribbenow (1995), part-whole relations are important in

various disciplines such as linguistics, knowledge processing, philosophy,

psychology and artificial intelligence. Specifically in philosophy, part-whole has been

considered a fundamental ontological relation.

Bernauer (1996) explained that the part-whole relation has a long tradition in the

medical domain, because medical concepts normally refer to anatomical objects and

their parts. These are normally represented by means of standard terminology or

classification systems. These systems are many times combined with a coding system

(see for example Figure 4-1).

T Topography axis

T1 Muscoloskeletal system and soft tissues

T11 Bones of shoulder girdles, pelvis and extremities

T114-T116 Bones of upper extremity

T1141 Humerus

T11412 Corpus humeri

T11401 Pars proximals corpus humeri

Bernauer (1996)

Figure 4-1: Concept ladder

Part-whole relations are also important in IS modelling. In OO modelling, data

modelling and similar fields, there are many relationships where one object is part of

another object, i.e. a whole-part relationship (Opdahl, Henderson-Sellers and Barbier,

2001a).

72

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

A partonomy is the structure of an object and the parts associated with it. It is

represented by a tree with no more than three levels: the whole, its parts and parts of

its parts. Partonomies differ from taxonomies in that they represent part-whole

relations while taxonomies represent is-a relations (Gerstl and Pribbenow, 1995).

Ontology is traditionally the philosophical study of the nature of being and existence

(Kayed and Colomb, 2005). More recently, the term “ontology” refers to something

more specific. Although there is a lot of debate on the definition, one of the most

cited definitions is the one by Gruber (1995:908): “An ontology is an explicit

specification of a conceptualisation”, where a conceptualisation is “an abstract,

simplified view of the world that we wish to represent for some purpose”. In its most

basic form, these ontologies provide a shared vocabulary representing a specific

domain’s knowledge (Mihoubi, Simonet and Simonet, 1998).

Although “parts” and “whole” seem complementary, they differ in some important

aspects. “Part” is a binary, relational concept, while “whole” is a unary, predictive

one. Something can be a part only if it is part of a whole, while a whole does not need

parts to be a whole. But mostly a whole is made up of parts structured in such a way

that the whole acquires integrity. Integrity is not well understood, but seems to be

dependent on kind, respect and relevance. The part-of relation, on the other hand, is

independent of integrity (Eschenbach and Heydrich, 1995).

Next, some part-whole frameworks and classification systems are discussed to

provide a more detailed understanding of the concept “part-whole relationship”.

4.4 Part-whole classifications

In this section, three part-whole relationship frameworks are discussed. They are

classical mereology together with classical extended mereology, the Opdahl et al.

framework and the Gerstl and Pribbenow framework.

73

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4.4.1 Classical mereology and classical extended mereology

Classical mereology consists of the following definitions (D1–D6) and axioms

(A1–A3) (Eschenbach and Heydrich, 1995):

• [D1] x is part of y iff (if and only if) x is discrete from everything y is discrete

from.

• [D2] x is a proper part of y iff x is part of y and y is not part of x.

• [D3] x and y overlap iff they have a common part.

• [D4] x is the sum of some entities iff x is discrete from exactly those entities

which are discrete from them.

• [D5] x is the product of some entities iff x is the sum of all their common parts.

• [D6] x is an atom iff it has no proper part.

• [A1] x is discrete from y iff x and y do not overlap.

• [A2] If x is part of y and y is part of x, then x and y are identical.

• [A3] For any entities, their sum exists.

Classical extended mereology (Gerstl and Pribbenow, 1995) is an axiomatic system

characterising the part-of relation:

• Existence – If A is part of B, both A and B exist.

• Asymmetry – If A is part of B, B is not part of A.

• Supplementation – If A is part of B, B has a part C such that there is no X which

is both part of A and part of C (i.e. B has a part C disjoint from A).

• Transitivity – If A is part of B and B is part of C, then A is part of C.

• Extensionality – Objects with the same parts are identical.

• Existence of mereological sum – There exists a unique mereological sum S for

any non-empty class of existing individuals.

4.4.2 The Opdahl et al. framework

Part-whole relationships can be analysed by considering the characteristics of

relationships themselves or by considering the characteristics of the relationships in

74

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

the concrete problem domain that is being modelled (ontological analysis) (Opdahl et

al., 2001a).

Opdahl et al. (2001a) developed a framework of characteristics of whole-part

relationships (see Table 4-2). They classify the characteristics into four groups:

• Primary characteristics are necessary conditions for a relationship to be a whole-

part relationship. Primary characteristics must be Boolean (true or not).

• Consequential characteristics are logical consequences of one or more of the

primary characteristics.

• Secondary characteristics are not necessary for all whole-part relationships; they

are rather used to identify and distinguish between different types of whole-part

relationships. Secondary characteristics do not have to be Boolean.

• Dependent characteristics are only possible in specific combinations with other

secondary or dependent characteristics.

Type Characteristic
Primary
characteristics

Whole-part: The part-of relationship has the following three attributes:
(a) Idempotent, which means that adding the same part more than once in
an aggregate does not make a difference. (b) Commutative, meaning that
the parts of an aggregate are unordered. (c) Associative, which means that
the order in which parts are added to an aggregate does not make a
difference.
The aggregate object having one or more resultant properties: An
aggregate must have at least one property that results from the properties
of its parts. For example, mass for physical object, because all parts have
mass.
The aggregate object having one or more emergent properties: An
aggregate must have at least one property that does not result from the
properties of any of its parts. For example, intelligence in a person,
because none of the body parts have intelligence.
Irreflexiveness at the instance level means an object cannot be its own
part.
Antisymmetry, and therefore asymmetry, at the instance level:
Asymmetry means that two objects cannot be reciprocally part of one
another.
Antisymmetry at the type level means that two different classes cannot
both play the role of aggregate in a whole-part class relationship with
another class.

Consequences
of primary
characteristics

Propagation of operations to part and ownership of the part: System-
oriented characteristics.

75

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Type Characteristic
Abstraction: If the aggregate belongs to another class, then all its parts
also do. For example, “head” cannot have another “head” as its part. In
contrast, “groups of people” can be part of (larger) “groups of people”.

Secondary
characteristics

Lifetime relationship refers to whether an aggregate object is created
and destroyed before, simultaneously with or after its parts. Because the
lifetimes of an aggregate and its part must overlap, there are nine possible
combinations.
Transitivity or intransitivity: Transitivity means that if thing A has
thing B as part and B has thing C as part, then A must also have C as
part.
Shareable or unshareable parts: A thing can be part of more than one
aggregate thing at the same time. For example, “tree” can simultaneously
be part of “estate” and “residential area”.
Configurational relationships between parts: Refers to whether there
are structural or functional relationships between parts of an aggregate.
Structural relationships represent permanent spatial relationships between
the part things. Functional relationships represent that parts combine to
produce resultant properties (including laws) of the aggregate.
Separable or inseparable parts: A thing can exist without being part of
a particular aggregate. For example, a keyboard can exist before and after
it is used as part of a PC.
Mandatory or optional parts: An aggregate can exist without having a
part of a particular class. For example, a car may or may not have a radio
but must have an engine.
Mutable or immutable parts: Can an aggregate have a particular part
replaced by another, equivalent part without losing its identity?

Characteristics
dependent on
secondary
characteristics

Propagation of the delete operation refers to whether deleting the
aggregate will also delete the parts.
Separable or inseparable aggregate refers to whether an aggregate can
exist without having a particular part (the same as secondary
characteristic above).
Existential dependency refers to the dependency of a thing on a
particular instance and not only a class of another thing. This is a
characteristic of general relationships and not only whole-part
relationships. Applied to whole-part relationships, it refers to (a) whether
a whole can exist without a particular part, (b) whether a part can exist
without being part of a particular aggregate, or (c) whether the parts of an
aggregate object can exist independently of one another.

Coverage of the parts refers to whether all the physical matter
represented by the aggregate is also represented by at least one of its
parts.
Detached or intersecting parts: refer to whether parts are detached or
intersecting the whole.

Adapted from Opdahl et al. (2001)

Table 4-2: The revised Henderson-Sellers and Barbier's framework
of characteristics of whole-part relationships

76

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4.4.3 The Gerstl and Pribbenow framework

Winston et al. (1987), in Gerstl and Pribbenow (1995), developed a classification

system of six meronymic (part-whole) relations. This classification is based on three

criteria:

• Functional – parts are restricted, by their function, in their spatial or temporal

location, e.g. handle-cup.

• Homeomerus parts are of the same type as their wholes, e.g. slice-pie.

• Separable – parts can, in principle, be separated from the whole, e.g. handle-cup,

while inseparable parts cannot, e.g. steel-bike. This criterion is only applicable

where both the part and the whole are physical objects.

Every criterion above can be applicable or not, giving eight possible combinations of

these three criteria. In the Gerstl and Pribbenow (1995) framework, however, only six

of these corresponding relations are discussed in more detail:

• Component/integral-object – Functional and separable, e.g. handle-cup,

punchline-joke.

• Member/collection – Separable, e.g. tree-forest, card-deck.

• Portion/mass – Homeomerus and separable, e.g. slice-pie, grain-salt.

• Stuff/object – E.g. gin-martini, steel-bike.

• Feature/activity – Functional, e.g. paying-shopping, dating-adolescence.

• Place/area – Homeomerus, e.g. Everglades-Florida, oasis-desert.

Based on the framework of Winston et al., Gerstl and Pribbenow (1995) developed a

“common-sense theory of part-whole relations”. Their approach not only considers

the compositional structure of the whole as in previous theories, but also relations that

result from the application of external criteria.

Part-whole relations brought about by the compositional structure of the whole are as

follows:

77

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

• Quantity/mass: The part has no compositional structure, but it can be divided

into homogeneous quantities by applying an arbitrary quantitative measure, e.g.

100 grams of rice in the pan, five minutes of the soccer game, the majority of the

votes.

• Element/collection: E.g. three of the dozen apples, one of her holidays.

• Component/complex: The parts are distinguished on the basis of their

spatiotemporal arrangement with respect to the whole and/or on the basis of their

contribution to some function of the whole, e.g. engine of the car, head of the

department.

The following are part-whole relations independent of the compositional structure of

the whole:

• Segments: Parts that are created by applying an external scheme. Normally the

external schemes are spatial (if the whole is a spatial object, or can be represented

as a spatial entity). For example, the upper part of the house. The most useful

external scheme is the one-dimensional scheme that basically divides a “line” in

beginning, middle and end. The “line” can be a street, a queue of people, a story

or a factory process. A three-dimensional cube scheme can be applied to solid

physical objects where distinctions must be made between top/bottom, front/back

and left/right. For example, the lower right corners of the fridge, the back panel

of the bookcase.

• Portions: Parts that are created by applying one or more property dimensions to

the whole, e.g. the dimension colour as in the red parts of a painting or the

dimension valuation as in the sad parts of the story.

4.5 Part-whole relationships in ISD

According to Artale, Franconi, Guarino and Pazzi (1996) the normal way of

interpreting the role played by single attributes in a class description as 'has-a' has

potential problems. It makes it difficult to distinguish real part-whole relations like

the door of a house from real attributes like the colour or price of the house. They

argue that part-whole relations cannot simply be modelled by ordinary attributes.

78

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Artale et al. (1996) propose that the minimum requirements of a conceptual model to

capture the ontological nature of both parts and wholes are as follows:

• Explicit introduction of (complex) wholes in the model. There are two ways to

model part-whole relationships: Implicitly, where the relationships between

objects are modelled using attributes and the knowledge concerning the whole is

spread among different objects. Explicitly, where the relationships between

objects are modelled in new objects and the knowledge of the whole is held in the

whole itself. The explicit approach has benefits in terms of reusability,

understanding and extendibility.

• Clear distinction between parts and other attributes of a whole.

• Built-in transitivity of parts. Transitivity is the most discussed algebraic property

of whole-part relations. Transitivity states that if x is part of y and y is part of z,

then x is part of z. This is true in examples like the finger is part of the hand, the

hand is part of the body, and therefore the finger is part of the body. But it does

not hold in examples like the arm is part of the musician, the musician is part of

the orchestra, and therefore the arm is part of the orchestra.

• Possibility to refer to parts by generic names.

• Capability to express “integrity” relationships between parts and the whole.

Relationships between parts and whole can be seen from the following

perspectives:

- Vertical relationships

o Existential dependence relationships. Rigidly dependent means that an

individual cannot exist without another individual, e.g. “person” and

“brain”. Generally dependent means that an individual cannot exist

without another “type” of individual, e.g. “person” and “heart”.

o Property dependence relationships. These include properties the whole

inherits from its parts and vice versa. It also includes properties of the

parts that are systematically related to the properties of the whole, e.g. the

weight of a single part is always less than the weight of the whole.

- Horizontal relationships

o Constraint relationships between the parts characterising the integrity of

the whole.

79

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

According to Shanks, Tansley and Weber (2004), using an object/entity class to

represent a composite solves many of the problems experienced when the composite

is only represented as an association. For instance, a person may be a step-parent in

one or multiple marriages (but not other marriages). This fact cannot be represented

easily in models where marriage is not shown as a relationship class.

4.6 Conclusion

In this chapter, the Bunge-Weber-Wand ontology (Wand et al., 1999) was discussed.

It describes ontological constructs such as things, properties, attributes, types, states,

functional schemas, events, law, interaction, mutual properties, composites, systems,

topological relationships and mereological relationships. This provides an ontological

context for the part-whole relationship (called a mereological relationship in the

ontology).

Secondly, the related concepts of mereology, part-whole relations, partonomies,

ontology and taxonomy were discussed to provide an overview of part-whole

relationships.

Thirdly, three part-whole frameworks or classifications were discussed, namely the

classical mereology as well as classical extended mereology, the Opdahl et al.

framework, and the Gerstl and Pribbenow framework.

These frameworks can be applied to IS modelling by considering various types of

modelling constructs and the context in which the aggregates are formed (these

applications will be developed in more detail in the grounded analysis). For instance,

if human agents are considered in the context of IS, they cannot be decomposed into

parts. (In a biological or medical context, human actors are composed of parts like

respiratory, skeletal and cardiovascular). On the other hand, if institutional actors

(like organisations) are considered, it is clear that they can be composed of various

parts like employees, branches, buildings and departments. The aggregate object (the

organisation), for instance, has resultant properties like size and emergent properties

like industry type. Employees can be seen as unshareable, separable, mutable,

80

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

mandatory parts of an organisation. The relationship between an organisation and an

employee can be classified as complex-component.

Finally, part-whole relationships in ISD were discussed. The major issue emanating

from that discussion is that part-whole relationships must be seen as entities in their

own right and must not only be seen as associations.

81

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Part 1

Introduction

Part 2
Literature review

Part 3
Research

Part 4

Conclusion

Part 5

Supporting
information

Chapter 1
Introduction

Chapter 2
Theoretical
foundations

Chapter 3
Business rules

Chapter 4
Part-whole

relationships

Chapter 5
Linguistic analysis of

ISD modelling

Chapter 6
Research approach

Chapter 7
The proposed

integrative modelling
technique

Chapter 9
Conclusion

Bibliography

Chapter 8
Demonstration,

implementation and
evaluation of proposed
integrative modelling

technique

Appendix A
Derivation of proposed
integrative modelling
technique

5. A linguistic analysis of IS modelling

5.1 Introduction
5.2 Linguistics and information
 systems modelling
 5.2.1 Morphology
 5.2.1.1 Words and
 morphemes
 5.2.1.2 Lexicon
 5.2.1.3 Lexical categories
 5.2.2 Syntax
 5.2.2.1 Phrases
 5.2.2.2 Clauses
 5.2.2.3 Sentences
 5.2.3 Semantics
 5.2.3.1 Semantic functions
 5.2.3.2 Lexical semantics
 5.2.4 Pragmatics
5.3 Conclusion

82

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

5.1 Introduction

Modelling is closely linked to linguistics and language. Most modelling techniques

use linguistic constructs to help analysts to identify IS modelling constructs.

In the literature, numerous authors link linguistics and IS modelling (Chen, 1976;

Capuchino, Juristo and Van de Riet, 2000; Carter, Long and Truex, 2007; Leppanen,

2006; Charaf, Rosenkranz and Holten, 2010).

In his seminal work on entity relationships, Chen (1976) has shown that there is a

correspondence between ERD constructs and natural language. He shows that a

common noun corresponds to an entity type, a proper noun to an entity instance, a

transitive verb to a relationship type and an adjective to an entity attribute.

Capuchino et al. (2000:26) propose a conceptual modelling method based on the idea

“… that there is some relation between the linguistic world, in which the user need is

represented, and the OO conceptual world, in which developers represent the above

need.”

The purpose of this chapter is to expand the statements made by Chen, Capuchino et

al. and others, and to do an extended comparison between linguistics concepts and IS

modelling.

5.2 Linguistics and IS modelling

In this section, fundamental linguistic concepts are related to IS modelling.

Linguistics is divided into a number of different areas. The areas of morphology,

syntax, semantics and pragmatics are directly applicable to IS modelling, while other

areas like phonology and phonetics are not (the last two areas have to do with sounds

of language and the sounds of human speech, respectively (Stabler, 2010), not

contributing to the issue of modelling directly).

83

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Please note that a number of standard works on linguistics and natural language

processing were used to provide the information in this chapter (Stabler, 2010;

Shinghal, 1992; Valeika and Buitkiene, 2003; Kornai, 2007; Haspelmath, 2001).

Where required, other works were used and specifically referenced.

5.2.1 Morphology

Morphology is concerned with one of the most fundamental units of linguistic

structure, namely the word.

5.2.1.1 Words and morphemes

Words are constructed out of morphemes, i.e. any part of a word that cannot be

broken down further into meaningful parts. Compare for instance the words “class”

and “classes”. The morpheme “class” cannot be broken down any further, while the

word “classes” consists of a base morpheme, “class”, and a plural morpheme, “es”. In

a similar manner, we have the words “schedule”, “schedules”, “scheduled” and

“scheduling” related to the base concept of “to schedule”.

Linguistic concept IS modelling link

Words and

morphemes

Not all words used in a specific area to be modelled will be

used for IS modelling. For instance, when verbs are

specified in process and object modelling, only the first-

person present tense format is normally specified, e.g.

“order” and not “orders” or “ordered”.

5.2.1.2 Lexicon

In a natural language, such as English, all words in the language are described in a

general dictionary that represents the language’s lexicon, i.e. a list of definitions of

every word in the language.

84

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Linguistic concept IS modelling link

Lexicon In a business or information system, situation words can

have very specific meanings not necessarily as defined in the

dictionary. Therefore, most methodologies recommend

defining all words (often called terms) that have a context-

specific meaning. For instance, in normal use “client” and

“customer” can be seen as synonyms, but in a specific

organisation “client” could mean “a client who has no

account with us”, while “customer” could mean “a client

who has an account with us”.

5.2.1.3 Lexical categories

Words can firstly be grouped as open-class or closed-class words. Open-class words

(also called content words) belong to the four major lexical categories of noun, verb,

adjective and adverb. Closed-class words (also called grammatical or function words)

belong to the minor lexical categories.

(a) Open-class and closed-class words

The set of open-class words tends to be quite large and “open-ended”, i.e. new words

can be created and added almost unlimitedly. Just consider all the new words created

fairly recently as a result of advances in information technology, e.g. “cellphone”,

“email”, “spam”, “hacker”.

Closed-class words belong to the minor lexical categories of articles (“the”, “a”),

demonstratives (“this”, “that”), quantifiers (“all”, “most”, “some”, “few”),

conjunctions (“and”, “or”), comparatives (“more”, “less”), prepositions (“to”, “from”,

“at”, “with”) and pronouns (“I”, “you”, “she”, “her”, “them”). The set of closed-class

words tend to be relatively small and additions or changes to it is unlikely to happen

often (e.g. it is highly unlikely that changes or additions to the lexical group of

articles will take place in the next few years).

85

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Linguistic concept IS modelling link

Open-class words vs.

closed-class words

There are an unlimited number of concepts as described by

entities, objects and processes, but a more limited number of

“reserved” words, like “if”, “and”, “or”, and “for every”.

(b) Nouns

Nouns denote persons, places or things, e.g. the man walked to London. The things

can be those we perceive through our senses or those we can conceive in our minds as

ideas. Things also include animals. Nouns have certain important properties: (1)

number, i.e. singular or plural, (2) case, marking categories such as subject

(nominative case), object (accusative case), and ownership, origin or association

(genitive case) and (3) gender in languages like German and French.

Various categories of nouns, called genus, can be identified:

1. Proper nouns: Names of specific persons, places or things, such as

“Shakespeare”, “Canada”, “Mount Everest”, “Susan”. These nouns are written

beginning with an upper-case letter.

2. Common nouns: Names of non-specific persons, places or things, such as

“city”, “horse”, “women”, “milk”, “ambition”, “thought”. A common noun

cannot be a proper noun and vice versa.

3. Count nouns: Those that can be counted, such as one “man”, two “men”, etc.

When used in sentences, these nouns are frequently preceded by words like “a”,

“an”, “each”, “every” or “many”.

4. Mass nouns (or non-count nouns): Those that cannot be counted. These nouns

do not usually have a plural form. Examples are “dirt”, “foam”, “water”,

“honesty”, “homework”, “steel”. When used in sentences, these nouns are

frequently preceded by words like “much”, “more”, “little” or “less”. Some

nouns can be used both as count and mass nouns, e.g. “she pulled out two

hairs” (count noun), “she cut her hair” (mass noun).

86

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

5. Collective nouns: Name of a group with the members of the group sharing

some characteristics: an “army” (of soldiers), a “crowd” (of people), a “flock”

(of geese), a “herd (of cows) and a “team” (of players). A collective noun is

usually considered to be singular.

6. Compound nouns: Those that were originally written as two or more words.

Either a sequence of separate words, a sequence of hyphenated words or one

word derived from merging the original sequence of words, for example,

“funny bone”, “mother-in-law”, “blackboard”.

7. Concrete nouns: Names of tangibles like “book”, “board”, “plane”, “crowd”,

“water” and “Mount Everest”.

8. Abstract nouns: Names of intangibles like “ambition”, “fragrance”, “honesty”,

“integrity”, “truth” and “thought”. An abstract noun cannot be a concrete noun,

and vice versa.

9. Living nouns: For example, “plant”, “shrub”, “man”, “woman”, “boy”, “girl”,

“colt”, “filly”.

10. Animate nouns: For example, “man”, “woman”, “boy”, “girl”, “colt”, “filly”.

11. Human nouns: For example, “man”, “woman”, “boy”, “girl”.

12. Masculine nouns: For example, “man”, “boy”, “colt”.

13. Feminine nouns: For example, “woman”, “girl”, “filly”.

14. Neuter nouns: For example, “plant”, “shrub”.

Note that genera 1–8 are normally found in grammar books (Stabler, 2010:58–60),

while genera 10–14 are used to create natural language processors (Shinghal,

1992:145–146). A noun may be of more than one genus, for example, a colt is a

common, count, concrete, living, animate, masculine noun.

Linguistic concept IS modelling link

Noun Nouns are very important in IS modelling and many

modelling techniques recommend using nouns to identify

modelling objects, for instance, entities (ERD) and classes

(UML).

Number of a noun An important part of data and object modelling is to identify

the one or the many parts in a relationship. For instance, one

customer can have many orders.

87

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Linguistic concept IS modelling link

There is also the concept in object orientation of the design

pattern called “singleton”, a class with just one instance, for

example, the class Current president of the country will

always just have one instance.

Case of a noun The nominative and accusative cases of a noun can be used

to clearly make a distinction between subjects and objects.

The genitive case can be used to identify whole-part

relationships like aggregation in class diagrams, and entity-

attribute relationships in ERDs. For instance, the product’s

components and the client’s name.

Genus of a noun The whole concept of categorisation per se is important. It

relates to, for instance, class hierarchies. Proper nouns are

rarely used in modelling (unless there is in reality only one

of a type, e.g. The Reserve Bank of South Africa). Proper

nouns will mostly indicate the value of an attribute. A more

generic noun indicating the relevant role will rather be used.

For example, Finance department should be seen as a

specific instance of department.

Count and mass

nouns

The distinction between count and mass nouns has no direct

use in IS modelling, but in practice most nouns are count

nouns.

Collective nouns Indicate special relationships like aggregation, e.g. project

team implies team members.

Abstract and concrete

nouns

There is no distinction in modelling between the two types.

Both types are handled equally.

Human and neuter

nouns

Human nouns indicate possible actors and agents, while

neuter nouns indicate mostly the objects of actions.

(c) Verbs

Action verbs portray actions, e.g. “he walked slowly forward”, while existence

verbs indicate states of existence, e.g. “Absa is a bank”.

88

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Different types of verbs can be identified concerning their transitivity. Transitive

verbs take one noun phrase after them, like “the client paid his account”; intransitive

verbs do not take any noun phrases after them, like “John laughed”; while

ditransitive verbs take two noun phrases, like “the Pope proclaimed Elizabeth the

queen”.

Another categorisation of verbs concerns auxiliary and main verbs. Auxiliary verbs

are a closed set and includes forms of the verb “be” (“is”, “am”, “are”, “was”), forms

of the verb “have” (“have”, “has”, “had”), forms of the verb “do” (“do”, “does”,

“did”) and modal auxiliaries indicating possibility, necessity and obligation (“can”,

“could”, “will”, “would”, “shall”, “might”, “may”, “must”). Main verbs are verbs

like “run”, “walk” and “sing”.

A verb has six properties. Like a noun and a pronoun, a verb has a person (first,

second or third) and a number (singular or plural). For example, “walks” is a third

person singular verb. In a sentence, the person and number of a verb is the same as

the person and number of its subject.

The tense of a verb indicates the time of the action or the state of existence portrayed

by the verb. There are three tenses: past, present and future. Within each tense there

are four aspects: Simple – action just happens. Perfective – action completed in past,

present or future. Progressive (or continuous) – action continues in past, present or

future. Perfective progressive – a combination of perfective and progressive.

The voice of a verb denotes the relationship of the verb with its subject. It can be

active or passive. In active voice, the subject does the action portrayed by the verb:

“Archie showed the book.” In passive voice, the action is done to the subject: “The

book was shown by Archie.”

The mood (or mode) of a verb tells us about the attitude and understanding of the

speaker or writer about the action or state of existence portrayed by the verb. A verb

can have three modes: indicative, imperative and subjunctive. The indicative mood

makes a statement or asks a question. For example, “she will be a singer”, or “will

she be a singer”? The imperative mood issues a command, an exhortation or a

request, e.g. “show your book” or “have mercy on me”. The subjunctive mode

89

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

expresses (1) certain stock expressions, like “be that as it may”, “come one, come

all”; (2) a condition expressed contrary to fact, like “if I were you, I would have

greeted her” (in reality, I am not you); (3) a desire, recommendation or a requirement

by using words like “ask”, “demand”, “essential”, “important”, “insist”, “move”,

“necessary” and “obligatory”. For example, “I insist that he show his book”. The

subjunctive is gradually disappearing in practice, except in stock expressions.

Transitive verbs can sometimes occur without an overt direct object, but there is

almost always an implied, unexpressed, covert direct object. For instance, “he ate”

implies that he ate food and not something else.

There are a few transitive verbs that have little information and depend on the rest of

the predicate to provide meaning. For example, “John does my taxes”, “she does her

nails”, and “they are having a meeting”.

Linguistic concept IS modelling link

Verb types Action verbs (plus a noun phrase) are mostly used to

describe action-related modelling constructs like functions,

programmes, use cases, processes, etc. For example, the

“OrderProduct screen” or the “PrintEmployeeDetail

report”. Note that on a higher level, action-related constructs

are defined by nouns, for example, “payroll system”.

Existence verbs are indicative of relationships between

entities, e.g. “the cashier is an employee”. Main verbs are

used mostly, while auxiliary verbs are seldom used, except

for modal auxiliaries that are used in business rules, e.g. “all

orders must/should be authorised by the department

manager.”

Person and number of

a verb

Because one works with roles, the person and number of a

verb is not relevant and most modelling techniques indicate

verbs to be first person singular.

Voice of a verb Only the active voice is used in modelling. Passive voice

sentences are basically never used to model and are

transformed to active.

90

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Linguistic concept IS modelling link

Tense and aspect of a

verb

This is related to time and state and can be indicated in

different ways. Modelling will mostly be done in simple

present tense. If this is an as-is or a to-be picture of the

system, it will be indicated by the context.

Mood of a verb Most modelling will be in indicative mood. Imperative

mood will be used to specify business rules and instructions,

for instance, “only authorised managers can approve leave

application”.

Transitivity of the

verb

Most verbs will take one object, for example, “update client

information” and “order product”. Implied direct objects are

normally made explicit. If a transitive verb with little

information, such as “does” occurs, it normally indicates a

function or process on a higher level in the decomposition

hierarchy. For instance, “manager does day-end procedure”

is most probably on a higher level than “manager prints day-

end report”.

(d) Adjectives

Adjectives specify the attributes of a noun or pronoun, e.g. “the tall girl danced”.

When an adjective is part of a noun phrase, it is called an attributive adjective, e.g.

“the fat lady”. When an adjective is not part of the noun phrase and it complements a

verb, it is called a predicative adjective, e.g. “the lady is fat”.

Linguistic concept IS modelling link

Adjectives They relate mostly to the values of attributes of a

corresponding entity or object, e.g. “red” is the value of

attribute “colour” of entity/object “rental car”.

91

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

(e) Adverbs

Adverbs modify verbs (“he sang loudly”), adjectives (“a very tall building”), other

adverbs (“unbelievably quickly”) and sentences (sadly, he died). Semantically,

adverbs indicate when, where, how or to what degree.

Adverbs can be of the following types:

1. Adverbs of manner modify a verb to tell how an action is done, e.g. “he

waited eagerly”.

2. Adverbs of place modify a verb to tell where an action is done, e.g. “she lives

near the sea”.

3. Adverbs of time modify a verb to tell when or how long an action is done, e.g.

“he cried yesterday” and “he cried unendingly”.

4. Adverbs of frequency modify a verb to tell how frequently an action is done,

e.g. “he cried once”.

5. Adverbs of degree modify a verb to tell how much an action is done, e.g. “he

nearly had an accident”.

6. A sentence adverb modifies a sentence to tell about the writer’s comments,

e.g. “frankly, he is a snob”.

7. Adverbs of focus and viewpoint explain the focus or viewpoint of a sentence,

e.g. “he doesn’t like pudding, especially Christmas pudding” and “financially,

things are going well”.

8. Truth adverbs express what the speaker knows about the truth of statement,

e.g. “maybe she is lost” and “the athlete allegedly took steroids”.

9. Comment adverbs makes comments about what is being said, e.g. “he wisely

didn’t say a word”.

10. Linking adverbs relates to a previous clause or sentence, e.g. “He worked very

hard. However, he still had time to relax,” and “in conclusion, we must invest

internationally to survive”.

92

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Linguistic concept IS modelling link

Adverbs Adverbs relate, among other things, to the different aspects

of the Zachman framework. For instance, “the client orders

stock weekly/monthly” relates to the when aspect of

Zachman’s framework and “stock is stored in the

stockroom” relates to the where aspect.

(f) Compound words

Words can occur in compounds. These compounds can occur with various

combinations of lexical categories. For instance: noun + noun (“spaceship”,

“electronic mail”), adjective + adjective (“red-hot”), adjective + noun (“blackboard”),

and noun + adjective (“earthbound”, “pitch-black”).

Linguistic concept IS modelling link

Compound words In many modelling situations, compound nouns are written

as one word, for example “User_Rights” or “UserRights”.

(g) Word relationships

It is also important to realise that specific words can be linked across lexical

categories. For instance the verb “pay” is related to the nouns “payer” and “payee”,

and the adjective “payable”, while the adverb “quickly” is linked to the adverb

“quick”.

Linguistic concept IS modelling link

Word relationships There are no specific uses of this concept in modelling.

(h) Conjunctions

Conjunctions connect words or groups of words, e.g. “you and I are a couple”.

93

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

A conjunction is employed to connect words, phrases or clauses. For example, “he is

fat and ugly”, “we went to the movies after we had dinner” and “the kind and

generous man gave alms to the poor”.

A conjunction can belong to one of the following classes:

1. Subordinate conjunctions connect two finite clauses by making one clause

subordinate to the other, e.g. “When I walked down the street, I saw him on the

road”.

2. Coordinating conjunctions connect words of the same formation and

grammatical class, e.g. “John and Mary are married”, “I will work and study

next year”.

3. Correlative conjunctions are pairs of conjunctions that behave together like

subordinate conjunctions, e.g. “he neither works nor studies”, “the more, the

merrier” and both John and Susan are engineers”.

Linguistic concept IS modelling link

Conjunctions Relates to Boolean logic in modelling and programming. It

occurs mostly in conditional statements, e.g. If the salary >

x and number of years in the company > 20 then …

(i) Interjections

Interjections express emotion, e.g. “Wow, what a concert!”

Linguistic concept IS modelling link

Interjections Not used in any IS modelling.

(j) Determiners

Determiners call attention to nouns by occurring before the nouns, e.g. “a mob

damaged his bicycle”. The most frequently used determiners are “a”, “an”, and “the”.

The determiner “the” makes the noun it determines definite, e.g. “The child fell

94

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

down” (a specific child). The determiners “a” and “an” make the noun they determine

indefinite, e.g. “a child fell down” (any child). Articles occur with noun phrases and

can either be definite (“the”) or indefinite (“a”, “an”).

Linguistic concept IS modelling link

Determiners Not really used in IS modelling, for instance, the name of a

use case would rather be “register new client” than “register

the new client”.

(k) Prepositions

Prepositions indicate a semantic relationship between entities, such as the following:

1. Location of one entity in relation to another, e.g. “the book is

on/under/above/below/near the bookshelf”.

2. Direction, e.g. “he travelled from his house to work”.

3. Accompaniment, e.g. “with/without salt”.

A preposition is one or more words that reveal the relationship between the object of

the proposition and some other word in the clause. A preposition and its object

constitute a prepositional phrase. For example, “the cost of this book is high”.

Some prepositions relate to place, such as “in”, “inside”, “under”, “across”, “on top

of”, “below”, “in front”. Most prepositions of place indicate where something is or

where it is going. For example, “there was a barrier across the road” (position) and

“the man ran across the road” (movement). Prepositions of place can also have more

abstract meanings, e.g. “I’m into classical music”, “his behaviour is above reproach

and “the people are behind their manager”.

Some prepositions of place are one-dimensional. “At” is used when we see something

as a point in space, e.g. “he was waiting at the house”. Some are two-dimensional:

“on” can be used for a surface, e.g. “the picture is on the wall”, or it can be used for a

95

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

line, e.g. “the house is on the main road”. Some are three-dimensional: “in” is used

when we see something as all around, e.g. “the man in the blue shirt”.

Prepositions can also indicate time, e.g. “we met in 1999”, “on Tuesday”, “in spring”,

“during the week”, “since last week”.

There are many idiomatic phrases beginning with a preposition, e.g. “he drives at top

speed”, “I saw it on television”, “we arrived in time for dinner”, “we arrived on time

for dinner”, “we arrived in good time for dinner” and “we arrived just in time for

dinner”.

Linguistic concept IS modelling link

Prepositions In modelling, the presence of prepositions indicates

relationships, mostly spatial or time-related.

(l) Pronouns

Pronouns are words that are usually used in place of nouns or noun phrases, e.g. “she

looked him in the eye”. The noun or noun phrase that is replaced by a pronoun is

called the referent (or antecedent) of the pronoun. For example, in the sentence

“Anita walked to the door where she saw her younger brother leaning on crutches; he

was wearing a cast on his left foot”, the referent of the pronoun “she is Anita”, while

the referent of the pronoun “he” is Anita’s younger brother.

The referent of a pronoun need not always be a particular noun or noun phrase. For

example, in “he cheated, but it did not help him to succeed”, the referent of “it” is his

cheating. The referent of a pronoun can often be found by seeing how the pronoun is

declined.

Linguistic concept IS modelling link

Pronouns Pronouns are never used in modelling. The noun to which

the pronoun refers is normally used.

96

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

5.2.2 Syntax

The study of the structure of sentences is called syntax. Sentences are made up of

clauses, clauses are built up from phrases and phrases are built up from one or more

words.

5.2.2.1 Phrases

There are five kinds of phrases:

1. Verb phrases consist of an ordinary verb (“come”, “sing”) plus optional auxiliary

verbs (“is”, “had”, “can”).

2. Noun phrases consist of a noun and usually a determiner in front of it. A noun

phrase can also be a pronoun. A noun phrase is a group of words that is not a

clause but, as a unit, behaves like a noun. For example, “the rowdy boys were

punished”. The word “boys” is the vital part of the noun phrase. It is called the

headword of the noun phrase.

3. Adjective phrases consist of an adjective, sometimes with an adverb of degree

(“very”).

4. Adverb phrases consist of an adverb, sometimes with an adverb of degree

(“almost”).

5. Prepositional phrases consist of a preposition plus a noun phrase.

Linguistic concept IS modelling link

Noun phrase Composite noun phrases are normally translated into a

single name, such as “EmployeeLeave” or

“Employee_Leave”.

5.2.2.2 Clauses

Sentences are made up of one or more main clauses. A main clause has a finite verb.

“And”, “or”, “but”, and “so” are used to join main clauses, e.g. “it was late and I was

tired”. A subclause is part of a main clause, e.g. “the wind caught him as he fell”,

97

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

“I was tired because I was working”. We use “because”, “when”, “if”, “that”, etc. in

subclauses.

Clauses are built up from phrases. The elements of an English clause are as follows:

• Subject: The person or thing about which the clause is.

• Predicate or verb: It describes what the subject did, what action was done to the

subject or what state of existence the subject is in.

• Object: This is a person or thing affected by the action of the verb.

• Complement: This relates to the subject.

• Adverbial: This relates to the verb.

The subject of a sentence is those words that tell us what the sentence is about. If the

subject of a sentence comprises more than one part (connected by the words “and”,

“but” or “or”) the subject is a compound subject. For example, “Jan and Susan

helped with the chores”.

The predicate is those words that do not constitute the subject. The predicate of a

sentence tells us the following:

• What the subject did: “Susan toured France”.

• What action was done to the subject: “Susan was cheated by the guide”.

• What state of existence the subject is in: “Susan looked ill”.

Normally the subject occurs before (to the left) of the predicate, but they can be

transposed. For example, “Ill looked Susan”.

When the predicate explains more than one action or more than one state of existence

(connected by the words “and”, “but” or “or”), then the predicate is a compound

predicate. For example, “she hopped, skipped and jumped”. Note that the sentence

“he ate curry and rice” is not a compound predicate, because it explains only one

action, namely “eating”.

98

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Sentences can have both a compound subject and compound predicate.

A group of words containing a subject and predicate constitutes a finite clause. A

sentence has at least one finite clause. A non-finite clause is a group of words that

express some sense of action or a state of existence, but the clause can never exists by

itself, and is connected to some finite clause. For example, “I appreciated his visiting

me”.

Some basic clause patterns are as follows:

• A train – stopped (subject – intransitive verb)

• Five men – carried – the bag (subject – transitive verb – object)

• The student – was – unlucky (subject – verb – complement)

• A course – is presented – every semester (subject – verb – adverbial)

• The mother – gave – the baby – its dummy (subject – verb – indirect object –

direct object)

Note that all clause patterns contain a subject and a verb in that order. The most

common clause pattern is subject – verb – object.

5.2.2.3 Sentence

A sentence is a grammatically autonomous word group that makes sense by

expressing a thought. Sentences are used to make statements, ask questions and issue

directions. Sentences can be simple, i.e. they consist of one clause that stands on its

own, or complex, i.e. they consist of two or more clauses. A sentence can have

positive or negative polarity (e.g. “she is there” vs. “she is not there”).

Different kinds of sentences can be identified: Elliptical sentences are sentences from

which words have been elided (deleted), for example, “(If) garbage (goes) in, (then)

garbage (comes) out”. Existential sentences are sentences containing an expletive like

“there”, for example, “there are several lamps on the stand” is equivalent to “several

lamps are on the stand”. Declarative sentences make a statement and ends with a

99

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

period. Imperative sentences issue a command or a request. The subject, usually

“you”, is often elided. For example, “please lend me the book”. Interrogative

sentences ask a question and ends with a question mark. The subject is the same as

the corresponding declarative sentence. Exclamatory sentences express emotion and

end with an exclamation mark. They can also take on the structure of a declarative,

imperative or interrogative sentence. For example, “Isn’t she lovely!”

A sentence S constitutes a noun phrase NP followed by a verb phrase VP. This can be

indicated as follows:

S NP VP

A noun phrase can have different formats, such as:

NP N (N = Noun)

NP DET N (D = Determiner)

NP DET ADJ N (ADJ = Adjective)

A verb phrase can have different formats, such as:

VP V (V = Verb)

VP V NP

VP V NP PP (PP = Prepositional phrase)

Linguistic concept IS modelling link

Sentence Many modelling constructs can be translated into sentences.

For instance, a use case diagram can be translated into a

sentence by making the actor the subject, and the use case

name the predicate and object, such as “client orders

product”.

Sentence polarity Related to Boolean logic. Appears mostly in a conditional

statement like “if it is not the end of the month, then…”.

100

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Linguistic concept IS modelling link

Elliptical sentences Not used in modelling because everything must be

explicitly stated.

Existential sentences Not normally used in modelling.

Declarative sentences Most statements in modelling can be translated into

declarative sentences.

Imperative sentences Used when modelling instructions to a user of a system. For

example, “place the paper in the printer”. Normally used in

business rules and conditions and constraints.

Interrogative

sentences

Not really used in modelling.

Exclamatory

sentences

Not really used in modelling.

5.2.3 Semantics

Semantics is concerned with meaning on both word and sentence level. Three types

of meaning can be identified: referential, social and affective meaning.

Referential meaning refers to looking for the meaning of a word or sentence by

considering the person, object, abstract notion, state or event to which the word or

sentence refers. In a referring expression, like “John’s car”, the specific car belonging

to John is the referent of the expression.

Social meaning refers to the fact that over and above referential meaning, the choice

of words can also convey social class, ethnicity, regional origin, gender and context.

For instance, people calling their drink “pint”, “beer” or “lager” can indicate different

social classes.

With affective meaning, the choice of words conveys the language user’s feelings,

attitudes, and opinions. For example, by using the word “speed cop” instead of

“traffic officer” a different level of respect is indicated.

101

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

5.2.3.1 Semantic functions

The Functional Grammar of SC Dik distinguishes between four states of affairs (or

predications), based on the parameters controlled/uncontrolled and dynamic/non-

dynamic (Kroeze, 2008). These four predications are summarised in Table 5-1.

Adapted from Kroeze (2008)

Table 5-1: Predications

Linguistic concept IS modelling link

The four states of

predication: action,

process, position,

state

In IS, no distinction is normally made between the first

three states of predication. All of them will be represented

by either a use case or function or program or any other

action-related construct. State, on the other hand, is

specifically specified in especially UML, but also implicitly

in ERDs.

Controlled Uncontrolled

Dynamic

Non-dynamic

Action
For example, “the man

walks”.

Process
For example, “the man

fell”.

State
For example, “the man

is good”.

Position
For example, “the man

sits”.

102

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

A predication is the combination of the predicate plus compulsory terms (or

arguments) and optional terms (or satellites). Arguments and satellites can have

different semantic functions (roles which the referents of the terms fulfil in the

predication) (Kroeze, 2008; Kroeze, 2003; Weigand, 1992).

The following are different semantic functions that can be identified (Kroeze, 2008;

Dik, 1997a; Dik, 1997b):

• Agent: The controller of an action, e.g. “the dog chases the car”.

• Positioner: The controller of a position, e.g. “he maintains the peace between the

different negotiating parties.

• Force: The non-controlling entity that initiates a process, e.g. “the exchange rate

fluctuation caused the stock prices to fall”.

• Processed: The entity passively undergoing a process, e.g. “the average cost price

slid to an all-time low”.

• Zero: The entity primarily involved in a state, e.g. “the price is high” (the price

does not control the state – it just happens to be in it).

• Patient (or goal): The patient is the entity affected or effected (produced) by the

operation of some agent, positioner, force or processor, e.g. “the manager prints

the report”.

• Receiver (or recipient): The entity to which something is transferred as a

possession, e.g. “the employer paid the salary to the employee”.

• Location: The place where something is located or where a predication takes

place, e.g. “the cashier works in the front office”.

• Direction: The entity towards which something moves or is moved, e.g. “They

sent the order to the Procurement Department.”

• Source: The entity from which something moves or is moved, e.g. “The supplier

mails the invoice from the factory”.

• Reference: The second or third term of a relation with reference to which the

relation holds, e.g. “The policy reflects the company’s mission statement”.

• Interested party (or beneficiary): The person or institution to the

advantage/disadvantage of whom the predication is effected, e.g. “The strategic

report is produced for top management.”

103

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

• Company: The entity together with which the predication is effected, e.g.

“Finance created the feasibility study together with the IT Department”.

• Instrument: The tool with which an action is executed or with which a position

is maintained, e.g. “The credit clerk determines the client’s credit rating by means

of the credit rating procedure.”

• Manner: The way or manner in which an action is executed, a position is

maintained or a process takes place, e.g. “The developer creates the program

according to the company’s development standards”.

• Speed: Indicates the quantity of action or process which is run through per time

unit, e.g. “The project needs to done 25% faster to reach the deadline”.

• Role (or quality): The role/function/authority/capacity by virtue of which an

action is executed or a position is maintained, e.g. “As the head of the department,

Alta performs appraisals”.

• Path (or route): Indicates the orientation or route of a movement, e.g. “The

Finance Department sends the invoice via the supplier’s standard ordering

channel”.

• Time: The time at/from/until which a predication takes place, e.g. “Financial year

ends on 30 September”.

- Duration: A subcategory of time. The period of time in which a predication

takes place, e.g. “The quote is valid for 5 days”.

- Frequency: A subcategory of time. The number of times that a predication

is repeated in a certain period, e.g. “The start-of-day procedure must be

executed every week day at 07:00”.

• Circumstance: A second predication taking place at the same time as the main

predication, e.g. “While the cake is in the oven, the icing can be made”. Some

subcategories of circumstance are as follows:

- Real condition: E.g. “If the order is bigger than 20, give 10% discount”.

- Unreal condition: E.g. “If the profit is 500%, the company can pay off all

its debt”.

- Concession: E.g. “Although a client is a pensioner, they get full benefits”.

- Exception: E.g. “The fee is R50, but children pay R10”.

- Restriction: E.g. “Projects greater than R10 million cannot be authorised

without the steering committee’s approval”.

104

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

• Result: A second predication which is brought about as the result or consequence

of the main predication, e.g. “When an order is placed, the stock levels are

updated”.

• Purpose: A second predication in the future the controller deliberately wishes to

bring about by means of the main predication. The purpose serves as the

motivation for the main predication, e.g. “The execution of the audit procedure

will ensure compliance with the audit standards at financial year-end”.

• Reason: A motivation for the occurrence of a controlled predication in terms of a

causal ground ascribed to the controller, e.g. “The project team worked overtime,

because the project manager required them to”.

• Cause: A motivation that is not ascribed to any of the participants of the

predication, but which is given by the speaker as an explanation for the

occurrence of the predication, e.g. “The building project was late because of

excessive rainfall”.

Semantic functions expressed by non-verbal predicates (nouns, adjectives, adverbs

and prepositional phrases) are as follows:

• Existence: An argument expressing the mere existence of a zero-argument, e.g.

“Inflation will always be with us”.

• Identity: An argument expressing the identity or species of the zero-argument,

e.g. “The university alumni are students who have completed their degrees at the

university”.

• Class: An argument that designates the class of which the subject is a member,

e.g. “He is a permanent member of staff”.

• Quality (or property assignment): An argument expressing the quality of

characteristics of the zero-assignment, e.g. “His age is 40 years”.

• Possessor: A term indicating the owner of the zero-argument or other element,

e.g. “The receiving branch becomes the owner of the rental car”.

Linguistic concept IS modelling link

Agent The agent is normally the actor or external agent in various

modelling techniques.

105

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Linguistic concept IS modelling link

Positioner In IS modelling, a positioner is never explicitly

distinguished.

Force Not explicitly indicated but implicitly, for instance, when an

actor has an “initiates” stereotype in use case modelling, the

actor is the equivalent of a force.

Processed In IS modelling a processed is never explicitly

distinguished.

Zero An entity in ERDs and a class in UML is a zero in relation

to their respective attributes.

Patient and receiver A patient is never explicitly distinguished in IS modelling.

A receiver can be indicated in use case modelling as an

external receiver actor (ERA).

Location Location is rarely indicated in IS modelling and then only

implicitly as in the deployment diagram in UML.

Direction and source A direction and source are never explicitly distinguished in

IS modelling.

Reference Not used in IS modelling.

Interested party An interested party is not separately distinguished, but is

included in, for instance, use cases as an actor.

Company Not used in IS modelling.

Instrument Not directly used in IS modelling, but relates to the means

or mechanism of a process in IDEF0.

Manner Not used in IS modelling.

Speed Not used in IS modelling.

Role This concept is used a lot in IS modelling, but no specific

role modelling construct exists.

Path Not used in IS modelling.

Time, duration,

frequency

Very important concept in modelling, but it is only really in

UML that time is explicitly modelled.

Circumstance Relates to concurrent activities, as modelled in a UML

activity diagram.

106

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Linguistic concept IS modelling link

Real condition,

unreal condition,

concession,

exception, restriction

These are all related to business rules, but no specific

modelling constructs exist for them, except secondary ones

like a decision symbol in a UML activity diagram.

Result Relates to the output of an IDEF0 diagram.

Purpose, reason,

cause

They all relate to the “why” aspect of Zachman, but no

specific modelling construct exists.

Existence Relates to the associations between entities in ERDs and

classes in UML.

Identity Relates to the definition of a term.

Class Relates to the inheritance or generalisation/specialisation

concept in OO.

Quality Relates to the values of the attributes of an entity (ERD) or a

class (UML).

Possessor No explicit construct in IS modelling, but could be related

to the owner in a CATWOE table (soft system

methodology).

5.2.3.2 Lexical semantics

Lexical semantics is concerned with the relationships among word meanings (Stabler,

2010; Shinghal, 1992; Valeika and Buitkiene, 2003; Kornai, 2007; Haspelmath,

2001).

(a) Hyponymy

A hyponym is a term whose referent is totally included in the referent of another

term, for instance, “blue”, “red” and “yellow” are all hyponyms of “colour”. The

“higher” term, “colour”, is called the hypernym. Hyponymy is not restricted to nouns

or adjectives only, but can also occur with verbs and other grammatical classes, for

instance, “walk” can be the hypernym for “stroll”, “saunter”, “amble”, “hike”, etc.

107

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Hyponymy can exist at more than one level, for instance, “aquamarine” and “royal

blue” are hyponyms of “blue”, which is a hyponym of “colour” in turn.

Linguistic concept IS modelling link

Hyponymy An extremely important concept in modelling which relates

to “a kind of”, “is-a” relationship or inheritance relationship

in OO.

(b) Part-whole relationships

Part-whole relationships are where the referent of one term is included in the referent

of the second term, for instance, “room” and “house”. It differs from hyponymy in

that a room is not a type of house, but in (part of) the house.

Linguistic concept IS modelling link

Part-whole

relationship

Relates to the aggregation concept in OO.

(c) Synonymy

Two words are synonymous when they mean the same thing. More formally, when

every referent of term A is a referent of term B, and vice versa. For example, “rent”

and “hire” can be synonyms.

Linguistic concept IS modelling link

Synonymy Important concept, especially in analysis. Most

methodologies indicate the importance of identifying

synonyms when defining terms. Mostly, one term will be

seen as the main term and all other as synonyms of that

term.

108

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

(d) Antonymy

Antonymy denotes opposition in meaning and is a binary relationship, unlike

synonymy and hyponymy. The most obvious examples are pairs of adjectives that

describe opposite concepts, such as “hot” and “cold”, “open” and “closed”, “dead”

and “alive”. However, nouns like “male” and “female”, adverbs like “always” and

“never”, and verbs like “love” and “hate” are also antonymous.

There are different kinds of antonymy. Words such as “large” and “small” are fairly

subjective, e.g. a mouse is smaller than a house but much larger than a virus. These

pairs are called gradable. Typically, for gradable antonyms there are words or

expressions to describe intermediate words like “medium large”, and “fairly small”.

In contrast, words like “single” and “married” are mutually exclusive and

complementary. A person cannot be both at the same time. These pairs are called

non-gradable.

Linguistic concept IS modelling link

Antonymy This concept does not feature directly in IS modelling.

(e) Converseness

Converseness refers to a reciprocal concept of oppositeness, different from antonymy.

Take, for example, the words “husband” and “wife”. The word “husband” is the

converse of “wife”, because if A is the husband of B, then B is the wife of A.

Linguistic concept IS modelling link

Converseness Does not feature directly in IS modelling.

(f) Polysemy and homonymy

When a word has more than one meaning, it is polysemic, e.g. “book” can be used as

follows: “he reads a book” or “they book their flights”. When words sound the same

but have different meanings they are homonymic, e.g. “there” and “their”.

109

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Linguistic concept IS modelling link

Polysemy Does not feature directly in IS modelling. But ambiguous

terms are normally clearly identified (in a list of terms) to

indicate just one meaning.

Homonymy Does not feature in IS modelling.

(g) Metaphorical extension

A metaphor is an extension in the use of a word beyond its primary meaning. It

describes referents that are similar to the word’s primary referent. For instance, the

word “heart” can, over and above its primary meaning of the biological pump, also be

used to describe the centre of an issue (the heart of the matter), the seat of emotion

(she has broken his heart), etc.

Linguistic concept IS modelling link

Metaphorical

extension

Does not feature directly in IS modelling.

(h) Tense and modality

The semantic category tense indicates the time reference of a word or an entire

clause.

Epistemic modality indicates the attitude speakers have towards the truth of the

statements they make. For instance, “they are probably right” indicates probability,

“they are right” indicates assertion and “they know what they are talking about, so

they should be right” indicates conjecture.

Deontic modality expresses obligation, permission or suggestion. For instance, “he

must wash the car” indicates command, “he may wash the car” indicates permission,

while “he washes the car” indicate statement.

110

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

The modalities are related and the same auxiliary words (like “may”, “must” and

“should”) can indicate both types. Modal verbs (like “order”, “allow”, “command”

and “assume”) and modal adverbs (like “possibly”, “probably” and “certainly”) also

indicate modality.

Linguistic concept IS modelling link

Tense Tense indicates mostly the as-is and the to-be situations in

modelling.

Epistemic modality Probability and conjecture are not normally taken into

consideration in modelling. Only a few techniques like

decision trees do allow for indicating probability, and rich

pictures (in SSM) allow for conjecture. Mainstream

modelling techniques cater mostly for assertion.

Deontic modality Command normally indicates the presence of business rules

or instructions to users.

(i) Reference

Reference provides information about noun phrases and their referents. For example,

note the semantic difference between the following two sentences: “he reads the

book” and “he reads a book”. The first assumes the speaker can identify the book,

while the second doesn’t.

Linguistic concept IS modelling link

Reference When the referents can be identified, for instance, in the

phrase “the product”, it indicates a cardinality of one, a

singleton (OO) or an instance of an entity or class (in this

case “product”). The phrase “a product”, on the other hand,

indicates a cardinality of many and the class or entity itself.

111

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

(j) Deixis

Deixis identifies the orientation of objects or events in relation to specific points of

reference. All types of deixis share a basic point of the reference: the speaker’s

identity and location in space and time.

Personal deixis shows the orientation of our communications with respect to

ourselves, our conversational partners and third parties. These are mostly indicated by

personal pronouns. First-person pronouns (such as “I”, “we” and “us”) refer to the

speaker or group including the speaker. Second-person pronouns (like “you”) refer to

the addressee or group including the addressee. Third-person pronouns (like “he”,

“she”, “it” and “they”) indicate any other entity besides the speaker and person (or

persons) spoken to. Depending on the language, gender, number and even social

status can also be indicated.

Spatial deixis indicates in a language expression the spatial orientation of the referent

of an action or state. Spatial deixis are mostly indicated by demonstratives (like “this”

and “that”), adverbs of place (“here” and “there”) and directional verbs (like “go”,

“come”, “bring” and “take”). The main reference points are near or far from the

speaker.

Temporal deixis indicates in a language expression the time orientation of the

referent of action or state. The most basic orientation is the moment at which the

expression is uttered. Events before that moment are in the past, during that moment

are in the present and after that moment are in the future.

Linguistic concept IS modelling link

Personal deixis Personal deixis can indicate the presence and orientation of

a business conversation or transaction. The interaction

between a user and an ATM is a classic example: “user

inserts card, ATM verifies card”, etc. In IS modelling, the

third-person perspective is mostly that of the system being

modelled.

112

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Linguistic concept IS modelling link

Spatial deixis Spatial deixis indicates the “where” aspect of Zachman, as

well as actions involving the movement of either physical or

informational entities, for instance, “the clerk emails the

invoice to the client”.

Temporal deixis Relates to the “when” aspect of Zachman.

5.2.4 Pragmatics

For a long time, linguists studied individual sentences in isolation. But language is

normally used in larger units, like conversations, monologues, emails or letters. These

larger units are studied in pragmatics (also called information structure).

In any sequence of sentences, speakers and writers will mark some elements as more

important (highlighting) or less important (backgrounding). This is called

information structure and takes into account the discourse context of a sentence.

(a) Discourse

A discourse is a series of sentences (or other non-verbal forms of communication)

that go together, for example, a conversation in the tea room, an email, a television

interview, a comment to you about the neighbour walking by, a speeding fine or

telling a joke. These discourses are social instruments used for communication.

Discourse can have a major effect on the structure of a given sentence.

A conversation is a discourse where more than one person is involved. Some of the

properties of a conversation are as follows:

• Any reasonable number of people can take part.

• There are rules governing how people take turns.

• There are principles of socially acceptable conversation behaviour like greeting

(opening the conversation) and closing the conversation.

113

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Linguistic concept IS modelling link

Discourse Any interaction of a user with a system can be seen as a

discourse or conversation. You have an opening (like

logging in), a closing (like logging out) and all of the steps

in-between.

(b) Topic

The main discourse function of the subject is to identify the topic or theme of the

discourse. Topics represent given information – information the speaker assumes the

hearer already knows. A topic only becomes a topic once it is introduced into the

discourse. Once a topic is introduced, it stays the subject of subsequent sentences

until a new topic is introduced. The topic is in contrast to the comment, the element

that says something about the topic. The topic is not necessarily derived from a

sentence, but can be derived from the discourse context, for example, “look how

cute” when the speaker passes a baby in the street identifies the topic “the baby”.

The context can be on different levels. Firstly, it can be linguistic, the utterances in

the discourse preceding the current point. Secondly, it can also be the immediate

physical or social environment. Thirdly, it can include general knowledge.

Linguistic concept IS modelling link

Topic When doing an analysis, it is important for the analyst to

determine the topic when statements are made by users. For

instance, the statement “the clerk validates the order”,

although syntactically and semantically valid, is incomplete

pragmatically and must be placed within the topic of the

“order process” along with all the other order process steps.

(c) Speech acts

Certain utterances only declare or state, but there are utterances that in the right

circumstances perform an action. For instance, when the bride and bridegroom say “I

114

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

do”, it constitutes entering into a legal contract; or when the supplier states “I will

deliver this before 12:00 tomorrow”, it constitutes a service contract. These types of

utterances are called performative utterances.

There are four categories of speech acts (Searle, 1976):

1. Utterance acts are simply acts of uttering sound, words, phrases or sentences

in a language and can be performed by a non-communicating entity like a

parrot or tape recorder.

2. Illocutionary acts are acts performed in saying something. Examples of

illocutionary acts are asserting, reporting, stating, asking, suggesting, ordering

and proposing.

3. Perlocutionary acts are acts performed by saying something. Examples of

perlocutionary acts are inspiring, persuading, intimidating, misleading,

embarrassing and irritating.

4. Propositional acts refer to something and characterises it with a predicate. For

instance, “the earth is flat” or “nobody is perfect”.

Linguistic concept IS modelling link

Speech acts The sending of business transaction messages between

different agents constitutes illocutionary acts. This forms a

major part of IS and organisations.

5.3 Conclusion

Because language is so fundamental to modelling, linguistics is a very important

reference discipline for modelling. Of special interest are linguistic concepts and

constructs that are absent or underemphasised in modelling. Based on the comparison

of linguistics and IS modelling in this chapter, some very interesting conclusions can

be made.

One of the first insights is that linguistics makes a clear distinction between the

different levels of morphology, syntax, semantics and pragmatics. In IS modelling,

115

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

some of these levels are often neglected. IS modelling, and the teaching thereof,

mostly concentrates on the morphological, and to some degree the syntactical level,

but not really on the semantic and pragmatic levels. For instance, when learning a

new modelling technique like use case diagrams, the basic constructs such as agent,

use case and association will be taught and examples given, but very few rules will be

given of what a good use case “sentence” or “clause” is.

On a morphological level, the main conclusion is that only a subset of all the words

used in a specific universe of discourse will actually be modelled. In a sense, the root

meanings of words are used rather than derivations of those root words.

On a lexical level, a number of significant conclusions can be made:

• In language the two main things that are communicated are “things”2 as

represented by nouns and noun phrases and the relationships between them as

represented by various other linguistic concepts. One of the most important

relationships is that of action represented mostly by verbs. For instance, when

somebody says Humpty-Dumpty sat on the wall, the relationship between the two

things (Humpty-Dumpty and the wall) is indicated by the phrase “sat on”. It

mainly shows the spatial relationship between them, one under and the other on

top. It also shows that this spatial relationship is not necessarily true now, but that

it was true somewhere in the past, because it says “sat” and not “sits” or “is

sitting”.

• By contrast, in modelling the two main things that are modelled are “things”

(agents, actors, entities, objects, etc.) and actions (processes, functions, programs,

use cases, etc.), with the relationships between things taking at most a third place.

• Various lexical types give rise to a number of relationship types between things:

a) Action relationships indicate dynamic relationships where subject things

execute actions on object things in a finite (even if long) amount of time. The

linguistic concepts indicating action relationships are action verbs, predicates

2 The words “thing” or “things” is used rather than “object” or “entity” because of the current IT
connotations of those words.

116

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

and prepositions. Action relationships can indicate many subtypes, such as the

following:

- Association relationships, e.g. “Customer orders product”.

- Movement between two locations, e.g. “The flight transports passengers

between origin airport and destination airport”.

b) Action and existence verbs also indicate static relationships showing

permanent relationships between “things”, e.g. “Order consists of products”

and “The customer order is filled”.

On a semantic level, semantic functions can be linked to many concepts in IS

modelling, such as agent, role, etc. The interesting part is the big number of semantic

functions that are either not explicitly defined or not defined at all in IS modelling.

These can provide the basis for developing richer, more nuanced modelling

constructs.

Further, on a semantic level, lexical semantics indicates relationships between words,

many of which are present in IS modelling, like “inheritance” (hyponymy) and

“aggregation” (part-whole relationships). However, the relationships missing from

ISD modelling point to interesting opportunities to enrich modelling. For instance,

converseness can help to identify processes or functions such as “buy” and “sell”,

“input” and “output”, or “debit” and “credit”. By understanding that these functions

go in pairs, finding one of the pair can cause an automatic query concerning the other

half of the pair.

On a pragmatic level, it is clear that communication is not made up of loose sentences

but of sentences structured together in bigger units forming discourses. Similarly, a

series of IS modelling diagrams does not constitute a proper model of a specific

universe of discourse. Modelling is only complete when all diagrams are properly

placed within an integrated structure and related to a wider context encompassing the

total IS under discussion.

117

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Part 3

Research

118

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Part 1

Introduction

Part 2
Literature review

Part 3
Research

Part 4

Conclusion

Part 5

Supporting
information

Chapter 1
Introduction

Chapter 2
Theoretical
foundations

Chapter 3
Business rules

Chapter 4
Part-whole

relationships

Chapter 5
Linguistic analysis of

ISD modelling

Chapter 6
Research approach

Chapter 7
The proposed

integrative modelling
technique

Chapter 9
Conclusion

Bibliography

Chapter 8
Demonstration,

implementation and
evaluation of proposed
integrative modelling

technique

Appendix A
Derivation of proposed
integrative modelling
technique

6. Research approach

6.1 Introduction
6.2 Research objectives, statement and
questions
6.3 Research design
 6.3.1 Research philosophy
 6.3.2 The grounded approach
 6.3.3 Data collection
6.4 Design science research
 6.4.1 Background
 6.4.2 Research methodology
 6.4.3 Research output
 6.4.4 Research guidelines
 6.4.5 Design science research theory
6.5 The journey
 6.5.1 Part 1 – Grounded approach
 6.5.2 Part 2 – Design science research
6.6 Conclusion

119

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

6.1 Introduction

The research approach used in this study is design science research. It basically

involves building an artefact to solve some a problem situation, and then evaluating

this artefact. Design science research has a goal of utility, while behavioural science

research has the goal of truth. According to Hevner et al. (2004:98), “while it can be

argued that utility relies on truth, the discovery of truth may lag the application of its

utility”. According to Bajaj et al. (2005), systems analysis and design touches on

many areas of design research.

The design science research process is dependent on a knowledge base of prior IS

research as well as results from reference disciplines (Hevner and March, 2003). The

data analysis techniques of grounded theory and the fundamental structure of

linguistics were used as the main contributors to the knowledge base of this study,

forming its kernel theories.

In this chapter, the general research approach is discussed, an overview of the

grounded and the design science research approaches is given, the research process

followed is explained and the data studied is described in more detail.

6.2 Research objectives, statement and questions

As a result of the problems in integrating business and ISD modelling as described in

Chapter 1, the objective of this study is to develop an integrative technique between

business and ISD modelling.

To achieve this objective, the fundamental theoretical foundations of business and

ISD modelling need to be investigated. This study will do so, firstly, by trying to find

the “what”, i.e. the basic, fundamental properties, parameters and dimensions of IS

modelling and their relationships. More specifically, it aims to find the fundamental

ontological constructs of business and ISD modelling. In other words, what are the

fundamental “things” in IS and organisations that we should model? This will be

done by using a grounded approach.

120

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Secondly, the resultant modelling constructs and their relationships will be used to

form an integrative modelling technique. This modelling technique will form the

“artefact” that is the basis for the subsequent design science research study.

6.3 Research design

6.3.1 Research philosophy

There has been a long-standing debate in the IS field between the positivist and

interpretivist traditions of research. Positivism (more generally empiricism) has

historically been the major philosophical underpinning for IS research and systems

development, especially in the USA (Mingers, 2004c). The assumptions of positivism

are an unproblematic, rational and mechanistic approach to IS. The research methods

used by positivist researchers are mostly quantitative (Hughes and Howcroft, 2000).

There is, however, an increasing appreciation for the fundamentally social nature of

IS. This has led to an increase in research that focuses on human interpretations and

meaning; in other words, interpretive research. Interpretivist researchers mostly

favour qualitative research methods but also use quantitative methods (Hughes and

Howcroft, 2000).

Following on this, Hevner and March (2003:111) consider IS research to adhere to

two complementary paradigms: the behavioural science paradigm viewing IS as a

social science and the design science paradigm viewing IS as a technical science: “the

sciences of the artificial.”

Other approaches have also come to the fore: critical theory, postmodernism and

actor-network theory. Although there are many proponents for all of the above

positions, there are also extensive criticism against all of these positions (Mingers,

2004a).

Deluca, Gallivan and Kock (2008) consider the issues in research and between

various research paradigms to be based on the following four dialectics:

121

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

• The rigour vs. relevance objective

• Positivist vs. interpretive epistemology

• Quantitative vs. qualitative methodology

• Confirmatory vs. disconfirmatory evidence

Mora et al. (2007:3) summarise the four main research paradigms using a systems

approach as follows:

P.1 The hard/functionalist/positivist systems approach: “The intelligible world is

an organised complexity comprised of a variety of natural, man-made, and social

systems that own a real existence.”

P.2 The soft/interpretative systems approach (rejects P.1): “…the intelligible

world can be studied freely through systemic lenses and under an intersubjective

social construction…”

P.3 The critical/emancipative systems approach (neutral to P.1, rejects P.2):

“…the intelligible world can be uniquely understood when it is studied freely from

restrictive social human relationships and a variety of theoretically coherent systemic

lenses are used…”

P.4 The critical realism systems approach (includes P.1 to P.3 as well): “…the

world is intelligible for human beings because of its stratified hierarchy of organised

complexities – the widest container is the real domain that comprises a multi-strata

of natural, man-made and social structures as well as of event-generative processes

that are manifested in the actual domain that in turn contains to the empirical

domain where the generated events can or cannot be detected…”

Mingers (2004a) proposes critical realism as an underpinning philosophy for IS,

because it overcomes the criticism against the main IS philosophies, positivism and

interpretivism. Critical realism in essence takes a realist view ontologically (“...there

is an independently existing world of objects and structures that are causally active,

giving rise to the actual events that do and do not occur”), a relativist view

122

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

epistemologically (“... our observations and knowledge can never be pure and

unmediated, but are relative to our time period and culture...”) and a retroduction

(also called abduction in contrast to induction and deduction) view of scientific

method (“We take some unexplained phenomenon that has been observed and

propose hypothetical mechanisms that, if they existed, would generate or cause that

which is to be explained.”) (Mingers, 2004b:380, 385).

Dobson (2002) argues for using a critical realist position in IS research, because it

elevates the philosophical issues, allows for more consistency in research and bridges

the dualism between subjective and objective views of reality. Mingers (2004b)

similarly considers critical realism as highly appropriate for IS, because it takes a

fundamentally realist position (which the majority of IS academics and practitioners

intuitively take), it addresses both natural and social sciences, therefore also including

hard, soft and critical approaches, and it fits well with IS as an applied discipline.

Bhaskar, one of the developers of critical realism, considers reality as intransitive

(existing independently of humans) and stratified into different domains. The

domains are the real, the actual and the empirical (see Figure 6-1 and 6-2 for the

domains of science and philosophy with respect to the real, actual and empirical)

(Mingers, 2004c):

• The real: Mechanisms and structures with enduring properties. This is what this

study is trying to understand better with regard to ISD modelling. Mostly

implicitly and sometimes explicitly, all ISD techniques assume some sort of real.

• The actual: Events (and non-events) that are generated by the mechanisms.

• The empirical: Events that are actually observed and experienced. Because the

real was incorrectly or only partially identified, many of the ISD techniques

developed over the years did not satisfy the modelling requirements of all the

stakeholders, as the techniques did not correctly model the actual or the

empirical. Therefore, there is the constant need to develop new techniques.

123

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Mingers (2004c)

Figure 6-1: The three domains of real

Mingers (2008)

Figure 6-2: The domains of science and philosophy with respect to the real,
the actual and the empirical

Critical realism does not prescribe a single research approach; it rather prescribes a

certain attitude. Firstly, it never just describes, either qualitatively or quantitatively. It

also attempts to gain an understanding of and explain things by considering the

structures and mechanisms that affect observable events. Secondly, it recognises

The real: Mechanisms and structures with enduring

properties

The actual: Events (and non-events) that are

generated by the mechanisms

The empirical: Events that are actually

observed and experienced

124

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

different objects of knowledge (material, conceptual, social and psychological) and

their holistic interactions with each type of object requiring a different research

method. Thirdly, it realises the fallibility of observation (Mingers, 2004c).

In terms of design science theory, Gregor and Jones (2007) agree with Mingers and

Bhaskar on critical realism as a valid approach to IS research, although they realise

that there is ongoing debate in the field.

In terms of critical realism, the design science research artefact can be seen as an

embodiment of the underlying structures and mechanisms that can empirically be

evaluated, at least in terms of utility, but also to some extent in terms of truth.

Therefore the purpose of this study, in terms of critical realism, is to find the

underlying mechanisms and structures of business and ISD modelling, using the

grounded approach, and then to embody these mechanisms and structures into a

modelling technique that can be tested and evaluated empirically using design

science research.

Research in IS using an inclusive methodological approach (using more than one

methodology, as is the case in this study), rather than an exclusive approach, is

advised by Davison and Martinsons (2011) for the following reasons:

• Research constrained to one methodology will be poorer in the improvements that

it can generate on organisational reality.

• Research will make a bigger academic and business contribution when methods

from various epistemological viewpoints are included.

Becker and Niehaves (2007) agree, but warn that the epistemological assumptions

made by different researchers may differ greatly.

6.3.2 The grounded approach

The first part of this research used a grounded approach to determine the fundamental

constructs of business and ISD modelling and their relationships, which are used to

develop the design science research artefact. The grounded approach uses the data

analysis techniques of grounded theory.

125

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Grounded theory was developed by two sociologists, Glaser and Strauss (1967),

while conducting an observational field study of how hospital staff dealt with dying

patients. The purpose of grounded theory research is to organise the ideas coming out

of an analysis of data, through a thorough analysis of documents, interview notes or

field notes by continually coding and comparing data to produce a well-constructed

theory (Parker and Roffey, 1997; Glaser, 2003).

The approach facilitates understanding to be fashioned into conceptual categories and

concepts and then into theories or models. This is done without starting from an a

priori definition. These concepts and theories are built from the “socially constructed

knowledge of participants” (Daengbuppha, Hemmington and Wilkes, 2006:369;

Hughes and Howcroft, 2000). Grounded theory differs from the other interpretive

methodologies in a number of ways. It allows for the investigation of one or many

cases. It does not only describe the subjects and their interactions, but tries to also

develop a theory (Parker and Roffey, 1997).

The research does not start with a theory that must be verified. It starts with an area of

study where theoretical constructs emerge from the study process. The implication is

that data collection, analysis and the resulting theory have a reciprocal relationship.

The research is trying to make sense of the data collected and giving it structure. It

aims to generate theory by a three-phase process of induction, deduction and

verification (Parker and Roffey, 1997).

The source of data is not only human interaction, but also includes interviews, written

reports, minutes of meetings and other documents. It allows for the investigation of

one or many cases. It does not only describe the subjects and their interactions, but

tries to also develop a theory (Parker and Roffey, 1997; Goulding, 1998).

Grounded theory has diversified since its beginnings, with the most important

variation between Glaser and Strauss on assumptions and methods. Glaser kept to the

original theory, while Strauss, together with Corbin, reformulated the original theory

(Heath and Cowley, 2004).

126

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

A first difference revolves around the issue of keeping research free from past

experience and reading. Glaser (1978) sees the key process as induction, where the

researcher moves from data to empirical generalisation to theory. Strauss and Corbin

(1998), on the other hand, stress deduction and verification.

A second difference is related to coding procedures leading either to theory

construction or theory discovery. Glaser and Strauss originally identified two levels

of coding: firstly, coding into as many categories as possible, and secondly, coding an

integration of the categories. Strauss and Corbin (1998) moved away from that

position, as described in Table 6-1.

 Strauss and Corbin Glaser

Initial coding Open coding
Use of analytic technique

Substantive coding
Data-dependent

Intermediate
phase

Axial coding
Reduction and clustering of
categories (paradigm model)

• Continuous with previous
phase

• Comparisons, with focus
on data, became more
abstract, categories
refitted, emerging
frameworks

Final
development

Selective coding
Detailed development of
categories, selection of core,
integration of categories

Theoretical
Refitting and refinement of
categories which integrate
around emerging core

Theory Detailed and dense process
fully described

Parsimony, scope and
modifiability

Heath and Cowley (2004)

Table 6-1: Data analysis: Glaser and Strauss compared

This study initially followed the Strauss and Corbin approach, but later on the Glaser

approach. This process is described in section 6.4.

With regard to the use of literature, the theory that develops, guides the researcher to

the literature that best informs, explains and contextualises the findings

(Goulding, 1998).

127

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

6.3.3 Data collection

As stated before in section 1.3.1, Iivari et al. (2001a) created a hierarchical four-tier

framework in an attempt to categorise all ISD-related issues: ISD paradigms,

approaches, methods and methodologies, and techniques.

Out of these four areas, ISD techniques were used as the basis for data collection. The

reason for that is the techniques in use today are the practical embodiment of the

paradigms, approaches and methodologies that support them. In this sense,

techniques are more fundamental and basic than the other aspects.

All the research done on ISD, as well as all the industry experiences, can be seen as

conversations on ISD modelling. Formalised ISD techniques have in a sense captured

these conversations in more real ways than ISD paradigms, approaches or even

methodologies. When people advocate a specific ISD technique, they make a number

of assumptions about how they see the underlying ISD reality that must be modelled.

In this study, these “conversations”, as captured in ISD techniques, is the “text” or

data for the study. The main techniques of the past, the main techniques that are

currently popular as well as lesser-known techniques were chosen to give as broad a

range of techniques as possible.

This study could have done data collection by having interviews with people working

with ISD techniques in many organisations, by observing them during the process of

using ISD techniques, or by gathering the documents created as a result of these ISD

techniques. All of these would have been valid and very useful, but they would have

been limited and would not have taken the broader view. It was thus decided to rather

conduct “interviews” with authors explaining the various ISD techniques to others in

books and articles. These descriptions are normally the result of a lot of academic

research and practical experience distilled into a set of specific techniques. The work

done on these techniques have influenced and changed ISD and can be seen as

conversations and interactions between various stakeholders (Wolfswinkel,

Furtmueller and Wilderom, 2012). Myers (2009:107) supports this view by stating

that if you only want to use grounded theory for “ ... your qualitative data analysis,

128

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

and some other theory as an overarching framework for your study, then I believe

that is acceptable.”

The ISD techniques studied (extended from Avison and Fitzgerald, 2003) as well as

the specific sources used to represent each one of the techniques as part of the

grounded approach used, are given in Table 6-2.

The basic principle in the selection of the sources was to use generally accepted,

internationally recognised standards, like the IDEF0 standard. If there were no such

standard, the most authoritative source on the relevant techniques was used, e.g. Chen

(1976) for data modelling.

Techniques Source
1. Holistic techniques: The soft system

methodology (SSM) is used to
represent the holistic approach,
emphasising techniques such as rich
pictures, root definitions (CATWOE)
and conceptual models.

• The article by Checkland where he
takes a thirty-year retrospective view of
SSM (Checkland, 2000).

2. Data techniques: Entity modelling
and structured query language (SQL)
are used to represent the data approach
to ISD.

• The seminal article by Chen explaining
entity relationship modelling for the
first time (Chen, 1976).

• Microsoft SQL Server Books online –
notes on SQL.

3. Business process techniques: The
techniques to represent processes are
many and can be categorised as
follows:

Functional modelling: IDEF0 and
IDEF3
Information modelling: DFD, IDEF1
and IDEF1x
Dynamic modelling: IDEF2, Petri-
Nets, role activity diagram (RAD),
agent relationship modelling
(ARM) and agent/object life cycles
(ALCs/OLCs).
Integrated modelling: BPMN

• Certain techniques that fall under the
process approach, like action diagrams
and entity life cycles, will rather be
studied via their object-oriented
counterparts.

• For functional modelling, the IDEF0
standard will be used (IDEF0, 1993) as
well as other sources (Kappes, 1997).

• Information modelling will be handled
under data modelling.

• Dynamic modelling will be represented
by role activity diagrams, (RAD), as in
Bal (1998), agent relationship
modelling (ARM), as in Valiris and
Glykas (2004), agent/object life cycles
(ALCs/OLCs) as in Valiris and Glykas
(2004), and agent-object relationship
(AOR) modelling as in Wagner (2002).

• Integrated modelling will be
represented by BPMN as in OMG
(2009).

129

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Techniques Source
4. Object-oriented techniques: The

following techniques, as specified in
UML, and grouped per view, are
discussed:
• The use case view of use case

diagrams, and use case narratives
• The static view of class diagrams

and object diagrams
• The dynamic view of sequence

diagrams, collaboration diagrams
and activity diagrams

• The implementation view of
component diagrams and
deployment diagrams

• The UML 2 standard and other sources
(OMG, 2007b; OMG, 2007a; France et
al., 1998).

5. Project management techniques:
Various project estimation techniques,
PERT chart, Gantt chart and critical
path method (CPM) techniques
represent the project management
approach.

• PMBOK notes on PERT, Gantt and
CPM techniques (PMBOK, 1996).

6. Organisational techniques: Lateral
thinking, critical success factors,
scenario planning, future analysis,
SWOT analysis, case-based reasoning,
risk analysis.

Not studied because techniques do not
describe specific ontological objects but
rather processes.

7. People techniques: Stakeholder
analysis, joint application design
(JAD), joint requirements planning
(JRP).

Not studied because techniques do not
describe specific ontological objects but
rather processes.

8. Enterprise architecture techniques:
The main approach is the Zachman
framework. The open distributed
processing (ODP) standards are also
discussed.

• The analysis of the Zachman
framework for enterprise architecture
from the GERAM perspective by
Noran (2003).

• The open distributed processing (ODP)
standards (Toussaint, Baker and
Groenewegen, 1997).

9. Process logic description techniques:
Techniques describing process steps at
a lower level of detail than processes
including decision trees, decision
tables, structured English, structure
diagrams, Warnier-Orr diagrams,
Jackson diagrams, action diagrams,
entity life cycles, state-dependency
diagrams and various matrices like the
create, read, update and delete (CRUD)
matrix.

• Process logic description techniques are
represented by action diagrams under
OO techniques because action diagrams
encompass all the other diagrams plus
concurrency not covered by any of
them.

10. Linguistic techniques: Language
action perspective (LAP).

• The overview of language action
perspective (LAP) in Dietz (2003).

Table 6-2: Modelling techniques to be studied

130

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

6.4 Design science research

6.4.1 Background

Design science research provides another view complementing the positivist and

interpretive perspectives for IS research. It distinguishes between natural science and

the science of the artificial, and concentrates on phenomena that are created (designed

artefacts) rather than objects occurring naturally. Designed artefacts can be, among

other things, algorithms, HCI constructs, ISD methodologies and ISD techniques

(Hevner et al., 2004).

Iivari (2007) postulates an epistemology of design science consisting of the following

three types of knowledge:

• Conceptual knowledge contains no truth value and describes concepts, constructs,

classifications, taxonomies, typologies and conceptual frameworks.

• Descriptive knowledge contains truth value and describes observational facts,

empirical regularities, theories and hypotheses. For instance, X causes A in

situation B.

• Prescriptive knowledge contains no truth value and describes design product and

design process (technological rules and norms) knowledge. For instance, in order

to achieve A, do act1 ... actn and if you want A and you are in situation B, you

should do X.

Hevner (2007) considers design science research to be consisting of three areas: the

design science research itself, the contextual environment of the research and the

existing knowledge base informing the research, as well as three closely related

activity cycles influencing these three areas (see Figure 6-3):

• The relevance cycle takes requirements form the environment of the research and

places them in the research domain. It also takes artefacts created during the

research and places them in the environment for field testing.

131

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

• The rigour cycle provides grounding theories, methods, domain experience and

expertise from the foundations knowledge base to the research. It also adds new

knowledge to the knowledge base generated from the research.

• The design cycle supports the research activity for the creation and evaluation of

design artefacts and processes.

Hevner (2007)

Figure 6-3: Design science research cycles

6.4.2 Research methodology

According to Vaishnavi and Kuechler (2004), design science research involves the

following steps: an awareness of a problem stated in a proposal, a suggestion defined

in a tentative design, the development of an artefact, an evaluation of the artefact with

performance measures and a conclusion with results. Peffers et al. (2008) and Geerts

(2011) elaborate on that and identify six activities (see Table 6-3).

DSRM
activities

Activity description Knowledge base

Problem
identification
and motivation

What is the problem?
Define the research problem and
justify the value of a solution.

Understand the problem’s
relevance and its current
solutions and their
weaknesses.

Environment

Application Domain

• People

• Organisational

systems

• Technical

systems

• Problems

and

opportunities

Design science research

Knowledge base

Foundations

• Scientific

theories and

methods

• Experience and

expertise

• Mega-artefacts

(design products

and design

processes)

Build design

artefacts &

processes

Evaluate

Relevance cycle

- Requirements

- Field testing

Design

cycle

Rigour cycle

- Grounding

- Add to KB

132

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

DSRM
activities

Activity description Knowledge base

Define the
objectives of a
solution

How should the problem be solved?
In addition to general objectives such
as feasibility and performance, what
are the specific criteria that a solution
for the problem defined in step 1
should meet?

Knowledge of what is
possible and what is
feasible. Knowledge of
methods, technologies
and theories that can help
with defining the
objectives.

Design and
development

Create an artefact that solves the
problem.
Create constructs, models, methods or
instantiations in which a research
contribution is embedded.

Application of methods,
technologies and theories
to create an artefact that
solves the problem.

Demonstration

Demonstrate the use of the artefact.
Prove that the artefact works by
solving one or more instances of the
problem.

Knowledge of how to use
the artefact to solve the
problem.

Evaluation

How well does the artefact work?
Observe and measure how well the
artefact supports a solution to the
problem by comparing the objectives
with observed results.

Knowledge of relevant
metrics and evaluation
techniques.

Communication

Communicate the problem, its
solution, and the utility, novelty, and
effectiveness of the solution to
researchers and other relevant
audiences.

Knowledge of the
disciplinary culture.

Geerts (2011)

Table 6-3: Design science research methodology

These six activities were approached as follows in this study:

Step 1: Identify problem and motivate: There is a non-trivial gap between business

modelling and ISD modelling (see section 1.3). ISD modelling is precise and has

many widely used modelling techniques to enable it. Business modelling is mostly

done using textual descriptions without a specific technique employed.

Step 2: Define the objectives of a solution: The solution to this problem is to define

an integrative modelling technique that will bridge the gap between business and ISD

modelling. The objectives of this technique are specifically as follows:

133

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

• Ease of use: This technique must be simple enough so that non-technical users

must be able to use it with minimum training.

• Expressiveness: At the same time, the technique must be expressive enough so

that detailed ISD level modelling can be derived from it without further

interactions with users or analysts.

This can be stated in a different way. Luukkonen, Korpela and Mykkanen (2010)

developed a classification of modelling techniques used in the earlier phases of the

ISD life cycle. They identified two dimensions: degree of structure related to the

syntactic aspect of model (ranging from unstructured to highly structured), and scope

related to the semantic and pragmatic aspects of the model (ranging from technical to

human and organisational). In terms of this classification, the purpose of the

integrative modelling is to be highly structured and also to cover the full range on the

scope dimension.

Step 3: Design and develop: In Chapter 7, such an integrative modelling technique

is developed using a grounded approach and qualitatively analysing existing

modelling techniques.

Step 4: Demonstrate: In section 8.2, this technique is demonstrated by looking at a

number of very common business modelling situations where the output will be used

by ISD modelling techniques. Various case studies will be used to illustrate the

application of the proposed modelling technique. The case studies will incorporate

organisational, business and IT aspects and also the different phases of a systems

development life cycle.

Step 5: Evaluate: In section 8.2, this technique is evaluated by comparing it with a

number of existing integrative modelling techniques while considering the objectives

of the research identified in step 2 above.

Step 6: Communicate: The purpose of the thesis.

134

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

6.4.3 Research output

Vaishnavi and Kuechler (2004) developed a taxonomy of design science research

output (see Table 6-4 below).

 Output Description
1 Constructs The conceptual vocabulary of a domain
2 Models A set of propositions or statements expressing

relationships between constructs
3 Methods A set of steps used to perform a task – how-to

knowledge
4 Instantiations The operationalisation of constructs, models and

methods
5 Better theories Artefact construction as analogous to experimental

natural science
Vaishnavi and Kuechler (2004)

Table 6-4: The outputs of design science research

According to Iivari (2007), design science research should be based on a sound

ontology. He bases his view on Popper’s three worlds: World 1: material nature,

World 2: consciousness and mental states, and World 3: institutions, theories and

human artefacts. He contends that Hevner et al.’s (2004) classification of IT artefacts

(constructs, models, methods and instantiations) is too general and cannot easily be

applied. He states that design science should be based on a proper typology of IT

artefacts answering the question of what is designed and built in IS to distinguish it

from computer science and software engineering. According to him, IS is primarily

interested in IT applications and he therefore provides seven archetypes of IT

applications based on function and role (see Table 6-5).

Role/function Metaphors Examples
To automate Processor Many embedded systems

Many transaction processing systems
To augment Tool (proper) Many personal productivity systems, CAD
To mediate Medium Email, instant messaging, chat rooms, blogs,

Electronic storage systems (CDs and DVDs)
To inform Information source Information systems proper
To entertain Game Computer games
To provide art Piece of art Computer art
To accompany Pet Digital (virtual and robotic) pets

Iivari (2007)

Table 6-5: Archetypes of IT applications

135

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Venable (2006) asks a similar question on the kind of knowledge design science

research should produce. He firstly mentions the outputs as given in Table 6-4 and

then states that it should also produce clear and complete guidelines and advice for

practitioners in selecting the most appropriate solution/technology and implementing

it, as well as create knowledge statements with the purpose of verification and

improvement by other researchers.

The artefact of this study is an integrative modelling technique between business and

ISD. In terms of the design science research outputs as defined in Table 6-4, this

modelling technique can be seen to incorporate the first three outputs: constructs, a

model and (to some extent) a method. This technique must be evaluated to determine

if it is an improvement on existing techniques. This evaluation must be done

according to the specified criteria of simplicity and adequate expressiveness as

defined in step 2 in the previous section.

6.4.4 Research guidelines

Hevner et al. (2004) provide seven guidelines for design science research:

1. The research must produce a feasible design artefact.

2. The purpose of the research is to develop solutions to relevant and important

business problems using technology-based solutions.

3. The design artefact must be evaluated using well-executed evaluation methods to

show the utility, quality and efficacy of the artefact.

4. The research must show clear and demonstrable contributions. Contributions

include the artefacts themselves as well as new foundations and new

methodologies.

5. The research must show rigour in both the development and the evaluation of the

artefact.

6. Design is a search process for an effective artefact, while considering other

competing approaches.

136

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

7. The results of the research must be communicated to both academic (satisfying

rigour requirements) and management-oriented (satisfying relevance

requirements) audiences.

Venable (2010) warns, however, that there is a lack of consensus on the relative

importance of the guidelines, demonstrated by a survey done among IS scholars who

write, review, edit and publish design science research articles. Although the

guidelines in general are approved it is advised not to use them less mechanistically

than is currently done. Many respondents warned against using the Hughes et al.

(2000) guidelines as a mandatory checklist for evaluating the research. Venable

(2010) suggests a cumulative model rather than a subtractive model (inherent in the

checklist approach) for evaluating research.

6.4.5 Design Science Research Theory

According to Venable (2006), design science research in the IS field has mostly

excluded the creation and testing of theory and left it to natural and social sciences.

He contends that theory should be a primary output of any research, including design

science research. For him, theory is the distinguishing factor between design science

and design practice.

Gregor (2006) created a taxonomy of theory types in IS research. She distinguishes

five types as follows:

I. Analysis. Says what is. It fundamentally involves the analysis and description of

phenomena without considering their causal relationships. An example of such a

theory is the dynamic framework for classifying ISD approaches and methodologies

(Iivari et al., 2001a).

II. Explanation. Says what it is, how, why, when and where. It provides an

explanation without trying to predict precisely and has no testable propositions. An

example of such a theory is the structurational model of technology by Orlikowski

(1992).

137

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

III. Prediction. Says what is and what will be. It provides predictions and has testable

predictions, but cannot justify causal relationships. Examples of such a theory are

very rare in IS and a related theory is Moore’s law of doubling processing power

every 18 months while cost stays the same.

IV. Explanation and prediction (EP). Says what is, how, why, when, where and

what will be. It provides predictions, has testable propositions and causal

explanations. An example of such a theory is the theory that shows the causative

drivers and emergent mechanisms driving temporal changes in user beliefs and

attitude towards IT usage (Bhattacherjee and Premkumar, 2004).

V. Design and action. Says how to do something. It gives explicit prescriptions for

building an artefact. An example of such a theory is the design theory for systems that

support emergent knowledge processes (Markus, Majchrzak and Gasser, 2002).

Gregor (2006) specifies the structural components common to all theory as follows:

• Means of representation, for instance, in words, mathematical formula,

diagrams, pictures and even prototypes.

• Constructs, which are the phenomena of interest and includes observational

terms, theoretical terms and collective terms.

• Statements of relationship between constructs, for instance, associative,

compositional, conditional and causal.

• Scope, indicating the level of generality of the relationship statements (indicated

by indicators such as “some”, “many”, “all” and “never”) as well as statements of

boundaries limiting generalisations.

She further specifies the structural components contingent on theory purpose as

follows:

• Causal explanations are statements explaining the causal relationships between

phenomena.

• Testable propositions (hypotheses) are empirically testable statements of

relationships between phenomena.

138

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

• Prescriptive statements are theoretical statements that specify how practical

goals can be achieved.

Venable (2006) discusses the important distinction between design science research

and design practice. In summary, it can be said that design practice use knowledge or

apply technology to a particular, situated problem, while design science produce

knowledge or invent technology for a generalised class of problems. This knowledge

is communicated to academic and industry stakeholders via design theories. Walls,

Widmeyer and El Sawy (1992:40–41) provide the following seven characteristics that

distinguish design theories:

1. Goals are intrinsic to design theories (to achieve goal X, do Y), while they are

extrinsic to explanatory and predictive theories (Y causes X).

2. A design theory can never involve pure explanation or prediction.

3. Design theories are prescriptive.

4. Design theories are composed of kernel theories from existing knowledge.

5. Explanatory theories tell what is, predictive theories tell what will be, normative

theories tell what should be, and design theories provide the how to/because.

6. Design theories show how other theories can be put to practical use.

7. Design theories are theories of procedural rationality.

6.5 The journey

In this section, the journey that was taken during the research is explained. The

reason for this is to show why the research is constructed the way it is. In essence, the

research itself stayed the same, but the methodology changed halfway through the

study as a result of the progression the research took.

6.5.1 Part 1 – Grounded approach

When the decision was made to use grounded theory for data analysis, the typical

mistake was made of underestimating what it was all about. During the first attempt

certain problems surfaced. Firstly, it was difficult to determine what a code was.

139

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Much of the literature on grounded theory does not really explain or illustrate what

codes really are. It became imperative to read more on grounded theory and to

especially look at examples of coding.

The second problem was handling the sheer volume of data. Because of this problem,

it was decided to use some sort of software support to help manage the data. In the

first attempt, no specific computer-assisted qualitative data analysis software

(CAQDAS) was used. Initially, only Microsoft Word was used to record findings.

Table 6-6 shows an example of how concepts were represented during the first

attempt, while Table 6-7 shows how codes were added to the same table at a later

stage (please note: at this stage a column to show how these techniques were

represented was also included, but this was discarded later on).

The third problem, related to the amount of data, is not including referencing

information right from the beginning. At some stage during analysis, the need arises

to link back to the original source material. Because this was only done very

informally, in an effort to facilitate the referencing of codes, the open coding data was

done using Excel and referencing columns added (see Table 6-8). Another form of

referencing is also needed (as illustrated in Table 6-9) to show how codes developed

out of initial concepts.

A fourth problem during the first attempt was using the grounded approach as a

sequence of fairly distinct phases, i.e. the idea was to first do open coding, then axial

coding, then selective coding, and so on. The result of this was the generation of a

massive amount of codes without any context. It was soon realised from personal

experience and by re-reading Glaser (2003) that the different phases of the grounded

approach run concurrently. It implies that while one is looking for concepts and

codes, one already has to start with axial and selective coding.

140

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Table 6-6: Example of recording concepts during the first attempt

Table 6-7: Example of the development of codes during the first attempt

141

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Table 6-8: Example of open coding using Excel highlighting referencing of code sources

Table 6-9: Example of linking a code (“action”) back to its original concepts

At a certain stage during the first attempt there was a general feeling of being lost in

the data. The whole exercise has become almost quantitative instead of qualitative.

The approach became mechanistic and yielded no new insights into the data. The

conclusion was that the use of a proper CAQDAS tool would solve the problem. It

was decided to get ATLAS.ti to handle the management of all data.

142

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Although using the software tool alleviated some of the problems, it indirectly caused

some other problems. The main problem that was solved with ATLAS.ti was the

issue of referencing source information. Figure 6-4 shows how codes are created

directly linked to the original source document. Figure 6-5 illustrates how it is

possible to display all references together with the original quotations for a specific

code.

One of the biggest problems with using a tool like ATLAS.ti is that it is now possible

to easily create even more codes than was possible before. When the codes are

initially created and one would like to start doing further axial coding, the available

codes are presented in alphabetical order as illustrated in Figure 6-6 (there were 56

codes in total in this one source document in the example). It became very difficult to

work from that point onwards because the codes have lost their “context”. One has to

perform a very time-consuming comparison of codes, often going back to the original

codes to determine what the code was all about. (The memo facility is very helpful

with this.) The end result of the initial axial coding is shown in Figure 6-7. Again,

there was the problem of information overload. It was found that it was easier to

break the overall network into subnetworks, as shown in Figure 6-8.

143

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Figure 6-4: Example of creating codes in ATLAS.ti

Figure 6-5: Linking a code (“modelling language”) with its original quotations

144

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Figure 6-6: A list of codes before axial coding

145

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Figure 6-7: A comprehensive network of codes in ATLAS.ti

146

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Figure 6-8: A specific network of codes in ATLAS.ti

6.5.2 Part 2 – Design science research

At a certain stage in the process, it became clear that this study was not really a

traditionally grounded theory study. The subject matter studied is not social

behaviour, but rather conceptual design artefacts. The grounded approach has helped

tremendously to complete the first part of the study, namely creating an integrative

business and ISD modelling technique. However, to complete the study, a design

research approach was followed to evaluate and improve the artefact created by the

first part of the study.

6.6 Conclusion

The theory types and structural components of theory as specified by Gregor (2006)

can be used to classify the contribution that this study attempts to make (see Table

6-10).

147

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Theory types I. Analysis, II. Explanation and V. Design and action.
Means of representation Mostly visual diagrams with textual explanation.
Primary constructs Business and ISD modelling constructs such as actor,

object, action and event.
Statements of relationship • The relationships between the primary constructs,

such as actors initiate actions and actors can either
be individuals or organisations.

• The levels of primary constructs, such as the base
level corresponding to morphology in linguistics,
structure level corresponding to syntactics in
linguistics and role level corresponding to
semantics in linguistics.

• The relationships of these primary constructs to
existing modelling techniques, for instance, an
actor in the theory corresponds to an actor in use
cases and external agent in DFDs.

Scope Business modelling with the purpose of informing ISD
modelling.

Causal explanations Not present.
Testable propositions Not present.
Prescriptive statements Explicitly, mostly in the method description, for

instance, only use phrases in active voice and not
passive voice. Implicitly, by limiting phrases to only
contain a certain fixed set of possible values.

Table 6-10 Theory types and components of proposed integrative technique

Although the search is on for fundamental real mechanisms and structures out there

(ontologically), this study can make no claim to have found all of these mechanisms

and structures quantitatively (all of them) or qualitatively (exactly right). Only a

subset of techniques was used. Although a wide and representative subset was

chosen, it is possible that a real exist for which there is currently no empirical or

actual evidence.

148

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Part 1

Introduction

Part 2
Literature review

Part 3
Research

Part 4

Conclusion

Part 5

Supporting
information

Chapter 1
Introduction

Chapter 2
Theoretical
foundations

Chapter 3
Business rules

Chapter 4
Part-whole

relationships

Chapter 5
Linguistic analysis of

ISD modelling

Chapter 6
Research approach

Chapter 7
The proposed

integrative modelling
technique

Chapter 9
Conclusion

Bibliography

Chapter 8
Demonstration,

implementation and
evaluation of proposed
integrative modelling

technique

Appendix A
Derivation of proposed
integrative modelling
technique

7. The Proposed Integrative Modelling Technique

7.1 Introduction
7.2 Overview
7.3 The modelling technique in detail
 7.3.1 Base entities
 7.3.2 Structure entities overview
 7.3.3 Structure entities
 7.3.4 Role entities
7.4 Conclusion

149

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

7.1 Introduction

The research done in this thesis consists of two parts: The first part is a qualitative,

grounded approach study of a number of modelling techniques. The proposed

integrative technique described in this chapter is the end result of that study. More

detail on how this technique was derived from the underlying data is explained in

more detail in Appendix A. The second part of the study is a design science research

analysis and evaluation of this proposed integrative modelling technique and is

discussed in more detail in Chapter 8.

7.2 Overview of the modelling technique

One of the main findings of this study is that modelling is closely linked to linguistics

(Chapter 5). The research process and subsequent literature study on linguistics

clearly showed that a linguistic-type framework is the best way to structure the

integrative technique in a consistent, coherent and integrated way. Therefore, the

fundamental modelling entities of business and ISD can be divided into three

categories (see Figure 7-1):

• Base entities: corresponding to the morphological level in linguistics

• Structure entities: corresponding to the syntactical level in linguistics

• Role entities: corresponding to the semantic level in linguistics

The base entities are the most basic building blocks in the modelling process. They

represent the real-world objects that make up organisations and systems. In the same

way that verbs, nouns, adjectives, adverbs, pronouns and others make up the words of

natural languages, these entities form the words of the proposed modelling language.

The structure entities form, like their natural language counterparts, the model

sentences and phrases with which systems, organisations and situations can be

described. They use the base entities plus specific language constructions to form

these model sentences and phrases. A number of model sentences together form a

model. In turn, specific subsets of the model form model views.

150

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

The role entities provide insight into the meanings of the base and structure entities.

For example, an actor can either play an agent role or patient role in a model phrase.

Base Entity

Actor

Thing

Time

Event

Place

Modelling Entity

Structure Entity

Link

Subject
Predicate

Complement

Role Entity

Subject Role Entity Predicate Role Entity Complement Role Entity

Agent

Zero

Source

Role

Identity

Possesor

Action Patient

Receiver
Location

Direction

Beneficiary

Class

Reference
Company Instrument

Cause

Manner
Speed

Path

Time

Reason

Quality

Model

Model Sentence
Model phrase

Model View

Object

Condition

Relationship

Model Block

Act

Relation

Figure 7-1: A high-level overview of the modelling entities

A note on the choice of modelling entity names is important at this stage. In the

history of ISD modelling, various names have been used for the same modelling

entities. It makes it very difficult to decide on a name that has so many synonyms.

The approach followed in this study was to use names that are either the most popular

names (used by the most techniques), or to use names that are more general rather

than more specific (for instance, rather thing than entity or object), or to use novel

names when many different, conflicting names were used.

7.3 The modelling technique in detail

Each of the modelling entities introduced in the previous section are described in

more detail in this section. The discussion is divided into three parts:

• In section 7.3.1, base entities are discussed in more detail as follows:

- Base entities overview

- Actors (intelligent things)

- Objects (non-intelligent things)

151

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

- Acts and relations

• In section 7.3.2, structure entities are discussed in more detail as follows:

- Structure entities overview

- Models and model views

- Model blocks

- Model sentences and phrases

• In section 7.3.3, role entities are discussed in more detail as follows:

- Role entities overview

- Actions

- Relationships

- Conditions

- Role entity analysis (showing how model phrases and sentences can be

analysed to determine their role entity types)

7.3.1 Base entities

7.3.1.1 Base entities overview

From the research, it became clear that to model any information system or

organisation, surprisingly few entities are needed. Corresponding to the

morphological level of linguistics, these base entities are as follows (see Figure 7-2):

• Things: intelligent entities (actors) and non-intelligent entities (objects)

corresponding to nouns and noun phrases in linguistics (section 5.2.1.3 (a)).

• Actors (intelligent things): human, institutional and artificial entities that can act

and make decisions. Actors correspond to animate nouns in linguistics (section

5.2.1.3 (a)).

- Human actors (or persons) are individual humans like clients, employees

and users.

- Institutional actors (or human activity systems) are groups of people where

the group has an own identity and is involved in purposeful activities, for

152

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

example, companies, departments and project teams. Institutional agents are

made up of other base entities.

- Artificial actors are human-engineered artefacts that simulate human

behaviour, such as bank account systems, pocket calculators and robotic

manufacturing systems. Artificial actors consist of other base entities.

• Objects (non-intelligent things): physical, conceptual or informational (semiotic)

entities employed during actions by agents. Objects can consist of other objects.

Objects correspond to inanimate nouns in linguistics (section 5.2.1.3 (a)).

- Physical objects are material things that can be detected by the senses, such

as raw material, products, furniture and vehicles.

- Conceptual objects (or information) are concepts that are created by

humans to make their world more understandable and to communicate with

other actors. Three important specific types of conceptual objects are listed

below:

- Places (or locative conceptual objects) are physical two- or three-

dimensional areas or conceptually demarcated areas. Examples include

countries, geographical areas, residential plots, offices in a building and

areas on a screen, form or report.

- Times (or time-related conceptual objects) are indications of absolute (e.g.

12/01/2011) or relative (e.g. two days after month-end) times.

- Model blocks are structure modelling entities (described in the next section)

that can be handled as if they are base entities. For instance, the process

withdraw money from ATM (a model block) can be seen as a single

conceptual object and used as such, although it consists of a number of base

entities and their relations and acts.

- Informational objects are combinations of information and physical objects

(acting as the media) created with the specific purpose of capturing, storing

and displaying information, like files, databases, books, spreadsheets, input

forms and whiteboards. Informational objects are related to conceptual

objects in that they both have information as basis, but the physical medium

of a conceptual object is not of importance.

• Acts and relations are dynamic relationships (acts) and static relationships

(relations) between things corresponding to verb and verb phrases in linguistics.

153

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Relations are common to all situations and comprises a (theoretically) finite

specific set of auxiliary verbs and verb phrases, such as is-a-type-of, consists-of,

has, is-above, and is-equal-to. Acts, on the other hand, are specific to every

situation and consists of all active verbs that can be used in a situation under

discussion, for example withdraw (money), print (receipt), deposit (money),

transfer (money) and pay (beneficiaries) in the ATM situation. Acts and relations

correspond to verbs in linguistics (section 5.2.1.3 (b)).

Base Entity

Actor

Human ActorInstitutional Actor Artificial Actor

Object

Physical Object Informational Object Conceptual object

Legend Inheritance or is-a
relationship

Aggregation or
consists-of
relationship

Place

Thing Act/Relation

(Information)

(Intelligent
thing)

Time

Figure 7-2: Modelling base entities

To illustrate base entities, the modelling case study of an ATM system is used. The

base entities of a typical ATM system are listed in Table 7-1 below.

Base entity type Entity
Human actors • Client

• ATM operator
• Branch teller

Institutional actors • Bank
• Other banks
• Branch

Artificial actors • Bank system
• ATM system

Physical objects • ATM machine
• ATM keyboard

154

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Base entity type Entity
• ATM screen
• ATM envelope receiver
• ATM printer
• ATM card reader
• ATM money dispenser
• Envelope
• Paper (for printer)

Informational objects • ATM card
• Transaction receipt
• Cash

Conceptual objects
(information)

• Account
• Transaction
• PIN

- Place • ATM location
- Time • End of day
- Model block • Withdraw money from ATM process

Acts • Withdraw (money)
• Deposit (money)
• Print (bank statement)

Relations • Consists-of
• Is-type-of

Table 7-1: ATM example – base entities

7.3.1.2 Actors (intelligent things)

(a) Overview

An actor refers to any entity that autonomously performs actions and makes

decisions. It is mostly human beings, but includes institutional actors (like

organisations, branches and departments) and artificial actors that behave like

humans (for instance, robots, computer programs and ATM banking systems)

(see Figure 7-3).

Human ActorInstitutional Actor Artificial Actor

Actor

Figure 7-3: Types of actors

155

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

When considering actors, there will seldom be an interest in a specific instance of an

actor (client 2345), but rather in the kind of actor (client), although specific instances

could be of interest, especially if there is only one instance per type in a specific

context (e.g. the Reserve Bank of South Africa, Nelson Mandela or Einstein).

Flowing from this is the concept that when we consider actors, we consider the roles

they play in an organisation or system. Roles are either linked to acts (e.g. teacher,

manager, service provider) or to relations with other entities (e.g. owner, shareholder,

employee and wife).

Human actors are persons, individuals or humans like patients, clients, employees

and users. From a business perspective, the following issues are of interest when

considering human actors: people are seen as a means of production; human

resources are seen as a factor of production; end consumers have needs (Maslow’s

hierarchy of physiological, security, social, self-esteem and self-actualisation needs),

and business stakeholders are shareholders, owners, employees, consumers,

competitors, intermediaries and suppliers.

An institutional actor is a group of humans and organisations that has an own,

separate identity from the humans and organisations making it up, for example, a

family, a company, a department, and a project. An institutional actor can also be

seen as a human activity system created for purposeful activities (Checkland, 2000).

From a business perspective, institutional actors have to do with enterprise types such

as private, government, semi-government and non-profit institutions, enterprise forms

like sole proprietors, partnerships, companies (private and public), closed

corporations, cooperatives and trusts, all of the various functions in an organisation

like purchasing and marketing (a function like purchasing has an organisation, the

purchasing department, to execute it), organisational culture and management style.

An institutional actor can, for instance, be a project team that is formed to create a

specific artefact such as a building and consist of human actors as team members (e.g.

builders and architects), physical things like tools and raw material, locations like the

building plot and the project office, actions like build, draw, plan, approve, get loan,

and paint, and events like builder holidays, material running out and project

deadlines.

156

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

An institutional actor can also be a family that consists of human actors like parents

and children, physical things like furniture, cutlery, clothes and a car, locations like

the family house and family members’ rooms, actions like eat, make food, change

nappies, mow the lawn, and wash the dishes, and events like baby feeding times,

children’s birthdays, various licence renewal times and grocery shopping.

Artificial actors are human-engineered artefacts, with an own identity, that simulate

human behaviour, for instance, bank cheque systems, hand calculator systems and

robotic manufacturing systems. Typically, an artificial actor is owned and managed

by a legal entity that is responsible for its actions. For instance, in an automated

contract negotiation situation or in an automated purchase decision, a legal entity may

be represented by an artificial actor.

Artificial actors can either be manipulating information or manipulating physical

entities, or both. Examples of artificial actors manipulating data are IS and programs,

while artificial actors manipulating physical entities are things like robotic systems,

automated mail sorting systems and numerical control machines.

In a theoretical sense, there is no difference between an institutional actor and an

artificial actor. They can both consist of exactly the same types of entities. The only

difference is the extent to which humans are involved in the system. In the case of an

institutional actor, humans and groups of humans are the main actors, while in the

case of an artificial actor, computers are the main actors with humans playing a

supportive role.

(b) Components

A distinction can be made between primitive/atomic and composite entities.

Primitive/atomic entities cannot be divided any further into other entities, while

composite entities can be divided into other entities. The modelling entity actor can

be divided into composite parts, as shown in Figure 7-4.

157

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Actor

Human ActorInstitutional Actor Artificial Actor

Base entity

Figure 7-4: The composite relationships of actors

For the purpose of modelling organisations and IS, a human actor is normally seen

as atomic/primitive and cannot be divided into components any further. A doctor or

psychologist will also consider the biological, psychological and mental parts of a

human agent and could, therefore, divide humans into further parts.

Institutional actors, on the other hand, are always composite entities consisting of

many other materials, autonomous and conceptual entities. For instance, a bank

consists of other institutional actors like divisions and departments, human actors

like managers, tellers and secretaries, physical objects like furniture, buildings and

computers, informational objects like accounts, statements, bank cards and contracts,

places like plots of land and offices in buildings, and acts like creating a new

account, withdrawing money and printing a statement.

Artificial actors are also, like institutional actors, composite entities consisting of

other entities. Simpler artificial actors like traffic robots consist of physical objects

like bulbs, coloured lenses, poles, cables and artificial actors like a CPU and a timer.

More complex artificial actors, such as a cellphone system, consist of institutional

actors like maintenance departments, human actors like technicians and developers,

physical objects like transmission towers, cellphones and SIM cards, informational

objects like accounts, messages, phone calls, places like computer rooms, and actions

like making a call, sending a message and renewing a contract.

158

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

(c) Categories

The type of category into which actors can be placed depends on the roles they play:

• Initiator: starting/triggering an action

• Source: providing input for an action or agent

• Actor/doer: doing something in an action

• Owner: owning an agent, action, thing or place

• Decider: making decisions in an action

• Manager: managing an agent, thing, location or complex action (involving other

actors or objects)

• Receiver: receiving output from an action or actor

• Client/beneficiary: receiving value from an actor, action, object or place

Actors can also be categorised according to the creation of other actors, actions,

objects or locations. These can be seen as meta-roles. Some examples are the

following:

• Analyst of a business

• Designer of a system or architect of a building

• Developer of a system or builder of a bridge

Every institutional actor has a number of stakeholders (actors/roles) involved with

it. It includes all the roles in the organisational structure as well as the roles of people

and groups who are not part of the organisation. These are as follows:

• Customers or beneficiaries of the products and services of the organisation.

• Internal and external service providers (e.g. credit bureaus, information

providers and the Legal Department).

• The organisation itself. Any people or groups that are part of the organisation.

This is normally indicated by means of the organisational structure.

159

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

• Regulators are any organisations that have a controlling or regulating influence

on the system under discussion (e.g. the government tax services could require a

monthly report on cars leaving the country).

The categories into which artificial actors can be placed are (following the

classification in the AOR technique) as follows:

• Software agents, e.g. involved in e-commerce transactions.

• Embedded systems, e.g. in automatic teller machines.

• Robots, e.g. in manufacturing.

(d) Properties

Some of the main properties of actors are the following:

• Some form of unique identification – normally a name (or names) and one or

more numbers, e.g. internationally a passport number, nationally a country

identification number or company registration number, in a company a staff

number, system number or department number, and in other organisations a

member number.

• Responsibility for other actors, things or locations, or for performing certain

actions. Responsibility is given when certain transactions, such as a legal

transaction (e.g. getting married, entering into a contract, buying a property,

registering as a company), institutional transaction (e.g. appointment as

employee, promotion to manager, being given access rights, installing a system),

and social transaction (e.g. becoming a father, becoming a member of a society,

being appointed captain of the team, sponsoring an event) occur. Actions can be

seen as the way by which actors discharge their responsibilities.

(e) Actions

Two main types of actions that can be performed on actors are meta- (or life cycle)

actions and operational actions. Every actor has a life cycle and meta-actions are

related to these life cycle actions. For instance: a client gets registered, has

transactions with the organisation and gets deregistered; an employee gets appointed,

160

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

works for the organisation and either leaves, retires or dies; a company gets

registered, operates and gets deregistered or is taken over by another company; and

an information system gets analysed, designed, developed, tested, implemented, goes

operational and eventually gets decommissioned. Operational actions are the actions

performed on actors on a day-to-day basis.

The following actions can be done on (in contrast to actions done by) human actors3:

• Transform or process human actor1 into human actor2. For example, process

private citizen to become a soldier/prisoner, promote employee to a manager, give

beauty treatment to client and possibly do a heart transplant on patient.

• Transport or distribute human actors from location1 to location2. For example,

drive passengers to their destination.

• Store or house human actors in location. For example, guests stay in the hotel

and the soldiers live in the barracks.

• Exchange or trade human actors for things (of value). In the modern world this

mostly means human actors exchanging their time for money, but in the past and

in some places in the world today it can also refer to slavery. For example,

contractors work for a fee, employees work for a salary and soccer player gets

transferred to new club for a specific amount.

• Control or regulate human actors from state1 to state2. For example, ensure all

new employees have valid identification documents (change status to “ID

validated”), arrest citizens breaking the law (change status to “arrested”), count

people in a census (state change from “not counted” to “counted”) or authorise an

employee to a specific action (state change from “unauthorised” to “authorised”).

Using the classification of the LAP technique (Dietz, 2003), there are three kinds of

actions that can be done to actors. They are the following:

• Material and immaterial production actions (transform, transport, store,

exchange and control), as described by the previous paragraph.

3 Here and everywhere else in this chapter where different kinds of actions are discussed the Magee
and de Weck (2004) taxonomy discussed in section 2.6 is used as basis.

161

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

• Coordination actions between human actor1 and human actor2. This entails

entering into commitments (becoming responsible) to perform production actions

and complying with the commitments. A commitment by one party creates a

claim by another party on the outcome of the commitment. For example, client

takes out a home loan and commits to repay monthly instalments. The bank then

has a claim on the monthly payments and if payments are not submitted, the bank

has a claim on the home itself.

• Communication actions are used to perform coordination acts. Communication

acts can be divided into the following:

- Formative actions between human actor1 and human actor2. It involves

establishing and maintaining a communication channel between the actors. It

involves expressing, transmitting and receiving information without any

distortions (physical, empirical or syntactic). For example, “Can you speak

louder, I can’t hear you”, “I have received your email and will study it” or

“The diagram is illegible, can you resend in a different format”.

- Informative actions between human actor1 and human actor2. It involves

the establishment of an intellectual understanding of the coordination action

between the participants. It involves informing actor2 and confirmation by

actor2 of the facts without distortion (semantic and pragmatic). For example,

“I understand the conditions of the contract, except point 2.7, can you please

explain”; and message on screen: “By pressing the button you agree to pay

the fees as indicated”.

- Performative actions between human actor1 and human actor2. It involves

the actors committing to perform the production actions required by the

coordination action. For example, “I do take this man as my lawful

husband”, or pressing the “Accept” button and signing a contract.

The following actions can be done on institutional actors (using the Magee and De

Weck (2004) taxonomy discussed in section 2.6):

• Transform or process institutional actor1 into institutional actor2. For example,

changing a private company to a public company and an engaged couple getting

married and becoming a family.

162

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

• Transport or distribute institutional actors from location1 to location2. Not

really applicable. Components of an institutional agent can be transported, but

usually not the institutional actor as a whole (except perhaps families emigrating).

• Store or house institutional actors in location. For example, the family lives in a

house, the United Nations head office is situated in New York.

• Exchange or trade institutional actors for things (of value). For example, selling

shares in company, taking over a company for a cash amount.

• Control or regulate institutional actors from state1 to state2. For example,

making an organisation COBIT-compliant (i.e. change state from non-COBIT- to

COBIT-compliant), performing a yearly audit on a company (change state from

unaudited to audited for that year).

The following actions can be done on artificial agents:

• Transform or process artificial actor1 into artificial actor2. For example,

assembling an information system from web services.

• Transport or distribute artificial actors from location1 to location2. For

example, delivering a cellphone to a client, installing an information system at a

branch.

• Store or house artificial actors in location. For example, the information system

is situated in the computer room.

• Exchange or trade artificial actors for things (of value). For example, buy or rent

PC and software.

• Control or regulate artificial actors from state1 to state2. For example, test

information system (change state from “untested” to “tested”).

7.3.1.3 Objects (non-intelligent things)

(a) Overview

Objects are non-autonomous, non-intelligent entities and can either be physical,

informational or conceptual. A physical object is any natural entity or human-created

artefact that has a material, time-space aspect to it. It includes anything tangible, like

products, raw material and tools. An informational object is the resultant entity

163

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

created to store and communicate information, for example, a manual file, a computer

file, a database, a book, a data capture input form, a whiteboard, a label on a product

and a movie. An informational object always consists of a medium (a physical object)

and information (a conceptual object). A conceptual object (or information)

originates in the mind of an actor. If the actor needs to communicate the concept to

another, he needs to code it (e.g. text, mathematical symbols, pictures, sound or

video) onto a medium (e.g. paper, stone, signboard, magnetic strip, tape, or even

human body as in sign language). Specific types of conceptual objects are time and

place.

Physical objects can serve as follows:

• They can be used to achieve a specific goal like tools.

• They can be used as input into a process like raw material.

• They can be created, i.e. they are the actual products.

In business terms, physical objects relate to the means of production, like equipment,

raw material and factors of production such as natural resources and assets.

In computer terms, physical objects relate to hardware like desktops, notebooks,

tablets, servers, mainframes, PDAs and cellphones; hardware components like CPUs,

memory, I/O interfaces and storage; peripherals like input devices and output devices;

and networks like LANs, wireless LANs and WANs.

Although animals could be seen as a separate base entity, for normal business

purposes animals are not treated as actors but rather like physical objects that will

always be the objects acted on by other actors.

Any piece of information can be translated to any type of informational object. For

instance, the same client information can be captured via an input form, entered into a

client file, displayed on a computer screen, printed on a report, archived to

microfiche.

Informational objects can consist of physical entities like paper and ink; as well as

other informational artefacts like a book consisting of pages or a brochure consisting

164

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

of pamphlets and a CD. Informational objects have a specific medium like paper,

magnetic and electronic. The duration of informational objects differs and has an

effect on the type of medium used. It can be temporary like RAM, blackboard notes,

permanent like hard drives, CDs, DVDs, s, or archived.

Conceptual objects or information is meaningful, organised data that exist for a

specific purpose, for instance, client information, a list of clients, the contents of a

movie, a framework like TOGAF, the score of a symphony, the lines and colours of a

drawing, and the movements of a dance.

A place is a special type of conceptual object and is any spatial area like a plot in a

city, an office in a building, a province in a country, a position on screen, an area on a

report. Note that a place is always in relationship to something else. A place is

indicated either by an address or a coordinate in a two- or three-dimensional

coordinate system or some relative position indicator like the top row. Place address

can both be physical (e.g. at longitude x and latitude y) or conceptual (e.g. the third

item of an array).

Depending on the situation, the places can be specified by using representations like

maps, office layouts and network diagrams. Examples are a map of Europe or the

world with the rental branches and service depots indicated on it or a list of branches

and service depots per country and per town, the layout of any current networks that

have a bearing on the system under discussion, and any place that is not physical, e.g.

client/server, back office/front office and web.

Objects can be places or contain places. For instance, some informational objects can

be seen as places, such as a database or a data warehouse at a specific address

(location). Physical objects like filing cabinets are to some extent places and contain

subplaces.

In business terms, place is related to land and buildings as a means of production, to

primary location factors like potential market, infrastructure, raw material and labour,

and to secondary place factors like climate, government intervention, political

situation, business premises, capital and personal considerations.

165

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

A place can consist of other places, for instance, a plot can be divided into subplots, a

building can be divided into floors and offices and a web screen can be divided into

frames.

(b) Components

Objects are made up of other objects. In summary, physical objects can either be

atomic (e.g. a screw) or made up of other physical objects and/or informational

objects (e.g. a car consisting of parts and an instruction manual); conceptual objects

can consist of zero or more conceptual objects (e.g. a coding system consists of

codes); and informational objects consist of zero or more informational objects as

well as zero or more physical objects (e.g. a book consists of chapters, paper and

glue) (e.g. Figure 7-5).

1

0..*

Physical object

Informational object

1

0..*

Conceptual object

1

0..*

1

0..*

Physical object

Informational object

1

0..*

Conceptual object

1

0..*

Figure 7-5: The components of objects

Primitive/atomic physical objects refer to physical objects that cannot be divided any

further. This includes product components like screws, glass panes and a window

frame, and undividable raw material4 like a specific length of steel pipe.

Composite physical objects are made up of other physical objects, e.g. a product

made up of components (which are physical objects). On a bigger scale, these

hierarchies of physical objects are called a Bill of Material (BOM). Composite

4 Raw materials, of which the unit of measure is not each, are problematic when considering dividing
it further. When one uses, for instance, steel pipe as raw material, one needs a certain length of it.
Theoretically, one can divide it infinitely into smaller lengths, but for the purposes of the product, the
correct measure (in whatever unit of measure) is the smallest possible division of the raw material and
therefore a primitive/atomic thing.

166

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

physical objects can also be made up of physical objects as well as informational

objects, e.g. a product with a barcode, label and/or price tag.

Combining a physical object, like a product, with conceptual objects, like the label

information, results in a physical entity when the intent of the conceptual objects is

purely to be a component of the product.

When a conceptual object is combined with any physical media for the purpose of

manipulating or storing information, the end result is an informational object. The

same conceptual object combined with different physical media results in different

informational objects, for instance, client information can be entered on a client

registration form or a computer screen, printed on a paper report or displayed on a

computer screen, and stored on CD, DVD, hard drive or even a paper-based file.

The combination of primitive atomic-level conceptual objects (e.g. specific client’s

name plus specific client’s surname) produces a higher-level conceptual object (e.g. a

specific client’s full name).

The different categories of conceptual objects are divided as follows:

• Operational information, normally in tabular format (seen as a spreadsheet:

horizontally, a column like client name, and vertically, a row representing a

specific client) in files, databases or spreadsheets can be divided as follows:

- Groups of data like databases, file systems and spreadsheets.

- Entities like tables, files and worksheets.

- Columns like fields and attributes.

- Tuples like rows and records.

- Cells5 representing actual values.

• Published information in text format, like books, manuals and brochures, is

typically structured as follows:

- Books

- Chapters

5 Theoretically, information can be divided even further into characters and even bits and bytes.

167

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

- Sections

- Paragraphs

- Sentences

- Words

- Characters

• When information is web-based, the same principles apply, but the divisions are

different, e.g. pages, frames, etc. Multimedia also extends this format.

• Audio-based information, like music albums (as on CD), is divided into tracks.

• Video-based information (as on DVDs) is divided into arbitrary segments (e.g.

index, scene 1, and director’s comments). On a more technical level, a video can

be divided into frames.

Every “tuple” or row of data will always have some fields that can be used to identify

the tuple. These fields are called keys. Many different fields are potential keys and

these are called candidate keys. Composite keys consist of more than one field. The

main, unique identifying key is called the primary key. If a primary key is referenced

in another entity, it is called a foreign key.

Every field has a specific data type, like text, numbers, images, Boolean and date.

Every field has a domain – a set of possible values. A field can also have a range – a

minimum and maximum value within which values can fall. The format of a field

defines the structure of the field, for instance, a date can be in the formats

yyyy/mm/dd or mm/dd/yy, and the format of a phone number is “(area code)

999 9999”.

(c) Categories

The most common categories of physical objects are the following:

• Raw material: typically some object unprocessed from nature that is either

mined (like iron, sand, salt and crude oil), or harvested (like grain, rice, meat, fish

and fruit)

• Products for everyday usage, like perfume, food products, clothes, stationery,

medicine and car oil

168

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

• Tools, like hammers, drills, surgical knives and tin openers

• Machines, like bulldozers, food processors, microwave ovens and personal

computers

The most common categories into which conceptual objects can be placed are the

following:

• Textual information like words and characters

• Audio information like speech, sounds and music

• Visual information like images

The most common categories of informational objects are the following:

• Data storage entities, like databases and files for storing information.

• Publishing entities, like books, magazines and brochures.

• Multimedia entities, like photos, song tracks, video clips and movies.

Three categories of places can be identified:

• Physical places: geographical and two- or three-dimensional areas.

• Conceptual places: e.g. backoffice/frontoffice, client/server.

• Networks have both physical and conceptual elements, e.g. IP address and

physical node.

(d) Properties

All objects have the following:

• State. All objects have one or more states that change as the result of actions or

events occurring. For instance, a physical or informational product can have a life

cycle state that goes from “being manufactured” to “manufactured” to “ordered”

to “delivered” to “available” to “written off” to “sold” or “destroyed”. If the

product is rented (rental car or library book), the rental state can go from

“available” to “rented” to “late rental” to “missing”.

169

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Some of the additional properties of physical objects are as the following:

• Unit of measure. Physical objects when used as raw material or as a product has

some unit of measure, like “each”, “meter”, “metre squared”, “kilogram”, “litre”,

“dozen”, ream. This includes the dimensions and weight of the object.

• Type of material. The constituent material, such as sand, paper, steel,

aluminium, wood, satin, bamboo.

• Other properties like colour.

Some of the main properties of places are the following:

• Address. Every place must have some sort of address to allow access to the place.

The address can be physical or conceptual (like an IP address).

• Entity held. Every place stores or holds specific entities (or a combination of

entities), for instance, a house stores human actors and their physical objects; a

library stores books and other informational objects; a network node stores

artificial actors like a network operating system; and the screen holds screen

controls.

(e) Actions

The following actions can be done on physical objects (using the Magee and De

Weck (2004) taxonomy discussed in section 2.6):

• Transform or process physical objects + informational objects (optional) into

physical objects. Combining a physical object, like a product, with informational

objects, like a label, results in a physical entity when the intent with the

informational object is purely to be a component of the product. For example,

creating products from components and raw materials, making food from

ingredients and building houses from supplies.

• Transport or distribute physical objects from Location 1 to Location 2. For

example, transporting raw material from the mine to the factory, driving a car

170

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

from home to work, pumping oil from the ship to the refinery and delivering

orders to clients.

• Store or house physical objects in location. For example, storing stock in

warehouse, parking cars in the garage.

• Exchange or trade physical object for value object. For example, selling products

for monetary compensation.

• Control or regulate physical object from State 1 to State 2. For example, doing

quality assurance of product, stress-testing a new car and destroying expired food.

The following actions can be done on informational objects (many of these actions

also involve a physical medium):

• Transform or process Informational object 1 into Informational object 2. For

example, compiling a report from various pieces of information, printing a report

(i.e. change the medium from electronic/magnetic into paper).

• Transport or distribute informational object from Location 1 to Location 2. For

example, sending email to a client, couriering a book to student, SMS text

message to friend, send video clip.

• Store or house informational object in location. For example, storing a

spreadsheet on a computer (at an address), storing books in library at specific

place (using the Dewey system as an addressing system).

• Exchange or trade informational object for object (of value). For example,

company selling their music videos, lending a library book.

• Control or regulate informational object from State 1 to State 2. For example,

reviewing a book before publishing.

The transform actions that can be done on conceptual objects are the following:

• Meta-actions:

- Define, e.g. plan a book, design a database (create SQL script), design a

cellphone contacts list.

- Create, e.g. publish book, create database (run SQL script), create cellphone

contacts list. All of these involve using a physical medium as well.

171

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

- Change, e.g. publish new version of book, change the structure of the

database and change the structure of the cellphone contacts list.

- Destroy, e.g. destroy book, drop (permanently delete) database, remove the

cellphone contacts list from the cellphone.

- Rename (a specific type of change), e.g. change the name of the book,

change the name of the database, rename the cellphone contacts list from

“Contacts” to “My contacts”.

• Data manipulation actions (mostly known as CRUD actions):

- Create (insert in SQL) information, e.g. place a new paragraph in a book,

insert a new record into a database table and add a new contact to the

cellphone contacts list.

- Read (select in SQL), e.g. read, copy or copy a page from the book, read one

or more records in the table, search for one or more contacts in the cellphone

contacts list.

- Update, e.g. replace one or more words, sentences, sections, chapters of the

book, change one or more fields of a record in a table, change any of the

details of a contact in the cellphone contacts list.

- Delete, e.g. remove one or more words, sentences, sections or chapters of a

book, delete one or more records in a table and remove a contact from the

cellphone contacts list.

• Control actions:

- Grant/revoke access rights to actor, e.g. give the key to the cupboard where

the book manuscript is stored to the editor, give full update rights to the

accounts system, allow one’s secretary to view one’s contacts on one’s

cellphone.

The following actions can be done on places (using the Magee and De Weck (2004)

taxonomy discussed in section 2.6):

• Transform or process place into place. For example, divide the office into

suboffices with dry-walling, subdividing a screen into segments.

172

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

• Transport or distribute place from Place 1 to Place 2. Only really possible to

transport an object containing places between places, e.g. move file cabinet to the

next office.

• Store or house place in place. Only really possible to store an object containing

places in a place, e.g. store file cabinet in office.

• Exchange or trade place for thing (of value). For example, sell a house, rent a

mailbox.

• Control or regulate place from State 1 to State 2. For example, transfer property

deed, inspect offices and regulate access to IP addresses.

7.3.1.4 Act/relation

The base entities of “act” and “relation” correspond to those of verbs in morphology.

An act relates to an active verb in an action (for example, the man moves the car). A

relation relates to verbs and auxiliary verbs in an event (for example, when stock

becomes less than reorder level), a relationship (for example, the house consists of

rooms) and a condition (for example, if employee is a manager).

These base entities only really make sense when they are used in model phrases and

sentences (structure entities) and play specific predicate roles (role entities) in these

phrases and sentences. Therefore, acts and relations will be discussed later when

these concepts are discussed.

7.3.2 Structure entities

In natural language, words can be structured together to form sentences. In a similar

way, base entities can be structured together with specific language constructs to

form structure entities (see Figure 7-6). Structure entities correspond to the

syntactical level in linguistics (section 5.2.2).

7.3.2.1 Models and model views

(a) Overview

173

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

A distinction must be made between the “real” and the “representational” (or

modelled) world. Business and ISD modelling involves taking a part of real-world

organisation, representing it using some technique like UML or ERD to represent the

real system as-is, and then designing a new real system to-be. This representation of

the new system to-be is then developed and implemented to become part of (or

change) the real system. If a new system must be developed on the same part of the

real-world organisation, the created information system is now part of it.

Although there is one real world, there can be many views (representations) of it. A

view will always only represent a part of the real world and will also represent only a

specific aspect of it. For instance, in an ERD, all other aspects are ignored (although

they are as important) and the focus is only on the data aspect of the system.

The model represents all information available on the real-world situation,

organisation or system modelled. By implication, the model (it does not matter how

complete or detailed) is only a representation of the real world. From this one model,

various model views can be produced, representing any specific aspect that the model

viewer wants to emphasise.

174

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Base Level

Actor Act/Relation
Complement

operator (mostly
a pronoun like

in, with, to)

Qualifier
description
(mostly an
adjective)

Actor

Object

Model Sentence

Link Subject Predicate Complement

0..*

Model phrase

10..1 1..*
0..1

1
0..1 0..10..10..1

Structural level

Sentence or
phrase linking

description
(normally a

conjunction like
if, then, else,
and, or, until,

while)

1

Property
(mostly a

noun)

0..1

Model Model View

0..*

Model Block

0..*

Object
Property value

0..1

StructureEntity

Legend Inheritance or is-a
relationship

Aggregation or
consists-of
relationship

Phrase Type

A role entity
indicating what
type of phrase

this is.
The possible

types are:
action, event,
condition and
relationship

1

Figure 7-6: Modelling structure entities

175

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

(b) Categories

Views can be based on a number of aspects. The first aspect is the type of base entity

that needs to be considered. It can be seen as a horizontal view. For instance, data

modelling concentrates on informational objects, an organogram on human and

institutional actors, a work breakdown structure on actions and a bill of material on

physical objects.

The second aspect is the level of detail that needs to be expressed. It can be seen as a

vertical view. For instance, using use case modelling, sometimes only the systems

and subsystems involved are considered (model block level), other times only case

names are used (action level) and at other times, the focus is on the use case detail

such as steps, actors, conditions and business rules (action step level).

The third aspect is stakeholder perspectives. It can combine characteristics of the first

two aspects. The rows Planner (scope, contextual), Owner (enterprise), Designer

(system, conceptual, logical), Builder (physical, technical) and Subcontractor

(component) of the Zachman framework (section 2.3) illustrate the typical stakeholder

perspectives well. Over time (during the life cycle of the system), different

perspectives will be more important than other. There is also the design issue of

postponing certain decisions until a later phase. For instance, during conceptual

design, concentrate on how the system is to operate but without taking the specific

technology or implementation into account.

A fourth aspect is the history view. It can be combined with any or even all of the

previous views. An as-is view shows how things are currently while a to-be view

shows how things are designed or planned to be in the future. In practice there is not

just one as-is and one to-be view. Different versions of both these views can exist.

A fifth aspect is that of linguistics. In this view, the entities and their relationships are

seen as the elements of a language. As in any language, the various linguistic levels of

morphology, syntax, semantics and pragmatics are considered.

176

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

7.3.2.2 Model blocks

Model phrases and model sentences can be grouped into model blocks. They are

named for reference and usage. Once a model block has been created, it becomes a

conceptual object and can be used as such. For instance, it is possible to create a

model block called “ATM login” representing a use case or business process and

consisting of a number of model sentences and phrases:

Link Subject Predicate Operator Qualification Complement
When Client Inserts ATM card

Into ATM card reader
If ATM card Is-not Valid ATM card
Then ATM system Displays Error message “Invalid card”

ATM system Returns ATM card
From ATM card reader

Else ATM system Displays Request PIN screen
If PIN Is-not-equal-to Stored PIN
Then ATM system Displays Error message “Invalid PIN”

ATM system Returns ATM card
From ATM card reader

Else ATM system Displays Transaction options screen

A model block has the following three properties, over and above the constituent

model phrases and sentences:

• A name by which it can be referenced and used either as a conceptual object or as

an executable set of instructions.

• Zero or more input parameters that can be used to let the model function like a

subroutine or function when it is used as an executable.

• Zero or more output parameters generated from the execution of the model

block.

A created model block can be used like any other conceptual object, for instance:

Subject Predicate Operator Qualification Complement
Analyst
(human actor)

Maintains
(act)

 ATM login
(conceptual object – model block)

Client
(human actor)

Initiates
(act)

 ATM login
(conceptual object – model block)

ATM login
(conceptual object
– model block)

Is-a-type-of
(relation)

 Use case
(conceptual object)

177

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Or it can be used as an executable, for instance:

Subject Predicate Operator Qualification Complement
Chef
(human actor)

Executes
(act)

 Pancake recipe
(conceptual object – model block)

 Using [Number of people]
(input parameter)

ATM system
(artificial actor)

Executes
(act)

 ATM login
(conceptual object – model block)

Financial program
(artificial actor)

Executes
(act)

 Future value
(conceptual object – model block)

 Using [Rate]
(input parameter)

 Using [Number of payment periods]
(input parameter)

 Using [Payment per period]
(input parameter)

 Returning [Future value]
(output parameter)

7.3.2.3 Model sentences and phrases

Model phrases are joined together to form model sentences. Model phrases and

sentences are either events, conditions, actions or relationships.

The most fundamental structure entity is the model phrase. In its simplest format, it

consists of the basic parts of the simplest sentence in natural language, namely

subject-predicate-object. They can be read from left to right as a complete humanly

understandable sentence. For instance, the following model phrases describe both

actions and relationships between the base objects of the ATM system.

Subject Predicate Object Role type
Client
(human actor)

Withdraws
(act)

Cash
(informational object)

Action

Client
(human actor)

Has
(relation)

Accounts
(conceptual object)

Relationship

The two model phrases above can be read and understood by humans, for instance

“client withdraws cash” and “client has accounts”. Conversely, these model phrases

can be created from natural language statements. But, importantly, the structured

approach in creating model phrases make them also open to manual or system-

assisted analysis and manipulation. For instance, it is possible to algorithmically

178

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

create a partial-use case diagram for the first phrase and a partial non-attributed ERD

for the second. It is also possible to lay down specific rules for these phrases. For

instance, the subject of an act can only be an actor, while the subject of a relation can

be an actor or an object.

This model phrase structure can be extended to also indicate other objects involved in

an action or relationship, over and above the direct object. The Object column is

therefore renamed Complement and a Complement Operator column is inserted

before it, indicating the relationship of the complement to the act or relation. The

Complement Operator column mostly consists of prepositions, but can occasionally

include other word types.

For instance, the “withdraw” act above can be extended as follows:

Subject Predicate Complement
operator

Complement

Client
(human actor)

Withdraws
(act)

 Cash
(informational object)

via ATM
(physical object)

from Account
(conceptual object)

at ATM location
(place)

using ATM Card
(informational object)

The client-account relation above can be extended as follows:

Subject Predicate Operator Complement
Client
(human actor)

Has
(relation)

 Accounts
(conceptual object)

with Bank
(institutional actor)

The model phrase can be further extended by adding a complement qualification

column. This column qualifies the relation between the predicate and the complement.

It can be as user-friendly (e.g. only one, one-to-many, not more than 50, optional one)

or as precise (e.g. 1, 1..n, <=50, 0..1) as needed for the analysis situation. For

instance:

179

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Subject Predicate Operator Qualification Complement
Client
(human actor)

Has
(relation)

 0..Many Accounts
(conceptual object)

with 1 Bank
(institutional actor)

Branch
(institutional actor)

Has
(relation)

 Only 1 Manager
(human actor)

Branch
(institutional actor)

Has
(relation)

 1..Many Tellers
(human actor)

Another example is where the relations between an ATM and its components can be

described as follows:

Subject Predicate Operator Qualification Complement
ATM
(physical object)

Consists-of
(relation)

 1 Card slot
 1 Printer
 0..1 Envelope dispenser
 0..1 Money dispenser
 1 Keyboard

This information can also be represented graphically as follows:

ATM

consists-of

Printer

1

Envelope
Dispenser

0..1

Money
Dispenser

0..1

Keyboard

1

Card Slot

1

The relations between entities can be used to determine the granularity of the

description used. For instance, in the beginning of analysis or on a higher level of

specification, only the ATM can be addressed, e.g. “Place ATM card into ATM”. As

more detail is uncovered and the components of an ATM become defined, that

statement (although true) can be specified in more detail, e.g. “Place ATM card in

ATM – card slot”.

180

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Model phrases are joined together to form model sentences. The Link column is

added and used to link model phrases together into sentences. For instance, the

following is one model sentence consisting of four model phrases:

Link Subject Predicate Operator Qualification Complement Role type
When Client Inserts ATM card Event

Into ATM card reader
If PIN Is-equal-to PIN Condition

In Client file
Then Display ATM options menu Action

On ATM screen
Else Display Error message Action

The structure entities making up a model phrase are as follows (see Figure 7-6):

• The link identifies the relationships between actions. The most common links

between actions are sequence (actions following one another), repetition (actions

forming a loop), decision (actions dependent on some condition) and concurrency

(actions executed concurrently).

• The subject of the relationship. It refers to the base entity (actor or object) which

is the main party in the model phrase.

• The predicate of the model phrase. It describes the action taking place or the type

of relationship between the subject and the object. The predicate can play any of

the following role types:

- Events – Describe external triggers that cause agents to initiate actions or

cause the state of things to change. For example, an important event type is

the timer event, where either absolute time, like “on 2 August 2007”, or

relative time, like “at month–end” and “at the end of the day”, cause actions

to take place.

- Conditions – Describe conditions, as part of a bigger model sentence,

affecting later action’s steps, mostly action phrases. For example, “if the

reorder level goes below 20”.

- Actions – Describe how agents (human and non-human) perform work

needed to reach the objectives of one or more individual, institutional or

artificial agents. For example, “client places order”.

- Relationships – Describe static relationships between subject and

complement.

181

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

• The optional complement operator of the model phrase. It identifies the

relationships of the various complements (direct object, indirect object, other

complements) involved in the model phrase. Complement operators are mostly

prepositions such as “for”, “in”, “from” and “to”.

• The optional complement qualifier of the model phrase. It identifies

qualifications that must be placed on the complement. The most common object

operators are multiplicity indications like “one or more” and “one only”.

• The complement of the action refers to the base entities (Actor or Object) that are

affected by the predicate of the model phrase. It can also refer to the property of a

base entity.

The ATM example can be defined formally by firstly defining every base entity and

its relationships (see Table 7-2) and then defining all the model blocks and their

corresponding events, actions and conditions (see Table 7-3 and Table 7-4).

Link Subject Predicate Operator Qualification Complement
 ATM model Is-a-type-of <<Model>>
 ATM back-end model Is-a-type-of <<Model>>
 Deposit money Is-a-type-of <<Model Block>>
 Withdraw money Is-a-type-of <<Model Block>>
 Login client Is-a-type-of <<Model Block>>
 Client Is-a-type-of <<Human Actor>>
 Client Is-a-type-of <<Informational Object>>
 ATM Is-a-type-of <<Artificial Actor>>
 ATM card Is-a-type-of <<Informational Object>>
 Card slot Is-a-type-of <<Physical Object>>
 Printer Is-a-type-of <<Physical Object>>
 Envelope dispenser Is-a-type-of <<Physical Object>>
 Money dispenser Is-a-type-of <<Physical Object>>
 Envelope receiver Is-a-type-of <<Physical Object>>
 ATM back-end model Has-member Deposit money
 ATM back-end model Has-member Withdraw money
 ATM back-end model Has-member Login client
 Client (the actor) Has 0..n ATM card
 Client (the actor) Has 0..n Account
 ATM Has 1 Card slot
 ATM Has 0..1 Printer
 ATM Has 0..1 Envelope dispenser
 ATM Has 0..1 Money dispenser
 ATM Has 1 Envelope receiver

Table 7-2: ATM example – relationships

These relationships can also be represented in graphical format (see Figure 7-7 for

partial representations).

182

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Client

<<Individual Agent>>

Is-type-of

ATM

<<Artificial Agent>>

Is-type-of

Card Is-type-of <<Informational
Thing>>

ATM

contains

Printer

1

Envelope
Dispenser

0..1

Money
Dispenser

0..1

Envelope
Dispenser

0..1

Card Slot

0..1

Figure 7-7: ATM example of relationships (graphical representation)

No Link Subject Predicate Operator Qualification Complement
1 When Client Inserts ATM card

Into Card slot
2 System Validates ATM card
3 If ATM card Is Invalid
4 System Displays Error message “Invalid card”
5 End if System Returns ATM card
6 System Displays Login screen
7 Client Enters Pin

On Login screen
8 If Pin NOT (is-equal-

to)
 Pin
On Client

9 System Displays Error message
10 End if System Goes-to 6 Model block number

Table 7-3: ATM example of action – login to ATM

No Link Subject Predicate Operator Qualification Complement
1 When Client Selects Withdraw money

From Select option screen
2 System Requests Account -- number
3 Client Provides Account -- number
4 System Requests Withdraw amount
5 Client Provides Withdraw amount
6 System Updates Account – available balance
7 System Updates ATM balance
8 System Prints Receipt
9 System Dispenses Money

Table 7-4: ATM example of action – withdraw money

These actions can also be represented in graphical format (see Figure 7-8 for partial

representations).

183

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Action: Withdraw Money

Client

chooses
Withdraw money

option

System

requests Client Number

Client

provides Client Number

System

requests Withdraw
amount

Client

provides Withdraw
amount

System

updates Client Account Balance

Figure 7-8: ATM example – withdraw money (graphical representation)

7.3.3 Role entities

7.3.3.1 Role entities overview

Every type of base and structure entity has a specific meaning depending on its use in

a model sentence or phrase. These meanings are specified by the role entities. Role

entities can be divided into four categories:

• Subject role entities identify the meanings that the subjects of acts or relations

can have, namely agent, or zero, for instance:

Link Subject Subject

Role
Predicate Operator Qualification Complement

When Client Agent Inserts ATM card
Into ATM card reader

 Client Zero Is Dormant

184

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

- If the subject assumes the agent role, it is actively involved in performing

some action on an object, optionally involving other objects.

- If the subject assumes the zero role, it indicates a specific state for the

subject.

• Predicate role entities identify the meanings that the predicate of acts or

relations can have (note that the predicate on its own does not always fully define

its role). In many cases, other parts of the modelling phrase, especially the link,

are needed to define the predicate’s role. In that sense the role of the predicate

can be seen as the role of the whole modelling phrase). For instance:

Link Subject Predicate Predicate

Role
Operator Qualification Complement

When Client Inserts Event ATM card
Into ATM card reader

If PIN Is-equal-to Condition PIN
In Client file

Then Display Action ATM options menu
On ATM screen

Else Display Action Error message
 Client Has Relationship 1..n Account

- Actions indicate dynamic relations (acts) between entities. Actions can be

one of the following:

o Transformation or processing of one entity into another, either by

assembly or by pure transformation

o Transportation or distribution of an entity from one place to another,

including arranging objects in new patterns

o Storing or housing an entity in a place

o Exchanging or trading an entity for another entity of value

o Control or regulation of an entity

- Relationships indicate static relations between entities. Relationships are

mainly one of the following:

o Association, where one entity is associated with another entity

o Property, where one entity owns another entity

o Instance, where one entity is an instance of another entity

o Recursion, where an entity is associated with itself

185

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

o Aggregation and composition, where an entity consists of other

entities

o Inheritance, where one entity is a type of another entity

o Location, where one entity is located in a specific relationship to

another location, e.g. “above”, “in”, “below”

- Events indicate acts that trigger other acts.

- Conditions indicate relations between entities that either allow or disallow

actions from taking place.

• Complement role entities identify the meanings that the entities described in the

complement of acts or relations can have. These complement roles can be

grouped into the following categories (see Table 7-5 for examples):

- Basic

o Patient is an entity that is directly affected or effected (produced) by an

action.

o Zero is an entity involved in a relation.

- Object (or what)

o Instrument (or tool) is an entity used to affect an action.

- Location-related (or where)

o Location is a conceptual object of type of place where an action takes

place or where an entity is located.

o Source is an actor from which an entity originates.

o Direction is an actor to which an entity moves.

o Path (or route) is a conceptual object describing the way an entity

moves or is oriented.

- Time-related (or when)

o Speed is a conceptual object describing how fast an entity moves.

o Frequency is a conceptual object describing how often an action takes

place in a certain period of time.

o Time point is a conceptual object of type of time describing a specific

point in time.

o Duration is a conceptual object of type of time describing two points in

time during which an action takes place.

186

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

- Stakeholder (or who)

o Beneficiary is the actor who benefits or is interested in an action.

o Receiver is the actor who receives something as a possession as a result

of an action.

o Company is the actor who takes part in an action with the agent.

Link Subject Predicate Operator Qualification Complement Complement

Role
When Client Inserts ATM card Patient

Into ATM card reader Instrument

If PIN Is-equal-to PIN Association
In Client file Location

Then Display ATM options menu Patient
On ATM screen Location

Else Display Error message Patient
 Client Has 1..n Account Zero

Table 7-5: Examples of complement roles

The relationships between base, structure and role modelling entities can be described

by the following overview:

Both institutional actors and information systems (which are specific types of

artificial actor) consist of the following elements and relationships:

• Events that trigger actors to initiate actions if certain conditions are met.

• Actions involve things and other actors.

• Actions and things that can cause events.

For instance, the ATM subsystem can be described in terms of the modelling entities

as follows:

• The event client needs cash triggers actor client to initiate model block withdraw

money.

• The withdraw money model block involves the following objects: money,

printing paper, ATM machine, ATM card, PIN number, client account, and the

following actors: banking system, network system.

187

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

• The withdraw money model block can cause event ATM money depleted, which

in turn will trigger an actor ATM administrator to initiate model block replenish

ATM money.

• Instead of waiting for the ATM’s money to get depleted, the event ATM balance

is-below ATM money threshold or the event every third day can trigger actor

ATM administrator to initiate model block replenish ATM money.

• The change of state in object ATM machine can cause event ATM broken to

occur.

• Every object ATM machine is allocated to place ATM location.

188

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

(Agent)

(Action)

[Agent]

[Action]
(Agent)

(Thing)

[Patient]

(Agent)

(Thing)

[Instrument]

(Institutional Agent)

[Location]

(Location)

(Agent)

[Source]

[Route]

(Conceptual
Thing)

[Speed]

(Conceptual
Thing)

[Duration]

(Conceptual
Thing)

(Agent)

[Direction]

 [Frequency]

(Conceptual
Thing)

[Timepoint]

(Conceptual
Thing)

(Institutional or
Human Agent)

[Interested
Party /

Beneficiary]

[Receiver]

(Institutional or
Human Agent)

[Company]

(Institutional or
Human Agent)

Predicate Entities Object EntitiesSubject Entities

Basic

Location

Time-related

Stakeholder

Figure 7-9: Role entities related to their corresponding base entities

In the next two sections, the main predicate role entities, action and relationship, are

discussed in more detail.

Note: Base entities are given in brackets and italics while role entities are

given in square brackets and bold.

189

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

7.3.3.2 Action

(a) Overview

The base entity act (e.g. withdraw) is the singular verb providing the predicate for the

role entity action (e.g. client withdraws money) or event (e.g. when client withdraws

money). Therefore a complete modelling phrase is needed to describe an action, and

this is the subject of this section.

Verbs include any action that can be done by humans, such as walk, sort, write,

withdraw money and apply for leave; any action that can be done by a computer

system, like print statement and save client details; as well as any action that can be

done by an organisation, like grant credit, create policy and appoint employees.

In business terms, verbs can be any of the functions of the enterprise, e.g. general

management, purchasing, production, marketing, finances, human resources,

information and public relations; the conversion processes of input, processing and

output (e.g. taking raw material and creating a finished product); any services

provided by an organisation; and the basic processes of extraction (agriculture and

mining), manufacturing, transport, warehousing, services, provision (wholesale and

retail).

In computer and programming terms, actions are related to the control structures

defined by structured programming: sequence, selection (IF and CASE), repetitions

(any loops) and modules (functions and subroutines). It is also related to concurrently

running programs or threads.

Transactions are specific types of actions performed on information where all of the

constituent actions must execute successfully as a single unit of work, or none must

take place. If any constituent action fails, all actions already executed must be rolled

back. Transactions must be atomic (seen as one unit), consistent (will not leave

system in an illegal state), isolated (changes by other transactions must not influence

this one) and durable (results of committed transactions must survive permanently).

190

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

An action can have three possible outcomes (following the BPMN technique (OMG,

2009:62–63)):

• Successful completion

• Failed completion cancelled: The activities inside the action will be subjected to

the cancellation actions, which could include rolling back the process and

compensation for specific activities.

• Hazard: This means that something went terribly wrong and that a normal

success or cancel is not possible. The activity is interrupted with no rollback and

without compensation.

Some activities produce complex effects or specific outputs. If the outcome is

determined to be undesirable by some specified criteria (such as an order being

cancelled), then it will be necessary to “undo” the activities. There are three ways in

which this can be done:

• Restoring a copy of the initial values for data, thereby overwriting any changes.

• Doing nothing (if nothing has changed because the changes have been set aside

until a confirmation).

• Invoking activities that undo the effects, also known as compensation. For

example, an action that charges a buyer for some service and debits a credit card

usually needs a separate activity to counter the effects of the initial activity.

(b) Components

At the highest level is a group of actions, combined in a model block, consisting of a

set of action-related model phrases and sentences (i.e. the predicate role entities

events, conditions and actions). For instance, all the processes in run payroll process

form a model block, which can be divided into specific actions like system calculates

deductions. See Figure 7-10.

191

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Model Block

Action

Figure 7-10: The composite relationships between actions

Executable model blocks can be initiated or triggered by some event. Then it

corresponds closely to a use case in UML. Executable model blocks are normally

named in one of two ways:

• With a verb followed by some object (noun) and other descriptive phrases

(optional), for instance the following:

- Place order (when the event is client phones in)

- Handle late returns (when the event is expected return date-time occurred

without any return)

- Conduct interview (when event is time for interview occurred)

• With a noun representing the object, followed by a noun made from the

corresponding verb, for instance the following:

- VAT calculation (when the event is stored module called by another action).

In model blocks, actions follow other actions mostly sequentially, but also with

decision, repetition and concurrency structures creating alternative paths. Actions are

normally not named, but sometimes numbered if there is a need to refer to a specific

action.

(c) Categories

Some of the categories into which actions can be placed are as follows:

192

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

• Automated actions are completely executed by some device or information

system.

• Semi-automated actions are done by humans with assistance from some device or

information system.

• Manual actions are executed entirely by humans.

The concept of action in this model includes all related action types like processes,

functions, activities, procedures and use cases.

(d) Properties

Transformation actions can have two meanings. Firstly, it means transforming an

entity from one state to another, e.g. washing a car and training people. Secondly, it

means assembling something. Here a new entity “emerges” when a number of

constituent entities are organised together, for instance, mixing the ingredients of a

cake, setting up a project team and assembling a car from its parts.

Transformation actions have the following fundamental properties:

• The characteristic input identifies the fundamental entities that undergo the

transformation. In assembling the input, entities are the “ingredients” of the output

entity, and then a quantity and unit-of-measure must also be provided, e.g. 3 kg

flour.

• Every input has an input type that identifies what sort of entity the input is. Input

type can be any one of the modelling constructs identified (agent, thing, action,

location, event).

• The characteristics state before and state after identify the state of the output

entity before and after the action.

• The output indicates the resultant entity after the transformation. Note: the

combination of the properties action and output typically provides the name of

the action, e.g. bake cake, train people, wash car, produce report.

• The output type identifies what sort of entity the output is. Output type can be

any one of the morphological constructs identified (agent, thing, action, location,

event).

193

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Examples of non-assembling transformation actions and their properties are as

follows:

 Example
Property

1 2 3
Wash car Train people Produce report

Input Car, water,
detergent

People Transaction
information

Input type Physical thing Human agent Information
State before Dirty Untrained Unsummarised
State after Clean Trained Summarised
Output Car (same thing) People (same agent) Monthly report
Output type Physical thing Human agent Information
Tools and
material

Cleaning material Whiteboard,
stationery

Calculator,
computer

Instructions/
rules

Washing
instructions

Training procedures Monthly report
procedure

Participating
agents

Washer Trainer Manager

Locations Wash area Classroom Manager’s office
Events Operation time,

drying time
Course schedule,
registration period

Month-end, report
deadline

The first example can be represented with the following model sentence:

Subject Predicate Operator Qualification Complement
Washer Washes Car

Using Cleaning material
Following Washing instructions
In Wash area

Examples of assembling transformation actions and their properties are as follows:

Example
Property

1 2 3
Bake cake Set up project team Assemble car

Input Ingredients
• Flour, 1 kg
• Milk,

500 ml
• Sugar,

50 mg

Staff
• Project scope
• Project manager, 1 ea
• Business analysts, x

ea
• Systems analyst, y ea
• Developers, z ea

Parts
• Wheels, 4 ea
• Engine, 1 ea
• Body, 1 ea

Input type Physical things • Information
• Human agents

Physical things

State before Unbaked Not set up Unassembled
State after Baked Set up Assembled

194

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Example
Property

1 2 3
Bake cake Set up project team Assemble car

Output entity Cake Project team Car
Output type Physical thing Institutional agent Physical thing
Tools Oven, timer Project management

software
Physical tools,
robots

Instructions Recipe Project management
procedures

Assembly
instructions

Participating
agents

Baker, health
inspector

Project manager, project
steering committee,
stakeholders

Welders, fitter and
turners

Locations Kitchen, pantry Office Assembly line
Events Bake time,

cooling time,
mix setting

Project initiation Assembly times,
shift time

The first example can be represented with the following model sentence:

Subject Predicate Operator Qualification Complement
Baker Bakes Cake

From 1 kg Flour
500 ml Milk
50 mg Sugar

Following Recipe
In Kitchen
Using Oven

 Timer

Transport actions involve taking entities from one location and moving them to

another location. For instance, it involves moving fruit during the packaging process,

transporting passengers by bus and sending mail by post. It involves either one entity

or a number of entities that can be seen as one, like a ship container.

Examples of transport actions for physical things, informational things (which are

physical and not electronic) and human agents (who are also physical in this sense)

and their properties are as follows:

Example
Property

1 2 3
Distribute product Transport passengers Send mail

Transported entity
(input and output)

Product Passenger Mail (physical)

Entity type Physical thing Human agent Informational
thing

Location from Packaging area Suburb X Agent A’s post
office

195

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Example
Property

1 2 3
Distribute product Transport passengers Send mail

Location to Customer Suburb Y Agent B’s postal
address

Transport medium Conveyor belt,
delivery van, trains

Bus Postal vans

Instructions/rules Distribution
procedures

Municipal transport
by-laws

Postal delivery
procedures

Participating
agents

Truck drivers,
packers

Bus driver Post sorters, truck
drivers, postmen

Events Order arrival Bus schedule Daily delivery
time

The second example can be represented with the following model sentence:

Subject Predicate Operator Qualification Complement
Bus driver Transports Many Passenger

From X Suburb
To Y Suburb
Via Bus
Following Municipal transport by-laws

Examples of transport actions for conceptual things (mostly electronic) and their

properties are as follows:

Example
Property

1 2
Broadcast TV show Send email

Transported entity
(input and output)

TV show E-mail

Entity type Information Information
Location from Broadcasting towers Originating email

address
Location to Receiving TV Destination email

address
Transport medium Television signal Email network
Instructions/rules TV broadcasting

regulations
Postal delivery
procedures

Participating
agents

Satellite service
provider

Sender, service
providers

Events TV show published
broadcast times

Email failure
(causing resend)

196

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

The second example can be represented with the following model sentence:

Subject Predicate Operator Qualification Complement
Sender Sends E-mail

From Originating email address
To Destination email address
Via Email network
Involving Service providers

Transport or distribute can also be interpreted as arranging entities. For instance,

arrange products on the shelves, sort fish and pack new library books. Fundamentally,

it means moving many entities from one place to another using some sort of

arrangement category, e.g. by size, by price or by type.

Examples of arranging actions (physical things) and their properties are as follows:

Example
Property

1 2 3
Arrange products Sort fish Pack library books

Arranged entity
(input and output)

Products Fish Library books

Arranging category By product
categories

By type and size By Dewey category
and author name

Entity type Physical thing Physical thing Information
Location Display shelf

position
Market, sorting
tables and baskets

Library shelf position

Instructions Packing
instructions

Sorting procedure Dewey system
manual

Participating
agents

Packer Sorter Librarian

Events Display shelves
empty, product
delivery, shelves
become
unorganised

Daily market times New book arrival

The third example can be represented with the following model sentence:

Subject Predicate Operator Qualification Complement
Librarian Packs Library book

At Library shelf position
Using Dewey system manual
By Dewey category
 Author name
On New book arrival

197

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Examples of arranging actions on conceptual things and their properties are as

follows:

Example
Property

1 2
Arrange fields on display screen Sort names

Arranged entity
(input and output)

Textboxes, labels, buttons and
other screen control

Names

Entity type Information Information
Arranging category Typical HCI standards, left to

right, top to bottom
By surname,
then name
both
ascending

Location On display screen (relative
position)

In
spreadsheet
cells A1 –
B354
(relative
position in
list)

Instructions Arranging instructions Sorting
instructions

Participating
agents

Screen designer Spreadsheet
user,
spreadsheet
software

Events Screen design Name
received

The second example can be represented with the following model sentence:

Subject Predicate Operator Qualification Complement
Spreadsheet user Sorts Many Name

By Ascending Surname
Then by Ascending Name
From A1 Cell
To B354 Cell
Using Spreadsheet software
Following Sorting instructions

Storing or housing actions means taking entities and keeping and maintaining them in

a specific location.

198

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Examples of storing actions (for physical entities) and their properties are as follows:

Example
Property

1 2 3
House prisoners Store medicine Store books

Stored entity Prisoners Medicine Books
Entity type Human agent Physical thing Informational thing
Storage location Prison, cells Pharmacy’s

storeroom, shelf
position

Library shelves

Entry event When prisoner
arrives with valid
documentation

When valid delivery
is received from
supplier

When ordered books
arrive

Exit event When valid release
authorisation is
received

When valid
dispensing
instructions are
received, when
medicines have
expired

When valid book
lending takes place,
when book is sent to
another library or
when book is written
off

Maintenance rules Prisoners have
varying rights, e.g.
visitation

Certain medicines
must be kept
refrigerated, or
locked

Book pages and
covers are restored
when damaged

Instructions/rules Prison rules and
regulations

Medical rules and
regulations
concerning
medicine

Library rules and
regulations

Participating
agents

Wardens, parole
officers

Pharmacist Librarian

Other events Sentence length,
prisoner becomes
sick or dies

Expiry date,
medicine damaged

Book damaged

The second example can be represented with the following model sentence:

Subject Predicate Operator Qualification Complement
Pharmacist Stores Medicine

In Store room
On Shelf
Until Expiry date
Following Medicine storage regulations

199

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Examples of storing actions for conceptual entities and their properties are as follows:

Example
Property

1 2
Register client Archive reports

Stored entity Client information Report
Entity type Information Information
Storage location Sales database, client

table
Archive database

Create rules If user has necessary
create authorisation
and client information
is valid, then create
record

When report older than
1 year, archive

Read rules If user has necessary
read authorisation,
then read client record

If user has necessary
read authorisation, then
read archived report

Update rules If user has necessary
update authorisation
and client information
is valid, then update
record

N/a

Delete rules If user has necessary
delete authorisation
and client balance = 0,
then delete or archive
record (note: archive =
logical delete)

If user has necessary
delete authorisation or
archived report older
than 10 years, then
delete archived report

Instructions CRM rules Archiving rules
Participating
agents

Client, user, CRM
system

User, archiving system

Events Client registers, client
changes any info

Archive expiry times

The first example can be represented with the following model sentence:

Link Subject Predicate Operator Qualification Complement
If User has Create authorisation
Then User Register Client

In Client database
To Suburb
Using CRM system
Following CRM rules

Exchange actions means swapping one entity (agent, thing, location) for something of

value (thing, specifically money – an informational thing).

200

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Examples of exchange actions and their properties are as follows:

Example
Property

1 2 3
Buy plot Rent video Exchange car for caravan

Entity Plot Video Car
Entity type Location Informational

thing
Physical thing

Value entity Money Money or
contract points

Caravan

Value entity type Informational thing Informational
thing

Physical thing

Participating
agents

Buyer, seller, bank,
lawyers, agents,
deeds office

Video shop,
client, shop
assistant

Car owner, caravan owner

Location Estate agent Video shop Garage
Instructions Property laws and

home loan policies
Video shop
regulations

Common law

Events Cooling off period,
offer deadline

Contract expiry Swap transaction

Control actions mean ensuring that an entity is in a certain state.

Examples of control actions and their properties are as follows:

Example

Property

1 2 3
Authorise employee
salary increase

Credit-check client Test application
program

Entity Employee salary
increase

Client Application program

Entity type Information Human agent Artificial agent
State before Not authorised Unchecked Untested
State after Authorised Checked Tested
Success criteria If performance

appraisal mark > 4
If client not black-
listed at credit
bureau

Compliance with test
script criteria

Success action
steps

Increase salary, send
letter to employee

Change client’s
credit limit, send
letter to client

Accept program

Failure action
steps

Send letter to
employee

Refer client to
management

Return program to
developer to fix
problems

Participating
agents

Employee, manager,
HR department

Client, credit
controller, credit
bureau

Developer, tester

Events Yearly salary increase
period

Credit application
by client

Testing dates in
project plan

201

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

The first example can be represented with the following model sentence:

Link Subject Predicate Operator Qualification Complement
When Is Yearly Salary increase period
If Employee

performance
appraisal
mark

Is-greater-than 4

Then Manager Authorise Salary increase
For Employee

And then Manager Send Letter
To Employee

7.3.3.3 Relationships

(a) Overview

Relationships show how different base entities are related to each other. Similarly to

actions, it takes a complete model phrase to describe a relationship. Relationships can

either be static or dynamic.

Static relationships are those that describe the state of a system before or after an

action or event has taken place. It can involve any base entity except act (an act

always involves an active verb and implied action and can therefore not be a static

relationship). It is important to realise that a static view can change after every

action/event in the system. This implies that when a static view is modelled, it will

illustrate some typical or desired state. For instance, before a factory assembles a

product, there are no relationships between any of the constituent parts. After the

assembly, the typical “bill of material” relationship (or aggregation relationship)

exists between the various parts.

Some of the types of static relationships between base entities that can be identified

are as follows:

• Association – where one entity is associated with another. For example, a client

(human actor) can have contracts (informational objects). This is mostly indicated

by the auxiliary verb has.

202

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

• Property – where one entity is the property of another entity, for example name is

a property of client.

• Instance – the relationship between a type and the instances of that type. For

example, student John with student number 234518 is an instance of type student

(human agent). Mostly indicated by the verb phrase is-a.

• Recursion – where an entity is related to itself. For example, a course

(informational object) is related to other courses as prerequisite courses. Mostly

indicated by the auxiliary verb has.

• Aggregation and composition – where one entity consists of other sub-entities.

For instance, a car (physical object) consists of an engine (physical object), a

chassis (physical object), a body (physical object) and 4 wheels (physical objects).

It has to do with breaking things down into their constituent parts. This breaking

down carries on until one has primitive entities – entities that cannot be broken

down any further. Note that this can involve entities of the same or different types.

For instance, while the car (physical object) above consists of other physical

objects, a company (institutional actor) can consist of departments (institutional

actors) but also of staff (human actors), buildings (places) and equipment

(physical objects). Composition is a “stronger” relationship than aggregation and

must also comply with the following criteria: only one entity in the relationship

represents the whole; the parts in the relationship exist only as long as the whole

exists, and the whole is responsible for creating and destroying its parts; and a part

may only belong to one whole at a time, but it can be attached to another whole

(following UML). Aggregation is mostly indicated by the verb phrase consists-of.

• Generalisation-specialisation/inheritance – where a number of entities have

commonalities in another entity. For example, student (human actor) and staff

(human actors) can both be seen as persons (human actors). Mostly indicated by

the auxiliary verb phrase is-a-type-of.

Action relationships define how actions and subactions are related to each other. Any

action group (such as a process, procedure or program) can be divided into subactions

(such as subprocesses, subprocedures and subprogram). These subactions, in turn, can

be divided into subactions until they cannot be divided any more.

203

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Action groups are mostly given specific unique names, so that they can be accessed

and used as a single unit. For instance, the Credit_Check process, the TaxCalculation

function, the Promote Employee procedure and the Traditional Bread recipe.

When actions are executed, their subactions and steps follow each other in a specific

order to achieve the desired goal of the action. This implies that there is a specific

relationship between the subactions of an action. Changing the relationships between

the subactions (without changing the subactions themselves) will change the overall

working of the action. This is called the control flow of the action. This control flow

in an action can occur in a number of ways:

• Non-concurrent execution: The execution starts at the beginning step of an

action and carries on until it reaches any of a number of possible end steps. Only

one step at a time can be executed. For example, eating a meal.

• Concurrent execution: The execution starts at the beginning step of an action

and carries on until it reaches any of a number of possible end steps. More than

one step can be executed at the same time. The action is finished when the last of

the concurrent steps are finished. For example, baking a cake (while base is

baking, the chef makes the icing), running a project (many actions can be

performed by different members at the same time).

• Event-driven execution: Any of the above two types of executions can take

place. While it is executing normally, an external event can stop the normal flow

and jump the control to specific actions based on the type of event. For example, a

long printing job can be cancelled (the cancel instruction is an external event to

the printing, stopping the normal printing steps and executing the stop printing

steps).

The control flow between action steps can be classified as follows:

• Sequence: This is where the actions follow one another in sequence.

• Jump: This is where the next action is at a totally different point in the action

flow. This point can go back to actions already executed or go to actions that have

not been executed. The action that is jumped to must be identified in some way.

204

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

A jump is typically called a go to in programming, but exit structures, which jump

out of a loop or module before it reaches the end, are also jumps. For example,

“go to step 245”, “jump to the next paragraph” and “go and read the last page of

the chapter”.

• Decision: This is where a condition can cause the flow to go onto two or more

paths, depending on the value of the condition. In programming this is typically

called if… then… else or case. For example, “if it is raining, use a wet barometer,

otherwise use a dry barometer”; and “if your marks are above 75, your code is

‘A’, if between 50 and 75 your code is ‘B’, if below 50 your code is ‘C’”.

• Repetition: This is where a number of actions are executed repeatedly for a

certain number of repetitions, while a certain condition is true or until a certain

condition becomes true. In programming, this is typically called for, do while or

loop until. For example, “give the chair four coats of paint”; “while you still feel

strong, run” (otherwise walk); and “bake the bread until the crust is light brown”.

• Action calling: An action is a group of action steps and can be named and

executed as if they are one action step. In programming, functions, procedures,

subroutines and methods are actions.

• Recursion: This is action calling but where an action calls itself during its

execution.

(b) Properties

Most relationships are binary (but can be extended to n-ary).

• Entity 1 … n: The morphological entities taking part in the relationship

• Relationship main type: Static or dynamic relationship

• Cardinality: The number of entities taking part in the relationship. Each

relationship has cardinality. Typical cardinalities are one-to-one, one-to-many and

many-to-many

• Mandatory/optional: Indicates if the entities involved in a relationship are

mandatory or optional for the relationship. For instance, a client does not have to

have contracts (i.e. it is optional), but a contract must have a client.

205

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

(c) Links to other base entities

Typical actor relationships are as follows:

Relationship Typical pattern Relationship type
Contract Actor 1 has contract with Actor 2 Association
Agency/
membership

Institutional actor/artificial actor consists-of
actors

Composition

Responsibility Actor 1 has responsibility/obligation
towards Actor 2 to-do action

Association

Commitment Actor 1 has-commitment-with Actor 2 to-do
action

Association

Obligation/duty Actor 1 has-obligation-to Actor 2 to-do
action

Association

Delegation Actor 1 has-authority-from Actor 2 to-do
action

Association

Beneficiary/
customer

Actor is-beneficiary-of action Association

Actor/executor Actor is-actor-of action Association
Initiator Actor is-initiator-of action Association
Authorisation Actor is-authorised-to-do action Association
Prohibition Actor is-prohibited-from-doing action Association
Source Actor is-input-provider-to action Association
Destination Actor is-output-receiver-from action Association
User Actor is-user-of thing Association
Creator Actor is-creator-of thing Association
Controller Actor is-controller-of thing Association
Perceiver Actor is-perceiver-of event Association
Claim Actor has-claim-on event Association
Located Actor is-located-at location Association
Owner Actor is-owner-of location/actor/thing/

action
Association

206

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Typical place relationships are as follows:

Relationship Typical pattern Relationship type
Spatial
relationships

Place spatial-relationship Place 1
For example:
Place 1 is-left/right-of Place 2
Place 1 is-above/below Place 2
Place 1 is-behind/in-front-of Place 2
Place 1 is-inside/outside Place 2
Place 1 is-far/near Place 2
Place 1 is-touching Place 2

Association

Agent/action/thing/place is-located-at place Association
Subplace Place 1 is-divided-into/consists-of Place 2,

… , Place x
Composition

Containment Place 1 contains agent/action/thing Association

Typical object relationships are as follows:

Relationship Typical pattern Relationship type
Relation Object is-related-to object/action/agent Association
Classification Object is-a-type-of/is-a object Inheritance
Instance Object is-an-instance-of object Instance
Composition Object consists-of object

Object is-part/component-of object
Composition

Stuff Object is-stuff-of object Composition
Portion Object is-portion-of object Composition
Membership Object is-member-of object Composition

7.3.3.4 Conditions

Conditions are used in many of the action control structures discussed above. They

will always either be true or false. Conditions have the following elements:

• Operands: The things compared

• Relational operators: These operators are used to compare the operands. The

operators are typically is equal to, =, is not equal to, <>, is greater than, >, is less

than, <, is greater or equal to, >=, is less than or equal to, <=.

• Logical operators: These operators combine operands together. The operators

typically are: not, and, or, xor, andalso, and orelse.

207

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

• Arithmetic operators: If operands are numeric, they can be combined with other

numeric operands. The operators typically are plus, +, minus, -, multiply, x, divide,

/, integer divide, \, modulus, to the power of.

• Brackets: Brackets are used to enforce certain precedence. If brackets are not

used, a default precedence will be used.

• Functions: Functions take input parameters and produce a specific answer. In

calculating the truth value of the condition, the answer returned by the function is

used. The available functions depend on the specific situation in which the

condition is used, like the programming language, spreadsheet type and database

type. Examples of functions are Sin(x), Cos(x), Max(x1 .. xn), Log(y),

DateDiff(Date1, Date2), NPV(rate, value1, value2), Today(), Average(x1 .. xn),

IsNumeric(x).

Examples of conditions are the following:

• (Gross salary - tax) x rebate > 100

• NOT IsNumeric(x)

• Sin(x) + Cos(x) <= 0

• EOF = True (end of file is reached)

7.3.3.5 Role entity analysis

The role value of any entity is given by a combination of factors. The role value of an

entity can be given by the meaning and lexical type of the word that describes the

entity. For instance, the verb “sing” shows dynamic action, while the verb “sit” shows

passive keeping of a position. The use of auxiliary verbs indicates in many cases a

relationship or state and not an action, for instance, “the store is insured” and “the

store has five rooms”.

The role value of an entity can also be given by categories of words. It implies that

when an analyst encounters a word or combination of words implying a concept like

transport, certain questions can be asked as a rule, such as what is transported, from

208

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

whom (the source), to whom (the destination), to where (location), via which route

(path), using which transport medium (instrument)?

To illustrate how this type of analysis can be done, a number of examples will be

given and analysed using the base entities as well as the role entities, and then these

will be discussed. The base entity analysis is shown in brackets and italics, e.g.

(Physical thing), while the role entity analysis is shown in square brackets and bold,

e.g. [Instrument].

Example 1 (see Table 7-6) below is a transformation action (a transformation or

process action transforms one entity into another one). In this example, car parts are

transformed into cars.

Subject Predicate Operator Qualification Complement
Car manufacturer
(Institutional actor)
[Agent]

Builds
(Act)
[Action]

 Car
(Physical object)
[Patient]

From Car parts
(Physical object)
[Patient]

In Many Factory
(Institutional actor)
[Company]

In Many City
(Conceptual object – place)
[Location]

Using Many Robot
(Artificial actor)
[Instrument]

Table 7-6: Base and role entity analysis, Example 1

Example 2 (see Table 7-7) below is a move action (a move or distribute action moves

an entity from one location to another). In this example, parcels are transported from

the USA to South Africa. Words indicating transport, like “send”, “move” and “drive”

in a sentence are many times followed by the prepositions “to” and “from” (and

sometimes “via”) or equivalents. The meaning is transporting something from one

place to another place on some sort of route.

209

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Subject Predicate Operator Qualification Complement
DHL USA
(Institutional actor)
[Agent]

Sends
(Act)
[Action]

 Parcel
(Physical object)
[Patient]

Involving SA Parcels Company
(Institutional actor)
[Company]

From DHL USA client
(Institutional/human actor)
[Source]

To DHL SA client
(Institutional/human actor)
[Destination]

In South Africa
(Place)
[Location]

Via Dubai route
(Conceptual object)
[Path]

Every

Day
(Conceptual object – time)
[Time duration]

During Working Hours
(Conceptual object – time)
[Time duration]

Table 7-7: Base and role entity analysis, Example 2

Example 3 (see Table 7-8) below is a store or house action. In this example, new

library books are stored.

Subject Predicate Operator Qualification Complement
Librarian
(Human actor)
[Agent]

Stores
(Act)
[Action]

 New Book
(Informational object)
[Patient]

On Shelf
(Physical object)
[Location]

According to Dewey classification system
(Conceptual object)
[Manner]

At 50 Books
(Institutional/human actor)
[Destination]

Per Hour
(Conceptual object – time)
[Duration]

Table 7-8: Base and role entity analysis, Example 3

210

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Example 4 (see Table 7-9) below is an exchange action. In this example, second-hand

cars are sold.

Subject Predicate Operator Qualification Complement
Client
(Institutional actor)
[Agent]

Buys
(Act)
[Action]

 Second-hand car
(Physical object)
[Patient]

For Selling price
(Conceptual object)
[Patient]

At Dealership
(Institutional actor)
[Company]

Table 7-9: Base and role entity analysis, Example 4

Example 5 (see Table 7-10) below is an example of a business rule. It indicates the

operational hours of a bank.

Subject Predicate Operator Qualification Complement
Bank branch
(Institutional actor)
[Zero]

Is open
(relation)
[Relationship]

On Working Days
(Conceptual object – time)
[Time point]

From Opening Hour
(Conceptual object – time)
[Time point]

To

Closing

Hour
(Conceptual object – time)
[Time point]

Opening -- Hour
(Conceptual object –
time)
[Zero]

Has-value 09:00

Closing -- Hour
(Conceptual object –
time)
[Zero]

Has-value 16:00

Week day
(Conceptual object –
time)
[Zero]

Has-value-
domain

From Monday
To Saturday

Table 7-10: Base and role entity analysis, Example 5

7.4 Conclusion

In this section, the integrative modelling technique developed as part of this research

was explained in more detail. In summary, it consists of the following three levels of

modelling entities:

211

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

• Base entities (the words of the modelling language), representing the real-world

objects in the organisation and IS:

- Human, institutional and artificial actors (intelligent things) that can act and

make decisions.

- Physical, conceptual (information, place and time) and informational objects

(non-intelligent things).

- Dynamic acts that actors can perform on objects and other actors.

- Static relations between objects, between actors and between objects and

actors.

• Structure entities, combining base entities and specific language constructions to

form the phrases, sentences, models and views of the modelling language:

- Model phrases are formed from the basic structure entities: link, subject,

predicate, complement operator, complement qualifier and complement.

- Model sentences are one or more model phrases that are linked together.

- Named model blocks are groups of model phrases and sentences.

- Models represent all available information on the real-world situation.

- Model views represent one or more specific aspects of a model.

• Role entities: The roles and meanings all the other entities play in the modelling

situation. The entities can be grouped as follows:

- Subject roles of agents and zero

- Predicate roles of events, conditions, actions and relationships

- Basic, object-related, location-related, time-related and stakeholder-related

complement roles

It should be clear that only three of the linguistic levels have been used. Although the

pragmatic level of linguistics can add a lot to the usability of this modelling technique,

it will only be considered in further research. In short, the structure of typical human-

computer discourses can be developed as patterns of specific model phrases and

212

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

sentences. For instance, entering data will always involve a set of model phrases

doing data validation first.

This modelling language aims to be easy to use by non-technical business users

(being as close as possible to natural language), but at the same time to be expressive

enough (by formalising the language with “just enough” structure) so that it can be

translated to ISD modelling mostly procedurally (i.e. following a set of instructions

without any need to do first-level analysis again). These requirements are evaluated in

the next chapter.

213

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Part 1

Introduction

Part 2
Literature review

Part 3
Research

Part 4

Conclusion

Part 5

Supporting
information

Chapter 1
Introduction

Chapter 2
Theoretical
foundations

Chapter 3
Business rules

Chapter 4
Part-whole

relationships

Chapter 5
Linguistic analysis of

ISD modelling

Chapter 6
Research approach

Chapter 7
The proposed

integrative modelling
technique

Chapter 9
Conclusion

Bibliography

Chapter 8
Demonstration,

implementation and
evaluation of proposed
integrative modelling

technique

Appendix A
Derivation of proposed
integrative modelling
technique

8. Demonstration, implementation and evaluation of

proposed integrative modelling language

8.1 Introduction
8.2 Case study
8.3 Evaluation per perspective
 8.3.1 Perspective 1 – Business rules
 8.3.2 Perspective 2 – ISD modelling
 8.3.3 Perspective 3 – Requirements

modelling using use cases
8.4 Implementation of the technique as

software
8.5 Linking the integrative technique back

to existing ISD techniques
8.6 Conclusion

214

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

8.1 Introduction

The proposed integrative modelling technique is demonstrated and evaluated from a

number of different perspectives to ensure that it actually can achieve its purpose of

filling the gap between business and ISD modelling.

In section 6.4.2, the design objectives of this study were clearly stated. Therefore, for

each of the following perspectives, the criterion for success must be that the technique

is easy to use for a non-technical domain expert, but have enough expressive power

so that it can be used to derive detailed ISD models.

• The business rules perspective ensures that the modelling technique can model

any business rule (or any other rule for that matter). Business rules have been

discussed in Chapter 3 in detail. In summary, business rules are either terms, facts,

constraints (action assertions) or derivations, and the integrative modelling

technique must be able to model all of these types of business rules.

• The ISD perspective ensures that the integrative modelling technique can be used

to model any business aspect of ISD through all the phases of a typical SDLC.

For the sake of this study, the following phases are assumed for a typical SDLC:

requirement analysis, system design, application and program design, testing and

implementation. Business modelling is applicable specifically to the phases of

requirement analysis and user acceptance testing.

• The requirements perspective ensures that the most commonly used requirement

modelling tool, use cases, can be modelled using the integrative technique.

8.2 Case study

The following case study is an extract of a bigger case study found in the Business

Rules Group’s document on business rules (Hay and Healy, 2000:D1–D8). They

developed the case study together with a number of companies, specifically to cover

all possible types of business rules. The case study is of such detailed information that

it can also be used to illustrate how to analyse it with the purpose of developing an IS

from it. The case study involves a car rental company called EU-Rent. For the

purpose of referencing source statements in the case study, every sentence/paragraph

215

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

in the case study has been numbered in the version below, unlike the original case

study.

Case study: EU-Rent car rentals

1. EU-RENT car rentals
1.1.1 EU-Rent is a car rental company owned by EU-Corporation. It is one of

three businesses – the other two being hotels and an airline – that each
has its own business and IT systems, but with a shared customer base.

1.1.2 Many of the car rental customers also fly with EU-Fly and stay at EU-
Stay hotels.

2. EU-RENT business

2.1.1 EU-Rent has 1 000 branches in towns in several countries.At each
branch, cars, classified by car group, are available for rental. Each
branch has a manager and booking clerks who handle rentals.

2.2 Rentals
2.2.1 Most rentals are by advance reservation; the rental period and the car

group are specified at the time of reservation. EU-Rent will also accept
immediate (“walk-in”) rentals if cars are available.

2.2.2 At the end of each day, cars are assigned to reservations for the following
day. If more cars have been requested than are available in a group at a
branch, the branch manager may ask other branches if they have cars
they can transfer to him/her.

2.3 Returns
2.3.1 Cars rented from one branch of EU-Rent may be returned to a different

branch. The renting branch must ensure that the car has been returned to
some branch at the end of the rental period. If a car is returned to a
branch other than the one that rented it, ownership of the car is assigned
to the new branch.

2.4 Customers
2.4.1 A customer can have several reservations, but only one car rented at a

time. EU-Rent keeps records of customers, their rentals and bad
experiences, such as late returns, problems with payment and damage to
cars. This information is used to decide whether to approve a rental.

3. EU-RENT BUSINESS RULES

3.1 External constraints
3.1.1 Each driver authorised to drive the car during a rental must have a valid

driver’s licence.
3.1.2 Each driver authorised to drive the car during a rental must be insured to

the level required by the law of each country that may be visited during
the period of rental.

3.1.3 Rented cars must meet local legal requirements for mechanical conditions
and emissions for each country that may be visited during the period of
rental.

3.1.4 Local tax must be collected (at the drop-off location) on the rental charge.

216

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3.2 Rental reservation acceptance
3.2.1 If a rental request does not specify a particular car group or model, the

default is group A (the lowest-cost group).
3.2.2 Reservations may be accepted only up to the capacity of the pickup

branch on the pickup day.
3.3.3 If the customer requesting the rental has been blacklisted, the rental must

be refused.
3.3.4 A customer may have multiple future reservations, but may have only one

car at any time.
3.3 Car allocation for advance reservations
3.3.1 At the end of each working day, cars are allocated to rental requests due

for pickup the following working day. The basic rules are applied by a
branch:
3.3.1.1 Only cars that are physically present in EU-Rent branches may

be assigned.
3.3.1.2 If a specific model has been requested, a car of that model should

be assigned if one is available. Otherwise, a car in the same
group as the requested model should be assigned.

3.3.1.3 If no specific model has been requested, any car in the requested
group may be assigned.

3.3.1.4 The end date of the rental must be before any scheduled booking
of the assigned car for maintenance or transfer.

3.3.1.5 After all assignments in a group have been made, 10% of the
group quota for the branch (or all the remaining cars in the
group, whichever number is lower) must be reserved for the next
day’s walk-in rentals. Surplus capacity may be used for
upgrades.

3.3.1.6 If there are not sufficient cars in a group to meet demand, a free
one-group upgrade may be given (i.e., a car of the next higher
group may be assigned at the same rental rate) if there is
capacity.

3.3.1.7 Customers in the loyalty incentive scheme have priority for free
upgrades.

3.4 Walk-in rentals
3.4.1 The end date of the rental must be before any scheduled booking of the

assigned car for maintenance or transfer.
3.4.2 If there are several available cars of the model or group requested, the

one with the lowest mileage should be allocated.
3.5 Handover
3.5.1 Each driver authorised to drive the car during a rental must be over 25

and must have held a driver’s licence for at least one year.
3.5.2 The credit card used to guarantee a rental must belong to one of the

authorised drivers, and this driver must sign the rental contract. Other
drivers must sign an “additional drivers’ authorisation” form.

3.5.3 The driver who signs the rental agreement must not currently have a EU-
Rent car on rental.

3.5.4 Before releasing the car, a credit reservation equivalent to the estimated
rental cost must be made against the guaranteeing credit card.

3.5.5 The car must not be handed over to a driver who appears to be under the
influence of alcohol or drugs.

217

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3.5.6 The driver must be physically able to drive the car safely – must not be
too tall, too short or too fat; if disabled, must be able to operate the
controls.

3.5.7 The car must have been prepared — cleaned, full tank of fuel, oil and
water topped up, tires properly inflated.

3.5.8 The car must have been checked for roadworthiness — tire tread depth,
brake pedal and handbrake lever, lights, exhaust leaks, windscreen
wipers.

3.6 No-shows
3.6.1 If an assigned car has not been picked up 90 minutes after the scheduled

pickup time, it may be released for walk-in rental, unless the rental has
been guaranteed by credit card.

3.6.2 If a rental has been guaranteed by credit card and the car has not been
picked up by the end of the scheduled pickup day, one day’s rental is
charged to the credit card and the car is released for use the following
day.

3.7 Return from rental
3.7.1 At the end of a rental, the customer may pay by cash, or by a credit card

other than the one used to guarantee the rental.
3.7.2 If a car is returned to a location other than the agreed drop-off branch, a

drop-off penalty is charged.
3.7.3 The car must be checked for wear (brakes, lights, tires, exhaust, wipers

etc.) and damage, and repairs scheduled if necessary.
3.7.4 If the car has been damaged during the rental and the customer is liable,

the customer’s credit card company must be notified of a pending charge.
3.8 Early returns
3.8.1 If a car is returned early, the rental charge is calculated at the rate

appropriate to the actual period of rental (e.g., daily rate rather than
weekly).

3.9 Late returns
3.9.1 If the car is returned late, an hourly charge is made up to six hours’

delay; after 6 hours a whole day is charged.
3.9.2 A customer may request a rental extension by phone – the extension

should be granted unless the car is scheduled for maintenance.
3.9.3 If a car is not returned from rental by the end of the scheduled drop-off

day and the customer has not arranged an extension, the customer should
be contacted.

3.9.4 If a car is three days overdue and the customer has not arranged an
extension, insurance cover lapses and the police must be informed.

3.10 Car maintenance and repairs
3.10.1 Each car must be serviced every three months or 10 000 kilometres,

whichever occurs first.
3.10.2 If there is a shortage of cars for rental, routine maintenance may be

delayed by up to 10% of the time or distance interval (whichever was the
basis for scheduling maintenance) to meet rental demand.

3.10.3 Cars needing repairs (other than minor body scratches and dents) must
not be used for rentals.

3.11 Car purchase and sale
3.11.1 Only cars on the authorised list can be purchased.

218

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3.11.2 Cars are to be sold when they reach one year old or 40 000 kilometers,
whichever occurs first.

3.12 Car ownership
3.12.1 A branch cannot refuse to accept a drop-off of a EU-Rent car, even if a

one-way rental has not been authorised.
3.12.2 When a car is dropped off at a branch other than the pick-up branch, the

car’s ownership (and, hence, responsibility for it) switches to the drop-off
branch when the car is dropped off.

3.12.3 When a transfer of a car is arranged between branches, the car’s
ownership switches to the “receiving” branch when the car is picked up.

3.12.4 In each car group, if a branch accumulates cars to take it more than 10%
over its quota, it must reduce the number back to within 10% of quota by
transferring cars to other branches or selling some cars.

3.12.4 In each car group, if a branch loses cars to take it more than 10% below
its quota, it must increase the number back to within 10% of quota by
transferring cars from other branches or buying some cars.

8.3 Demonstration and evaluation per perspective

8.3.1 Perspective 1: Business rules

8.3.1.1 Terms

Terms are descriptions of words or phrases with specific meaning to the organisation

(section 3.3). The proposed technique can represent terms as follows:

Example 1 – Term

Original source statement

2.2.1 Most rentals are by advance reservation; the rental period and the car group

are specified at the time of reservation.

Modelled statements

No Ref Link Subject Predicate Operator Qualification Object - Complement

Advance Reservation is-defined-as "A reservation where the
rental period and the car
group are specified at the
time of reservation."

Advance Reservation is-a-type-of <<Action>>
Two statements are needed to define any term. The first describes its definition and

the second its type in terms of the modelling entities described in the previous chapter.

219

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Optional terms can be added to describe aliases as needed, for instance (not in original

case study, just for illustration):

No Ref Link Subject Predicate Operator Qualification Object - Complement

Pre-reservation is-alias-of Advance Reservation

Graphical representation

Is-a-type-of <<Action>>

Is-defined-as

"A reservation where the
rental period and the car
group are specified at the

time of reservation."

has-alias-of Advance
Reservation

Rental Reservation

Example 2 – Term

Original source statement

1.1.1 EU-Rent is a car rental company owned by EU-Corporation. It is one of three

businesses – the other two being hotels and an airline – that each has its own business

and IT systems, but with a shared customer base.

Modelled statement

No Ref Link Subject Predicate Operator Qualification Object - Complement

EU-Corporation is-defined-as "The holding company for
three companies in the car
rental, hotel and airline
business"

EU-Corporation is-a-type-of <<Institutional Actor>>

220

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Graphical representation

Is-a-type-of <<Institutional
Actor>>

Is-defined-as

"The holding company for
three companies in the car

rental, hotel and airline
business"

EU-Corporation

8.3.1.2 Facts

Facts are the relationships between two or more terms (section 3.3). The proposed

technique can represent facts as follows:

Example 3 – Facts

Original source statement

2.2.2 ... the branch manager may ask other branches if they have cars they can

transfer to him/her. (Implied from this: Rental branch manager is a type of employee.)

Modelled statement

No Ref Link Subject Predicate Operator Qualification Object - Complement

Rental Branch
Manager

is-a-type-of Employee

Graphical representation

Is-a-type-of EmployeeRental Branch
Manager

Example 4 – Facts

Original source statement

3.2.1 If a rental request does not specify a particular car group or model, the default

is group A (the lowest-cost group). (Implied from this: A rental group is composed of

car models.)

221

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Modelled statement

No Ref Link Subject Predicate Operator Qualification Object - Complement

Rental Group consists-of 0..* Car model

Graphical representation

Consists-of Car modelRental Group
0..*

Example 5 – Facts

Original source statement

2.1.1 EU-Rent has 1 000 branches in towns in several countries. At each branch,

cars, classified by car group, are available for rental. Each branch has a manager

and booking clerks who handle rentals.

Modelled statement

No Ref Link Subject Predicate Operator Qualification Object - Complement

EU-Rent has 1000 Branch

Branch is-a-type-of <<Institutional Actor>>
Branch is-located-in Town
Town is-located-in Country
Town is-a-type-of <<Conceptual Object -

Location>>
Country is-a-type-of <<Conceptual Object -

Location>>
Branch has Many Car

Per Car Group
For Rental

Car is-a-type-of <<Physical Object>>
Car Group is-a-type-of <<Conceptual Object -

List>>
Branch has 1 Manager
Branch has Many Booking Clerk

222

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Graphical representation

has

1000

EU-Rent
<<Institutional

Actor>>

Branch
<<Institutional

Actor>>

Is-located-in
Town

<<Conceptual Object
– Location>>

Is-located-in
Country

<<Conceptual Object
– Location>>

Car
<<Physical Object>>Manyhas

Car group
<<Conceptual

Object>>

Per

For

has has

Many1

Manager <<Human Actor>> Booking Clerk <<Human Actor>>

Rental
<<Model group –

Action>>

Example 6 – Facts

Original source statement

Car models may be requested by customers.

Modelled statement

No Ref Link Subject Predicate Operator Qualification Object - Complement
Customer May Request Car model

Graphical representation

Car model(may) rent

Customer

223

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Example 7 – Facts

Original source statement

Cars may be rented by customers.

Modelled statement

No Ref Link Subject Predicate Operator Qualification Object - Complement

Customer (May) Rent Car

Graphical representation

Car(may) rent

Customer

8.3.1.3 Constraints or action assertions

Example 8 – Constraint

Original source statement

A car must have a registration number.

Modelled statement

No Ref Link Subject Predicate Operator Qualification Object - Complement

Car Has Registration Number

Graphical representation

Registration NumberhasCar

224

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Example 9 – Constraint

Original source statement

A car cannot be handed over to the customer unless a provisional charge has been

accepted against the customer’s credit card.

Modelled statement

No Ref Link Subject Predicate Operator Qualification Object - Complement
Customer has 0..* Credit Card

If <<null>> Accept Provisional charge
Against Customer.Credit Card

Then <<null>> Hand-over Car
To Customer

Graphical representation

Accept
Provisional

charge

Customer
.Credit Card

against
If

Then Hand over Car

To

Customer

has Credit Card

0..*

Customer

Example 10 – Constraint

Original source statement

In each quarter, no more than 10% of rentals should have free upgrades.

225

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Modelled statement

No Ref Link Subject Predicate Operator Qualification Object - Complement

If Free upgrade.Count is-greater-than 10%
Of Rental.Count
Per Quarter

Then Free upgrade (Not) is-allowed

Graphical representation

Is-greater-than
10%

Rental.Count

Of

If

Then (Not) is-allowed

Free
upgrade.Count

Free upgrade

Quarter

Per

8.3.1.4 Derivations

Example 11 – Derivation

Original source statement

The “rental rate” in RENTAL is inferred from the “rental rate” of the CAR of that

RENTAL, through a many-to-one relationship. This, in turn, is inferred from the

“rental rate” of the CAR GROUP that the CAR is in.

Modelled statement

No Ref Link Subject Predicate Operator Qualification Object - Complement

Rental Rate is-property-of Rental
Rental Rate is-property-of Car
Rental Rate is-property-of Car Group
Rental.Rental Rate is-equal-to Rental.Car.Rental Rate
Rental.Car.Rental
Rate

is-equal-to Car.Car Group.Rental Rate

226

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Graphical representation

Car – Car Group –
Rental RateIs-equal-toRental – Car – Rental

Rate

Rental – Car – Rental
RateIs-equal-toRental – Rental Rate

Rental RateHas-propertyCar group

Rental RateHas-propertyCar

Rental RateHas-propertyRental

Example 12 – Derivation

Original source statement

The “insurance amount” in RENTAL is calculated from the “insurance rate”

multiplied by the “number of days”.

Modelled statement

No Ref Link Subject Predicate Operator Qualification Object - Complement

Insurance Amount is-property-of Rental
Number of days is-property-of Rental
Rental.Insurance
Amount

is-equal-to Insurance Rate

times Rental.Number of days

227

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Graphical representation

Rental – Number of
days

Times

Insurance RateIs-equal-to
Rental – Insurance

Amount

Number of daysHas-propertyRental

Insurance AmountHas-propertyRental

Example 13 – Derivation

Original source statement

The “total cost” of the RENTAL is calculated from the sum of “insurance amount”,

“rental amount” and “late charge”.

Modelled statement

No Ref Link Subject Predicate Operator Qualification Object - Complement
Total Cost is-property-of Rental
Rental.Total Cost is-equal-to Rental.Insurance Amount

plus Rental.Rental Amount
plus Rental.Late charge

Graphical representation

Rental – Rental
Amount

Plus

Rental – Insurance
AmountIs-equal-toRental – Total Cost

Total CostHas-propertyRental

Rental – Late charge

Plus

228

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Example 14 – Derivation

Original source statement

The branch inventory of a car model is composed of the cars of that model owned by

the branch.

Modelled statement

No Ref Link Subject Predicate Operator Qualification Object - Complement

Branch is-owner-of 0..* Car
Car model consists-of 0..* Car
Car has-property Car model
Branch has-property QOH (Quantity on hand)

Per Car model
ForEach Car is-in-same-group Car model
And Branch is-owner-of Car
Then Branch.QOH(Car

Model)
is-equal-to Count Car

Graphical representation

Car ModelIs-in-same-groupCar

CarIs-owner-of

Car modelHas-propertyCar

CarConsists-of 0..*Car model

Branch
QOH (Quantity on

hand)Has-property

Car Model

Per

For
each

And

Branch

Is-owner-of Car

CarIs-equal-to CountBranch – QOH (Car
Model)Then

229

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

8.3.2 Perspective 2: ISD modelling

The integrative technique explained in this section can be introduced fairly easily to

non-technical users, because it is in essence just a slightly more formalised extension

of natural language. For instance, instead of allowing passive sentences, only active

sentences are permitted, sentences must always follow the basic subject-predicate-

object/complement form, and only predefined (by the users themselves) words can be

used.

The analysis of EU-Rent using this modelling technique is used to illustrate the

application of the technique to a typical ISD analysis. The application is illustrative

and not exhaustive. Two main phases can be identified: a business modelling phase

involving the business user and a systems modelling phase translating the business

model into existing ISD modelling structures.

Phase 1: Business modelling

Step 1: Identify base entities

1.1 Question to users to determine actors: Give a list of all the human individuals,

institutions and intelligent actors (like IS and smart devices) both inside and

outside your organisation with which the proposed system will interface.

Actors: Institutional
EU-Rent, car rental company, EU-Corporation, business, hotel,
airline, EU-Fly, EU-Stay, branch, renting branch, return branch,
pickup branch

Individual
Branch manager, clerk, customer, driver

Artificial
IT systems (1.1.1)

1.2 Question to users to determine objects: Give a list of physical objects (things

that you can handle and touch), informational objects (objects that store, manipulate,

input or display information on any media such as paper, spreadsheets or MSWord

documents) and conceptual objects (any classification systems, anything that

represents a place and any time-related aspect).

230

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Objects: Physical
Car

Conceptual
Town (place), country (place), car group, rental period (time), bad
experience type (e.g. late return, problems with payment or damage
to cars), pickup day (time).

Informational
Rental, transfer, advance reservation, immediate rental, bad
experience.

1.3 At this stage no questions are asked about acts/relations. They can be

determined as model sentences and phrases are developed.

Act/relations: None for now.

Step 2: Identify structure and role entities

Note that it is not really possible during analysis to do structure and role entities

separately. As you do structure entities, you will do them using the role entities as a

logical grouping to aid analysis.

2.1 Question to users to determine models: Divide the proposed system into logical

parts (according to any classification – there is no right or wrong).

Models: Customer interface model, branch management model.

2.2 At this stage, no questions will be asked about model views. But during any

stage specific views can be derived of the model to highlight just one aspect. The

following three diagrams illustrate possible object, actor and place views.

231

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

<<Object>>

<<Physical
Object>>

<<Conceptual
Object>>

<<Informational
Object>>

Is-a

Is-a Is-a Is-a

Car Car Group Reservation
Type Reservation

<<Actor>>

<<Human
Actor>>

<<Institutional
Actor>>

Is-a

EU-Rent BranchClient Booking Clerk Manager

<<Place>>

Is-a

TownCountry

232

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

2.3 Questions to users to determine model sentences and phrases (per model):

2.3.1 What are the static relationships between things (both actors and objects)?

The easiest way is to handle each type of relationship separately.

Model sentences
and phrases

Relationships Client interface model

Synonyms
Future reservation is-a-synonym-for advance reservation (3.2.4)

Inheritance
EU-Rent is-a-type-of car rental company (1.1.1)
Renting branch is-a-type-of branch (2.3.1)
Pickup branch is-a-type-of branch (2.3.1)

Aggregation
EU-Rent has 1 000 branches (2.1.1)

Association
Branch has one manager (2.1.1)
Branch has many booking clerks for rentals (2.1.1)
Customer has many advance reservations (3.2.4)

Location (special kind of association involving places)
Branch is-located-in town (2.1.1)
Town is-located-in country (2.1.1)

Ownership (special kind of association involving actors)
EU-Rent is-owned-by EU-Corporation (can also be expressed as)
EU-Corporation owns EU-Rent, EU-Fly, EU-Stay (1.1.1, 1.1.2)

Properties
Advance reservation has-properties rental period, car group
(2.2.1)

233

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Graphical representation

EU-Rent

has

Branch

has

Branch Manager

has

Booking Clerk

Is-location-for

Is-location-for

has

Car

Car GroupHas-type

has

Advance
Reservation

Future
Reservation

Is-synonym-for

EU-FlyEU-Stay

EU-Corporation

Owns

Country

Town

One Many Many

has

Many

Customer

1000

2.3.2 What are the dynamic relationships between things (both actors and

objects)? Here the standard concept of a use case is one of the best ways to define the

dynamic relationships between entities, where each use case is defined as a model

block.

234

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Model sentences
and phrases

Actions Client interface model

Assign cars to reservations (model block, see 2.2.2)
When day ends (event)
Then branch manager assigns cars to advance reservations for
following day
If (number of requested) cars is-greater-than available cars, per
car group, at branch
Then branch manager (may) request other branches for available
cars to transfer

Graphical representation

Model block: Assign cars to reservations

endsWhen

Then

Branch Manager

Assigns Cars

Advance
Reservations

to

(following)
Day

for

Is-greater-than

(Available) Cars

per

Branch Manager

(may)
Request

(other)
Branches

for

Day

If

Branch

at

Car group

(number of
requested)

Cars

Then

(available)
Cars

transfer

to

235

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

If needed, more comprehensive dynamic relationships can be created to show the

logical and causal relationships between model phrases. For instance, the model block

for rental is as follows:

Client

arrives BranchAt

Has-valueReservation.
Type

Is-available BranchCar In

Booking Clerk

rents
Car

To

If

If

Model Block: Rental

False

True

True

Advance
Reservation

Booking Clerk

rents (Reserved) Car

Then

When

Then

To

Client

Client

Phase 2: Systems modelling

Step 1: Create a data model

1.1 Identify entities/classes. Everything (intelligent and non-intelligent object)

identified is a potential entity or class.

236

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

1.2 Identify entity/class relationships. Every static relationship is a potential

entity/class relationship that can be expressed by means of an ERD or class diagram

(see Figure 8-1).

EU-Rent

EU-Corporation

Branch BranchTyoe

EU-Stay EU-Fly

TownCountry

ManagerBooking Clerk Rental Customer

Advance Reservation

 Rental Period
 Car Group

Figure 8-1: Example of class diagram developed from model

8.3.3 Perspective 3: Requirements modelling using use cases

Use case modelling has become the main formal approach (in contrast to the informal

textual approach) to specifying requirements. In spite of its many benefits, a main

problem is that the use case narrative remains fundamentally textual. This leads

inevitably to possible ambiguity, resulting in many researchers looking for ways to

overcome this problem (Yue, Briand and Labiche, 2009). This section will illustrate

that the integrative modelling technique addresses this problem adequately.

237

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

An example involving use case modelling is shown to compare and evaluate it with

the proposed integrative modelling technique. Diaz et al. (2004) provide an example

of a use case to show an ATM withdrawal transaction (see Figure 8-2 below).

Diaz et al. (2004)

Figure 8-2: Example of use case

This basic path of the use case is partially translated into the proposed integrative

modelling technique (see Table 8-1).

238

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

No Link Subject Predicate Operator Qualification Complement
1 When Client Inserts Card

In Card slot
Of ATM

2 Then ATMS Reads Code
On Magnetic tape
Of Card

3 ATMS Verifies Validity
Of Card

4 ATMS Requests Password
From Client

5 Client Introduces Digits
Of His personal Password

6 ATMS Verifies Password
Of Client

...
15 End then ATMS Ejects Magnetic card

Of Client

Table 8-1: The ATMS withdrawal use case translated into proposed technique

Graphical representation

Action: Withdraw Money

Client

Inserts Card

Card Slot

into

ATM

of

When

Then

ATMS

Reads Code

Magnetic Tape

on

Card

of

ATMS

Verifies Validity

Card

of

ATMS

Request Password

From

Client

239

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

8.3.3.1 Evaluation of use case translated into proposed technique

Before the proposed technique is evaluated, some general comments are made. This

translation attempted to reproduce the use case as literally as possible. Therefore

certain more correct ways of handling certain issues were not done. These are mostly

related to the genitive case. For instance, the statement in line 1 “Client inserts a card

in the slot of the ATM” implies that an ATM consists of a slot component. Therefore,

more correctly the statement should have been translated to “Client | Inserts | Card |

In | ATM – Slot”, instead of the given “Client | Inserts | Card | In | Slot | Of | ATM”.

Similarly, the statement in line 6 should rather be “ATMS | Verifies | Client –

Password”.

The main advantages of the translation of the use case in the proposed technique

format are as follows:

• The technique clearly distinguishes the different parts of the given statements. For

instance, from the translated use steps it is clear that there are two actors (client,

ATMS), a number of actions (e.g. insert, read, verify, request and introduce) and a

number of objects involved (e.g. card, slot, ATM, code, magnetic tape, password,

digits and type of transaction).

• The technique further directly and indirectly indicates the relationships between

many of the objects identified by means of the Complement operator and

Complement qualification columns. For instance, the preposition of in many

cases indicates a consists-of, has or ownership relationship. For instance,

statement 1 indicates that an ATM consists of a slot and statement 6 indicates that

a client has a password.

• The structure of the statements forces the analyst to determine clearly what is

really being communicated by the user. The natural language statements of use

cases can easily be ambiguous and vague, but it is a little bit easier to be more

clear and direct with the proposed technique. For instance, the distinction between

the direct object of the statement and the complementary objects and their

relationships are much clearer than with only natural language.

240

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

• The resultant actors, actions, relationships and objects can be translated into other

modelling techniques (especially class diagrams in UML) much more directly and

algorithmically than with the natural language statements. According to Liang

(2003), mapping into classes can done either by (1) identifying candidate classes

from the nouns and noun phrases used in use case descriptions or (2) checking to

see if nouns in use case descriptions fall into the so-called classic categories of

classes, such as tangible things, roles, concepts and events. The problems in

identifying classes from these methods are use cases only show one of the

scenarios, different words are used when describing the same thing, too many

candidate classes are identified and different types of classic class categories are

used by different people.

The disadvantages of the translation of the use case in the proposed technique format

are as follows:

• The technique can be considered to be more complex to use by business users than

the natural language statements of use cases. Some training needs to be done to

explain what every column means and some of the column names can cause some

users to have a mental block against its use.

8.4 Implementation of the technique as software

If the technique can be implemented by means of a software system, it will assist

tremendously with the analysis of any situation. Every one of the base entities can be

defined (see Figure 8-3 for an “add actor” example screen). A list of all actors is then

created (see Figure 8-3).

In a fully fledged system many validations can be done and help provided. For

instance, a thesaurus can warn of possible synonyms (see Figure 8-5). An ontology

(see chapter 9 for an expansion of this idea) can be developed that defines common

words in language with respect to this technique where, for instance, all human nouns

are indicated as human actors. Normal dictionary definitions of words can be provided

as a base from which to create custom definitions for terms.

241

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Figure 8-3: Example screen: “Add actor”

Figure 8-4: Example screen: “Display actors”

242

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Figure 8-5: Example screen: “Synonym warning”

Model phrases and sentences can be built from the defined base entities. One will

most probably define base entities as one defines model phrases. The example screen

(see Figure 8-6) shows that every cell (except the Predicate column) has a drop-

down, implying that one can only select actors from predefined actors, complements

from predefined objects and so on. It is important to note that certain columns’ drop-

downs will have a finite domain, while others can be added to by the user. For

instance, the list of links, operators and qualifications to choose from will be fairly

finite, while subjects and complements will be specifically defined for each situation.

In this example, predicates are left open-ended, but an ontology could be developed

that will facilitate a finite list of possible actions that can be done by a specific kind of

actor on a specific kind of object. For instance, the actions that can be done to an

informational object can be limited to most probably the following: create object,

delete object, rename object, add record, read record, edit record, delete record, sort

records, give/remove access to object or records.

Validations can specifically be done on the relationships implied by actions. For

instance, the screen in Figure 8-7 shows the typical validation that can be performed

when the relationships between two objects change.

243

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Figure 8-6: Example screen: “Model phrases and sentences”

244

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

As relationships between objects are more fully developed, the system can ensure that

previous definitions are brought in line with changes. For instance, assume that the

ATM system has up to a point defined “ATM” and “slot” as two separate physical

objects with no relationship between them. When the user then defines a consists-of

part-whole relationship between them, the system should then allow the user to

reconsider all previous uses of the two physical objects. See Figure 8-7 for an

example.

Figure 8-7: Example screen: “Relationship changes”

An information system will provide the following benefits to the analyst:

• Once a term has been defined and used once, it will be available on a drop-down

list from then onwards.

• The problem of synonyms can be addressed much better. For instance, the system

(using a thesaurus) can warn users when they type in “Customer” that “Client” has

already been defined and that a possible synonym can be created.

• At any stage, the relationships in which any modelling entity is involved can be

shown both textually and graphically to guide the analyst during the analysis, for

instance, the defining and other relationships of an advance reservation (see

Figure 8-9 for a visual display).

245

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

• Model views can be generated of the model based on any criteria, for instance,

display all actors.

Figure 8-8: Display relationships of an object – textual format

246

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Figure 8-9: Display relationships of an object – visual format

8.5 Linking the integrative technique back to existing ISD techniques

After showing that the integrative technique can handle most of the situations

involving business and ISD integration, it is also important to show that the constructs

in the technique can be related to corresponding constructs in business and ISD

modelling techniques. This will show that models in this technique can be translated

into corresponding existing techniques.

In this section, the constructs in the ISD modelling techniques (as detailed in

Chapter 7) are related to the modelling constructs of the integrative technique

developed in this study (see Table 8-2).

247

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Technique Technique main construct Corresponding integrative
modelling technique construct

ALC/OLC Agent Actor
Organisational agent Institutional actor
Agent life cycle Action
Responsibility Relationship (between agents)
Operations Action
Object Base entity
Object state Base entity (state)
Process and behavioural
perspectives

Model view

AOR Biological/human agent Human actor
Institutional agent Institutional actor
Actor actions Action (actor)
Actor relationships Relationship (actor)
Commitments, duties and rights Relationship (between actors)
Generalisation, composition Relationship (type)
Claims Event (future)
Internal/external agent Actor
Objects/entities Object
Entity properties/attributes Object (properties)

Entity type Object (types)
Social interaction process Relationships (between actors)
Non-social interaction process Relationships (between actors

and objects/artificial actors)
Reaction rule Action

ARM

Agency Institutional actor
Complex (macro) agent Institutional actor
Primitive agent Human actor
Responsibility Relationship (between actors)
Physical objects Physical object, informational

object, artificial actor, human
actor

Logical objects Conceptual object
Structural perspective Model view
Contractual relationships Relationships (between actors)
Functional and ownership
relationships

Relationships (between actors
and objects)

Object Object
Subject Subject

BPMN Business entities Institutional actor
Participant, pool, swim lane Actor
Data object Informational object
Text or graphical information Conceptual object
Business process, activity,
subprocess, tasks

Action, action step

Event Event

248

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Technique Technique main construct Corresponding integrative
modelling technique construct

Event type Event (type)
Human level and machine level
views

Model view

Flow, gateways Action relationships
DFD External entity Actor

Data store Informational object
Information Conceptual object
Material resources Physical object, artificial actor
Process Action
Input, output Conceptual object
Flow Action relationships
Types of models: current
physical, current logical,
required logical, required
physical

Model view

Context Model view
Gantt and PERT Resource Base entity

Project Action
Perspective, view Model view
Work breakdown structure Action relationships
Predecessors Action relationships
Mechanism Actor

IDEF0 Nouns or noun phrases Base entity
Software Artificial actor
Equipment, machines Physical object, artificial actor
Product Object
Raw material Physical object
Systems Artificial object
Function Action
Input, output Object, model block
Control Action, object or actor
Functional and context view Model view
Entity Actor

IDEF1 Dictionary Informational object
Physical entity Physical object, informational

object, artificial actor, human
actor

Abstract entity Conceptual object
Entity class Base entity
Key Object (property)
Information view Model view
As-is, to-be Model view (type)
Relationship Relationship
Things Base entity

249

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Technique Technique main construct Corresponding integrative
modelling technique construct

IDEF1X Relationships Relationships
Synonyms, aliases, non-standard
names.

Base entity (property)

Primary key, foreign key,
candidate key, alternate key

Base entity (property)

Domain Base entity (property)
Verbs Actions, relationships
Semantic view Model view
Relationship Relationship
Object Base entity

IDEF3 Noun or noun phrases Base entity
State condition types Base entity state (types)
Facts, constraints Relationships, action steps

Process, units of behaviour Action
Scenario Action
Objective view Model view
Link, junctions Action relationship
Kind and term Any entity

IDEF5 Essential, accidental or defining
properties

Any entity (property)

Ontology, taxonomy Conceptual object

Vocabulary, terminology Informational object
Process Action
Relations Relationship
Organisation Institutional actor

LAP Actors Actor
Actor cycle Action
Agenda Action
Actor role Action
Authorisation/delegation/
propagation

Relationship (between actors)

Production, coordination and
communication acts

Action

Transaction Action

Initiator/customer Actor (type)
Fact Base entity, action step,

relationship
Event Event

Atomic, fibre and molecular
layers

Model view

Semiotic layers Model view

Action rules Action
Agent Actor

250

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Technique Technique main construct Corresponding integrative
modelling technique construct

ODP Agent role Action
Structuring rules (obligation,
permission, prohibition)

Actions step or relationship

Artefact Object, artificial actor

Artefact role Action
Service Action
Node Place, artificial actor
Enterprise, information,
computational, engineering and
technology perspectives/
viewpoints

Model view

Role Action

RAD State Base entity (property)
Activities Actions
Trigger Event
Dynamics view Model view
Sequence Action relationship
Permission Relationship

SQL Database action Action
Database object, schema, table,
virtual table,

Informational object

Constraints Action step, relationship

Data type Informational object (property)
Action, transaction Action
Trigger Action
Database view Model view
Control-of-flow Action relationships
Customer/client/beneficiary/
victim/owner

Actor (type)

SSM Actor Actor

Transformation Action
System/subsystem Agent
Soft systems view Model view
Actor Actor

UML Object/class Base entity
Attribute Base entity (property)
Interface Informational object + action
Package Informational object
Software component Artificial actor (component)
Node Artificial actor, place
Use case Action

251

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Technique Technique main construct Corresponding integrative
modelling technique construct

Activity, operation Action
Static, dynamic, functional and
implementation view

Model view

Association Relationship

Decision Action
Zachman Who Actor

What Object
How Action
Where Place
Primitives vs. composites Relationships
Planner, owner, designer,
builder, subcontractor
perspectives

Model view

Table 8-2: Comparison between existing techniques and integrative technique

8.6 Conclusion

In this chapter, the integrative technique was evaluated using the EU-Rent case study.

The evaluation was done from three perspectives:

• The business rules perspective, which ensures that the modelling technique can

model any business rule (or any other rule for that matter).

• The ISD perspective, which ensures that the integrative modelling technique can

be used to model any business aspect of ISD through all the phases of a typical

SDLC.

• The requirements perspective, which ensures that the most commonly used

requirement modelling tool, use cases, can be modelled using the integrative

technique.

Furthermore, a software prototype was developed to illustrate how the technique can

be physically instantiated. A software implementation of the technique will give many

benefits to the users, mainly ensuring compliance with standards and validating the

analysis.

Lastly, the integrative technique was mapped to existing ISD techniques to show that

a model created with the integrative technique can be translated to existing ISD

modelling techniques.

252

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Part 4

Conclusion

253

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Part 1

Introduction

Part 2
Literature review

Part 3
Research

Part 4

Conclusion

Part 5

Supporting
information

Chapter 1
Introduction

Chapter 2
Theoretical
foundations

Chapter 3
Business rules

Chapter 4
Part-whole

relationships

Chapter 5
Linguistic analysis of

ISD modelling

Chapter 6
Research approach

Chapter 7
The proposed

integrative modelling
technique

Chapter 9
Conclusion

Bibliography

Chapter 8
Demonstration,

implementation and
evaluation of proposed
integrative modelling

technique

Appendix A
Derivation of proposed
integrative modelling
technique

9. Conclusion

9.1 Introduction
9.2 Answering the research questions
9.3 Evaluation of the research
9.4 Contribution of the research
9.5 Future research
9.6 Concluding remarks

254

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

9.1 Introduction

The goal of this study is to develop an integrative modelling technique that is easy

enough to be used by most business users with little training, but robust and structured

enough to be used in subsequent ISD modelling. “Integrative” refers to the fact that

this technique attempts to bridge the current gap between modelling on a business

level and modelling on a technical level.

The overall research methodology is design science research, using aspects of

grounded theory and linguistics as the major kernel theories. These theories are used

to develop the integrative technique and to base it on current ISD modelling

techniques and the principles and theories of language.

In this chapter, the research questions are revisited and answered in summary. Then

the research is evaluated, taking into consideration the two research approaches used,

namely the grounded approach and design science research. After that, the

contribution of the research is evaluated and possible further research based on this

study is discussed.

9.2 Answering the research questions

The problem statement of this study is:

The current modelling techniques do not bridge the gap between business and ISD.

The main research question is:

Can an integrative modelling technique be developed to bridge the gap between

business and ISD?

The underlying research questions are the following:

• Is there a gap between business and ISD that current modelling cannot fill?

• What are the fundamental constructs of any integrative modelling technique

between business and ISD?

255

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

• What are the properties and attributes of these fundamental constructs?

• What are the relationships between these fundamental constructs?

• Can it be demonstrated that the proposed technique does indeed integrate

business and existing modelling techniques better than existing business

modelling techniques?

9.2.1 Is there a gap between business and ISD that current modelling

cannot fill?

This question was answered in section 1.3.2, where it was shown that some of the

major problems with existing business modelling are the contrasting problems of

users finding formal modelling too difficult and analysts and developers finding

business models too informal, leading to ambiguity and the need to do analysis again

when translating models during ISD.

9.2.2 What are the fundamental constructs of any integrative modelling

technique between business and ISD?

The fundamental entities of business and ISD modelling can be divided into three

categories: base entities (corresponding to the morphological level in linguistics),

structure entities (corresponding to the syntactical level in linguistics) and role entities

(corresponding to the semantic level in linguistics) (see Figure 9-1).

256

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Base Entity

Actor

Thing

Time

Event

Place

Modelling Entity

Structure Entity

Link

Subject
Predicate

Complement

Role Entity

Subject Role Entity Predicate Role Entity Complement Role Entity

Agent

Zero

Source

Role

Identity

Possesor

Action Patient

Receiver
Location

Direction

Beneficiary

Class

Reference
Company Instrument

Cause

Manner
Speed

Path

Time

Reason

Quality

Model

Model Sentence
Model phrase

Model View

Object

Condition

Relationship

Model Block

Act

Relation

Figure 9-1: A high-level overview of the ISD modelling entities

The base entities are the most basic building blocks in the modelling process. They

represent the real-world objects that make up organisations and systems. In the same

way that verbs, nouns, adjectives, adverbs, pronouns and others make up the words of

natural languages, these entities form the words of the proposed modelling language.

The structure entities, like their natural language counterparts, form the model

sentences and phrases with which systems, organisations and situations can be

described. They use the base entities plus specific language constructions to form

these model sentences and phrases. A number of model sentences together form a

model. Specific subsets of the model form model views.

The role entities provide insight into the meanings of the base and structure entities.

For example, an actor can either play an agent role or patient role in a model phrase.

9.2.3 What are the properties and attributes of these fundamental

constructs?

The main properties and attributes of these constructs can be summarised as follows:

257

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Type Entity Properties and attributes Section
Base Actors • Actors can autonomously perform actions and

make decisions.
• Actors can be classified as either human,

institutional or artificial.
• Human actors are primitive entities, while

institutional and artificial entities are composite
entities.

• Actors can play various roles.
• Actors have some sort of unique identification.
• Actors normally have responsibility to perform

certain actions.
• Actors can be transformed, transported, stored,

exchanged (normally their time), and
controlled.

• Actors can perform coordination actions like
entering into commitments and complying with
commitments.

• Actors can perform various levels of
communication actions.

7.3.1.2

 Objects • Objects are non-autonomous, non-intelligent
entities.

• Objects can either be physical, informational or
conceptual.

• Place, time and information are specific types
of conceptual objects.

• Objects are composite entities.
• Physical objects can have unit of measure and

type of material as properties.
• A place always has a type of address (physical

or conceptual) and normally stores a certain
kind of entity.

• Objects can be transformed, transported,
stored, exchanged and controlled.

7.3.1.3

 Act/relation • An act is an active verb or verb phrase
describing a dynamic action.

• A relation is an auxiliary verb or verb phrase
describing a static relationship.

7.3.1.4

Structure Model • A model represents all the information
available on the situation, system or
organisation under discussion.

 Model view • Every model can have many views of it, based
on some specific aspect.

• These views are subsets of the model, showing
certain entities and ignoring others based on
the specified criteria.

• Aspects that can be considered to determine a
view are type of base entity (for instance, only
view actors), level of detail (for instance, only
show composites and no primitive entities) and
history (for example, show only the as-is, or to-

258

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Type Entity Properties and attributes Section
be or fifth version of a model).

 Model block • Model blocks are named sets of model phrases
and sentences that can be referenced and used
as single entities.

• Model blocks have names, input and output
parameters.

7.3.3.2

 Model
sentences

• Model sentences are groups of model phrases
that have some sort of relationship with each
other.

• Model sentences are formed using the link and
number entities.

• Typical relationships between model phrases
are sequence, repetition, decision and
concurrency.

7.3.3.3

 Model
phrase

• Model phrases can either be events, conditions,
actions or relationships (see predicate roles for
more information).

• Model phrases are built from Subject,
Predicate, Operator, Qualification and
Complement entities.

7.3.3.3

Role Subject roles • Subject roles identify the meanings that the
subjects of acts/relations can have.

• Subject roles are either zero or agent.

7.3.4.1

 Predicate
roles

• Subject roles identify the meanings the
predicate of acts/relations can have.

• Predicate roles can either be actions, events,
conditions or relationships.

• Actions can be the transformation,
transportation, storing, exchanging or
controlling of entities.

• Relationships between entities can either be
association, property, instance, recursion,
aggregation, composition, inheritance or
location.

• Events indicate actions that trigger other
actions.

• Conditions indicate relations between entities
that either allow or disallow actions from
taking place.

7.3.4.1

 Complement
roles

• Complement roles identify the meanings that
the complement of acts/relations can have.

• These roles can be categorised as basic, object-
related, location-related, time-related or
stakeholder-related.

9.2.4 What are the relationships between these fundamental constructs?

The relationships between these fundamental constructs are summarised below:

259

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

• The base entities thing, actor and object and their relationships are summarised

in Figure 7-2.

• The structure entities model, model view, model sentence and model phrase,

and their relationships as well as their relationships with the base entities are

summarised in Figure 7-6.

• The role entities related to their corresponding base entities are summarised in

Figure 7-9.

9.2.5 Can it be demonstrated that the proposed technique does indeed

integrate business and existing modelling techniques better than

existing business modelling techniques?

This question was answered in Chapter 8, where it was shown that from various

perspectives the integrative modelling technique can be used to adequately model

business aspects both easy enough for business users to use but expressive enough so

that it can be translated relatively easily into existing ISD techniques.

9.3 Evaluation of the research

This research is evaluated from two perspectives. Firstly, the grounded approach that

was followed to do a qualitative analysis of the data is evaluated using principles from

grounded theory. Then, the research is evaluated using the criteria set out for design

science research.

9.3.1 Grounded approach evaluation

It is important to understand that this study used grounded theory only as a way of

doing a qualitative data analysis to inform the integrative model that was developed. It

therefore does not claim to be full-scale grounded theory research. In spite of that, the

grounded theory research evaluation approaches are followed to evaluate that part of

the study where it is applicable.

260

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

The doubts raised by Glaser and Strauss (1967) on the applicability of the principles

of rigorous quantitative research as proper criteria for judging grounded theory must

be taken into account before evaluating any grounded research.

Note that in many of the evaluation questions, reference is made to existing theories.

Except for a few techniques like SSM, no specific theory of ISD modelling entities

exist per se, but most of the ISD modelling techniques studied have implicit theories

from which these techniques were derived. When reference is made to existing

theories in this section, these implicit theories embedded in the ISD modelling

techniques are also implied.

Grounded theory as a specific research approach has its own set of criteria for good

grounded theory research over and above the general set of criteria for qualitative

research. These criteria will be addressed in this section.

Three sets of evaluations are considered:

1. Evaluation criteria from the original manuscript on grounded theory by Glaser and

Strauss (1967).

2. Criteria from the one side of the current division in grounded theory, as

exemplified by Strauss and Corbin (1998).

3. Criteria from the other side of the current grounded theory division, as

exemplified by Glaser (1978).

9.3.1.1 Glaser and Strauss (1967)

Glaser and Strauss (1967:118) use a checklist to analyse a number of comparative

studies to indicate which of these are grounded theory and which are just comparative

analysis. This checklist can also be used to evaluate grounded theory, especially to

determine the extent to which it goes beyond comparative analysis and actually

generates theory. The checklist questions are answered one by one below.

261

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

1. Is the researcher’s main emphasis upon verifying or generating theory?

This study did not consider extant theories as a primary concern, but had as primary

concern the purpose of generating a set of fundamental ISD modelling entities with

the purpose of creating an integrative modelling technique for further analysis.

2. Is the researcher more interested in substantive or formal theory?

Two kinds of theory can be developed: substantive theory considers an empirical

area of enquiry, while formal theory considers a conceptual area of enquiry. This

research concentrated on the empirical area of fundamental business and ISD

modelling entities and therefore the researcher is more interested in substantive

theory.

3. What is the scope of the theory used in the thesis?

The theory is restricted to the fundamental business and ISD entities only. During the

grounded process, it became clear that the process of modelling would have been

another area of possible research, but the researcher restricted the codes to only cover

the fundamental entities.

4. To what degree is the theory grounded?

All of the base and structure entities came directly out of the grounded process. The

detailed role entities do not directly come out of the underlying data, but emerged

from the literature study done on linguistics.

5. How dense in conceptual detail is the theory?

The density of the conceptual detail of the theory is difficult to quantify. One way to

do it is to count the number of codes and their relationships. Using that approach,

there are nine base entities, 11 structure entities and 31 role entities. There are also 12

relationships between structure and base entities and 13 relationships between role

and structure entities. In total, this seems to be a theory fairly dense in conceptual

detail.

262

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

6. What kinds of data are used, and in what capacity, in relation to the theory?

The empirical data from the ISD techniques were used as the basis of the data, while a

literature review on important concepts that emerged from the grounded analysis was

used to help with the categorisation process.

7. To what degree is the theory integrated?

Every code defined can be related back to every other code. For instance, the role

entity patient can be related to all other role codes and also all the way back to

underlying structure and base entities.

8. How much clarity does the researcher reveal about the type of theory that he

uses?

The researcher did not use any existing theory per se.

9.3.1.2 Strauss and Corbin (1998)

Ensuring that the central category and related concepts are integrated

According to Strauss and Corbin (1998), writing the storyline of the grounded theory

will show to what extent the central category integrates all the related concepts. The

storyline for this study is as follows:

ISD modelling is similar to linguistics. An ISD model can be seen as a piece of

“text” (either textual or graphical) that describes a specific organisation,

information system or situation in a specific modelling language. It consists of

words and sentences and must comply with a set of linguistic rules defining what

is allowed and what is not. The clearer and better the language and its rules are

defined, the better the possibility of good communication between the various

users of the modelling language.

263

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

The words with which ISD models are created (base entities) are actors and

objects. These words are combined in model phrases. Model phrases form model

sentences, which in turn can be grouped together to form submodels and models.

These sentences and groups of sentences form structure entities.

Model phrases can be actions, relationships, events or conditions. Model

phrases can be described by specifying a subject, predicate, complement

operator, complement qualifier and complement with optional link to form

sentences. Relationships define the structure of base and structure entities.

The same word can have different meanings, depending on how it is used in a

sentence and the wider context. Conversely, the meaning of a specific word can

influence the meaning of the wider context. Role entities can be related to the

subject, predicate and complement parts of model phrases. Role entities can also

be grouped as basic (e.g. patient and instrument), location-related (e.g. location,

direction and route), time-related (e.g. speed, frequency and duration) or

stakeholder-related (e.g. beneficiary and company).

9.3.1.3 Glaser (1978)

In the original work on grounded theory, Glaser and Strauss (1967) considered three

criteria with which a theory should comply: fit, relevance and the fact that it must

work. Glaser (1978) adds to these a fourth criterion, modifiability, and also expands

some of the other criteria.

1. Fit

Fit means that the categories of the theory (in this study embodied in the integrative

technique) must fit the data and should not be forced to fit in with pre-conceived ideas

or existing theories. Glaser (1978:4) is quite adamant about it: “Our position is that

the reality produced in research is more accurate than the theory whose categories do

not fit, not the reverse.”

264

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Glaser further expands this category with two more properties: “refit” and “emergent

fit”. The refit of categories to existing data is needed because categories emerge so

fast. Emergent fit implies that existing categories do not have to be ignored and only

new categories can be discovered. Existing categories can be “emergent-fitted” to the

data.

The researcher found the initial process of categorisation to be quite subjective and

difficult. But once the technique was fairly well developed, one of the best ways to

validate that the categories do fit the data was to test the categories against a set of

theoretical and real case studies. Irregularities were picked up and corrected and the

technique tested again until all of the case studies tested gave no problems.

2. Relevance

Relevance implies that the theory should be relevant to some stakeholder. This

integrative technique, and its implied theory, is relevant in that it currently addresses a

major problem in business and ISD modelling.

3. Work

Work means that a theory “… should be able to explain what happened, predict what

will happen and interpret what is happening in an area of substantive or formal

inquiry,” (Glaser, 1978:4).

Because the grounded approach was only used to do the data analysis, this criterion is

not met and it does not have to be met to comply with the requirements of design

science research.

4. Modifiability

Modifiability became important to Glaser (1978) and his students over the years as

they have generated many grounded theories. As new things emerge, there is a need

for qualifying what came before, while is also a desire to hold on to the existing

theory. Glaser’s (1978:5) conclusion is: “… that generation is an ever modifying

265

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

process and nothing is sacred if the analyst is dedicated to giving priority attention to

the data.” Modifiability then measures how quickly the theory can be modified to help

explain surprising or new variations.

This criterion of modifiability is difficult to evaluate unless “surprising or new

variations” are found and the theory is then modified.

9.3.2 Design science research evaluation

To evaluate the design science research areas of this study, the eight components of an

IS design theory by Gregor and Jones (2007) are used (see Table 9-1). They argue for

design knowledge to be expressed as theory, because it will ensure that IS rise above

the level of a craft and it will provide for a “sounder basis for arguing for the rigour

and legitimacy of IS as an applied discipline” (Gregor and Jones, 2007:314).

Component Description
Core components
1) Purpose and scope
(the causa finalis)

“What the system is for.” The set of meta-requirements
or goals that specifies the type of artefact to which the
theory applies, and that also defines the scope, or
boundaries, of the theory.

2) Constructs
(the causa materialis)

Representations of the entities of interest in the theory.

3) Principle of form and
function
(the causa formalis)

The abstract “blueprint” or architecture that describes an
IS artefact, either product or method/intervention.

4) Artefact mutability The changes in state of the artefact anticipated in the
theory, i.e. what degree of artefact change is
encompassed by the theory.

5) Testable propositions Truth statements about the design theory.
6) Justificatory knowledge The underlying knowledge or theory from the natural,

social or design sciences that gives a basis and
explanation for the design (kernel theories).

Additional components
7) Principles of
implementation
(the causa efficiens)

A description of processes for implementing the theory
(either product or method) in specific contexts.

8) Expository instantiation A physical implementation of the artefact that can assist
in representing the theory both as an expository device
and for purposes of testing.

(Gregor and Jones, 2007:322)

Table 9-1: Eight components of an IS design theory

266

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

The eight components are discussed in more detail and illustrated by one of the

examples used in the article by Codd (1982)) on relational database models for

database design (Gregor and Jones, 2007). Then the theory that emerged from the

study is evaluated by using the eight components.

1. Purpose and scope

This aspect defines the meta-requirements not for one instance only, but for a class of

artefacts. For example, Codd’s relational model is applicable to the design of large

databases (not single-file structures) accessed by many people.

For this research, the purpose and scope is related to business modelling that can be

used as the input or source for further ISD modelling.

2. Constructs

The representation and clear definition of constructs (entities or units of interest in the

theory) are considered to be the most basic level in any theory. For instance, in

Codd’s relational model an n-ary relation is used to represent a relational database

table.

In this study, the base, structure and role modelling entities form the basic constructs

of the theory and are clearly defined in section 7.3.

3. Principles of form and function

Fundamentally, “form” refers to the artefact’s constructs and their relationships

(structural properties), while “function” refers to how these are used to achieve the

purpose of the artefact (functional properties). For instance, Codd describes both how

relational tables are structured and related as well as how they can be used to access

and manipulate data.

In this research, it is shown how the base modelling entities are related in the structure

modelling entities to form the building blocks of this technique. These modelling

267

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

building blocks can be used to communicate business-related analysis and design

information.

4. Artefact mutability

IS artefacts are seen to have a special feature in comparison with other types of

artefacts, namely their almost constant state of change. Therefore, it is seen as

essential to specify the degree of mutability of designed artefacts, including the

expected level of adaptation or evolution. For example, in relational database design a

main objective is to minimise the effect of changes to the internal representation of

data on users and application programmers.

In this study, the form (structural aspects) is considered to be fairly immutable, while

the function is considered to be very mutable. New base entities and structure entities

are unlikely to be developed much more. Role entities can see some growth when

used and could increase and improve to some extent. Applying the technique to

specific situations is the area where almost unlimited change can occur. An entire area

of research can be done purely on considering the rules that can be generated for

specific situations. For instance, if a model phrase refers to the movement of physical

objects, a set of specific questions can be asked to enrich the analysis and design, such

as “from where?”, “to where?”, “by means of which transporting device?” and “by

which deadline?”

5. Testable propositions

A design science theory can give rise to two kinds of testable propositions or

hypotheses: more general, more quantitative, algorithmic propositions that can be

tested by means of observation, and statistically and less general heuristic

propositions that can be tested by design example for a specific problem. Generality is

a particular IS research problem not only related to design science theory. For

instance, in relational modelling it is stated that relational databases can perform as

well as non-relational databases.

268

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

In this study, a certain set of specific base entities and their relationships are stated.

These can be tested and if other entities and other relationships can be identified, it

will show that the original theory was incorrect and can be improved.

6. Justificatory knowledge

These are the “micro-” or kernel theories that inform design products and processes.

These theories can be derived from natural science, social science and other design

theories and practitioner-in-use theories. According to Gregor and Jones (2007), these

theories are the linking element for many, if not all, other aspects of design theory.

For instance, relational modelling theory was based on set theory and, interestingly

enough, also on human cognitive processes, because it aimed to ease the complex

reasoning processes by programmers needed to handle repeating groups of data.

In this study, a grounded theory approach to qualitative data analysis and the theory of

linguistics were used as kernel theories.

7. Principles of implementation

This involves how the design is brought into existence by agents performing actions

that link processes and products. For instance, in relational modelling, guidelines are

provided on how to create a relational database through normalisation.

In this research, some preliminary guidelines are provided on how to use this

technique in a number of typical business modelling situations.

8. Expository instantiation

This involves realistically implementing or illustrating the possible implementation of

a viable artefact. A major question is whether the physical instantiation is part of the

abstract theory or separate from it. Gregor and Jones (2007) argue for considering the

instantiation of a part of the theory. For instance, Codd used mock-ups of real systems

to help explain working relational databases.

269

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

In this study, a possible implementation of this technique using software to assist in

the process is illustrated in section 8.3.3.

9.4 Contribution of the research

Introna (1996) proposed a set of principles that can be used to evaluate the

contribution of research. These principles are used one by one below to evaluate the

contribution of this study.

1. Does the research raise problems previously not perceived, e.g. problems of

an increasing depth, and does it display an ever-increasing fertility in

suggesting new problems?

This research shows that without a clear understanding of ISD modelling entities,

there cannot be an integrated approach to modelling, starting from the business side

and going all the way to the technical side. Currently no techniques exist to really

address modelling from business to technical aspects using only one modelling

language.

2. Does the research anticipate novel facts and auxiliary theories?

The results of this study indicate that linguistics is a rich but underdeveloped

reference discipline for ISD modelling. Most ISD techniques mention linguistics, but

do not really take it to its logical conclusion.

3. Is the research more precise in the assertions and in the facts it explains than

previous theories?

The results of this research can relate all the fundamental ISD modelling entities in

use today in various ISD techniques to each other. In this way, it provides a unifying

explanation of the relationships between these entities, which does not really exist

currently.

270

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4. Has the research unified or connected various hitherto unrelated problems

or concepts?

The research done for this study can be seen as a step in integrating business, process,

technical and enterprise modelling. Currently all of these areas of modelling have

their own sets of modelling techniques.

9.5 Future research

This study has opened up a number of possibilities for future research. These can be

divided into the following areas:

(a) Linguistics

A whole area of research is possible around the concepts of language and linguistics.

The following are some of the possible research topics:

• Linguistics can be used as an ISD analysis tool. In other words, the documents and

interview materials gathered during requirements elicitation can be seen as the

“text” to be analysed linguistically. Verbs will indicate actions, personal nouns

will indicate agents, nouns will indicate objects/entities and so on. This linguistic

analysis can be used to model an information system. The researcher has done

something in this vein already in a paper on linguistic analysis and representation

of business rules (Joubert, 2009).

• An exciting possibility is having software that can generate analyses and/or

models from text input. For instance, providing a policy document for such

software can generate a data model and repository, taking the drudgery out of the

process for analysts and only employing their higher cognitive skills to assist in

the process. Developing an ontology or framework that will link business terms to

modelling entities can facilitate the development of such software.

271

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

(b) Modelling

This project started out as an attempt to improve modelling. However, it was realised

that modelling can only be improved if one knows what to model, hence the current

research. Moving from this study, the following are possibilities for research:

• Developing metrics for measuring IS from their models. Only once one has the

fundamental modelling entities in place, can one start to answer related questions.

Theoretically, the size of an information system can be estimated from its model

(obviously, with more and more accuracy as more and more detail is modelled).

• Research into the problematic area of modelling organisations in enterprise

architectures.

• Developing conversion software between existing models.

(c) Ontology

This part will most probably contribute the most to the continued study of this

research. Athenikos and Song has developed a framework of ontology-based

modelling patterns (2008). They fundamentally addressed the same research problem

as this study, but followed an ontology-based approach to it.

Traditionally, ontology is the philosophical study of the nature of being and existence.

(Kayed and Colomb, 2005). More recently in IS, the term “ontology” has developed

to refer to something more specific. Although there is a lot of debate on its definition,

one of the most cited definitions is the one by Gruber (1995:908): “An ontology is an

explicit specification of a conceptualisation”, where a conceptualisation is “an

abstract, simplified view of the world that we wish to represent for some purpose”.

In their most basic form, these ontologies provide shared vocabulary representing a

specific domain’s knowledge. They can also be seen as descriptions of the conceptual

knowledge of an application domain. Examples of ontologies are the EngMath

Ontology for mathematical formulae and symbols, the Tove Ontology for generic

enterprise modelling knowledge and the Plintius Ontology of the chemical

272

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

composition of ceramic material (Mihoubi et al., 1998). Although ontologies can take

many forms, they will always include a vocabulary of terms and some specification of

their meanings (Kayed and Colomb, 2005).

Recently, ontology has been used in various information and information technology

fields to, for example, solve semantic problems, help in matchmaking, do information

discovery, do information retrieval, build explicit reusable knowledge and evaluate

existing information system modelling techniques (Kayed and Colomb, 2005).

The logical next step for this research is to formalise the findings into an ontology of

business and ISD modelling fundamental entities.

9.6 Concluding remarks

The problem statement of this study is:

The current modelling techniques do not bridge the gap between business and ISD.

The main research question is:

Can an integrative modelling technique be developed to bridge the gap between

business and ISD?

It can be answered in summary as follows:

Most current business modelling techniques suffer from one of two problems: they are

either easily understood by business users (mostly textual), but too simplistic to be

used in ISD modelling, or they are usable for ISD modelling (using some existing ISD

modelling technique like UML), but then they are too complex for the average

business user.

To develop an integrative modelling technique between business and ISD modelling,

it is important to first understand what the fundamental modelling entities in business

273

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

and ISD are. Using a grounded approach, the study found that these entities follow a

linguistic structure and can be divided into three main categories:

• Base entities (corresponding to the morphological level in linguistics),

representing the real-world objects that make up organisations and systems as

the words of the proposed modelling language. The high-level base entities are

things, actors and objects.

• Structure entities (corresponding to the syntactical level in linguistics), using

the base entities plus specific language constructions to form model sentences

and phrases. The structure entities are models, model views, model sentences

and model phrases.

• Role entities (corresponding to the semantic level in linguistics), helping to

define meaning to base and structure entities in various situations. Role entities

can be classified as subject, predicate and complement roles.

An understanding of the properties and attributes of these entities, together with an

understanding of the relationship between these entities, forms a basic method to

model business situations both easily and expressively. Furthermore, a software

instantiation of the technique can be envisaged that will simplify the process of

business analysis and design.

The research done is evaluated from the perspectives of grounded theory and design

science research. The contribution of the research is also evaluated.

It is important to note what Glaser and Strauss (1967:32) had to say about theory

(specifically grounded theory, but it is also applicable to design science theory): “Our

strategy of comparative analysis for generating theory puts a high emphasis on theory

as process; that is, theory as an ever-developing entity, not as a perfected product.”

This is the reason for choosing the word “towards” in the title of this thesis. This

study only gives a step in the direction of better understanding business and ISD

modelling.

274

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Part 5

Supporting Information

275

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

10. Appendix A: Derivation of basic concepts of integrated

modelling language

Part 1

Introduction

Part 2
Literature review

Part 3
Research

Part 4

Conclusion

Part 5

Supporting
information

Chapter 1
Introduction

Chapter 2
Theoretical
foundations

Chapter 3
Business rules

Chapter 4
Part-whole

relationships

Chapter 5
Linguistic analysis of

ISD modelling

Chapter 6
Research approach

Chapter 7
The proposed

integrative modelling
technique

Chapter 9
Conclusion

Bibliography

Chapter 8
Demonstration,

implementation and
evaluation of proposed
integrative modelling

technique

Appendix A
Derivation of proposed
integrative modelling
technique

A.1 Introduction
A.2 The grounded theory codes
 A.2.1 Agent
 A.2.2 Thing
 A.2.3 Action
 A.2.4 Event
 A.2.5 Location
 A.2.6 View
 A.2.7 Relationship
 A.2.8 Language
 A.2.9 Rule

276

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

This appendix shows how the link was made between the original source material (the

different technique descriptions) and the resultant integrative modelling technique.

10.1 Introduction

Both of the two major approaches to grounded theory (Glaser and Strauss, 1967;

Strauss and Corbin, 1998) basically have three high-level steps: coding concepts from

the data, categorising and abstracting these codes, and finally developing a theory

from these categories of codes.

During the various coding and interpretation steps of the grounded theory process,

many codes eventually became a few and the relationships between these codes

became increasingly clear. Furthermore, as explained before, the grounded theory

process caused the researcher to go back to the literature at various stages to enhance

the understanding of some of the concepts that emerged. As a result of this, systems

theory, business rules, part-whole relationships and linguistics were studied further as

the theoretical foundations of this research. Incorporating these foundational concepts

enhanced the findings of research and helped in the very complex process of

categorisation. Out of these categorisations a modelling technique eventually

emerged.

The result of the code categorisation process is given in the next section, linking the

codes back to the original techniques from which they came.

10.2 The grounded analysis codes

The following codes emerged as central codes of this study:

• Agent

• Things

• Actions

• Events

• Locations

277

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

• Views

• Relationships

• Linguistics

A detailed description follows of how each of these codes link back to the original

techniques and to the theoretical foundations.

10.2.1 Agent

One of the codes that occur in almost all techniques is agent. It is mostly called agent

in the various techniques, but is also called actor, resource, organisation, participant,

stakeholder and role. The main aspects of agent derived from the grounded analysis

are the actions that agents perform; the relationships that actors have in such as the

roles and responsibilities they have; and the types of agents that can be identified. See

Figure 10-1 for a summary of the main codes related to agent.

Figure 10-1: Agent-related codes

278

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

10.2.1.1 Link to techniques

The way in which agent and its related codes are derived from the various modelling

techniques is described in the following table:

Technique Main concepts
ALC/OLC − There are agents and organisational agents.

− Every agent has a life cycle, which has operations and agent
roles (similar to object states).

− Agents have responsibilities towards other agents.
− Agents discharge their responsibilities by means of

operations.
AOR − Three types of agents: biological/human, institutional and

artificial (software agent, embedded system, robot).
− Only agents can perceive events, perform actions,

communicate, make commitments and have claims, i.e. actor
actions and relationships.

− Commitments are binary relationships between two agents.
− Commitments arise from certain communicative actions.
− Two kinds of commitments: to-do (action) commitment, see-

to-it-that (condition holds) commitment.
− When one agent makes a commitment, the other agent has a

claim on the outcome of the commitment.
− An institutional agent consists of other agents, called internal

agents, which can act on its behalf. It can perceive and act
through its internal agents.

− An institutional agent can deal with other external agents.
− Internal agents have duties and rights (certain permitted

actions that an agent can do on behalf of the organisation).
− There are three kinds of duties: to monitor certain claims, to

react to certain events, to fulfil certain commitments.
− Internal agents play certain roles.

ARM − Agency is a collection of humans that participates in
contractual relationships.

− Agencies employ one or more other persons as agents.
− Complex agents (macro-agents) are decomposable, lowest

(primitive) agent must be a person.
− Relationships between agents imply responsibility.

BPMN − Business entities or business roles are types of participants.
− Each participant has his own viewpoint, but during the

execution of the process he can only control his own activities.
− A swim lane in a pool (subpart of pool) represents a

participant in a process.
DFD − External entity is the source or destination of the information

flow.
− External entities are only entities that originate or receive

data/resources.

279

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Technique Main concepts
Gantt and PERT − A resource can either be a type of material or work. When it

is work, it represents a role or agent.
IDEF0 − Mechanism; the means to produce output; can include agents.
IDEF1 − Agent concept not specifically addressed, but an entity can be

an agent, among other things.

IDEF1X − Agent concept not specifically addressed, but an entity can be
an agent.

− People can be a source of information.
IDEF3 − Agent concept not specifically addressed.
IDEF5 − The concepts of kind and term also include the concept of

agent.
− Identifies certain case relations, like agent-instrument, agent-

object, action-recipient and agent-action (see relationships
for more information).

LAP − An organisation is a system of human beings with a
particular purpose or mission.

− Actors are the motors of an organisation.
− Actors constantly loop through the actor cycle in which they

deal with their agenda (to-do-list).
− An agendum is a coordination fact to which the actor is

committed to respond.
− Actor role is the “amount” of authority to perform particular

acts.
− Three types of role assignments to subjects: authorisation

(fairly permanent), delegation (transfer of authorisation),
propagation (transfer of authorisation to embedded
transactions).

− One subject may fulfil a number of actor roles concurrently
and/or successively. An actor role may be fulfilled by many
subjects concurrently and/or successively.

− Organisations can be seen as social systems consisting of
human beings who are social individuals.

− Social individuals or subjects can perform production,
coordination or communication acts.

− Social individuals perform two kinds of acts: production
acts bringing about goods and/or services, and coordination
acts entering into and complying with commitments and
agreements to perform production acts, i.e. requesting or
promising a production.

− The actor who starts a transaction is called an initiator or a
customer.

− The other actor is called the executor, producer or supplier.
− An actor’s role may be fulfilled by many subjects

concurrently as well as collectively.
− One subject may fulfil a number of actor’s roles

concurrently and successively.

280

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Technique Main concepts
ODP − An agent is an object fulfilling one or more agent roles.

− An agent role is a service (set of actions) offered by the agent
to its environment (other agents).

− Structuring rules include the following:
o Obligation – prescription that a particular behaviour is

required
o Permission
o Prohibition
o Policy – a set of rules related to a particular purpose

RAD − Role is a particular responsibility which involves a sequence
of activities.

SQL − Certain roles have specific permissions to perform various
database actions on database objects.

− Permission is granted, revoked or denied for a certain role to
access certain database objects or to perform certain database-
related actions.

SSM − The root definition (CATWOE) consists of the following:
o Customer/client – who benefits (or beneficiary/victim)
o Actor – who facilitates transformation
o Transformation – the process
o Weltanschauung – the worldview of the stakeholders
o Owner – to whom the system is answerable
o Environment

− A system has the following:
o Ongoing purpose
o A decision-taking process – this makes it an agent
o Components that are also systems (i.e. subsystems)
o Components that interact
o An environment
o A boundary
o Resources
o Continuity

UML − Actors (in use case diagram) – a role played by a person,
system or device that has a stake in the successful operation
of the system.

− A role is a type; not a particular person/system/device.
− An object/class can also represent an agent.
− Use case identifies interaction between actors and use case in

the form of a dialogue.
Zachman − Who column/focus. The types of human resources that are

needed to initiate or perform an activity.

281

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

10.2.1.2 Link to theoretical foundations

The grounded concepts of human agent have some relationships to the systems

concept. The Magee and De Weck (2004) taxonomy (section 2.6) gives some insight

into human agents. The human control attribute specifies systems as being

autonomous, having a human in the loop, or being mixed. The human wants attribute

specifies shelter, food, transportation, communication, security, longevity and health,

entertainment, aesthetic pleasure, education, and social, emotional, spiritual and

curiosity aspects.

The grounded concepts of artificial agent and institutional agent both exhibit all of

the characteristics of systems. For example, a cellphone (plus its supporting system6),

an artificial agent, has an ongoing purpose of providing mobile communication at a

fee, while the organisational agent, restaurant has the ongoing purpose of providing

food at a price.

Furthermore, an artificial agent can be classified as a human activity system with

mostly designed system components. It can also be classified as an abstract system

with concrete and conceptual components. An institutional agent, on the other hand,

can be classified as a human activity system with designed as well as social and

cultural components. It can also be classified as an abstract system with concrete and

conceptual components.

Furthermore, artificial agents can be classified as somewhere between open and

relatively closed systems in how they interact with their environment; mostly between

autarchic and symbiont systems (artificial intelligent systems will rank higher) in how

they cope with environmental changes; and mostly between automatic-sequential and

controlled-regulated in how they respond to their environment. On the other hand, the

grounded concept’s institutional agents can be classified as open systems in how they

interact with their environment; somewhere between symbiont and heuristic systems

6 An artificial agent like a cellphone can never be seen as only consisting of its hardware and software.
The supporting system (humans, organisations and procedures) around the hardware and software is an
essential component of any artificial agent. A cellphone without the supporting network to phone other
people will cease to be a cellphone!

282

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

in how they cope with environmental changes; and mostly between adaptive-self-

optimising and self-learning-self-organising in how they respond to their

environment.

An artificial agent can be classified as mostly between an externally governed system

and a system with embedded goals and controls with respect to self-government;

mostly between rigidly controlled and purposive systems when considering self-

organising behaviour; and somewhere between simple dynamic and multilevel when

considering intrasystem and system-milieu interactions. An organisational agent can

be classified as mostly between a self-learning system and a system with multiple

deciders with respect to self-government; mostly between purposive and purposeful

systems when considering self-organising behaviour; and somewhere between

multilevel and evolutionary when considering intra-system and system-milieu

interactions.

10.2.2 Thing

Another one of the codes that occurs in almost all techniques is thing. It is mostly

called entity or object in the various techniques. The reason for giving it a totally

different name is because both the terms “entity” and “object” have very specific

meanings in ISD modelling. These terms are mostly related to data and object

modelling respectively. The main aspects of thing derived from the grounded analysis

are the properties of things; and the types of things that can be identified. See Figure

10-2 for a summary of the main codes related to thing.

283

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Figure 10-2: Thing-related codes

10.2.2.1 Link to techniques

The way in which thing and its related codes are derived from the various modelling

techniques is described in the following table:

Technique Main concepts
ALC/OLC − Objects have states.

− Objects have object life cycles (OLC).
− Two special states are never-exist (start) and cease-to-exist

(end).
− Every complete OLC start from the never-exist state and end

in the cease-to-exist state.
− Operations either change the state of an object or keep the

state of an object steady.
AOR − An application domain consists, among other things, of

ordinary objects.
− Information systems have to represent entities that occur in

the universe of discourse.
− Entities have properties.

284

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Technique Main concepts
− Entities are classified by means of entity types.
− Each entity type defines a list of (stored and derived)

attributes.
− Together, the value of all attributes of an entity form the

state of it.
ARM − Objects are of two types: physical (tangible entities) and

logical (e.g. time, information).
− Objects are, among other things, resources that agents utilise.

BPMN − A data object provides information to activities.
− The information in a data object can be text or graphical.

DFD − A data store is a holding place for information.
− Information can either be written, verbal or electronic.
− A data store can be permanent, manual or transient (deleted

after processing).
− When resource flow is considered, material resources are

involved.
Gantt and PERT − None.
IDEF0 − Data and objects are represented by nouns or noun phrases.

− Systems consist of, among other things, information,
software, equipment, products, raw materials, machines.

− Systems are automated and non-automated.
IDEF1 − Information model has two parts: a structural part (diagrams)

and dictionary.
− An entity has properties/characteristics.
− An entity can be real, physical or abstract.
− An entity class is a class of individual member entities.
− An attribute is an individual property of an entity and has

both a name and a value.
− A key is a unique combination of attributes and values.
− Keys can be single or compound.
− There are alternate keys.

IDEF1X − Basic constructs are things about which data is kept,
relationships between these things, characteristics of these
things (attributes).

− An entity can have synonyms/aliases/non-standard names.
− An entity represents things of interest real or abstract.
− Entities have keys: primary key, foreign key, candidate key,

alternate key.
− For an entity instance, a specific attribute must have a value or

null value.
− Attribute values have a domain. These domain classes can be

immutable vs. time-varying; finite/fixed (e.g. USA states) vs.
possibly infinite (e.g. surnames).

− Can distinguish a base and type domain. Base domain has
basic data types like integer, text, binary, etc. The domain
rule is to only allow acceptable types. Type domains are
subtypes of base domains with further constraints, form a

285

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Technique Main concepts
hierarchy of domains, not necessarily mutually exclusive,
complying with parent rules as well.

IDEF3 − An object is any physical or conceptual thing recognised and
referred to by participants in the domain.

− Objects are often nouns/noun phrases that can be coupled
with a state descriptor (e.g. Purchase Order: Approved).

− A state can have condition types:
o State – those conditions necessary for an object to be in a

state (e.g. water: frozen temperature <= 0oC).
o Exit – those conditions sufficient for an object in a given

state to cease being in that state.
o Transition – apply to the “interface” between a state and

an outgoing link.
o Entry – conditions sufficient for an object to enter the

state, given an object in the source state.
− Makes a distinction between facts (what is) and constraints

(what should be).
− Constraints can be conditional or absolute.

IDEF5 − Terms denote objects.
− Kinds are not types or classes. Although all three are

“categorical”, they indicate some grouping of individuals into
categories.

− All three are instantiable – different individuals can be
instances or members of the same group.

− Types and kinds are intentional – the identity of a type or
kind is not dependent upon its membership (i.e. it can grow
over time).

− Kind, traditional definition: for every kind K there is a set N
of properties that are individually necessary and jointly
sufficient for being a K, i.e. x is a K if and only if x has every
property of K.

− Compare essential vs. accidental properties.
− Kind is an objective category of objects that are bound

together by a common nature.
− Enterprise ontologies have a more flexible notion of kind.

They use the term “defining properties” instead of nature.
− Some defining properties can be accidental. Defining and

essential properties are orthogonal.
− For every x of a kind K, x has at least one of the defining

properties of K.
− An attribute is a mapping that takes each member of a given

set of individuals to a single specific value, e.g. colour-of.
− A property is a characteristic of things, e.g. being red.
− Characteristic is a neutral term encompassing both attribute

and property.
− An ontology is a catalogue of terms used in a domain.
− Related terms are vocabulary, taxonomy and terminology.
− A term is a definite descriptor that refers to an object or

286

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Technique Main concepts
situation-like thing in the real world.

LAP − The result of performing a production act is a production
fact.

− The result of performing a coordination act is a coordination
fact.

− Both material and immaterial facts come into existence
when corresponding coordination acts are performed.

ODP − An artefact is an object fulfilling an artefact role.
− An artefact role is a role involving the use of resources, but

not able to initiate actions with respect to those resources.
− An artefact role is a service offered by an artefact.

RAD − A token indicates a change of state.
SQL − The following are database objects:

o Schema contains a database definition (metadata).
o Identity is an autonumber.
o Table stores data, can be temporary.
o View is a virtual table.
o Constraints (applicable to tables or columns):
 Foreign key and references
 Check (domain integrity), e.g. min_level <= 10
 Unique
 Primary key
 Null, Not Null

− A table has rows and columns.
− An entity is the logical and a table is the physical

representation of data.
− A column represents one attribute of an entity/table. It has a

specific data type.
− The following are some of the possible data types:

o Exact numerics like bigint, int, bit and money
o Approximate numerics like float and real
o Date time
o Character string

SSM Nothing specifically related to thing.
UML − A class vs. an object is like template/mould vs. instance; or

dictionary word vs. actual thing.
− Class defines what can be, object what is. Class defines the

rules, object expresses the facts.
− An object has a life, events that trigger changes in the object’s

state.
− An object knows the following:

o Its current state/condition – properties at a specific time.
o What it can do.
o What can be done to it.
o About itself – its properties.

− Encapsulation means exposing an object’s interface and
purpose, but hiding data within (structure and state) and
implementation.

287

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Technique Main concepts
− A package is a place to put things, the UML version of a

directory.
− Attributes of a class describe its appearance and knowledge.

An attribute has:
o Name
o Data type: primitive, language supplied or abstract,

developer defined
o Rules constraining input values
o Default value
o Visibility: public, private, protected, package

− The state of an object is its current condition and is normally
described with an adjective like open or closed account.

− A software component can be an executable, file, document,
table or software library.

− Each node is a physical object that represents a processing
resource.

− Two types of elements: nodes (resources) and associations
(connections).

Zachman − What/data – physical and conceptual things that are
important to business.

10.2.2.2 Link to theoretical foundations

The Magee and De Weck (2004) taxonomy (section 2.6) gives some insight into

things. The degree of complexity attribute compares the different levels into which

physical things can be divided. The degree of complexity goes from part to sub-

assembly to machine to equipment. The functional type attribute describes various

operands and the Matter (M) operand, consisting of physical objects and organisms,

defines physical things, while the Information (I) and Value (V) operands define

informational things.

10.2.3 Action

One of the codes that occur in almost all techniques is action. It is called many names

in the various techniques, such as process, task, activity, act, service, transformation

or transaction. The main aspects of action derived from the grounded analysis are

categories of actions, the levels of action, the purposes of actions, the properties of

actions and the types of actions that can be identified. Please note that a major aspect

288

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

of actions, namely action relationships, will be discussed later under the heading of

relationships. See Figure 10-3 for a summary of the codes related to action.

Figure 10-3: Action-related codes

10.2.3.1 Link to techniques

The way in which action and its related codes are derived from the various modelling

techniques is described in the following table:

Technique Main concepts
ALC/OLC − Operations are either changing or maintaining the state of

affairs.
− An object is transformed from state to state by an operation.
− Agent life cycle operations are actions through which agents

discharge their responsibilities to other agents.
AOR − There are social interaction processes involving agents and

non-social interaction processes involving agents and their
inanimate environments.

− There are six relationships in which agents, but not objects,
participate:
o Perceive environment events
o Receive and send messages

289

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Technique Main concepts
o Do non-communicative actions
o hasCommitment
o hasClaim

− Commitment is a specific action to be performed in due time.
Two types: to-do and see-to-it-that.

− Commitment operations are:
o Creation of commitment
o Waiving a claim (releasing from a commitment)
o Assigning a claim to another agent

− Claim is a specific event that ought to happen in due time.
− Commitment operations are:

o Creation of a commitment
o Cancellation of a commitment
o Waiving a claim (releasing from a commitment)
o Delegation of a commitment
o Fulfilling a commitment

ARM None for action
BPMN − A business process is an activity performed within or across

companies and organisations.
− Three types of business processes:

o Private, internal (workflow)
o Abstract, public
o Collaboration, global

− Every process has a name, type, status and other attributes.
− The statuses for a process can be ready, active, cancelled,

aborting, aborted, completing or completed.
− Each participant has own viewpoint, but during execution of

process can only control own activities.
− One type of flow object is an activity, the work done by a

company.
− Activities can either be processes, subprocesses or tasks.

DFD − A process must have input and output.
− The inputs and outputs must be balanced, i.e. the inputs must

have enough information to create the outputs.
− A process represents the flow of data or material resources

through a system.
Gantt and PERT − A project is broken down into activities.

− Every activity has as a minimum a start date, end date and
duration.

− Activities can also show resources, costs, and percentage
complete.

− Resources are associated with a project activity.
− Resources are utilised in the execution of activities.

IDEF0 − Two primary modelling components are functions and the
data and objects that interrelate functions.

− Functions are equivalent to activities and processes.
− Input is data or objects that are transformed or consumed.

290

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Technique Main concepts
− Output is data or objects produced by the process.
− Controls are the conditions required to produce output.

IDEF1 − None
IDEF1X − Relationships are expressed as verbs.
IDEF3 − Objects participate in processes.

− Real-world processes consist of units of behaviour:
happenings, events, decisions, acts, processes.

− Scenario/story describes a recurring situation (or set of
situations) that describes a typical class of problems addressed
by an organisation or system.

− A scenario is a sequence of activities within the context of a
given situation.

IDEF5 − Processes involve two sorts of change: change in state (water
from frozen to solid) and change in kind (incineration from
wood to ashes).

− Processes can be thought of as special kinds, but they also
occur over an interval of time.

LAP − Production acts are either material acts (manufacturing,
storage and transportation) or immaterial acts like court
judgment, granting a decision and appointing someone.

− Coordination acts are brought about by a sequence of
communication acts: formative acts (express, transmit,
receive), informative acts (inform, confirm) or performative
acts (agree, commit).

− An actor can be addressed by another actor as the addressee of
a coordination act that the other actor wants to perform.

− A specific type of interaction is a transaction, which is a
finite sequence of coordination acts between two actors
concerning the same production act.

ODP − A service is a set of actions taken by the agent, possibly
involving one or more resources.

− To find services, yellow and white page functions are
provided.

− The following types of functions should be provided to enable
distributed processing: security, repository, coordination and
management.

RAD − Activities that can be decomposed further.
SQL − Certain actions can be done on data objects (e.g. database,

table, index, trigger):
o Create new object.
o Alter an existing object, e.g. add columns to a table.
o Drop an existing object.
o Make a backup of object.

− Certain actions can be done on data inside a table or view:
o Select or read data records/rows.
o Insert or add new records to a table.
o Delete data records.

291

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Technique Main concepts
o Update data records.

− These actions done on data inside a table or view can be
defined in more detail by specifying:
o Which tables or views (“from”, “join”)
o Which records (“where”, “union”)
o In which order (“order by”)
o Which groups (“group by”, “having”)
o Functions like “data and time”, “mathematical”, “string”

and “image”
− A transaction is a single unit of work that must be executed

as one and then committed, or if any subpart fails, the whole
transaction must be rolled back.

SSM − Part of CATWOE is a transformation from input to output.
− CATWOE can also be expressed as PQR: “Do P by Q in

order to contribute to achieving R.”
− It answers three questions: what to do (P), how to do it (Q)

and why it is being done (R).
UML − Use case describes steps in a dialogue, a step-by-step

description of the conversation/interaction between the
system and user.

− Activity diagram describes activities that are linked together
by means of conditional logic.

− Activity diagrams can represent sequential as well as
concurrent activities.

− Activity diagrams have the following parts: activities, guard
conditions, decisions (mutually exclusive), merge points, start
and end points, concurrency, fork, synchronisation and
transitions.

− In a class diagram, an operation defines the behaviour of a
class.

− An operation has:
o Name
o Input parameters
o (Optional) return data type
o Visibility (public, private, protected, package)
o (Optional) class level operation
o (Optional) constraints, rules that must be enforced in the

execution of the operation
Zachman − How/function, all actions performed by the business.

292

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

10.2.3.2 Link to theoretical foundations

According to Magee and De Weck (2004), five basic actions can be executed on the

operands Matter (M), Energy (E), Information (I) and Value (V). The five basic

actions are as follows:

• Transform or process - transform objects into new objects

• Transport or distribute – change the location of objects

• Store or house – provide buffers in the network by holding objects over time

• Exchange or trade – exchange objects mainly via the Value operand

• Control or regulate – drive objects from some actual state to a desired state

10.2.4 Event

One of the codes that occur only in a few techniques is event. It can possibly be seen

as an attribute of action, but more careful consideration shows that it is an important

separate modelling entity. It is called mostly event in the various techniques and is

sometimes also called trigger. The main aspects of event derived from the grounded

analysis are the properties of events, and the types of events that can be identified. See

Figure 10-4 for a summary of the codes related to event.

293

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Figure 10-4: Event-related codes

10.2.4.1 Link to techniques

The way in which event and its related codes are derived from the various modelling

techniques is described in the following table:

Technique Main concepts
ALC/OLC − None
AOR − Claim is a specific event that ought to happen in due time.
ARM − None
BPMN − An event is something that happens during a business process

and affects the execution of it.
− Events affect process flow.
− Events usually have cause (trigger) or impact (result).
− Events can be thrown (create a result) or caught (react to a

trigger).
− Three groups of events: Start, intermediate and end.
− The types of events are:

294

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Technique Main concepts
o Message from a specific participant (agent or other

action)
o Timer, a specific time-date or a specific cycle
o Error events thrown in children actions
o Cancel event in a transaction
o Activating and performing compensation
o An event that is triggered when a condition become true
o Link two connecting sections of an action
o A signal arrives that has been broadcast from another

action
o Terminate ends actions immediately without

compensation or event handling
o Multiple triggers can be assigned to an action

DFD − None
Gantt and PERT − None
IDEF0 − None
IDEF1 − None
IDEF1X − None
IDEF3 − None
IDEF5 − None
LAP − The creation of a fact of any type is a state transition in one

of the two worlds (physical or social).
− An event is a particular transition at a particular time.

ODP − None
RAD − A trigger is the initiation of a new role.
SQL − A trigger is a stored procedure (a group of database actions

with a specific name and parameters) that executes when
certain specific actions take place.

SSM − None
UML − A use case identifies its initiation or trigger, either actor

action, time or system event (e.g. error condition, device
signal).

− One of the elements of a state chart diagram is an event
(internal or external). The following types of events are
identified:
o Time event – evaluates the passage of time as a trigger.
o Guard condition – controls the response to an event;

when event occurs, the condition is tested.
o Call event – most common invocation of an operation on

the receiving object.
o Change event – tests for a change in the object or a point

in time.
o Send event – one object tells another object what to do.

Zachman − None

295

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

10.2.4.2 Link to theoretical foundations

No specific links.

10.2.5 Location

One of the codes that occur only in a few techniques is location. The code node is

used mostly in the various techniques. The reason for not using node as the name is

because node has a very specific meaning in ISD modelling, namely a location in a

network. The term location is a much wider term, including the concept of a node.

The main aspects of event derived from the grounded analysis are the properties of

locations, and the types of location that can be identified. See Figure 10-5 for a

summary of the codes related to location.

Figure 10-5: Location-related codes

10.2.5.1 Link to techniques

The way in which location and its related codes are derived from the various

modelling techniques is described in the following table:

296

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Technique Code
ALC/OLC − None for location
AOR − None
ARM − None
BPMN − None
DFD − None
PERT and
GANTT

− None

IDEF0 − None
IDEF1 − None
IDEF1X − None
IDEF3 − None
IDEF5 − Node
LAP − Node
ODP − A node is a single unit at a location in space, e.g. a single PC.

− A node contains the following:
o A set of capsules. A capsule is a configuration of objects

forming the smallest unit of independent failure.
o A nucleus that provides a node management function, e.g.

an operating system.
RAD − None
SQL − None
SSM − None
UML − In a deployment diagram, a node is a physical object that

represents a processing resource.
− A node is mostly a computer, but can be a human resource for

manual processing.
− Each node contains or is responsible for one or more software

components or objects.
− Two types of elements: nodes (resources) and associations

(connections).
− Deployment diagrams can also function as network diagrams.

Zachman − Where/network, all locations or places where activities are
performed or things stored.

10.2.5.2 Link to theoretical foundations

No specific links.

10.2.6 View

One of the codes that occur in almost all techniques is view. It is called mostly view or

perspective in the various techniques. The main aspects of event derived from the

297

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

grounded analysis are the types of views that can be identified. See Figure 10-6 for a

summary of the codes related to view.

Figure 10-6: View-related codes

10.2.6.1 Link to techniques

The way in which view and its related codes are derived from the various modelling

techniques is described in the following table:

Technique Code
ALC/OLC − Two perspectives are identified: a process perspective and a

behavioural perspective.
AOR − None on views.
ARM − ARM provides a structural perspective of modelling.
BPMN − BPMN provides a human level view of business processes vs.

the web service-based execution languages that provide a
machine level view.

DFD − SSADM distinguishes the following types of DFD models:
o Current physical – what system does
o Current logical – how it does it
o Required logical – what it should do
o Required physical – how it should do it

− The diagram describing the highest-level process is called a
context diagram.

PERT and
GANTT

− The same information can be viewed from many perspectives
or views, e.g. Gantt, network (PERT), schedule.

298

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Technique Code
IDEF0 − IDEF0 provides a functional view.

− A context view can be distinguished from the views on lower
levels.

IDEF1 − IDEF1 provides an information view.
− Models both as-is and to-be.

IDEF1X − IDEF1X provides a semantic view.
IDEF3 − There can be more than one decomposition on a level,

representing different points of view.
− But there is one consolidated objective view.

IDEF5 − Contrasts procedural with declarative knowledge.
LAP − Distinguishes the atomic, fibre and molecular layers.
ODP − Identifies the following perspectives or viewpoints:

o Enterprise – concerned with the business environment in
which the system has to operate

o Information – concerned with the information to be stored
and processed by the system

o Computational – concerned with a description of the
system as a set of objects that interact at interfaces

o Engineering – concerned with the mechanisms supporting
system distribution

o Technology – concerned with the detail of components
from which the distributed system is constructed

RAD − Provides a dynamics view of processes.
SQL − Provides a database view.
SSM − Provides a soft systems view.
UML − Four views can be identified, each with a set of diagrams:

o Static view, with class and object diagrams
o Dynamic view, with sequence, collaboration and state

chart diagrams
o Functional view, with use case and activity diagrams
o Implementation view, with package, component and

deployment diagrams
− Packages can be used to organise diagrams created during a

project. That helps to focus on a topic or type of behaviour in
the system.

Zachman − The perspectives of or functions performed by main
stakeholders:
o Planner or scope – strategic in nature, on organisational

boundary, and external environment is important
o Owner or enterprise – all activities important to enterprise

are described
o Designer or system – logical level user requirements are

specified
o Builder or technology – more physical with some logical

views, physical hardware specified
o Subcontractor or components – detailed specifications
o Functioning system

299

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

10.2.6.2 Link to theoretical foundations

No specific links.

10.2.7 Relationship

The code with the most related subcodes and which occurs in almost all techniques is

relationship. It is called mostly relationship in the various techniques, but is also

called association, link or relation. The main aspects of relationship derived from the

grounded analysis are properties of relationships, and the types of relationships that

can be identified. See Figure 10-7 for a summary of the main codes related to

relationship, Figure 10-8 for a summary of the codes related to relationships

properties, Figure 10-9 for a summary of the codes related to general relationships,

Figure 10-10 for a summary of the codes related to agent relationships and Figure

10-11 for a summary of the codes related to action relationships.

Figure 10-7: Relationship-related main codes

300

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Figure 10-8: Relationship properties-related codes

Figure 10-9: General relationship-related codes

301

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Figure 10-10: Agent relationship-related codes

Figure 10-11: Action relationship-related codes

302

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

10.2.7.1 Link to techniques

The way in which relationship and its related codes are derived from the various

modelling techniques is described in the following table:

Technique Code
ALC/OLC − Agents are related to other agents because of their

responsibility.
AOR − Entities participate in relationships with other entities.

− Relationships (associations) are classified by means of
relationship types.

− There are two designated relationships between entity types
that are independent of the application domain: generalisation
(subclass, super class) and composition (component class).

ARM − Agents have contractual relationships with other agents.
− Agents can have functional or ownership relationships with

objects.
− Complex agents/objects are the aggregation of component

agents/objects.
− Relationships have cardinality.
− Responsibility is a specific kind of relationship that

agents/objects have with other entities.
− Emergent responsibility is the responsibility that a complex

agent has because it is considered to be a whole.
− Delegated responsibility is when a complex agent/object

might participate in some relationships only because its
participants/components participate in it.

BPMN − A process can consist of subprocesses, which can consist of
tasks.

− Activities can be connected by the following:
o Sequence flow, which determines the order in which

activities will be performed.
o Message flow is the flow (send and receive) of messages

between participants.
o Association associates text or graphical information with

flow object.
− Gateways model control flow (decisions) in sequence flows

(branching, forking, merging and joining of paths) and can
either be the following:
o Exclusive gateways that model “either/or” situations using

XOR gateways
o Parallel gateways that model parallel situations using

AND gateways
o Inclusive gateways that model “or” but not necessarily

“either/or” situations using inclusive OR gateways
o Event-based gateways that model decisions based on

events

303

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Technique Code
DFD − Analysis takes place in a top-down manner until processes can

be described by a single active verb with a singular object.
PERT and
GANTT

− Activities can be linked together by specifying predecessor
activities. These links can be qualified further as follows:
o Start-to-finish – when one task starts, the other can finish
o Start-to-start – when one task starts, the other can start
o Finish-to-start – when one task finishes, the other can

start
o Finish-to-finish – when one task finish, the other can

finish
− The links can also be qualified further by means of lag and lead

times.
− The activities can be organised hierarchically by means of a

work breakdown structure.
IDEF0 − Model consists of a hierarchical series of diagrams.
IDEF1 − An entity class is a class of individual member entities.

− The relationship between two entities has the following:
o Cardinality: 1:m, 1:1, m:n, zero or one
o A label: preposition-like words or verb-like words

IDEF1X − Kinds of relationships are as follows:
o Identifying and non-identifying
o Mandatory and optional
o Parent and child
o Categorisation relationship (one entity is a type of

another)
− Relationships have 0, 1 or n cardinality.
− Relationships are expressed as verbs.

IDEF3 − Processes can be linked together as follows:
o Simple precedence – most common type, involves

temporal precedence
o Constrained precedence – defined by terms like must,

ought and normative
o Relational – e.g. one cannot approve one’s own timesheet

− Link types are temporal, logical, causal, natural and
conventional.

− Links involve junctions, paths that split or merge (diverge or
converge), multiple parallel or alternative subprocesses.

− These junctions can be conjunctive (AND), disjunctive
inclusive (OR), synchronous AND (instances all start at the
same time) or synchronous OR (instances all end at the same
time).

IDEF5 − Individuals can be complex (consisting of many other objects
of various kinds) or simple.

− Kinds of relations:
o First and second order
 Relations are also called connections or associations.

Typically binary but can be n–ary.
 Subkind relation: kind-kind.

304

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Technique Code
 Instance-of relation: kind-individual.
 Is-a relation: not used because it is ambiguous (one of

the first two).
 Part-of relation: individual-complex object.

o Classification
 Functional inclusion: e.g. hammer is a tool
 State inclusion: e.g. polio is a disease, hate is an

emotion
 Activity inclusion: e.g. tennis is a sport, murder is a

crime
 Action inclusion: e.g. lecturing is a form of talking,

frying is a form of cooking
 Perceptual inclusion: e.g. a cat is a mammal, an apple

is a fruit
o Meronymic – Physical part-of
 Component-of – relates object and one of its

components, e.g. wheel is part of bicycle
 Stuff-of – object is partly made of some material, e.g.

bike is partly steel
 Portion-of – two similar objects, one included in the

other, e.g. slice is part of pie
o Meronymic – Conceptual part-of
 Member-of – Object is member of some collection.

Objects do not have to be similar, except membership,
e.g. cards are part of deck, tree is part of forest.

 Activity-within – Features or phases of activities, e.g.
paying is part of shopping, dating is part of adolescence.

o Spatial relations such as left-of, above, behind, inside,
between, far, touching, beside, disjoint.

o Case relations
 Agent-instrument – e.g. skier uses skis, soldier uses

gun
 Agent-object – e.g. writer-paper, baker-flour
 Action-recipient – e.g. lie down-bed, type-keyboard
 Action-instrument – e.g. paint-brush, strum-guitar
 Agent-action – e.g. dog-bark, artist-paint

o Temporal relations
 Two types: time-interval has beginning, end and

duration attributes; and time-point.
o Dependency relations: such as, depends-on, depends-on-

causally, depends-on-existentially, existentially dependent,
causally dependent.

− A relation is a definite descriptor that refers to an association
in the real world.

LAP − A transaction is a sequence of coordination events.
ODP − None
RAD − Activities can be decomposed.

− Roles consist of component activities.

305

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Technique Code
− There is a sequence of activities (the logic).

SQL − Has control-of-flow commands like, Begin … End. Break
(exits loop), Return, Waitfor, While, Case, If … Else and Goto.

− Provides for recursion.
SSM − Systems have subsystems.
UML − Associations identify interactions between actors and use

cases. Each association becomes a dialogue.
− Classes have relationships or association with each other, like

simple, aggregate, composite, inheritance, qualified, reflexive.
− Composition is used for aggregations where the lifespan of the

part depends on the lifespan of the aggregate, e.g. book-chapter
vs. team-player.

− Associations define the following:
o Participating classes
o The association type
o Name of association – verb or verb phrase
o Direction
o Multiplicity
o Role, describes how object participates in association
o Constraints, e.g. must have valid driver’s licence
o Association class, when data needs to be stored about

association
− Sequence and collaboration diagrams show the interactions

between objects
Zachman − Distinguishes primitives vs. composites.

10.2.7.2 Link to theoretical foundations

Chapter 4 on part-whole relationships is applicable to relationships. The following are

the major insights gained from this chapter:

• Relationships are either topological (connections) or mereological (part-whole

relationships (Wand et al. 1999).

• A part-whole relationship is where one thing (the whole) is the combination of

two or more things (the parts).

• A major part of modelling involves decomposition – breaking down a system into

its constituent parts.

• Wholes (also called composites) have properties. If these properties are in the

parts, they are considered inherited properties, otherwise the properties are

considered to be emergent (Wand et al. 1999).

306

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

• Parts can be attached/detached, arbitrarily demarcated, a temporal subset, a

property, or connected/disconnected from the whole.

• Parts can be material or immaterial.

• Part-whole relationships have the following primary characteristics: idempotent,

commutative, associative, at least one resultant (inherited) property, at least one

emergent property, irreflexiveness at the instance level and antisymmetry (Opdahl,

Henderson-Sellers and Barbier, 2001b). The following are some of the types of

part-whole relationships identified: component/integral-object, member/collection,

portion/mass, stuff/object, feature/activity, place/area (Gerstl and Pribbenow,

1995).

10.2.8 Language

This code language and related codes occur in many of the techniques. It is called

mostly language in the various techniques. The main aspects of language derived

from the grounded analysis are language artefacts and the language layers. See

Figure 10-12 for a summary of the main codes related to language.

Figure 10-12: Language-related codes

307

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

10.2.8.1 Link to techniques

Technique Code
ALC/OLC − None
AOR − None
ARM − Consider the connection between subjects (agents) and objects

or between subjects and subjects.
BPMN − None
DFD − None
PERT and
GANTT

− None

IDEF0 − None
IDEF1 − Diagrams can be translated into sentences.

− One modelling element is a dictionary (or glossary),
describing the meaning of each modelling element.

IDEF1X − Relationships are expressed as verbs.
IDEF3 − None
IDEF5 − In IDEF5, language sentences consist of the following:

o Constants – words denoting objects
o Variables – placeholders for constants
o Operators – words and characters to form complex

expressions
LAP − The semiotic layers of communication are as follows:

o Social layer (performa) relates to the social world
o Intellectual layer (informa) relates to pragmatics and

semantics
o Significational layer (forma) relates to syntactics,

empirics and the physical world
ODP − None
RAD − None
SQL − None
SSM − Non
UML − State is typically an adjective.
Zachman − None

10.2.8.2 Link to theoretical foundations

Many of the techniques discuss the layers or levels of linguistics (empirics,

morphology, syntax, semantics and pragmatics) when defining ISD modelling, but

none really take the concept to its full logical conclusion. The power of language is

that a few basic codes (the alphabet, numbers and symbols) can be used to create an

almost infinite number of words. In turn, these words, using a relatively small set of

structuring rules, can be used to form an almost infinite number of phrases and

308

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

sentences, which can be understood by anybody who knows the specific language. All

of these words and rules can be used to convey any meaning that a person could want

to convey to other people.

Therefore, it became clear to the researcher that the most logical and flexible way to

structure the grounded analysis codes into a coherent modelling technique is to

structure them into a linguistic format. In other words, the central concept (axial code)

in an analysis of ISD modelling is linguistics. Because the techniques did not really

expand on the linguistic concepts they proposed, it was necessary to get most of the

linguistic concepts from the theoretical foundations (see chapter 8 for an expansion of

this).

10.2.9 Rule

The code rule and related codes occur in many of the techniques. It is called mostly

rule in the various techniques. The main aspects of rule derived from the grounded

analysis are rule types. See figure 10-13 for a summary of the main codes related to

rules.

Figure 10-13: Rule-related codes

309

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

10.2.9.1 Link to techniques

Technique Code
ALC/OLC − None
AOR − Reaction rules are used to specify the reactive and

communicative behaviour of IS.
− The typical format of a reaction rule is ON event, IF condition,

THEN action and effect.
ARM − None
BPMN − None
DFD − None
PERT and
GANTT

− None

IDEF0 − Control are conditions required to produce correct output.
IDEF1 − Dictionary gives the meaning of each term.
IDEF1X − Entity domains can have domain rules.
IDEF3 − Constrained precedence specify constraints like must, ought,

within five minutes.
− A constraint can be relative or absolute.

IDEF5 − None
LAP − Action rules make a choice out of a set of possible acts and

perform that act.
− Action rules are considered atoms.

ODP − Structuring rules are either obligations or policies.
− An obligation is a prescription that a particular behaviour is

required.
− A policy is a set of rules related to a particular purpose. A rule

can be expressed as an obligation, permission or prohibition.
RAD − None
SQL − Constraints are applicable to tables or columns.

− Integrity constraints ensure that you can only reference
existing records.

− Domain integrity ensures that values entered comply with
certain restrictions.

− The unique constraint ensures that a record can only be
entered once.

− The NOT NULL constraint ensures that certain fields are
always entered.

SSM − None
UML − Guard conditions restrict the use of activity transitions.

− Decisions are either simple true/false situations or may involve
a choice out of a number of options.

Zachman − None

310

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

10.2.9.2 Link to theoretical foundations

In Chapter 3, business rules were discussed as a theoretical foundation. The Business

Rules Group’s classification has become the de facto classification of business rules

(Hay and Healy, 2000):

• Terms: defining a thing or data about it

• Facts: connections between terms

• Constraints (or action assertions): allow or prohibit actions

• Derivations (or inferences): the transformation of knowledge from one form to

another

Business rules are related to business objects such as processes, activities, actors,

goals and resources.

10.3 Conclusion

In this appendix, it was shown how the proposed integrative technique between

business and ISD modelling was derived using grounded theory qualitative data

analysis. The data used were extant ISD modelling techniques representative of the

underlying structures and mechanisms (using critical realism terminology) that can

empirically be evaluated, at least in terms of utility.

311

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

11. Bibliography

Part 1

Introduction

Part 2
Literature review

Part 3
Research

Part 4

Conclusion

Part 5

Supporting
information

Chapter 1
Introduction

Chapter 2
Theoretical
foundations

Chapter 3
Business rules

Chapter 4
Part-whole

relationships

Chapter 5
Linguistic analysis of

ISD modelling

Chapter 6
Research approach

Chapter 7
The proposed

integrative modelling
technique

Chapter 9
Conclusion

Bibliography

Chapter 8
Demonstration,

implementation and
evaluation of proposed
integrative modelling

technique

Appendix A
Derivation of proposed
integrative modelling
technique

 Bibliography

312

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

ADAMS, C. & AVISON, D. (2003) Dangers inherent in the use of techniques:
Identifying framing influences. Information Technology & People, 16, 203–
234.

AGUILAR-SAVEN, R.S. (2004) Business process modelling: Review and
framework. International Journal of Production Economics, 90, 129–149.

ANAYA, V., BERIO, G., HARZALLAH, M., HEYMANS, P., MATULECICIUS,
R., OPDAHL, A.L., PANETTO, H. & VERDECHO, M.J. (2010) The Unified
Enterprise Modelling Language – Overview and further work. Computers in
Industry, 61, 99–111.

ARTALE, A., FRANCONI, E., GUARINO, N. & PAZZI, L. (1996) Part-whole
relations in object-centered systems: An overview. Data & Knowledge
Engineering, 20, 347–383.

ATHENIKOS, S.J. & SONG, I-Y. (2008) A framework of ontology-based modeling
patterns. Proceedings of the Third International Conference on Design
Science Research in Information Systems and Technology. Atlanta, Georgia.

AVISON, D. & FITZGERALD, B. (2003) Where now for methodologies?
Communications of the ACM, 46, 79–82.

AVISON, D. & FITZGERALD, G. (2006) Information systems development
methodologies, techniques & tools. 4th Edition. McGraw-Hill.

BACKLUND, A. (2002) The concept of complexity in organisations and information
systems. Kybernetes, 13, 31, 30–43.

BAJAJ, A., BATRA, D., HEVNER, A.R., PARSONS, J. & SIAU, K. (2005) Systems
Analysis and design: Should we be researching what we teach?
Communications of the Association for Information Systems, 15, 478–493.

BAJEC, M. & KRISPER, M. (2005) A methodology and tool support for managing
business rules in organisations. Information Systems, 30, 423–443.

BAL, J. (1998) Process analysis tools for process improvement. The TQM Magazine,
10, 342–354.

BECKER, J. & NIEHAVES, B. (2007) Epistemological perspectives on IS research:
A framework for analysing and systematizing epistemological assumptions.
Information Systems Journal, 17, 197–214.

BENBYA, H. & MCKELVEY, B. (2006) Toward a complexity theory of information
systems development. Information Technology & People, 19, 12–34.

BERNARD, T.J., POALINE III, E.A. & PARE, P-P. (2005) General systems theory
and criminal justice. Journal of Criminal Justice, 33, 203–211.

BERNHAUER, J. (1996) Analysis of part-whole relation and subsumption in the
medical domain. Data & Knowledge Engineering, 20, 405-415.

BHATTACHERJEE, A. & PREMKUMAR, G. (2004) Understanding changes in
belief and attitude toward information technology usage: A theoretical model
and longitudinal test. MIS Quarterly, 28, 229–254.

CAPUCHINO, A.M., JURISTO, N. & VAN DE RIET, R.P. (2000) Formal
justi®cation in object-oriented modelling: A linguistic approach. Data &
Knowledge Engineering, 2000, 25–47.

CARTER, M., LONG, C. & TRUEX, D.P. (2007) The notion of ‘emergence’ as a
linguistic construct for eliciting security requirements in ISD. Organizations
and Society in Information Systems (OASIS), 2007 Workshop. IFIP 8.2.
Quebec, Canada.

CHANDLER, D. (2007) Semiotics: The basics. New York, Routledge.
CHARAF, M.C., ROSENKRANZ, C. & HOLTEN, R. (2010) Assessing language

quality in the information systems development process – A theoretical

313

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

approach and its application. International Conference on Information Systems
(ICIS), 2010 Proceedings. AIS Electronic Library (AISeL).

CHECKLAND, P. (1999) Systems thinking. IN CURRIE, W.L. & GALLIERS, B.
(Eds.). Rethinking management information systems. Oxford University Press.

CHECKLAND, P. (2000) Soft systems methodology: A thirty year retrospective.
Systems Research and Behavioral Science, 17, S11–S58.

CHEN-BURGER, J., ROBERTSON, D. & STADER, J. (2000) Formal support for an
informal business modelling method, informatics research report. Division of
Informatics, Artificial Intelligence Applications Institute, Institute for
Representation and Reasoning, University of Edinburgh.

CHEN, P.P-S. (1976) The entity-relationship model – Toward a unified view of data.
ACM Transactions on Database Systems, 1, 9–36.

COX, K. & PHALP, K.T. (2007) Practical experience of eliciting classes from use
case descriptions. The Journal of Systems and Software, 80, 1286–1304.

DAENGBUPPHA, J., HEMMINGTON, N. & WILKES, K. (2006) Using grounded
theory to model visitor experiences at heritage sites. Qualitative Market
Research: An International Journal, 9, 367–388.

DAVISON, R.M. & MARTINSONS, M.G. (2011) Methodological practice and
policy for organisationally and socially relevant IS research: An inclusive-
exclusive perspective. Journal of Information Technology, 26.

DELUCA, D., GALLIVAN, M.J. & KOCK, N. (2008) Furthering information
systems action research: A post-positivist synthesis of four dialectics. Journal
of the Association for Information Systems, 9, 48–72.

DIAZ, I., LOSAVIO, F., MATTEO, A. & PASTOR, O. (2004) A specification
pattern for use cases. Information & Management, 41, 961–975.

DIETZ, J.L.G. (2003) The atoms, molecules and fibers of organizations. Data &
Knowledge Engineering, 47, 301–325.

DIK, S.C. (1997a) The theory of functional grammar. Part 1. The structure of the
clause. Berlin, Mouton de Gruyter.

DIK, S.C. (1997b) The theory of functional grammar. Part 2. Complex and derived
constructions. Berlin, Mouton de Gruyter.

DOBSON, P.J. (2002) Critical realism and information systems research: Why bother
with philosophy? Information Research, 7.

ESCHENBACH, C. & HEYDRICH, W. (1995) Classical mereology and restricted
domains. International Journal of Human-Computer Studies, 43, 723–740.

FRANCE, R., EVANS, A., LANO, K. & RUMPE, B. (1998) The UML as a formal
modeling notation. Computer Standards & Interfaces, 19, 325–334.

FRANKEL, D.S., HARMON, P., MUKERJI, J., ODELL, J., OWEN, M., RIVITT, P.,
ROSEN, M. & SOLEY, R.M. (2003) The Zachman Framework and the
OMG’s model driven architecture. Business Process Trends White Paper.

FU, G., SHAO, J., EMBURY, S.M. & GRAY, W.A. (2004) Algorithms for analysing
related constraint business rules. Data & Knowledge Engineering, 50, 215–
240.

GAILLY, F. & POELS, G. (2007) Ontology-driven business modelling: Improving
the conceptual representation of the REA ontology. IN AL., C.P.E. (Ed.). ER
2007, LNCS.

GEERTS, G. (2011) A design science research methodology and its application to
accounting information systems research. International Journal of Accounting
Information Systems, 12, 142–151.

314

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

GERSTL, P. & PRIBBENOW, S. (1995) Midwinters, end games and body parts: A
classification of part-whole relations. International Journal of Human-
Computer Studies, 43, 865–889.

GEYER, F. (1995) The challenge of sociocybernetics. Kybernetes, 24, 6–32.
GHANBARY, A. & DAY, J. (2009) Requirements modelling of business web

applications: Challenges and solution. Improving Systems and Software
Engineering Conference (ISSEC). Canberra, Australia.

GITT, W. (1997) In the beginning was information. Bielefeld, Christliche Literatur-
Verbreitung e.V.

GLASER, B.G. (1978) Theoretical sensitivity. Mill Valley, CA, Sociology Press.
GLASER, B.G. (2003) The grounded theory perspective II: Description's remodelling

of grounded theory methodology. Mill Valley, California, Sociology Press.
GLASER, B.G. & STRAUSS, A. (1967) The discovery of grounded theory. Chicago,

Aldine Publishing Co.
GORDIJN, J. & AKKERMANS, H. (2002) Does e-business modeling really help?

The 36th Hawaii International Conference on System Sciences (HICSS’03).
IEEE. Hawaii.

GOULDING, C. (1998) Grounded theory the missing methodology on the
interpretivist agenda. Qualitative Market Research: An International Journal,
1, 50–57.

GREGOR, S. (2006) The nature of theory in information systems. MIS Quarterly, 30,
611–642.

GREGOR, S. & JONES, D. (2007) The anatomy of a design theory. Journal of the
Association for Information Systems, 8, 312–335.

GRUBER, T.R. (1995) Toward principles for the design of ontologies used for
knowledge sharing. International Journal of Human-Computer Studies, 43,
907–928.

GUIZZARDI, G. (2011) Ontological foundations for conceptual part-whole relations:
The case of collectives and their parts. International Conference on Advanced
Information Systems Engineering. London, UK.

HAMZA, H.S. & FAYAD, M.E. (2005) A novel approach for managing and reusing
business rules in business architectures. IN HAMZA, H.S. & FAYAD, M.E.
(Eds.). AICCSA 2005 Workshop # 3 In Association with the 3rd ACS/IEEE
International Conference on Computer Systems and Applications, AICCSA05.
Cairo, Egypt.

HASPELMATH, M. (2001) Word classes and parts of speech. International
Encyclopedia of the Social and Behavioral Sciences. Elsevier Science Ltd.

HAY, D. & HEALY, K.A. (2000) Defining business rules – What are they really?
The Business Rules Group.

HEATH, H. & COWLEY, S. (2004) Developing a grounded theory approach: A
comparison of Glaser and Strauss. International Journal of Nursing Studies
41, 141–150.

HERBST, H. (1996) Business rules in systems analysis: A meta-model and repository
system. Information Systems, 21, 147–166.

HEVNER, A.R. (2007) A three cycle view of design science research. Scandinavian
Journal of Information Systems, 19, 87–92.

HEVNER, A.R. & MARCH, S.T. (2003) The information systems research cycle.
Computer.

HEVNER, A.R., MARCH, S.T., PARK, J. & RAM, S. (2004) Design science in
information systems research. MIS Quarterly, 28, 75–105.

315

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

HUGHES, J. & HOWCROFT, D.A. (2000) Grounded theory: Never knowingly
understood. Information Systems Review, 4, 181–197.

IDEF0 (1993) The Standard for Integration Definition for Function Modeling
(IDEF0). Draft Federal Information Processing Standards Publication 183.

IIVARI, J. (2007) A paradigmatic analysis of information systems as a design science.
Scandinavian Journal of Information Systems, 19, 39–64.

IIVARI, J., HIRSCHHEIM, R. & KLEIN, H. (2001a) A dynamic framework for
classifying information systems development methodologies and approaches.
Journal of Management Information Systems, 17, 179–218.

IIVARI, J., HIRSCHHEIM, R. & KLEIN, H.K. (2001b) Towards more professional
information systems development: ISD as knowledge work. Global
cooperation in the new millennium. The 9th European Conference on
Information Syststems. Bled, Slovenia.

INTRONA, L.D. (1996) Notes on ateleological information systems development.
Information Technology and People, 9, 20–30, 33.

JOHNSTON, S. (2004) Rational ® UML profile for business modeling. Rational
software. IBM.

JOUBERT, P. (2009) Towards a linguistic analysis and representation of business
rules. The 1st International Workshop on Advanced Enterprise Repositories
(AER 2009). Milan, Italy.

KAPPES, S. (1997) Putting your IDEF0 model to work. Business Process
Management Journal, 3, 151–161.

Kardasis and Loucopoulos (2004) i
KAYED, A. & COLOMB, R.M. (2005) Using BWW model to evaluate building

ontologies in CGs formalism. Information Systems, 30, 379–398.
KILOV, H. & SACK, I. (2009) Mechanisms for communication between business and

IT experts. Computer Standards & Interfaces, 31, 98–109.
KORNAI (2007) Mathematical Linguistics. Springer.
KROEZE, J.H. (2003) The semantic functions of embedded constructions in Biblical

Hebrew. Journal of NorthWest Semitic Languages, 29, 107–120.
KROEZE, J.H. (2008) The so-called nominative uses of ta:e a semantic solution.

Journal for Semitics, 17, 484–516.
LEPPANEN, M. (2006) Conceptual evaluation of methods for engineering situational

ISD methods. Software Process Improvement and Practice, 11, 539–555.
LEWIS, R.T.V.N. (1994) From chaos to complexity: Implications for organizations.

Executive Development, 7, 16–17.
LIANG, Y. (2003) From use cases to classes: A way of building object model with

UML. Information and Software Technology, 45, 83–93.
LUUKKONEN, I., KORPELA, M. & MYKKANEN, J. (2010) Modeling approaches

in the early phases of information systems development. European Conference
on Information Systems (ECIS), 2010.

MAGEE, C. & DE WECK, O. (2004) Complex system classification. International
Council on Systems Engineering (INCOSE).

MANSOUR, M. (2002) Systems theory and human science. Annual Reviews in
Control, 26, 1–13.

MARKUS, M.L., MAJCHRZAK, A. & GASSER, L. (2002) A design theory for
systems that support emergent knowledge processes. MIS Quarterly, 26, 179–
212.

MARTIN, R.A., ROBERSTON, E.L. & SPRINGER, J.A. (2005) Architectural
principles for enterprise frameworks: Guidance for interoperability. IN

316

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Knowledge Sharing in the Integrated Enterprise. IFIP International Federation
for Information Processing.

MARTINELLI, D.P. (2001) Systems hierarchies and management. Systems Research
and Behavioral Science, 18, 69–82.

MAYR, H.C. & KOP, C. (2002) A user centered approach to requirements modeling.
IN GLINZ, M. & MÜLLER-LUSCHNAT, G. (Eds.). Modellierung 2002.
Lecture Notes in Informatics.

MAYR, H.C., KOP, C. & ESBERGER, D. (2007) Business process modeling and
requirements modeling. The First International Conference on the Digital
Society (ICDS'07).

MILLER, J.G. (1965) Living systems: structure and process. Behaviorial Science, 10
(4), 337-380.

MIHOUBI, H., SIMONET, A. & SIMONET, M. (1998) Towards a declarative
approach for reusing domain ontologies. Information Systems, 23, 365–381.

MINGERS, J. (2004a) Critical realism and information systems: Brief responses to
Monod and Klein. Information and Organization, 14, 145–153.

MINGERS, J. (2004b) Re-establishing the real: Critical realism and information
systems. IN MINGERS, J. & WILLCOCKS, L. (Eds.). Social theory and
philosophy for informations systems.

MINGERS, J. (2004c) Realizing information systems: Critical realism as an
underpinning philosophy for information systems. Information and
Organization, 14, 87–103.

MINGERS, J. (2008) Pluralism, realism, and truth: The keys to knowledge in
information systems research. International Journal of Information
Technologies and the Systems Approach, 1, 79–90.

MORA, M., OLMAN, O., FORGIONNE, G., PETKOV, D. & CANO, J. (2007)
Integrating the fragmented pieces of IS research paradigms and frameworks: A
systems approach. Information Resources Management Journal, 20, 1–22.

MYERS, M.D. (2009) Qualitative research in business and management. SAGE
Publications Ltd.

NORAN, O. (2003) An analysis of the Zachman Framework for enterprise
architecture from the GERAM perspective. Annual Reviews in Control, 27,
163–183.

NORAN, O. (2004) UML vs. IDEF: An ontology-oriented comparative study in view
of business modelling. International Conference on Enterprise Information
Systems (ICEIS). Port, Portugal.

ODEH, M. & KAMM, R. (2003) Bridging the gap between business models and
system models. Information and Software Technology, 45, 1053–1060.

OEI, J.L.H., HEMMEN, L.J.G.T., VAN FALKENBERG, E.D. & BRINKKEMPER,
S. (1992) The meta model hierarchy: A framework for information system
concepts and techniques. IN FALKENBERG, E.D. (Ed.). Technical Report.
Nijmegen, The Netherlands.

OMG (2007a) Unified Modeling Language: Infrastructure. Version 2.1.1.
OMG (2007b) Unified Modeling Language: Superstructure. Version 2.1.1.
OMG (2009) Business Process Modeling Notation (BPMN). Version 1.2.
OPDAHL, A.L., HENDERSON-SELLERS, B. & BARBIER, F. (2001a) Ontological

analysis of whole-part relationships in OO-models. Information and Software
Technology, 43, 387–399.

317

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

OPDAHL, A.L., HENDERSON-SELLERS, B. & BARBIER, F. (2001b) Ontological
analysis of whole-part relationships in OO-models. Information and Software
Technology, 43, 387–399.

ORLIKOWSKI, W.J. (1992) Duality of technology: Rethinking the concept of
technology in organisations. Organization Science, 3, 398–427.

PARKER, L.D. & ROFFEY, B.H. (1997) Methodological themes: Back to the
drawing board: Revisiting grounded theory and the everyday accountant’s and
manager’s reality. Accounting, Auditing & Accountability Journal, 10, 212–
247.

PATCHING, D. (1990) Soft Systems Design. London, UK, Pitman.
PEFFERS, K., TUUNANEN, T., ROTHENBERGER, M.A. & CHATTERJEE, S.

(2008) A design science research methodology for IS research. Journal of
Management Information Systems, 24, 45–77.

PERKINS, A. (2000) Business rules=meta-data. 34th International Conference on
Technology of Object-Oriented Languages and Systems, 2000. TOOLS 34..

PMBOK (1996) A guide to the Project Management Body of Knowledge. PMI
Publishing Division.

POO, D.C.C. (1999) Events in use cases as a basis for identifying and specifying
classes and business rules. Technology of Object-Oriented Languages and
Systems.

PURAO, S., BALDWIN, C.Y., HEVNER, A.R., STOREY, V.C., PRIES-HEJE, J.,
SMITH, B. & ZHU, Y. (2008) The sciences of design: Observations of an
emerging field. Working paper 09-56.

RAM, S. & KHATRI, V. (2005) A comprehensive framework for modeling set-based
business rules during conceptual database design. Information Systems, 30,
89–118.

RECKER, J. (2010) Opportunities and constraints: The current struggle with BPMN.
Business Process Management Journal, 16, 181–201.

RECKER, J., INDULSKA, M., ROSEMANN, M. & GREEN, P. (2004) Do process
modelling techniques get better? A comparative ontological analysis of
BPMN. 16th Australasian Conference on Information Systems. Sydney.

ROSCA, D. & D'ATTILIO, J. (2001) Business rules specification, enforcement and
distribution for heterogeneous environments. 25th Annual International
Computer Software and Applications Conference, (COMPSAC). Chicago,
USA.

RUSSELL, N., VAN DER AALST, W.M.P., TER HOFSTEDE, A.H.M. & WOHED,
P. (2006) On the suitability of UML 2.0 activity diagrams for business process
modelling. The 3rd Asia-Pacific Conference on Conceptual Modelling
(APCCM '06). Darlinghurst, Australia.

SCHACH (2004) Object oriented Analysis and design with UML and the unified
process. McGraw-Hill.

SEARLE, J.R. (1976) A classification of illocutionary acts. Language in Society, 5,
1–23.

SHAKER, P. (2010) Feature-oriented requirements modelling. Software Engineering,
2010 ACM/IEEE 32nd International. Waterloo, Ontario, Canada.

SHANKS, G., TANSLEY, E. & WEBER, R. (2004) Representing composites in
conceptual modelling. Communications of the ACM, 47, 77–80.

SHEN, H., WALL, B., ZAREMBA, M., CHEN, Y. & BROWNE, J. (2004)
Integration of business modelling methods for enterprise information system
analysis and user requirements gathering. Computers in Industry, 54, 307–323.

318

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

SHINGHAL, R. (1992) Formal concepts in artificial intelligence. Chapman and Hall.
SINHA, A., PARADKAR, A., KUMANAN, P. & BOGURAEV, B. (2009) A

linguistic analysis engine for natural language use case description and its
application to dependability analysis in industrial use cases. International
Conference on Dependable Systems & Networks, 2009 (DSN '09), IEEE/IFIP.
Hawthorne, New York.

SOWA, J.F. & ZACHMAN, J.A. (1992) Extending and formalizing the framework
for information systems architecture. IBM Systems Journal, 31, 590–616.

STABLER, E. (2010) Introduction to Linguistics, UCLA.
STEINKE, G. & NICKOLETTE, C. (2003) Business rules as the basis of an

organization’s information systems. Industrial Management & Data Systems,
103, 52–63.

STILLMAN, S. (2006) Grounded theory and grounded action: Rooted in Systems
Theory. World Futures, 62, 498–504.

STRAUSS, A. & CORBIN, J. (1998) Basics of Qualitative ResearchGrounded
Theory Procedures and Technique (2nd Edition), Newbury Park, London,
Sage.

THE OPEN GROUP (2007) The Open Group Architecture Framework (TOGAF)
Version 8.1.1, Enterprise Edition.

TOUSSAINT, P., BAKER, A. & GROENEWEGEN, L. (1997) Constructing an
enterprise viewpoint - evaluation of four business modelling techniques.
Compter Methods and Programs in Biomedicine, 55, 11–30.

TYNDALE-BISCOE, S., SIMS, O., WOOD, B. & SLUMAN, C. (2002) Business
Modelling for Component Systems with UML. The Sixth International
ENTERPRISE DISTRIBUTED OBJECT COMPUTING Conference
(EDOC’02).

VAISHNAVI, V. & KUECHLER, W. (2004) Design Science Research in
Information Systems. Last updated 30 September, 2011, last accessed
2 February 2012, http://desrist.org/desrist.

VALEIKA, L. & BUITKIENE, J. (2003) An Introductory Course in Theoretical
English Grammar, Vilnius Pedagogical University.

VALIRIS, G. & GLYKAS, M. (2004) Business analysis metrics for business process
redesign. Business Process Management Journal, 10, 445–480.

VARZI, A. (2010) Mereology. IN ZALTA, E. N. (Ed.) The Stanford Encyclopedia of
Philosophy (Spring 2011 Edition).

VENABLE, J. R. (2006) The Role of Theory and Theorising in Design Science
Research. 1st International Conference on Design Science – DESRIST
Claremont, CA.

VENABLE, J. R. (2010) Design Science Research Post Hevner et al: Criteria,
Standards, Guidelines, and Expectations. GLOBAL PERSPECTIVES ON
DESIGN SCIENCE RESEARCH. Lecture Notes in Computer Science.
Springer.

VON BERTALANFFY, L. (1950) The Theory of Open Systems in Physics and
Biology. Science, 111, 23–29.

VON HALLE, B. (2002) Business Rules Applied: Business Better Systems Using the
Business Rules Approach, John Wiley and Sons Ltd.

WAGNER, G. (2002) The Agent–Object-Relationship metamodel: Towards a unified
view of state and behavior. Information Systems, 28, 475–504.

319

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

http://desrist.org/desrist

WALLS, J., WIDMEYER, G. R. & EL SAWY, O. A. (1992) Design Theory for
Vigilant EIS, Information Systems Research. Information Systems Research,
3, 36–59.

WAN-KADIR, W. M. N. & LOUCOPOULOS, P. (2004) Relating evolving business
rules to software design. Journal of Systems Architecture, 50, 367–382.

WAND, Y. (1996) Ontology as a foundation for meta-modelling and method
engineering. Information and Software Technology, 38, 281–287.

WAND, Y., STOREY, V. C. & WEBER, R. (1999) An Ontological Analysis of the
Relationship Construct in Conceptual Modeling. ACM Transactions on
Database Systems, 24, 494–528.

WAND, Y. & WANG, Y. (1996) Anchoring data quality dimensions in ontological
foundations. Communications of the ACM, 39, 86–95.

WANG, T.-W. (2004) From General System Theory to Total Quality Management.
The Journal of American Academy of Business, Cambridge, 394–400.

WEIGAND, H. (1992) Assessing Functional Grammar for knowledge
representation. Data & Knowledge Engineering, 8, 191–203.

WILCOX, P. A. & GURAU, C. (2003) Business modelling with UML: the
implementation of CRM systems for online retailing. Journal of Retailing and
Consumer Services, 10, 181–191.

WINTER, K., HAYES, I. J. & COLVIN, R. (2010) Integrating Requirements: The
Behavior Tree Philosophy. 2010 8th International Conference on Software
Engineering and Formal Methods (SEFM). Brisbane, Australia.

WOLFSWINKEL, J. F., FURTMUELLER, E. & WILDEROM, P. M. (2012) Using
grounded theory as a method for rigorously reviewing literature. European
Journal of Information Systems, 1–11.

WOODBURN, I. (1988) The Idea of ‘System’ and its use in ‘hard’ and ‘soft’ systems
approaches. Journal of Applied Systems Analysis, 15, 49–54.

WYSSUSEK, B. (2006) On ontological foundations of conceptual modelling.
Scandinavian Journal of Information Systems, 18, 63–80.

XIA, W. & LEE, G. (2005) Complexity if ISD projects: Conceptualisation and
measurement development. Journal of Management Information Systems, 22,
45–83.

YUE, T., BRIAND, L. C. & LABICHE, Y. (2009) A Use Case Modeling Approach to
Facilitate the Transition Towards Analysis Models: Concepts and Empirical
Evaluation. Models 2009.

ZACHMAN, J. A. (1987) A Framework for information systems architecture. IBM
Systems Journal, 26, 276–292.

ZACHMAN, J. A. (1999) A framewrk for information systems architecture. IBM
Systems Journal, 38, 454–470.

ZUR MUEHLEN, M. & INDULSKA, M. (2010) Modeling languages for business
processes and business rules: A representational analysis. Information
Systems, 35, 39, 379–390.

320

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

	1. Introduction
	1.1 Introduction
	1.2 Background
	1.3 Motivation for this study
	1.3.1 ISD problems
	1.3.2 Business and ISD modelling problems
	1.3.2.1 General business modelling
	1.3.2.2 Business process modelling
	1.3.2.3 Requirements modelling
	1.3.2.4 Linking business and system modelling
	1.3.2.5 Conclusion

	1.3.3 Comparison with other disciplines

	1.4 Research approach
	1.4.1 Problem statement and research questions
	1.4.2 Research methodology
	1.4.3 The basis for the proposed integrative technique
	1.4.4 Scope and limitations

	1.5 Layout of thesis
	1.6 Conclusion

	2. Theoretical foundations
	2.1 Introduction
	2.2 Information
	2.3 Systems theory
	2.3.1 Systems thinking
	2.3.1.1 Hard systems
	2.3.1.2 Soft systems
	2.3.1.4 Living systems

	2.3.2 System characteristics
	2.3.3 System hierarchies
	2.3.3.1 High-level categories of systems
	2.3.3.2 General hierarchies
	2.3.3.3 Managerial hierarchies

	2.3.4 Complex engineering systems
	2.3.5 System complexity
	2.3.5.1 Complexity in organisations
	2.3.5.2 Complexity in IS and ISD

	2.3.6 System control

	2.4 Enterprise architecture
	2.4.1 Background
	2.4.2 Fundamental concepts
	2.4.3 Zachman rows
	2.4.3.1 Row 1: Planner or scope
	2.4.3.2 Row 2: Owner or enterprise
	2.4.3.3 Row 3: Designer or system
	2.4.3.4 Row 4: Builder or technology
	2.4.3.5 Row 5: Subcontractor or components
	2.4.3.6 Row 6: Functioning system

	2.4.4 Zachman columns
	2.4.4.1 Column 1: Data/What?
	2.4.4.2 Column 2: Function/How?
	2.4.4.3 Column 3: Network/Where?
	2.4.4.4 Column 4: People/Who?
	2.4.4.5 Column 5: Time/When?
	2.4.4.6 Column 6: Motivation/Why?

	2.5 Conclusion

	3. Business rules
	3.1 Introduction
	3.2 Business rules and ISD
	3.3 Types of business rules
	3.3.1 The Business Rules Group’s classification
	3.3.1.1 Terms
	3.3.1.2 Facts
	3.3.1.3 Constraints
	3.3.1.4 Derivations

	3.3.2 Other business rule classifications
	3.3.3 Summary of business rule types

	3.4 Business rule relationships
	3.5 Business rule representation
	3.6 Conclusion

	4. Part-whole relationships
	4.1 Introduction
	4.2 Background
	4.3 Overview
	4.4 Part-whole classifications
	4.4.1 Classical mereology and classical extended mereology
	4.4.2 The Opdahl et al. framework
	4.4.3 The Gerstl and Pribbenow framework

	4.5 Part-whole relationships in ISD
	4.6 Conclusion

	5. A linguistic analysis of IS modelling
	5.1 Introduction
	5.2 Linguistics and IS modelling
	5.2.1 Morphology
	5.2.1.1 Words and morphemes
	5.2.1.2 Lexicon
	5.2.1.3 Lexical categories
	(a) Open-class and closed-class words
	(b) Nouns
	(c) Verbs
	(d) Adjectives
	(e) Adverbs
	(f) Compound words
	(g) Word relationships
	(h) Conjunctions
	(i) Interjections
	(j) Determiners
	(k) Prepositions
	(l) Pronouns

	5.2.2 Syntax
	5.2.2.1 Phrases
	5.2.2.2 Clauses
	5.2.2.3 Sentence

	5.2.3 Semantics
	5.2.3.1 Semantic functions
	5.2.3.2 Lexical semantics
	(a) Hyponymy
	(b) Part-whole relationships
	(c) Synonymy
	(d) Antonymy
	(e) Converseness
	(f) Polysemy and homonymy
	(g) Metaphorical extension
	(h) Tense and modality
	(i) Reference
	(j) Deixis

	5.2.4 Pragmatics
	(a) Discourse
	(b) Topic
	(c) Speech acts

	5.3 Conclusion

	6. Research approach
	6.1 Introduction
	6.2 Research objectives, statement and questions
	6.3 Research design
	6.3.1 Research philosophy
	6.3.2 The grounded approach
	6.3.3 Data collection

	6.4 Design science research
	6.4.1 Background
	6.4.2 Research methodology
	6.4.3 Research output
	6.4.4 Research guidelines
	6.4.5 Design Science Research Theory

	6.5 The journey
	6.5.1 Part 1 – Grounded approach
	6.5.2 Part 2 – Design science research

	6.6 Conclusion

	7. The Proposed Integrative Modelling Technique
	7.1 Introduction
	7.2 Overview of the modelling technique
	7.3 The modelling technique in detail
	7.3.1 Base entities
	7.3.1.1 Base entities overview
	7.3.1.2 Actors (intelligent things)
	(a) Overview
	(b) Components
	(c) Categories
	(d) Properties
	(e) Actions

	7.3.1.3 Objects (non-intelligent things)
	(a) Overview
	(b) Components
	(c) Categories
	(d) Properties
	(e) Actions

	7.3.1.4 Act/relation

	7.3.2 Structure entities
	7.3.2.1 Models and model views
	(a) Overview
	(b) Categories

	7.3.2.2 Model blocks
	7.3.2.3 Model sentences and phrases

	7.3.3 Role entities
	7.3.3.1 Role entities overview
	7.3.3.2 Action
	(a) Overview
	(b) Components
	(c) Categories
	(d) Properties

	7.3.3.3 Relationships
	(a) Overview
	(b) Properties
	(c) Links to other base entities

	7.3.3.4 Conditions
	7.3.3.5 Role entity analysis

	7.4 Conclusion

	8. Demonstration, implementation and evaluation of proposed integrative modelling language
	8.1 Introduction
	8.2 Case study
	Case study: EU-Rent car rentals
	8.3 Demonstration and evaluation per perspective
	8.3.1 Perspective 1: Business rules
	8.3.1.1 Terms
	8.3.1.2 Facts
	8.3.1.3 Constraints or action assertions
	8.3.1.4 Derivations

	8.3.2 Perspective 2: ISD modelling
	8.3.3 Perspective 3: Requirements modelling using use cases
	8.3.3.1 Evaluation of use case translated into proposed technique

	8.4 Implementation of the technique as software
	8.5 Linking the integrative technique back to existing ISD techniques
	8.6 Conclusion

	9. Conclusion
	9.1 Introduction
	9.2 Answering the research questions
	9.2.1 Is there a gap between business and ISD that current modelling cannot fill?
	9.2.2 What are the fundamental constructs of any integrative modelling technique between business and ISD?
	9.2.3 What are the properties and attributes of these fundamental constructs?
	9.2.4 What are the relationships between these fundamental constructs?
	9.2.5 Can it be demonstrated that the proposed technique does indeed integrate business and existing modelling techniques better than existing business modelling techniques?

	9.3 Evaluation of the research
	9.3.1 Grounded approach evaluation
	9.3.1.1 Glaser and Strauss (1967)
	9.3.1.2 Strauss and Corbin (1998)
	9.3.1.3 Glaser (1978)

	9.3.2 Design science research evaluation

	9.4 Contribution of the research
	9.5 Future research
	(a) Linguistics
	(b) Modelling
	(c) Ontology

	9.6 Concluding remarks

	10. Appendix A: Derivation of basic concepts of integrated modelling language
	10.1 Introduction
	10.2 The grounded analysis codes
	10.2.1 Agent
	10.2.1.1 Link to techniques
	10.2.1.2 Link to theoretical foundations

	10.2.2 Thing
	10.2.2.1 Link to techniques
	10.2.2.2 Link to theoretical foundations

	10.2.3 Action
	10.2.3.1 Link to techniques
	10.2.3.2 Link to theoretical foundations

	10.2.4 Event
	10.2.4.1 Link to techniques
	10.2.4.2 Link to theoretical foundations

	10.2.5 Location
	10.2.5.1 Link to techniques
	10.2.5.2 Link to theoretical foundations

	10.2.6 View
	10.2.6.1 Link to techniques
	10.2.6.2 Link to theoretical foundations

	10.2.7 Relationship
	10.2.7.1 Link to techniques
	10.2.7.2 Link to theoretical foundations

	10.2.8 Language
	10.2.8.1 Link to techniques
	10.2.8.2 Link to theoretical foundations

	10.2.9 Rule
	10.2.9.1 Link to techniques
	10.2.9.2 Link to theoretical foundations

	10.3 Conclusion

	11. Bibliography

