Multiple gene genealogies reveal important relationships between species of *Phaeophleospora* infecting *Eucalyptus* leaves

- Vera Andjic¹,
- Giles E. StJ. Hard y^{1} ,
- Maria Noel Cortinas²,
- Michael J. Wingfield² &
- Treena I. Burgess^{1,2}

¹Biological Science, Murdoch University, Murdoch, Australia; and ²Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa

[Figures and tables at the bottom of the document]

Abstract

The majority of *Eucalyptus* species are native to Australia, but worldwide there are over 3 million ha of exotic plantations, especially in the tropics and subtropics. Of the numerous known leaf diseases, three species of *Phaeophleospora* can cause severe defoliation of young Eucalyptus; Phaeophleospora destructans, Phaeophleospora eucalypti and Phaeophleospora epicoccoides. Phaeophleospora destructans has a major impact on seedling survival in Asia and has not, as yet, been found in Australia where it is considered a serious threat to the biosecurity of native eucalypts. It can be difficult to distinguish *Phaeophleospora* species based on symptoms and micromorphology and an unequivocal diagnostic tool for quarantine purposes would be useful. In this study, a multiple gene genealogy of these *Phaeophleospora* species and designed specific primers has been constructed to detect their presence from leaf samples. The phylogenetic position of these *Phaeophleospora* species within *Mycosphaerella* was established. They are closely related to each other and to other important *Eucalyptus* pathogens, Mycosphaerella nubilosa, Mycosphaerella cryptica and Colletogloeopsis zuluensis. The specific primers developed can now be used for diagnostic and screening purposes within Australia.

Introduction

Eucalyptus species are highly favoured for the establishment of plantations. This is due to their rapid growth, ease of cultivation and their adaptation to a wide variety of different growing conditions (Turnbull, 2000). The timber of these trees is an important source of fibre for the international paper and pulp industry (Turnbull, 2000). In Australia, plantation forestry is rapidly increasing in size (National Forestry Inventory, 2004) and a number of fungal foliar pathogens have been reported to impact negatively on yields of these plantations. Among the most important of these pathogens are Mycosphaerella spp. (Carnegie et al., 1997; Park et al., 2000; Barber et al., 2003; Maxwell et al., 2003) and their incidence and severity is increasing as the areas under cultivation expand (Park et al., 2000; Maxwell et al., 2003).

Phaeophleospora Rangel is an anamorph genus assigned to some species of Mycosphaerella (Crous, 1998; Crous et al., 2001, 2004; Maxwell et al., 2003). Six species are known to cause disease on leaves of *Eucalyptus* species These are Phaeophleospora epicoccoides (Cooke & Massee) Crous, Ferreira & Sutton, Phaeophleospora destructans (MJ Wingf & Crous) Crous, Ferreira & Sutton, Phaeophleospora eucalypti (Cooke & Massee) Crous, Ferreira & Sutton, Phaeophleospora lilianie (Walker, Sutton & Pascoe) Crous, Ferreira & Sutton, Phaeophleospora delegatensis Park & Keane (Crous, 1998) and the recently described Phaeophleospora toledana Crous & G. Bills (Crous et al., 2004). Of these species, P. epicoccoides, P. destructans and P. eucalypti are considered important pathogens (Park et al., 2000). Phaeophleospora lilianie has been found only on yellow bloodwood (Eucalyptus eximia) in New South Wales and little is known regarding its importance (Chippendale, 1988). Phaeophleospora delegatensis is the anamorph of Mycosphaerella delegantesis (Park & Keane, 1984) isolated from the leaves of Eucalyptus delegantensis and Eucalyptus obliqua in Australia. It occasionally causes premature defoliation if the infection levels are severe. Both P. liliane and P. delegatensis have poor survival in culture and they have thus have never been successfully stored. Phaeophleospora toledana is the anamorph of Mycosphaerella toledana (Crous et al., 2004) named for its location of origin and it is not considered as a serious leaf pathogen.

Phaeophleospora destructans is an aggressive and often devastating pathogen that causes distortion of infected leaves and blight of young leaves, buds and shoots (Wingfield et al., 1996). This pathogen was first discovered in Indonesia in 1996 and has subsequently spread to Thailand, China, Vietnam and Timor (Old et al., 2003a, b; Barber 2004; Burgess et al., 2006). While most Phaeophleospora species infecting Eucalyptus leaves are known from Australia, P. destructans, the most pathogenic of these fungi has not

been found in this country. Thus, the potential impact of *P. destructans* on native eucalypt forests is unknown, but of concern.

Phaeophleospora epicoccoides is the anamorph of Mycosphaerella suttoniae (Crous et al., 1997) and it occurs worldwide infecting almost all eucalypt species (Sankaran et al., 1995). This species is well known on native Eucalyptus species in Australia and it has most likely been spread to other countries with germ-plasm used to establish plantations. Phaeophleospora epicoccoides is a relatively weak pathogen typically infecting older leaves and stressed trees (Knipscheer et al., 1990). Phaeophleospora eucalypti, a native pathogen in Australia, has in the past resulted in complete defoliation of juvenile leaves of Eucalyptus nitens in New Zealand, the only country where it is known to have been introduced (Dick, 1982; Hood et al., 2002a, b). The worst affected E. nitens stands in New Zealand are currently being converted back to farmland (Hood et al., 2002b).

The appearance and severity of lesions on *Eucalytpus* leaves are generally used to recognize the species of *Phaeophleospora* responsible for disease. However, depending on host and climate, the symptoms associated with infection by *P. epicoccoides*, *P. eucalypti* and *P. destructans* can be almost identical (Fig. 1) and incorrect diagnosis is a common problem. In addition, identification of *P. eucalypti* and *P. destructans* based on conidial morphology can be difficult because spore size varies depending on host species. A simple and accurate molecular diagnostic technique to distinguish between these important species would compliment traditional morphological diagnosis.

The aim of this study was to construct multiple gene genealogies for *P. epicoccoides*, *P. destructans* and *P. eucalypti*, the most common and destructive species occurring on *Eucalyptus*. Thus, partial sequences for six protein coding genes were generated to elucidate the phylogenetic relationships between these *Phaeophleospora* species. Following the construction of the phylogenies, species specific primers were then designed for diagnostic purposes.

Materials and methods

Fungal isolates

Phaeophleospora species were isolated under a dissecting microscope by collecting conidia exuding from single pycnidia, on the tip of a sterile needle. The spores were placed on malt extract (20 g L⁻¹) agar (MEA), in a single spot and allowed to hydrate for 5 min. Conidia were then drawn across the agar surface with a sterile needle and single

spores were picked off the agar and transferred to new MEA plates. Spores were left to germinate, which usually occurred within 24 h. Cultures were maintained at 20°C on MEA. Isolates made for this study were compared with those of other closely related species (Table 1). All isolates are maintained in the collection (CMW) of the Forestry and Agricultural Biotechnology Institute (FABI), **University** of **Pretoria**, South Africa or the Murdoch **University** culture collection (MUCC), Perth, Western Australia.

DNA extraction

Isolates were grown on 2% MEA at 20°C for 4 weeks and the mycelium was harvested, frozen in liquid nitrogen, ground to a fine powder and genomic DNA extracted using a hexadecyl trimethyl ammonium bromide (CTAB) protocol from Graham *et al.* (1994) modified by the addition of 100 μg mL⁻¹ Proteinase K and 100 μg mL⁻¹ RNAse A to the extraction buffer.

PCR amplification

This study included partial amplification of the 18S gene, the complete internal transcribed spacer (ITS) region 1, the 5.8S rRNA gene and the complete ITS region 2 and the 5' end of the 26S (large subunit) rRNA gene, part of the β-tubulin gene region, part of elongation factor 1α gene (EF- 1α), part of Chitin synthase 1 gene (CHS), part of the RNA polymerase II subunit (RPB2) and part of ATPase gene (ATP-6). Primers used for amplification of these regions are listed in (Table 2). The PCR reaction mixture (25 µL), PCR conditions and visualization of products were as described previously (Cortinas et al., 2006) except that 1 U of Tag polymerase (Biotech International, Needville, TX) was used in each reaction. For failed amplifications, the Mg concentration was increased to 4 mM, and primer concentration to 0.9 pmol and the following PCR conditions were used; 7 min at 94°C, followed by 35 cycles of 1 min at 94°C, 1 min at 45°C, 2 min at 72°C and final elongation step of 10 min at 72°C. RPB2 degenerate primers were tested at a range of temperatures, but failed to amplify the DNA of some representative isolates. Therefore, two successful amplicons were sequenced and primers redesigned and named RPB2-myco-6F and RPB2-myco-7R (Table 2). The PCR products were purified with Ultrabind®DNA purification kit (MO BIO Laboratories, Solana Beach, CA) following the manufacturer instructions. Amplicons were sequenced as described previously (Burgess et al., 2005)

Phylogenetic analyses

In order to compare *Phaeophleospora* isolates used in this study with other closely related species, additional sequences were obtained from GenBank (Table 1). Sequence data were assembled using SEQUENCE NAVIGATOR version 1.01 (Perkin Elmer) and

aligned in CLUSTALX (Thompson *et al.*, 1997) Manual adjustments were made visually by inserting gaps where necessary. All sequences obtained in this study have been deposited in GenBank and accession numbers are shown in Table 1.

The initial analysis was performed on an ITS dataset alone and subsequent analyses were performed on a combined dataset of ITS, β -tubulin, CHS and EF-1 α sequence, after a partition homogeneity test (PHT) had been performed in phylogenetic analysis using parsimony (PAUP) version 4.0b10 (Swofford, 2003) to determine whether sequence data from the four separate gene regions were statistically congruent (Farris *et al.*, 1995; Huelsenbeck *et al.*, 1996). The most parsimonious trees were obtained using heuristic searches with random stepwise addition in 100 replicates, with the tree bisection-reconnection branch-swapping option on and the steepest-descent option, off. Maxtrees were unlimited, branches of zero length were collapsed and all multiple, equally parsimonious trees were saved. Estimated levels of homoplasy and phylogenetic signal (retention and consistency indices) were determined (Hillis & Huelsenbeck, 1992). Characters were unweighted and unordered, branch and branch node supports were determined using 1000 bootstrap replicates (Felsenstein, 1985), characters were sampled with equal probability. Trees were rooted to *Botryosphaeria ribis* and *Botryosphaeria obtusa*, which were treated as the outgroup taxa.

Baysian analysis was conducted on the same aligned combined dataset. First MRMODELTEST v2.2 (Nylander, 2004) was used to determine the best nucleotide substitution model. Phylogenetic analyses were performed with MRBAYES v3.1 (Ronquist & Heuelsenbeck, 2003) applying a general time reversible (GTR) substitution model with gamma (G) and proportion of invariable site (I) parameters to accommodate variable rates across sites. The Markov Chain Monte Carlo (MCMC) analysis of four chains started from random tree topology and lasted 10 000 000 generations. Trees were saved each 10 000 generations, resulting in 10 000 saved trees. Burn-in was set at 500 000 generations after which the likelihood values were stationary, leaving 9950 trees from which the consensus trees and posterior probabilities were calculated. PAUP 4.0b10 was used to reconstruct the consensus tree and maximum posterior probability assigned to branches after a 50% majority rule consensus tree was constructed from the 9950 sampled trees.

Specific primer design and validation

To design species-specific primers, the gene regions with the greatest sequence difference between P. epicoccoides, P. eucalypti and P. destructans were targeted. Only two gene regions, β -tubulin and EF-1 α , were sufficiently variable between P. eucalypti and P. destructans to allow for primer design.

Repeatability of the specific primers was tested using at least 10 isolates of each *Phaeophleospora* species (*P. destructans*, CMW17918, 17919, 19832, 19844, 19886, 19906, 19909, 19910, 19936, 22553; *P. eucalypti*, CMW17912, 17915, 19916, MUCC432, 433, 434, 435, 436, 437, 438; *P. epicoccoides*, CMW5348, 22482, 22984, 22485, 22486, MUCC327, 424, 425, 426, 427). The isolates were amplified using specific β-tubulin and EF-1α primers (Table 2) and the same PCR conditions as (Cortinas *et al.*, 2006). Thereafter, primers were tested for their specificity, primarily to closely related species, but also to four less related *Mycosphaerella* spp. (Table 3).

The ability of the primers to amplify DNA directly from fruiting bodies from infected leaves was determined. The samples were frozen in liquid nitrogen, ground and DNA extracted with CTAB as described previously (Wittzell, 1999). DNA was then subjected to nested PCR, first using general β -tubulin and EF-1 α primers and then the initial PCR product was diluted 1 : 5 and nested PCR conducted using the specific primers.

Results

DNA sequence comparisons

Initially, 57 isolates representing 24 Mycosphaerella species and their anamorphs, including five species of *Phaeophleospora* found on *Eucalyptus* species and Phaeophleospora eugeniae the type species of the genus, were compared based on ITS sequence data (Table 1). The aligned data set consisted of 709 characters of which 127 bp were due to a large indel in two isolates of *P. epicoccoides* (MUCC327 and MUCC424) and this indel was excluded from the analyses. Of the remaining characters, 261 were parsimony informative. These data contained significant phylogenetic signal (P < 0.01; gl=-0.41) to allow for meaningful analysis. Initial heuristic searches of unweighted characters in PAUP resulted in three most parsimonious trees of 910 steps (CI=0.56, RI=0.85). The Phaeophleospora species from Eucalyptus; P. destructans, P. eucalypti, P. epicoccoides, P. toledana and Mycosphaerella ambiphylla (which has a Phaeophleospora anamorph) grouped together in a strongly supported clade. This clade also included Mycosphaerella nubilosa, Mycosphaerella cryptica, Mycosphaerella vespa, Mycosphaerella molleriana, Colleteogloeopsis zuluensis and various undescribed 'Coniothyrium' spp. (Fig. 2). The ex-type culture of *P. destructans* (STEU1336=CMW5219) was resequenced in this study and was distant from the isolate of P. destructans on GenBank (AF309614) (Crous et al., 2001). It was also distant from P. eugeniae, which is the type species of the genus, but close to P. eucalypti (Fig. 2,

TreeBASE SN2884). The ex-type culture of *P. eugeniae* (STEU1454=CMW5351) was also resequenced and, while the new sequence was similar to that on GenBank (<u>AF309613</u>), it differed in the first 50 bp of the ITS1 region. Based on results obtained for analysis of ITS sequence data, only species from the 'nubilosa clade' were retained for further study.

The multiple gene genealogies compared 31 isolates, including five *Phaeophleospora* species from *Eucalyptus*. The data set for the ATP6 region could not be completed because of difficulties encountered in amplifying DNA for all isolates. The RPB2 region proved not to be informative and these two regions were excluded from the combined analysis. The aligned data set for the combined ITS, β-tubulin, CHS and EF-1α sequences consisted of 1259 characters of which 352 were parsimony informative and were included in analysis. The PHT showed significant difference (P=0.001) between the data from the different gene regions (sum of lengths of original partition was 902, range for 1000 randomizations was 902–921). When the data sets were compared in pairs, the incongruence in the complete combined data set was actually due to incongruence between CHS and both the ITS and EF-1α datasets. On closer examination of the individual tree topography, the incongruence was due to the relationship of M. cryptica and C. zuluensis and not to the positions of the Phaeophleospora species (data not shown, sequence alignments are available from TreeBASE SN2884). Despite the fact that the PHT showed significant difference between data sets, they were nonetheless combined as suggested previously (Hognabba & Wedin, 2003).

The combined data set contained significant phylogenetic signal (P<0.01, gl=-0.29). Heuristic search of unweighted characters in PAUP resulted in 18 most parsimonious trees of 937 steps (CI=0.68, RI=0.90). In the resultant tree (Fig. 3, TreeBASE SN2884), M. vespa, M. molleriana and M. ambiphylla grouped together, while P. destructans and P. eucalypti were separated with 100% bootstrap support. The four isolates of P. destructans were identical and no polymorphisms were observed in any of the gene regions. There were eight fixed polymorphic sites in the ITS region, nine in the β -tubulin region and 24 in the EF-1 α region separating P. destructans and P. eucalypti. The variable sites in the β -tubulin and EF-1 α regions were used to design specific primers (Table 2). A table of polymorphic sites is available at http://0-

path.murdoch.edu.au.innopac.up.ac.za:80/downloads/Andjicetal_Additionals.pdf

Phaeophleospora eucalypti isolates were further separated in three subgroups, corresponding to isolates from (a) Queensland, (b) New South Wales and (c) Southern New South Wales, Victoria and New Zealand (Fig. 3). There were 18 polymorphic positions across the four gene regions among isolates of *P. eucalypti* with 2–3 distinct

profiles corresponding to geographic regions. *Phaeophleospora epicoccoides* was the basal species of the group and has three strongly supported subgroups (Fig. 3). Although there were 26 polymorphic sites across the four gene regions, there was no geographic association linked to these polymorphisms. A table showing polymorphic sites between isolates of *P. eucalypti* and *P. epicoccoides* is available at http://0-path.murdoch.edu.au.innopac.up.ac.za:80/downloads/Andjicetal Additionals.pdf

Validation of species-specific primers

Phaeophleospora destructans

Gel photos showing reproducibility of the specific primers for *P. destructans*, *P. eucalypti* and *P. epicoccoides* are given at http://0-path.murdoch.edu.au.innopac.up.ac.za:80/downloads/Andjicetal_Additionals.pdf

DNA for 10 isolates of *P. destructans* was amplified using the primers specific for β -tubulin and EF1- α . These primers were then tested on 10 closely related *Mycosphaerella* spp. and five less related species and none gave amplification products for the β -tubulin primers specific to *P. destructans*. The EF1- α primer specific to *P. destructans* also amplified DNA of *C. zuluensis*, *P. eugeniae*, *Mycosphaerella marksii*, but the amplicons either contained multiple bands or were larger than the amplicon for *P. destructans* (Table 3). Both specific primer sets detected *P. destructans* directly from spores scraped from the surface of leaves. The β -tubulin primers specific for *P. destructans* also detected

the presence of P. eucalypti, but the amplicon was larger than that obtained for P.

Phaeophleospora eucalypti

destructans and it contained a double band.

DNA for all 10 isolates of *P. eucalypti* was amplified using specific primers for β -tubulin and EF1- α . None of *Mycosphaerella* spp. tested in this study gave amplification products for the EF1- α primers designed to be specific to *P. eucalypti* (Table 3). The β -tubulin primers designed for *P. eucalypti* were not specific and amplified seven other species, amplifying bands of the same size as those for *P. eucalypti* (Table 3). Only the EF1- α primers detected *P. eucalypti* from spores scraped from leaves.

Phaeophleospora epicoccoides

All ten isolates of *P. epicoccoides* gave amplification products using the β -tubulin and EF1- α primers developed for this species. None of the *Mycosphaerella* spp. tested gave amplification products using these primers (Table 3). In planta, the EF1- α primer set detected the presence of *P. eucalypti* as well as *P. epicoccoides* and the β -tubulin primer set detected presence of *P. epicoccoides* and *P. destructans* on leaf material.

Discussion

The current phylogenetic study has unequivocally shown *P. destructans* to be closely related to *P. eucalypti* and specific primers have been developed to easily distinguish between these two species. *Phaeophleospora destructans* is unknown in Australia and is considered a major biosecurity threat. However, based on symptoms it is hard to distinguish between *P. eucalypti*, which is well-known in Australia, and *P. destructans*. Thus the specific primers will be very useful for detection and surveillance activities.

In a former study, *Phaeophleospora* species emerged in two separate clades (Crous *et al.*, 2001). One of these clades included *P. eucalypti* and *P. epicoccoides* and the other accommodated *P. eugeniae* and *P. destructans* (Crous *et al.*, 2001). All the isolates of *P. destructans* that have been examined, including the ex-type culture (STE-U1366=CMW5219), had identical ITS sequence data, which was different to the single sequence previously lodged in GenBank (isolate STE-U 1366, AF309613). Consequently, all *Phaeophleospora* species from *Eucalyptus* species cluster together and they are closely related to the important *Eucalyptus* pathogens, *C. zuluensis, M. cryptica* and *M. nubilosa*. In contrast, these fungi are distantly related to *P. eugeniae*. A taxonomic re-evaluation of species of *Phaeophleospora* and *Colletogloeopsis* associated with *Eucalyptus* species is currently underway (unpublished data).

The sequence data obtained in this study for four isolates of P. destructans, three from Indonesia and one from China, were identical for all six gene regions examined. This finding is unusual as some variability is usually observed in sequence data between isolates of the same species, especially when more than one region of origin is considered. The limited variability among isolates of P. destructans supports the hypothesis of selection pressure resulting in the adaptation of a limited number of genotypes to a new host (Eucalyptus in Sumatra, Indonesia) followed by dispersal of these genotypes throughout Asia. In the present study, no informative characters in the RPB2 and CHS regions were found that could separate P. destructans from P. eucalypti. There were, however, a few stable differences between the two species in the sequences for the ITS2 and β -tubulin regions. The most variable gene region was EF1- α where a 22 bp indel separated these species. For ITS2, β -tubulin and CHS gene regions there were more polymorphic sites among isolates of P. eucalypti than between P. destructans and P. eucalypti. This suggests that while P. destructans emerged as a major Eucalyptus pathogen in Asia, it may have very recently evolved from P. eucalypti, to which it is very

closely related. Where this adaptation could have occurred, however, remains a mystery as *P. eucalypti* has not been detected in Asia.

The sequence data for different *P. eucalypti* isolates was variable and analysis resulted in the isolates residing in different subgroups based on their origin. As isolates from New Zealand grouped with isolates from Victoria and southern New South Wales, *P. eucalypti* might have been moved to New Zealand from this region. Phylogeographic studies are required to test this hypothesis appropriately (Carbone & Kohn, 2001; Kasuga *et al.*, 2003).

Many polymorphic sites were observed amongst the sequence data sets for isolates of *P. epicoccoides*, but the groupings did not reflect any obvious pattern relating to origin or other characteristics of the isolates. Unlike *P. eucalypti*, this species is widely distributed throughout most *Eucalyptus* growing regions of the world. The lack of phylogenetic grouping amongst isolates with variable sequence data, probably reflects anthropogenic movement of germplasm and multiple introductions of the fungus into new areas. *Phaeophleospora epicoccoides* is known to be a morphologically variable species and it may represent a species complex rather than a single taxon (Crous & Wingfield, 1997). Population genetic studies and large numbers of isolates from different locations, especially in Australia are required to resolve this question.

Efforts to develop species specific primers for P. destructans, P. eucalypti and P. epicoccoides reflected the close relatedness between these species and the variably within the species. Nonetheless a suite of species specific primers have been developed that allow for simple distinction between these species. Primers based on the EF1- α region distinguished between all three species and primers for the β -tubulin regions provided reliable detection of P. destructans and P. epicoccoides. Specific primers based on EF1- α sequences were able to detect P. eucalypti and P. destructans directly from plant samples. The β -tubulin primers developed to detect P. epicoccoides also showed a faint positive band for P. destructans, while EF1- α primers developed to detect P. epicoccoides showed a faint band for P. eucalypti from leaf material. While this result may be considered confusing, it is believed that this reflects duel infection as P. epicoccoides is very often present on the same lesion together with P. eucalypti and P. destructans (Burgess et al., 2006).

Phaeophleospora destructans is a devastating pathogen of Eucalyptus as yet undetected in Australia. Since the fungus has been detected in East Timor, which is very close to the Australian border, it is a potential threat to the biosecurity and biodiversity of Australia's vast native Eucalyptus forests. Its early detection in Australia is important and the Australian Quarantine and Inspection Service (AQIS) regularly inspects Eucalyptus

species in Australia and neighbouring countries for pathogens including *P. destructans*. Because the symptoms caused by *P. destructans* can be almost identical to those associated with *P. eucalypti* and *P. eppicocoides*, unequivocal identification procedures are important. The DNA sequence data for many gene regions and the specific markers produced in this study should assist in this process.

References

•

Barber PA (2004) Forest pathology: the threat of disease to plantation forests in Indonesia. Plant Pathol J **3**: 97–104.

•

Barber PA, Smith IW & Keane PJ (2003) Foliar diseases of *Eucalyptus* spp. grown for ornamental cut foliage. Australasian Plant Pathol **32**: 109–111.

•

Burgess TI, Barber PA & Hardy GESJ (2005) *Botryosphaeria* spp. associated with eucalypts in Western Australia including description of *Fusicoccum macroclavatum* sp. nov. Australasian Plant Pathol **34**: 557–567.

•

Burgess TI, Andjic V, Hardy GESJ, Dell B & Xu D (2006) First report of *Phaeophleospora destructans* in China. J Tropical Forest Sci **18**: 144–146.

•

Carbone I & Kohn LM (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia **91**: 553–556.

•

Carbone I & Kohn LM (2001) A microbial population—species interface: nested cladistic and coalescent inference with multilocus data. Mol Ecol **10**: 947–965. Synergy, Medline, ISI

•

Carnegie AJ, Keane PJ & Podger FD (1997) The impact of three species of *Mycosphaerella* newly recorded on *Eucalyptus* in Western Australia. Australasian Plant Pathol **26**: 71–77.

•

Chippendale GM (1988) *Eucalyptus, Angophora (Myrtaceae)*. *Flora of Australia*, **19**. Australian Government Publishing Service, , XVI. 542 pp.

•

Cortinas M-N, Burgess TI, Dell B, Xu D, Wingfield MJ & Wingfield BD (2006) First record of *Colletogloeopsis zuluensis* comb. nov., causing a stem canker of *Eucalyptus* spp. in China. Mycol Res **110**: 229–236.

•

Crous PW (1998) Mycosphaerella spp. and their Anamorphs Associated with Leaf Spot Diseases of Eucalyptus, APS Press.

•

Crous PW & Wingfield MJ (1997) New species of *Mycosphaerella* occurring on *Eucalyptus* leaves in Indonesia and Africa. Can J Bot **75**: 781–790.

•

Crous PW, Ferreira FA & Sutton BC (1997) A comparison of the fungal genera *Phaeophleospora* and *Kirramyces* (Coelomycetes). S Afr J Bot **63**: 111–115.

Crous PW, Hong L, Wingfield BD & Wingfield MJ (2001) ITS rDNA phylogeny of selected *Mycosphaerella* species and their anamorphs occurring on *Myrtaceae*. Mycol Res **105**: 425–431.

•

Crous PW, Groenewald JZ, Mansilla JP, Hunter GC & Wingfield MJ (2004) Phylogenetic reassessment of *Mycosphaerella* spp. and their anamorphs occurring on *Eucalyptus*. Stud Mycol **50**: 195–214.

•

Dick M (1982) Leaf-inhabiting fungi of eucalypts in New Zealand. N Z J For Sci 12: 525–537.

•

Farris JS, Kallersjo M, Kluge AG & Bult C (1995) Testing significance of incongruence. Cladistics **10**: 315–319.

•

Felsenstein J (1985) Confidence intervals on phylogenetics: an approach using bootstrap. Evolution **39**: 783–791.

•

Gardes M & Bruns T (1993) ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Mol Ecol 2: 113–118.

•

Glass NL & Donaldson GC (1995) Development of primer sets designated for use with the PCR to amplify conserved regions from filamentous Ascomycetes. Appl Environ Microbiol **61**: 1323–1330.

•

Graham GC, Meyers P & Henry RJ (1994) A simplified method for preparation of fungal DNA for PCR and RAPID analysis. Biotechniques **16**: 48–50.

•

Hillis DM & Huelsenbeck JP (1992) Signal, noise and reliability in molecular phylogenetic analysis. J Heredity **83**: 189–195.

•

Hognabba F & Wedin M (2003) Molecular phylogeny of the *Sphaerophorus globosus* species complex. Cladistics **19**: 224–232.

•

Hood IA, Chapman SJ, Gardiner JF & Molony K (2002a) Seasonal development of septoria leaf blight in young *Eucalyptus nitens* plantations in New Zealand. Australian For **65**: 153–164.

•

Hood IA, Gardner JF & Kimberley MO (2002b) Variation among eucalypt species in early susceptibility to the leaf spot fungi *Phaeophleospora eucalypti* and *Mycosphaerella* spp. N Z J For Sci **32**: 235–255.

•

Huelsenbeck JP, Bull JJ & Cunningham CV (1996) Combining data in phylogenetic analysis. Trends Ecol Evol 11: 152–158.

•

Kasuga T, White TJ, Koenig GL *et al.* (2003) Phylogeography of the fungal pathogen *Histoplasma capsulatum*. Mol Ecol **12**: 3383–3402.

•

Knipscheer NS, Wingfield MJ & Swart WJ (1990) *Phaeoseptoria* leaf spot of *Eucalyptus* in South Africa. S Afr For J **154**: 56–59.

•

Kretzer A & Bruns TD (1999) Use of ATP6 in fungal phylogenetics: an example from the Boletales. Mol Phylogenetics Evol **13**: 483–492.

•

Liu YJ, Whelen S & Hall BD (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Mol Biol Evol **16**: 1799–1808.

•

Maxwell A, Dell B, Neumeister-Kemp H & Hardy GES (2003) *Mycosphaerella* species associated with *Eucalyptus* in southwestern Australia – new species, new records and a key. Mycol Res **107**: 351–359.

•

National Forestry Inventory (2004) *National Plantation Inventory Update – March 2004*, Bureau of Rural Sciences.

•

Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala **University**.

•

Old KM, Pongpanich K, Thu PQ, Wingfield MJ & Yuan ZQ (2003a) *Phaeophleospora destructans* causing leaf blight epidemics in South East Asia. ICPP, Christchurch, New Zealand, 2–7 February, Vol. 2 – offered papers, 165 pp.

•

Old KM, Wingfield MJ & Yuan ZQ (2003b) A Manual of Diseases of Eucalypts in South-East Asia, Center for International Forestry Research, 104 pp.

•

Park RF & Keane PJ (1984) Further *Mycosphaerella* species causing leaf diseases of *Eucalyptus*. Trans Br Mycol Soc **89**: 93–105.

•

Park RF, Keane PJ, Wingfield MJ & Crous PW (2000) Fungal diseases of eucalypt foliage. *Diseases and Pathogens of Eucalypts* (Keane PJ, Kile GA, Podger FD & Brown BN, eds), pp. 153–240. CSIRO Publishing.

•

Ronquist F & Heuelsenbeck JP (2003) MrBayes: bayesian phylogenetic inference under mixed models. Bioinformatics **19**: 1572–1574.

•

Sankaran KV, Sutton BC & Minter DW (1995) *A Checklist of Fungi Recorded on Eucalypts. Mycological Papers No. 170*, CAB International, , 375 pp.

•

Swofford DL (2003) Phylogenetic analysis using parsimony (*and other methods). Version 4. Version 4. Sinauer Associates, Sunderland, Massachusetts.

•

Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F & Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res **24**: 4876–4882.

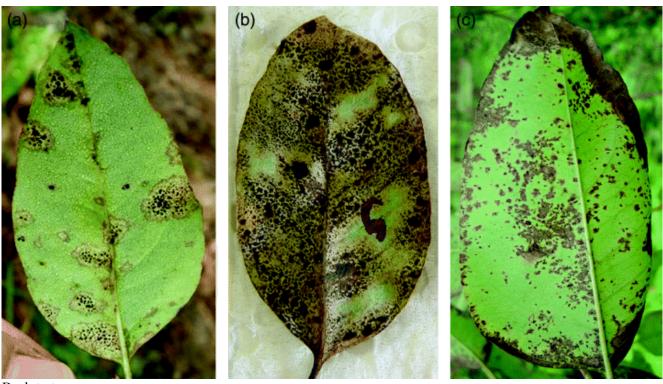
•

Turnbull JW (2000) Economic and social importance of eucalypts. *Diseases and Pathogens of Eucalypts* (Keane PJ, Kile GA, Podger FD & Brown BN, eds), pp. 1–10. CSIRO Publishing.

•

White TJ, Bruns T, Lee S & Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. *PCR Protocols: A Guide to Methods and Applications* (Innes MA, Gelfand DH, Sninsky JJ & White TJ, eds), pp. 315–322. Academic Press.

•


Wingfield MJ, Crous PW & Boden D (1996) *Kirramyces destructans* sp. nov., a serious leaf pathogen of *Eucalyptus* in Indonesia. S Afr J Bot **62**: 325–327.

•

Wittzell H (1999) Chloroplast DNA variation and reticulate evolution in sexual and apomictic sections of dandelions. Mol Ecol **8**: 2023–2035. Synergy, Medline, ISI

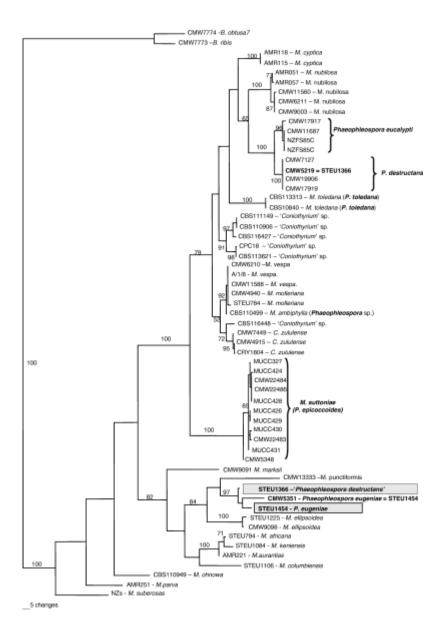
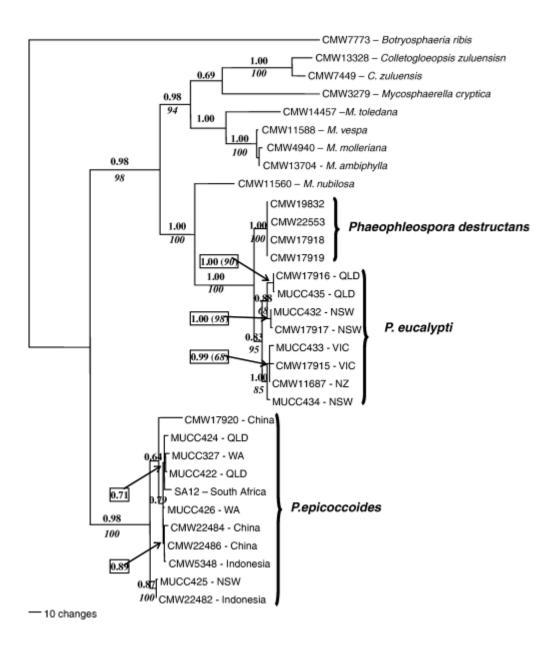

Figures and Tables

Fig. 1. Comparison of symptoms produced on juvenile *Eucalyptus grandis* leaves infected with (a) *Phaeophleospora destructans*, (b) *Phaeophleospora eucalypti* and (c) *Phaeophleospora epicoccoides* showing the similarity of symptoms associated with these fungi.



Back to top

Fig. 2. One of three most parsimonious phylogenetic trees of 977 steps obtained from analysis of ITS sequence data. Branch support (bootstrap values) is given above the branches. The sequences of the ex-type cultures of *Phaeophleospora eugineae* and *Phaeophleospora destructans* from Crous et al. (2001) are in a shaded box and those from the present study are in bold type. The tree is rooted to *Botryosphaeria ribis* and *Botryosphaeria obtusa*.

Fig. 3. Consensus phylogram of 9950 trees resulting from Baysian analysis of the combined ITS-2, β -tubulin, EF-1 α and CHS sequence data of *Phaeophleospora* isolates. Posterior probabilities of the node are indicated above the branches and bootstrap values from the parsimony analysis are indicated below branches in italics. Not all nodes with high posterior probabilities also have bootstrap support. The tree is rooted to *Botryosphaeria ribis*.

Table 1. Species and isolates considered in the phylogenetic study

							GenBa	ank accessio	n nos [†]
Culture no.*	Teleomorph	Anamorph	Host	Location	Collector	ITS	β-tubulin	EF-1α	CHS
STE-U 1454 CMW 5351		Phaeophleospora eugeniae	Eugenia uniflora	Brazil	MJ Wingfield	AF309613 DQ632710			
STE-U1366 CMW 5219		P. destructans	Eucalyptus grandis	Sumatra, Indonesia	MJ Wingfield	AF309614 DQ632699			
CMW 7127		P. destructans	Eucalyptus sp	Sumatra, Indonesia	MJ Wingfield	DQ632698			
CMW 19906		P. destructans	E. grandis	Sumatra, Indonesia	PA Barber	DQ632700			
CMW 22553		P. destructans	E. grandis	Sumatra, Indonesia	PA Barber	DQ632667	DQ632625	DQ632732	DQ632646
CMW 17918		P. destructans	E. grandis	Sumatra, Indonesia	PA Barber	DQ632666	DQ632624	DQ632731	DQ632645
CMW 19832		P. destructans	E. grandis	Sumatra, Indonesia	PA Barber	DQ632665	DQ632623	DQ632730	DQ632644
CMW 17919		P. destructans	E. urophylla	Guangzhou, China	TI Burgess	DQ632701	DQ632622	DQ632729	DQ632643
MUCC 433		P. eucalypti	E. nitens	Victoria, Australia	PA Barber	DQ632661	DQ632631	DQ632726	DQ632650
CMW 17915		P. eucalypti	E. nitens	Victoria, Australia	PA Barber	DQ632664	DQ632626	DQ632727	DQ632653
MUCC 432		P. eucalypti	E. grandis x E. tereticornis	New South Wales	AJ Carnegie	DQ632660	DQ632627	DQ632724	DQ632648
MUCC 434		P. eucalypti	E. grandis x E. tereticornis	New South Wales	AJ Carnegie	DQ632662	DQ632632	DQ632728	DQ632651

			Host	Location			GenBa	ank accessio	n nos [†]
Culture no.*	Teleomorph	Anamorph			Collector	ITS	β-tubulin	EF-1α	CHS
CMW 17917		P. eucalypti	E. grandis x E. tereticornis	New South Wales	AJ Carnegie	DQ632711	DQ632630	DQ632725	DQ632649
MUCC 435		P. eucalypti	E. grandis x E. camaldulensis	Queensland	AJ Carnegie	DQ632663	DQ632629	DQ632723	DQ632652
CMW 17916		P. eucalypti	E. grandis x E. camaldulensis	Queensland	AJ Carnegie	DQ632659	DQ632628	DQ632722	DQ632647
CMW 11687		P. eucalypti	E. nitens	New Zealand	M Dick	DQ240001	DS890168	DQ235115	DQ890167
NZFS85C/23		P. eucalypti	E. nitens	New Zealand	M Dick	AY626988			
NZFS85C/1		P. eucalypti	E. nitens	New Zealand	M Dick	AY626987			
MUCC 422	M. suttoniae	P. epicoccoides	E. grandis x E. camaldulensis	Queensland	G Hardy	DQ632656			
MUCC 424	M. suttoniae	P. epicoccoides	E. grandis x E. camaldulensis	Queensland	G Hardy	DQ632703	DQ632617	DQ632712	DQ632633
MUCC 428	M. suttoniae	P. epicoccoides	E. grandis x E. camaldulensis	Queensland	TI Burgess	DQ632707	DQ632618	DQ632717	DQ632638
MUCC 430	M. suttoniae	P. epicoccoides	E. grandis	Queensland	G Whyte	DQ632708			
MURU 327	M. suttoniae	P. epicoccoides	E. globulus	Western Australia	S Jackson	DQ632702	DQ632619	DQ632716	DQ632639
MUCC 426	M. suttoniae	P. epicoccoides	E. globulus	Western	S Jackson	DQ632704	DQ632620	DQ632715	DQ632637

		eomorph Anamorph	Host	Location	Collector		GenBank accession nos [†]		
Culture no.*	Teleomorph					ITS	β-tubulin	EF-1α	CHS
				Australia					
CMW 22482	M. suttoniae	P. epicoccoides	E. grandis	Sumatra, Indonesia	PA Barber	DQ632658	DQ632621	DQ632719	DQ632636
MUCC 425	M. suttoniae	P. epicoccoides	E. grandis	New South Wales	TI Burgess	DQ632655	DQ632613	DQ632713	DQ632634
MUCC 429	M. suttoniae	P. epicoccoides	E. grandis	New South Wales	TI Burgess	DQ530226			
MUCC 431	M. suttoniae	P. epicoccoides	E. grandis	New South Wales	TI Burgess	DQ530227			
CMW 22484	M. suttoniae	P. epicoccoides	E. urophylla	China	TI Burgess	DQ632705	DQ632616	DQ632714	DQ632635
CMW 22486	M. suttoniae	P. epicoccoides	E. urophylla	China	TI Burgess	DQ632706	DQ632615	DQ632720	DQ632642
CMW 17920	M. suttoniae	P. epicoccoides	E. urophylla	China	TI Burgess	DQ632654	DQ632612	DQ632721	DQ632641
CMW 22483	M. suttoniae	P. epicoccoides	E. grandis	Indonesia	PA Barber	DQ632709			
CMW 5348 STE-U 1346	M. suttoniae	P. epicoccoides	Eucalyptus sp.	Indonesia	MJ Wingfield	AF309621	DQ240117	DQ240170	DQ890166
SA12	M. suttoniae	P. epicoccoides	E. fragrata	South Africa	MN Cortinas	DQ632657	DQ632614	DQ632718	DQ632640
STE-U 10840CPC 10840	M. toledana	P. toledana	E. globulus	Spain	PW Crous	AY725580			
CBS 113313 CMW 14457	M. toledana	P. toledana	E. globulus	Spain	PW Crous	AY725581	DQ658235	DQ235120	DQ658226

			Host		Collector		GenBank accession nos [†]		
Culture no.=	Teleomorph	Anamorph		Location		ITS	β-tubulin	EF-1α	CHS
AMR 051	M. nubilosa		E. globulus	Western Australia	A Maxwell	AY509777			
AMR 057	M. nubilosa		E. globulus	Western Australia	A Maxwell	AY509778			
CMW 11560	M. nubilosa		E. globulus	Tasmania	A Milgate	DQ658232	DQ658236	DQ240176	DQ658230
CMW 6211	M. nubilosa		E. nitens	South Africa	G Hunter	AF449094			
CMW 9003	M. nubilosa		E. nitens	South Africa	G Hunter	AF449099			
AMR 118	M. cryptica	Colletogloeopsis nubilosum	E. globulus	Western Australia	A Maxwell	AY509753			
AMR 115	M. cryptica	C. nubilosum	E. globulus	Western Australia	A Maxwell	AY509754			
CMW 3279	M. cryptica	C. nubilosum	E. globulus	Australia	AJ Carnegie	AY309623	DQ658234	DQ235119	DQ658225
CMW 4915		C. zuluensis	E. grandis	South Africa	MJ Wingfield	AY244421			
CBS 117262 CMW 7449		C. zuluensis	E. grandis	South Africa	L Van Zyl	DQ240021	DQ240102	DQ240155	DQ658224
CBS 113399 CMW 13328		C. zuluensis	E. grandis	South Africa	L Van Zyl	DQ240018	DQ658233	DQ240172	DQ658223
CBS 110499 CMW 13704	M. ambiphylla	Phaeophleospora sp.	E. globulus	Western Australia	A Maxwell	AY150675	DQ240116	DQ240169	DQ658229
STE-U 784	M. molleriana	C. molleriana	Eucalyptus sp.	USA		AF309619			

		orph Anamorph	Host	Location			GenBa	ank accessio	n nos [†]
Culture no.*	Teleomorph				Collector	ITS	β-tubulin	EF-1α	CHS
CMW 4940 CPC1214	M. molleriana	C. molleriana	Eucalyptus sp.	Portugal	MJ Wingfield	DQ239969	DQ240115	DQ240168	DQ658228
A/1/8	M. vespa	Coniothyrium ovatum	Eucalyptus sp.	Tasmania	A Milgate	AY045499			
CMW 11588	M. vespa	Co. ovatum	E. globulus	Tasmania	A Milgate	DQ239968	DQ240114	DQ240167	DQ658227
CMW 6210	M. vespa	Co. ovatum	E. globulus	New South Wales	MJ Wingfield	AF449095			
CBS 110906		Coniothyrium sp.	E. cladocalyx	South Africa	PW Crous	AY725513			
CBS 111149		Coniothyrium sp.	E. cladocalyx	South Africa	PW Crous	AY725514			
CBS 113621		Coniothyrium sp.	E. cladocalyx	South Africa	PW Crous	AY725515			
CBS 116427		Coniothyrium sp.	Eucalyptus sp.	South Africa	PW Crous	AY725516			
CPC 18		Coniothyrium sp.	E. cladocalyx	South Africa	PW Crous	AY725517			
CBS 116428		Coniothyrium sp.	Eucalyptus sp.	South Africa	PW Crous	AY725518			
CBS 113265CMW 13333	M. punctiformis	Ramularia endophylla	Quercus robor	Netherlands		AY490763			
CMW 9091	M. marksii	Pseudocercospora epispermogonia	Eucalyptus sp.	South Africa	G Hunter	AF468871			
STE-U 796	M. africana		Eucalyptus	South	PW	AF173314			

			Host				GenBa	ank accessio	n nos [†]
Culture no.*	Teleomorph	Anamorph		Location	Collector	ITS	β-tubulin	EF-1α	CHS
CBS 680.95			sp.	Africa	Crous				
STE-U 1084	M. keniensis		Eucalyptus sp.	Kenya	MJ Wingfield	AF173300			
CBS 110500AMR 221	M. aurantia		E. globulus	Western Australia	A Maxwell	AF509743			
CBS 110969 STE-U1106	M. colombiensis	Ps. colombiensis	Eucalyptus sp.	Colombia	MJ Wingfield	AF309612			
CBS 110503 AMR 251	M. parva		E. globulus	Western Australia	A Maxwell	AF509782			
NZs	M. suberosa				A Milgate	AY045503			
CBS 110949	M. ohnowa		E. grandis	South Africa	MJ Wingfield	AY725575			
STE-U 1225	M. ellipsoidea	Uwebraunia ellipsoidea	Eucalyptus sp.	South Africa	MJ Wingfield	AF173303			
CMW 9098	M. ellipsoidea	U. ellipsoidea	Eucalyptus sp.	South Africa	MJ Wingfield	AF468874			
CMW 7774	Botryosphaeria obtusa		Ribes sp.	New York, USA	B Slippers	AY236953			
CMW 7773	B. ribis		Ribes sp.	New York, USA	B Slippers	AY236936	AY808170	AY236878	DQ65823

^{*}Designation of isolates and culture collections: CBS, Centraalbureau voor Schimmelcultures, Utrecht, Netherlands; CMW, Tree Pathology Co-operative Program, Forestry and Agricultural Biotechnology Institute, University of Pretoria, South Africa; STE-U, Stellenboch University, South Africa; MUCC, Murdoch University, Perth, Western Australia.

Sequences in bold were obtained during this study.

Table 2. Primer sets and annealing temperature used to amplify *Phaeophleospora* spp

Region	Oligos	Oligo Sequence (5'-3')	Amplicon size (bp)	AT (°C)	Reference
ITS	ITS-1F ITS-4	CTTGGTCATTTAGAGGAAGTAA TCCTCCGCTTATTGATATGC	600	50	Gardes & Bruns (1993)
ITS	ITS-3 ITS-4	GTATCGATGAAGAACGCAGC TCCTCCGCTTATTGATATGC	250	55	White et al. (1990)
β-tubulin	Bt2a Bt2a	GGTAACCAAATCGGTGCTGCTTTC ACCCTCAGTGTAGTGACCCTTGGC	680	45– 55	Glass & Donaldson (1995)
EF-1α	EF1-728F EF1-986R	CATCGAGAAGTTCGAGAAGG TACTTGAAGGAACCCTTACC	350	45– 55	C Acknowledgements
					We thank Binh Nguyen-Quoc (CRH,
					Université Laval) and Line Cantin
					(CRCHUL, Université Laval) for fruitful
					discussions, and Thierry C. Vrain
					(Agriculture and Agri-Food Canada,
					Summerland, BC, Canada) for providing
					the nematode proteases. This work was
					supported by the Natural Science and
					Engineering Research Council of
					Canada, and by the Fonds Québécois
					pour la Recherche sur la Nature et les
					Technologies (Québec). C.G. was the
					recipient of a postdoctoral fellowship
					from the Centre de Recherche en
					Horticulture of Laval University. A.K.

Region	Oligos	Oligo Sequence (5'-3')	Amplicon size (bp)	AT (°C)	Reference
					was the recipient of a fellowship from the Rockefeller Foundation. arbone & Kohn (1999)
CHS	CHS-79F CHS-354R	TGTGGGCAAGGATGCTTGGAAGAAG TGGAAGAACCATCTGTGAGAGTTG	300	55	Carbone & Kohn (1999)
RPB2	RPB2-6F RPB2-7R	CAAGGTCTTCACAGATGC CCCATRGCTTGYTTRCCCAT	1400	45– 55	Liu et al. (1999)
RPB2myco	RPB2myco- 6F RPB2myco- 7R	CAAGGTCTTCACAGATGC CAGGATGAATCTCGCAATG	650	50– 55	This study
ATP6	ATP6-1 ATP6-2	ATTAATTSWCCWTTAGAWCAATT TAATTCTANWGCATCTTTAATRTA	600	45	Kretzer & Bruns (1999)
β-tubulin (<i>P. destructans</i>)	PdBt-F PdBt-R	GTAACCAAATCGGTGCTGCT CAAAGTGGCTGCTCCGGGCG	198	62	This study
EF-1α (P. destructans)	Pd-EF-F Pd-EF-R	CGAGAAGTTCGAGAAGGTCAG GCGAGGGCTCTGTCGAAG	204	62	This study
β-tubulin (<i>P. eucalypti</i>)	Pey-Bt-F Pey-Bt-R	GTAACCAAATCGGTGCTGCT GAGTACAAGTGGCTGCTTAG	203	62	This study
EF-1α (P. eucalypti)	Pey-EF-F Pey-EF-R	CGAGAAGTTCGAGAAGGTCAG CTCTATCTGAAAGTCTTGGC	229	62	This study
β-tubulin (<i>P. epicoccoides</i>)	Pep-Bt-F Pep-Bt-R	CGACGGCTCAGGCGTGTATG GCGTTAGTGGTGTTGCTTGA	218	62	This study
EF-1α (P. epicoccoides)	Pep-EF-F Pep-EF-R	CCTACACACCCGCTGGTTAC CGGCGATCCTCCATAATCT	173	62	This study
Base codes: R ((AG), Y (CT),	K (GT), W (AT).			

Back to top

Table 3. Specific primers test results

		P. destructans		P. eucalypti		P. epicoccoides		
Test species	Code	β-tubulin 198 bp	EF1-α 204 bp	β-tubulin 203 bp	EF1-α 229 bp	β-tubulin 218 bp	EF1-α 173 bp	
P. destructans	CMW17919	+	+	+	_	_	_	
P. eucalypti	CMW17916	_	_	+	+	_	_	
P. epicoccoides	CMW5348	_	_	_	_	+	+	
M. cryptica	CMW3279	_	_	_	_	_	_	
M. vespa	CMW11588	_	_	_	_	_	_	
M. toledana	CMW14457	_	_	+	_	_	_	
C. zuluensis	CMW7449	_	+(500 bp)	_	_	_	_	
M. nubilosa	CMW11560	_	_	_	_	_	_	
M. molleriana	CMW4940	_	_	+	_	_	_	
M. ambiphylla	CMW13704	_	_	+	_	_	_	
P. eugeniae	CMW5351	_	+(400 bp)	+		_	_	
M. aurantia	MUCC258	_	_	_	_	_	_	
M. marksii	MUCC214	_	Multiple bands	_	_	_	_	
M. grandis	MUCC216	_	_	+	_	_	_	
M. lateralis	MUCC436	_	_	+	_	_	_	
Shaded cells indi	cate where the	primers amplified i	nonspecific DNA					