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Summary 
 

This dissertation explores a unique automated approach to map one phoneme set to another, 

based on the acoustic distances between the individual phonemes. Although the focus of this 

investigation is on cross-language applications, this automated approach can be extended to 

same-language but different-database applications as well. 

 

The main goal of this investigation is to be able to use the data of a source language, to train 

the initial acoustic models of a target language for which very little speech data may be 

available. To do this, an automatic technique for mapping the phonemes of the two data sets 

must be found. Using this technique, it would be possible to accelerate the development of a 

speech recognition system for a new language. The current research in the cross-language 

speech recognition field has focused on manual methods to map phonemes. This investigation 

has considered an English-to-Afrikaans phoneme mapping, as well as an Afrikaans-to-English 

phoneme mapping. This has been previously applied to these language instances, but utilising 

manual phoneme mapping methods. 

 

To determine the best phoneme mapping, different acoustic distance measures are compared. 

The distance measures that are considered are the Kullback-Leibler measure, the 

Bhattacharyya distance metric, the Mahalanobis measure, the Euclidean measure, the L2 

metric and the Jeffreys-Matusita distance. The distance measures are tested by comparing the 

cross-database recognition results obtained on phoneme models created from the TIMIT 

speech corpus and a locally-compiled South African SUN Speech database. By selecting the 

most appropriate distance measure, an automated procedure to map phonemes from the source 
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language to the target language can be done. The best distance measure for the mapping gives 

recognition rates comparable to a manual mapping process undertaken by a phonetic expert. 

 

This study also investigates the effect of the number of Gaussian mixture components on the 

mapping and on the speech recognition system’s performance. The results indicate that the 

recogniser’s performance increases up to a limit as the number of mixtures increase. In 

addition, this study has explored the effect of excluding the Mel Frequency delta and 

acceleration cepstral coefficients. It is found that the inclusion of these temporal features help 

improve the mapping and the recognition system’s phoneme recognition rate. Experiments are 

also carried out to determine the impact of the number of HMM recogniser states. It is found 

that single-state HMMs deliver the optimum cross-language phoneme recognition results. 

 

After having done the mapping, speaker adaptation strategies are applied on the recognisers to 

improve their target-language performance. The models of a fully trained speech recogniser in 

a source language are adapted to target-language models using Maximum Likelihood Linear 

Regression (MLLR) followed by Maximum A Posteriori (MAP) techniques. Embedded 

Baum-Welch re-estimation is used to further adapt the models to the target language. These 

techniques result in a considerable improvement in the phoneme recognition rate. Although a 

combination of MLLR and MAP techniques have been used previously in speech adaptation 

studies, the combination of MLLR, MAP and EBWR in cross-language speech recognition is 

a unique contribution of this study. 

 

Finally, a data pooling technique is applied to build a new recogniser using the automatically 

mapped phonemes from the target language as well as the source language phonemes. This 

new recogniser demonstrates moderate bilingual phoneme recognition capabilities. The 

bilingual recogniser is then further adapted to the target language using MAP and embedded 

Baum-Welch re-estimation techniques. This combination of adaptation techniques together 

with the data pooling strategy is uniquely applied in the field of cross-language recognition. 

The results obtained using this technique outperform all other techniques tested in terms of 

phoneme recognition rates, although it requires a considerably more time consuming training 
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process. It displays only slightly poorer phoneme recognition than the recognisers trained and 

tested on the same language database. 

 

Keywords: acoustic distance measures, phoneme mapping, cross-language, transformation-

based adaptation, MAP, MLLR, data pooling, embedded Baum-Welch re-estimation 
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Opsomming 
 

Hierdie studie ondersoek ‘n unieke geoutomatiseerde benadering om een foneem af te beeld 

op ‘n ander, gebaseer op die akoestiese aftstande tussen die individuele foneme. Alhoewel die 

fokus van hierdie studie op kruis-taal toepassings is, kan die geoutomatiseerde benadering ook 

gebruik word vir toepassings op verskillende databasisse in dieselfde taal. 

 

Die hoofdoel van hierdie navorsing is om die data van ‘n brontaal te gebruik, om die 

aanvanklike akoestiese modelle van die teikentaal af te rig wanneer min spraakdata beskikbaar 

is in die teikentaal. Om dit te doen, moet ‘n geoutomatiseerde tegniek gevind word om die 

twee datastelle se foneme op mekaar af te beeld. Deur dié tegniek toe te pas sal dit dan 

moontlik wees om die ontwikkeling van spraakherkenning stelsels vir nuwe tale te bespoedig. 

Die heidige navorsing wat op kruis-taal toepassings fokus gebruik ‘n fonetiese deskundige om 

die foneme op mekaar af te beeld. Hierdie foneem afbeelding navorsing het Engels-na-

Afrikaans sowel as Afrikaans-na-Engels ondersoek. Dit is vooraf op hierdie tale toegepas, 

maar het ‘n fonetiese deskundige gebruik om die foneme op mekaar af te beeld. 

 

Om die beste foneem afbeelding te bepaal word versillende akoestiese afstande met mekaar 

vergelyk. Die tipes afstandsmetings wat ondersoek is, is die Kullback-Leibler meting, die 

Bhattacharyya afstand, die Mahalanobis afstand, die Euclidiese afstand, die L2 afstand en die 

Jeffreys-Matusita afstand. Die afstand metings word getoets deur die kruis-databasis 

herkenningsresultate te vergelyk op die foneemmodelle wat geskep is van die TIMIT spraak 

databasis en ‘n plaaslike Suid-Afrikaanse SUN Spraakdatabasis. Deur die mees gepaste tipe 

afstandsmeting te kies, kan ‘n geoutomatiseerde proses om die foneme van die brontaal na die 

teikentaal af te beeld, gedoen word. Die beste afstandsmeting vir die afbeelding gee 

herkenningsresultate wat vergelykbaar is met die afbeelding wat deur ‘n fonetiese deskundige 

gedoen word. 

 

Hierdie studie ondersoek ook die effek van die aantal Gaussiese mengsels op die afbeelding en 

die spraakherkenningstelsel se herkenning. Die resultate wys dat die herkenning asimptoties 

toeneem tot by ‘n limiet soos die aantal mengsels vermeerder. Verder het die studie ook die 

effek van die weglating van die delta en versnelling Mel frekwensie kepstrale koëffisiënte 
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ondersoek. Daar is gevind dat die insluiting van hierdie tydsfunksies die afbeelding en die 

herkenningstelsel se foneem herkenningstempo verbeter. Eksperimente is ook uitgevoer om 

die impak van die aantal Verskuilde Markov Modelle (VMM) te bepaal. Daar is bevind dat 

enkel toestand VMMe die optimale kruis-taal foneemherkenning resultate gee. 

 

Nadat die afbeelding gedoen is, word spreker aanpassingstegnieke toegepas op die herkenners 

om die teikentaal se werksverrigting te verbeter. Die modelle van ‘n volledig afgerigte 

spraakherkenner in die brontaal word aangepas vir ‘n teikentaalmodel deur gebruik te maak 

van “Maximum Likelihood Linear Regression (MLLR)” gevolg deur “Maximum A Posteriori 

(MAP)” tegnieke. Ingebedde Baum-Welch herskattings (EBWR) word verder gebruik om die 

modelle aan te pas vir die teikentaal. Hierdie tegnieke lewer ‘n aansienlike verbetering in die 

foneemherkenningstempo. Alhoewel ‘n kombinasie van MLLR en MAP vooraf in spreker 

aanpassing gebruik is, is hierdie kombinasie van MLLR, MAP en EBWR aanpassingstegnieke 

‘n unieke bydrae van dié studie.  

 

Ten slotte word ‘n tegniek gebruik waar die data gepoel is om a nuwe herkenner te bou wat 

die outomatiese getransformeerde foneme van die teikentaal en die brontaal gebruik. Die nuwe 

herkenner demonstreer matige tweetalige foneemherkenningsvermoë. Die tweetalige 

herkenner word dan verder aangepas na die teikentaal deur MAP en ingebedde Baum-Welch 

herskattingstegnieke te gebruik. Hierdie kombinasie van spreker aanpassingstegnieke saam 

met die tegniek om data te poel is ‘n unieke tegniek wat in kruis-taal toepassings gebruik 

word.  Die resultate wat hiermee verkry is, het beter as alle ander tegnieke wat getoets is 

presteer, alhoewel dit ‘n aansienlike meer tydrowende afrigtingsproses verg. Dit vertoon slegs 

effens slegter in terme van foneemherkenning as die herkenners wat op dieselfde databasis 

afgerig en getoets is. 

 

Sleutelwoorde: akoestiese afstandsmetings, foneemafbeeldings, kruis-taal, transformasie-

gebaseerde aanpassing, MAP, MLLR, gepoelde data, Baum-Welch herskatting. 
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Chapter 1 
 

INTRODUCTION 
 

Considerable time and effort has been vested in optimising the performance of large 

vocabulary continuous speech recognition (LVCSR) systems. However, this focus has 

traditionally been applied to a single language. While this may have been adequate previously, 

it no longer bears practicality if one considers how the global boundaries of the world are 

becoming integrated.  

 

In speech technology systems, there is an ever-increasing interest in issues such as dialectal 

variation, the handling of foreign accents and cross-language applications. There is a need to 

extend the capabilities of existing, current and in-use speech recognition systems for which 

considerable time and effort has been expended to tune them to the same high-performing 

levels for a new language. 

 

The questions then arise about how to adapt these existing speech recognition systems to a 

new language using the least amount of time and effort, and how to expedite the speech 

recognition process in these adapted recognisers to bring their performance up to an 

acceptable level.  

 

Multilingual speech recognition systems have traditionally focused on four main areas: 

• On building speech recognition systems that can accept speech input in different 

languages. 
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• On language identification applications in which the recognition system attempts to 

identify the language spoken by the individual. 

• Studies have been conducted on sharing acoustic information between languages by 

constructing multilingual phone sets [37, 39, 40, 42]. 

• More recently, research has been conducted into using cross-language acoustic 

information with the goal of improving the performance of a recogniser in a new target 

language [3, 8]. 

 

When a recognition system has to be developed for a new language (either exclusively for the 

new language or for the new language in addition to existing languages) the recognition 

system optimised for another language can be adapted to the characteristics of the new 

language. 

 

This dissertation presents a technique for building the initial acoustic phoneme models of a 

Hidden Markov Model (HMM) in a new (target) language using acoustic models trained in 

another (source) language. Very often, much less training data for the new language is 

available for building a completely new recogniser. By using the techniques proposed in this 

investigation, it would be possible to rapidly generate the initial acoustic models for the new 

language. Then, by utilising selected adaptation techniques [3, 8], these seed models can be 

refined by optimally using the data available in the target language. The adaptation strategies 

explored in this investigation include: 

• adapting the models trained on a base language using target language data, and 

• training models on multilingual (English and Afrikaans) pooled data, and then adapting 

the models using the target language data. 

 

These techniques are relevant to any new language that has a high degree of overlap with the 

source language in terms of phonemes and are applied using both English and Afrikaans as the 

target languages. 

 

Once the initial target language acoustic models have been created, acoustic model re-

estimation techniques are used to fine-tune the target language phoneme models. This issue is 

Electrical, Electronic and Computer Engineering   
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also explored in this investigation. 

 

This study details the entire process to build a phoneme recogniser in a target language. It 

initially looks at how the automated process to map phonemes from one language to another 

can be applied to generate initial (seed) phoneme models in a target language, then the 

adaptation methodology suggested in [3] to build a new recogniser in a target language is 

applied, and finally refines the target language recogniser by re-estimating model parameters 

to closer match the available target language speech data. 

 

1.1 Using intelligent techniques for phoneme recognition 
 

More recently, there has been considerable focus on the use of intelligent techniques (such as 

neural networks) in speech recognition, particularly in phoneme recognition applications. 

 

HMMs have traditionally been extensively used in speech recognition since they support both 

acoustic and temporal modelling. Acoustic variability covers different accents, pronunciations, 

pitches and volumes while temporal variability covers different speaking rates. Since HMMs 

are essentially a collection of states connected by transitions, they are ideally suited for 

modelling the temporal nature of speech. However, HMMs make a number of sub-optimal 

modelling assumptions [60]. One assumption is that all probabilities depend solely on the 

current state, not on the previous history. This is incorrect for speech applications. One 

consequence is that HMMs have difficulty modelling coarticulation, because acoustic 

distributions are strongly affected by recent state history. A further assumption is that there is 

no correlation between adjacent input frames. This is also false for speech applications. In 

accordance with this assumption, HMMs examine only one frame of speech at a time, and in 

so doing ignore the context of neighbouring frames. A further problem with using HMMs is 

that the HMM continuous density models suffer from model mismatch, i.e., there is a poor 

match between their a priori choice of statistical model (normally chosen to be a mixture of k 

Gaussians) and the true density of acoustic space. 

 

Electrical, Electronic and Computer Engineering   
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Neural networks (NNs) have long since been used in pattern recognition applications. They 

have the ability to learn complex, non-linear functions, they have a high tolerance for noise 

and they generalise well, which is important since speech patterns are never exactly the same 

[60]. Time delay neural networks (TDNNs) [5] have previously been used in speech 

recognition applications. TDNNS are implemented with time delay connections, such that 

each input is subject to one or more time-delays. The major drawback of using NNs in speech 

recognition has previously stemmed from how they will be used for temporal modelling, since 

they usually perform best best in static or temporally localised pattern recognition 

applications. 

 

A more recent approach has focussed on using NN-HMM hybrid models [60, 61, 62, 63], 

where NNs are used for acoustic modelling and HMMs for temporal modeling. The simplest 

way to integrate HMMs and NNs would be to implement various pieces of HMM systems 

using NNs. NNs are nonparametric models that do not suffer from quantisation error or make 

detailed assumptions. Furthermore, NNs can accommodate any size input window since the 

number of weights required in a network simply grows linearly with the number of inputs. 

Thus NNs lend themselves more naturally to context sensitivity than an HMM. However, in 

practice, the number of adjacent frames that can analysed simultaneously is limited. A further 

drawback of the hybrid model is that the assumption that all probabilities depend solely on the 

current state, independent of previous history affects hybrid speech recognisers as well since 

this is a property of the HMM temporal model. 

 

A number of studies using hybrid phoneme recognisers have been carried out. Tebelskis [60] 

demonstrated the use of Linked Predictive Neural Networks (LPNNs) in phoneme 

classification, where each phoneme class was modeled by a separate neural network, and each 

network tried to predict the next frame of speech given some recent frames of speech. It was 

found that the hybrid recogniser had better acoustic modeling accuracy, better context 

sensitivity and more natural discrimination than using a standard HMM. Tebelskis obtained a 

4.5% recognition improvement over standard HMMs. 

 

Electrical, Electronic and Computer Engineering   
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Johansen [62] conducted a comparison of different model architectures for TIMIT phoneme 

recognition. A Guassian-based HMM was compared with two multilayer perceptron-HMM 

hybrids. Johansen found that there were very small differences between the phoneme 

recognition results of the HMM and hybrid architectures. 

 

Torkkola [63] demonstrated using learning vector quantisation (LVQ)-based codebooks with 

HMMs in speech recognition. It was found that modeling classwise quantisation errors of 

LVQ by continuous-density hidden Markov models lead to significant improvements over the 

conventional HMM techniques. It was suggested that the resulting system could be used as a 

phonetic recognition engine in a large-vocabulary continuous-speech recognition system, but 

at the cost of increased computational complexity. 

 

However, the main purpose of this particular investigation is to assess the viability of 

automatically mapping phonemes from a source language to a target language using acoustic 

distance measures. Although using intelligent techniques in phoneme recognition is a further 

possibility, this is beyond the scope of the present investigation and as such, only standard 

HMM techniques are considered in this study. 

 

The next sub-section considers both the classical and modern approaches to speaker 

adaptation. 

 

1.2 Speaker adaptation 
 

Speaker adaptation techniques have traditionally been applied when moving from a speaker 

independent (SI) scenario to a speaker dependent (SD) one, i.e. the goal has centred around 

attempting to adapt the acoustic parameters of an existing recogniser to improve its 

performance for a new speaker. This adaptation usually involves minimal adaptation data, and 

the challenge is to optimise the use of this adaptation data in the most efficient manner 

possible. 
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A different application of speaker adaptation was demonstrated in [3]. Rather than applying 

speaker adaptation in the conventional manner, the study looked at adapting acoustic models 

of a source language using speech data from speakers in a target language. This technique was 

shown to be a viable option in that study. This implies that using similar techniques in the 

present study would also lead to favourable results. 

 

1.3 Re-use of acoustic information for cross-language applications 
 

A major stumbling block in the re-use of acoustic information for cross-language acoustic 

model training is the actual format of the speech data. In traditional speaker adaptation, there 

is a consistent format of the data that is used for adaptation since the problem involves the 

same language. Even if the adaptation speech data is from a different database, the phoneme 

mappings are usually one-to-one and consistent. For cross-language applications, however, 

problems are encountered since the different languages have different phoneme sets. This 

problem can be overcome if there is some reliable mechanism to automate the mapping 

process, either through the use of phonetic experts, or through the use of distance metrics. 

Mapping exercises done by phonetic experts are subjective, and are not always repeatable – 

there is no guarantee that the phonetic expert will map the same phoneme set in exactly the 

same manner on another occasion. Bearing in mind that it is not always easy to find someone 

with expert phonetic knowledge, this option is not always feasible. Finding an optimum 

distance metric for this mapping has not been extensively explored, especially within the 

cross-language realm. It is this problem that is addressed in the current study. 

 

Kohler [7] investigated methods to develop multilingual phone models for a telephone-based 

speech recognition system built for six languages (French, German, Italian, Portuguese, 

Spanish and American English). One of the methods that he considered was a direct mapping 

to the phone set of the International Phonetic Association (IPA). This method did not use any 

language-dependent acoustic information but relied on the accuracy and the consistency of the 

phonetic transcriptions. This means that a particular phoneme unit may be mapped to a 
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phoneme set that is orthographically closer, rather than acoustically similar. He was able to 

reduce the phone set from 232 language-dependent models to 47 multilingual models (where 

“multilingual” implies that the phone can be found in more than one language) and 48 

monolingual models. Although this approach reduced the computational effort required for the 

multilingual recognition task, the study noted a 5% decrease in recognition rate. The study 

also investigated a multilingual phone clustering technique where a log-likelihood-based 

distance measure was used to compute the similarity between two phone models. This 

technique yielded better results than the direct IPA-mapping one, with a decrease of 1.8% 

when compared to language-dependent recognition. 

 

Mukherjee et al. [48] proposed a method for determining the initial phoneme models for a new 

language (Hindi) using an already trained system in a base language (English). The acoustic 

similarity between the phone models of the two languages is determined in the Linear 

Discriminant Analysis (LDA) space. Using this technique, they obtained a phoneme 

classification rate of 26.99% without performing any additional adaptation. 

 

This study shows that by selecting an appropriate distance measure, an automated procedure to 

map phonemes from the source language to the target language can be applied, with phoneme 

recognition results comparable to a manual mapping process undertaken by a phonetic expert. 

 

The author conducted a number of experiments on the cross-language phoneme recognisers to 

investigate the effect of certain parameter variations. The results of this investigation indicate 

that the recogniser’s performance increases up to a limit as the number of mixture components 

increase. The effect of excluding the Mel Frequency delta and acceleration cepstral 

coefficients was also explored. It is found that the inclusion of these temporal features help 

improve the recognition system’s phoneme recognition rate. Experiments are also carried out 

to determine the impact of the number of HMM recogniser states. It is found that single-state 

HMMs deliver the optimum cross-language phoneme recognition results. 

 

Speaker adaptation strategies are then applied on the recognisers to improve their target-

language performance. The models of a fully trained speech recogniser in a source language 

Electrical, Electronic and Computer Engineering   

   

7

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  SSooooffuull,,  JJ  JJ    ((22000044))  



Chapter 1                                                                    Introduction 

are adapted to target-language models using the MLLR followed by the MAP techniques. 

Embedded Baum-Welch re-estimation is then used to further adapt the models to the target 

language. These techniques show a considerable improvement in the phoneme recognition 

rate. 

 

Finally, as a separate experiment, a data pooling technique is applied to build a new recogniser 

using the automatically mapped phonemes from the target language as well as the source 

language phonemes. This new recogniser demonstrates moderate “bilingual” phoneme 

recognition capabilities. The “bilingual” recogniser is then further adapted to the target 

language using MAP and embedded Baum-Welch re-estimation techniques. The results 

obtained using this technique outperform all other techniques, although it is a considerably 

more time consuming training process. 

 

1.4 Organisation of dissertation 
 

The organisation of this dissertation is as follows. The background theory underlying 

Automatic Speech Recognition (ASR) systems is discussed in Chapter 2 with emphasis on 

hidden Markov models (HMMs) and speaker adaptation techniques. The theory of the 

techniques that are used in this study is also presented in Chapter 2. Chapter 3 discusses the 

distance measures that are used in the investigation. 

 

The experimental methodology applied is explained in Chapter 4. The experiments, the 

experimental results and a discussion of the findings are described in Chapters 5, 6 and 7. 

Chapter 5 describes the data mapping experiments. The MLLR and MAP adaptation 

experiments are included in Chapter 6. The data pooling and embedded Baum Welch Re-

estimation experiments and findings are discussed in Chapter 7. Finally, the conclusion is 

presented in Chapter 8. Suggestions on future related research are also included.  

 

An overview of the software used in this investigation is given in Appendix A. The TIMIT 

and SUN Speech databases that were used in the experiments are described in more detail in 

Appendix B. The SUN Speech to TIMIT as well as the TIMIT to SUN Speech phonemic 
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mappings are listed in Appendices C and D respectively. 

 

 

1.5 Contributions of dissertation 
 

The contributions of the research documented in this dissertation include the following points: 

• The author presents a new strategy for the automatic mapping of phonemes from a 

source language to a target language. This is of particular interest in cross-language 

speech recognition applications. Previous research has focused either on manually 

mapping phonemes, or has utilised techniques other than the distance-based one used 

in this study. The performance of several distance measures is then evaluated to 

quantify the acoustic distance between phonemes, and show that selected distance 

measures consistently outperform the others. It is also shown that the best performing 

distance measures are able to match the manual phoneme mapping procedures carried 

out by a phonetic expert. 

• The new automated strategies proposed in this dissertation are applied to English-to-

Afrikaans phoneme mapping, as well as Afrikaans-to-English phoneme mapping. This 

has been previously applied to these language instances, but utilising manual phoneme 

mapping methods. 

• This investigation applies two of the speaker adaptation strategies suggested in [3, 8] 

for cross-language applications. The mean and variance of the HMM models of a fully 

trained speech recogniser in a source language are adapted to models for a target 

language using the MLLR followed by the MAP techniques. In addition, embedded 

Baum-Welch re-estimation (EBWR) is applied to further adapt the models to the target 

language. Although a combination of MLLR and MAP techniques have been used 

previously in speech adaptation studies, the combination of MLLR, MAP and EBWR 

in cross-language speech recognition is a unique contribution of this study. It is shown 

that these techniques allow rapid development of a speech recogniser in the new target 

language. 

• The data pooling strategy suggested in [3, 8] is applied to build a new recogniser using 
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the automatically mapped phonemes from the target language and the source language 

phonemes. Further to the current research in this field, the author conducts experiments 

to assess the bilingual speech recognition performance of the recogniser and show 

moderate success with its bilingual capabilities. MAP adaptation techniques (to both 

the mean and variance) and embedded Baum-Welch re-estimation are applied to 

further adapt this “bilingual” recogniser to the target language. This combination of 

adaptation techniques together with the data pooling strategy is uniquely applied in the 

field of cross-language recognition. These results are compared to those obtained using 

the MLLR-MAP technique and show the data pooling followed by adaptation 

technique outperforms the other techniques tested, although it is a considerably more 

time consuming process. 

 

 

1.6 Publications 
 

The following two publications are further contributions of this investigation: 

• J.J. Sooful and E.C. Botha, “An acoustic distance measure for automatic cross-

language phoneme mapping,” Proceedings of the Twelfth Annual Symposium of the 

Pattern Recognition Association of South Africa, Franschhoek, South Africa, pp. 99-

102, 29-30 November 2001. 

• J.J. Sooful and E.C. Botha, “Comparison of acoustic distance measures for automatic 

cross-language phoneme mapping,” Proceedings of the 10th International Conference 

on Spoken Language Processing, Denver, Colorado, pp. 521-524,September 2002. 
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Chapter 2 
 

BACKGROUND THEORY 
 

This chapter discusses the background theory that underpins the research that was conducted 

in this dissertation. Firstly, an overview is given of the speech sounds and how they are 

produced. Next the relevant terminology and basic algorithms and techniques relating to 

speech recognition are discussed. This includes a description of pre-processing and feature 

extraction techniques. A detailed discussion of the theory pertaining to Hidden Markov 

Models then follows. Next multilingual speech processing is covered, focusing on speaker 

adaptation theory and techniques. Two well-known techniques, Maximum Likelihood Linear 

Regression (MLLR) and Maximum A Posteriori (MAP), are discussed in detail.  

 

 

2.1. Speech sounds 
 

Automatic speech recognition (ASR) systems generally assume that a speech signal is a 

sequence of one or more basic units. These basic units could be phones, syllables or words.  

 

For the purposes of this investigation, it is imperative to draw a distinction between “phones” 

and “phonemes”. Phones refer to actual sounds produced by the vocal tract while speaking. 

Phonemes are defined as the smallest linguistic unit with meaning. In essence, this implies that 

the phonemes of a language comprise a theoretical set of units that are sufficient to convey all 

the meaning in the language. Due to a variety of factors (such as accent, dialect and 
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physiology), a phoneme will have various acoustic manifestations. The related and actual 

sounds that are produced when speaking are called phones. 

 

More recently, some interest has also been directed at graphemes, and indeed grapheme-based 

speech recognition systems [38]. Graphemes refer to the letters and letter combinations that 

represent a phoneme, for example f, ph, and gh for the phoneme [f]. Grapheme-based speech 

recognisers are built by using the grapheme labels (rather than the phoneme labels) when 

training. 

 

The speech production mechanism in humans whereby air is expelled from the lungs and 

forced along the trachea and through the glottis can be controlled in different ways to produce 

voiced, unvoiced and plosive sounds [5]. These and other relevant speech terminology will 

now be explained. 

 

Voiced sounds such as “oh” or “aah” are produced when the vocal cords are tensed together 

and vibrate as the air pressure builds up, forcing the glottis open, and then subsides as the air 

passes through. The vibration that is produced has a frequency spectrum rich in harmonics at 

multiples of the fundamental frequency (pitch). 

 

Unlike voiced sounds, unvoiced sounds do not cause the vocal cords to vibrate. These sounds 

may be fricative or aspirated. Fricative sounds, such as “sh”, “s” or “f”, are generated at some 

point in the vocal tract. As air is forced past it, turbulence occurs causing a random noise. 

Since the points of constriction tend to occur near the front of the mouth, the resonances of the 

vocal tract have little effect on the sound being produced. In aspirated sounds, such as “h” in 

“hay”, turbulent airflow occurs at the glottis, as the vocal cords are held slightly apart. 

Resonances of the vocal tract modulate the spectrum of the random noise, as heard in 

whispered speech.  

 

Plosive sounds, such as the “puh” sound at the beginning of the word “pea” or the “duh” 

sound at the beginning of “day”, are created when the vocal tract is closed at some point, 

allowing air pressure to build up, before it is suddenly released. This may occur with or 

without vocal cord vibration. The presence or absence of vocal-cord vibration distinguishes 
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the voiced stops (as in “bad”, “gone”) from the unvoiced stops (“kill”, “ton”). Plosives are 

characterised by transient bursts of energy. As a result, their properties are highly influenced 

by the sounds that precede or follow them. 

 

Formants are resonances produced by the tubular shape of the vocal tract. The vocal tract may 

assume many different shapes giving rise to different resonant or formant frequency values. In 

continuous speech, formant frequencies are constantly changing. 

 

Vowels are produced when sound radiates from the mouth with no nasal coupling. The tongue 

shape remains fairly fixed and each vowel is characterised by the forward/backward and 

raised/lowered positions of the tongue. Vowels may be classified as front, as in the words 

“bit”, “sat” or “red”. Examples of middle vowels are found in the words “bird”, “rut” or “the”. 

Examples of back vowels appear in the words “ crude”, “bored” and “wood”. Each vowel is 

characterised by the values of the first three or four resonances (formants) of the vocal tract. 

Semivowels consist of glides and liquids. Glides (as in “went” and “ran”) are dynamic sounds 

except that articulators move much more rapidly from one static vowel position to another. 

Liquids (as in “you” and “let”) are static gestures with the oral tract partially closed at some 

point. 

 

Diphthongs are a combination of two vowel sounds. They are similar to vowels with the main 

difference being that the gesture is created when the articulators move slowly from one static 

vowel position to another. Examples include “boy” and “bait.” 

 

Nasal sounds are produced by vocal-cord excitation with the vocal tract totally constricted at 

some point along the oral passageway such that sound is radiated from the nostrils. Examples 

of nasals are “mom”, “sing” and button.” 

 

Fricatives are produced when turbulent airflow occurs at a point of constriction in the vocal 

tract. The point of constriction occurs near the front of the mouth and its exact location 

characterises the particular fricative sound produced. Sound is radiated from the lips via the 

front cavity. Unvoiced fricatives, as in “sat”, “thin” and “fit”, are produced without vocal-cord 

vibration.  Voiced fricatives, to be found in ‘vision”, “then” and “zone”, are produced when 
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the vocal cords are vibrating. 

 

Affricates are either voiced as in the word “judge” or unvoiced as in the word “church.” These 

sounds are produced when a stop and fricative consonant are both shortened and combined. 

 

The basic terminology and techniques associated with the processing of these sounds into a 

form that can be used in automatic speech recognition applications follow.  

 

 

2.2. Basic speech recognition terminology 
 

The discussion that follows is based on the speech signal being transformed from a time signal 

in temporal space into multi-dimensional feature space.  

 

Let O represent the sequence of acoustic feature vectors that has been observed, such that O is 

defined by:  

ToooO ,,, 21 K=      (2.1) 

where oT is the feature vector observed at time T [5]. 

 

Let: 

NwwwW ,,, 21 K=      (2.2) 

represent a sequence of N basic units that are to be recognised. 

 

The speech recognition task then translates into computing the posterior probability:  

( )OWP .     (2.3) 

 

Given the dimensionality of the observation sequence O, there is no way to compute this 

probability directly. However, using Bayes’ Rule [5, 18], it is possible to calculate the 

probability that a given sequence of basic units can generate a set of acoustic vectors. Using 

Bayes’ Rule, Equation (2.3) reduces to: 
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( ) ( ) ( )
( )O

OO
P

WPWPWP .
=      (2.4) 

where P(W) is the prior probability of observing a sequence of basic units, W, P(O) is the prior 

probability of a set of acoustic observation vectors, O, and P(O/W) is the probability that a set 

of acoustic vectors, O, will be observed when the sequence of basic units, W, is produced. 

 

P(W) is estimated if there is sufficient speech data for the recognition task. Usually, P(W) is 

language-specific and is determined by a language model in the form of a bi-gram or tri-gram. 

A bi-gram model computes the probability of finding a specific speech unit given the 

preceding speech unit. It can be obtained by statistically analysing a large text corpus. 

Similarly, a tri-gram gives the probability of finding a specific speech unit given the preceding 

two speech units. 

 

The statistical parameters relating to P(O/W) can be reliably estimated, provided that there is a 

sufficient amount of representative training data. Speech recognition systems normally search 

for the sequence of basic units, W, that maximizes P(O/W). 

 

The prior probability P(O) of a set of speech observation vectors, O, is often assumed to be 

constant, and is omitted from Equation (2.4). 

 

2.2.1. Pre-processing 

 

A technique that is often used to spectrally flatten the speech signal is pre-emphasis. The need 

for pre-emphasis stems from the speech production model of voiced speech. This model shows 

that there is a –6 dB/octave decay in speech radiated from the lips as frequency increases. This 

is a combination of a -12 dB/octave trend due to the voiced excitation source and +6 

dB/octave trend due to radiation from the mouth. This essentially means that, for each 

doubling in frequency, the signal amplitude, and hence the measured vocal tract response, is 

reduced by a factor of 16. It is therefore desirable to compensate for the -6 dB/octave roll-off 

by pre-processing the speech signal to give a +6 dB/octave lift in the appropriate range so that 

the measured spectrum has a similar dynamic range across the entire frequency band. It is 

unnecessary to apply pre-emphasis in the case of unvoiced speech since there is no spectral 
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trend to remove. However, pre-emphasis for unvoiced speech is included for simplicity of 

implementation.  In the time domain, the pre-emphasis high pass filters that are implemented 

take the form: 

 

xi = xi – a xi-1      (2.5) 

 

if x is an N-sample digitised signal, and 0.9 ≤ a ≤ 1.0. 

 

To extract the short-time features of the pre-emphasised, normalised speech signal, it is 

blocked into short segments called frames. The frame size used in speech recognition 

applications normally varies from 10 msec to 30 msec, and the speech contained within each 

frame is assumed to be stationary. 

 

If the speech signal is blocked into Z frames, the step size, V, is usually chosen between 20% 

and 50% of the frame size Z [17]. This means that successive frames will overlap by Z –V 

samples. This overlapping means that the resulting spectral features are correlated from frame 

to frame, resulting in a smoother feature set. If M frames cover the entire signal, the data 

pertaining to the speech signal may be stored in an M x Z matrix, Y, with each row yi 

representing the frames. Y would then be represented as: 

 

jivij xy
+

=  j = 0, 1, …, Z-1, i = 0, 1, …, M-1. (2.6) 

Each individual frame is windowed to minimise the signal discontinuities in the time domain 

at the edges of each frame caused by the blocking. The smoothing window ensures that the 

signal value at the beginning and end of each frame slowly reduces to zero. One of the most 

common windowing functions used in speech processing is the Hamming window. This is 

described in Equation (2.7): 









−

−=
1

2cos46.054.0
Z

jz j
π ,  j = 0, 1, …, Z-1. (2.7) 

Multiplying the data stored in matrix Y by the Hamming window function gives: 

jijij zyy ⇐ , j = 0, 1, …, Z-1,  i = 0, 1, …, M-1. (2.8) 
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A fast Fourier transform (FFT) is performed on each windowed signal. The Fourier transform 

provides a mathematical basis for determining the frequency spectrum of a continuous time-

domain signal. If the Fourier transform of yi is represented by Fyi, then the power spectrum of 

each window is obtained by squaring each Fourier coefficient to obtain its real value, which 

leads to: 

 

sij = | (Fyij)|2,    j = 0, 1, …, Z-1,  i = 0, 1, …, M-1. (2.9) 

 

 

2.2.2. Feature extraction – Mel-scaled cepstral coefficients 

 

As with any robust speech recognition (and indeed pattern recognition) system, feature 

extraction needs to be performed to reduce the amount of speech data into a manageable 

amount of information without discarding valuable information. 

 

Empirical evidence has shown that speech recognition systems that mimic the non-linear 

human perception of sound exhibit better recognition performance than those that do not [5, 

18]. The mel frequency scale is widely used to take into account the subjectivity of the human 

ear. The mel scale represents the perceptual relationship between pitch (in mels) to frequency 

(in Hertz).  

 

Linear predictive coding (LPC) analysis is a feature extraction technique that is sometimes 

used. However, mel-scaled filter bank analysis has repeatedly shown to outperform LPC 

analysis techniques [5, 7, 10]. This consists of a number of overlapping triangular filters that 

have linearly spaced frequencies and fixed bandwidth on the mel scale, as is evident in Figure 

2.1 below: 
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Figure 2.1: Mel-scale filter bank 
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To implement this filter bank, the window of speech data is transformed using a Fourier 

transform and the magnitude is taken. Each FFT magnitude coefficient is multiplied by the 

corresponding filter gain and the results accumulated. This yields a weighted sum representing 

the spectral magnitude in that filter bank channel. 

 

The log of each mel-spaced filtered coefficient is then taken. A discrete cosine transform 

(DCT) is performed on the coefficients to yield the mel-scaled cepstral coefficients or MFCCs. 

These are calculated from the log filter bank amplitudes {mj} and are represented by: 

 

(∑
=







 −=

K

j
ji j

K
im

K
c

1
5.0cos2 π )  j = 0, 1, …, Z-1,  i = 0, 1, …, M-1. (2.12) 

 

The performance of speech recognition systems can be significantly enhanced by adding time 

derivatives to the basic static parameters [5, 9, 26]. The addition of these temporal aspects into 

the feature vector broadens the scope of the frames. Since the data contained in the cepstral 

log vector is discrete, its first and second order derivatives can be calculated from an 

orthogonal polynomial approximation of the data trajectory. The delta (first derivative) and 

delta-delta or acceleration (second derivative) coefficients may be included in the acoustic 

feature vector. 

 

One problem associated with cepstral coefficients is that the higher order cepstra are quite 

small, leading to a high variance when going from low to high order cepstra. This can be 

overcome by re-scaling or liftering the cepstral coefficients using some value, L, according to 

the formula 

 

nn c
L
nLc 






 +=

πsin
2

1' .    (2.13) 

 

The energy of an utterance contains important information about the phonetic identity of the 

utterance [5], whether it represents speech, silence or noise. The energy can also be used to 

distinguish between classes of sounds. Vowels, for example, have a higher energy than 

fricatives. The energy is calculated as a log of the signal energy. For speech samples sn, the 
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computed energy is 

 

∑
=

=
N

n
nsE

1

2log ,  i=1, 2, …, N.  (2.14) 

 

The delta and delta-delta coefficients can be computed for the energy component as well. If 

the energy component is expressed in terms of power, then its derivative gives an indication of 

the changes in the amplitude of the speech signal. 

 

Energy normalisation is often included as part of the pre-processing of the speech signal. This 

forces the maximum signal amplitude to 1. If there are N speech signals to be normalised, then 

energy normalisation is implemented by the following equation: 

 

Enormalisedi = Ei – Emaximum + 1  i = 1, 2 … N. (2.15) 

 

Now that the basic terminology and techniques pertaining to speech signals have been 

discussed, the fundamental concepts of Hidden Markov Models can be discussed in more 

detail. 

 

2.3. Hidden Markov models 
 

Continuous Density Hidden Markov Models (CDHMMs or often referred to as just HMMs) 

represent a statistical method to model the spectral properties of the frames of a pattern. When 

HMMs are used to model speech, an assumption is made that the speech signal can be 

described as a parametric random process and that the parameters describing the process can 

be estimated precisely. A requirement for such a system is that it is stationary, meaning that its 

statistical properties should remain constant over time. 

 

Speech is not a stationary process; it is assumed to be piecewise stationary, over short intervals 

from one sample to the next. This assumption means that statistically meaningful parameters 

can be estimated from the acoustic features of a speech signal if these parameters are extracted 

at regular, adequately small intervals. 
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The discussion that immediately follows deals with the theory behind HMMs. A more 

comprehensive discussion on HMMs can be found in [5], although the salient aspects relating 

to HMMs are covered here. HMMs are defined in terms of states, transitions and other basic 

units. Next the effectiveness of HMMs is covered in terms of the 3 basic HMM problems and 

their solutions. Parameter estimation algorithms and statistical language models are introduced 

as part of this discussion. 

 

An HMM is denoted by λ and is described by two sets of parameters [3, 5]: 

• a state transition matrix, A = {aij}. Each aij denotes the discrete probability of making 

transitions from a state i to a state j. Further constraints on the state transition 

probabilities are: 

1
1

=∑
=

N

j
ija  , and     (2.16) 

1.or  for only 0 +==≠ ijijaij    (2.17) 

 

• a continuous state probability density function bj(ot) reflecting the likelihood of 

observing observation vector ot in state j. 

 

An HMM is a finite state machine that changes state once every time unit. Each time t that a 

state j is entered, a speech observation vector ot is generated from the probability density 

bj(ot). 

 

Usually, only first order HMMs are considered since each transition probability to the next 

state depends only on the current state, and not the previous states. The standard approach in 

speech recognition is to use standard left-to-right HMMs without skipping transitions. The 

left-to-right modelling assumes that the observation sequences corresponding to the same 

HMM traverse the same discrete sequence of statistical properties in much the same way as a 

speech signal. 

 

The joint probability that the observations sequence O is generated by the model λ moving 

through the state sequence X is calculated as the product of the transition probabilities and the 
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output probabilities. However, in practice, only the observation sequence O is known and the 

underlying state sequence X is hidden, hence the Markov model is known as hidden. The 

states are thus not directly observed, but through modelling of the observation distributions in 

each state. 

 

Gaussian mixtures are used to model the observation probability density functions. In order to 

use such a model, the assumption is made that the frames of the speech utterance are 

independent of each other. The advantages of using a Gaussian mixture model as the 

likelihood function are that it is computationally inexpensive, it is based on a well-understood 

statistical model, and, for text-independent tasks, is insensitive to the temporal aspects of the 

speech, modeling only the underlying distribution of acoustic observations from a speaker 

[23]. The latter temporal insensitivity of Gaussian models is also a disadvantage in that higher 

levels of information about the speaker conveyed in the temporal speech signal are not used.  

  

For an observation ot at time t in state j, this density function is of the form: 

( ) [ ]

( ) ( )( ) ( ).2

,,

1
2
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∑

∑
µµπ

µ
 

(2.18)

   

In Equation (2.18), 

K is the number of mixture components,  

D is the number of feature vector elements,  

cjk is the weight associated with the kth mixture in the jth state,  

N is the multivariate normal density,  

µjk is the mean of the kth mixture in the jth state, and  

Σjk is the covariance matrix of the kth mixture in the jth state. 

 

A simplifying assumption that reduces the number of parameters (and hence the computation 

effort) in the aforementioned equation is that Σjk is a diagonal matrix. This assumption is made 

since the elements of ot are largely uncorrelated. This reduces the probability density function 

to: 
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ecb σ
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σπo   (2.19) 

where otl is the lth element of the observation vector at time t, µjkl is the lth element of the mean 

vector in mixture k of state j, and σ2
jkl is the lth variance value on the diagonal of the 

covariance matrix Σjk. 

 

For the discussion on HMMs that follows, the notation that will be used is defined below: 

 

N = number of states in the model, with individual states being numbered as {1,2,…,N}, and 

with qt referring to the state at time t, 

M = total number of distinct observations per state, the elements of the observation set are 

denoted as V = {v1, v2, …, vM}, 

Ot will denote the observation symbol observed at instant t, 

A = {aij} is the state transition probability matrix, aij refers to the probability of a transition 

from state i to state j. The elements of A are given by 

aij = P [qt+1 = j|qt = i],   1 ≤ i ≤ N,   (2.20) 

 

B = {bj(k)} is the observation symbol probability matrix, bj(k) defines the symbol distribution 

in state j, j=1,2,…,N. The elements of B are given by 

bj(k) = P [ot  = vk|qt = j],  1 ≤ k ≤ M,   (2.21) 

 

π = { πi}, the initial state distribution vector, with elements 

 

πi = P[q1 = i],   1 ≤ i ≤ N,   (2.22) 

 

λ = (A, B, π) denotes the parameter set for a given HMM. 

 

An example of a classical left-to-right HMM with 3 states (N=3) is shown in Figure 2.2. 
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Figure 2.2: A left-to-right HMM with three states 

 of HMMs are reduced to solving three issues: 

n the model λ = (A, B, π), how to compute P(O/λ), the probability of the 

 observation sequence O = (o1,o2,…,oT). 

 to find the most likely state sequence q = (q1, q2, …, qT) given the model λ = 

bservation sequence O = (o1,o2,…,oT). 

 to adjust the HMM parameter set λ = (A, B, π) such that P(O/λ) is 

1 – Probability evaluation 

mine P(O/λ) is to find P(O/q, λ) for a fixed state sequence q = (q1, q2, …, qT) 

 it by P(q/λ) and then to find the accumulated sum over all q’s. So, 

P(O/q, λ) = bq1(o1)bq2(o2) … bqT(oT)   and   (2.23) 

P(q/λ) = πq1a q1q2 a q2q3… a qT-1qT  ,    (2.24) 
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(2.25)

 

(2.26), it can be seen that the summand of this equation requires 2T-1 

d there are N 
T distinct possible state sequences q. Thus to calculate Equation 
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(2.26) directly will require 2TN T multiplications. A more efficient technique to solve Problem 

1 is the forward-backward procedure [5, 19]. 

 

2.3.2. Forward procedure 

 

Consider the variable αt(i) which is defined as: 

αt(i) = P(o1,o2, …, ot, qt = i/λ)    (2.26) 

 

which expresses the probability of the partial observation sequence o1,o2, …, ot and state i at 

time t given the model λ. αt(i) can be computed inductively as follows: 

• Step 1 

α1(i) = πibi(o1),  1 ≤ i ≤ N   (2.27) 

• Step 2 

( ) ( ) ( )
Nj

Tt
baij tj

N

i
ijtt ≤≤

−≤≤








= +

=
+ ∑ 1

11
,1

1
1 oαα   (2.28) 

• Step 3 

( ) (∑
=

=
N

i
T iP

1
αλO )     (2.29) 

In the first step, the forward probabilities are initialised to the value of the joint probability of 

state i and initial state o1.  

 

In the second step, the probability of the partial observation sequence up to time t+1 and state j 

at time t+1 needs to be computed. State j can be reached at time t+1 from the N possible states 

at time t. However, αt(i) is the probability of the joint event that o1,o2, …, ot are observed and 

that the state at time t is i. Therefore, the product αt(i)aij represents the joint event that o1,o2, 

…, ot are observed and state j is reached at time t+1 via state i at time t. 

 

With j known, αt+1(j) can be determined by multiplying the summed quantity by the 

probability of observing ot+1 in state j, bj(ot+1). The second step is repeated for all states j for a 

given time t and then iterated for t = 1,2, …, T-1. 

 

In the final step, the value of P(O/λ) is calculated as the sum of all the forward variables αT(i) 

Electrical, Electronic and Computer Engineering   

   

25

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  SSooooffuull,,  JJ  JJ    ((22000044))  



Chapter 2                                                                                                                      Background theory 

since  

 

αT(i) = P(o1,o2, …, ot, qT = i/λ).   (2.30) 

The forward procedure requires N 
2T calculations, much more favourable than the 2TN T 

multiplications required for the direct computation. 

 

2.3.3. Backward procedure 

In a similar manner to the forward procedure, the backward variable βt(i) can be defined as: 

 

βt(i) = P(ot+1,ot+2, …, oT, qt = i/λ).    (2.31) 

 

The backward procedure considers the probability of the partial observation sequence from 

time t+1 to the end of the sequence, given the state i at time t and the model λ. βt(i) can be 

solved iteratively through the following steps: 

 

• Step 1 

( ) 1=iTβ ,  1 ≤ i ≤ N.   (2.32) 

• Step 2 

( ) ( ) ( )jbai tt

N

j
jijt 11

1
++

=
∑= ββ o , t = T-1, T-2, …, 1    1 ≤ i ≤ N. (2.33) 

• Step 3 

( ) ( ) (ibP i

N

i
i 11

1
βπλ oO ∑

=

= ) ,   1 ≤ i ≤ N.  (2.34) 

During the first step, βt(i) is arbitrarily set to 1 for all i.  In order to have been in state i at time 

t and at the same time account for the observation sequence from t+1 onwards, all possible 

states j at time t+1 must be considered. The aij term accounts for the transition from state i to 

state j, while the bj(ot+1) term accounts for the observation ot+1 in state j. The remaining part of 

the partial observation sequence from state j is accounted for by the βt+1(j) expression. 

 

The backward procedure also has a computational complexity of N 
2T calculations. 
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2.3.4. Problem 2 – Optimal state sequence 

 

This problem deals with finding the optimal state sequence associated with any given 

observation sequence. This problem can be solved in a variety of different ways. 

 

Consider the expression, P(O, q/λ). From Equations (2.24) and (2.25), this can be expressed 

as: 

( ) ( ) ( )
( ) ( ) ( )....

,,

122111 21 Tiiiiiiii TTT
babab
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   (2.35) 
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then it can be seen that 

 

( ) ( )( )TqqqP ,,,exp, 21 KUqO −=λ .    (2.37) 

This means that the problem of optimal state estimation , 

{ } ( λTT
tt

qqqOP
q

K,,,
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21
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    (2.38) 

becomes equivalent to 

{ } ( TT
tt

qqq
q

K,,
min

21
1

U
=

.     (2.39) 

Terms like -ln (aijikbik(ot)) make it easier to associate costs in going from state ij to state ik at 

time t. The weight on the path from state i to state j is –ln(aijbj(ot)), the negative of the 

logarithm of probability of going from state i to state j and selecting the observation symbol ot 

in state j. The optimal sequence problem reduces to finding the path (or sequence of states) of 

minimum weight through which the given observation sequence occurs. The Viterbi algorithm 

is one of the best-known techniques for solving this. 

 

2.3.5. Viterbi algorithm 

Let q = (q1, q2, …, qT) be the optimal state sequence for a given observation sequence O = (o1, 

o2, …, oT). Then define the quantity 
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( ) [ ]λδ ttt
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t oooiqqqqPi
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KK 21121
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,,max
121

== −
−

,   (2.40) 

where δt(i) is the highest probability along a single path at time t, that accounts for the first t 

observations and ends in state i. The value of δt+1(j) can be determined through induction as: 

 

( ) ( ) ( )11 .max ++ 







= tj

i
ijtt baij oδδ .    (2.41) 

For each t and j, the elements of the state sequence are the arguments that maximise Equation 

(2.42). These values are retained in the array ψt(j) during the execution of the algorithm. The 

procedure for finding the best state sequence can be summarised in four steps: 

 

• Step 1 (Initialisation) 

( ) ( ) Nibi ii ≤≤= 1,11 oπδ     (2.42) 

( ) .01 =iψ       (2.43) 

 

• Step 2 (Recursion) 

( ) ( )[ ] ( )
Nj
Tt

baij tjijtNit ≤≤
≤≤

= −≤≤ 1
2

,max 11
oδδ    (2.44) 

( ) ( )[ ]
Nj
Tt

aij ijtNit ≤≤
≤≤

= −≤≤ 1
2

.maxarg 11
δψ     (2.45) 

 

• Step 3 (Termination) 

( )[ ]iP TNi
δ

≤≤
=

1

* max      (2.46) 

( )[ ]iq TNiT δ
≤≤

=
1

* maxarg .    (2.47) 

 

• Step 4 (Reconstruction) 

( ) .1,,2,1,*
11

* K−−== ++ TTtqq ttT ψ   (2.48) 

The Viterbi algorithm is very similar to the forward procedure discussed previously, with the 

addition of Step 4. Moreover, in Step 2, the probability over previous states is maximised, 

unlike that of the forward procedure which involves a summation process, as is evident in 

Equation (2.29). 
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The Viterbi algorithm can also be implemented by taking the logarithms of the model 

parameters, thus obviating the need for numerous multiplications. 

 

2.3.6. Problem 3 – Parameter estimation 

 

This problem deals with training the HMM such that it encodes the observation sequence in 

such a way that if another observation sequence with similar characteristics to the given one is 

encountered later, it should be able to identify it. It is not analytically possible to solve for the 

model parameters in a closed form. The alternative approach is to choose the model 

parameters, λ = (A, B, π) so that the likelihood, P(O|λ) is locally maximised. These local 

maxima can be found using iterative procedures or gradient techniques. Two of these 

techniques are discussed here, the Baum-Welch procedure and the segmental K-means 

algorithm. 

 

 

2.3.6.1. Baum-Welch Algorithm 

 

This approach results in parameters of the model λ = (A, B, π) being adjusted so as to increase 

P(O|λ) until a maximum value is reached. As seen previously, calculating P(O|λ) involves 

summing up P(O, q|λ) over all possible state sequences of q, hence the focus is not on a 

particular state sequence. 

 

The Baum-Welch (or expectation-maximisation, EM) method [5] maximises P(O|λ) by 

adjusting the parameters of λ. This optimisation criterion is called the maximum likelihood 

(ML) criterion, and the function P(O|λ) is called the likelihood function. 

 

Consider the variable ξt(i,j), which describes the probability of being in state i at time t and 

state j at time t+1 given the model λ and the observation sequence O. ξt(i,j) is defined as: 

 

( ) ( )λξ ,,, 1 OjqiqPji ttt === +     (2.49) 
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Since the joint event of the system being in state i at time t and state j at time t+1 involves both 

the partial observation sequences up until time t and after time t+1, ξt(i,j) may be calculated 

using the forward-backward variables. 
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(2.50)

    

The probability of being in state i at time t given the complete observation sequence O and the 

model λ, is defined as: 

( ) ( ).,λγ OiqPi tt ==     (2.51) 

ξt(i,j) and γt(i) can thus be related by summing over j, 

( ) ( )∑
=

=
N

j
tt jii

1
,ξγ .     (2.52) 

Summing over the index t: 
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and 

( ) .in   state  to state from ns transitioofnumber  expected,
1

1
Ojiji

T

t
t =∑

−

=

ξ  (2.54) 

 

The following set of formulae to re-estimate the HMM parameters A, B and π may be 

obtained: 

 

( ),π 1 ij γ=       (2.55) 
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The descriptions of each of the above formulae are: 

1, at time  statein   timesofnumber  expectedπ == tij    (2.58) 

,
 state from ns transitioofnumber  expected

 state  to state from ns transitioofnumber  expected
i

jiaij =   (2.59) 

.
 statein   timesofnumber  expected

 symbol observing and  statein   timesofnumber  expected
j

jb k
ij

v
=  (2.60) 

The implementation of the Baum-Welch algorithm requires that a current model be defined in 

terms of its parameter set λ = (A, B, π). Equations (2.59), (2.60) and (2.61) are applied to the 

current model to determine the re-estimated model ( )iii BA πλ ,,= . 

 

It can be shown that either: 

• the initial model λ is a critical point of the likelihood function, in which case λλ = , or 

• ( ) ( λλ OO PP > ) i.e. the given observation sequence O is more likely to have been 

produced by model λ  rather than model λ. 

 

It is important to bear in mind that although the result of the Baum-Welch procedure provides 

the ML estimate of the HMM parameters, the algorithm leads to the local maxima only. 

 

2.3.6.2. Segmental K-means Algorithm 

 

The segmental K-means algorithm [5] is also used to find the optimal state sequence. 

However, it works differently to the Viterbi algorithm. In this method, the parameters of the 

model λ = (A, B, π) are adjusted to maximise P(O, q|λ) where q is the optimum sequence 
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given by the solution to Problem 2. This criterion of optimisation is called the maximum state 

optimised likelihood criterion. This function P(O, q*|λ) = maxq P(O, q|λ) is called the state 

optimised likelihood function. This method of model training requires a number of 

observation (training) sequences. Let ω be the number of such available sequences. Each 

observation sequence O=o1,o2,…oT consists of T observation symbols. Each observation 

symbol oi is assumed to be a vector of dimension D, with D ≥ 1. The algorithm consists of the 

following steps: 

 

• Step 1 

Randomly choose N observation symbols of dimension D and assign each of the ωT 

vectors to one of these N vectors from which its Euclidean distance is minimum. This 

leads to the formation of N clusters, each called a state (from 1 to N). The first vector is 

taken as the first vector of the first of these sequences, the second vector as the second of 

these sequences and so on. 

 

• Step 2 

Calculate the initial probabilities and the transition probabilities: 

{ } Nii
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∈
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• Step 3 

Calculate the mean vector and covariance vector for each state: 
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• Step 4 

Assuming a Gaussian distribution (although other density functions can also be used with 

no loss of generality), the symbol probability distributions for each training vector for each 

state is calculated: 
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• Step 5 

Find the optimal state sequence q*(as given by the solution to Problem 2) for each training 

sequence using ( iii BA πλ ,,= )calculated in Steps 2 – 4. A vector is reassigned a state if its 

original assignment is different from the corresponding estimated optimum state, i.e. for 

all training sequences, assign ot (of say the kth training sequence) to state i if q*t is state i. 

 

• Step 6 

If any vector is assigned a new state as a result of Step 5, use the new assignment and 

repeat Steps 2 – 6; otherwise, stop. 

 

Once the optimal state sequence has been determined, the HMMs must be updated. Once such 

technique, incorporating embedded model re-estimation algorithms, are discussed in the next 

section. 

 

2.3.7. Embedded model re-estimation 

 

The concept of embedded model re-estimation is discussed in [9, 49, 52] and is based on its 

implementation in the Hidden Markov Model Toolkit (HTK) [9]. The concept as it is applied 

in HTK, updates all of the HMMs in a system using all of the training data in a single 

iteration. A complete description of the HTK toolkit is found in Appendix A. 

 

A complete set of HMM definitions are loaded on initialisation. Every training file must have 

an associated label file that gives a transcription for that file. Only the sequence of labels is 

used and boundary location information is ignored. Thus, these transcriptions can be generated 

automatically from the known orthography of what was said and a pronunciation dictionary. 

The embedded model re-estimation algorithm processes each training file in turn. The 

associated transcription is then used to construct a composite HMM which spans the whole 

utterance. This composite HMM is made by concatenating instances of the phone HMMs 

corresponding to each label in the transcription. The forward-backward algorithm is then 

applied and the sums needed to form the weighted averages accumulated in the standard 
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way. When all of the training files have been processed, the new parameter estimates are 

formed from the weighted sums and the updated HMM set is output. 
 

Once the HMMs have been updated, further statistical techniques are utilised to build the 

speech recogniser. Statistical language models that include the syntactic constraints of the 

language are introduced next. 
 

 

2.3.8. Statistical language models 

 

Statistical language models have become a key point in the speech recognition systems. The 

language model is the recognition system component that incorporates the syntactic 

constraints of the language. Most statistical language models are based on the empirical 

paradigm that a good estimation of the probability of a linguistic event can be obtained by 

observing this event on a large enough text corpus. The most commonly used models are n-

grams, where the probability of a basic unit (phoneme, syllable, word, etc.)  is estimated from 

the conditional probabilities of each basic unit given the n-1 preceding units. While these 

models are both robust and efficient, they are limited to modeling only the local linguistic 

structure and are difficult to estimate for all but n=2 or n=3 [5]. Hence bi-gram and tri-gram 

language models are widely used in speech recognition systems. 

 

In this study, the backed-off bi-gram (see description below) is calculated using the formula 

[9]: 

( )
( )

( )




 >

−
=

otherwise.)()(

 if,
,

jpib

 tN(i,j) 
iN

djiN
jip   (2.66) 

 

N(i,j) is the number of times phone j follows phone i, N(i) is the number of times that phone i 

appears. A process called discounting [9] is used whereby a small probability (usually d=0.5) 

of the available probability mass is deducted from the higher bi-gram counts and distributed 

amongst the infrequent bi-grams. When the bi-gram count falls below the threshold t, the bi-

gram is backed-off to the uni-gram probability scaled by a backed-off weight. This ensures 

that all bi-gram probabilities for a given history total one. 
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An important issue in the development of speech recognition systems is how to create 

language models for spontaneous speech. While this is not relevant to the present 

investigation, it is of interest to note that for spontaneous speech, it is necessary to deal with 

extraneous words, out-of-vocabulary words, hesitations, repetitions, ungrammatical sentences 

and even partial words. This kind of variation can degrade the recognition performance. 

 

Statistical language models, that are used to improve the recogniser’s speech recognition 

abilities, were described in this section. Speaker adaptation techniques have also been 

extensively used to improve recognition rates. Speaker adaptation techniques have been 

traditionally used to move from the speaker independent to the speaker dependent case. 

However, they have been used extensively as one of the key components of multilingual 

speech recognition as well. The theory behind these techniques is discussed next. 

 

 

2.4. Speaker adaptation theory and techniques 
 

The traditional idea behind speaker adaptation is to use a small amount of adaptation data to 

change the recognition system such that it models as much of the speaker-specific information 

as possible. Many approaches have been developed which try to produce this effect. Speaker 

adaptation techniques for HMM-based recognition systems fall into two basic categories. The 

first of these employs techniques that transform the input speech of the new speaker to a 

vector space that is common with the training speech. These are known as spectral mapping 

techniques. The second category consists of methods that transform the model parameters to 

better match the characteristics of the adaptation data. These techniques are known as model 

mapping approaches. 

 

The spectral mapping approach is based on the belief that a recognition system can be 

improved by matching the new speaker’s features vectors to the vectors of the training data 

[20]. The mapping is designed so that the difference between the reference vector set and the 

mapped vector set is minimised. These differences are due to the spectral differences of the 

speakers’ speech production systems (such as vocal tract length and shape). 
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Initial attempts at spectral mapping adaptation were used in the spectral template matching 

systems [21]. These consider the template to be from the reference speaker and automatically 

generate a transformation to minimise the difference between the new speaker and the 

reference speaker. Another method that is similar to speaker normalisation uses a transform to 

map each speaker in the speaker-independent training set onto a reference speaker [22]. Thus, 

the models generated act as speaker-dependent models.  

 

Spectral mapping techniques aim to improve the match between the reference speaker and 

new speaker. However, this goal does not explicitly try to increase the accuracy of the models 

for the new speaker. This means that it does not take full advantage of the adaptation data. 

This is an area addressed by the model-mapping approach. Rather than trying to map all 

speakers to one space, the model-mapping approach adjusts the model parameters to best 

represent the new speaker. 

 

Two issues that must be addressed when discussing model-mapping approaches are the 

training modes (supervised vs. unsupervised) and the adaptation mode (incremental verses 

batch). In a supervised training mode, the recognition system is given the correct transcription 

and has only to align the user’s speech to that transcription. In unsupervised adaptation the 

recogniser feeds itself, perhaps including recognition errors. The supervised mode is preferred 

when available. 

 

The adaptation mode describes when the adaptation takes place and what models are 

employed to produce the hypotheses used for adaptation. In incremental mode, the models are 

adapted quite often and the adapted models are used to produce the hypotheses for the next 

adaptation. This is the typical method seen in real-time systems that use adaptation. Batch 

mode is similar to a training run where hypotheses for the entire adaptation set are stored and 

then used to iteratively update the adapted models. 
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2.4.1. Maximum Likelihood Linear Regression (MLLR) 

 

Maximum likelihood linear regression (MLLR) is a technique that computes a set of 

transformations that aims to reduce the mismatch between an initial model set and the 

adaptation data by estimating a set of linear transformations for the mean and variance 

parameters of a Gaussian mixture HMM system. These transformations shift the component 

means and alter the variances in the initial system so that each state in the HMM system is 

more likely to generate the adaptation data. 

 

The fundamental idea behind MLLR is to tie or cluster some Gaussian mixtures together in 

order to reduce the number of parameters to be updated and force the mixtures to share the 

same adaptation matrix. 

 

The theory that is discussed in this section is summarised from [58]. 

 

Let W be the transformation matrix used to give a new estimate of the adapted mean, which in 

turn is given by: 

,Wξµ =
∧

     (2.67) 

where the adaptation data is of dimension n, W is the n x (n + 1) transformation matrix, and ξ 

is the extended mean vector, 

[ ] ,21
T

nw µµµ K=ξ     (2.68) 

with w representing the offset indicator. 

 

For Gaussian probability models, this gives an adapted mixture density of 
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− T
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2 2
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2

1

π
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The transformation matrix W is obtained by solving a maximisation problem using the 

Expectation-Maximisation (EM) technique. In a similar way, the EM technique is again used 

to compute the variance transformation matrix. Using EM results in the maximisation of a 
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standard auxiliary function. For speech recognition systems, the auxiliary function that 

displays good convergence properties and is thus often used is given by: 

 

( ) ( ) ( ){ }λλλλ ˆ,log,ˆ, qOqO
q

PPQ ∑=    (2.70) 

where is the transformed model and q contains all possible state sequences leading to the 

recognition of O. 

λ̂

 

For HMMs, the probabilities are related to both the transition probabilities and the state 

emission probabilities. This means that the auxiliary function can be expanded as: 

 

( ) ( ) ( ) 













+






∝ ∑ ∑∑

= =

∧∧T

t

T

t
tqt

bprobtransitionPQ
1 1

log.log,ˆ, oqO
q

λλλ  (2.71) 

 

The terms in the above equation due to transition probabilities can be ignored since the 

primary goal is to re-estimate the transformation matrix. This leads to an auxiliary function of 

the form: 
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The posterior probability of occupying state s at time t given that the observation sequence O 

is generated is defined as: 

( ) ( ) (∑ ==
q

qO
O

λ
λ

γ sP
P

t ts ,1 )     (2.73) 

 

Let S be the set of all states in the system. The total probability can be obtained by summing 

the marginal probabilities across all states, making the auxiliary function: 
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To maximise ( )λλ ˆ,Q , its derivative with respect to W is computed and equated to zero, i.e. 
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Expanding b in a Gaussian reduces the above differential to: ( )tj o
∧
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where 

( ) ( ) ( )t
jjtjjjtt jh ξWoξWoo −Σ−= −1, .   (2.77) 

Since is the only term in the summation that is dependent on W, the differential 

reduces to: 
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This function is optimised by setting it to zero, and rearranging terms gives: 
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This is the general form for computing Ws. The closed-form solution can be found when all 

covariance matrices are diagonal. If Ws is shared by R states, {s1,s2, …, sR}, then the general 

form becomes: 
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This can be rewritten as: 
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where 
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=
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and  is the state distribution inverse covariance matrix scaled by the state occupancy 

probability, and where 

( )rV

( ) ,t
ss

r
rr

ξξD =      (2.84) 

and  is a singular matrix calculating the outer product of the extended mean vector. ( )rD

 

Let the right hand side of Equation (2.84) be an n x (n + 1) matrix, Z, and let the elements of 

Z, , W( )rV s, D  be y( )r
ij, v , w( )r

ij ij and ( )r
ijd respectively. This reduces the equation to: 
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( )rD  is symmetric since all covariances are diagonal, then: 
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and 
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Setting 
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gives 
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where  are the elements of an (n+1) x (n+1) matrix, G( )i
jqg (i). Since ( )  is singular, GrD (i) is also 

singular. zij and can be computed from the observation vectors and the model parameters. 

This gives a set of linear re-estimation equations 

( )i
jqg

( )( ) t
i

it
i zG 1−

=w       (2.90) 

where wi and zi are the ith rows of Ws and Z respectively. 
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For the covariance transform estimation, first define the adapted variance as: 

,ˆˆ
ss

t
ss BHBΣ =       (2.91) 

where is the transform to be estimated and BsĤ s is the inverse of the Cholesky factor of . 

Hence, 

1−
sΣ

t
sss CCΣ =−1       (2.92) 

and 

.1−= ss CB        (2.93) 

 

Cholesky decomposition ensures that the resulting matrix is non-singular. The same auxiliary 

function as previously defined in Equation (2.74) is used, i.e. 
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Expanding log  using Equations (2.71) and (2.91) yields: ( )
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To maximise ( )λλ ˆ,Q , its derivative with respect to is computed and equated to zero. 

Grouping like terms gives: 
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If H is shared by R states, {ss
ˆ 1,s2, …, sR}, then 
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The transformation of the covariance using the estimate for  results in a full covariance 

matrix, but the off-diagonal terms in  can be set to zero and an increase in likelihood is still 

guaranteed. 

sĤ

sĤ

 

 

2.4.2. Maximum A Posteriori (MAP) adaptation 

 

The maximum a posteriori (MAP) approach is another technique that performs model 

adaptation. This adaptation process is also known as Bayesian adaptation. MAP adaptation 

involves using prior knowledge about the model parameter distribution. This has the 

advantage that the prior knowledge gives an idea of what the parameters of the model are most 

likely to be, thus allowing optimum use of the limited adaptation data during the training 

process. This type of prior is known as an informative prior. If the prior distribution does not 

indicate what the model parameters are most likely to be, it is termed a non-informative prior. 

When non-informative priors are used, the MAP estimate obtained will be identical to that 

obtained using a maximum likelihood approach. 

 

The theory that is discussed in this section is summarised from [59]. 

 

In the discussion that follows, let the sample x = (x1, x2, …, xn) be a given set of n observations 

where each observation is drawn from the probabilistic function of a Markov chain. 

 

Assume that θ is the parameter vector to be estimated from the sample vector x with a 

probability density function f(.|θ ). Assume that θ is a random vector that takes it values in the 

space Θ and if g is the prior density function of θ then the map estimate θMAP is defined as the 

mode of the posterior density function of θ [24,25], 
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( ) ( )θθθ
θ

gfMAP xmaxarg=     (2.100) 

If θ is assumed to be fixed but unknown, then there is no knowledge about θ, hence the 

assumption of a non-informative prior is used i.e. g(θ)=constant. The above equation then 

reduces to the maximum likelihood formulation. 

 

The key problems for the MAP formulation are: 

• the choice of the prior distribution family, and 

• the evaluation of the maximum a posteriori. 

 

The appropriate choice of prior distribution can simplify the MAP estimation. The MAP 

estimation is easier if the family of density functions possesses a sufficient statistic of fixed 

dimension, however this is only true for exponential families. 

 

Consider an N-mixture Gaussian density CDHMM with parameters {µ, ∑} for every 

observation density, where 

( )Nµµµ ,,,µ 21 K= ,    (2.100) 

( )NσσσΣ ,,, 21 K= .    (2.101) 

Here the parameters  are the mean vector and the covariance matrix of the i{ iiu σ, }

}

th Gaussian 

mixture component of an observation density. The idea is to find a transformation from the 

original HMM to an HMM that closer resembles the observation data. The transformed 

HMM’s observation parameters { γ,m  are as follows: 

µ*Am = ,      (2.102) 

Σ= *Bγ ,      (2.103) 

where * is a mathematical operator, A and B are transformations.  

From [24, 25], the transformation of the kth Gaussian density of the ith state of an HMM is 

therefore as follows: 

 

( )

( )∑

∑

=

=

+

+
= T

t
tkk

T

t
ttkk

k

k

ok
m

1

1

θµτ

θµτ
,    (2.104) 

Electrical, Electronic and Computer Engineering   

   

43

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  SSooooffuull,,  JJ  JJ    ((22000044))  



Chapter 2                                                                                                                      Background theory 

( )( )( )

( ) ( )
( )( )

( ) ( )∑∑

∑

==

=

+−

−−⋅
+

−

−−+
= T

t
tk

T
kkkkk

T

t
tk

T

t

T
ktkttk

k

kp

mm

kp

ook

11

1

θα

µµτ

θα

µµθβ
γ , (2.105) 

 

where, 
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( )ktθ  is the probability of the model generating ot while being in the ith state with mixture 

component label k at time t. δ denotes the Kronecker delta function, which returns a value of 1 

when the optimal state sequence S={s1,s2,...,sT} (determined by Viterbi segmentation) is 

arrived at in the ith state at time t; it returns a value of 0 otherwise. 

 

In this chapter, the background theory relating to general speech recognition tasks was 

discussed. An overview of speech sounds and how they are produced was presented. The pre-

processing and feature extraction techniques that are used were covered. HMMs were 

discussed in detail. The theory behind speaker adaptation was then presented, and the MLLR 

and MAP adaptation techniques were covered. The next chapter discusses selected distance 

measures that were used together with these adaptation techniques in this cross-language 

phoneme mapping investigation. 
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Chapter 3 
 

ACOUSTIC DISTANCE MEASURES 
 

A variety of distance formulations exist to compute the distances between Gaussian 

distributions obtained for each phoneme model. The distance measures chosen for this 

investigation have shown numerous applications in other pattern recognition studies. 

 

This chapter centres around the theory behind selected distance measures. In the sections that 

follow, let µi and Σi represent the feature mean vector and covariance matrix respectively for a 

Gaussian distribution i. 

 

 

3.1. Kullback-Leibler distance 
 

A popular distance metric used previously in calculating the distance between two models is 

the Kullback-Leibler measure [1, 4, 5, 19]. It has been used extensively in pattern recognition 

applications to judge how close two probability distributions are. The Kullback-Leibler 

distance is given by: 
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3.2. Bhattacharyya distance 
 

The Bhattacharyya distance metric [2, 3] has been extensively used to obtain the distance 

between phoneme models of different languages. Mak and Barnard [2] have shown that the 

Bhattacharyya distance can be effectively used in phone clustering applications. This distance 

measure is given by: 
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The first term gives the class separability as a result of the class means, while the second term 

gives the class separability between the class covariance matrices. 

 

 

3.3. Mahalanobis measure 
 

The Mahalanobis distance metric has also been used as a distance classifier. It has the 

advantage that by utilising the information available in the covariance matrices, it takes the 

variability between the models to be compared into account. The Mahalanobis distance [1] is 

given by the equation: 

 

( ) ( ) ( .1
12

1
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Mah n
D )

)

       (3.3) 

 

3.4. Euclidean measure 
 

The one-dimensional Euclidean measure has previously been used to calculate inter-class 

distances [1, 4, 5]. This geometric measure is given by: 

 

( ) ( .1212 µµµµ −−= T
EucD     (3.4) 
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3.5. L2 metric 
 

Another popular measure is the L2 distance [1]. In the general case, this distance measure is 

represented as: 

( ) ( )[ ] XdNND
nL

2

1112222 ,,∫ℜ Σ−Σ= µµ  ,  (3.5) 

where ( )111 ,ΣµN  and ( 222 ,Σ )µN  represent two Gaussian distributions. 

 

A closed form of the L2 distance measure exists if Gaussian distributions are assumed. The L2 

distance measure then reduces to: 
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3.6. Jeffreys-Matusita distance 
 

The final distance measure that is used during this investigation is the Jeffreys-Matusita 

distance measure [10, 28], which is closely related to the Bhattacharyya distance. Huber and 

Mayer [27] have previously used the Jeffreys-Matusita distance metric in an image processing 

application to identify the most relevant features among a large number of texture energy 

features derived from synthetic aperture radar images. Swain and King [28] successfully 

applied the Jeffreys-Matusita distance measure as a feature selection criterion for remote 

sensing applications where determining interclass separability is critical. 

 

If p1(x) and p2(x) are the conditional probability density functions, then the general form of the 
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Jeffreys-Matusita distance can be written as: 

( ) ( )[ ] .
2

21∫ −=
x

JM dxxpxpD     (3.7) 

 

It reduces to the following expression if a Gaussian distribution is used: 

 

( )α−−= eDJM 12      (3.8) 

where α is given by the value of the Bhattacharyya distance in Equation (3.2). 

 

 

This chapter has focused on the acoustic distance measures that were used during the course of 

the investigation. The following chapter deals with the experimental protocol that was used for 

the experiments. 
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Chapter 4 

 

EXPERIMENTAL PROTOCOL 
 

This chapter describes the experimental protocol that was used during the investigation. The 

first section gives an overview of the methodology.  The tools that were used are also 

described in more detail. The general recogniser training methodology is then covered. The 

configuration parameters that can be configured in the Hidden Markov Toolkit are then 

described, together with their values used. The performance criteria that were used during the 

course of the investigation to assess the recognisers’ phoneme recognition abilities are then 

given. Finally, the test and training database particulars are discussed. 

 

 

4.1. Overview of Experimental protocol 
 

The Hidden Markov Toolkit (HTK) version 3 [9] was the primary tool utilised to conduct all 

the experiments. HTK contains built-in functions that implement MLLR and MAP adaptation 

as well as Baum-Welch re-estimation. These functions were used during this study. More 

information on HTK can be found in Appendix A. HTK provides a comprehensive set of 

functions that are needed in order to conduct experiments in speech recognition. Perl scripting 

and MATLAB programming were used to supplement the functionalities of HTK. 

 

The configuration parameters that determine which functions are used and field values for 

attributes are stored in configuration files. The directory locations for the speech data are also 
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configured in these files. A list of the training and test data are found in separate configuration 

files. The actual speech data that is analysed by HTK is in WAV format. The WAV file format 

is a subset of Microsoft’s RIFF specification for the storage of multimedia files. The labelled 

phonetic data for each speech file is found in text files containing the start and end time of 

each phonetic sound, and the associated label. 

 

The speech recognisers were separately trained on the training data for a pre-determined 

number of iterations not exceeding a maximum value specified in the configurations files. The 

training and test phases are initiated by means of scripts. At the completion of the training 

phase, the testing phase was started. HTK’s statistical tools were then used to determine the 

performance of the recogniser. 

 

The HMM parameters (the mean and variance) relating to each phoneme model are stored as 

text files in a directory designated in the configuration files. Perl scripting was used to process 

the HMM parameter files into a format that could be used by MATLAB. The distance 

calculations between the phonemes were then carried out in MATLAB. 

 

Once the cross-language phoneme mapping matrix was calculated and the nearest phoneme 

was determined, it was necessary to change the phoneme label files. HTK does have a tool 

capable of replacing phoneme labels. However, it was found that this could just as easily be 

carried out using Perl scripting. 

 

Once the speech phoneme data had been relabeled, it could then be used to: 

• Re-test the trained recogniser on the re-labelled phoneme data; 

• Adapt the recogniser’s models using MLLR or MAP adaptation; 

• Re-train the recogniser on pooled speech data (including the re-labelled phoneme 

data). The recogniser’s phoneme recognition abilities were then re-tested as before.  

 

The next section describes the general recogniser training methodology in more detail. 
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4.2. General recogniser training methodology 
 

The procedure below refers to the general training methodology for a recogniser. 

 

4.2.1. Building the language model 

 

Using the training transcriptions, the bi-gram phone probabilities are estimated, i.e. P(j|i), the 

probability of phone j being followed by phone i. 

 

Once the task grammar is defined, the phone network is built from the bi-gram phone 

probabilities. This identifies phones and their contextual relationship and is stored in Standard 

Lattice Format (SLF) in HTK using Extended Backus Naur form grammar notation. 

 

4.2.2. Model initialisation 

 

HMM topology prototype and feature files are used to clone the HMM models. 

 

Models are initialised using global mean and covariances (flat start). The phonetically 

transcribed speech data is then used to bootstrap monophone models. The segmental K-means 

algorithm is then used to generate the initial HMM model estimates. 

 

4.2.3. Model retraining 

 

Iterative Baum-Welch re-estimation of the parameters of a single HMM is performed using 

the training data. This process is repeated after each increase in the number of mixture 

components. 

 

4.2.4. Viterbi realignment 

 

Since there are multiple pronunciations per phoneme, Viterbi decoding is used to select the 

best-match pronunciation hypothesis. This constrains the search to the most likely candidate 
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phonemes. A Viterbi score for each candidate is weighted by the bi-gram probability. A beam 

search is performed to prune low probability paths. Paths that have a score less than 

{maximum score – threshold} are deleted. 

 

This section has dealt with the general methodology used to train the recogniser. The next 

section covers the configuration parameters within the HTK toolkit. 

 

4.3. Configuration parameters within speech toolkit 
 

For the majority of the experiments, single-state HMMs are used. Note that in HTK, single-

state HMMs are modelled as three-state HMMs. This is done to cater for the non-emitting 

ENTER and EXIT states defined in HTK.  

 

One set of experiments (to determine the impact of the number of HMM states on cross-

language phoneme recognition performance) does utilise three-state, left-to-right Continuous 

Density Hidden Markov Models that do not allow skip transitions. 

 

Gaussian probability density functions were utilised. Wherever necessary, diagonal covariance 

matrices were employed. Initially, single-mixture Gaussian pdfs were used. This was 

increased in steps of one to four mixture components. Whenever mixture components are 

found, only the dominant mixture component per state is used in the distance calculation. 

 

A Hamming window was used during the pre-processing, with the window size for all 

experiments set to 25.6 ms, and the frame size to 10 ms. A pre-emphasis filter coefficient of 

0.97 was used. 

 

The HTK configuration file was set up to calculate 12 Mel-Frequency Cepstral Coefficients 

(MFCCs) and a log energy measure. The latter was included since it has been previously 

shown that the energy of an utterance contains important information about the phonetic 

identity of the utterance [5]. The number of filters in the mel-scale filter bank was kept 

constant at 26. Energy normalisation was also included. The impact on the recogniser 

performance of including delta coefficients and acceleration coefficients was also investigated. 
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Cepstral mean normalisation [9] was performed to compensate for audio effects. This is 

especially relevant in this set of experiments where two independent speech databases are 

compared. 

 

Cepstral liftering or rescaling was performed to compensate for the high variance in the 

magnitude of the cepstral coefficients. 

 

Now that the configuration parameters within the toolkit have been discussed, the performance 

criteria used to evaluate the recognisers’ performance are given next. 

 

4.4. Performance Criteria 
 

Different acoustic measures are used to compute the acoustic similarity between the TIMIT 

phoneme models and the SUN Speech phoneme models. The six different distance measures 

described in Chapter 2 are used. Since the Gaussian models are multi-mixture (up to four 

mixtures per state were used in the experiments) and single-state, the distance between two 

phones was calculated using the most dominant mixture component in the state. The 

investigation also looks into the effect of using multi-state (three-state) HMMs. In this set of 

experiments, only the middle state is considered for the acoustic distance calculation. 

 

The automated approach is then compared to a manual phoneme-mapping procedure carried 

out by a phonetic expert [3]. Automated mappings from English to Afrikaans phonemes, and 

vice versa are investigated. The quality of the mapping is determined from the cross-database 

(i.e. cross-language) recognition performance. 

 

In the experiments that were conducted, the following performance criteria are used: 

100%X
labelsofnumber total
labelscorrect  ofnumber labelsCorrect  % =    (4.1) 

and, 

100%.X
labels ofnumber  total

insertions-labelscorrect  ofnumber Accuracy % =  (4.2) 
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The next section describes the details of the training and test databases used during the 

investigation. 

 

4.5. Training and Test Database Particulars 
 

The experiments are carried out using the TIMIT English database [11] and the SUN Speech 

English-Afrikaans corpus [12]. Only the SI (phonetically-diverse) and SX (phonetically-

compact) TIMIT sentence sets were used. The TIMIT database contains about 80% more 

speech data than the English part of the SUN Speech database. There are 39 different 

phonemes listed in the TIMIT database (including the silence model) and a total of 59 

phonemes used in the labelling of the SUN Speech database. Additional information on the 

TIMIT and SUN Speech corpora can be found in Appendix B. 

 

For the purposes of these experiments the [cl] silence model in TIMIT and the [sil] model in 

the SUN Speech database are mapped to each other. However, as an aside, these non-voice 

models were also included as part of the mapping experiments and their nearest neighbour 

phoneme models can be found in Appendices C and D. 

 

Moreover, 6 phoneme classes are found only in the English segment of the SUN Speech 

corpus, not in Afrikaans. Since only the Afrikaans data was used, the phoneme-mapping 

experiments involve 38 TIMIT “base” or “reference” phonemes and 52 SUN Speech 

phonemes. 

 

For the purposes of the experiment, only the Afrikaans part of the SUN Speech database was 

utilised. This was done to mimic practical instances where a small amount of data is available 

for the new language (Afrikaans) and where a fully trained recogniser already exists for a base 

language (English). 

 

The SUN Speech database consists of two phonetically rich sentence sets (693 sentences in 

total) spoken by male and female speakers. The database consists of speakers who spoke both 

sets and either one of the two sets. Table 4.1 summarises this breakdown. 
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Table 4.1: Details of the SUN Speech Afrikaans database 

Sentence sets 

spoken 

Number of sentences 

spoken by males 

Number of sentences 

spoken by females 

Total 

1 194 49 243

2 140 10 150

1 & 2 80 220 300

 693

 

In order to have a representative amount of data for training and testing purposes, the data was 

split into a 70% training-30% test ratio, maintaining the split based on the information in 

Table 4.1 as well. Any speaker who spoke both sentence sets will be found exclusively in 

either the training or test sets, not in both. Table 4.2 below describes the SUN Speech training 

and test sets used. 

 

Table 4.2: SUN Speech training and test data 

 Training sentences Test sentences 

Male speakers Set 1 134 60 

Male speakers Set 2 100 40 

Male speakers Set 1 & 2 60 20 

Female speakers Set 1 40 9 

Female speakers Set 2 10 0 

Female speakers Set 1 & 2 140 80 

  

TOTAL 484 (69.8%) 209(30.2%) 

 

 

4.5.1. TIMIT data for adaptation and re-estimation 

 

Recall that the adaptation data (for MLLR, MAP and re-estimation) used for the TIMIT-based 

recogniser is the Afrikaans SUN Speech training set.  Since the quantity of TIMIT speech data 

vastly exceeds that of the available SUN Speech data, it would be improper to use the entire 
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TIMIT training set for the reverse case, i.e. when adapting the SUN Speech-based recogniser 

on TIMIT English data. Hence only a portion of the TIMIT training set was used for this 

purpose. The quantity of data selected for this adaptation was chosen so as to maintain the 

ratio between duration of source language data to duration of adaptation data. 

 

This chapter described the experimental protocol that was used during the investigation. An 

overview of the methodology that was used during the study was presented.  The tools that 

were used were also described. The general recogniser training methodology was then 

covered, including the configuration parameters within the Hidden Markov Toolkit. The 

performance criteria used during the course of the investigation to assess the recognisers’ 

phoneme recognition abilities were then given. Finally, the test and training database 

particulars were described. The following chapter discusses the experiments that were 

conducted and their results. 
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Chapter 5 
 

MAPPING EXPERIMENTS 
 

This chapter details the experiments and the results that were found during the investigation. 

The main goal of this investigation is to be able to use the data of a source language, to train 

the initial acoustic models of a target language for which very little speech data may be 

available. To do this, an automatic technique for mapping the phonemes of the two data sets 

must be found. Using this technique, it would be possible to accelerate the development of a 

speech recognition system for a new language. This investigation has considered the English-

to-Afrikaans phoneme mapping, as well as the Afrikaans-to-English phoneme mapping as 

well. In the latter case, for example, when Afrikaans phonemes are mapped to their nearest 

neighbour English phonemes, the initial acoustic models for the Afrikaans recogniser are 

obtained from the nearest-neighbour English model. The same reasoning applies for the 

English-to-Afrikaans phoneme mapping case as well. 

 

This chapter is organised as follows. First, an overview of all the experiments that were 

carried out in this chapter is given. Initial experiments are carried out to establish baselines 

against which all subsequent experiments can be measured. The cross-language recognition 

abilities of the recognisers are then assessed. Finally, experiments are carried out to determine 

the effect of the number of MFCCs and states on the cross-language recognition results.  
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5.1. Overview of experiments in this Chapter 
 

The sequence of experiments follows the order below: 

• Baseline experiments are carried out in order to establish a yardstick by which all 

subsequent speech recognisers can be measured against. This set of experiments 

involved training and testing recognisers with same-language, same-database speech 

data in order to establish baseline performance figures. 

• The cross-language capabilities of the respective speech recognisers on the mapped 

cross-language data are then assessed. The effect of the number of mixture components 

on the cross-language performance of the speech recognisers is then determined. The 

optimum number of mixture components, that yield the best cross-language phoneme 

recognition results, is determined for each distance measure. 

• Next the impact of including the delta and acceleration MFCCs on the recogniser’s 

cross-language recognition is determined. The optimum number of MFCCs is 

determined for each distance measure by evaluating the cross-language recognition 

results. 

• The effect of the number of HMM states on cross-language phoneme recognition is 

then investigated. The impact on phoneme recognition of using the information from 

only the middle state (for three-state HMMs), as well as from all states is examined. 

These are evaluated by determining their impact on the cross-language recognition 

rates of the recognisers. 

 

5.2. Baseline establishment experiments 
 

In order to establish baseline measurements against which all subsequent experimental results 

can be measured, initial experiments were carried out to determine benchmark phoneme 

recognition performance figures for the English- and Afrikaans-trained recognisers.  

 

5.2.1. Testing English data on English-trained recogniser 

 

The English recogniser was trained using the TIMIT SI (phonetically-diverse) and SX 

(phonetically-compact) English training data and tested using the English TIMIT SI & SX test 
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data set. Single-state HMMs were used, and the number of mixtures per state was incremented 

(in steps of one) from one to four. Table 5.1 displays the performance of the TIMIT-based 

English recogniser on the TIMIT test set. 

 

Table 5.1: Performance of TIMIT-based English recogniser on the TIMIT test set for mixture 

components from 1 to 4 using single-state HMMs 

No. of mixtures 1 2 3 4 

%correct 56.66 60.27 62.37 63.71 

Accuracy 47.57 53.31 55.66 57.97 

 

The fully trained English recogniser correctly recognised 63.71% of the English phoneme set 

with an accuracy of 57.97% when using four mixture components. 

 

 

5.2.2. Testing Afrikaans data on Afrikaans-trained recogniser 

 

The Afrikaans phoneme recogniser was trained using 70% of the available SUN Speech 

Afrikaans data. Here again, single-state HMMs were used and the number of mixtures used 

was increased from one to four. To obtain the benchmark performance figures, the Afrikaans 

recogniser was tested with the remaining 30% Afrikaans data. The results are shown in Table 

5.2. 

 

Table 5.2: Performance of SUN Speech-based Afrikaans recogniser on the Afrikaans test set 

for mixture components from 1 to 4 using single-state HMMs 

No. of mixtures 1 2 3 4 

%correct 49.78 56.63 59.03 61.89 

Accuracy 35.27 42.83 45.59 50.24 

 

The recogniser correctly identified 61.89% of the Afrikaans phonemes with an accuracy of 

50.24%. 
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5.3. Effect of number of mixture components on mapping experiments 
 

For this set of experiments, the number of MFCCs was maintained at 39 (i.e. both the delta 

and acceleration coefficients were included) and only single-state HMMs were considered. 

This part of the study investigated how the number of mixture components influences the SUN 

Speech to TIMIT mapping phoneme recognition results, as well as for the reverse case. 

 

5.3.1. Effect of number of mixture components on cross-language recognition rate for 

Afrikaans to English phoneme mapping 

Table 5.3 lists the phoneme recognition results per distance measure for mixture components 

from 1 to 4. Note as well that these results were obtained using the TIMIT-trained English 

recogniser using only the acoustic mapping technique; no adaptation had been performed at 

this stage on the English recogniser. The best results obtained per distance measure are shown 

in bold. 

 

Table 5.3: Afrikaans to English phoneme mapping - Performance of English (TIMIT-based) 

recogniser on Afrikaans data per distance measure for mixture components from 1 to 4 using 

single-state HMMs 

 No. of mixtures 1 2 3 4 

Distance Measure      

KL %correct 24.48 26.55 18.14 25.56

 Accuracy 6.21 8.52 2.46 7.87

BHA %correct 24.25 26.85 18.27 24.42

 Accuracy 6.04 8.78 2.69 8.11

MAH %correct 15.36 15.25 14.23 18.78

 Accuracy -3.70 -0.20 -1.03 1.29

EUC %correct 28.42 24.82 27.79 27.88

 Accuracy 8.21 7.23 8.51 10.11

L2 %correct 1.65 19.91 19.10 4.27

 Accuracy -7.33 12.89 11.81 -2.59

JM %correct 24.25 26.85 18.27 24.42

 Accuracy 6.04 8.78 2.69 8.11

Manual %correct 26.93 27.27 28.38 27.55

 Accuracy 7.08 9.74 10.53 11.59
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From Table 5.3, only the Mahalanobis distance measure shows progressive improvements in 

phoneme recognition performance up to four mixtures. The Euclidean distance metric 

achieves its highest recognition performance when just a single Gaussian is used. The other 

four distance metrics have their peak recognition performance when using two mixture 

components. 

 

Overall, though, the Euclidean distance measure outperforms the other distance measures by 

1.57% when using a single Gaussian. Second-best performance is identically delivered by the 

two-mixture Bhattacharyya and Jeffreys-Matusita measures. Recall that the Jeffreys-Matusita 

distance measure is derived from the Bhattacharyya distance measure, and for this set of 

experiments yielded identical mapping (and hence identical phoneme recognition) results. 

 

The results shown in Table 5.3 are not comparable to the 63.71% correctly identified 

phonemes obtained when the Afrikaans recogniser was tested with the remaining 30% 

Afrikaans test data in the baseline establishment experiments. This 30% test data is a subset of 

the SUN Speech database, and is thus very similar to the training data. Moreover, the approach 

of training a new language recogniser from scratch with limited amounts of speech data 

available is not practical in a continuous speech recognition system. The primary purpose of 

this investigation was only to find the optimal distance measure for mapping phonemes to 

quickly generate initial acoustic models in a new language. 

 

These results should be compared with the manual phonetic mapping procedure carried out by 

the phonetic expert that yielded a correctly recognised phoneme figure of 28.38% and an 

accuracy of 11.59%. From Table 5.3 (for the Afrikaans to English phoneme mapping 

experiments), it can be seen that all the distance metrics used, barring the Mahalanobis and L2 

measures, had comparative performance to the manual mapping performed by the phonetic 

expert. In fact, when using 39 MFCCs, the Euclidean distance measure actually marginally 

outperformed the results achieved by the manual mapping process, although only by an 

improvement of 0.04% for the correctly identified phonemes. 

 

According to the work done in [3], phonetically there are just two Afrikaans phoneme classes 
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in the SUN Speech database that do not appear in the English part of the database (these are 

represented by the [R] and [] phonemes or by their numerical ASCII codes of 82 and 94 

respectively). These were grouped into a single [r] class during the manual mapping 

procedure. It should be noted that the recognition results for this phoneme model were the 

poorest for the manual mapping carried out by the phonetic expert (recognition rate = 14.9%), 

indicating that the manual mapping for these two phoneme classes is not a true indication of 

their acoustic nature. 

 

5.3.2. Effect of number of mixture components on cross-language recognition rate for 

English to Afrikaans phoneme mapping 

 

Table 5.4 lists the phoneme recognition results per distance measure for mixture components 

from 1 to 4 for the English to Afrikaans phoneme mapping case. Once again, these results are 

obtained using the SUN Speech-trained Afrikaans recogniser using only the acoustic mapping 

technique and no further adaptation. 

 

Table 5.4: English to Afrikaans phoneme mapping - Performance of Afrikaans (SUN Speech-

based) recogniser on English data per distance measure for mixture components from 1 to 4 

using single-state HMMs 

 No. of mixtures 1 2 3 4 

Distance Measure      

KL %correct 33.70 26.19 18.24 19.89

 Accuracy 25.87 18.65 13.08 13.98

BHA %correct 34.22 26.57 18.39 22.47

 Accuracy 26.25 18.97 13.15 16.80

MAH %correct 20.41 16.60 11.17 18.70

 Accuracy 12.01 9.51 7.21 11.00

EUC %correct 24.88 21.08 16.01 15.91

 Accuracy 18.39 14.77 11.23 11.63

L2 %correct 6.89 6.84 6.89 8.14

 Accuracy 5.97 5.73 6.10 6.82

JM %correct 34.22 26.57 18.39 22.47

 Accuracy 26.25 18.97 13.15 16.80
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From Table 5.4, all the distance measures, used excluding the L2 metric, deliver optimum 

performance when using a single Gaussian. The L2 metric displays marginal improvement in 

phoneme recognition up to four mixture components. Overall, however, the L2 distance 

measure displays the poorest recognition performance when compared to the other measures. 

 

Best performance for the English to Afrikaans phoneme mapping case is delivered by the 

single-Gaussian Bhattacharyya and Jeffreys-Matusita distance measures respectively which 

yield a phoneme recognition accuracy of 34.22% and an accuracy of 26.25%. Second-best 

performance is delivered by the single-Gaussian Kullback-Leibler distance measure (%correct 

= 33.70% and %accuracy = 25.87%). 

 

5.4. Effect of excluding delta and acceleration MFCCs on cross-language 

phoneme recognition rate 
 

For this set of experiments, the effect of including the delta and acceleration Mel frequency 

cepstral coefficients was investigated for both the SUN Speech-to-TIMIT mapping, as well as 

the TIMIT-to-SUN Speech case as well. Each of the six distance measures described in 

Chapter 3 was calculated for every TIMIT-SUN Speech phoneme pair (a 38-by-52 distance 

matrix was computed for each distance measure) and then for every SUN Speech-TIMIT 

phoneme pair (calculating a 52-by-38 distance matrix). The number of mixture components 

was varied from one to four, however only the strongest mixture component was used in the 

acoustic distance calculation. 

 

 

5.4.1. Effect of number of MFCCs on cross-language recognition rate for Afrikaans to 

English phoneme mapping 

 

In the first group of experiments, each SUN Speech phoneme was then mapped to the closest 

TIMIT phoneme (no distance threshold was applied), using 39, 26 and finally 13 MFCCs. 

 

The results obtained using 39 MFCCs appears in Table 5.3 and will not be repeated in this 

section. 
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The mapped SUN Speech Afrikaans test data was then recognised by the trained TIMIT-based 

English recogniser. The phoneme recognition results when the delta-delta (acceleration) 

coefficients are excluded appear in Table 5.5 (the best results for a particular number of 

MFCCs in bold). The results when both the delta and delta-delta coefficients are excluded 

appear in Table 5.6. 

 

Table 5.5: Afrikaans to English phoneme mapping - Performance of English (TIMIT-based) 

recogniser on mapped Afrikaans data per distance measure for single-state HMMs using 

mixture components from 1 to 4 and excluding the acceleration MFCC components  

 No. of mixtures 1 2 3 4 

Distance Measure      

KL %correct 13.97 14.73 15.47 14.73

 Accuracy 2.73 4.37 4.45 5.45

BHA %correct 13.88 16.00 15.41 15.25

 Accuracy 2.77 4.59 4.56 5.40

MAH %correct 8.63 14.24 10.86 11.17

 Accuracy 0.84 4.44 2.54 3.11

EUC %correct 17.56 16.89 22.63 15.60

 Accuracy 4.75 5.77 8.40 5.42

L2 %correct 22.88 17.67 12.97 2.92

 Accuracy 16.26 16.12 7.01 1.08

JM %correct 13.88 16.00 15.41 15.25

 Accuracy 2.77 4.59 4.56 5.40
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Table 5.6: Afrikaans to English phoneme mapping - Performance of English (TIMIT-based) 

recogniser on mapped Afrikaans data per distance measure for single-state HMMs using 

mixture components from 1 to 4 and excluding the acceleration & delta MFCC components 

 

 No. of mixtures 1 2 3 4 

Distance Measure      

KL %correct 14.95 15.78 16.02 14.64

 Accuracy 9.02 11.60 11.73 10.74

BHA %correct 14.09 14.90 17.76 14.58

 Accuracy 8.38 11.14 12.82 10.80

MAH %correct 8.53 11.30 15.21 10.51

 Accuracy 5.37 8.83 11.04 8.22

EUC %correct 17.63 13.99 18.40 15.99

 Accuracy 11.35 10.15 14.11 11.60

L2 %correct 16.51 14.76 14.34 5.84

 Accuracy 14.36 14.24 13.93 5.42

JM %correct 14.09 14.90 17.76 14.58

 Accuracy 8.38 11.14 12.82 10.80

 

From Tables 5.5 and 5.6 (for the Afrikaans to English phoneme mapping experiments), it can 

be seen that the exclusion of both the delta and acceleration MFCCs produces better 

recognition results than when just the acceleration coefficients are excluded. All distance 

measures, excluding the L2 distance metric, exhibit improved phoneme recognition results 

when both the delta and acceleration coefficients are excluded. However, the best overall 

results are achieved when both the delta and acceleration coefficients are included, as shown 

in Table 5.3. The only exception to this is the L2 distance metric that delivers peak 

performance (%correct = 22.88% and %accuracy=16.26%) when both the delta and 

acceleration coefficients are excluded. 

 

5.4.2. Effect of number of MFCCs on cross-language recognition rate for English to 

Afrikaans phoneme mapping  

 

The same experiment as above was carried out, only in this case mapping from the English 

(TIMIT) phonemes to the Afrikaans (SUN Speech) phoneme set. 
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The results obtained using 39 MFCCs appears in Table 5.4 and will again not be repeated in 

this section. 

 

The results for these experiments when the delta-delta (acceleration) coefficients are excluded 

are listed in Table 5.7 (once again, the best results for a particular number of MFCCs in bold). 

The results when both the delta and delta-delta coefficients are excluded appear in Table 5.8. 

 

Table 5.7: English to Afrikaans phoneme mapping - Performance of Afrikaans (SUN Speech-

based) recogniser on mapped English data per distance measure for single-state HMMs using 

mixture components from 1 to 4 and excluding the acceleration MFCC components 

 No. of mixtures 1 2 3 4 

Distance Measure      

KL %correct 14.67 13.68 10.06 11.92

 Accuracy 10.27 9.14 7.25 8.25

BHA %correct 14.76 12.27 10.83 11.89

 Accuracy 10.36 8.47 7.68 8.20

MAH %correct 10.62 8.98 12.18 9.73

 Accuracy 8.48 6.78 8.58 6.90

EUC %correct 14.06 13.56 11.56 9.68

 Accuracy 9.95 9.15 7.79 6.61

L2 %correct 5.41 9.91 5.57 3.21

 Accuracy 5.29 9.25 5.18 3.00

JM %correct 14.76 12.27 10.83 11.89

 Accuracy 10.36 8.47 7.68 8.20
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Table 5.8: English to Afrikaans phoneme mapping - Performance of Afrikaans (SUN Speech-

based) recogniser on mapped English data per distance measure for single-state HMMs using 

mixture components from 1 to 4 and excluding the acceleration & delta MFCC components 

 

 No. of mixtures 1 2 3 4 

Distance Measure      

KL %correct 8.88 10.25 6.12 9.79

 Accuracy 7.13 8.06 5.06 7.81

BHA %correct 8.94 10.83 5.72 9.79

 Accuracy 7.20 8.42 4.76 7.82

MAH %correct 8.01 12.49 8.37 8.77

 Accuracy 6.52 10.54 6.62 7.01

EUC %correct 12.00 8.86 8.75 10.30

 Accuracy 9.09 7.08 6.94 8.24

L2 %correct 6.72 3.45 5.24 4.46

 Accuracy 6.07 3.01 4.83 4.41

JM %correct 8.94 10.83 5.72 9.79

 Accuracy 7.20 8.42 4.76 7.82

 

From Tables 5.7 & 5.8, it is evident that excluding both the delta and acceleration MFCCs 

leads to significantly poorer recognition results for all distance measures. The peak 

performance recognition results appear in Table 5.4. For the L2 distance measure, the best 

results are achieved when only the acceleration MFCCs are excluded.  When comparing the 

results where only the delta and where both the delta and acceleration coefficients are 

excluded, for the English to Afrikaans phoneme mapping case, better results are obtained 

when just the delta MFCCs are excluded. This indicates that there is useful phoneme 

recognition information present in the acceleration coefficients as well. 

 

5.5. Effect of number of states on cross-language recognition rate 

 

For this set of experiments, the number of MFCCs was maintained at 39 (i.e. both the delta 

and acceleration coefficients were included). This part of the study looked at how the number 

of states influenced the SUN Speech to TIMIT, and the TIMIT to SUN Speech mapping 
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phoneme recognition results. Note that in HTK, single-state HMMs are modelled as three-state 

HMMs. This is done to cater for the non-emitting ENTER and EXIT states defined in HTK. 

For the first set of experiments, only the middle state was used in calculating the distance 

metrics. Although the number of mixture components was varied from 1 to 4, only the 

strongest mixture component was used in the distance metric calculation. 

 

5.5.1. Effect of number of states on recognition rate for Afrikaans to English phoneme 

mapping 

 

Table 5.9 lists the phoneme recognition results per distance measure for mixture components 

from 1 to 4 when 3 states are used. Note as well that these results were obtained using the 

TIMIT-trained English recogniser using only the acoustic mapping technique; no adaptation 

had been performed at this stage on the English recogniser. 

 

 

Table 5.9: Afrikaans to English phoneme mapping - Performance of English (TIMIT-based) 

recogniser on Afrikaans data per distance measure for mixture components from 1 to 4 using 3 

HMM states 

No. of mixtures 1 2 3 4 

Distance Measure     

KL %correct 22.45 12.64 17.24

 Accuracy 1.99 -0.90 2.00

BHA %correct 15.90 18.82 18.31

 Accuracy 2.24 3.87 -0.09 

 

 

14.97

5.44

13.90 

2.24

MAH %correct 16.30 20.20 13.01 19.03

 Accuracy 2.42 4.68 0.22 2.88

EUC %correct 18.69 21.93 17.97 16.70

 Accuracy 2.82 4.63 1.54 2.51

L2 6.90 5.25 8.00 19.17

 Accuracy 0.81 -0.55 1.15 6.48

JM %correct 15.90 18.82 13.90 18.31

 Accuracy 2.24 3.87 -0.09 2.24

%correct 

 

As before, it is evident from Table 5.9 that the best cross-language phoneme recognition 
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performance is achieved when two mixture components are used. The only distance measure 

that bears an exception to this is the L2 metric that has peak recognition performance for four 

mixture components. 

 

Overall, though, the Kullback-Leibler distance measure outperforms the other distance 

measure by at least 0.52% when using just two mixture components. Second-best performance 

is delivered by the two-mixture Euclidean distance measure. 

 

This can now be compared to the results obtained using single-state HMMs, listed in Table 

5.3. When comparing the results from Table 5.3 with the results for 3-state HMMs in Table 

5.9, it can be seen using single-state HMMs generally produce better results for all distance 

measures. The only exception is the Mahalanobis distance metric that displays better phoneme 

recognition accuracy when 3 states are used. 

 

 

5.5.2. Effect of number of states on cross-language recognition rate for English to 

Afrikaans phoneme mapping 

 

Table 5.10 lists the phoneme recognition results per distance measure for mixture components 

from 1 to 4 using 3 states for the English to Afrikaans phoneme mapping case. Note as well 

that these results were obtained using the SUN Speech-trained Afrikaans recogniser using only 

the acoustic mapping technique; no adaptation had been performed at this stage on the 

Afrikaans recogniser. 
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Table 5.10: English to Afrikaans phoneme mapping - Performance of Afrikaans (SUN 

Speech-based) recogniser on English data per distance measure for mixture components from 

1 to 4 using 3 HMM states 

 No. of mixtures 1 2 3 4 

Distance Measure      

KL %correct 9.08 11.15 12.61 7.15

 Accuracy 7.24 8.82 9.67 5.83

BHA %correct 9.62 10.58 12.69 7.82

 Accuracy 7.46 8.35 9.80 6.20

MAH %correct 15.07 11.90 11.41 13.07

 Accuracy 11.18 9.35 8.52 9.14

EUC %correct 10.59 13.05 13.61 11.99

 Accuracy 8.21 9.35 9.91 8.46

L2 %correct 5.00 12.10 4.75 4.04

 Accuracy 4.86 11.73 4.58 3.90

JM %correct 9.62 10.58 12.69 7.82

 Accuracy 7.46 8.35 9.80 6.20

 

From Table 5.10, four of the distance measures (the Kullback-Leibler, Bhattacharyya, 

Euclidean and Jeffreys-Matusita) show progressive improvements in phoneme recognition 

performance up to three mixtures. The Mahalanobis distance measure has its peak recognition 

performance for four mixture components, while the L2 metric exhibits its best results using 

two mixture components only. 

 

Overall, though, the Euclidean distance measure outperforms the other distance measure by at 

least 0.92% when using just three mixture components. Second-best performance is delivered 

by the three-mixture Jeffreys-Matusita and Bhattacharyya measures. 

 

These results using three HMM states can now be compared to the results obtained using 

single-state HMMs, listed in Table 5.4. When comparing the results from Table 5.4 with the 

results for 3-state HMMs in Table 5.10, it can be seen that using single-state HMMs generally 

produce better results for all distance measures, as was found in the reverse Afrikaans to 
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English phoneme mapping case as well. The only exception is the L2 distance metric that 

displays improved phoneme recognition (%correct and %accuracy) when 3 states are used. 

 

5.6. Effect on cross-language recognition rate of using all states in distance 

metric calculation 
 

For this set of experiments, the number of MFCCs was maintained at 39 (i.e. both the delta 

and acceleration coefficients were included). This part of the study looked at how using all the 

states in the distance metric calculation influenced the SUN Speech to TIMIT, and the TIMIT 

to SUN Speech mapping phoneme recognition results. Although the number of mixture 

components was varied from 1 to 4, only the strongest mixture component per state was used 

in the distance metric calculation. The difference between this set of experiments compared to 

the previous one, is that all states were used in calculating the distance metrics, i.e. each of the 

distance metrics were calculated for the strongest mixture component per state and added for a 

total distance measure per distance measure.  

 

5.6.1. Effect of using all states on cross-language recognition rate for Afrikaans to 

English phoneme mapping 

 

Table 5.11 lists the phoneme recognition results per distance measure for mixture components 

from 1 to 4 when all 3 states are used in the phone distance calculation. As before, these 

results were obtained using the TIMIT-trained English recogniser using only the acoustic 

mapping technique, and excluding any further adaptation. 

 

 

 

 

 

 

 

 

 

Electrical, Electronic and Computer Engineering   

   

71

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  SSooooffuull,,  JJ  JJ    ((22000044))  



Chapter 5                                                                                                                  Mapping Experiments 

 

 

Table 5.11: Afrikaans to English phoneme mapping - Performance of English (TIMIT-based) 

recogniser on Afrikaans data per distance measure for mixture components from 1 to 4 using 

all 3 HMM states in distance calculation 

 

 No. of mixtures 1 2 3 4 

Distance Measure      

KL %correct 16.49 22.53 16.67 16.94

 Accuracy 2.44 5.44 2.78 1.75

BHA %correct 18.21 21.87 18.22 19.51

 Accuracy 3.59 6.23 3.50 2.61

MAH %correct 15.69 20.43 18.63 17.97

 Accuracy 3.91 5.39 2.37 1.91

EUC %correct 19.37 19.11 22.67 19.82

 Accuracy 4.18 3.52 4.90 2.86

L2 %correct 16.85 5.52 8.28 9.42

 Accuracy 13.09 0.22 -0.60 -0.01

JM %correct 17.83 19.62 19.59 20.67

 Accuracy 3.41 3.13 2.22 2.88

 

It is evident from Table 5.11, that the best cross-language phoneme recognition performance is 

achieved when two mixture components are used. The Euclidean, L2 and Jeffreys-Matusita 

distance measures exhibit peak performance when using three, one and four mixture 

components respectively. 

 

The three-mixture Euclidean distance marginally outperforms the Kullback-Leibler distance 

measure by 0.14%. In terms of accuracy, the L2 metric using a single Gaussian delivers the 

best phoneme recognition by 6.86%. 

 

It should be noted that this set of experiments is the only one in which the Bhattacharyya and 

Jeffreys-Matusita distance measures give different results. 

 

These results can now be compared to the results obtained using single-state HMMs that are 
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listed in Table 5.3, and those using the middle state for 3-state HMMs in Table 5.9. When 

comparing the results obtained when only the middle state of the 3-state HMMs is used, 

improved results are obtained when using all 3 states in the distance calculation for all 

distance measures except the L2 metric. However, when compared to the results obtained 

when using single-state HMMs (Table 5.3), using all 3 HMM states in the distance calculation 

generally produces worse results for all distance measures. The only exception is the 

Mahalanobis distance metric that displays improved phoneme recognition accuracy when all 3 

states are used in the distance calculation. 

 

5.6.2. Effect of using all states on cross-language recognition rate for English to 

Afrikaans phoneme mapping 

Table 5.12 lists the phoneme recognition results per distance measure for mixture components 

from 1 to 4 when all 3 states are used in the phone distance calculation. Again it should be 

noted that these results were obtained using the SUN Speech-trained Afrikaans recogniser 

using only the acoustic mapping technique; no adaptation had been performed at this stage on 

the Afrikaans recogniser. 

 

Table 5.12: English to Afrikaans phoneme mapping - Performance of SUN Speech-based 

recogniser on English data per distance measure for mixture components from 1 to 4 using all 

3 HMM states in distance calculation 

 No. of mixtures 1 2 3 4 

Distance Measure      

KL %correct 12.01 11.58 9.99 9.44

 Accuracy 8.70 9.29 7.91 7.01

BHA %correct 11.64 11.38 10.11 9.67

 Accuracy 8.51 9.08 7.96 7.25

MAH %correct 9.75 14.19 9.76 8.54

 Accuracy 7.18 11.22 7.43 6.27

EUC %correct 10.12 10.85 14.42 9.58

 Accuracy 7.86 8.66 10.67 7.24

L2 %correct 4.41 5.11 9.11 9.74

 Accuracy 4.04 4.87 7.80 7.88

JM %correct 11.42 13.01 11.53 8.98

 Accuracy 8.88 9.52 8.84 6.91
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From Table 5.12, overall best performance for the English to Afrikaans mapping case is 

achieved by the Euclidean distance measure (% correct = 14.42% and accuracy of 10.67%). 

This is followed by the Mahalanobis measure that achieves a better accuracy figure of 11.22%. 

 

As in the reverse phoneme mapping experiments listed in the previous section, the 

Bhattacharyya and Jeffreys-Matusita distance measures produce different recognition results. 

This is due to the technique of adding the distance contributions per state to determine an 

overall distance figure used to determine which phoneme pairs are the closest.  

 

This can now be compared to the results obtained using single-state HMMs that are listed in 

Table 5.4, and those using the middle state for 3-state HMMs in Table 5.10. When comparing 

the results obtained when only the middle state of the 3-state HMMs is used, improved results 

are only obtained when using all 3 states in the distance calculation for the Mahalanobis and 

Euclidean metrics. However, when compared to the results obtained when using single-state 

HMMs (Table 5.4), using all 3 HMM states in the distance calculation generally produces 

worse results for all distance measures. The only exception is the L2 distance metric that 

displays improved phoneme recognition. 

 

5.7. Summary of Chapter findings 
 

Baseline establishment experiments were conducted to determine benchmark phoneme 

recognition performance figures. The English recogniser when trained and tested with the 

English TIMIT speech data correctly recognised 63.71% of the English phoneme set with an 

accuracy of 57.97%. The Afrikaans recogniser when trained and tested with the SUN Speech 

Afrikaans data correctly recognised 61.89% of the Afrikaans phonemes with an accuracy of 

50.24%.  

 

It was found that the recogniser’s cross-language performance increases up to a limit as the 

number of Gaussian mixtures increase. This was found for both the English-to-Afrikaans and 

Afrikaans-to-English cases. The optimum number of Gaussian mixtures differs for each of the 

distance measures. 
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It was also found that the inclusion of the delta and acceleration MFCCs improve the mapping 

and the recognition system’s cross-language phoneme recognition rate. This would indicate 

that there is useful information in the delta and acceleration components that aids in distinction 

between the phonemes. 

 

The results of the experiments showed that single-state HMMs deliver the optimum cross-

language phoneme recognition results. Although the number of mixture components was 

varied from 1 to 4, only the strongest mixture component was used in the distance metric 

calculation. Note that in HTK, single-state HMMs are modelled as three-state HMMs. This is 

done to cater for the non-emitting ENTER and EXIT states defined in HTK. For the first set of 

experiments, only single-state HMMS were used. For the second set of experiments, only the 

middle state (of the three states) was used in calculating the distance metrics, and for the third 

set of experiments all three states were used in the distance calculation. The latter two 

experiments produced poorer cross-language recognition results than when only a single-state 

HMM is used. Using the Bhattacharyya and Jeffreys-Matusita distance measures in phoneme 

mapping resulted in the best cross-language phoneme recognition rates. 

 

These experiments have also demonstrated that the choice of acoustic distance measure for the 

mapping does influence the results obtained. Generally, the Bhattacharyya, Jeffreys-Matusita, 

Euclidean and Kullback-Leibler distance measures perform the best when mapping the 

phonemes to a target language, be this target language either English or Afrikaans. The 

relatively simple Euclidean metric exhibits good results and has shown that it is able to map 

the acoustic space of phoneme models relatively well. The L2 and Mahalanobis distance 

measures, although useful in other pattern recognition applications, do not appear to be 

suitable for determining the degree of acoustic similarity between two phoneme classes. They 

have generally performed poorly in comparison with the other distance metrics. A suggestion 

for the difference in cross-language phoneme recognition performance is due to the linearity 

of each of the distance measures. The distance measures that generally performed better were 

more linear and produced more consistently comparable distances between the phoneme 

classes. The measures that performed poorly, generally exhibited either very small or very 
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large distance results between the phonemes, with the result that there was a degree of 

uncertainty about the whether the closest phoneme chosen was in fact a true indication of its 

closeness. 

 

Now that the initial baselines have been established and the optimum number of MFCCs for 

the cross-language phoneme recognition results has been determined, the next step is to adapt 

the available data. The next chapter investigates the effect of applying MLLR and MAP 

adaptations on the initial acoustic models. 
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Chapter 6 
 

SPEAKER ADAPTATION EXPERIMENTS 
 

This part of the investigation looks at performing MLLR adaptation and then MAP adaptation 

on the recogniser models (both the mean and variance) to adapt them closer to the target 

language data. Nieuwoudt [3, 8] successfully demonstrated this technique for same-language 

but different databases, and for cross-language applications as well. 

 

This chapter is organised as follows: 

• The first experiment in this chapter looks at performing MLLR and then MAP 

adaptations (using mapped cross-language data) on the recogniser models (both the 

mean and variance) to adapt them closer to the target language data. The cross-

language phoneme models that were previously found to produce the best recognition 

results were used for initial models, with the nearest-neighbour phonemes providing 

the adaptation data. This is illustrated for the Afrikaans to English phoneme mapping 

case in Figure 6.1 below: 
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Table 6.1: Afrikaans to English phoneme mapping - Performance of English (TIMIT-based) 

recogniser on Afrikaans data per distance measure after MLLR and MAP adaptation 

  SUN Test SUN test after TIMIT test after 

Distance Measure   

Pre-adaptation MLLR & MAP 

– “best” mix. 

MLLR & MAP 

KL %correct 26.55 36.56 46.15 

 Accuracy 8.52 16.98 38.81 

BHA %correct 26.85 40.01 44.96 

 Accuracy 8.78 21.57 38.40 

MAH %correct 18.78 20.63 44.30 

 Accuracy 1.29 7.79 39.90 

EUC %correct 28.42 31.76 49.26 

 Accuracy 8.21 11.77 40.61 

L2 %correct 19.91 13.41 14.06 

 Accuracy 12.89 13.41 13.86 

JM %correct 26.85 40.01 44.96 

 Accuracy 8.78 21.57 38.40 

Manual mapping %correct 28.38 37.95 49.59 

 Accuracy 10.53 19.08 44.16 

 

There are a number of observations from Table 6.1. Firstly, note that the Bhattacharyya and 

Jeffreys-Matusita distance measures after MLLR and MAP adaptation outperform all other 

distance measures, including the manual mapping technique, with a phoneme recognition rate 

of 40.01% (accuracy of 21.57%). This is an improvement in recognition rate of 13.16%, and a 

gain in accuracy of 12.79% over the unadapted recogniser. In terms of recognition 

performance, the manual mapping technique undertaken by the phonetic expert produces the 

next-best phoneme recognition results (%correct of 37.95% and 19.08%). 

 

In terms of the “bilingual” nature of this recogniser, it should be borne in mind that the fully 

trained English recogniser correctly recognised 63.71% of the English phoneme set (see Table 

5.1) with an accuracy of 57.97%. After adaptation, the adapted recogniser is tested on the 

TIMIT test set. For the Jeffreys-Matusita and Bhattacharyya-based recognisers, this 

recognition performance on the English phoneme set has dropped to 44.96%, with an accuracy 

of 38.40%. This represents degradation in phoneme recognition performance of 18.75% and in 
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accuracy of 19.57%. 

 

6.2. Effect of performing MLLR and MAP adaptations using English to 

Afrikaans mapped data 
 

For the TIMIT to SUN Speech mapping MLLR and MAP adaptation, the adaptation data that 

is used is a sample of the TIMIT SI and SX training set. Approximately the same duration of 

adaptation data that is used for the SUN Speech to TIMIT mapping case is used for this case 

as well. This is done so that the adaptation process is not unduly biased by the quantity of 

adaptation data available, as would have been the case if the entire TIMIT training set had 

been used. The effect of the adaptation is quantified on the entire TIMIT SI & SX test training 

set. As before, the adapted model set is also tested on the SUN Speech Afrikaans test data to 

evaluate the “bilingual” capabilities of the adapted recogniser, as well as to determine how 

much degradation in performance the adaptation has brought about. 

 

Table 6.2: English to Afrikaans phoneme mapping - Performance of Afrikaans (SUN Speech-

based) recogniser on English data per distance measure after MLLR and MAP adaptation 

  TIMIT test TIMIT test after SUN test after 

Distance Measure   pre-adaptation MLLR & MAP MLLR & MAP

KL %correct 33.70 41.76 42.34 

 Accuracy 25.87 32.70 28.26 

BHA %correct 34.22 41.87 41.94 

 Accuracy 26.25 32.63 27.55 

MAH %correct 20.41 21.98 29.51 

 Accuracy 12.01 15.52 19.17 

EUC %correct 24.88 32.48 56.04 

 Accuracy 18.39 29.61 50.82 

L2 %correct 8.14 15.57 17.78 

 Accuracy 6.82 15.21 16.20 

JM %correct 34.22 41.87 41.94 

 Accuracy 26.25 32.63 27.55 

 

Once again, the best phoneme recognition results are obtained using the Jeffreys-Matusita and 

Bhattacharyya-transformed models (41.87% correctly recognised phonemes with an accuracy 
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of 32.63%). This represents a marginal 0.11% better recognition rate and a 0.07% worse 

accuracy rate than the next best model, the transformed Kullback-Leibler distance model. 

Moreover, this also represents a 7.65% improvement in phoneme recognition and a gain of 

6.38% in accuracy over the untransformed model. 

 

As far as the bilingual capabilities of this adapted SUN Speech recogniser go, this must be 

compared to the baseline figures achieved when training with the SUN Speech Afrikaans 

training set and tested with the SUN Speech test data. The recogniser correctly identified 

61.89% of the Afrikaans phonemes with an accuracy of 50.24% (see Table 5.2). The best 

“bilingual” model is the adapted Euclidean model, which demonstrates a recognition rate on 

the Afrikaans data test set of 56.04% and an accuracy figure of 50.82%, down by 5.85% and 

up by 0.58% in phoneme recognition and accuracy respectively. This indicates satisfactory 

bilingual capabilities. 

 

6.3. Effect on recognition rate of applying EBWR to models transformed 

using Afrikaans data 
 

Single-pass embedded Baum-Welch re-estimation (EBWR) is performed on the MAP and 

MLLR transformed models. EBWR is performed in three iterations. As mentioned previously, 

EBWR uses all the adaptation data and adapts all the models concurrently. 
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Table 6.3: Afrikaans to English phoneme mapping - Performance of Re-estimated TIMIT-

based recogniser on Afrikaans data per distance measure after Embedded Baum-Welch Re-

estimation 

   SUN test TIMIT test SUN test TIMIT test SUN test TIMIT test

Distance Measure   EBWR1 EBWR1 EBWR2 EBWR2 EBWR3 EBWR3 

KL %correct 40.13 43.79 41.46 42.60 42.37 42.02

 Accuracy 20.76 34.90 22.15 32.87 22.56 32.10

BHA %correct 42.85 42.28 44.49 41.25 44.80 40.59

 Accuracy 25.16 33.85 26.68 31.89 26.91 30.98

MAH %correct 23.74 34.77 26.91 32.37 29.31 31.40

 Accuracy 13.77 29.88 16.98 26.95 18.44 25.59

EUC %correct 37.57 44.61 37.96 42.96 38.11 42.27

 Accuracy 13.78 32.78 13.13 30.77 12.45 29.52

L2 %correct 8.98 10.89 9.15 11.53 9.25 11.66

 Accuracy 8.98 10.81 9.15 11.43 9.25 11.56

JM %correct 42.85 42.28 44.49 41.25 44.80 40.59

 Accuracy 25.16 33.85 26.68 31.89 26.91 30.98

Manual mapping %correct 43.72 40.96 46.31 38.86 47.93 38.11

 Accuracy 24.81 35.03 26.51 32.16 27.62 31.31

 

From Table 6.3, it is clear how the performance of the TIMIT-based transformed recogniser 

improves for the SUN Speech Afrikaans test data with each EBWR iteration. The re-estimated 

model derived from the manual mapping technique outperforms the rest, with a recognition 

rate of 47.93% and an accuracy of 27.62%. This should now be compared with the results 

obtained when the SUN Speech recogniser is trained on SUN Speech data and tested with 

SUN Speech data. This had a phoneme recognition rate of 61.89%. The 13.96% degradation in 

performance should be put into context of the amount of effort and time that has been spared 

in getting the recogniser up to this level. 

 

As far as the distance measures go, the Bhattacharyya and Jeffreys-Matusita metrics 

performed the next best, with recognition rates of 44.80% and accuracies of 26.91%. 

 

Note that after the third iteration of EBWR, the recognition rate of the TIMIT-based 

recogniser for TIMIT English phonemes has dropped dramatically. The Euclidean-based 
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transformed and re-estimated model displays the best TIMIT English phoneme recognition 

rate of 42.27% with an accuracy of 29.52%. 

 

Tables 6.4 and 6.5 list the phoneme classes with the best and worst recognition percentages 

per distance measure when using 39 MFCCs and after the final embedded Baum-Welch re-

estimation. 

 

Table 6.4: Top 5 recognition performances listed as a percentage of correctly recognised 

phonemes per distance measure for the SUN Speech to TIMIT mapping after 3 iterations of 

embedded Baum-Welch re-estimation 

Distance 
Measure KL BHA MAH EUC L2* JM 

 
Manual

phoneme cl cl cl s cl cl ch 

%correct 91.8 95.9 95.9 86.1 44.7 95.9 94.8 

phoneme ae z ae n  z ay 

%correct 80.9 79.9 73.3 84.3  79.9 89.5 

phoneme uw ae ay cl  ae cl 

%correct 77.8 77.9 72.6 80.6  77.9 86.3 

phoneme z f aw sh  f k 

%correct 76.2 74.1 72.1 78.4  74.1 83.1 

phoneme sh aa dh ae  aa oy 

%correct 75.7 73.5 71.7 76.2  73.5 83.1 

* For the L2 metric, the [cl] phoneme was the closest phoneme for all SUN Speech phonemes 
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Table 6.5: Bottom 5 recognition performances listed as a percentage of correctly recognised 

phonemes per distance measure for the SUN Speech to TIMIT mapping after 3 iterations of 

embedded Baum-Welch re-estimation 

Distance 
Measure KL BHA MAH EUC L2* JM 

 
Manual

phoneme uh uh z uh cl uh d 

%correct 14.6 11.3 9.1 9.9 44.7 11.3 23.5 

phoneme g dx oy b  dx g 

%correct 15.3 26.6 10.9 10.0  26.6 24.6 

phoneme d d r oy  d ah 

%correct 24.0 26.7 12.8 11.6  26.7 26.6 

phoneme m th jh m  th uw 

%correct 28.0 31.2 18.9 21.1  31.2 28.1 

phoneme th m eh ch  m dx 

%correct 31.5 33.0 27.1 22.2  33.0 28.3 

* For the L2 metric, the [cl] phoneme was the closest phoneme for all SUN Speech phonemes 

 

From Table 6.4, it is evident that the [s], [sh], [f], [ae] and [cl] (silence) models were 

recognised the best. In general, the fricative sounds were recognised the best by the MLLR 

and MAP transformed EBWR-based recognisers. It should also be noted that while five of the 

six distance-based recognised exhibited excellent recognition results for the [ae] phoneme, the 

manual-mapped procedure had average phoneme recognition results for [ae]. 

 

Generally the [th], [dx], [uh], [d] and [m] displayed the poorest recognition results. Overall, 

the “stop” class of phoneme models tended to have the worst recognition results. 

 

Table 6.6: Confusion matrix information for Afrikaans to English phoneme mapping 

 Most commonly confused phoneme classes per distance measure 
Phoneme 
class KL BHA MAH EUC L2 JM 
th t, cl, ih uh, cl, t cl, s t, cl, dh  uh, cl, t 

dx cl, ih cl, n  cl, ah, t  cl, n 

uh ih, ng, cl cl, ng  cl, ah, ng  cl, ng 

d t, v, n dh, n n   dh, n 

m ih, cl ih, n cl, n n, cl  ih, n 
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Table 6.6 lists the most commonly confused phoneme classes per distance measure for the set 

of worst recognised phonemes. From Table 6.6, it is evident that quite often, the greatest 

source of confusion is the [cl] or “silence” model. This is more than likely due to the acoustic 

differences between the two different speech databases used in the investigation. Another 

interesting observation is that the fricative [th] sound is often confused with the stop [t] sound. 

It can also be seen from Table 6.6 that the nasal [m] phoneme is often confused with the nasal 

[n] phoneme, something that should be expected. 

 

6.4. Effect on recognition rate of applying EBWR to models transformed 

using English data 
 

For the TIMIT to SUN Speech (English to Afrikaans) mapping case, single-pass embedded 

Baum-Welch re-estimation (EBWR) is performed on the MAP and MLLR transformed 

models. As before, EBWR is performed in three iterations. 

 

Table 6.7: English to Afrikaans phoneme mapping - Performance of Re-estimated SUN 

Speech-based recogniser on English data per distance measure after Embedded Baum-Welch 

Re-estimation 

   TIMIT test SUN test TIMIT test SUN test TIMIT test SUN test 

Distance Measure   EBWR1 EBWR1 EBWR2 EBWR2 EBWR3 EBWR3 

KL %correct 45.15 40.87 45.48 40.43 45.51 40.39

 Accuracy 35.22 25.09 35.19 23.73 34.77 23.17

BHA %correct 45.01 39.93 45.48 39.42 45.46 39.56

 Accuracy 34.81 24.19 34.85 22.88 34.70 21.99

MAH %correct 25.70 27.15 28.87 23.59 31.73 24.00

 Accuracy 18.01 15.61 20.92 12.10 23.24 10.07

EUC %correct 39.16 50.65 40.67 49.70 41.43 49.30

 Accuracy 35.75 44.78 37.03 43.42 37.74 42.80

L2 %correct 13.92 13.82 14.03 12.76 13.96 11.87

 Accuracy 13.65 12.82 13.79 11.85 13.70 11.09

JM %correct 45.01 39.93 45.48 39.42 45.46 39.56

 Accuracy 34.81 24.19 34.85 22.88 34.70 21.99

 

From Table 6.7, it can be seen how the performance of the SUN Speech-based transformed 
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recogniser improves for the TIMIT English test data with each EBWR iteration. For this 

reverse mapping exercise from English to Afrikaans, the Kullback-Leibler based transformed 

re-estimated model outperforms the rest, with a recognition rate of 45.51% and an accuracy of 

34.77%.. It should once again be borne in mind that only a portion of the TIMIT training data 

was used for the adaptation and re-estimation process. This can now be compared with the 

results obtained when the TIMIT recogniser is trained and tested with TIMIT data, which 

yielded a phoneme recognition rate of 63.71%. The adapted and re-estimated recogniser using 

English mapped data exhibits a considerable 18.20% degradation in phoneme recognition. 

Recall that the SUN Speech recogniser was trained on a limited amount of training data to 

begin with. This seems to indicate that the adaptation and re-estimation strategy suggested in 

this dissertation works better for recognisers that are trained with a large amount of data in the 

source language. 

 

Note that after the third iteration of EBWR, the recognition rate of the SUN Speech-based 

recogniser for SUN Speech Afrikaans phonemes has dropped marginally only, and not as 

markedly as in the reverse-mapping case. The Euclidean-based transformed and re-estimated 

model displays the best SUN Speech Afrikaans phoneme recognition rate (49.30%) with an 

accuracy of 42.80%. 

 

Table 6.8 and 6.9 list the phoneme classes with the best and worst recognition percentages per 

distance measure when using 39 MFCCs and after three iterations of embedded Baum-Welch 

re-estimation. 
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Table 6.8: Top 5 recognition performances listed as a percentage of correctly recognised 

phonemes per distance measure for the TIMIT to SUN Speech mapping after 3 embedded 

Baum-Welch re-estimation iterations 

Distance 
Measure KL BHA MAH EUC L2 JM 
phoneme s s n s s s 

%correct 89.9 89.9 68.1 92.7 99.5 89.9 

phoneme f f u eh p f 

%correct 84 83 62.8 75.2 98.7 83 

phoneme a a axi t sil a 

%correct 75.9 75.8 62.5 73.4 64.5 75.8 

phoneme n n oey k  n 

%correct 71 70.3 57.6 71.7  70.3 

phoneme eh eh ax n  eh 

%correct 68.9 68.5 55.6 71.5  68.5 

 

Table 6.9: Bottom 5 recognition performances listed as a percentage of correctly recognised 

phonemes per distance measure for the TIMIT to SUN Speech mapping after 3 embedded 

Baum-Welch re-estimation iterations 

Distance 
Measure KL BHA MAH EUC L2 JM 
phoneme oey oey ao r2 jh oey 

%correct 14 11.9 17.4 0.6 2.7 11.9 

phoneme q zh q oi b zh 

%correct 15.3 20.1 18.3 1.7 23.7 20.1 

phoneme ts q m zh  q 

%correct 17.8 20.3 19.1 22.3  20.3 

phoneme zh ts j oey  ts 

%correct 19.6 21.1 21.7 25.1  21.1 

phoneme u g p sq  g 

%correct 27.7 30.2 27.1 25.7  30.2 

 

Firstly, note from the above two tables that only the best three recognised phoneme classes 

and the worst two recognised phoneme classes are provided for the L2 based recogniser. This 

is because the mapped SUN Speech phonemes were mapped to only five TIMIT phoneme 

classes during the mapping exercise. 
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From Table 6.8, it is clear that the [s], [f] and [n] models were recognised the best, as they 

were in the SUN Speech to TIMIT phoneme mapping case. In general, the fricative sounds 

were recognised the best by the MLLR and MAP transformed EBWR-based recognisers. It 

should also be noted that while for the reverse mapping case (mapping from Afrikaans to 

English case) the [cl] or “silence” model was one of the best-recognised phoneme classes, the 

same is not the case for the English phoneme to Afrikaans [sil] phoneme case where it exhibits 

average recognition results. 

 

It can be seen from Table 6.9 that the [oey], [zh] and [q] displayed the poorest recognition 

results.  

 

Table 6.10: Confusion matrix information for English  to Afrikaans phoneme mapping 

 Most commonly confused phoneme classes per distance Measure 
Phoneme 
class KL BHA MAH EUC L2* JM 
oey ax, axi ax, axi,eh ax, axi ax, axi  ax, axi,eh 

zh t, s t, s  ch, t  t, s 

q d, x, m d, k l, ax   d, k 

* For the L2 metric, the [cl] phoneme was the closest phoneme for all SUN Speech phonemes 
 

Table 6.10 lists the most commonly confused phoneme classes per distance measure for the 

set of worst recognised phonemes. The diphthong [oey] phoneme (as in the word “bait”) is 

most often confused with the vowel [ax] (as in “debit”) and diphthong [axi] (as in the word 

“fate”) phoneme classes. The confusion between the like-sounding diphthong classes is to be 

expected. It can also be noted from Table 6.10 that the fricative [zh] phoneme (as in the word 

“azure”) is often misclassified as the fricative [s] sound (as in “sea”), or the stop [t] sound. 

 

6.5. Summary of Chapter findings 
 

This chapter has investigated the effect of adapting the available speech data using MLLR and 

MAP adaptation, and then applying EBWR to the adapted models. Although a combination of 

MLLR and MAP techniques have been used previously in speech adaptation studies, the 

combination of MLLR, MAP and EBWR in cross-language speech recognition is a unique 

contribution of this study. 
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The first set of experiments in this chapter looked at performing MLLR and then MAP 

adaptation on the Afrikaans to English mapped data. The Bhattacharyya and Jeffreys-Matusita 

distance measures after MLLR and MAP adaptation outperform all other distance measures, 

including the manual mapping technique. To test the “bilingual” nature of this recogniser after 

adaptation, the adapted recogniser is tested on the English TIMIT test set. As expected, there 

is a degradation in English (TIMIT) phoneme recognition performance after adaptation using 

the mapped Afrikaans data. 

 

The second set of experiments investigates the effect of performing MLLR and then MAP 

adaptation on the English to Afrikaans mapped data. Once again, the best phoneme 

recognition results are obtained using the Jeffreys-Matusita and Bhattacharyya-transformed 

models. As far as the bilingual capabilities of this adapted SUN Speech recogniser go, the 

Afrikaans recogniser after adaptation did exhibit satisfactory bilingual capabilities, with the 

expected degradation in Afrikaans phoneme recognition. 

 

The final set of experiments in this chapter looked at performing Embedded Baum-Welch Re-

estimation on each of the English and Afrikaans recognisers after adaptation. This technique is 

found to further improve the cross-language recognition performance of the recognisers. Once 

again, the recognisers that were adapted with data that was mapped using the Bhattacharyya 

and Jeffreys-Matusita distance metrics performed the best. As expected, the bilingual 

recognition performance of the recognisers dropped with each successive EBWR iteration. 

 

For the English recogniser adapted with Afrikaans speech data, the fricative sounds were 

recognised the best by the MLLR and MAP transformed EBWR-based recognisers. The  

short-burst “stop” class of phoneme models tended to have the worst recognition results. 

 

For the Afrikaans recogniser adapted with English speech data, the fricative sounds were once 

again recognised the best by the MLLR and MAP transformed EBWR-based recognisers. The 

most commonly confused phoneme classes were found to be like-sounding diphthong classes. 
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Adapting the target-language models using MLLR followed by MAP techniques, and then 

employing embedded Baum-Welch re-estimation result in a considerable improvement in the 

cross-language phoneme recognition rate. Adapting the source-language recognisers with 

target language speech data brings the source-language speech models closer to the target 

language. This optimal use of target language data is the main reason for the improved cross-

language phoneme recognition. 

 

In the final set of experiments in Chapter 7, the effects of using pooled English and Afrikaans 

data and adapting these acoustic models is explored. 
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Chapter 7 
 

DATA POOLING AND EBWR EXPERIMENTS 
 

The final set of experiments follows the methodology suggested by Nieuwoudt [3, 8], whereby 

the mapped target language data is pooled with the original source language data. A new 

recogniser is then trained using this pool data. The models for the “bilingual” recogniser are 

then transformed using MAP adaptation to closer resemble the target language data. Finally, 

embedded Baum-Welch re-estimation (EBWR) is iteratively carried out on these transformed 

models. 

 

This chapter is organised as follows: 

• The first set of experiments in this Chapter involve pooling the mapped target language 

data with the original source language data to train a new recogniser. 

• Next, the models for the “pooled” recogniser are then transformed using MAP 

adaptation to closer resemble the target language data. This is illustrated for the 

Afrikaans to English phoneme mapping case in Figure 7.1 below: 

 
AfrikaansAfrikaans

 

 

 

 

 

Figure 7.1
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: Illustration of data mapping, pooling and recogniser adaptation technique 
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• The final experiment investigates carrying out embedded Baum-Welch re-estimation 

(EBWR) on the transformed models. Once again the mapped data, provided by the 

nearest neighbour experiments that provided the best recognition results, is used for the 

re-estimation. 

 

7.1. Effect of pooling English and Afrikaans mapped data followed by 

applying MAP adaptation 
 

For this experiment, the SUN Speech Afrikaans training data is first mapped to the nearest 

TIMIT English phoneme. This mapped data is then pooled with the TIMIT English training 

data to form a training superset. This recogniser is then trained, increasing the mixture 

components from one to four. The new recogniser is then tested using the mapped SUN 

Speech test set, as well as the TIMIT SI and SX test set to assess it’s “bilingual” nature. The 

models for this new recogniser are then transformed by MAP adaptation, using the mapped 

SUN Speech training set. The transformed recogniser is once again tested with the mapped 

SUN Speech test data, as well as the TIMIT SI and SX test set. The results appear in Table 

7.1. 
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Table 7.1: Afrikaans to English phoneme mapping - Performance of the English recogniser on 

English data and mapped Afrikaans data per distance measure after MAP adaptation 

Distance 

Measure  

4 mix, no map,

SUN Test 

4 mix, no 

map, TIMIT test

 After MAP 

SUN Test 

After MAP 

TIMIT test 

KL %correct 47.78 60.82 50.34 54.56

 Accuracy 34.90 55.26 37.65 47.73

BHA %correct 47.95 60.59 51.63 54.84

 Accuracy 34.97 55.14 39.04 48.02

MAH %correct 32.90 59.01 36.47 48.75

 Accuracy 21.67 53.78 25.74 42.38

EUC %correct 43.86 60.18 50.47 53.64

 Accuracy 31.69 54.96 37.09 47.49

L2 %correct 17.90 60.84 19.34 58.90

 Accuracy 13.40 55.10 14.83 52.70

JM %correct 47.95 60.59 51.63 54.84

 Accuracy 34.97 55.14 39.04 48.02

Manual %correct 42.24 60.00 46.12 51.26

 Accuracy 25.78 54.65 29.28 46.01

 

Table 7.1 makes for interesting reading. For the English recogniser trained on pooled data, the 

one using the mapped data derived by applying the Jeffreys-Matusita and Bhattacharyya 

distance measures outperform the others, with a recognition rate of 47.95% and an accuracy of 

34.97% when tested on the mapped Afrikaans (SUN Speech) test data. The L2 distance metric 

retains the properties of the original TIMIT English phoneme set the best, and exhibits a 

phoneme recognition rate of 60.84% and an accuracy of 55.10% on the original TIMIT 

English phoneme set. 

 

After MAP adaptation of the English recogniser has been carried out using the Afrikaans 

(SUN Speech) mapped training data, the adapted model based on the Jeffreys-Matusita and 

Bhattacharyya distance metrics outperform the other distance measures with a phoneme 

recognition rate of 51.63% and an accuracy of 39.04% on the mapped Afrikaans (SUN 

Speech) test set. 

 

The pooled recogniser trained on the L2 mapped data is the best performing TIMIT phoneme 
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recogniser after MAP adaptation of the recogniser’s models, with a TIMIT phoneme 

recognition rate of 58.90% and an accuracy of 52.70%. 

 

7.2. Effect of pooling Afrikaans and English mapped data followed by 

applying MAP adaptation 
 

In this experiment, the TIMIT English training data is mapped to the nearest SUN Speech 

phoneme. This mapped data is then pooled with the SUN Speech Afrikaans training data to 

form a training superset. This Afrikaans recogniser is then trained, increasing the mixture 

components from one to four. The new recogniser is then tested using the mapped English 

TIMIT SI and SX test set, as well as the Afrikaans SUN Speech test set to assess it’s 

“bilingual” nature. The models for this new recogniser are then adapted by MAP adaptation, 

using a subset of the mapped TIMIT training set. The MAP-adapted recogniser is once again 

tested with the mapped TIMIT SI and SX test data, as well as the SUN Speech test set. The 

results appear in Table 7.2. 

 

Table 7.2: English to Afrikaans phoneme mapping - Performance of the Afrikaans recogniser 

on Afrikaans data and mapped English data per distance measure after MAP adaptation 

Distance 

Measure  

4 mix, no map,

TIMIT Test 

4 mix, no 

map, SUN test

After MAP 

TIMIT Test 

After MAP 

SUN test 

KL %correct 55.83 57.81 59.61 50.50

 Accuracy 50.13 45.04 53.16 35.10

BHA %correct 55.53 58.01 59.30 50.35

 Accuracy 49.71 45.22 52.89 35.04

MAH %correct 46.17 55.76 50.03 46.95

 Accuracy 40.74 42.56 44.36 32.13

EUC %correct 53.70 57.77 58.05 52.00

 Accuracy 48.69 45.98 52.55 38.45

L2 %correct 36.67 60.43 36.87 59.99

 Accuracy 33.79 46.86 33.64 45.95

JM %correct 55.53 58.01 59.30 50.35

 Accuracy 49.71 45.22 52.89 35.04
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For the Afrikaans recogniser trained on pooled data, the one using the mapped data derived by 

applying the Kullback-Leibler distance measure outperforms the others, with a recognition 

rate of 55.83% and an accuracy of 50.13% when tested with the mapped English (TIMIT SI 

and SX) test data. In terms of performance, it is followed by the recognisers trained on the 

mapped Jeffreys-Matusita and Bhattacharyya distance metrics (recognition rate of 55.53% and 

accuracy of 49.71%). The L2 distance metric retains the properties of the original SUN Speech 

Afrikaans phoneme set the best, and exhibits a phoneme recognition rate of 60.43% and an 

accuracy of 46.86% on the original SUN Speech Afrikaans phoneme set. 

 

After MAP adaptation has been carried out using the TIMIT mapped training data, the adapted 

model based on the Kullback-Leibler distance metric performs best with a phoneme 

recognition rate of 59.61%, and an accuracy of 53.16% on the mapped TIMIT SI and SX test 

set. 

 

The pooled recogniser trained on the L2 mapped data is the best performing SUN Speech 

recogniser, with a SUN Speech phoneme recognition rate of 59.99% and an accuracy of 

45.95%. 

 

7.3. Effect of applying EBWR to model trained on Afrikaans mapped data 

and transformed by MAP 
 

After the models have been adapted using MAP, embedded Baum-Welch re-estimation 

(EBWR) is iteratively applied three times. The performance of the re-estimated model is then 

tested on both the mapped Afrikaans (SUN Speech) test set, as well as on the original English 

(TIMIT SI and SX) test data. 
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Table 7.3: Afrikaans to English phoneme mapping - Performance of the English (pooled) 

recogniser on English data and mapped Afrikaans data per distance measure after MAP 

adaptation and embedded Baum-Welch re-estimation 

Distance 

Measure  

EBWR1 

SUN Test 

EBWR1 

TIMIT Test

EBWR2

SUN Test

EBWR2 

TIMIT Test 

EBWR3 

SUN Test 

EBWR3 

TIMIT Test

KL %correct 54.61 47.32 56.01 46.17 56.45 45.62

 Accuracy 42.40 39.28 43.63 37.59 43.76 36.83

BHA %correct 54.96 48.24 56.13 47.13 56.80 46.52

 Accuracy 43.05 40.19 43.75 38.47 44.36 37.75

MAH %correct 44.05 38.76 45.95 37.57 46.82 37.21

 Accuracy 33.62 30.99 35.35 29.30 36.18 28.76

EUC %correct 54.94 45.85 55.91 44.19 56.50 43.45

 Accuracy 40.27 36.87 41.05 34.12 41.23 33.10

L2 %correct 20.93 54.32 20.96 54.19 20.95 54.15

 Accuracy 17.23 47.45 17.15 47.19 17.19 47.09

JM %correct 54.96 48.24 56.13 47.13 56.80 46.52

 Accuracy 43.05 40.19 43.75 38.47 44.36 37.75

Manual %correct 50.00 37.86 51.44 34.90 52.36 34.22

 Accuracy 34.17 32.23 35.71 29.06 36.63 28.11

 

From Table 7.3, it is evident that the English (pooled) recognisers, trained on SUN Speech 

training data based on the Bhattacharyya and Jeffreys-Matusita distance measures, adapted by 

MAP adaptation and then re-estimated using embedded Baum-Welch re-estimation 

outperform all other distance measures with a final phoneme recognition rate after 3 EBWR 

iterations of 56.80% and an accuracy of 44.36% when tested on the mapped SUN Speech test 

data. This can now be put into the proper context and compared with the results obtained when 

the Afrikaans (SUN Speech) recogniser is trained on SUN Speech data and tested with SUN 

Speech data. This had a phoneme recognition rate of 63.71%. The 6.91% degradation in 

performance should be put into context of the amount of effort and time that has been spared 

in getting the recogniser up to this level. The data pooling process is undoubtedly just as time-

consuming as training a recogniser from scratch. However, the difference lies in the 

robustness of the models generated. It would be expected that this recogniser trained on 

pooled data and then adapted and re-estimated would still maintain some of its salient 

recognition properties for the English TIMIT phoneme set. 
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As far as recognition rate on the original TIMIT SI and SX test set goes, the recogniser trained 

on the L2 metric pooled data outperformed the others, with a final phoneme recognition rate 

on the TIMIT test data of 54.15% and an accuracy of 47.09%. 

 

Tables 7.4 and 7.5  list the phoneme classes with the best and worst recognition percentages 

per distance measure when using 39 MFCCs and after data pooling, MAP adaptation and 3 

iterations of embedded Baum-Welch re-estimation for the SUN Speech to TIMIT phoneme 

mapping case. 

 

Table 7.4: Top 5 recognition performances listed as a percentage of correctly recognised 

phonemes per distance measure for the Afrikaans (SUN Speech) to English (TIMIT) mapping 

after MAP adaptation and 3 iterations of EBWR 

Distance 
Measure KL BHA MAH EUC L2* JM 

 
Manual 

phoneme uw sh dh s cl sh ch 

%correct 92.3 86.8 83.8 91.7 22.5 86.8 96.1 

phoneme sh f ae sh  f oy 

%correct 91.7 84.9 81.1 91.7  84.9 93.8 

phoneme ae ae aw ay  ae y 

%correct 86.6 84.4 80.3 88.2  84.4 88.1 

phoneme f cl ah n  cl ay 

%correct 84.2 82.2 76.1 87.4  82.2 85.3 

phoneme hh hh v ch  hh iy 

%correct 82.3 82 75.7 85.7  82 82.5 

* For the L2 metric, the [cl] phoneme was the closest phoneme for all SUN Speech phonemes 
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Table 7.5: Bottom 5 recognition performances listed as a percentage of correctly recognised 

phonemes per distance measure for the Afrikaans (SUN Speech) to English (TIMIT) mapping 

after MAP adaptation and 3 iterations of EBWR 

Distance 
Measure KL BHA MAH EUC L2* JM 

 
Manual 

phoneme m m oy m cl m dx 

%correct 32.3 34.3 15.5 21.2 22.5 34.3 27 

phoneme ng g f uh  g uw 

%correct 49.5 45.3 21 39.8  45.3 27.1 

phoneme g uh sh ow  uh b 

%correct 50.8 47.2 33.3 42.9  47.2 30.8 

phoneme d dx d b  dx ow 

%correct 50.9 50.2 34.5 44.4  50.2 36.9 

phoneme dx d jh uw  d ah 

%correct 53.3 51.2 36.1 46  51.2 40.4 

* For the L2 metric, the [cl] phoneme was the closest phoneme for all SUN Speech phonemes 
 

From Table 7.4, it can be seen that the [sh], [f], [ch] and [cl] models were recognised the best. 

As in the previous set of experiments where MLLR and MAP adaptation was followed by 

embedded Baum-Welch re-estimation, the fricative sounds once again displayed the best 

recognition results. Note, however, that the [cl] (silence) class that in the previous set of 

experiments exhibited excellent recognition results, it displays average results with the 

recogniser trained on pooled data. This could be due to the data pooling leading to a more 

generalised initial model. As in the MLLR-MAP experiment set described earlier, while four 

of the six distance-based recognisers exhibited excellent recognition results for the [s] 

phoneme, the manual-mapped procedure had average phoneme recognition results for [s]. 

 

Table 7.5 shows that the [m], [dx], [d] and [uh] phoneme models displayed the poorest 

recognition results. This displays results similar to the MLLR-MAP experiment in the 

previous chapter. 
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Table 7.6: Confusion matrix information for Afrikaans to English phoneme mapping 

 Most commonly confused phoneme classes per distance Measure 
Phoneme 
class KL BHA MAH EUC L2* JM 
m ih ih th, cl n, cl  ih 

dx cl, th cl, th  cl, ah  cl, th 

d v, th v, th n, v   v, th 

uh cl, ng ng, cl  dx, cl  ng, cl 

* For the L2 metric, the [cl] phoneme was the closest phoneme for all SUN Speech phonemes 
 

From Table 7.6, it is once again evident that in a large number of instances, the phoneme class 

is confused with the [cl] or “silence” model. As before, this can once again be attributed to the 

acoustic dissimilarities between the TIMIT and SUN Speech databases. It can also be seen 

from Table 7.6 that the nasal [m] phoneme (as in the word “mom”) is often misclassified as 

the vowel [ih] phoneme, as in the word “bit”. It is also evident that the liquid [dx] (as in 

“muddy”) and the stop [d] (as in “dog”) are often confused with the fricative [th] sound (as in 

“thin”). The fact that all three of these phonemes belong to different categories should not 

obscure from the notion that they are acoustically similar. 

 

7.4. Effect of applying EBWR to model trained on English mapped data 

and adapted by MAP 
 

After the models have been adapted using MAP, embedded Baum-Welch re-estimation 

(EBWR) is iteratively applied three times. The performance of the re-estimated model is then 

tested on both the mapped TIMIT test set, as well as on the original SUN Speech test data. 
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Table 7.7: English to Afrikaans phoneme mapping - Performance of Afrikaans (pooled) 

recogniser on Afrikaans data and mapped English data per distance measure after MAP 

adaptation and embedded Baum-Welch re-estimation 

Distance 

Measure  

EBWR1 

TIMIT Test

EBWR1

SUN Test

EBWR2 

TIMIT Test

EBWR2 

SUN Test 

EBWR3 

TIMIT Test 

EBWR3 

SUN Test 

KL %correct 61.68 45.43 61.87 44.45 61.95 43.88

 Accuracy 54.81 28.23 55.20 26.88 55.30 26.37

BHA %correct 61.56 45.19 61.82 44.45 61.91 43.80

 Accuracy 54.65 28.58 55.03 27.42 55.08 26.95

MAH %correct 55.02 38.62 56.31 37.30 56.88 37.03

 Accuracy 49.10 22.70 50.08 20.90 50.57 20.65

EUC %correct 60.82 48.15 61.35 47.21 61.46 46.84

 Accuracy 54.93 33.61 55.32 32.75 55.41 32.41

L2 %correct 37.86 59.37 38.05 59.12 38.41 59.03

 Accuracy 34.45 45.16 34.65 44.90 34.98 44.81

JM %correct 61.56 45.19 61.82 44.45 61.91 43.80

 Accuracy 54.65 28.58 55.03 27.42 55.08 26.95

 

 

From Table 7.7, it is evident that the Afrikaans (pooled) recogniser, trained on SUN Speech 

training data based on the Bhattacharyya and Jeffreys-Matusita distance measures, adapted by 

MAP adaptation and then re-estimated using embedded Baum-Welch re-estimation 

outperforms all other distance measures with a final phoneme recognition rate after 3 EBWR 

iterations of 61.91% and an accuracy of 55.08% when tested on the mapped TIMIT SI and SX 

test data. It is imperative to bear in mind that the only a portion of the TIMIT training data was 

used for the pooling, adaptation and re-estimation process. This can now be compared with the 

results obtained when the TIMIT recogniser is trained and tested with TIMIT data, yielding a 

phoneme recognition rate of 61.89%. The adapted and re-estimated recogniser using pooled 

data exhibits a marginal 0.02% improvement in phoneme recognition. 

 

As far as recognition rate on the original SUN Speech test set goes, the recogniser trained on 

the L2 metric pooled data outperformed the others, with a final phoneme recognition rate on 

the SUN Speech test data of 59.03% and an accuracy of 44.81%. 
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Tables 7.8 and 7.9 list the phoneme classes with the best and worst recognition percentages 

per distance measure for the TIMIT English phoneme to SUN Speech Afrikaans phoneme 

mapping case, after data pooling, MAP adaptation, and 3 iterations of embedded Baum-Welch 

re-estimation have been carried out. 

 

Table 7.8: Top 5 recognition performances listed as a percentage of correctly recognised 

phonemes per distance measure for TIMIT to SUN Speech mapping after MAP adaptation and 

3 iterations of EBWR 

Distance 
Measure KL BHA MAH EUC L2 JM 
phoneme sil sil sil sil p sil 

%correct 90.3 90.3 88.3 91.4 97 90.3 

phoneme s s axi s sil s 

%correct 89.1 89.1 81.2 90.2 80.8 89.1 

phoneme f f n k jh f 

%correct 84.9 84.6 80.9 87.4 80.1 84.6 

phoneme w w u oeu  w 

%correct 81 79.3 76.6 78.6  79.3 

phoneme n k j sh  k 

%correct 77.6 77 74.3 76.7  77 

 

Table 7.9: Bottom 5 recognition performances listed as a percentage of correctly recognised 

phonemes per distance measure for TIMIT to SUN Speech mapping after MAP adaptation and 

3 iterations of EBWR 

Distance 
Measure KL BHA MAH EUC L2 JM 
phoneme ts ts ae oi s ts 

%correct 25.1 24.7 43.2 21.4 56.4 24.7 

phoneme oey oey oey g b oey 

%correct 35.7 34.9 47.9 38.1 35.9 34.9 

phoneme q q ax oey  q 

%correct 43.9 40.7 48.4 38.3  40.7 

phoneme o b b a  b 

%correct 48.1 48.9 51.5 40.6  48.9 

phoneme b oi p d  oi 

%correct 48.7 51.3 53.9 47.1  

 
51.3 
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As in the MLLR-MAP experiment set in the previous chapter, only the best three recognised 

phoneme classes and the worst two recognised phoneme classes are provided for the L2 based 

recogniser. This is because the mapped SUN Speech phonemes were mapped to only five 

TIMIT phoneme classes during the mapping exercise. 

 

From Table 7.8, it is clear that the [sil] (silence), [s], [f] and [w] models were recognised the 

best. In general, the fricative sounds were recognised the best by the MAP and EBWR adapted 

recognisers. 

 

It can be seen from Table 7.9 that the [ts], [q], [b] and [oey] displayed the poorest recognition 

results.  

 

Table 7.10: Confusion matrix information for English to Afrikaans phoneme mapping 

 Most commonly confused phoneme classes per distance Measure 
Phoneme 
class KL BHA EUC L2 JM 
ts t, f /, f f, t, sil   /, f 

q k, t k, t s, ao   k, t 

b t, f t, f ao   t, f 

oey ax, axi ax, axi axi, o,ax j, [ ], axi  ax, axi 

MAH 

 

It can be seen from Table 7.10 that the affricate [ts] phoneme (as in “cats”) is often confused 

with the fricative [f] sound (as in “fin”). Recall that an affricate sound is produced when a stop 

and fricative consonant are both shortened and combined, which would explain this source of 

confusion. It is also evident that the stop [q] phoneme (as in the word “bat”) is regularly 

confused with the other stops [k] (as in “kite”) and [t] (as in the word “tea”). Likewise, the [b] 

phoneme class (as in the word “bee”) is misclassified as the stop [t] and the fricative [f]. As 

has been previously found in this study, the diphthong [oey] phoneme (as in the word “bait”) 

is most often confused with the vowel [ax] (as in “debit”) and diphthong [axi] (as in the word 

“fate”) phoneme classes. The confusion between phonemes of the same category is to be 

expected due to the diversity that exists in the articulation of speakers. 

 

7.5. Summary of Chapter findings 
This chapter described the experiments that were performed during the data pooling 
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investigation and their results. 

 

In the first experiment in this chapter, the SUN Speech Afrikaans training data is first mapped 

to the nearest TIMIT English phoneme, this mapped data is then pooled with the TIMIT 

English training data to form a training superset. The models for this new recogniser are then 

transformed by MAP adaptation, using the mapped Afrikaans SUN Speech training set. It was 

found that the adapted recogniser based on the Jeffreys-Matusita and Bhattacharyya distance 

metrics outperform the other distance measures. 

 

The above experiment is repeated, but this time the English TMIT training data is mapped to 

the nearest SUN Speech Afrikaans phoneme. The mapped data is pooled with the Afrikaans 

data and then used to train a new recogniser. This new recogniser is then transformed by MAP 

adaptation, using the mapped English TIMIT training set. It was found that the adapted 

recogniser based on the Kullback-Leibler, Jeffreys-Matusita and Bhattacharyya distance 

metrics outperform the other distance measures. 

 

The recognisers trained on the pooled training superset data from both the English and 

Afrikaans speech databases displayed the best “bilingual” phoneme recognition results in the 

study. This was to be expected as these phoneme models should be more robust since they 

were trained from scratch with data from both languages. 

 

The final set of experiments in this chapter looked at performing Embedded Baum-Welch Re-

estimation on each of the English and Afrikaans recognisers after MAP adaptation. This 

technique is found to further improve the cross-language recognition performance of the 

recognisers. As found previously, the recognisers that were adapted with data that was mapped 

using the Bhattacharyya and Jeffreys-Matusita distance metrics performed the best. As 

expected, the bilingual recognition performance of the recognisers dropped with each 

successive EBWR iteration as the recognisers become adapted closer to the target language. 

 

For the English recogniser adapted with Afrikaans speech data, the fricative sounds were again 

recognised the best by the MAP and EBWR adapted recognisers. The silence model [cl]  
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tended to have the worst recognition results. This can be attributed to the acoustic 

dissimilarities between the TIMIT and SUN Speech databases. 

 

For the Afrikaans recogniser adapted with English speech data, the fricative sounds were once 

again recognised the best by the MAP and EBWR-adapted recognisers. The most commonly 

confused phoneme classes were found to be the affricate [ts] sound which was confused with 

the fricative [f] sound. An affricate is produced through a combination of a stop and fricative 

consonant, indicating why this is likely to be confused with the fricative sound. The confusion 

between phonemes of the same category is to be expected due to the diversity that exists in the 

articulation of speakers. 

 

The data pooling technique used to build a new recogniser using the automatically mapped 

phonemes from the target language as well as the source language phonemes produces a new 

recogniser which demonstrates moderate bilingual phoneme recognition capabilities. Adapting 

the “bilingual” recogniser further using MAP and embedded Baum-Welch re-estimation 

techniques results in the best cross-language phoneme recognition results. This combination of 

adaptation techniques together with the data pooling strategy is uniquely applied in the field of 

cross-language recognition. This data pooling followed by adaptation technique requires a 

considerably more time consuming training process. The adapted recogniser displays only 

slightly poorer phoneme recognition than the recognisers trained and tested on the same 

language database. 
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Chapter 8 
 

CONCLUSION 
 

This investigation has shown that an automatic phoneme mapping procedure can be used to 

map phonemes from a new target language to a base language for which a trained recogniser 

already exists. The current research in the cross-language speech recognition field has focused 

on manual methods performed by a phonetic expert to map phonemes. The new automated 

strategies proposed in this study are applied to English-to-Afrikaans phoneme mapping, as 

well as Afrikaans-to-English phoneme mapping. This has been previously applied to these 

language instances, but utilising manual phoneme mapping methods. 

 

These experiments have also demonstrated that the choice of acoustic distance measure for the 

mapping does influence the results obtained. Four out of the six distance measures (the 

Kullback-Leibler measure, the Bhattacharyya distance metric, the Euclidean measure and the 

Jeffreys-Matusita distance), compared favourably with the manually undertaken phoneme 

mapping of a phonetic expert. Generally, the Bhattacharyya and Jeffreys-Matusita distance 

measures perform the best when mapping the phonemes to a target language, be this target 

language either English or Afrikaans. However, this study has shown that choosing the 

Euclidean or Kullback-Leibler distance measures will also result in good recognition results. 
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The relatively simple Euclidean metric exhibits good results and has shown that it is able to 

map the acoustic space of phoneme models relatively well. 

 

The L2 and Mahalanobis distance measures, although useful in other pattern recognition 

applications, do not appear to be suitable for determining the degree of acoustic similarity 

between two phoneme classes. They have generally performed poorly in comparison with the 

other distance metrics. 

 

A suggestion for the difference in cross-language phoneme recognition performance is due to 

the linearity of each of the distance measures. The distance measures that generally performed 

better were more linear and produced more consistently comparable distances between the 

phoneme classes. The measures that performed poorly, generally exhibited either very small or 

very large distance results between the phonemes, with the result that there was a degree of 

uncertainty about the whether the closest phoneme chosen was in fact a true indication of its 

closeness. 

 

This investigation has also shown that the addition of the delta and acceleration MFCCs does 

generally improve the performance of the recogniser. This was demonstrated for both the 

Afrikaans to English phoneme mapping case, and vice versa. The general rule in speech 

recognition applications should be to always include these temporal features wherever 

possible. 

 

In addition, the results of the study have shown that increasing the number of mixture 

components in the model does tend to aid phoneme recognition but only up to a limit. 

Thereafter, there is a slight degradation in phoneme recognition performance. The optimum 

number of mixture components varies per distance measure, but generally using two mixture 

components produces good results. 

 

This study has also demonstrated that increasing the number of HMM states does not improve 

phoneme recognition performance. Although using all three states in the distance calculation 

produces better recognition results than only using the middle state, neither of these 

approaches is able to match the phoneme recognition performance of the single-state HMMs. 

Electrical, Electronic and Computer Engineering   

   

106

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  SSooooffuull,,  JJ  JJ    ((22000044))  



Chapter 8                                                                                                                                   Conclusion 

When single-state HMMs are used, all of the pertinent information is concentrated into the 

sole state. When three states are used, a new technique that is able to capture and utilise all the 

necessary information from each of the three states needs to be found. Applying the 

techniques employed in this dissertation do not fully extract the relevant features from the 

multi-state HMMs. 

 

This study has also demonstrated the viability of using the phoneme mapping technique to 

generate seed models, and that the use of MLLR, MAP adaptation (for both the HMM’s mean 

and variances) and embedded Baum-Welch model re-estimation techniques can then be 

effectively used to build a recogniser in a new language. This process requires much less effort 

and is considerably less time-consuming than if one had to completely rebuild the recogniser. 

Although a combination of MLLR and MAP techniques have been used previously in speech 

adaptation studies, the combination of MLLR, MAP and EBWR in cross-language speech 

recognition is a unique contribution of this study. Once again, this principle has been 

demonstrated for both the English to Afrikaans and Afrikaans to English case as well.  

However, there is a performance degradation that comes with the benefits of less effort and 

time to adapt the recogniser. There is an 13.96% degradation in phoneme recognition when 

compared with the results obtained when the SUN Speech recogniser is trained on SUN 

Speech data and tested with SUN Speech data (compared to adapting the English recogniser 

with Afrikaans data). For the English to Afrikaans mapping case (when the Afrikaans 

recogniser is adapted and re-estimated with TIMIT English data) there is a 18.20% reduction 

in phoneme recognition. 

 

Finally, this investigation has verified that the automated phoneme mapping technique can 

also be applied to map the target language speech data into a common format as the source 

language, and so allow pooling of the speech data. Once the recogniser has been trained on the 

pooled data, it displays moderate “bilingual” capabilities, an aspect which has not been 

previously considered in the current research in this field. The recognisers trained on the 

pooled training superset data from both the English and Afrikaans speech databases displayed 

the best “bilingual” phoneme recognition results in the study. This was to be expected as these 

phoneme models should be more robust since they were trained from scratch with data from 

both languages. 
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Adapting the recogniser’s models using MAP adaptation, followed by application of the 

embedded Baum-Welch re-estimation technique help to adapt the recogniser for phoneme 

recognition in the target language. This combination of adaptation techniques together with 

the data pooling strategy is uniquely applied in the field of cross-language recognition. After 

each successive adaptation cycle, the recogniser understandably loses its “bilingual” 

recognition abilities, and tends towards recognition in the target language, whether English or 

Afrikaans. For the adapted and re-estimated Afrikaans recogniser trained on pooled data, there 

is a 6.91% reduction in phoneme recognition (when tested on the mapped Afrikaans SUN 

Speech set) when compared to recogniser trained and tested with SUN Speech data alone. For 

the reverse case, when the English recogniser is trained on pooled SUN Speech and mapped 

TIMIT data, after adaptation and re-estimation, there is a marginal improvement in recognition 

of 0.02%.  

 

It should also be borne in mind that while the data pooling followed by model adaptation 

technique has been shown to produce the best phoneme recognition performance, this is a 

more time-consuming process and is not always practical. However, it does produce more 

robust acoustic models. 

 

One possible reason that could have contributed to the inferior cross-language recognition 

performance between the databases is due to the differences in the quality and recording 

conditions of the TIMIT and SUN Speech databases. Although cepstral mean subtraction has 

been employed in this investigation, this cannot possibly compensate for all the differences 

between the two speech databases. 

 

Another factor that has possibly contributed to the results is the sensitivity of the mapping 

experiments to the number of occurrences of each phoneme in a set. The less the number of 

occurrences of each phoneme, the less general (and representative) the model derived for that 

particular phoneme set. This leads to less robust estimated acoustic models, which in turn 

leads to poorer mapping to the nearest cross-language phoneme class. This is especially 

relevant when mapping from the SUN Speech Afrikaans phonemes to the TIMIT English 
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phoneme set. The amount of available data does affect the results. As has been noted in [3], 

there are significant differences between the two databases, namely: 

• TIMIT views stops as potentially two separate speech segments, a closure and a 

release. For example, an intervocalic stop of [t] would be transcribed as ‘TCL T’. 

However, this transcription is based on the actual realisation, meaning that the affricate 

[ts] would be transcribed as ‘TCL S’. The SUN Speech database, on the other hand, 

segments all phases of the stop together. 

• The SUN Speech corpus makes provision for front rounded vowels which is the 

phonetic approach. In TIMIT, the vowels are handled in a more “phonemic” manner. 

• In TIMIT, all vocalic sounds are grouped together and no diphthongisation is allowed. 

The SUN Speech database, in comparison, has an extensive set of diphthongs and 

labels quantity as well. 

• The TIMIT transcriptions indicate the beginning and end of speech segments, with 

primary and secondary stress as well. This is absent in SUN Speech  

 

A further factor that has influenced the outcome of the results in this investigation has been the 

inconsistency of the different phone inventories for the two speech corpora used. Although an 

attempt has been made to address this by trying to abide by the IPA-based phone inventory, 

there are inconsistencies.  

 

The approach followed here can be extended to map between phonemes where same-language 

speech databases do not follow a consistent phoneme-labelling schema. As is often the case, 

merely mapping the label to another does not necessarily mean that the sounds labelled by the 

transcriptions are acoustically similar. 

 

This investigation has shown that the cross-language performance of the recognisers does 

indeed compare favourably, but somewhat inferior with their respective recognition 

performances on same-language data. In addition, this study has demonstrated a viable 

technique to rapidly generate initial acoustic models for a new language. Once the adaptation 

techniques discussed previously have been implemented, the recognition performance of the 

new language recogniser, although slightly inferior to its same-language trained counterpart, 

demonstrates comparable phoneme recognition with considerably less training effort. 
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8.1 Future research 
 

The investigation methodology could be improved by the addition of a threshold condition 

that compares two phoneme models and maps the phoneme models to each other only if the 

distance between them is below a predefined threshold. If the distance between the phoneme 

models is found to be greater than the threshold, then that source phoneme is not mapped but 

added as an additional phoneme class. The data pooling strategy discussed previously can then 

be carried out as before. 

 

A further possibility that could improve cross-language phoneme recognition is the use of 

context-dependent phonemes. This has proven effective in past speech recognition 

experiments. 

 

A final possibility is to investigate using HMM-neural network hybrids where the neural 

network part of the hybrid could be used in acoustic modeling and classification while the 

HMM part would be responsible for modeling the temporal nature of speech. 
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Appendix A 
 

THE HTK TOOLKIT 
 

The Hidden Markov Model Toolkit (HTK) V3.0 [9] was used during this investigation. HTK 

is a toolkit for building continuous density HMM-based recognisers. It is primarily intended 

for building sub-word based continuous speech recognisers and can be used in a wide range of 

pattern classification problems. HTK is built on an extensible modular library that simplifies 

the development of user-written tools. The toolkit includes signal processing functions, HMM 

training and testing tools, language modelling support and scoring software. 

 

HTK consists of a set of tools that perform the different tasks in an HMM-based recognition 

system. These tools are written in C and C++ and make use of a library of basic functions for 

handling HMMs. Different data modules are used to transfer data between the different tools. 

These modules can contain speech data (as a waveform or as sequence of observation vectors), 

speech labelling data, the parameters that define HMMs or recognition networks. 

 

The main tools in HTK are: 

 

HEAdapt: This utility is used to perform adaptation of a set of HMMs using either maximum 

likelihood linear regression (MLLR) or maximum a-posteriori (MAP). 

HBuild: The main purpose of this utility is to allow the expansion of HTK multi-level lattices 

and the conversion of bi-gram language models. 

HLEd: Is a simple utility for manipulating label files. 
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HLStats: This utility reads in an HMM list and a set of label files. It then computes various 

statistics that are intended to assist in analysing acoustic training data and generating simple 

language models for recognition. 

HInit: Is used to provide initial estimates for the parameters of a single HMM using a set of 

observation sequences. 

HRest: performs basic Baum-Welch re-estimation of the parameters of a single HMM using a 

set of observation sequences. 

HERest: is used to perform a single re-estimation of the parameters of a set of HMMs using 

an embedded training version of the Baum-Welch algorithm. 

HVite: This is a general purpose Viterbi recogniser with syntax constraints and beam search. 

HResults: This function takes a set of label files and compares them to the reference 

transcription files; it is the main performance analysis tool. 
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Appendix B 
 

THE TIMIT AND SUN SPEECH DATABASES 
 

The experiments are carried out using the TIMIT English database [11] and the SUN Speech 

English-Afrikaans corpus [12]. Only the SI (phonetically-diverse) and SX (phonetically-

compact) TIMIT sentence sets were used. The TIMIT database contains about 80% more 

speech data than the English part of the SUN Speech database. There are 39 different 

phonemes listed in the TIMIT database (including the silence model) and a total of 59 

phonemes used in the labelling of the SUN Speech database.  

 

B.1. TIMIT database 
 

The TIMIT acoustic-phonetic continuous speech corpus contains a corpus of read speech from 

630 speakers from eight major dialects of American English. The database includes time-

aligned orthographic, phonetic and word transcriptions as well as speech waveform data for 

each utterance. 

 

The standard TIMIT database [11] makes use of a set of 61 phonemes. This normally reduced 

to a 39-phoneme set as shown in Table B1. 
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Table B.1: Mapping between 61 TMIT phonemes and 39 phoneme classes normally used in 

speech recognition experiments 

New 

Phoneme 

Original 

Phonemes 

New 

Phoneme 

Original 

Phonemes 

New 

Phoneme 

Original 

Phonemes 

New 

Phoneme 

Original 

Phonemes 

aa aa ao ae ae ah ah ax ax-h aw aw 

ay ay b b ch ch d d 

dx dx dh dh eh eh er er axr 

ey ey f f g g hh hh hv 

ih ih ix iy iy jh jh k k 

l l el m n p n en nx ng ng eng 

ow ow oy oy p p r r 

s s sh sh zh t t th th 

uh uh uw uw ux v v w w 

y y z z cl bcl pcl dcl 

tcl gcl kcl 

epi pau h# 

  

 

The following table lists the TIMIT phonemes, each categorised in terms of speech sounds, 

and lists English word examples. 

 

Table B.2: Categorised TIMIT phonemes with English word examples  

Category TIMIT code English word example 
Vowels ah but 

 iy beet 

 uw boot 

 eh bet 

 ao bought 

 ax about 

 ih bit 

 ae bat 

Diphthongs ay bite 

 oy boy 

 ey bait 

 ow boat 
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Category TIMIT code English word example 
 aw bout 

Nasals m mom 

 n noon 

 ng sing 

Fricatives f fin 

 hh hay 

 s sea 

 v van 

 z zone 

 th thin 

 dh then 

 sh she 

 zh azure 

Affricates ch choke 

 jh joke 

Glides y yacht 

 w way 

Liquids r ray 

 l lay 

 dx muddy 

Stops b bee 

 d day 

 g gay 

 k kite 

 p pea 

 t tea 

Other cl silence 

   

 

 

B.2. SUN Speech database 
 

The SUN Speech database [12] was compiled by the Department of Electrical and Electronic 

Engineering of the University of Stellenbosch. It contains phonetically labelled speech in both 

Afrikaans and English, although only the Afrikaans segment of the SUN Speech corpus was 
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used during this investigation. The speech data was recorded under controlled circumstances 

with 12bit resolution and a sampling rate of 16 kHz. Details of the number of speakers and the 

number of sentences spoken by each group of speakers are given in Table B.3. The 60 

sentences comprising the four sentence sets were chosen to exhibit the diversity of phonemes 

in the two languages. 

 

A total of 59 phonetic categories, including both a silence and unknown category, were used 

to segment both the Afrikaans and the English speech. However, for the Afrikaans segment of 

the database, there are only 54 phonetic categories. 

 

Table B.3: Language and speaker composition for the SUN Speech database 

Speaker composition Language 

Male Female Total 

Sentence 

Numbers 

English 55 21 76 21-60

Afrikaans 41 29 70 1-20

 

 

The following table lists the SUN Speech phonemes, each categorised in terms of speech 

sounds, and lists Afrikaans word examples. 

 

Table B.4: Categorised SUN Speech phonemes with Afrikaans word examples 

Category SUN Speech 

Code 

SUN Speech 

Code 

Afrikaans word 

example 
Vowels 97 a kat 

 101 e lees 

 105 i tier 

 111 o oop 

 117 u soek 

 121 y nuut 

 130 eh: sê 

 131 eh met 

 132 ao kos 

 133 ao: môre 
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Category SUN Speech 

Code 

SUN Speech 

Code 

Afrikaans word 

example 
 142 iax kleur 

 143 ax is 

 144 ax: wîe 

 145 ae ek 

 149 oe nut 

 150 oe: brûe 

 247 aa aan 

Diphthongs 126 a:i saai 

 128 o:i mooi 

 140 ehi bedjie 

 151 axi ys 

 153 ui moeite 

 210 iu: leeu 

 211 oeu oud 

 217 oey lui 

Nasals 109 m mat 

 110 n net 

 205 ng sing 

Fricatives 102 f vars 

 104 h huis 

 115 s slim 

 118 v was 

 120 x gaan 

 122 z soem 

 188 sh Sjina 

 195 zh genre 

Affricates 181 ts  

 191 ch  

 193 jh  

Liquids 114 r  

 82 R rooi 

 94 [] berge 

 108 l lou 

 218 / refers to a flap 

Glides 106 j jas 
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Category SUN Speech 

Code 

SUN Speech 

Code 

Afrikaans word 

example 
 119 w kwes 

Stops 98 b bed 

 100 d dam 

 103 g berge 

 107 k kar 

 112 p pos 

 116 t taal 

Other 42 sil silence 

 63 ? unknown 
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Appendix C 
 

AFRIKAANS (SUN SPEECH) TO ENGLISH (TIMIT) 

PHONEME MAPPING 
 

 

Table C.1: SUN Speech to TIMIT phoneme mapping per distance measure for 39 MFCCs, 

single-state HMMs 

Distance Measure for TIMIT Mapping SUN 

Speech 

Code 

ASCII 

Code KL BHA MAH EUC L2 JM Manual 

a 97 ah ah l aw p ah ah 

aa 247 aa aa r aa t aa aa 

ae 145 ae ae aw ae dh ae ae 

ao 132 ah l l oy th l aa 

a:i 126 ay ay ae ay p ay ay 

ax 143 ih ih ah dx dh ih ah 

axi 151 eh eh ay eh t eh ey 

ax: 144 ae dx uw r eh uw er 

b 98 v v d v p v b 

th th f ch dx th ch 

d 100 d d z cl th d d 

e 101 ey ey jh ih th ey ey 

eh 131 ey ey l ey p ey eh 

ehi 140 ey ey l iy aw ey eh 

ch 191 
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Distance Measure for TIMIT Mapping SUN 

Speech 

Code 

ASCII 

Code KL BHA MAH EUC L2 JM Manual 

eh: 130 ey uw r iy aa uw eh 

f 102 f f th f p f f 

g 103 g g jh v cl g g 

h 104 ow ow m b cl ow hh 

i 105 ih ih eh iy cl ih iy 

iax 142 ey ey r ih cl ey ey 

iu: 210 uw uw r uw cl uw ow 

j 106 ih ih aa ih cl ih y 

jh 193 ch jh v d cl jh jh 

k 107 th th dh k th th k 

l 108 uh uh m uh cl uh l 

m 109 ng ng r m cl ng m 

n 110 uh ng r n cl ng n 

ng 205 uh uh ch n cl uh ng 

o 111 oy oy er uh cl oy ow 

oe 149 ah ah ah uh cl ah ih 

oeu 211 ay ay l ah ch ay ow 

oey 217 eh eh aa eh cl eh ey 

oi 134 ih ih jh uh cl ih oy 

oqi 128 ow ow r uh cl ow oy 

p 112 th th v cl cl th p 

q 63 th th f cl cl th cl 

R 82 dx dx oy dx cl dx r 

[ ] 94 uh uh m ah cl uh r 

r 114 dx dx ih dx s dx r 

115 z z th s cl z sh 

sh 188 sh sh th sh cl sh sh 

sil 42 cl cl cl cl cl cl cl 

218 v cl dx dx 

t 116 th th v th cl th t 

ts 181 th th m th cl th t 

u 117 m m eh m cl m uw 

ui 153 iy iy sh uw cl iy ey 

unk   th th f cl cl th cl 

s 

/ dx dx z 
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Distance Measure for TIMIT Mapping SUN 

Speech 

Code 

ASCII 

Code KL BHA MAH EUC L2 JM Manual 

v 118 v v n v cl v v 

w 119 l l r ow cl l w 

x 120 hh hh m p cl hh hh 

y 121 y uw r iy cl uw uw 

z 122 z z hh z cl z z 

zh 195 jh jh g jh cl jh sh 

        cl   

*sil   hh f m cl cl f  

 

Table C.2: SUN Speech to TIMIT phoneme mapping per distance measure for 26 MFCCs, 

single-state HMMs 

Distance measure for TIMIT mapping SUN 

Speech 

Code 

ASCII 

Code KL BHA MAH EUC L2 JM Manual 

a 97 aa aa ae aa cl aa ah 

aa 247 d dx r d dh dx aa 

ae 145 ae eh eh ae eh ae cl 

ao 132 aw eh cl aa aw p aw 

a:i 126 uw uw aa uh cl uw ay 

ax 143 ng uh ow n cl uh 

151 cl ey 

ax: 144 ch cl er cl s jh cl 

98 th f s th th b 

191 sh ch sh 

100 th f th th th d 

101 ih ih aa iy ih 

eh 131 ey eh ae eh th eh 

140 uh ah 

130 eh ae eh ae cl ae 

f 102 eh uw r dh cl uw f 

g 103 ih ih eh oy cl ih g 

h 104 ey uw aa iy cl uw hh 

i 105 ey ey aa ey cl ey iy 

ah 

axi jh jh jh jh jh 

b d 

ch ch z th ch 

d th 

e th ey 

eh 

ehi ih ah oy cl eh 

eh: eh 
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Distance measure for TIMIT mapping SUN 

Speech 

Code 

ASCII 

Code KL BHA MAH EUC L2 JM Manual 

iax 142 ih ih ah oy th ih ey 

iu: 210 ow l eh ow cl l ow 

j 106 y ey ey aa ih cl ey 

jh 193 ey iy eh y th iy jh 

k 107 ow ih ah ow th ih k 

108 ay ay aw aa l 

m 109 z z m s z th m 

110 iy iy ah cl iy n 

ng 205 f k n cl th k ng 

o 111 v ih ah cl cl ih ow 

oe 149 dh g d k th g ih 

oeu 211 ow uh eh m cl uh ow 

oey 217 th th th cl th th ey 

oi 134 z z n z cl z oy 

oqi 128 dx ih r iy cl ih oy 

p 112 th th th cl th th p 

63 uh uh oy ah cl uh cl 

R 82 uh ah n cl ih uh r 

[ ] 94 m uh uh m cl uh r 

r 114 ah uh r ah cl uh r 

s 115 v th th cl th th sh 

sh 188 ih uh oy uh dh uh sh 

sil 42 cl cl cl cl cl cl cl 

/ 218 ow ih r k cl ih dx 

t 116 ng g d v th g t 

ts 181 f f th f th f t 

u 117 oy iy oy oy cl iy uw 

ui 153 hh dh dx dx th dh ey 

unk   k v n b th v cl 

v 118 ae ay ae ae cl ay v 

w 119 oy dx r uh cl dx w 

x 120 dh w w uh th w hh 

y 121 hh ih ch k th ih uw 

z 122 f f f cl cl f z 

l cl ay 

n iy 

q 
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Distance measure for TIMIT mapping SUN 

Speech 

Code 

ASCII 

Code KL BHA MAH EUC L2 JM Manual 

zh 195 oy th th ah cl th sh 

           

*sil 42 ey iy ae iy cl iy  

 

 

Table C.3: SUN Speech to TIMIT phoneme mapping per distance measure for 13 MFCCs, 

using single-state HMMs 

Distance measure for TIMIT mapping SUN 

Speech 

Code 

ASCII 

Code KL BHA MAH EUC L2 JM Manual 

a 97 aa aa dh ay aa aa ah 

aa 247 ih v ih ah dh ih aa 

ae 145 oy oy b oy p oy ae 

ao 132 ow ow ah dh ay ow aa 

a:i 126 ey ey aw oy dh ey ay 

ax 143 ng hh ow ng cl hh ah 

axi 151 jh jh ch jh th jh ey 

ax: 144 ch ch ch er jh th ch 

b 98 jh jh ch jh cl jh b 

ch 191 ch ch ch ch th ch ch 

d 100 th th t th cl th d 

e 101 ey iy ay iy th iy ey 

eh 131 oy oy dh ih oy oy eh 

ehi 140 ah ah ay v ah ah eh 

eh: 130 ay ah cl ay ay ay eh 

f 102 ah ih eh v cl ih f 

103 ah ah eh ah v ah 

h 104 uh uh aw oy hh uh hh 

i 105 ey ey aa iy cl ey iy 

iax 142 ow ow eh b th ow ey 

iu: 210 l l ay l th l ow 

106 ey ey ay ey th ey y 

jh 193 ey hh ay ng th hh jh 

k 107 ow ow aw b th ow k 

g g 

j 
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Distance measure for TIMIT mapping SUN 

Speech 

Code 

ASCII 

Code KL BHA MAH EUC L2 JM Manual 

l 108 aw aw ay ay cl aw l 

m 109 z z s z dh z m 

n 110 ey iy ay iy th iy n 

205 p p k cl cl p 

o 111 cl cl dh cl f cl ow 

oe 149 dh dh m dh dh dh ih 

oeu 211 ow uw ay uw v uw ow 

oey 217 t t t cl th t ey 

oi 134 s s m s th s oy 

oqi 128 d d ow iy dh d oy 

112 dh dh dh cl cl dh p 

q 63 uh uh ay ih dh uh cl 

R 82 ng uw ow n dh uw r 

[ ] 94 m m er m v m r 

r 114 v v uw v cl v r 

s 115 cl cl cl cl th cl sh 

sh 188 d d ah dx dh d sh 

sil 42 cl cl cl cl cl cl cl 

/ 218 hh hh ow hh v hh dx 

t 116 g g b v d g t 

ts 181 f f th cl cl f t 

u 117 oy oy eh oy cl oy uw 

ui 153 dx dx oy dx cl dx ey 

unk   cl cl cl cl th cl cl 

v 118 ay ay ay ay cl ay v 

w 119 d d er d dh d w 

x 120 ow ow r b th ow hh 

y 121 t t t cl th t uw 

z 122 cl cl cl cl th cl z 

zh 195 hh hh hh th hh sh 

           

*sil 42 iy iy ay iy dh iy  

ng ng 

p 

hh 
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Table D.1: TIMIT to SUN Speech phoneme mapping per distance measure for 39 MFCCs, 

using single-state HMMs 

Distance measure for SUN Speech mapping 

 

Appendix D 

 

ENGLISH (TIMIT) TO AFRIKAANS (SUN SPEECH) 

PHONEME MAPPING 
 

 

TIMIT 

code KL BHA MAH EUC L2 JM 

aa aa 

axi axi oey axi b axi 

ax ax ax [ ] b ax 

aw aa aa o a b aa 

ay a a oey a:i b a 

b g g ax oi b g 

ch ch ch ao sh b ch 

cl sil sil sil sil sil sil 

d t t ax / b t 

dh R R p R b R 

dx t t t / b t 

eh oey oey i oey b oey 

er ax ax u oeu b ax 

ey eh eh oey eh b eh 

f f f ts t b f 

g g g w g b g 

aa o aa b aa 

ae 

ah 
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Appendix D                                                                                              TIMIT to SUN Speech mapping 

Distance measure for SUN Speech mapping TIMIT 

code KL BHA MAH EUC L2 JM 

hh q q b d b q 

ih ax ax i j b ax 

iy i i axi y b i 

jh zh zh ao zh b zh 

k k k ao k b k 

l ao ao aa ao b ao 

m n m q m b m 

n n n s n b n 

ng ng ng q n b ng 

ow o ao oey ao b ao 

oy oi oi ae ao b oi 

p k k ao k p k 

r o o ao oeu jh o 

s s s n s b s 

sh sh sh j sh b sh 

t t t ao t b t 

th ts ts ts t b ts 

uh ax ax ax oi b ax 

uw u u ao iu: b u 

b b p g s b 

w w w w ao b w 

y y y j y b y 

z s s m s b s 

        

*cl p p p p b p 

v 

 

Table D.2: TIMIT to SUN Speech phoneme mapping per distance measure for 26 MFCCs, 

using single-state HMMs 

Distance measure for SUN Speech mapping TIMIT 

code KL BHA MAH EUC L2 JM 

aa a a ao a ui a 

ae eh eh v eh ui eh 

ah q g ax r ui g 

aw v v g v ui v 

ay l l iu: l ui l 
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Appendix D                                                                                              TIMIT to SUN Speech mapping 

Distance measure for SUN Speech mapping TIMIT 

code KL BHA MAH EUC L2 JM 

b t t UNK iax ax: t 

ch ch ch r ch ui ch 

cl sil sil sil sil sil sil 

d s s d o ui s 

dh aa aa axi aa ui aa 

dx UNK UNK UNK oe ui UNK 

eh ae ae R eh ui ae 

er aa aa q ao s aa 

ey j j u j ui j 

f ts ts b oey s ts 

g t t ui t ui t 

hh ui ui ui y s ui 

ih g g r o:i ui g 

iy sil sil q n ui sil 

axi axi oi axi ui 

k s s UNK s ui s 

l iu: iu: u iu: s iu: 

m [ ] [ ] y [ ] ui [ ] 

n R R b R ui R 

ng ax ax oi R ui ax 

ow iu: iu: u iu: ui iu: 

oy iax iax n iax ui iax 

p s s ax: s ui s 

r aa aa sh ao ui aa 

s oi oi oi oi s oi 

sh ch ch zh ch s ch 

t oey oey b oey ui oey 

th d d p oey s d 

uh q q ax iax ui q 

uw oeu oeu q a:i ui oeu 

v UNK UNK p t ui UNK 

w x x x x s x 

y n n x n ui n 

z oi oi zh oi s oi 

        

jh axi 
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Appendix D                                                                                              TIMIT to SUN Speech mapping 

Distance measure for SUN Speech mapping TIMIT 

code KL BHA MAH EUC L2 JM 

*cl p p ui p p p 

 

Table D.3: TIMIT to SUN Speech phoneme mapping per distance measure for 13 MFCCs, 

using single-state HMMs 
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Distance measure for SUN Speech mapping TIMIT 

code KL BHA MAH EUC L2 JM 

aa a a a:i a b a 

ae eh eh ae eh iu: eh 

ah v v w r p v 

aw l l u v o:i l 

ay v v ao l o:i v 

b s s ax: iax p s 

ch axi axi s ch p axi 

cl sil sil sil sil sil sil 

d s s ch o oey s 

dh aa aa t aa [ ] aa 

dx o o ax: o b o 

eh eh eh eh eh o:i eh 

er aa ao o ao p ao 

ey h h / j d h 

f ts ts y oey b ts 

g s s axi t p s 

hh s s ch y o:i s 

ih iax iax i o:i [ ] iax 

iy sil sil UNK n iu: sil 

jh axi axi s axi ui axi 

k s s ch s iu: s 

l iu: iu: iax iu: b iu: 

m t t s [ ] o:i t 

n UNK UNK ch R o:i UNK 

ng t t s R o:i t 

ow iu: iu: / iu: b iu: 

oy iu: iu: iu: iax b iu: 

p ng ng ch s d ng 
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Appendix D                                                                                              TIMIT to SUN Speech mapping 

Distance measure for SUN Speech mapping TIMIT 

code KL BHA MAH EUC L2 JM 

r v x w ao p x 

s oi oi s oi iu: oi 

sh axi axi ax: ch p axi 

t d d oi oey p d 

th d d zh oey p d 

uh iax iax UNK iax ui iax 

uw iax iax UNK a:i b iax 

v zh zh oey t p zh 

w iu: iu: t x b iu: 

y i i s n ui i 

z oi oi s oi p oi 

        

*cl s s b p p s 
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