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This dissertation examines, based on a case study, the feasibility of using model programs as a
practical solution to the oracle problem in software testing. The case study pertains especially to testing
algorithmically complex software and it evaluates the approach proposed in this dissertation against testing
that is based on manual outcome prediction. In essence, the experiment entailed developing a model program
for testing a medium-size industrial application that implements a complex scheduling algorithm.

One of the most difficult tasks in software testing is to adjudicate on whether a program passed or
failed a test. Because that usually requires "predicting" the correct program outcome, the problem of
devising a mechanism for correctness checking (i.e., a "test oracle") is usually referred to as the "oracle
problem". In practice, the most direct solution to the oracle problem is to pre-calculate manually the
expected program outcomes. However, especially for algorithmically complex software, that is usually time
consuming and error-prone. Although alternatives to the manual approach have been suggested in the testing
literature, only few formal experiments have been conducted to evaluate them.

A potential alternative to manual outcome prediction, which is evaluated in this dissertation, is to write
one or more model programs that conform to the same functional specification (or parts of that specification)
as the primary program (i.e., the software to be delivered). Subjected to the same input, the programs should
produce identical outputs. Disagreements indicate either the presence of software faults or specification
defects. The absence of disagreements does not guarantee the correctness of the results since the programs
may erroneously agree on outputs. However, if the test data is adequate and the implementations are diverse,
it is unlikely that the programs will consistently fail and still reach agreement. This testing approach is based
on a principle that is applied primarily in software fault-tolerance: "N-version diversity". In this dissertation,
the approach is called "testing using M model programs" or, in short, "M-mp testing".

The advantage of M-mp testing is that the programs, together, constitute an approximate, but
continuously perfecting, test oracle. Human assistance is required only to analyse and arbitrate program
disagreements. Consequently, the testing process can be automated to a very large degree. The main
disadvantage of the approach is the extra effort required for constructing and maintaining the model
programs.

The case study that is presented in this dissertation provides prima facie evidence to suggest that the
M-mp approach may be more cost-effective than testing based on manual outcome prediction. Of course, the
validity of such a conclusion is dependent upon the specific context in which the experiment was carried out.
However, there are good indications that the results of the experiment are generally applicable to testing
algorithmically complex software.

 
 
 



Hierdie verhandeling ondersoek die uitvoerbaarheid, gebaseer op 'n gevallestudie, van die gebruik van
modelprogramme as 'n praktiese oplossing tot die orakelprobleem in programmatuurtoetsing. Die
gevallestudie het spesifiek betrekking op die toetsing van algoritmies komplekse programmatuur en dit
evalueer die benadering wat in hierdie verhandeling voorgestel word teenoor toetsing wat op handberekende
uitkomsvoorspelling gebaseer is. In essensie, het die eksperiment die ontwikkeling van 'n modelprogram
behels vir die toetsing van 'n mediumgrootte industriele toepassing wat 'n komplekse skeduleringsalgoritme
implementeer.

Een van die moeilikste take in programmatuurtoetsing is om te oordeel of 'n program 'n toets geslaag
het al dan nie. Omdat hierdie gewoonlik vereis dat die korrekte programuitkoms "voorspel" moet word,
staan die probleem om 'n meganisme vir korrektheidskontrolering (d.w.s. 'n "toetsorakel") daar te stel,
gewoonlik bekend as die "orakelprobleem". In die praktyk is die mees direkte oplossing vir die
orakelprobleem om die verwagte programuitkomste vooraf met die hand te bereken. Vir algoritmies
komplekse algoritmes is so iets egter gewoonlik tydrowend en geneig om foute te bevat. Hoewel
alternatiewe tot die handberekende benadering in die toetsingsliteratuur voorgestel is, is daar weinig formele
eksperimente uitgevoer om hierdie alternatiewe te evalueer.

'n Potensiele alternatief tot handberekende uitkomsvoorspelling wat in hierdie verhandeling evalueer
word, is om een of meer modelprogramme te skryf wat voldoen aan dieselfde funksionele spesifikasie (of
gedeeltes van daardie spesifikasie) van die primere program (d.w.s., die programmatuur wat afgelewer moet
word). Indien aan dieselfde invoer onderwerp is, behoort die programme identiese uitvoer te lewer.
Teenstrydigheid dui Of op die teenwoordigheid van programmatuurfoute, Of op spesifikasiegebreke. Die
afwesigheid van teenstrydighede waarborg egter nie die korrektheid van die resultate nie, aangesien die
programme foutiewelik op die uitkomste mag ooreenstem. Indien die toetsdata egter voldoende is, en die
implementasies uiteenlopend is, dan is dit onwaarskynlik dat die programme konsekwent sal misluk maar
tog steeds ooreenkom. Hierdie toetsing is op 'n beginsel gebaseer wat primer in programmatuur
fouttoleransie toegepas word: "N-weergawe diversiteit". In hierdie verhandeling word die benadering
"toetsing met gebruik van M modelprogramme" genoem, of afgekort na "M-mp toetsing".

Die voordeel van M-mp toetsing is dat die programme gesamentlik 'n benaderde maar kontinu
verbeterende toetsorakel vorm. Menslike bystand word slegs benodig om program teenstrydighede te ontleed
en om oordeel daaroor te vel. Gevolglik kan die toetsproses tot 'n groot mate ge-outomatiseer word. Die
hoof nadeel van die benadering is egter die bykomstig poging benodig om die modelprogramme te bou en
onderhou.

Die gevallestudie wat in hierdie verhandeling aangebied word lewer prima facie getuienis wat aandui
dat die M-mp benadering meer koste-effektief mag wees as toetsing wat op handberekende
uitkomsvoorspelling gebaseer is. Natuurlik hang die geldigheid van so 'n gevolgtrekking van die spesifieke
konteks af waarin die eksperiment uitgevoer is. Daar is egter goeie aanduidings dat die resultate van die
eksperiment algemeen van toepassing op algoritmies komplekse programmatuur is.
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The gap between research into software quality assurance and practice seems to be problematic.
According to Osterweil et al (1996), only a small fraction of the research ideas have been widely applied in
practice, and most of these ideas were advanced by the research community more than two decades ago!
One of the reasons leading to the gap between research and practice is the lack of solid and well-measured
experimental work to evaluate the applicability of research results in practice. Moreover, very little of the
work produced by the research seems to be known to the practitioner community.

The core of this dissertation is a realistic and well-measured experiment that evaluates a practical
approach to the oracle problem in an important area of software quality, testing. The experiment was
conducted in an industrial environment, thus exposing testing practitioners to valuable research results and
technologies.

Testing is an indispensable software validation and verification (V&V) technique. In general, other
V&V techniques such as walkthroughs, reviews, inspections, and formal verification, although normally
cost-effective, cannot be fully relied upon to detect all specification and implementation faults (Osterweil et
al (1996)). Moreover, the development and run-time environments are not perfect either and, sometimes, not
well understood. Compilers, linkers, interpreters, standard and third party libraries, operating systems,
networks, and hardware can also be faulty or just misused. Testing is necessary at least to assess whether the
implemented software is operational in a particular environment. Testing also plays an important role in
software validation. The user requirements are drawn up based on the user's mental model of the software.
Unless the software is exercised, it is difficult to assess how well the user's actual needs are met. Testing is
regarded by some authors as the ultimate validation technique. Chapter 2 will address testing in more detail.

A fundamental and difficult task in software testing is to assess the correctness of the outcomes of a
program that is subjected to particular test inputs. In the testing literature, the problem of establishing an
appropriate mechanism to adjudicate on whether an outcome is correct or not is usually referred to as "the
oracle problem" (e.g., Hamlet (1996), Zhu et al (1997)). Compared to the attention given to other testing
aspects, the testing theory has somewhat neglected the oracle problem. Hamlet (1996) points out: "Testing
theory, being concerned with the choice of tests and testing methods, usually ignores the oracle problem. It is
typically assumed that an oracle exists, and the theoretician then glibly talks about success and failure, while
in practice there is no oracle but imperfect human judgement." In testing, an oracle is a means for
determining whether a program passed or failed a testl. The simplest conceptual form of an oracle is the
comparison of the actual output against a pre-calculated expected output. For a small number of simple test
inputs, it might be feasible to work out the expected outputs manually. Adequate testing, however, usually
requires rather complex and large test data sets. Especially for algorithmically complex software, manual
outcome prediction is time consuming and error-prone. Beizer (1995), referring to outcome prediction in
control-flow testing, points out: "While your first notion might be to try playing computer and work through
the paths manually, don't do it! First of all, it can be very hard work. Second, you're trying to simulate a
computer, and that's something none of us humans are very good at: You're likelier to make an error in your
manual outcome prediction than the programmer is in programming". It is important to note that his remarks
pertain to testing in general and not only to control-flow testing. Richardson et al (1992) also mention that

 
 
 



manual result checking is neither reliable nor cost-effective. The next paragraph looks at alternatives to
manual prediction of outcomes.

The research community has addressed the oracle problem especially in relationship with formal
methods. Stocks and Carrington (1993) discuss the generation of oracle templates from formal
specifications. Richardson et al (1992) propose an approach to deriving and using specification-based
oracles in the testing process. Peters and Parnas (1994, 1998) developed a test oracle generator that produces
a software oracle from relational program documentation. Unfortunately, formal methods have not been
widely adopted in industry yet. A major obstacle seems to be the lack of compelling evidence of their
effectiveness for industrial-size applications (Pfleeger and Hatton (1997». Specification-based oracles might
be the answer for the future, but, in the meantime, the industry needs better approaches to the oracle problem
than manual outcome prediction. Beizer (1995) suggests several practical alternatives. One of them is to
build either a detailed prototype or a model program to provide the correct expected outcomes. The testing
approach examined in this dissertation is similar. The perspective, however, is slightly different and it is
based on N-version diversity, a principle that is applied especially in fault tolerance. N-version diversity and
its application to testing are explained in more detail in the next section.

1.2.1 N-version diverse systems

N-version diversity is a principle that is applied primarily in software fault tolerance and the technique
based on N-version diversity is known as N-version programming (or multi-version programming). The
technique is an adaptation to software of modular redundancy (a hardware fault-tolerance technique). In
hardware, the diversity is achieved mainly by physical means, whereas in software, the diversity is achieved
at design level. A comprehensive overview of fault tolerance and its techniques can be found in Somani and
Vaidya (1997). An N-version diverse system comprises N independently written versions of the software, all
conforming to the same functional specification (Figure 1-1, Hatton (1997». At run-time, a voting system
that is usually based on majority agreement is used to decide on a single, probable correct, output.

Version I I

I I

Input Version 2 I Voting Output
I I

System
•••

Version N

Some of the advantages of an N-version system are:

• It can be much more reliable than any of its individual channels. Hatton (1997) suggests that,
given the current state-of-the-art in software development, N-version systems might be the only
practical way to achieve high reliability.

• It has self-diagnostic capability. Disagreements can be logged and then used to assess and
improve the reliability of individual versions, thus increasing the system reliability even further
(Hatton (1997».

 
 
 



• Because of its self-diagnostic capability, an N-version system plays the role of an oracle with
respect to its individual versions and, therefore, there is no need for pre-calculated expected
outputs. The testing of an N-version system can be automated to a large degree.

The main disadvantages of N-version systems are the increased development cost2 and the fact that
correlated failures (i.e., versions agreeing on erroneous outputs; also known as "common-mode failure")
limit the practical gain in reliability.

1.2.2 The N-version diversity perspective on testing

How can N-version diversity be used in the context of testing? The test process can be thought of as
depicted in Figure 1-2 (Van Vliet (1996), 320). The box labelled P denotes the object to be tested. The real
output produced by P is compared to the expected output that is determined by means of an oracle.

,----------,
P's input : Test :

----~-: strategy I
1- I

,----------..,
I

Compare :
I

1- I

Test ~
results

In theory, an N-version system can be completely reliable and it is, therefore, equivalent to an oracle.
Consequently, an alternative view of the test process can be obtained by replacing the oracle fromFigure 1-2
with M diverse programs that are equivalent to P. Since P and the programs form an (M+ 1)-version system,
the equivalent oracle can be recursively extended to include P. Figure 1-3 depicts the test process from an N-
version diversity perspective. V 1-Vm denote the diverse versions .

.- - - - - - - -~
P's input I Test I

----~~.: strategy I
I I1- ••

Subset of
mpu

r---------~
I Compare :
I I
I I1 --_ .•

Test
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The equivalent
oracle as an

(M+ I)-version
system

 
 
 



1.2.3 Testing using M model programs

The view of the test process that is depicted in Figure 1-3 should be seen as a theoretical framework. A
practical framework can be derived based on three approximations:

• The oracle problem is usually difficult only with respect to certain behavioural properties of P.
Moreover, not all of P's properties are equally important. In practice, therefore, VI-Vm can be
simplified to cover only the complex and/or critical areas of P's behaviour that would normally
require a lot of human assistance for correctness checking. VI - Vm become thus models with
respect to P or, simply, model programs.

• Since in testing the programs do not need to run in parallel, P can be executed first and V1-Vm
can be designed to indicate agreement or disagreement with P's output. V1-Vm need not re-
compute the output in order to deliver a verdict of agreement or disagreement. For instance, they
could implement a set of post-conditions.

• Since arbitrating disagreements essentially entails computing (manually) the correct outputs
independently of any of the programs, the disagreement analysis system can be considered as an
additional "version".

The practical framework is depicted in Figure 1-4. The primary program (P), the model programs (MP1-
MPm), and the disagreement analysis "version" form an approximate (M+2)-version system that may
constitute a reasonably accurate and automated oracle. In this dissertation, testing approaches that are based
on such a framework will be called "testing using M model programs", or, in short, "M-mp testing".

The practical oracle
as an approximate

(M+ 2)-version
system

....................................
i-·-·_·_·_·_·_·_·_·_·_·_·_·_·_·_·_·_·~r------------
I : Disagreement :

: Analysis :

,- - - - - - --.-' Test
results

P's and MPI-MPm's : Test : Subset of
Common Input ~: strategy : input ~

I I

Simply, M-mp testing entails subjecting the primary and the model programs to the same test inputs. If
any of the model programs disagrees with the output of the primary program, that indicates the presence of
specification defects and/or software faults (in at least one of the programs). Once defects are detected and
removed, the programs are re-run. The cycle is repeated until all disagreements for a particular data set are
resolved. If all programs reach agreement, the outputs of the primary program that correspond to the selected
test inputs can be considered for all practical purposes correct. That is because, as indicated by research into
N-version programming, the likelihood of all programs failing identically should be, in general, small.
Although the assumption of independence of errors in N-version systems may not hold (Knight and Leveson
(1986», the probability of simultaneous failures of independently written versions seems to be reasonably
low (Hatton (1997». It is also important to note that in general any correctness checking mechanism (i.e.,

 
 
 



test oracle), whether M-mp based or not, may also fail to detect incorrect outputs. For instance, a tester who
works out expected results manually might make the same wrong assumptions as the programmer. Similarly,
an executable oracle and the program under test may both contain defects that could lead to correlated
failures. In fact, using an executable oracle, which can be seen as an extremely reliable model program, is
also a form of M-mp testing. The M-mp framework, however, emphasises that instead of developing an
oracle, which by definition has to be highly reliable from the start, it might be more cost-effective to write
one or more less reliable model programs. Their quality is likely to increase rapidly along with that of the
primary program. Lucid arguments to this effect can be found in Hatton (1997).

The applicability of the framework depends in particular on the nature of the primary program. For
instance, in the case of embedded applications that work on specialised hardware, because of the strong
constraints, building a model program might mean duplicating the primary program. That implies that
writing a model program might be as expensive as developing the primary one and the diversity may also be
limited, thus increasing the risk of correlated failures. This suggests that M-mp testing might not be
beneficial for such applications. On the other hand, as indicated by the case study, the M-mp approach is
likely to be suitable for testing algorithmically complex software.

In general, deciding whether M-mp testing is suitable for a particular application should be based ona
thorough cost-benefit analysis. The cost of developing and maintaining useful model programs can be high,
but so is the cost of inadequate testing. Broadly, a cost-benefit analysis with respect to M-mp testing versus a
manual approach should take into consideration the following aspects:

• the cost of building and maintaining model programs (-);

• increased test adequacy (+); and

• improved test automation (+).

As mentioned earlier, the core of this dissertation reports on a realistic and well-measured experiment
that was conducted in an industrial environment. The purpose of the experiment was to evaluate the merits of
M-mp testing versus testing that is based on manual outcome prediction. The experiment will be described in
detail in Chapter 3, while Chapter 4 will present the conclusions that were drawn from the case study.

The object of the experiment was a medium-size industrial program that implements a generic
scheduling algorithm. The program is data-intensive and its behaviour is customisable to a relatively high
degree. Its input domain has approximately 50 dimensions. In broad terms, the program can be characterised
as algorithmically complex. By the time the experiment started, the program had already been in use for
more than one year and it had gone through several maintenance and testing cycles. Its functional testing
was based on a relatively small set of test cases derived from the informal specification of the program. The
test inputs were selected mainly based on equivalence class partitioning and boundary value analysis and
branch coverage was used as the main adequacy criterion3• The expected outcome for each test case was
determined manually and that had severe drawbacks:

• Only a small number of test cases could be designed because the cost of selecting adequate test
data that is also suitable for manual processing was very high.

• The test cases did not adapt very well to change. A small change in the specification could require
that many test cases be re-designed.

 
 
 



• A test case usually captured only the input and the expected output, but not a detailed description
of the steps that were used to calculate the expected output. That made the verification of the test
cases very difficult.

The M-mp experiment was conducted in response to the above problems and it essentially entailed
developing a model program that covered the core functionality of the scheduling application, testing the
programs "back-to-back", and analysing their disagreements. The most important results of the experiment
are summarised below:

• The development of the model program required only 24% of the total effort that was spent to
design test cases manually and it was about ten times less expensive than the development of the
pnmary program.

• Two specification defects and two primary program faults were detected by analysing the
disagreements that resulted from 50 tests. Two model program faults and one defect in the test
environment were also found.

To keep the cost within acceptable limits, certain pragmatic decisions had to be taken during the
experiment. For instance, the model program was designed to cover only the core functionality of the
scheduling application and the number of tests was limited. However, as discussed in Chapter 4, the prima
facie evidence suggests that the M-mp approach may be more cost-effective than testing based on manually
pre-calculated results. Of course, the validity of such a conclusion is dependent upon the specific context in
which the experiment was carried out. However, there are good indications that the experiment is likely to be
repeatable and its results may be applicable in general to testing algorithmically complex software.

The author is not aware of any other experiment that compares an M-mp approach versus testing that is
based on manual outcome prediction. The research community seems to rule out manual result checking
(Richardson et al (1992), Beizer (1995), Peters and Pamas(1998)), but in industry, possibly because of too
much emphasis on independent black-box testing (Beizer (1998)), manual approaches are still employed.
The practitioner community seems to have more confidence in human judgement than in software and the
idea of "software used to test software" is considered far-fetched. Moreover, M-mp testing may require good
analytical and programming skills. An organisation would generally want to use those scarce skills for
development rather than for testing.

Probably the closest work to the case study presented in this dissertation, is the approach to testing
described by Buettner and Hayes (1998). The software test team successfully used Mathematica® for unit
testing algorithmically complicated software. Mathematica® simulations uncovered numerous ambiguities
and errors within the algorithm documents and the corresponding prototypes, despite the high documentation
quality that was assumed as a result of several formal reviews. In the context of this dissertation,
Mathematica® simulations are model programs and the approach is, therefore, a form of M-mp testing.
Buettner and Hayes (1998) also mention improvements on the software process especially increased testers'
motivation.

Another closely related work is that presented by Peters and Pamas (1994, 1998). The authors mention
that manual result checking can be time consuming, tedious, and error-prone and they propose a method to
generate software oracles from precise design documentation. One of the difficulties encountered in their
experiment was the presence of specification and, implicitly, oracle faults. From a practical viewpoint,
therefore, the generated oracles are equivalent to model programs (highly reliable though).

 
 
 



N-version experiments are fundamentally related to the work presented in this dissertation. The case
study was actually triggered by an incidental application of N-version diversity to streamline the testing of
an inventory management application. This episode will be described in more detail inChapter 3. N-version
experiments inherently address aspects as software diversity, automatic test data generation and
disagreement analysis. All of those aspects are important for M-mp testing in general and for the case study
in particular. Because it would be practically impossible to cover all the research and experimental work in
N-version programming, the work that was most influential with respect to this dissertation will be briefly
presented in the next paragraph.

Bishop et al (1986) carried out a research project that mainly evaluated the merits of using diverse
software. The authors mention that back-to-back testing successfully detected all the residual seeded faults4

and it could be carried out in an economic manner. Knight and Leveson (1986) conducted an experiment that
addresses the assumption of independence in N-version systems. The main purpose of the experiment was to
demonstrate that programs that are written independently do not always fail independently. The authors
stress that the experiment result does not mean that N-version programming should never be used. It only
shows that the reliability of an N-version system may not be as high as theory predicts under the assumption
of independence. Hatton (1997) analyses the same experimental data from a different angle. He argues that
even in the presence of common-mode failure an N-version system can still be more reliable than a "one
good version" and even more cost-effective, especially in situations where the cost of failure is high.
Another interesting N-version experiment was started by Hatton and Roberts (1994). At that stage, the
experiment tested back-to-back nine seismic data processing packages written by different vendors. The very
first comparisons showed that two packages were so deviant that they were initially excluded until they had
been corrected. Overall, analysing the disagreements and feeding back the errors to the package designers
led to significant reductions in disagreement. The experiment showed that N-version programming provides
a way of detecting errors that is not achievable by other means and that the overall disagreement can be
reduced relatively quickly.

It is also important to mention in the context of related work the function equivalence testing technique
that is described by Kaner et al «(1996), 135). Function equivalence testing means comparing the results of
two programs that implement the same mathematical function. If one of the programs has been in use for a
long time, and it can be considered reliable, its actual function is called the "reference function". The actual
function implemented by the program being tested is called the "test function". There is only a slight
difference between M-mp testing and function equivalence testing. M-mp testing does not assume or require
the existence of a reference program, but if such a program exists then, of course, it might be cheaper to buy
it rather than develop an equivalent model program. In addition, M-mp testing stresses that the two
programs, if diverse, can have close individual reliabilities. In a short time, both will become more reliable.
Kaner et al (1996) advocate the use of function equivalence testing whenever possible because it lends itself
to automation. The authors also give some guidelines on how to conduct a cost-benefit analysis that
promotes function equivalence testing as a replacement to manual testing.

4 Two faults out of seven were common between two programs and they would have caused the 3-version system to
fail. As far as testing is concemed, however, the faults were detected because the third program disagreed on the
erroneous outputs.

 
 
 



To put M-mp testing and the case study into perspective, it is important to understand what testing
entails and why solving the oracle problem effectively is essential for performing adequate testing. This is
the purpose of this chapter.

Fundamentally, testing can be defined as the process of executing software on selected test inputs and
evaluating whether the software behaved as specified. Often in the literature, testing definitions have a
strong bias towards particular goals of testing (e.g., defect detection, reliability assessment, requirements
validation). In this dissertation, to make the discussion as objective as possible, testing is not constrained to a
specific role or particular objectives. It is also important to note that some authors prefer to use the term
"dynamic testing" (e.g., Osterweil et al (1996)), as opposed to "static testing"\ to indicate explicitly that the
software is exercised. In this regard, the term "testing" as used in this dissertation denotes "dynamic testing".

As exhaustive testing is infeasible for most useful software systems, many questions arise in both
testing theory and practice. What criteria and source of information should be used to select the test inputs?
Is revealing defects more important than confidence building? Can the software be trusted because it has
been tested? How can different testing methods be compared to each other? In general, the answers to these
kinds of questions are very diverse and sometimes controversial, mainly because testing is usually strongly
context-dependent. The definition and choice of testing strategies and techniques are in general largely
determined by the characteristics of the software to be tested and by its requirements. Other factors such as
budget, time to market, people's skills, etc., may also influence to various degrees the way that testing is
done. Consequently, testing approaches may differ considerably across software development projects and
even within the same project.

The foremost subject of controversy in the testing literature seems to be the role of testing. It is
acknowledged that testing is an effective defect-detection technique. The debate is whether general
properties of the software (e.g., reliability) can be inferred from a finite number of tests. The role of testing
in the software life cycle is discussed in more detail in the next section.

The role of testing in the software life cycle can be best understood from a software verification and
validation (V&V) perspective. Testing as a V&V technique will be discussed next based on a simplified
view of the software development process.

1 The term "static testing" is sometimes used to denote V&V techniques that do not require the actual execution of the
software (e.g., walkthroughs, inspections, formal verification).

 
 
 



2.2.1.1 A Simplified View of the Software Development Process

Essentially, any software development process involves the basic transformations as depicted inFigure
2-1: requirements identification, requirements engineering, analysis and design, construction, and source
code translation2•
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r---------------~
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The identified user requirements are structured into a requirements specification that constitutes the
foundation for developing the software using various mechanisms such as refinement, enrichment, and
translation. Each transformation may be erroneous, causing its actual outcome to deviate from the intended
outcome. Since the output of a transformation is used as input to the succeeding transformations, errors may
be propagated. The view of the development process depicted in Figure 2-1, although very simple, provides
a good framework for understanding the objectives of V&V and one of its main techniques, software testing.

In principle, the aim of the V&V process is to check the correctness of the outcome of each
development transformation. In the literature, a fine distinction is often made between validation and
verification (e.g., Sommerville «(1992), 8, 374), Van Vliet «(1996), 319)). Succinctly, "validation" boils
down to the question - "Are we building the right product?", whereas "verification" tries to answer the

2 Various models of the software development process are widely spread in the software engineering literature. A
similar view can be found, for instance, in Van Vliet «(1996), 10).

 
 
 



question - "Are we building the product right?". In other words, "validation" means checking the
correctness of a development artefact against the actual user requirements, whereas "verification" focuses on
checking the correctness of the outcome of a transformation with respect to the actual input to that
transformation. The distinction is not that categorical, but it emphasises the importance of making sure that
each development artefact satisfies the user's requirements and expectations. If the requirements
specification, for instance, fails to reflect the user's needs then the software conforming to that specification
will most probably be unusable.

The V&V process usually employs both static and dynamic techniques3• Prototyping and testing are
dynamic V&V techniques, whereas techniques such as walkthroughs, reviews, inspections, and correctness
proofs (or formal verification), are considered static V&V techniques (Sommerville (1992)).

Static techniques involve the systematic examination of software artefacts such as requirements
specification, design specification, and source code. They are attractive mainly because defects can be
detected early in the software life cycle and the checking results are general (i.e., they are not restricted to
particular inputs), but static techniques usually lack validation power. The user requirements are drawn up
based on the user's mental model of the software. Unless the software is exercised, it is hard to assess how
well the user's needs are actually met. Moreover, the user requirements are usually detailed and
unstructured. Their systematic examination can prove to be very difficult.

2.2.1.3 The Role of Testingfrom a V&V Perspective

In general, prototyping and testing are better suited for validation than static techniques. Compared to
testing, prototyping has the advantage that deviations from the actual user requirements can be detected early
in the software life cycle. A prototype, however, is just a simplified implementation of the software
specification. Its usefulness in validation depends on how well the prototype reflects the specification intent.
Testing, on the other hand, exercises the software that will be used in operation and thus the validation is
more accurate.

Testing also plays an important role in verification. In general, although normally cost-effective, the
static V&V techniques cannot be fully relied upon to detect all specification and implementation faults. Clear
arguments to this effect can be found, for instance, in Osterweil et al (1996). Moreover, as emphasised in
Figure 2-1, the software is actually the machine code and not the source code. Compilers, linkers,
interpreters, and standard and third party libraries may also be faulty or just misused. In addition, operating
systems are also software-based and, therefore, they are prone to errors. Since static techniques cannot
usually be used further than analysing the source code, testing is necessary to assess whether the software is
operational in a particular environment. In this context, it is worth mentioning an experience that the author
had. One of the standard library functions provided with C isfmod(a, b), where a and b are real numbers4

•

The function is supposed to compute the remainder of dividing a by b, so that a = n * b + r, where n is a
whole number, r is the remainder, and the absolute value ofr is less than the absolute value of b. A program
failed because fmod{1. 0, 0.1) returned 0.1 instead of O.O. Subsequent tests of fmod on various platforms
showed that the behaviour of the function is rather unpredictable forb < 1.0. The defect could not have been
detected using static techniques because the standard library function was assumed to be correct. Of course,
after uncovering this kind of error, static techniques may be employed to detect whether known unreliable
functions or language constructs are used in the source code.

Testing can detect defects that were introduced at any stage in the software development process.
However, the cost of removing a defect after the software is built can be extremely high. Testing should
always be used in conjunction with other V&V techniques and, ideally, it should reveal only minor defects

3 Here and usually in the literature, "dynamic" and "static" indicate whether the checking involves exercising the
software or not.
4 "c" is a programming language. Standard library functions are extensions to the language.

 
 
 



(i.e., the cost of removing a defect is low). Incremental developmentS may also be used to mitigate the risk of
late defect detection (Sommerville «1992), 109), Van Vliet «1996),38))

Removing defects only improves the software quality, but to manage effectively the V&V process the
quality also needs to be assessed. In software engineering, the most widely used quality measure is the
reliability of the software. Besides being a means for defect detection, testing may also be used as a means of
assessing the software reliability. Depending on whether the main objective of a testing approach is fault
detection or reliability estimation, two kinds of testing are often distinguished in the literature: defect testing
and software-reliability-engineered testing6•

2.2.2 Defect Testing vs. Reliability-engineered Testing

To understand software reliability and the difference between the two kinds of testing, it is important to
make first a distinction between faults and failures.

Failures are departures from the intended behaviour of the software that are observed when the
software is exercised. Failures are dynamic in nature and they may be caused by one or more faults. In
testing, a faulf is considered a defect of the software structure (or form). Every time it is exercised, a fault
may cause the software to fail.

The notion of a fault is somewhat imprecise. For instance, Frankl et al (1997) show that it is extremely
difficult to formally define faults because they have no unique characterisation. A fault is usually defined by
the code change that is made to correct the software behaviour. Since the code may sometimes be changed in
many different ways to produce the same behavioural effect, the definition does not assure uniqueness.
Frankl et al (1997) suggest that one should avoid using the term "fault" in discussing testing and the
dependability of software. Nevertheless, despite its limitations, the concept of a fault can still be useful in
both theory and practice. For instance, in this dissertation and usually in the literature (Sommerville «(1992),
390), Van Vliet «(1996), 319), Musa (1996)), the difference between defect testing and reliability-engineered
testing is made clearer by distinguishing faults from failures.

The notion of a failure (i.e., departure from the intended behaviour of the software) can be considered
more precise than the notion of a fault. Still, it needs further refinement especially when used in the context
of software reliability as shown next.

2.2.2.2 Software Reliability

The software reliability can be defined as the probability of execution without failure for some
specified interval, called the mission time (Musa (1996)). This definition is compatible with that used for
hardware reliability, but it might be too general for software. In software reliability, the notions of "time"
and "failure" are not as precise as in hardware reliability. Usually a hardware component is in continuous
use, it fails because of physical ageing and the failures tend to be permanent (i.e., the component has to be
repaired before it can be used again). On the other hand, software applications may be idle for long intervals,
their failures are often transient, and the consequences of different failures might vary considerably
(Sommerville «(1992), 394-395)). To be meaningful, software reliability and reliability metrics have to take
into account the application domain and the expected usage of the software when defining "time" and
"failures". In general, time is not always seen as calendar time, but also as processor time, or number of

SIncremental development is also referred to as "incremental and iterative" or "evolutionary" development.
6 The term "defect testing" has been adopted in this dissertation from Sommerville (1992), while the term "software-
reliability-engineered testing" from Musa (1996).
7 In the literature, faults are also referred to as "bugs" or, simply, "defects" (actually meaning "software defects").

 
 
 



transactions, or number of runs8, etc. In addition, the expected costs of failures are used either to partition
failures into severity classes and to specialise the reliability metrics for each class (Musa (1996),
Sommerville «(1992), 396)) or to adjust the reliability definition (Weyuker (1996)). One of the most used
software reliability metrics is the failure intensity (or failure rate) which is defined as the number of
"failures" per "time unit". The exact meanings of "failure" and "time unit" are usually determined by the
software usage context. Ideally, measuring quality should avoid reliance on the expected usage of the
software. Hamlet (1994) suggests a usage-independent quality measure, called "dependability"9, and a
theoretical foundation of software testing: "the dependability theory". "Dependability" captures the intuitive
idea of "unlikely to fail". The dependability theory is refined further in Hamlet (1996).

Faults that hardly ever manifest themselves in normal operation or have no serious consequences have
little impact on the reliability of the software. Research done in this area (mentioned in Sommerville «(1992),
390)) suggested that, for the software products that were studied, removing 60% of the faults would have
achieved only a 3% improvement in reliability. Therefore, instead of trying to detect as many faults as
possible (defect testing), it might be more cost-effective to focus on exposing only those faults that are likely
to cause frequent or critical failures in operation (reliability-engineered testing).

2.2.2.3 Reliability-engineered Testing

The main objective of reliability-engineered testing is to estimate quantitatively the reliability of the
software based on statistical inference, thus revealing faults that have a big impact on the reliability. In the
literature, reliability-engineered testing is also called operational testing (Frankl et al (1997)) or statistical
testing (Sommerville (1992))10. Essentially, the approach comprises the following steps:

• defining the expected operational profile of the software;

• selecting test inputs from the input domain based on the operational profile and on the anticipated
failure costs;

• executing the software on the selected inputs and recording failure information; and

• estimating the reliability of the software using statistical inference.

Essentially, an operational profile reflects the expected usage of the software in operation. An operational
profile can be defined for instance:

• as a set of possible input classes together with the probabilities of selecting input from those
classes (Van Vliet «1996),364), or

• as a set of operations and their probabilities of occurrence for an operational mode or across
operational modes (Musa (1996)), or

• as a probability distribution over the state space of a Markov chain (Weyuker (1996)), etc.

Operational profiles are discussed in more detail in Musa (1996), Frankl et al (1997), Hamlet (1994, 1996),
and Weyuker (1996, 1998). In principle, the test inputs are selected so that the testing profile is
representative for the expected usage of the software. As mentioned in the introduction to this section, the

8 Simply, a run is an instance of executing a program function on a specific input.
9Dependability has also been referred to as "trustworthiness" or "probable correctness" in previous papers.
10 The term "statistical testing" (or "random testing") is usually used in a wider sense than "reliability-engineered
testing". The former term refers to testing approaches that involve random sampling according to any probability
distribution over the input space (e.g., uniform, Poisson, binomial, etc.) and not only to the operational distribution. In
this regard, reliability-engineered testing is rather a particular case of random testing (Frankl et al (1997), Ntafos
(1998».

 
 
 



cost of failure is an important factor in software reliability. Although certain inputs have low probability of
occurrence, failures on those inputs might have serious consequences. Usually, the input selection procedure
also takes into consideration the predicted failure costs (Musa (1996), Weyuker (1996».

Reliability-engineered testing is applicable when it is possible to define realistic operational profiles
and it is feasible to carry out a statistically significant number of tests. In such cases, the approach can be
very cost-effective. Successes achieved in applying software-reliability-engineered testing have been
reported by Musa (1996) and Weyuker (1998). The approach is not usually suitable when the future use of
the software cannot be predicted accurately or the reliability requirements are too high. In the former case,
the validity of any operational profile might be too uncertain. In the latter, the required number of tests might
be prohibitive. For instance, estimating a failure rate in the region of "10-6 failures/run" would require
millions of tests.

2.2.2.4 Defect Testing

As the name suggests, the main goal of defect testing is to detect as many faults as possible by
selecting test inputs on which the software is likely to fail. Human intuition may play an important role in
selecting peculiar test inputs, but well-defined testing methods are methodical and generally do not rely on
intuition. Adequacy criteria (e.g., structural coverage of the specification or the program, fault-detection
ability of test data sets, etc.) play an important role in selecting test inputs and measuring the sufficiency of
the tests. Defect testing is also called systematic testing (Podgurski (1991), Frankl et al (1997)11) or partition
testing (Ntafos (1998».

Reliability estimation is not exclusive to reliability-engineered testing. Although in general it is
difficult to estimate quantitatively the reliability of a program that passed an adequate test (Zhu et al (1997»,
reliability estimation is also possible in defect testing. For instance, the number of residual defects and even
the future failure rates can be predicted based on reliability growth models (Wood (1996». The confidence
in the estimate, however, depends on how "typical" the software is with respect to some "population" of
programs on which the growth model was based (Podgurski (1991». In defect testing, precise reliability
estimates are achievable if the input domain is partitioned into homogeneous sub-domains. In this case,
partition testing is an application of stratified random sampling12 and, thus, accurate reliability estimates can
be made (Ntafos (1998».

It is also important to note that the expected usage of the software may play an important role in defect
testing. For instance, functionality that is known or perceived as very important to the user is usually tested
more thoroughly than "trivial" functionality. In addition, the anticipated failure rates and the cost of failure
are usual heuristics used in practice to prioritise fault removal.

The main roles of testing in the software life cycle are defect detection and reliability assessment.
Although sometimes disputed, the validity of statistical reliability estimation through testing is supported by
the successes achieved in applying reliability-engineered testing as mentioned, for instance, by Musa (1996).

The main aim of discussing defect testing vs. reliability-engineered testing was to exemplify how
testing may fulfil its dual role in the software life cycle. The comparison of the two kinds of testing is not
meant to be complete. In-depth analytical or empirical comparisons can be found for instance in Frankl et al
(1997) and Ntafos (1998). The main differences between defect testing and reliability-engineered testing, as

II Frankl et al (1997) prefer to use the term "debug testing" as a collective name for systematic testing methods. The
term might be misleading since it could be interpreted as "testing by means of stepping through the code (Le.,
debugging)". Perhaps a better name for defect testing would be "systematic defect testing".
12 Stratified random sampling is a statistical sampling technique that is generally used when the population can be
divided into homogeneous, or similar, sub-groups (strata).

 
 
 



discussed in this section, are summarised in Table 2-1. The two kinds of testing should not be seen as rigid
testing approaches. Ideally, they should be used jointly and, as the software matures, the emphasis should
shift from fault detection to reliability estimation (Sommerville ((1992), 400), Osterweil et al (1996».

Fault detection
Structural, behavioural, or fault-
based models of the software or
its specification
Based on statistical correlation
across similar projects or
statistical inference from stratified
random sampling; usually
qualitative

Quantitative reliability estimation
The expected usage of the
software

Based on statistical inference
from simple random sampling;
quantitative

Software engineering usually deals with the development of large and complex software systems. To
fulfil its role (or roles) efficiently, testing employs various and well-defined strategies and techniques
throughout the software life cycle. The testing process is discussed from a generic viewpoint in the next
section.

In general, large software systems are decomposed into smaller, manageable components that are
integrated incrementally into the final system. Testing is usually done in conjunction with system
implementation and proceeds in stages. Before testing the system as a whole, individual components and
groups of components are tested as they are developed. At high-level, testing comprises a whole life-cycle
process. At low-level, however, whether the software to be tested is a system or part of a system, testing is
essentially an iterative process of test design, test execution, and test evaluation. The low-level, intrinsic
process of testing is discussed next.

2.3.1 The Intrinsic Process of Testing

The view of the intrinsic process of testing that is depicted in Figure 2-2 revolves mainly around the
notion of "test adequacy" that is comprehensively described in Zhu et al (1997). The view is intended to be
generic enough to accommodate any testing approach and it will be used as the basis for presenting the case
study in the next chapter.

Underlying to the view is the life cycle of a test: a test is designed, executed, and evaluated13• Since the
software and its documentation may change because of defect removal, a test usually goes through the same
stages repeatedly (i.e., a test may be re-designed, re-executed, and re-evaluated). The view depicts only one
"spiral" .

13 "Executed" and "evaluated" actually mean that the software is exercised and the execution outcomes are evaluated
according to the correctness checking criteria.
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Because in general the testing terminology may vary greatly from author to author, the terms that
pertain to understanding the intrinsic process of testing as depicted in Figure 2-2 are described, specific to
this dissertation, in the table below:

the software behaviour characteristics (e.g., displayed screens,
logged messages, execution traces, memory usage, response
times, computation results) that are identified (i.e., observed,
traced, measured, or derived) for a test execution; the actual
outcomes 14 are evaluated according to correctness checking
criteria during the test evaluation activity

Correctness Checking
Criteria

the rules that determine whether the software passed or failed a
test; evaluating the actual outcomes according to correctness
checking criteria is usually considered to be done by means of a
"test oracle"; the simplest form of an oracle is the comparison of
actual and expected outcomes

14 Although terms as "output", "result", and "outcome" do not have exactly the same meaning, they are usually used
interchangeably. Probably the term that is most appropriate to describe the software behaviour is "outcome" (Heizer
(1995)).

 
 
 



Derived Test Adequacy
Measures

Direct Test Adequacy
Measurements

test adequacy measures that are derived during the test evaluation
activity from the test records (e.g., mutation adequacy score)

the test adequacy measurements taken during the test execution
activity (e.g., branch coverage, definition-use coverage)

the act of exercising a distinct piece of functionality of the
software and evaluating the correctness of the actual outcomes
according to well-defined criteria (i.e., correctness checking
criteria); a test spans over both test execution and test evaluation
activities

a rule (or criterion) specifying the way in which a set of test data
is to exercise the code; the extent to which the test data complies
with a criterion determines the test adequacy level (in terms of the
particular criterion)

generic term that is used in the literature to denote either a "test
input" (e.g., Cohen et al (1997), Zhu et al (1997)), or a "test
specification" (e.g., Somerville (1992)), or a "test record" (e.g.,
Richardson (1994))

the subset of the input domain that is used to test the software; the
test data is the collection of all test inputs

the testing activity that sets up test adequacy criteria and designs
tests to meet those criteria at a given level of adequacy

the testing activity that establishes whether the software passed or
failed each test and determines the overall testing results

the testing activity that sets up the test execution environment,
exercises the software according to the test specifications,
performs the necessary measurements, and records the actual
execution outcomes

a particular software and hardware infrastructure that enables the
execution of the software according to the test specifications

the data that is used to exercise the software during a test; it
comprises both control and computation data

the information that characterises a test from inception to
completion (e.g., the versions of the test specification, of the
execution environment, and of the software, actual outcomes,
failure analysis information)

 
 
 



the specifications of test input, along with the correctness
checking criteria

the expression of the particular role that testing is expected to play
in the software life cycle; testing requirements can be general
statements (e.g., "detect as many faults as possible") or they can
impose specific test adequacy criteria (e.g., a minimum branch
coverage level)

broadly, test records, test adequacy measures, and software
quality estimates (e.g., reliability)

Before discussing the test design activity in more detail, it is important to look first at test adequacy
criteria.

2.3.1.1 Test Adequacy Criteria

Since exhaustive testing is unfeasible, one of the most important problems to be addressed in testing is
that of selecting a subset of the input domain that will exercise the software "thoroughly enough". Whether
the main role of testing is fault detection or reliability estimation, in the end "everybody wants to believe that
software can be trusted for use because it has been tested" (Hamlet (1994)). The objective rules that try to
ensure the sufficiency of testing with respect to particular testing requirements are called test adequacy
criteria. They can be defined either as guidelines for test data selection (test data selection criteria) or as
targets for test quality measurements (test data adequacy criteria). For instance, a data selection criterion
could be an algorithm that ensures proper coverage of linear domain boundaries (domain testing). A data
adequacy criterion could be stated, for example, as "the tests shall exercise at least 80% of all branches of
the control-flow graph of a program". A comprehensive survey on test adequacy criteria can be found in Zhu
et al (1997).

2.3.1.2 Test Design

The test design activity sets up test adequacy criteria and designs tests to satisfy those criteria15
•

Broadly, a test specification states:

• the initial states of the software and of the test execution environment (including the computation
data),

• the stimuli that cause the software to execute and their sequence (i.e., control data), and

• the criteria for determining the correctness of the actual outcomes.

A test is usually designed to cover a distinct, relatively small, piece of functionality of the software. In the
simple case of a "batch" program (i.e., a program that starts, processes its input data, produces results, and
terminates) a test involves in general a single execution of the program. Although a performance test may

15 Setting up test adequacy criteria and designing tests could be seen as separate activities. They have been combined
together mainly for simplicity and to emphasise the strong dependency of test design on adequacy criteria.

 
 
 



require multiple executions ofthe program, it could be thought of as an aggregation of single execution tests.
In the case of interactive software, a test may be delimited, for example, by two "idle state" screens (i.e.,
user input is required to change the state of the software). In general, a test exercises the software between
two well-defined, idle states of the world (which is made up by the software and the test execution
environment).

Test specifications inherit their initial level of detail from the source of information used in test design.
For instance, test specifications that are drawn from the requirements specification are inherently high-level.
As the design specification, the source code, and the software become available, the high-level test
specifications have to be refined in terms of executing and evaluating the actual software. Ultimately, the
concrete forms of test specifications are embodied into test procedures that are used during test execution
and evaluation.

Theoretically, test execution and test evaluation could be seen as a single activity. A test is complete
only after determining the correctness of the execution outcomes. In practice, however, the methods and
tools employed during test execution and test evaluation have a different nature. Executing the software is
usually done by a test driver, whereas outcome verification by an oracle (a comparison tool in the simplest
case). In addition, it is in general more cost-effective to group tests into test suites, exercise first the software
for the entire suite and then evaluate the execution outcomes.

Automation is imperative in testing for two reasons. Firstly, the most desirable adequacy criteria
usually require an overwhelming number of tests. Secondly, mainly because of software evolution, testing
may involve frequent iterations. The testing literature provides numerous arguments and examples of why
manual testing is infeasible (e.g., Beizer ((1995), 232), Richardson (1994), Eickelmann and Richardson
(1996)). Test automation, however, may also have drawbacks. According to Kaner et al ((1996), 282),
documenting and automating tests may take ten times longer than creating and running them once. It follows
that test automation is justified only if more than say, ten testing cycles are anticipated. By test automation,
the authors actually mean automating the test execution and evaluation activities. In this case, if the software
is subject to significant and frequent changes, test automation may prove very expensive because some of
the test specifications and procedures may need to be changed manually. Automation in testing, however, is
possible beyond test execution and evaluation. Test design and setting up the test execution environment can
be automated as well. For instance, Eickelmann and Richardson (1996) describe and compare three Software
Test Environments (STEs) that share the goal of achieving fully automated testing. The case study that is
presented in the next chapter is also a good example of how testing can be automated in a cost-effective
manner.

Automating the test design activity is not easy. In general, it is possible to generate test data efficiently.
However, providing a cost-effective mechanism for correctness checking might not be as straightforward.
Working out the expected outcomes manually is usually infeasible for adequate test data. In the literature,
the most discussed alternative to manual outcome prediction is generating executable oracles from formal
specifications. However, as suggested in the first chapter, even if the software is informally specified, it may
still be possible to eliminate the need for calculating expected outcomes manually by writing one or more
model programs (i.e., M-mp testing). This dissertation's case study evaluates the merits of such an approach.
The prima facie evidence indicates that M-mp testing may be a practical alternative to manual outcome
prediction in the case of algorithmically complex software. The case study is described in Chapter 3.

 
 
 



Broadly, the experiment entailed wntmg a model program that conformed to the functional and
interface specifications of a scheduling application and testing the two programs "back-to-back". The
scheduling application is part of a family of third-generation language (3GL) programs that implement
complex operations-management algorithms. The programs are similar in nature (i.e., non-interactive data-
processing applications) and they have been developed using the same development and testing
methodologies. Although conducted only on the scheduling program, the experiment targeted the entire
family. The case study was actually motivated by the achievements of an incidental application of M-mp
testing during the development of another program, an inventory management application. The general
context and this "pilot study" are briefly described in the next section.

The programs that the experiment targeted have been developed at Paradigm Systems Technology,
South Africa. They are non-interactive (i.e., "batch") 3GL applications that implement complex operations-
management algorithms and they are integrated into a large logistics management system, EPMS®·
Essentially, as depicted in Figure 3-1, the operations-management programs read the Input Data from the
User Database and convert it into Generic Input according to the User-defined Mapping Rules. The
computed Generic Output is converted into user-specific Output Data and written to the database. The
computation algorithm can be customised by means of Control Parameters.

The programs have the following general characteristics:

• They deal with complex input-output (I/O) data structures.

• They solve complex problems (e.g., maintenance-task scheduling, resource balancing, inventory
management).

• They provide mechanisms for customising both the I/O interface and the computation algorithms.

 
 
 



Designing test cases manually for such programs is a very difficult task because the input spaces are fairly
large (20 to 100 dimensions) and the algorithms are complex (in some cases they are based on heuristic
search). The testing process, however, although well defined and supported by standards and procedures,
practically imposes manual outcome prediction and, consequently, it has the following drawbacks:

• Working out the expected results manually is a tedious and time-consuming job. Testing,
therefore, is rendered as an unattractive and demoralising job, thus leading to staffing problems.

• The tendency is to keep the number of tests as small as possible and to select test inputs that are
simple enough to be "manually processed". The test adequacy is questionable as the (only) data
adequacy criterion used, "65% branch coverage", is probably insufficient itself, given the
complexity of the programs.

• Maintaining the test specifications tends to be very expensive since a small change III the
specification could require the manual re-design of many tests.

• To keep the volume of test documentation within reasonable limits, test specifications usually
capture only the inputs and the expected outputs, but not a detailed description of the steps that
were followed to determine the expected results. Therefore, verifying a test specification can be
as time-consuming as creating it.

All the above deficiencies of manual test design are well known. Yet, no alternatives have been
considered worth exploring, mainly because of budget limitations and lack of hard evidence that other
approaches could be more cost-effective. The first time M-mp testing showed its potential as a cost-effective
alternative to manual outcome prediction was during the testing of an inventory management application.
This circumstance is presented next.

To understand the pilot study it is important to give first a brief description of the inventory
management program. Essentially, the aim of (time-phased) inventory management is to make sure that there
will be always sufficient stock to satisfy all planned material requirements and to keep the stock level "as
low as possible". The simplest form of inventory management that is usually applied to low-cost materials is
to consider the planned orders (Le., due-in quantities) and the material requirements fixed and to generate
procurement advice notices in order to balance out projected shortages. In the more general case, since
orders and requirements may also be modified (e.g. moved or cancelled), inventory management systems
can produce one or more combinations of different recommendations such as procurement, re-scheduling, or
cancellation. The inventory management program implements such an algorithm. The application domain of
the program is exemplified in Figure 3-2, where the arrows labelled A, B, and C are planned orders, while M
and N represent material requirements. The lengths of the arrows reflect the due-in or due-out quantities. In
the figure, the procurement advice, labelled D, caters for the projected negative balance caused by the
requirement N. Delaying N would have the same effect (Le., preventing the shortage). The procurement and
re-scheduling recommendations are mutually exclusive. The cancellation advice tries to prevent the excess
stock that will be caused the planned order B.

After hard work on both development and test design sides, the project reached a crisis. The
computation results differed from the manually predicted outputs for a large number of tests and there was
practically no guarantee that the test specifications were more reliable than the program itself. The
disagreement resolution was progressing very slowly, putting at risk the planned date for the first release.
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After becoming aware ofN-version programming as a test strategy option, the author resolved to write
a simplified version of the program. This model program is the subject of the pilot study. It implemented
only the basic algorithm (i.e., it generated only procurement advice notices) mainly because of time
constraints and uncertainty around M-mp testing. Even with this limited functionality, the model program
still proved very useful. It provided a welcome "third opinion" (the other two opinions being the original
program output, and the manually predicted test output) and, consequently, the disagreement resolution
became more efficient:

• if the two programs reached agreement, the corresponding test specification had to be re-visited;

• on the other hand, if only the model program "passed" a test, the primary program was assumed
incorrect;

• finally, when the primary program and the test specifications agreed, this provided good checking
points for the model program.

The primary program, the model program, and the test specifications mimicked a 3-version system.
Although only the basic functionality was tested in this way, some of the defects that were found pertained to
the general case as well. In the end, the reliability of the primary program increased rapidly enough and the
crisis was successfully passed. Even now, after two years, the model program is still used sometimes when
new tests are added or previous tests have to be re-designed because of specification changes.

Unfortunately, no accurate records have been kept and it is difficult, therefore, to make a proper cost-
benefit analysis. It is important to note, however, that writing the simplified algorithm took around 20
person-hours. That represents about 2.5% of the manual test design cost and around 1% of the primary
program development effort! The general feeling of the project team was that the benefits definitely
outweighed the cost.

In this experiment, the model program was written to arbitrate the disagreements between the primary
program and the manually pre-calculated results. It was not intended to be, and it could not have been, an
alternative to manual outcome prediction. Besides the fact that the model program had limited computational
scope, it also used the same software architecture and I/O mechanisms as the primary program (refer also to
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Figure 3-1). Consequently, the probability of common failures that could have been caused by architectural
and I/O interface faults was high. The limited implementation diversity was compensated for in this case by
the manually pre-calculated results, which are inherently implementation-independentl.

The experiment raised two fundamental questions:

• Could the necessity for manually pre-calculated results be eliminated by using diverse model
programs that implement the same function as the primary program (i.e., M-mp testing)?

• Would it be feasible to build such programs?

The answer to the first question is rather obvious. As also implied in the first chapter and the pilot
study, there is no guarantee that exercising the specification manually (i.e., "playing computer" as Beizer
(1995) calls it) is more reliable than a program that does it automatically. Moreover, a model program can be
a more accurate, objective and verifiable reflection of the tester's mental model of the software than a small
set of manually produced test specifications. The answer to the second question is not that obvious and it
could depend largely on the testing context. However, the pilot study indicated that the M-mp approach
might be feasible for testing algorithmically complex software such as the inventory management program.
Therefore, a larger scale experiment was conducted to evaluate whether M-mp testing could be more cost-
effective than the manual approach in the case of testing algorithmically complex software. The case study is
presented in the remainder of this chapter.

The main difference between M-mp testing and the manual approach is the use of different correctness
checking mechanisms. To recapitulate, in M-mp testing, outcome verification is done by means of one or
more model programs that give verdicts of agreement or disagreement with the outputs of the primary
program. If agreement is reached, the outputs are considered correct. Otherwise, the disagreements are
analysed in order to detect defects. If a model program is faulty, it has to be corrected. In the manual
approach, the outputs of the (primary) program are compared against pre-calculated expected outcomes. As
in the case of M-mp testing, disagreements are analysed in order to detect defects. That might require re-
calculating the expected outputs.

As suggested in Figure 3-3, the Cost of M-mp Outcome Verification, although initially high because of
the Cost of Model Program Development, is expected to increase only slightly as the number of tests grows.
Of course, that depends on how reliable and maintainable the model programs are. (The non-zero slope of
the Cost of M-mp Outcome Verification graph reflects the disagreement analysis and model program
maintenance effort. For simplicity, the cost growth is modelled as linear.) However, the reliability of a model
program, as highlighted in the first chapter, is likely to increase rapidly along with that of the primary
program. Moreover, high maintainability could be ensured by simple model program design and
implementation. That was the case in the experiment.

In the manual approach, the growth of the outcome verification cost is expected to be much steeper
than in M-mp testing. That is because, besides disagreement analysis and correcting expected results (the
equivalent of model program maintenance), manual outcome verification requires pre-calculating outputs for

I In this dissertation, "implementation diversity" and "design diversity" are treated as distinct notions. The former
implies using different development environments and third-party components, whereas the latter implies different
design methods. In the pilot study, the algorithm designs were different, but the implementation forms were the same.

 
 
 



each test. In Figure 3-3, for simplicity, the growth of the Cost of Manual Outcome Verification is modelled
as linear.
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Figure 3-3 could serve as a reasonable comparison model. If the same test data selection method is
used in both approaches, M-mp testing would be a better option than the manual approach if the number of
tests that achieve a particular adequacy level is greater than N. The model, however, does not sufficiently
emphasise a major advantage of M-mp testing over the manual approach: the possibility of achieving the
same (or higher) adequacy levels at lower cost of data selection.
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Intuitively, the size of a test data set that satisfies a particular adequacy criterion is determined by the
precision of the data selection procedure with respect to that criterion. If the intention is to keep the number

 
 
 



of test inputs as small as possible, as it is the case in the manual approach, then the selection procedure could
turn very complex and, therefore, expensive. On the other hand, if it is feasible to carry out large numbers of
tests, as is expected to be the case in M-mp testing, then the accuracy of the selection procedure can be
relaxed, thus reducing the cost of test data selection. In other words, given a particular test adequacy
requirement, M-mp testing can use larger data sets, but less expensive, than the manual approach. This
aspect is discussed in more detail in Chapter 4. A more suitable comparison model, which takes into account
the cost of test data selection, is depicted in Figure 3-4. Because both the number of tests and the cost of
selecting data may increase largely as the adequacy level increases, the Cost of Manual Testing and Cost of
M-mp Testing graphs have non-linear shapes.

Simply, the main objective of the experiment was to provide prima facie evidence that M-mp testing,
given the particular context, could achieve higher adequacy levels, at lower cost, than the manual approach.
The implementation strategy that was devised to achieve this goal is presented in the next sub-section.

To make the experiment feasible, the main challenge was to develop a diverse, reliable, and
maintainable model program in a very short time. Therefore, the strategy of model program development has
been carefully addressed from the start.

As also discussed in the first chapter, a model program should cover only those behavioural properties
of the primary program that are difficult or tedious to verify by other means (including manual outcome
prediction). For reasons that will become clearer in Chapter 4, in the experiment, the model program
targeted from the start only the positive testing (i.e., subjecting the software to standard input data) of the
primary program. Briefly, that is because verifying whether a program handles non-standard data correctly
could be automated efficiently by other means than using model programs. Moreover, the complexity of a
program may be reduced largely by limiting its exception-handling capability.

As shown in Figure 3-1, the data-processing applications that are targeted by this case study provide
generic mechanisms that allow the customisation of the I/O interface. Moreover, the applications can access
different databases (e.g., Oracle, Informix) and they are portable across various operating systems (e.g.
Windows NT, UNIX). A model program, however, does not need to be as generic as the primary program.
That is because most of the primary program's functionality is non-I/O and non-platform related. Therefore,
it is sufficient for a model program to cater only for one platform and a fixed I/O model. The test data and
the corresponding program outputs that are verified by means of M-mp testing can be easily migrated from
the particular test environment to other platforms and/or different I/O models.

Besides the above simplifications (i.e., valid input data, single-platform, and fixed I/O model), the
development strategy also included the following guidelines:

• To ensure a high degree of diversity, a model program should avoid using the same design
methods, third-party components, programming language, or software architecture as the primary
program.

• To facilitate efficient automation of test execution and evaluation, the interface of the model
program should be fully compatible with that of the primary program (i.e., the two programs
should be interchangeable in the test execution environment).

• High reliability (i.e., correctness of computation results) and maintainability should be given a
higher priority than other desirable properties such as high performance, low memory usage, and
small size. Even if a model program is computationally inefficient in a normal execution
environment, it might still be possible to execute it efficiently in an enhanced environment that is
specifically available for testing (i.e., faster processor, more memory, and more storage space).

 
 
 



The above simplifications and guidelines ensured cost-effective design and implementation of the
model program. Its development and the other activities of the experiment will be described in the next
section.

To put the experiment into perspective and to facilitate the correct interpretation of the results, it is
important to give first an overview of the primary program.

3.3.1 Primary Program Overview

Although the pilot study could have been extended for the purpose of this experiment, another
application, a scheduling program, was chosen for the following reasons:

• The author was not involved in the development of the scheduling application. Consequently, the
cost of model program development can more authentically provide evidence for the general case
of "developing from scratch". Moreover, the risk of correlated failures that could be caused by
common design errors was reduced.

• The scheduling application is representative of the family of complex data-processing programs.

• By the time the experiment started, the program had been in use for more than one year. This
seemed a good opportunity to test the fault-detection ability of M-mp testing, as the likelihood of
still finding defects was expected to be low.

Essentially, the application schedules recurrent maintenance tasks for machines (e.g., car, aircraft)
and/or their parts (e.g., engine, fuel pump) at variable intervals based on rules that depend mainly on:

• the forecast utilisation rates (e.g., kilometres per month, flying hours per day) and

• the anticipated utilisation conditions (e.g., altitude, humidity level).

The application domain of the primary program is depicted in Figure 3-5. The upper half of the diagram,
labelled Machine/Part Utilisation, reflects at high-level that the utilisation rates and conditions are usually
variable. The bottom part of the figure contains a very simple schedule. Mainly because of complex machine
structures, there can be strong dependencies between tasks. In this particular implementation, the
dependencies are expressed as "suppression" and "trigger" relationships. The program schedules each "non-
triggered" task individually and then it applies the "suppression" and "trigger" rules. For example, inFigure
3-5, task A "triggers" occurrences of task B and "suppresses" some occurrences of task C. Past task
occurrences, unless suppressed, are depicted by greyed rectangles.

To facilitate the correct interpretation of the case study results, it is important to note that, mainly
because of time constraints, only the core functionality (i.e. scheduling non-triggered tasks individually) was
implemented by the model program. Having presented the strategy of the experiment and the application
domain of the primary program the next logical step is to describe how the experiment was carried out.
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3.3.2 Experiment Execution Overview

Essentially, the experiment entailed developing a model program from the (informal) requirements
specification, subjecting the primary and model programs to the same input test data, and analysing the
disagreements among the programs. The information flow model of the experiment's process and its
relationship with the generic view of testing that has been presented in Chapter 2 are depicted in Figure 3-6.

Test Design comprised the creation of test data (Test Data Selection) and the development of the model
program (Model Program Design and Model Program Implementation). The Design Specification is
depicted in bold in Figure 3-6 to emphasise its vital role in the experiment. Besides setting a common
foundation for all subsequent activities, the design specification served as the basis for automatically
generating:

 
 
 



• the configuration file template for the test data generator2
, and

• the database set-up scripts.
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Test Execution included setting up the test environment (Database Set-up and Programs' Execution
Set-up) and executing the primary program (Programs' Execution). Programs' Execution crosses the
boundary between Test Execution and Test Evaluation to indicate that running the model program is a test
evaluation activity. That is because, by either agreeing or disagreeing with the outputs of the primary
program, the model program performs the initial correctness checking. For all practical purposes, the
primary program can be provisionally regarded as producing correct results for test inputs that agree in
output.

Test Evaluation, in addition to model program execution (Programs' Execution), comprised arbitrating
the disagreements between the programs (Disagreement Analysis).

"Large-scale, cost-effective test automation" is probably the best way to characterise the experiment.
Except for Model Program Design, all other activities have been efficiently automated to various degrees.
Each activity will be described in more detail in the remainder of this section. Because Test Data Selection,

 
 
 



Database Set-up, Programs' Execution Set-up, Programs' Execution, and Disagreement Analysis are largely
interdependent, they are discussed together under Back-to-back Testing.

3.3.3 Model Program Design

Conducted in a top-down fashion, the design combined in a practical manner various methods such as
relational modelling, functional decomposition, object orientation, and model-based formal specification. It
comprised the following main activities:

• partitioning the application into modules,

• producing a relational model and defining the interface (or public) methods for each module, and

• creating object models as graphically depicted in Figure 3-7 (i.e., decomposing the interface
methods of a module and assigning the lower-level methods to appropriate relational model
entities3).

Functional Decomposition
of an Interface Method \1 Relational (Entity Relationship)

Model

CJ Interface Method ~ Lower-Level Method a Class

To facilitate efficient test environment set-up and simple output comparison, the aim from the
beginning was to use the same I/O data model for both the primary program and the model program4

• To
accommodate that, the model program was split into two main modules: the scheduling engine and the I/O
bridge. The former does the scheduling based on a generic computation model, while the latter, as simply
depicted in Figure 3-8, is responsible for the data transfer between the scheduling engine and the database.
The I/O bridge was necessary to cater for differences between the generic computation model and the I/O
data model. For convenience, the test data model was chosen so that most of the test cases that were
previously designed for testing the primary program could be reused. The intention was to validate the
model program and the test cases in a 3-version system in the same manner as discussed in the Pilot Study.

3 An entity (structure) and its methods (behaviour) form an object that belongs to an object class. An entity in the
relational model is thus transformed into an object in the object model.
4 The programs could then share the same input data tables, while a simple SQL (Structured Query Language) script
could be written to compare the results.
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Test environment set-up efficiency, simple output comparison, and test case reuse were not the only
reasons for splitting the program into an I/O bridge and a scheduling engine. In general, in the case of data-
processing applications, such an approach can be very beneficial for both program development and
maintenance. Firstly, the algorithm, which is the complex part of the application, can be designed in isolation
from data accessibility and storage concerns. Secondly, I/O data model changes are likely to affect primarily
the I/O bridge, which is much less complex than the computation engine.

As a side activity, the design also entailed defining a simple specification language that has been
derived from Shlaer-Mellor Action Language5 (SMALL, WWW Resources (2». Appendix A contains its
definition along with an abbreviated specification example. The definition is imprecise since the language
was created specifically for this experiment and it was refined only to be sufficiently formal and expressive
for specifying the scheduling algorithm in a simple, concise and unambiguous manner. The language
resembles model-based formal specification languages6• Although an attractive alternative, using an
acknowledged formal specification language (such as Z or VDM) was not pursued mainly because the
author had no experience in applying formal methods. It was felt that the learning curve could be too steep
for this experiment. SMALL, on the other hand, was well known by the author and although specific to
Shlaer-Mellor OOA/RD, it was easily adaptable to specify the scheduling algorithm. It is also important to
mention in this context that the specification language could be kept simple as the algorithm specification
tried to capture the steps that are normally followed by a person to schedule tasks by hand. The aim was to
produce a "natural" algorithm specification, thus ensuring high readability and, consequently, high
maintainability of the specification and its implementation.

The high quality of the specification was expected to lead to cost-effective implementation. Yet, the
level of automation that was achieved in the end was not anticipated. The implementation of the model
program, including the code generation approach, is described next.

The first step in model program implementation was to choose a development environment (i.e., a
programming language and a development tool). Since a model program is not constrained to specific

5 SMALL is a specification language that is designed to specify the actions associated with Moore states in Shlaer-
Mellor OOA/RD (Object-Oriented AnalysislRecursive Design). Shlaer-Mellor OOA/RD is the main design method that
is used for 3GL development in the organisation.
6 The language supports mathematical notions such as sets, relations, functions, and sequences that are characteristic to
model-based formal specification languages (e.g. Z, VDM). More information regarding formal methods can be found
at WWW Resources (1).

 
 
 



programming languages, operating systems, or databases, M-mp testing offers the opportunity of selecting
practically any programming environment. Choosing one, however, is not a trivial task as there might be too
many attractive options. It is worth mentioning in this context that 26 different languages were used in 38
rapid prototyping studies that are analysed by Gordon and Bieman (1995)!

3.3.4.1 Development Environment Selection

In this experiment, the following three environments were the main candidates:

• Un ifAce - the 4GL development environment of EPMS® (the logistics management system that
integrates the 3GL applications that are targeted by this case study),

• C++ / Microsoft Developer Studio 97, and

• C / Microsoft Developer Studio 97.

Other promising development environments such as LISP, Prolog, C++ Builder, Visual J++, Oracle
PLlSQL, which were also considered in the beginning, had to be excluded primarily because of the
envisaged steep learning curves. Given the time and resource constraints, the experiment could not afford the
extra cost.

Although the author was less familiar with Un ifAce than with C/C++, the implementation started in
Un ifAce for the following reasons:

• As a 4GL is more expressive than a 3GL, the implementation in Un ifAce was likely to result in
significantly less lines of code than in C/C++. In addition, in UnifAce the database I/O is
practically transparent to the developer, whereas in C/C++ extra (embedded SQL) code is
required for database access. Because at that stage the implementation was envisaged to be done
manually, less lines of code would have meant lower implementation cost.

• The UnifAce 4GL and the specification language have similar levels of abstraction and semantics.
That would have ensured an effortless implementation and the resulting code would have been
easily traceable to the design specification.

• The decision to implement the operations-management applications in C and not UnifAce on the
grounds of superior performance achievable in 3GL was sometimes disputed. Implementing the
model program in Un ifAce would have allowed accurate 4GL vs. 3GL performance comparison.

The learning curve, however, was much steeper than expected and the development in Un ifAce was
abandoned. The implementation was thus re-started in C++. Although C would have been a slightly more
cost-effective choice, the personal gain of the author was the deciding factor. The author wanted to
consolidate his C++ knowledge. In general, in M-mp testing, to ensure a high motivation level for model
program development, the personal gain of the developer should be always given a high weight.

As mentioned above, one of the advantages of initially choosing Un ifAce was that its 4GL and the
specification language have similar levels of abstraction and semantics. Consequently, writing the algorithm
would have been effortless and the code easily traceable to the specification. The implementation in C++
aimed at achieving the same benefits through appropriate layering.

3.3.4.2 The Implementation Strategy

The implementation strategy will be discussed around the scheduling engine, which is the core of the
model program. The implementation of the I/O bridge followed the same strategy.

 
 
 



As illustrated in Figure 3-9, the aim was to create a supporting layer so that the algorithm specification
could be "mirrored" (i.e., translated at a similar level of abstraction) into code, thus producing an equivalent
(executable) specification of the algorithm.

Below is a simple example that shows how the algorithm specification, its "mirror", and the supporting
layer, which are depicted in Figure 3-9, relate to each other. The statement from the algorithm specification
means "select the latest Task_Occurrence instance whose StartDate is earlier than i_StartDate", where
Task_ Occurrence is an entity/class and StartDate is one of its attributes/data members. The subset selection
statement from the specification maps to an equivalent C++ statement in the specification "mirror". The
supporting layer contains the lower-level C++ code (i.e., the implementation of the Select method).

Algorithm Specification
task occ Task_Occurrence (last, StartDate < i_StartDate, IStartDate)

SUpporting Layer
Task Occurrence*
Task_Occurrence: :Select(int i_Whichlnstance, char* i_OrderBy, char* i_Where, ... )
{II Method implementation)

In the above example, the correspondence between the specification and its "mirror" is very exact and
that represented the ideal that guided the implementation. The actual kind of mapping that was obtained in
the end is shown in the example below:

Algorithm Specification
task occ Task_Occurrence (last, StartDate < i StartDate, IStartDate)

Algorithm Specification "Mirror"
selection id = Task_Occurrence.SelectOnStartDate("<", i StartDate);
task_occ = Task_Occurrence.Last(selection_id);
Task_Occurrence.ReleaseSelection(selection_id);

Supporting Layer
long Task_Occurrence::SelectOnStartDate(char* i_relation, long i_StartDate)
{II Method implementation)
Task_Occurrence* Task_Occurrence::Last(long i selection id)
{II Method implementation}
void Task_Occurrence::ReleaseSelection(long i selection_id)
{II Method implementation}

 
 
 



It would have been technically possible to achieve a better correspondence between the specification
and its "mirror". It was felt, however, that additional refinements to the supporting layer, although likely to
reduce the cost of writing the "mirror", would have been too expensive for this experiment.

Even if not ideal, the approach still had significant benefits. Firstly, the level of correspondence
between the specification and the "mirror" was sufficient to allow an easy translation of the algorithm into
code. Secondly, the supporting layer practically defined a domain-dependent executable specification
language7• Two additional programs, which were necessary to overcome some difficulties encountered in
output comparison and test data generation8, could be written effortlessly. Thirdly, because the supporting
layer was very generic, the approach led to large-scale code generation.

3.3.4.3 The Code Generation Approach

The possibility of large-scale code generation was not envisaged from the beginning. As the
implementation advanced, however, automation became increasingly appealing for reasons that will be
discussed next.

While writing the first module by hand, it was noticed that all supporting layer classes provided
essentially the same capabilities such as creation, deletion, set ordering, and subset selection. Moreover, the
implementation differences between methods with common semantics were largely determined by distinct
class structures. For instance, a basic creation method of an arbitrary class with N data members looks in
principle as shown below:

<typel> <namel>;
<type2> <name2>;

i <namel>;
i_<name2>;

If the same naming conventions are used across classes, it is obvious that the creation methods will be
different from class to class only because of different class structures. This kind of commonality between
class methods was exploited from the beginning but only to derive a new class from a previously
implemented one by using text search and replace. It was soon realised that it would be possible and much

7 The approach is actually a form of domain analysis as discussed in Mili et al (1995). In this regard, the supporting
layer is the realisation of the domain model, while the algorithm specification "mirror" embodies the application (i.e.,
scheduling).
8 The two additional programs will be discussed later in this section in the context of model program calibration and test
data generation.

 
 
 



more beneficial to generalise existing class implementations into a code generator. All the supporting layer
classes could then be created automatically.

Automation is usually considered a long-term investment, as writing or setting up automation tools can
be very expensive. In this experiment, however, code generation was very likely to payoff even within the
short time scale for the following main reasons:

• As also mentioned before, model program performance, memory usage, and size were not a
primary concern. The code generator could be kept thus very simple.

• The supporting layer, which was the target of code generation, was by far the largest portion of
the implementation (in the end it accounted for around 80% of the total program size).

The code generator was implemented using Microsoft Excel spreadsheets and Visual Basic (VB)
macros. Simply, the code generator works as follows: a VB macro reads the structure and behavioural
parameters of a class from an MS Excel spreadsheet and generates the appropriate C++ and embedded SQL
code. Appendix B shows a simple example of an input to the generator and the resulting code.

The code generation approach is actually a particular case of a reuse technique that is known as
"application generation". A comprehensive overview of reuse techniques can be found in Mili at al (1995).
As opposed to most application generators that are designed to produce a family of similar programs, the
code generator was written to create a family of classes that have similar (structure-based) methods. The
scope, commonality, and variability (SCV) analysis that is described in Cop lien et al (1998) is also relevant
for the way in which code generation was approached in this experiment. From an SCV analysis perspective,
the code generator was based on parametric polymorphism9•

Model program development ended with a calibration phase, which will be described next.

3.3.4.4 Calibrating the Model Program

While writing the model program, it became evident that floating-point accuracy could cause slight
output differences between the model program and the primary program. Eliminating those differences was
important because in scheduling a task occurrence is created with respect to the previous one. Consequently,
the first schedule difference is propagated and likely to be amplified for all subsequent scheduled task
occurrences. Besides the first one, all other differences are practically meaningless from a disagreement
analysis viewpoint, thus reducing the failure detection ability of back- to-back testslO•

Ideally, floating-point accuracy should be clarified in co-operation with the development team of the
primary program. That, however, was not feasible mainly because the experiment was conducted after-
hours. The alternative was to provide the model program with a set of internal parameters to allow fine-
tuning. The calibration tried to adjust those parameters until the model program ideally performed floating-
point computations using the same precision as the primary program. Although it contributed to reduce
substantially the number of disagreements, calibration started to become increasingly expensive. The internal
parameters did not seem to be sufficient to eliminate all small differences that were likely to be caused by
floating-point accuracy.

To be able to perform effective output comparison even in the presence of tolerable small differences,
a new model program was written on top of the first one. The new program will be called for convenience
the Evaluator, while the first program will be called the Scheduler. Simply, after scheduling a task
occurrence, the Evaluator compares it to the corresponding occurrence that was scheduled by the primary
program. If they are different, the Evaluator logs the disagreement and then it resets its state to be in accord

9 C++ method and class templates also fall under parametric polymorphism.
10 It is difficult to determine whether an output difference is encountered only because of a previous one or because of
other failures.

 
 
 



with the output of the primary program. In Figure 3-10 for instance, for the first and the third occurrences,
the Evaluator resets first its state and then it schedules the corresponding next occurrences as indicated by
the dashed arrows.

Task X

Primary progra~
I
I

I_i~,_~_, P 0------1 I i --------

Evaluator -<:~" -- - -~'- ----

O---Q--O----O

Besides allowing effective output comparison in the presence of tolerable small differences, the
Evaluator also increased the failure detection ability of tests in general. Because differences are not
propagated, all disagreements encountered during a single test run can be analysed separately. The Evaluator
provided the necessary means to perform effective back-to-back testing.

Essentially, back-to-back testing entailed generating test data, setting up the test execution environment
from the generated data, running the programs, and analysing the output disagreements. Except for the
disagreement analysis, all other activities were practically fully automated. Before going into more detail
about the actual back-to-back testing, the means of automation will be presented first.

3.3.5.1 Test Data Generation

As highlighted throughout this dissertation, one major advantage of M-mp testing is the possibility of
carrying out a large number of tests in a cost-effective manner. Emphasising and exploiting this advantage
was a goal from the start and automating the creation of test data was one of the first challenges of this
experiment.

Although the initial intention was to use a commercially available test data generator or one produced
by research, only a few data generators could be evaluated given the time constraints and even that was done
on a superficial level. However, none of the evaluated test data generators seemed to accommodate both
referential integrity and arbitrary mathematical attribute dependencies across a relational model. Support for
statistical testingll was another desirable property that was considered when evaluating test data generators.
In the end, a test data generator, which is described in Appendix C, was developed especially for this
experiment.

Although the test data generator is quite powerful, it could be used effectively only to generate data for
the particular case of scheduling "from scratch", that is, the case when no previous task schedule exists for a
particular machine. In Figure 3-11 for instance, test data could be generated for the first use of the scheduler,
but not for subsequent uses. Generating a realistic updated schedule was too difficult as it would have
implied meshing the scheduler logic into the input to the test data generator. This problem is likely to be
encountered with any generic data generator. The solution was to develop a program that used the same
domain knowledge as the scheduler, but with the purpose of acting as the user. In other words, the program,
which will be called the Modifier, was designed to alter the output of the primary program to be used as
input for new tests.

II Reliability-engineered testing, which is a particular case of statistical testing, has been comprehensively addressed in
Chapter 2.
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Together, the test data generator and the Modifier provided a cost-effective means of generating
practically any kind of test data: simple or complex, positive or negative (i.e., valid or invalid), uniform or
distributed according to other statistical profiles. This flexibility was in particular useful for adjusting the
complexity and the specificity of the test data to increase the efficiency of disagreement analysis. This aspect
will be discussed in more detail later in this section.

Once a test data set was generated, the test execution environment had to be set up from the generated
data. That was one of the most highly automated activities in this experiment and it will be briefly described
next.

3.3.5.2 Test Execution Environment Set-up

As illustrated in Figure 3-12, loading the static data into the database was done by means of SQL
Scripts, which were in turn generated from the I/O Bridge Class Structures that were captured in Microsoft
Excel spreadsheets. The same spreadsheets were used to generate the C++ and embedded SQL code for the
I/O module of the model program (i.e., the I/O bridge) and the Input Layout for the Test Data Generator12.
That ensured exceptional naming and structural consistency across development and testing artefacts and
one important consequence was that the format of the Static Data could be automatically synchronised with
that set in the SQL Scripts. The Static Data could thus be loaded into the database without necessitating any
adjustment. Generating the Execution Scripts was also very direct. The Runtime Data needed only to be
inserted into a Microsoft Excel spreadsheet.

r--------------
t I
t Data Generation I I I

1/0 Bridge Class Structures _____ t Support Utility :__IE£~t_ : Test Data :
(MS Excel Spr~~dsheets) ~ (VB Macro) : Layout -.: Generator :

•.•..••...•.•••..•.•.. ~ : I J

........
.•...•...•..

.•.•.•.•...•.•. 1- - - - - - - - - - - - - ~

....Ai Code Generator I C++ and Embedded
: (VB Macro) ~----SQ[-Code-----~
•• _------ 1

SQL Script SQL Scripts
Generator

(VB Macro)

SQL Utilities
(Oracle)

Stored Data
~

Static
Data

Runtime
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Execution
Script

Generator
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Execution
Scripts

12 The dashed lines in Figure 3-12 indicate that generating code and test data are not part of setting up the test
environment. They have been included, however, to emphasise the common root of otherwise distinct activities and the
extent of automation.

 
 
 



Test data generation and the automation of the execution environment set-up provided the means for
running the programs back-to-back in a cost-effective manner on any feasible test data set. The main aspects
of the way testing has been conducted in this experiment are presented next.

3.3.5.3 Conducting the Tests

Back-to-back testing actually started during the model program calibration and it was based on the test
data that was created manually for formally testing the primary program. Reusing the manually created test
data, however, was not as beneficial as expected mainly because many test cases involved "positive"
exception handling13• The model program, which was designed to process only standard data, rejected the
inputs for those test cases. Although it would have been possible to complete the test data to make it suitable
for the model program, that was not pursued mainly because it was much more cost-effective to generate
data. Moreover, there were no disagreements between the primary program and the manually designed test
cases. Therefore, the 3-version system made up by the model program, the primary program, and the test
cases degenerated into a 2-version system. In this regard, using the manually created test data would not
have been different from using any data set.

Besides model program development (and maintenance), intrinsic to M-mp testing is the disagreement
analysis activity. Assessing and investigating ways of improving its cost-effectiveness was the focus of
back-to-back testing in this experiment. Simply, the analysis entails determining which programs failed on a
test input that caused a disagreementl4• The most direct way of disagreement analysis is to work out the
correct results by hand and compare them with the results produced by each program. Because the outputs
need to be manually calculated only in cases of disagreement, this is already an improvement over manual
test design.

In this experiment, the cost of disagreement analysis could be reduced even further through data
mutation and correlation. Data mutation entailed changing test inputs slightly with the purpose of drawing
general conclusions about the corresponding disagreement cases. For instance, it was useful to know that
turning off a flag brings the programs back into agreement. Similarly, it could be observed that changing the
relationship between two input parameters influenced whether the programs agreed or disagreed. General
conclusions about disagreements could also be drawn by correlating the test inputs and the results of
different tests. Generalising from data allowed the formulation of high-level behavioural hypotheses that
could be first confirmed and then validated against the requirements specification. Individual disagreements
could then be analysed to determine whether they are caused by known failure typesl5• Alternatively, if a
disagreement disappeared after removing a defect, it was likely that the disagreement was caused by that
defect (or by the corresponding failure type). In these cases, there was no need for manual computation.

To understand how the disagreement analysis was performed in this experiment, a sample of the
disagreement analysis sheet is shown in Table 3-1 (the full analysis sheet is included in Appendix D). A row
corresponds to a distinct disagreement. Each column is briefly explained below:

• Test Data Set - The unique identifier of a test data set. 0 is the manually created test data set
(before the experiment started), while 1, lA, lB, lB. 1, 2, and 2A are the data sets that were
generated in the experiment.

• PP - The versions of the primary program. Only one version was used because the detected faults
were not corrected within the scope of this experiment.

13 "Positive" exception handling refers to cases when a program supplies default values to complete its input or it rejects
only a part of that input. As opposed to "negative" exception handling, the program still produces results.
14 It is important to note that if a disagreement is caused by a specification defect (e.g., conflicting requirements,
omission), none of the programs failed.
15 A failure type means a class of failures that are caused by the same, not necessarily localised, defect.

 
 
 



• MP - The versions of the model program. As the model program was corrected twice, there are
three versions: A, B, and C. Each of the 3 columns is assigned a distinct version. An empty cell
indicates that the disagreement was not encountered for the corresponding version. For instance,
the disagreement for Test Data Set 0 happened for MP A and B, but not for C. An "x" indicates
that the version is not relevant for that particular disagreement. For example, the disagreement for
Test Data Set 2A is relevant only for MP C. (In this particular case, MP A and B are not relevant
because they were not tested on Test Data Set 2A.)

• Env. - The versions of the test execution environment. The test environment was also versioned
because a primary program failure (PP-Fail-2) was caused by an environment defect. The same
conventions that have been described for the model program versions apply.

• Test Id - The unique identifier of a test within a particular data set.

• Task Occ. - The task occurrence for which the disagreement occurred.

• Occ. Attribute - The task occurrence attribute that caused the disagreement.

• PP Output - The value of Occ. Attribute computed by the primary program. An empty cell
indicates that no output was produced or the output is irrelevant in that case.

• MP Output - The value of Occ. Attribute computed by the model program. The same
conventions as for PP Output apply.

• Correct Output - The correct value of Occ. Attribute. An empty cell indicates that the correct
output was not determined, either because it was not necessary or because there was a
specification defect.

• PP Failure - Primary program failure type. An empty cell indicates that it is not known whether
the primary program failed the corresponding test, while an "N" marks that the output of the
primary program was correct for Occ. Attribute.

• MP Failure - Model program failure type. The same conventions as for PP Failure apply.

• Spec. Defect - Specification defect identifier. With one exception, if the specification was faulty,
whether any program failed could not actually be determined. The exception wasMP-Fail-l and
Spec-2 (e.g., Test Data Set 2A). The disagreement was too big to be caused by the specification
defect alone.

• Remarks - General characteristics of the disagreements. This column was the main means for
data correlation. The best examples in Table 3-1 are Test Data Set 2 and 2A.

0 A AlBI pjx 21 (2112610) Start Date 01/02/1996 21/03/1996 01/02/1996 N MP-Fail-2

A AlB!c AlB 1000 (10001100010) Start Date 15/03/2000 17/01/2000 Spec-2

A 1BIC1 1000 (100011001) none PP-Fail-2 Factored

I I : meters
" ,

A AlBlcAlB 1100 (11001110110) Start Date 12/01/2000 07/10/1999 07110/1999 PP-Fail-3 N

A ~B!C~B 1200 (120011201118) Start Date 30/05/2007 06/06/2007 Spec-1
" ," ,

1A A xlxlcxjB 1000 none PP-Fail-4 PP does not

:: : terminate

 
 
 



IA A ~BlcAlB 1200 (12001120210) Start Date 27/03/2000 29/11/1999 29/11/1999 PP-Fail-3 N

IA A All A1x 1300 (13001130310) Start Date 24/12/1999 04/08/1999 MP-Fail-I Spec-2

IA A !BlcAlB 1300 (13001130310) Start Date 24/12/1999 03/09/1999 Spec-2
" ,

IA A AjBlcAiB 1700 (170011704117) Start Date 27/07/2006 20/07/2006 Spec-I

lB A xlBlc~B 1000 (10001100310) Start Date 18/11/1999 30/08/1999 Spec-2

lB A x!B!CAiB 1100 (11001110310) Start Date 30/03/2000 08/11/1999 08/11/1999 PP-Fail-3 N

lB.I A
' , AlB 1100 (11001110310) Start Date 30/03/2000 08/11/1999 08/11/1999 PP-Fail-3 Nx!B!
" IlB.I A x!B!CA!B 1300 (13001130310) Start Date 21/02/2000 12/10/1999 Spec-2

2 A xlxlc AlB 2000 (20001200110) Start Date 27/09/1999 07/06/1999 Spec-2

2 A xlxlc AlB 2000 (20001200210) Start Date 25/01/2000 07/06/1999 07/06/1999 PP-Fail-3 N IntvType = 6, ,

2 A xlxlc AlB 2000 (20001200313) Start Date 20/03/2000 13/03/2000 Spec-I
" ,

2 A xlxlc AlB 2000 (20001200410) Start Date 19/11/1999 20/07/1999 20/07/1999 PP-Fail-3 N Forcelnd =, ,
I! I ON, First

! I ! Date = Non-

!! I workJ I I

2A A I! ! 2600 (26001260010) Start Date 21/10/1999 31/05/1999 31/05/1999 PP-Fail-3 N IntvType = 6Xlx:Cx:B

Table 3-1: Disagreement Analysis Sheet Sample

The automated tests started with a large set of random data. That gave a rough estimate of the level of
disagreement between programs, but it was not too useful for disagreement analysis because the test inputs
were too complex and diverse. The experiment, therefore, proceeded incrementally with small and simple
data sets (1, lA, lB, lB.l, 2, and 2A in Table 3-1), taking full advantage of the data generation capability.

Even if performed on a small scale, the tests led to the detection of two specification defects, two
primary program faults, two model program faults, and one test environment defect. The full results of the
experiment are presented in the last section of this chapter.

 
 
 



Test Design

Model Program Development
Specification Language Definition
Model Program Design

Code Generation 16

Scheduler Implementation 17

Scheduler Calibration
Evaluator Implementation

Test Data Selection
Test Data Generator Implementation
Modifier Implementation
Test Data Generation

Test Execution and Evaluation
Test Environment Set-up
Programs' Execution and Disagreement Analysis

664
458

30
122

137

90
51

28

206

ISO
IS
41

73

42

31

737

Requirements Specification

Primary Program
Model Program

Test Environment

To keep the cost within reasonable limits, the experiment was carried out gradually until it was felt that
sufficient evidence had been gathered to draw a valid conclusion. It is important to note, therefore, that the
above results pertain only to testing the core functionality of the scheduling application using standard data
(i.e., "perfect data"). Although the interpretation of the results is done in full inChapter 4, it is convenient to
give here the cost estimates of an M-mp test design covering the full scheduling functionality (Table3-5).
The adjustment factor that is used for most activities (i.e., 1.5) is based on the realistic assumption that the
core functionality represents at least two thirds of the function/feature point size of the scheduling
application. Because the specification language, the code generator, and the test data generator are reusable
artefacts, their costs are practically constant. The cost of Code Generation is adjusted by a factor of 1.25

16 This includes the cost of developing the code generator. It is not known exactly how much effort was spent to write
the code generator, but it is estimated in the region of 100person-hours.
17 Only the manually written code is taken into account.

 
 
 



because It IS not known exactly how much etlart was spent to write the code generator (it is estimated,
however, in the region of 100 person-hours).

Model Program Development 458 1.39 638
Specification Language Defmition 30 1 30
Model Program Design 122 1.5 183
Code Generation 137 1.25 171
Scheduler Implementation 90 1.5 135
Scheduler Calibration 51 1.5 77
Evaluator Implementation 28 1.5 42

Test Data Selection 206 1.14 234
Test Data Generator Implementation 150 1 150
Modifier Implementation 15 1.5 23
Test Data Generation 41 1.5 61

Total 664 1.31 872

Table 3-5: Adjusted Test Design Costs

The adjusted cost ofM-mp test design from Table 3-5 represents around 45% of the manual test design
cost (i.e., the effort that was spent on manually designing the test cases for the first release of the primary
program). If the reusable artefacts had been available at the beginning of the experiment, the ratio would
have decreased to 30%. It is also interesting to note that according to Table 3-5 the model program
development would have been 6 - 7 times cheaper than the development of the primary program. The full
interpretation ofthe results is done in Chapter 4.

 
 
 



To increase the clarity of the discussions in this chapter, it is important first to make the following
remarks:

• Cost, unless otherwise stated, represents the number of person-hours required to carry out a task.
In this respect, the terms "cost" and "effort" are sometimes used interchangeably.

• To allow meaningful and easy comparisons, costs are in general expressed as percentages of the
manual test design cost (i.e., the effort that was spent on designing manually the test cases for the
first release of the primary program).

• Very similar to the input domain partitioning described in Van Vliet ((1996), 355-356), in this
dissertation, the input domain of a program is divided into a standard domain and an exception
domain. In turn, the exception domain is split into an incomplete-data domain and an invalid-data
domain, as depicted in Figure 4-1. The standard domain consists of inputs that a program can
process "as is" (i.e., perfect data). At the other extreme, the invalid domain contains the inputs
that a program cannot process and, therefore, they should be rejected with appropriate error
messages. The incomplete-data domain is "between" the standard and invalid-data domains and it
is made up of inputs that the program has to complete with default values before processing them.
For reasons that will be explained later in this chapter, the model program that was developed in
the experiment was especially designed to cover in particular the standard domain of the primary
program.

1--------------,
I Standard Domain I
I IL _

--------------------
: Incomplete-Data Domain :~------------------~

,
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--------------- __ 1

The case study that has been presented in the previous chapter provides prima facie evidence to
suggest that the M-mp approach may be more cost-effective than testing based on manually pre-calculated

 
 
 



results. Of course, the validity of such a conclusion is dependent upon the specific context in which the
experiment was carried out. The most salient features of the present context are summarised below:

• The experiment developed, at low cost, a reliable and maintainable model program that provided
the correctness checking means to test the core functionality of the primary program on standard
test data without necessitating pre-calculation of expected results. As shown in Table 4-1,
developing the model program required only 24% of the cost of manual test design. By excluding
the effort that was spent on creating reusable artefacts (i.e., the specification language and the
code generator) the ratio reduces to 17%.

• Because it was feasible to carry out a large number of arbitrary tests, a data generator, which is
described in Appendix C, was developed especially for the experiment. As indicated in Table 4-1,
test data generation was very economical. Its total cost represents only 11% of that of the manual
test design. Moreover, if the data generator had been available at the start of the experiment, the
ratio would have decreased to 3%!

• Two specification defects and two primary program faults were detected at low cost (around 2%
of the manual test design effort) by analysing the disagreements that resulted from 50 tests. The
test inputs were especially generated to facilitate cost-effective failure analysis and defect
detection. Two model program faults and one defect in the test environment were also found. It is
important to mention in this context that the experiment dealt with a mature version of the
primary program - by the time the experiment started, the primary program had been in use for
more than one year. Consequently, the likelihood of detecting specification and primary program
defects was rather low.

• Because of the low cost of correctness checking, the experiment could easily have been extended
to carry out tens of thousands of tests in a cost-effective manner. The testing of the primary
program, on the other hand, was based on less than 150 test inputs.

Standard-Domain Test Design 35% 20%
Model Program Development 24% 17%
Test Data Generation 11% 3%

Note: All values represent percentages of the manual test design cost.

The direct interpretation of the results is that, by using the M-mp approach, 20 - 35% of the manual
test design cost would have been sufficient to provide the capability of testing the core functionality of the
primary program on its standard domain, using large data sets. However, it was not possible to determine
accurately the actual percentage of the manual test design cost corresponding to the same testing scope as the
M-mp tests (i.e., where the scope is limited to the core functionality). Therefore, the next discussion will
show, based on sound estimates, that the 65 - 80% cost savings margin implied above could have been more
than sufficient to make up the costs of an M-mp test design covering the system's full functionality. In
addition, it will be shown that the M-mp approach could have also achieved higher test adequacy levels than
the manual approach.

 
 
 



4.2.1 Test Design Cost Comparison

To keep the cost within reasonable limits, the experiment proceeded gradually until sufficient evidence
had been gathered to draw a valid conclusion. Because implementing the core functionality, which is the
most complex part of the scheduling algorithm, proved very economical in comparison with the manual test
design cost, completing the model program was not considered necessary in the end. As shown in Table 4-2,
the estimated cost of implementing the complete functionality is reasonably low (25 - 33%)1. Consequently,
although the extra effort would have provided better accuracy for the cost estimates, it is unlikely that the
significance of the results would have been influenced.

Standard-Domain Test Design 45% 30%
Model Program Development 33% 25%
Test Data Selection 12% 4%

Note: All values represent percentages of the manual test design cost.

The adjusted results from Table 4-2 suggest that, by using the M-mp approach, 45% of the manual test
design cost would have been sufficient to provide the capability to test the primary program on its standard
input domain. If the reusable artefacts had been available at the start of the experiment, the ratio would have
decreased to 30%.

Because the manually designed tests cover the entire input domain of the primary program, the next
issue that has to be addressed is the cost of exception-domain test design. One way to cater for exception-
domain testing would be to complete the model program to match the exception-handling capability of the
primary program. That, however, might not be the most cost-effective option for the following reasons:

• Firstly, based primarily on experience, fully-fledged exception handling could increase
significantly the complexity of a program and, consequently, its development cost. Besides other
factors such as design simplicity and cost-effective code generation, limited exception handling
could also explain why developing the model program (100% functionality) would have been 6
times cheaper than the primary program development.

• Secondly, as suggested in Figure 4-2, exception-domain testing can be automated efficiently by
other means than using model programs. To test whether the Primary Program supplies correct
default values, it is sufficient to generate Incomplete Data by removing explicit default values
from (arbitrary) Standard Data and to run the program on both data sets. If the program handles
incomplete data correctly, the Actual Results should be the same in both cases. Similarly, to test
whether the Primary Program rejects invalid inputs with appropriate error messages, Invalid
Data can be generated from Standard Data by replacing valid values with invalid ones. (This
method is also mentioned for instance by Bishop et al (1986) and Cohen et al (1997).) If the
program handles invalid data correctly, it should terminate without producing results and the

1 In the previous chapter, to cater for the additional functionality, most of the test design costs were increased by a
factor of 1.5.

 
 
 



Actual Error Messages should be the same as the Expected Error Messages. It is worth
mentioning in this context that it is advisable to select only one invalid value per test to avoid
masking effects (i.e., an invalid value might cause the program to "miss" other invalid values).

Incomplete-Data
Generator

Simple Data
Comparison

Tool

Difference
Report

Incomplet
Data

Default
Values

Invalid-Data
Generator

Primary
Program

Message
Comparison

Tool
Difference

Report

Invalid Values
along with

Expected Error
Messages

Expected Error
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The test design for the exception-domain testing approach that is depicted in Figure 4-2 comprises
writing the exception-data generators (if necessary) and setting up their inputs. Generating exception data, as
discussed above, entails simple value substitutions and it is expected to be (much) less complex than
generating standard data as it was done in the experiment. Therefore, the test data selection cost inTable 4-2
can safely be assumed to be an upper cost estimate for generating incomplete data and also for generating
invalid data. Consequently, the exception-domain test design costs can be roughly estimated to be twice the
costs of generating standard data. The cost estimates for a complete M-mp test design are shown in Table
4-3.

Test Design 69 %
Standard-Domain Test Design 45%
Exception-Domain Test Design 24%

Note: All values represent percentages of the manual test design cost.

38%
30%
8%

 
 
 



Based on sound estimates, it has been shown that 38 - 69% of the manual test design cost could have
been sufficient for an M-mp test design covering the system's full functionality. Besides the potential cost
savings, the M-mp test design has another important advantage over the manual one: because there is no
need for pre-calculated results, its cost is practically independent of the number of tests. The cost of manual
test design, on the other hand, increases with the number of tests. This aspect is emphasised inFigure 4-3,
where the vertical axis represents test design costs as a percentage of the manual test design cost in the
current study. Accordingly, the Manual Test Design Cost graph passes through the point (150,100) and has a
constant non-zero slope2• It intersects the y-axis at a point marked Fixed Cost of Manual Test Design. This
point represents the cost of manual test design that is independent of the number of tests. It mainly involves
equivalence class partitioning and boundary value analysis and it has been roughly estimated to account for
40% of the manual test design cost.
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As suggested in Figure 4-3, designing tests manually is not feasible for large numbers of tests. As it
will be shown next, this might limit the test adequacy levels or it might increase the cost of data selection.

As mentioned in the previous chapter, it would have been ideal to conclude the experiment by
comparing precisely the M-mp and manual approaches in terms of their cost-effectiveness with respect to
various test adequacy criteria. Performing test adequacy comparisons, however, would have increased the

2 The manual test design produced around 150 tests.
3 The discussion pertains primarily to standard-domain testing.

 
 
 



cost and scale of the experiment beyond the scope of the present study. Moreover, while the testing of the
primary program was based on a small data set (around 150 test inputs), the experiment could perform tens
of thousands of tests in a cost-effective manner. Intuitively, for a 50-dimensional input domain, it is very
likely that 15000 tests will achieve higher adequacy levels than 150, even if the test data accuracy
requirements are relaxed. The term "data accuracy" is used in respect of a test generation procedure for a
given application where a specified adequacy level is to be attained in terms of a specified adequacy
criterion. The proportion of test inputs that the test generation procedure has to generate in order to achieve
the stated adequacy level is then referred to as the data accuracy. For example, in Figure 4-4, 100% data
accuracy corresponds to the minimum number of test inputs that achieve a specific test adequacy level (e.g.,
65% branch coverage), while 0% means that none of the generated test inputs exercises the adequacy
criterion that is being used. In general, the lower the data accuracy of a test data generation procedure, the
more the numbers of tests that have to be generated to achieve a given adequacy level.
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As suggested in Figure 4-4, even if the 150 test inputs derived from one test generation method are
highly accurate (point C), 15000 test inputs derived by another test generation method could achieve the
same adequacy level (point A) albeit with significantly less accuracy. In fact, the 150000 test inputs might
even achieve a higher adequacy level should its accuracy turn out to be better (Point B). Moreover, selecting
highly accurate data is likely to be very expensive, while an automated procedure to generate less accurate
data could cost much less. The test data generator that was developed in the experiment provided the
capability of selecting high quality test data based on accurate input domain analysis. Since domain analysis
was the basis for selecting the test inputs in the manual test design as well, the accuracy difference between
the generated data and the manually selected data is expected to be relatively low. Consequently, as
indicated in Figure 4-4 (point B), the experiment has the potential to achieve adequacy levels that are
perhaps not even attainable by 150 test inputs, no matter how accurate.

If one wished to extend the experiment, a large number of tests could have been carried out in a cost-
effective manner mainly because of the low cost of test evaluation. Firstly, program disagreements could be

 
 
 



recorded automatically for around 8640 test inputs in 24 hours, for 60480 in one week and so forth4
•

Secondly, disagreement analysis proved extremely cost-effective because it was possible to reduce the
number of disagreements that had to be analysed explicitly. It is obvious that once a defect is removed, all its
related disagreements, whether explicitly analysed or not, would disappear. In other words, it is practically
sufficient to analyse thoroughly only one disagreement per defect. It is logical to conclude, therefore, that the
overall cost of disagreement analysis would have been largely determined by the number of exercised
residual defects and not by the number of tests (or by the number of recorded disagreements). Moreover, the
cost of disagreement analysis per defect may be assumed to be much lower on average than in the manual
approach. That is because the data mutation and correlation techniques that have been mentioned inChapter
3 are not feasible in the manual approach because they may require additional tests and, therefore, more
manually pre-calculated results. Consequently, as also highlighted in the Pilot Study that has been presented
in the previous chapter, resolving differences between the actual and the expected outputs usually requires
re-calculating the expected results by hand and, therefore, it can become very expensive.

Besides the potential high cost of test evaluation, the number of tests that could feasibly be carried out
would also have been limited if the model program maintenance turned expensive. Within the scope of the
experiment, however, the model program proved as reliable as the primary program and the cost of
localising and removing its two defects was rather insignificant (only a few hours!).

To summarise, it has been argued that, because of the low cost of test evaluation and model program
maintenance, the experiment could relatively easily have been extended to carry out a much larger number
of tests than the manual approach. Because the input to the test data generator was based on domain analysis,
which was also the method for selecting the test inputs in the manual test design, it is almost certain that the
larger number of tests could achieve higher adequacy levels. This hypothesis is also confirmed by the fact
that two specification defects and two primary program faults were detected with relative ease even though
the primary program had been in use for more than one year. Those defects went undetected by the manually
designed tests.

Based on prima facie evidence, sound estimates, and theoretical considerations, it has been shown that
the M-mp approach could test the scheduling program more adequately than the manually designed tests and
at lower cost. Of course, the validity of such a conclusion is dependent upon the specific conditions of the
experiment. The immediate question that arises is whether similar results are likely to have been obtained if
a different team had implemented the M-mp approach to test the same application. In other words, is the
experiment repeatable?

The low cost of developing a reliable and maintainable model program in the experiment was a direct
consequence of an M-mp testing principle that has been presented in the first chapter: a model program does
not need to be equivalent to the primary program and it should cover primarily functionality whose
correctness checking is normally expensive. In the case of the scheduling application, as discussed earlier, to
eliminate the need for manually pre-calculated results, it is sufficient for a model program to cater only for
standard-domain scheduling. Consequently, a model program does not need to implement fully-fledged
exception handling and in addition, because it could be run on special hardware if necessary, its speed and
resource usage are not very importants. Mainly because of these simplifications, which are applicable
irrespective of particular design methods and programming environments, the development of the model
program was straightforward. Except for defining the specification language and writing the code generator,

4 In the experiment, executing the primary program and then the model program took on average lO seconds per test
input.
S In the experiment, the speed of the model program was comparable with that of the primary program, while the size
and the resource usage were bigger, but reasonably low.

 
 
 



developing the model program did not require advanced analytical and programming skills. Most probably,
if a high-level development environment is available, a person who is able to schedule tasks by hand is also
sufficiently skilled to write a reliable and maintainable model program with minimum training. Alternatively,
developing the model program could be a joint effort of people having complementary knowledge and skills.

For practical reasons, a specification language was defined and a code generator was developed. In the
general case, however, such reusable artefacts might be already available or they could be created through a
separate project. Moreover, a code generator as the one built in the experiment might not be needed if the
implementation is done, for instance, in 4GL or in a rapid application development (RAD) environment.

Given the above considerations, it is reasonable to expect that developing a model program for
standard-domain scheduling will be in general as cost-effective as suggested by the case study. Because test
data selection can usually be automated cost-effectively\ it is likely that if the experiment as a whole were to
be repeated then similar results would be obtained. This suggests that the M-mp approach could be regarded
as more cost-effective than the manual approach for adequately testing the scheduling application. As will be
discussed next, this conclusion might apply in general to testing algorithmically complex software.

Intuitively, the simpler the algorithm, the easier the calculation of expected results and the simpler the
development of the model program. Because the same applies to the selection of test data, this suggests that,
given a fixed number of manually designed test cases, the ratio between the M-mp and manual test design
costs should not vary much from application to application. Therefore, the cost graphs that are depicted in
Figure 4-3 are likely to be relevant for a wide range of algorithms, whether simpler or more complex than
the scheduling one. As suggested in Figure 4-3, the M-mp approach may be a better option than the manual
one if the number of tests that are required to achieve particular adequacy levels is greater than 100. That is
usually the case when testing algorithmically complex software.

6 Test data selection is probably the most widely spread subject in the testing literature and it is usually supported by
good tools.

 
 
 



APPENDIX A: THE SPECIFICATION LANGUAGE

The specification language is an adaptation of Shlaer-Mellor Action Language (SMALL, WWW
Resources (2)). SMALL is primarily used to specify the actions that are associated with Moore states in
Shlaer-Mellor OOA/RD (Object-Oriented AnalysislRecursive Design). The adaptation involves mostly the
mixing in of certain C++ notation and it also introduces the author's own naming conventions. The
definition of the specification language as used in the M-mp experiment is given in the table below:

Data types: STRING, BOOLEAN,
INTEGER, REAL, DATE, TIME,
DATETIME
System limits:
STRING: [0, SYS_MAXSTRLENGTH]
INTEGER: [SYS_MININT, SYS_MAXINT]
REAL: [SYS_MINREAL, SYS_MAXREAL]
DATE: [SYS_MINDATE, SYS_MAXDATE]
TIME: [SYS_MINTIME = 00:00:00.00,
SYS_MAXTIME = 23:59:59:99]
DATETIME: (DATE, TIME)
Data types conventions:
A variable of any data type can
be NULL (i.e., not specified)
By default the constraint on any
variable is (!= NULL and within
the system limits)
Number literal
String literal
Boolean literal
Relational operators:

"Therapy", "11:30:00"
true, false

Logical operators: 'and', 'or'
Arithmetic operators: '+', '-'
'*', 'I', ,**, (power)

I_OvenProperties = (I_Temperature, I Pressure);
II I_OvenProperties is (implicitly) defined as
(numeric, numeric) the composition of 2 numbers
I_Temperature II non-reference local variable
i_Temperature II input argument
o Temperature II output argument

 
 
 



Prefix for input arguments: 'i '
Prefix for output arguments: '0 '

Reference variable - contains one myOven, myOvens
or more references to instances
of the same object/class
Access to non-referential
attributes (.)
Selecting an arbitrary instance
and writing a value to an
attribute
Selecting a specific instance

Selecting and using multiple
instances

Selecting in Order
Ascend: 'I', Descend: '\'
Abstract syntax of an instance
Selector
Creating instances

Create operator: '»'
• It is illegal to initialise a

referential attribute.
• An identifying, non-

referential attribute must be
always initialised.

Deleting instances
Delete operator: '«'

Data flow
Pipe (flow) operator: 'I'

shuffle - language-defined
process

Calling external component
services

myOven = Oven(one);
Oven (one) .Temperature = 20;
myOven.Temperature = 20;
myOven = Oven (one, (Temperature
4) ) ;

myOven
myOven
myOven
myOvens
myOvens
4) ) ;

Oven (one, Temperature >= 23, ITemperature);
Oven(first, Temperature >= 23, ITemperature);
Oven (last, Temperature >= 23, ITemperature);

Oven(all);
Oven(all, (Temperature >= 23) or (Pressure <=

myOvens.Temperature
instances
1 BagOfTemperatures = myOvens.Temperature;
l_OrderedBag = Oven(all,Temperature > 21, ITemperature
\Pressure) .Temperature;
([<qualifier>] [<where clause>] [<'order by' clause>])

("X", 24, 4) » Oven. (Name, Temperature, Pressure);
» Oven(Name = "X", Temperature = 24, Pressure = 4);
myOven = (("X", 24, 4) » Oven. (Name, Temperature,
Pressure));
1 Name = "X"; l_a-Temperature = 24;
» Oven(l_Name, 1 a-Temperature, Pressure 4);

« myOven;
« Oven(Temperature < 20);
(myOven. (Temperature, Pressure), I_x, l_y) (1 z
ComputeSomething);
(myOven. (Temperature, Pressure), I_x, l_y)
shuffle(2,4,1,3) (1 z = A);
1 z = (myOven. (Temperature, Pressure), I_x, l_y)
shuffle(4,1,3) I B; II data element 2 is dropped

(l_myRobot:i_RobotId, 3: i_distance)
ROBOT_RetractHand;
ROBOT_RetractHand(l_distance, l_my-RobotId);
(l_my-RobotId, 3:distance) I ROBOT_RetractHand;
1 Current = MAGNET GetCurrent(l myMagnet:i MagnetId);

 
 
 



Calling component private
services
Return - language-defined process
Traversing a single relationship

(1_my-Magnetld) (1_Cur: 0_ Current
MAGNET_GetCurrent);
(l_my-Magnetld) (1 Cur = MAGNET_GetCurrent); II

1 Cur:o Current is implied
(l_x, l_y, l_th:o_theta) (1 aRobot:i_Robotld)
ROBOT WheresTheRobot};
("X" :OvenName) I Oven. Create;
Oven. Create (1 my-OvenName);
l_aTemperature Oven(all} .SetTemperature;
23:Temperature aOven.SetTemperature;
aOven.SetTemperature(23); II 23:Temperature is implied
("33-Mar-1998": i_date) I ValidDate ?

"33-Mar-1998" I ValidDate ?
(vall: <outp1>, va12: <outp2>, ... ) I Return;
aTherm myOven->[R2.IsEquippedWith]Thermometer(one};
aTherm myOven->[R2.'Is equipped
with']Thermometer(one) ;
aTherm = myOven->[R2]Thermometer(one};
allTherms = myOven->[.IsEquippedWith]Thermometer(all};
aTherm = myOven->Thermometer(one}; II One direct
relationship
l_Volume = myBench-> [R2]GasLine (one)-
>[R4]GasBottle(one} .Volume;
1 Volume myBench-> [R2->R4]GasBottle (one) .Vo1ume;
1 Volume myBench->GasLine(one)-
>GasBottle(one) .Volume; II the best
l_AIITemperatures = myOvens-
>Thermometer(all) .Temperature;
l_OneTemperaturePerOven = myOvens-
>Thermometer(one} .Temperature;
l_BagOfOvenNames = Thermometer(all)->Oven(all} .Name;
Thermometer(all)->Oven(all} .Name (l_SetOfOvenNames
unique);
(myOven, aTherm) link [R5];
(myOven, aTherm) link [R6] » ThermPerOven;
(aEqp, aMet) I link [R7] »
DURP. (27/12/1998:FromDate);

(myOven, aTherm) link;
(myOven, aTherm) link» ThermPerOven;
(aEqp, aMET) I link » DURP. (27/12/1998: FromDate) ;
(myOven, aTherm) unlink [R5];
(myOven, aTherm) unlink [R6] « ThermPerOven;
(aEqp, aMET) I unlink [R7] « DURP. (FromDate ==
27/12/1998) ;

(myOven, aTherm)
(myOven, aTherm)

unlink;
unlink « ThermPerOven;

 
 
 



None? @IsNone, @IsOne, @IsMany;
language-defined test process

CurrentTime(o_year, o_month,
o day, 0 hour, 0 minute,

(aEqp, aMET) I unlink « DURP. (FromDate
27/12/1998) ;

i_Temperature myOven.Temperature @TempKnown; II

Setting a guard
@TempKnown: « myOven; II Guard handling

@A or @B: statement; II execute 'statement' if @A or
@B have been set

@A and @B: statement; II execute 'statement' if @A and
@B have been set

@A: [statementl;
statement2;] II Guarded block of statements

myOven-> [R5]Thermometer (Name "X") .Temperature I

IsOk ? @OK, @NotOK;
@OK: ; II this guard handling is optional
@NotOK: statement;

myOven->Thermometer(== i_Name) .Temperature I IsOk ?
@NotOK: statement;

(i_temperature >= 34) ?
@True: statement;
@False: statement;

Crate(all). (i_Height, i_Width, i_Depth)
(Crate() .Volume = ComputeVolume)
II Crate() means Crate(all)
Crate (all) . (i_Height, i_Width, i_Depth)
ComputeVolume I Size? @Big, @Small;

@Big: Crate() .Transport = "Slow Boat";
II Crate() means Crate(all, Size?

@Small: Crate() .Transport = "Plane";
II Crate() means Crate(all, Size?

@Small)
Oven(all, Temperature> 23) I None?

@IsNone: "no ovens?!" I SendErrorMessage;
@IsOne: "one oven" I SendMessage;
@IsMany: (Oven ()

SendMessage;

myOven->Thermometer(one) None?
@IsMany: II can never be set

(i_year, i_month, i_day, i_hour, i_minute, 1 second,
1 secondFraction) = CurrentTimei

 
 
 



(CurrentTime
(CurrentTime

shuffle (1,2, 3));
shuffle(4,5)) ;

I_temperature = 0;
LOOP

LOOP [[WHILE <cond>] I [<elem> IN (I_temperature == i_target) ?
<set>]] @True: @TargetReached BREAK;

statement; @False: (I_temperature> i_target) ?
BREAK; @True: 2:delta I Heater.ReduceT;
CONTINUE; @False: I_pIus-delta I Heater. IncreaseT;

ENDLOOP ENDLOOP

LOOP WHILE (I_temperature != i_target) @TargetReached
(I_temperature > target) ?

@True: l_minus-delta I Heater.ReduceT;
@False: l_plus-delta-l I Heater. IncreaseT;

END LOOP

LOOP oneHeater IN allHeaters
(oneHeater.temperature > i_target) ?

@True: 2 I oneHeater.ReduceT;
@False: 1 0 I oneHeater.IncreaseT;

The purpose of the method specified below, SchedFirstFromCaCc, is to schedule the first occurrence
of a recurring task (RT) relative to the previous one, which is 100% completed. cacc stands for
"Completed (Task) Occurrence".

The method takes one argument of type DATE, i_endDate, and it may set a guard, @ExitCriterionMet,
if, for instance, the newly scheduled occurrence falls outside the planning horizon. In that case, the
scheduling for the specific RT ends. The caller of the method is responsible for handling the guard.

The pre-condition verifies that the previous occurrence is indeed a completed one. pcacc (i.e.,
"Partially Completed Occurrence") and cacc are subtypes of TaCC (i.e., "Task Occurrence"). thisRT
identifies the specific RT instance (e.g., car service A). The pre-condition states that there must be at least
one cacc instance and no pcacc instances linked to thisRT. The method specification has no post-
conditions.

The implementation starts by selecting the last completed occurrence, cocco The start of the next
occurrence is determined by taking the earliest scheduling date that results from applying either calendar-
based (e.g., every 6 months) or meter-based scheduling rules (i.e., every 10000 Km). The first loop iterates
through all CALMET instances (i.e., Calendar "Meters") to determine the earliest start date according to the
calendar-based rules. Similarly, the second loop, which is not included in the example, determines the
earliest start date according to the meter-based rules. The earlier of the two dates is used as the start date for
the next occurrence.

 
 
 



RT.SchedFirstFromCOCC
(i_endDate:DATE) ? @ExitCriterionMet

@Pre: II Pre-condition
thisRT->TOCC: PCOCC (one) I None? == @IsNone and
thisRT->TOCC:COCC(one) I None? == @IsOne;

@Post: II Post-condition
@Implementation:

cocc = thisRT->TOCC:COCC(last, IOccNumber);

earliestCalmet = NULL;
earliestCalmetOrigSchedStart = UNDEFINED;
earliestCalmetSchedStart = UNDEFINED;

LOOP thisCALMET in thisRT->CALMET(all)
(thisCalmetOrigSchedStart, thisCalmetSchedStart)

thisRT.DetermineCalmetStartForNextUocc(
thisCALMET,
cocc.schedStart:i_prevSchedStart,
cocc.schedEnd:i_prevSchedEnd,
cocc.actualStart:i_prevActualStart,
cocc.actualEnd:i_prevActualEnd);

(earliestCalmet NULL)?
@True:

earliestCalmet = thisCALMET;
earliestCalmetOrigSchedStart = thisCalmetOrigSchedStart;
earliestCalmetSchedStart = thisCalmetSchedStart;

@False: (thisCalmetOrigSchedStart < earliestCalmetOrigSchedStart) ?
@True:

earliestCalmet = thisCALMET;
earliestCalmetOrigSchedStart = thisCalmetOrigSchedStart;
earliestCalmetSchedStart = thisCalmetSchedStart;

earliestMet = NULL;
earliestMetOrigSchedStart = UNDEFINED;
earliestMetSchedStart = UNDEFINED;

 
 
 



earliestCalmetOrigSchedStart < earliestMetOrigSchedStart ?
@True:

IICa/met
l_origSchedStart = earliestCalmetOrigSchedStart;
1 schedStart = earliestCalmetSchedStart;
earliestMet = NULL;

@False:
II Met
1 origSchedStart = earliestMetOrigSchedStart;
1 schedStart = earliestMetSchedStart;
earliestCalmet = NULL;

newUocc = RT.CreateFirstUocc(
cocc.OccNumber + l:i OccNumber,
l_origSchedStart,
1 schedStart);

(earliestMet != NULL) => (newUocc, earliestMet) I link;
(earliestCalmet != NULL) => (newUocc, earliestCalmet)

II Verify the exit criteria
thisRT.CheckExitCriteriaForLastUocc(i_endDate) ?

@ExitCriterionMet: return;

 
 
 



The code generator was implemented using Microsoft Excel spreadsheets and Visual Basic (VB)
macros. Simply, the code generator works as follows: a VB macro reads the code generation parameters of a
class from an MS Excel spreadsheet and produces generic c++ and embedded SQL (Structured Query
Language) code. The table below shows an example of the input to the code generator for a class called
UTIL:

NONUNQ
NONUNQ
UNQ NAV

The first section, which is made up by the first three rows, specifies the structure of the class. The top
row contains the names of the data members, while the second specifies their types. The third row provides
the maximum lengths of STRING data members. The corresponding c++ and embedded SQL code is shown
below.

class cUTIL II c++
{

II generic class methods (not included in this example)

private:
BASE id
long
CAL linDate
double
char*
char*

m_util_id;
m asset id;
m::::date_from;
m_util_rate;
m_util_lmu;
m_eqp_utl_code;

{

long
short
char
short
double
short
char
short
char
short
} ;

asset id;
asse()d_ind;
date from [11] ;
date-from ind;
util-rate;
util-rate ind;
util-lmu[33); II 32 + 1
util-lmu ind;
eqp utl code[33);
eqp:utl:code_ind;

 
 
 



The second section, which contains the IN, OUT, and ERROR rows, specifies the input argument
constraints upon creating an instance of a class (IN and ERROR) and the data members whose values are to
be written to the database (OUI). The latter does not apply in this example (i.e., data is "read-only"). TheIN
row specifies whether the input argument that corresponds to a data member is compulsory (NOTNULL) or
optional (NULL). The ERROR row contains constraints on the input domains of the data members. In this
example, the constraint means that supplying a negative value for UTIL_RATE is an error. Below is the
listing of the creation method that was produced by the code generator. ("-11" is used as general "null"
indicator for numerical data types. To cater for cases when "-11" is a valid value, the input arguments have
to be set to NOTNULL even ifthey are compulsory and the validation code has to be written manually.)

cUTIL*
cUTIL: :Create(

long
CAL linDate
double
char*
char*

i_asset_id,
i_date_from,
i util rate,
i-util-Imu,
i::::eqp_utl_code)

if (i_asset_id == -11)
BASE_EXCEPTION (ErrExit, "Create: i asset id must not be NULL")

if (i_date_from == -11)
BASE_EXCEPTION (ErrExit, "Create: i date from must not be NULL")

if (i_util_rate == -11)
BASE_EXCEPTION (ErrExit, "Create: i util rate must not be NULL")

if (i_util_Imu == NULL)
BASE_EXCEPTION (ErrExit, "Create: i util Imu must not be NULL")

if (i util rate != -11 && i uti I rate < 0)
BASE_EXCEPTION (ErrExit, "Create: i_util_rate is invalid")

util = UnqGetInst(i util Imu, i date from);
if (util != NULL) - - --

BASE_EXCEPTION (ErrExit, "Create: Duplicate instance(Unq)")

uti1->m util id = GenId();
util->m-asset id = i asset id;
util->m-date from = i date-from;
util->m-util-rate = i-util-rate;
util->m::::util::::lmu= strdup(l_util_Imu);

if (i eqp utI code)
util->m eqp utI code

else - - -
util->m_eqp_utl_code

ErrExit:
return NULL;

The third section of the input to the code generator provides the necessary information for setting up
the embedded SQL where clause. In this example, it means "read ALL records from the UTIL table where
the value of the ASSET JD column is equal to that of the asset _id parameter". The embedded SQL function
that reads the UTIL records from the database is shown below.

 
 
 



BASE ret
UTIL_Load(

long

EXEC SQL BEGIN DECLARE SECTION;
struct UTIL sREC rec;
long asset id = -11;
EXEC SQL END DECLARE SECTION;

EXEC SQL WHENEVER SQLERROR
DO BASE_EXCEPTION(ErrExit,nSqlErrorn);

II Declare and open the cursor(s)
{

EXEC SQL DECLARE cl_util CURSOR FOR
SELECT

asset_id,
TO_CHAR (date_from, 'YYYYMMDD'),
util_rate,
util_lmu,
eqp_utl_code

FROM UTIL
WHERE

asset id :asset id II Where Clause

EXEC SQL OPEN cl utili
}

II Retrieve the db record(s) and create the corresponding instance(s);
II close the cursor(s)
{
for (;;)

{

EXEC SQL FETCH cl_util INTO
:rec.asset_id:rec.asset_id_ind,
:rec.date_from: rec.date_from_ind,
:rec.util_rate:rec.util_rate_ind,
:rec.util_lmu:rec.util_lmu_ind,
:rec.eqp_utl_code:rec.eqp_utl_code_ind;

if (SQLCODE == ESQL NOT FOUND)
break; --

CreateUtil(&rec); II Create the cUTIL instance from UTIL sREC
}

EXEC SQL CLOSE cl utili
)

ErrExit:
if (SQLCODE < 0)

cBASE: :Log(n'tSQLCODE

The last section of the input to the generator specifies "order by" criteria ("indexes"). The third "index"
(Unq), which is an identifier/key of the class (UNQ), is used by default to "navigate" from one instance to
the next (NAV). "I" and "2" mean "order by UTIL_LMUfirst and then by DATE_FROM'. The part of the
class interface that reflects best the purpose ofthe last section is shown below.

 
 
 



class cUTIL
{

II Instance identification
II -----------------------
static BASE id
UnqGetId(

char*
CAL linDate

II Selection filters
II -----------------
static BASE id
SelectAll(

BASE id

static BASE id
UtilLmuSelect(

BASE id
BASE-eRelation
char*

static BASE id
DateFromSelect(

BASE id
BASE-eRelation
CAL linDate

static void
ReleaseSelection(

BASE id

II Selection navigation
II --------------------
static cUTIL*
SFirst (

BASE id

static cUTIL*
SLast (

BASE id

static cUTIL*
SNext(

BASE id

static cUTIL*
SPrev(

BASE id

i_util_lmu,
i_date_from) ;

i selId,
i::::relation,
i_util_lmu} ;

i selId,
i::::relation,
i_date_from} ;

II Other class elements (not included in this example)
};

 
 
 



Although the original intention was to acquire a test data generator, the time scale of the experiment
was too short to allow proper evaluation and integration of available tools. Moreover, the data generators
that were considered (i.e., DGL (WWW Resources (3), DataShark (WWW Resources (4)), and Datatect™
(WWW Resources (5)), did not seem to have all of the following desirable properties:

1) support for generation of relational data;

2) support for selecting test inputs according to probability distributions over attribute and
cardinalityl domains; and

3) support for evaluating expressions defined over attributes and cardinalities.

The first of the above features was desirable because the operations-management programs process
relational data. The second one supports statistical testing, which is definitely worth considering in the M-mp
context. That is because in M-mp testing it is usually feasible to carry out large numbers of tests. The third
property makes provision for expressing equivalence class boundaries that involve more than one attribute
and/or cardinality, thus accommodating domain testing.

Perhaps the tools that have been mentioned in the first paragraph could have been integrated or
extended to achieve the desired data generation capability in the experiment. However, that capability was
more conveniently obtained by writing a data generator that reused most of the components available in the
organisation for C development (including an Expression Evaluator).

Essentially, the test data generator traverses a user-defined hierarchy of entities in a depth-first fashion
and generates records for each entity. A simple example of such a hierarchy is depicted below.

EntityA
• EntityA_Id

EntityB
• EntityB_Id

• b

EntityD
• EntityD_Id
• d

EntityC
• EntityC_Id
• c = f(a,b)

1 In data modelling, a relationship between two entities/tables is described in terms of "cardinality". Simply, it is a pair
of domains that correspond to the number of records in one table that are linked to a single record in the other and vice
versa. Its meaning will become clearer in the example that is used to describe how the test data generator works.

 
 
 



In the above diagram, each entity has two attributes: its identifier (e.g.,EntityAJd) and an abstract attribute
(e.g., a). The non-identifier attribute of EntityC is a function of the non-identifier attributes of EntityA and
EntityB. The cardinality of the relationship between EntityA and EntityB is one-to-many (l:N), that is, each
instance/record of EntityA can be associated with more than one EntityB record, whereas each instance of
EntityB is always linked to a single EntityA record. The relationship between EntityA and EntityD is also
one-to-many. However, there might be situations when an EntityA instance has no linked EntityD records
and the relationship (from A to D) is usually characterised as being "optional" (or "conditional"). The
relationship between EntityB and EntityC is one-to-one (optional).

An example of the input to the test data generator that corresponds to the above entity relationship
diagram is shown below using an abstract syntax.

EntityA_EntityB
EntityA_EntityD
EntityB_EntityC

80: {random (1,5)} I 20: (random (6,300) }
40:0 40:1 I 20: (random(2,1000) }
30:0 70:1

EntityA Attributes
EntityA.EntityA_Id = 100: {EntityA.EntityA_Id + 1}
EntityA.a = 70:a1 I 30: (random(a2,a3,a4) )

EntityB Atrributes
EntityB.EntityB_Id = 100: {EntityB.EntityB_Id + 1}
EntityB.EntityA_Id = 100: (EntityA.EntityA_Id) ; referential attribute2

EntityB.b = 25:b1 I 75:b2

EntityC Atrributes
EntityC.EntityC_Id = 100: {EntityC.EntityC_Id + 1}
EntityC.EntityB_Id = 100: {EntityB.EntityA_Id} ; referential attribute
EntityC.c = 25:c1 I 75: {f(EntityA.a, EntityB.b)}

EntityO Attributes
EntityD.EntityD_Id = 100: {EntityD.EntityD_Id + 1)
EntityD.EntityA_Id = 100: (EntityA.EntityA_Id) ; referential attribute
EntityD.d = 100: (random(d1,d2) )

Probability distributions over the attribute and cardinality domains are defined by means of weights
(i.e., the numbers in bold that are followed by colons). For instance, the value of EntityA.a will be al for
around 70% of all generated EntityA records, and a2, a3, or a4 for the rest. In this particular case, a
probability distribution such as "EntityA.a = 70:al IIO:a2 IIO:a3 IIO:a4" is equivalent to the original one as
the random function implements a pseudo-uniform distribution over the specified domain. For convenience,
the weights have been chosen to add up to 100, but that is not a requirement.

Distinct test values/choices are separated by vertical bars and they can be expressions (e.g.,
{EntityA.EntityA Jd + I}). All cardinalities and attributes can be used as expression variables and they retain
their last generated values. Besides cardinalities and attributes, extra variables can be defined and used as
needed (not shown in this example).

 
 
 



Given the above input, the test data generator will produce its output as follows (depth-first,left-to-
right iterations):

EntityA - record 1
EntityA_Id = I
EntityA.a = al

EntityB - record 1
EntityB.EntityB_Id I
EntityB.EntityA_Id I

EntityB.b = b2

EntityC - record 1
EntityC.EntityC_Id I
EntityC.EntityB_Id I

EntityC.c = f(al,b2)

EntityB - record 2
EntityB.EntityB_Id 2
EntityB.EntityA_Id I

EntityB.b = b2

EntityD - record 1
EntityD.EntityD_Id I
EntityD.EntityA_Id I

EntityD.d = (dl + d2)/2

EntityA - record 2
EntityA_Id = 2
EntityA.a = al

{O + I}
70% for al

; {O + I}

{EntityA.EntityA_Id}
75% for b2

; {O + I}

{EntityA.EntityB_Id}
75% for f(EntityA.a, EntityB.b)}

; {I + l}

{EntityA.EntityA_Id}
75% for b2

{O + I}
{EntityA.EntityA_Id}

{random(dl,d2} }

 
 
 



The test data generator has two main limitations:

• Its input has to be defined as a hierarchy. Therefore, accommodating many-to-many relationships
or one-to-one and one-to-many relationships that are optional on both sides might be tricky. In the
experiment, this difficulty was overcome by transforming the test data model into a hierarchy and
using appropriate variables and/or constants to cater for relationships that could not be explicitly
defined in the data generator's input. For instance, the identifiers of all entities were obtained by
concatenating a prefix (defined as a constant) and a number that was increased by one for each
new generated record. It was possible, therefore, to infer values for referential attributes without
an explicit relationship between two entities.

• Only the most recent generated values for attributes and cardinalities are accessible in
expressions. There might be cases, however, when knowing all previously generated values could
be useful. For instance, in a one-to-many relationship, an attribute of the "one" entity could
represent the sum of the values of an attribute of the "many" entity. Therefore, it would be useful
to access all generated records for the "many" entity in order to compute the sum. In general, it is
possible to accommodate computational dependencies amongst attributes by using appropriate
variables and programming logic. Complex dependencies, however, could clutter the input to the
test data generator and this might be a problem even if all previously generated data would be
accessible in expressions. In the experiment, therefore, to avoid embedding the scheduler logic
into the input to the test data generator this kind of difficulty (i.e., complex computational
dependencies amongst attributes) was eliminated by writing an additional program, theModifier.
The purpose of the program is described in more detail in Chapter 3.

Despite its limitations, the test data generator provided a cost-effective means of generating practically
any kind of test data in the experiment: simple or complex, positive or negative, uniform or distributed
according to other statistical profiles. Whether such a (simple) tool is suitable for other contexts depends on
the complexity of the data models.

 
 
 



Manually selected test datal

Generated simple test data.
All assets will be utilised in the near future.
For each asset-meter pair, the "current" meter is set to 0 on the commissioning date of the
asset.
"fixed" indicator = "OFF"

Generated simple test data - similar to Data Set 1.
The "current" meters are set to 0 on today's date.
For each asset-meter pair, the utilisation rate is set to 0 from today's date until the
commissioning date of the asset.

Generated simple test data - similar to Data Set 1A.
"duration" indicator = "OFF"
"force" indicator = "OFF"

Generated from Data Set lB and primary program' output (that corresponds to Data Set
lB).

Generated simple test data.
Today's date is greater than, but close to, the assets' commissioning dates.
For each asset-meter pair, the "current" meter is set to 0 on the commissioning date of the
asset.
"fixed" indicator = "OFF"

Generated simple test data.
Today's date is greater than, but close to, the assets' commissioning dates.
For each asset-meter pair, the "current" meter is set to 0 on the commissioning date of the
asset.
Tasks' first dates are greater than, but close to, the assets' commissioning dates (to avoid
Spec-2)
"fixed" indicator = "OFF"
"force" indicator = "OFF" (to avoid PP-Fail-3)
"duration" indicator = "OFF" (to avoid Spec-I)

 
 
 



0 A A A
0 A B A
0 A C A
I A A A
I A B A
I A C A
I A C B
lA A A A
lA A B A
lA A C A
lA A C B
lB A B A
lB A C A
lB A C B
lB.l A B A
lB.l A C A
lB.l A C B
2 A C A
2 A C B
2A A C B

Failures and Defects

Specification Defects

The case when the duration indicator is ON and the task spans over non-work
days is non-deterministic. What is the starting point of the next interval? Is
the meter utilisation rate considered 0 for the duration of the task?

The case when the meter-based scheduled date of the first occurrence is
earlier than the first_date is non-deterministic. The spec states: "the
occurrence is not scheduled". When is the first occurrence going to be
scheduled? Version A of the primary program schedules it on (first_meter +
interval), but it would be more logical to schedule it on the first_date.

 
 
 



PP-Fail-2 A The utilisation rate for a factored meter is calculated Env-l
by multiplying its factor with the utilisation rate of
the natural meter. Therefore, a factored meter does
not need an utilisation rate. The program, however,
raises an error if the factored meter does not have
one.

PP-Fail-3 A The scheduled start date for the first occurrence is PP-Fault-l
(first_date + interval) instead of first_date. This
happens when the interval is "daily with holidays"
and the force indicator is ON and the first date is a
non-work day.

PP-Fail-4 A The program does not terminate (it seems that it PP-Fault-2
hangs while determining the remaining life).

PP-Fault-l
PP-Fault-2

To be investigated
To be investigated

The target meter value for the first occurrence is 0 MP-Fault-l
instead of the first meter.

The start date of the first occurrence is calculated MP-Fault-2
according to the interval and not to the first_date.

The utilisation rate of the first utilisation period is incorrectly used for all
subsequent utilisation periods. (Corrected in B)

The algorithm was based on the incorrect assumption that the first_date is
strictly greater than the asset's commissioning date (it did not cater for
equality). (Corrected in C)

 
 
 



In the input group definition (sch97.sch) table "fact" belongs to the same
subgroup as table "mout". The two tables must be in separate subgroups.
(Corrected in B)

0 A IA B A x 12 (1211512) start date 15/02/1996 29/0211996

0 A IA B A x 13 (1311610) start date 01102/1996 12/0211996

0 A IA B A x 21 (2112610) start date 01102/1996 2110311996 01102/1996 N MP-Fail-2

0 A I) B A x 21 (2112611) start date 07/03/1996 2110311996

0 A I) B A x 24 (2412910) start date 01102/1996 09/0211996

0 A I) B A x 25 (2513010) start date 01102/1996 22/0211996

0 A I) B A x 27 (2713210) start date 01102/1996 04/0511996

0 A I) A x 27 (2713211) start date 03/05/1996 06/05/1996

0 A IA B A x 35 (3514010) start date 0110211996 07/03/1996

0 A IA B A x 36 (3614110) start date 01102/1996 06/0511996

0 A IA B A x 58 (5816411) occ no 1 0

0 A A A x 58 (5816411) start date 15/02/1996 08/02/1996

0 A AB A x 59 (5916511) occ no 1 0

0 A A A x 59 (5916511) start date 15/02/1996 08/02/1996

0 A AB A x 61 (6116712) start date 15/02/1996 11/03/1996

0 A AB CA x 62 (6216811) occ no 1 0

0 A AB A x 62 (6216811) start date 01/02/1996 01103/1996

0 A A A x 68 (68115810) start date 0110111996 15/0111996

0 A AB A x 69 (6917910) start date 01102/1996 08/0211996

0 A 'AE A x 70 (7018011) occ no 1 0

0 A IA B A x 70 (7018011) start date 01102/1996 08/02/1996

0 A IA B A x 73 (7318310) start date 01102/1996 07/03/1996

0 A IA B A x 75 (7518810) start date 01102/1996 09/02/1996

0 A IA B A x 76 (7619111) occ no 1 0

0 A IA B A x 76 (7619111) start date 01102/1996 08/02/1996

0 A IA B A x 79 (7919510) start date 0110211996 06/05/1996

0 A IA B A x 82 (8219912Ikm) meter 395 345.9

0 A lAB A x 82 (8219914Ikm) meter 952 902.9

0 A lAB A x 82 (8219916Ikm) meter 1377 1459.9

0 A IA B A x 106 (106112511) occ no 1 2

 
 
 



0 A A leA x 106 (106112511) start date 27/03/1997 3010311997

0 A ABle A x 116 (116113510) occ no 0 I

0 A A leA x 116 (116113510) start date 10102/1997 22/02/1997

0 A ABle A x 117 (117113610) occ no 0 I

0 A AB A x 117 (117113610) start date 11104/1997 1110311997

0 A AB A x 119 (119113810) occ no 0 I

0 A AB A x 119 (119113810) start date 3110111997 2510111997

0 A ABle A x 122 (122114112) start date 2110111997 19/02/1997

0 A ABle A x 127 (127114610) occ no 0 I

0 A A leA x 127 (127114610) start date 01104/1996 01102/1996

0 A ABle A x 131 (131115012) start date 04/07/1996 03/0811996

0 A A A x 132 ( 1321160-25910) start date 01102/1996 08/02/1996 0110211996 N MP-Fail-2

I A ABle A B 1000 (10001100010) start date 15103/2000 17/0112000 Spec-2

I A ABle A 1000 (10001100 I) none PP-Fail-2

I A x xlc x B 1000 (10001100110) start date 08/1111999 20109/1999 Spec-2

I A A Blc A B 1000 (10001100410) start date 14/06/2000 02/1111999 02/1111999 PP-Fail-3 N

I A A Blc A B 1100 (11001110110) start date 12/0112000 07/10/1999 07/1011999 PP-Fail-3 N

I A A Blc A B 1100 (11001110310) start date 0111211999 21/10/1999 Spec-2

I A A ICA B 1200 (120011201118) start_date 30105/2007 06/06/2007 Spec-I 04/0112007 +

(5*30.5) - 05

06/0612007

Durlnd = ON,

Forcelnd =

ON

I A ABle A B 1200 (12001120116) start_date 17/04/2002 24/04/2002 Spec-I 22/1112001 +

(5*30.5) - 23

24/04/2002

DurInd = ON,

Forcelnd =

ON

I A A Blc A B 1300 (13001130113) start_date 12/12/2000 05/12/2000 Spec-I 18/07/2000 +

(20*7) =

05/12/2000

DurInd = ON

I A AB A B 1300 (13001130114) start_date 14/05/2001 07/05/2001 Spec-I 18/12/2000 +

(20*7) =

07/05/2001

DurInd=ON

I A AB A B 1300 (13001130310) start date 18/10/1999 1310911999 Spec-2

I A AB A B 1300 (13001130312) start_date 05104/2000 29/03/2000 Spec-I Meters

DurInd = ON,

Forcelnd =

 
 
 



ON

1 A A leA B 1400 (14001140010) start date 22/03/2000 22/12/1999 22/12/1999 PP-Fail-3 N

1 A A Ie A B 1400 (14001140410) start date 05/0112000 11/11/1999 Spec-2

1 A A Ble A B 1400 (14001140411) start_date 17/05/2000 10/05/2000 Spec-l Meters

Durlnd = ON,

Forcelnd =

ON

1 A ABle A B 1500 (15001150310) start date 20/12/1999 23/09/1999 Spec-2

1 A ABC A B 1500 (15001150412) start_date 30/08/2000 23/08/2000 Spec-l Durlnd = ON,

Forcelnd =

ON

1 A A Ie A 1600 (160011601) none PP-Fail-2

1 A x xle x B 1600 (16001160110) start date 11/10/1999 01109/1999 Spec-2

1 A A Ie A B 1600 (16001160410) start date 26/0112000 21110/1999 21110/1999 PP-Fail-3 N

1 A A leA B 1700 (17001170210) start date 10/05/2000 20/10/1999 20/10/1999 PP-Fail-3 N

1 A ABle A B 1700 (17001170310) start date 24/0112000 14/09/1999 Spec-2

1 A ABle A B 1800 (18001180010) start date 29/03/2000 15/12/1999 15/12/1999 PP-Fail-3 N

1 A ABle A B 1800 (18001180110) start date 28/06/2000 25/10/1999 25/10/1999 PP-Fail-3 N

1 A A Ie A B 1800 (18001180215) start date 13/08/2001 06/08/2001 Spec-l DurInd=ON

1 A A Blr A B 1800 (18001180218) start date 16/09/2002 09/09/2002 Spec-l Durlnd=ON

1 A ABle A B 1800 (18001180310) start date 15/12/1999 07/10/1999 Spec-2

1 A ;l Ble A B 1800 (18001180311 ) start_date 16/02/2000 09/02/2000 Spec-l Meters

Durlnd = ON,

Forcelnd =

ON

1 A AB A B 1900 (19001190012) start date 07/08/2000 31107/2000 Spec-l Durlnd=ON

1 A A Blc A B 1900 ( 19001190015) start date 10/12/2001 03/12/2001 Spec-l DurInd=ON

1 A A A B 1900 (19001190310) start date 05/07/2000 1111111999 11/1111999 PP-Fail-3 N

1 A AB.C A 1900 (190011904) none PP-Fail-2

1 A x xlc x B 1900 ( 19001190410) start date 25/10/1999 20/09/1999 Spec-2

lA A AIElc A 1000 (100011003) none PP-Fail-2

lA A xx x B 1000 none PP-Fail-4

lA A ABle A B 1100 none PP-Fail-4

lA A ABle A B 1200 (12001120210) start date 27/03/2000 29/1111999 29/11/1999 PP-Fail-3 N

lA A A A x 1200 (12001120310) start_date 29/11/1999 02/09/1999 MP-Fail-I

lA A Ble A B 1200 (12001120310) start date 29/1111999 01/10/1999 Spec-2

lA A A A x 1300 (13001130310) start date 24/12/1999 04/08/1999 MP-Fail-I

IA A Ble A B 1300 (13001130310) start date 24/12/1999 03/09/1999 Spec-2

IA A ;l Ie A B 1400 none PP-Fail-4

lA A 1,1 Ie A B 1500 none PP-Fail-4

 
 
 



lA A A leA B 1600 (16001160210) start date 17/03/2000 05/11/1999 05/1111999 PP-Fail-3 N

lA A A A x 1600 (16001160310) start_date 07/0112000 27/08/1999 MP-Fail-l

lA A Ble A B 1600 (16001160310) start date 07/0112000 19/11/1999 Spec-2

lA A A BleA B 1700 (17001170110) start date 04/04/2000 01111/1999 0111111999 PP-Fail-3 N

lA A A Ble A 1700 (170011703) none PP-Fail-2

lA A x xle x B 1700 (17001170310) start date 06/1211999 02/1111999 Spec-2

lA A ABle A B 1700 (170011704117) start date 27/07/2006 20/07/2006 Spec-l Durlnd=ON

lA A A leA B 1700 (170011704120) start date 04/10/2007 27/09/2007 Spec-l DurInd =ON

lA A A A x 1800 (18001180310) start_date 17/1111999 08/09/1999 MP-Fail-l

lA A Ie A B 1800 (18001180310) start date 17/11/1999 05/10/1999 Spec-2

lA A ABle A B 1900 (19001190010) start date 19/0112000 27/09/1999 27/09/1999 PP-Fail-3 N

lA A A A x 1900 (19001190410) start date 02/11/1999 20/0811999 MP-Fail-l

lA A Ble A B 1900 (19001190410) start date 02/11/1999 14/0911999 Spec-2

IB A x Ble A B 1000 (10001100310) start date 18/11/1999 30/08/1999 Spec-2

IB A x Blr A B 1100 (11001110110) start date 16/1111999 14/09/1999 Spec-2

IB A x Blr A B 1100 (11001110310) start date 30/03/2000 08/1111999 08/11/1999 PP-Fail-3 N

IB A x Ie A B 1200 (12001120010) start date 10/12/1999 13/09/1999 Spec-2

IB A x Ir A B 1200 (12001120210) start date 29/05/2000 06/12/1999 06/1211999 PP-Fail-3 N

IB A xB A B 1300 (13001130310) start date 06/0112000 14/10/1999 Spec-2

IB A x Blr A B 1300 (13001130410) start date 07/02/2000 25/1111999 Spec-2

IB A x Blr A B 1400 (14001140210) start date 08/02/2000 20/09/1999 20/09/1999 PP-Fail-3 N

IB A xBC A B 1500 (15001150310) start date 04/10/1999 09/0811999 Spec-2

IB A xBC A B 1600 (16001160310) start date 29/11/1999 20/09/1999 Spec-2

IB A xB A B 1700 (17001170310) start date 20/09/1999 12/08/1999 Spec-2

IB A xlE C A B 1800 (18001180210) start date 18/04/2000 11/1111999 11111/1999 PP-Fail-3 N

IB A xB A B 1800 (18001180310) start date 03/02/2000 1111011999 Spec-2

IB A xlE r A B 1900 (19001190410) start date 06/03/2000 11110/1999 Spec-2

IB.1 A xBC A B 1100 (11001110310) start date 30/03/2000 08/1111999 08/1111999 PP-Fail-3 N

IB.l A x Blc A B 1200 (12001120210) start date 29/05/2000 06/12/1999 06/12/1999 PP-Fail-3 N

IB.1 A x Ble A B 1300 (13001130310) start date 21/02/2000 12/10/1999 Spec-2

IB.1 A x Ble A B 1400 (14001140210) start date 08/02/2000 20/0911999 20/09/1999 PP-Fail-3 N

IB.1 A x Ble A B 1800 (18001180210) start date 18/04/2000 11111/1999 11111/1999 PP-Fail-3 N

IB.l A x Ble A B 1800 ( 18001180310) start date 04/0112000 08/10/1999 Spec-2

IB.1 A x Ble A B 1900 (19001190410) start date 11105/2000 11110/1999 Spec-2

2 A x xle A B 2000 (20001200110) start date 27/0911999 07/06/1999 Spec-2

2 A x xle A B 2000 (20001200210) start date 25/0112000 07/06/1999 07/06/1999 PP-Fail-3 N IntvType= 6

2 A x xle A B 2000 (20001200310) start date 19/07/1999 21106/1999 Spec-2

2 A xxC A B 2000 (20001200313) start date 20/03/2000 13/03/2000 Spec-l Durlnd =ON

2 A x xle A B 2000 (20001200410) start_date 19/1111999 20/07/1999 20/0711999 PP-Fail-3 N ForceInd =

ON, First

 
 
 



Date = Non-

work

2 A x xlc A B 2100 (21001210210) start_date 16/1111999 13/07/1999 1310711999 PP-Fail-3 N ForceInd =

ON, First

Date = Non-

work

2 A x xlCA B 2100 (21001210211 ) start_date 31/03/2000 24/03/2000 Spec-I DurInd = ON,

Forcelnd =

ON

2 A x xlc A B 2200 (22001220010) start date 08/02/2000 09/07/1999 09/0711999 PP-Fail-3 N IntvType = 6

2 A x xlc A B 2200 (22001220011 ) start_date 19/09/2000 12/0912000 Spec-I DurInd = ON,

ForceInd =

ON

IntvType = 6

2 A x xI\.. A B 2200 (22001220110) start_date 23/1111999 23/07/1999 23/07/1999 PP-Fail-3 N Forcelnd =

ON, First

Date = Non-

work

2 A xx A B 2200 (22001220215) start date 27/08/2004 20108/2004 Spec-I DurInd=ON

2 A xx A B 2300 (23001230110) start date 17/03/2000 03/0811999 03/08/1999 PP-Fail-3 N IntvType = 6

2 A xxC A B 2400 (24001240112) start date 24/04/2000 17/04/2000 Spec-I Durlnd =ON

2 A xx A B 2400 (24001240115) start date 09/04/2001 02/04/2001 Spec-I DurInd= ON

2 A x xlc A B 2400 (24001240210) start_date 05/1111999 18/0611999 18/0611999 PP-Fail-3 N Forcelnd =

ON, First

Date = Non-

work

2 A xx A B 2400 (24001240310) start date 25/10/1999 14/06/1999 Spec-2

2 A xx A B 2500 (25001250110) start date 29/02/2000 09/07/1999 09/07/1999 PP-Fail-3 N IntvType = 6

2 A xxC A B 2500 (25001250211 ) start date 1511111999 08/1111999 Spec-I Durlnd =ON

2 A xxr' A B 2500 (25001250212) start date 13/03/2000 06/03/2000 Spec-I DurInd = ON

2 A xx A B 2500 (25001250410) start_date 01102/2000 03/09/1999 03/0911999 PP-Fail-3 N Forcelnd =

ON, First

Date = Non-

work

2 A x xlc A B 2600 (26001260010) start date 23/06/2000 20109/1999 20109/1999 PP-Fail-3 N IntvType = 6

2 A x x1r A B 2600 (26001260013) start_date 08/1112002 01111/2002 Spec-I DurInd=ON

IntvType = 6

2 A x xlc A B 2600 (26001260016) start_date 25103/2005 18/03/2005 Spec-I DurInd=ON

IntvType = 6

2 A x xlc A B 2600 (26001260310) start_date 05/11/1999 29/0611999 29/0611999 PP-Fail-3 N Forcelnd =

ON, First

Date = Non-

 
 
 



work

2 A x xlc A B 2700 (27001270010) start date 28/03/2000 29/06/1999 29/06/1999 PP-Fail-3 N IntvType = 6

2 A x xlc A B 2700 (2700127041 I) start date 12/II/1999 05/11/1999 Spec-l DurInd =ON

2 A x xlc A B 2700 (27001270412) start date 03/03/2000 25/02/2000 Spec-l DurInd= ON

2 A x xlc A B 2800 (28001280010) start_date 23/11/1999 16/07/1999 16/07/1999 PP-Fail-3 N Forcelnd =

ON, First

Date = Non-

work

2 A xx A B 2800 (28001280110) start date 23/08/1999 21/06/1999 Spec-2

2 A xx A B 2800 (28001280210) start date 11/04/2000 27/08/1999 27/08/1999 PP-Fail-3 N IntvType = 6

2 A xx A B 2800 (28001280410) start_date 14/07/2000 16/07/1999 16/07/1999 PP-Fail-3 N Forcelnd =

ON, First

Date = Non-

work

2 A xx CA B 2800 (28001280411 ) start date 27/07/2001 20/07/2001 Spec-l Durlnd = ON,

Forcelnd =

ON

2 A xx A B 2900 (29001290012) start date 03/07/2000 26/06/2000 Spec-l Durlnd =ON

2 A xx CA B 2900 (29001290210) start_date 07/03/2000 02/07/1999 02/07/1999 PP-Fail-3 N Forcelnd =

ON, First

Date = Non-

work

IntvType = 6

2 A xx A B 2900 (29001290410) start date 31/08/1999 07/06/1999 Spec-2

2 A xx A 2900 (29001290411 ) start date 17/12/1999 01/II/1999 PP-Fail-2

2 A xx A 2900 (29001290412) start date 03/04/2000 18/02/2000 PP-Fail-2

2A A xx x B 2600 (26001260010) start date 21/10/1999 31/05/1999 31/05/1999 PP-Fail-3 N IntvType = 6

2A A xx x B 2600 (26001260410) start date 09/09/1999 17/05/1999 17/05/1999 PP-Fail-3 N IntvType= 6

2A A xx x B 2700 (27001270010) start date 16/09/1999 24/05/1999 24/05/1999 PP-Fail-3 N IntvType = 6
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