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APPENDIX A

DERIVATION OF EQUATION 4-24

This appendix uses the same notation as Chapter 4. For a sphere with symmetrical

boundary conditions, the diffusion-reaction equations for an elementary A + B → C

reaction are:

d2a

dρ2
+

2

ρ

da

dρ
− krr

2
pCB,bulk

DA

a · b = 0

d2b

dρ2
+

2

ρ

db

dρ
− krr

2
pCA,bulk

DB

a · b = 0

If γ =
φ2

A

φ2
B

d2a

dρ2
+

2

ρ

da

dρ
− γφ2

Ba · b = 0

d2b

dρ2
+

2

ρ

db

dρ
− φ2

Ba · b = 0

∴ d2a

dρ2
+

2

ρ

da

dρ
= γ

(
d2b

dρ2
+

2

ρ

db

dρ

)
(A.1)

And
d2

dρ2
(γ · b − a) =

2

ρ

d

dρ
(a − γ · b)

Let Θ = a − γ · b
Then:

d2Θ

dρ2
+

2

ρ

dΘ

dρ
= 0

(A.2)
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Let y = Θρ

It can be shown that:
d2y

dρ
= 0

∴ y (ρ) = k1ρ + k2

Θ(ρ) = k1 +
k2

ρ

(A.3)

Since Θ is finite at ρ = 0:

Θ(ρ) = k1

At ρ = 1, a = 1 and b = 1:

∴ k1 = 1 − γ

∴ a − γb = 1 − γ

And b =
a − 1 + γ

γ

(A.4)

The same relationship can be derived for an infinite slab.
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APPENDIX B

HYDROGENATION OF LINEAR OCTENE

UNDER GAS-LIMITED CONDITIONS

Many trickle-bed reactor studies under gas-limited conditions are reported in the litera-

ture. In terms of wetting efficiency, many of these are based on the additive procedure

as shown in Chapter 2. In Chapter 4, it is shown that, especially for eggshell catalysts,

gas-limited reactions may be subject to limitations of the liquid reagent even when a re-

action is generally considered as gas-limited. A preliminary study on the hydrogenation

of linear octenes under gas-limited conditions is reported here.

Reaction system and operating conditions. The experimental procedure followed

is exactly the same as that described in Chapter 5, except for the reaction system and

operating conditions. In order to operate under gas-limited conditions, reactor operating

pressures were kept low. For all liquid flow rates, a gas feed mixture of 85% N2 and 15%

H2 was fed to the reactor, operating at a pressure of 6 bar and a temperature of 60 ◦C.

At these conditions, the liquid reagent can still be regarded as non-volatile. Relevant

propertie other than those reported in Chapter 5 are listed in Table B.1. The total gas

flow rate was 10 nL/min for all liquid flow rates, corresponding to a superficial gas velocity

vSG =17 mm/s. The liquid feed contained 8%(v/v) linear octenes and no isooctenes. Under

these conditions, γ ≈ 40.

The reactor was packed with 110 g catalyst, corresponding to a bed height of approx-

imately 9 cm, between two layers of inert support. Startup and operation were exactly

the same as in the previous chapter. Experiments were conducted for vSL = 1.9, 2.7, 3.8

and 4.7 mm/s. Only two repeat runs were performed.
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Table B.1: Hydrogen property estimations
Property Estimated value Estimation method
Saturated H2 concentration in solvent 3.25 mol/m3 Florusse et al. (2003)
Hydrogen molecular diffusivity in solvent 4.5 × 10−9 m2/s Wilke-Chang

Experimental results. Overall reaction rates are reported in Figure B.1. Since all

conversions were less than 10%, the reactor was regarded as a differential reactor. Re-

action rates are unexpectedly high, and upflow reaction rates can not be explained with

the liquid-solid mass transfer results from Chapter 5, and especially not if considered

that overall hydrogen-to-catalyst surface mass transfer is also affected by gas-liquid mass

transfer. Therefore, it was not possible to use upflow rate data as a basis for the treat-

ment of trickle-flow data, as was done in Chapter 5, and only the general trends will be

discussed. The trends reported in Figure B.1 also seem counterintuitive to some extent.
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Figure B.1: Overall reaction rates of linear octene hydrogenation under gas-limited conditions.

As expected, downflow outperforms upflow, but any other enhancement effects due to

partial wetting seem to be low, or even non-existent. The reaction rates for Levec and

extensively pre-wetted flow are more or less the same and reaction rate does not increase

(notably) with a decrease in liquid flow rate as is reported for so many of the reactor
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studies discussed in the literature review1. A possible explanation might be the combina-

tion of liquid-limited effects in eggshell particles and the distribution of particle wetting

due to flow morphology. Figure B.2 shows a rough approximation of overall trickle-bed

efficiency (based on particle wetting distribution) for the best and least wetted cases in

the colorimetric study as a function of φA when γ = 40, using the unified model for

eggshell particles. Biot numbers are roughly based on liquid-solid mass transfer results

from Chapter 5: experimental kLS-values for octene at the relevant flow rate and pre-

wetting conditions were adapted for hydrogen and then halved to allow for gas-liquid

mass transfer resistance. It is clear from the figure that it is definitely possible that

Levec pre-wetted beds do not outperform extensively pre-wetted beds, or even exhibit

lower overall rates of reaction.
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Based on wetting distribution and liquid−solid mass
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Based on wetting distribution and liquid−solid mass
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Figure B.2: Approximations of overall efficiency at boundaries of the colorimetric and liquid-
limited reactor investigations for the current system, as a function of the Thiele
modulus of the gaseous reagent.

1Extensively pre-wetted results agree to some extent with the study of Mata and Smith (1981)
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