
CHAPTER 4

EFFECTIVENESS FACTORS FOR

PARTIALLY WETTED CATALYSTS

In this chapter, experimental wetting geometries are used to investigate reaction and

diffusion in partially wetted catalysts. Models that describe these have been in exis-

tence for some time, and have been used with some success (Wu et al., 1996; Llano et al.,

1997). The theorectical verification of existing models is usually based on easily defin-

able theoretical wetting geometries such as spherical caps or rings (Goto et al., 1981;

Yentekakis and Vayenas, 1987). All validations of existing and proposed models in this

chapter are based on the realistic geometries obtained from the colorimetric experiments.

The estimation of catalyst effectiveness factors, defined as the ratio between the ob-

served reaction rate in a pellet and the reaction rate in the absence of intraparticle mass

transfer resistances, plays an important role in chemical reactor engineering and is gov-

erned by the solution to the reaction-diffusion equation within the catalyst:

�2 C − φ2 × y(C) = 0 (4.1)

where φ describes the ratio of reaction to diffusion and y(C) is the kinetic expression in

terms of the reagent concentration(s). The effectiveness factor can be evaluated by the

integral of the reagent concentrations over the catalyst volume or the reagent fluxes over

the catalyst’s external area.

Exact analytical solutions for pellet efficiency factors are almost exclusively available

for first- and zero-order reactions in pellets with well defined geometries1 (Lee and Kim,

2006). Unique boundary conditions are also required, where the boundary condition at

1One-dimensional geometries for which analytical effectiveness factor derivations are available are
those of an infinite slab, a sphere and an infinite cylinder.
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the external surface is the same over the whole surface. Catalyst particles subject to

trickle-flow generally do not confirm to these requirements:

• At least two reagents (a gas and a liquid) react in a trickle-bed reactor and the

kinetic expression is probably not simply first order in one reagent. To simplify

effectiveness factor derivations, the reaction in a trickle-bed reactor is usually clas-

sified as being either gas- or liquid-limited, i.e. the concentration of either the liquid

or the gas reagent respectively is constant throughout the catalyst particle so that

pseudo-first order kinetics can be assumed for the limiting reagent. A reaction is

usually classified as gas- or liquid-limited based on γ, where

γ =
αDBCB,bulk

DAC∗
A

(4.2)

Throughout this chapter, B refers to the liquid and A to the gaseous reagent. A

reaction is said to be gas-limited if γ � 1, and liquid-limited if γ � 1. Liquid-

limited reactions are modelled differently from gas-limited reactions in trickle-beds.

• Boundary conditions for partially wetted particles are mixed, that is, the boundary

condition for the wetted surface differs from that for the dry surface. Except for

specific (theoretical) wetting and particle geometries, mixed boundary conditions

will increase the dimensionality of Equation (4.1).

The chapter deals with the following questions surrounding pellet efficiency in trickle-

bed reactors:

• What is the performance of existing models for liquid-limited and gas-limited reac-

tions? Investigations that deal with this question already exist (Goto et al., 1981;

Mills and Dudukovic, 1979) but not where true partial wetting geometries are used.

In this chapter, the true wetting geometries shown in Figure 3.10 are used in the

investigation.

• When can a reaction be classified as liquid- or gas limited, and is it possible to

reconcile models for gas- and liquid-limited reactions in the case where both reagents

play a role? For this purpose, the reaction rA = αrB = −αkrCACB taking place in

a partially wetted catalyst is investigated. A numerical study of this reaction was

also performed by Yentekakis and Vayenas (1987), but no suggestions were made

for an easy-to-use analytical expression.

• Many trickle-bed reactors make use of eggshell catalysts. Though it is rather easy

to derive analytical expressions for a completely wetted eggshell catalyst with first-

order reaction kinetics, the role of partial wetting may differ significantly for eggshell

catalysts than for monodispersed catalysts. The effect of partial wetting on the

performance of this type of catalyst is therefore also investigated.
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The work is based on the numerical modelling of partially wetted monodispersed and

eggshell catalyst spheres, using the finite element method (FEM) and true wetting ge-

ometries obtained from the work discussed in Chapter 3. FEM is used since it can

easily handle complex geometries and is also suitable for higher order kinetic expressions

(Mills et al., 1988; Ramachandran, 1991). All work is limited to isothermal conditions.

4.1 Numerical method

4.1.1 First-order reaction, −r = krC

Models for gas- and liquid-limited reactions in partially wetted catalysts assume a con-

stant concentration of the non-limiting reagent and first-order kinetics for the limiting

reagent so that the reaction can be written as −r = krC. In dimensionless form, the equa-

tion for steady-state diffusion combined with such a reaction within a catalyst sphere is

given by

�2 c − φ2c = 0 (4.3)

c =
C

Cbulk

; φ = rp

√
kr

D

Hence, one wants to solve the following integral:∫
V

[�2c − φ2c
] · w dV = 0 (4.4)

where w is any one of all possible weighting functions, and V is the body for which the

diffusion-reaction equation will be solved. Making use of the product rule, Equation 4.4

can be written as:[∫
V

� · (w � c) dV −
∫

V

�w � c dV

]
−
∫

V

φ2c · w dV = 0 (4.5)

The boundary conditions can be accounted for by making use of the Gauss divergence

theorem (analogous to a mass balance over the body):∫
V

� · f dV =

∫
S

f · n dA (4.6)

∴
∫

V

� (w � c) dV =

∫
S

w � c · n dA (4.7)

and � c · n = Bi (1 − c) ; where Bi =
kcrp

D
(4.8)
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And Equation (4.5) can be written as:∫
S

Bi(1 − c) · w dA −
∫

V

�c � w dV −
∫

V

φ2c · w dV = 0 (4.9)

Equation (4.9) is valid for any body V with external area S. In the finite element

method, V is divided into small elements v with concentrations {c} at each node point.

The concentration at any point within the volume is approximated by an interpolation

matrix, [N ].

c(x, y, z) = [N ]{c}
w(x, y, z) = [N ]{w}

and

�c(x, y, z) = [B]{c}
�w(x, y, z) = [B]{c} (4.10)

where [B] = �[N ] and {w} is the value of w at each node point. Note that [N ] and

[B] are functions of the element geometry only, and that {c} is only defined for the node

points. [N ] and [B] are specific to each element and differ for the surface integral from

that for the volume integrals. More information on the choice of element geometry and

the contruction of [N ] and [B] can be found in any textbook on finite element methods,

for example Cook et al. (1989). For each element∫
s

Bi(1 − c) · w dA −
∫

v

�c � w dV −
∫

v

φ2c · w dV

≈ {w}T

[∫
s

[N ]T Bi dA − {c}
∫

s

[N ]T [N ]Bi dA

−{c}
∫

v

[B]T [B] dV − {c}
∫

v

φ2[N ]T [N ] dV

] (4.11)

Equation (4.9) can be approximated by the sum of above integrals for all elements v in

the volume V :

V∑
v

{w}T

[∫
s

Bi[N ]T dA − {c}
∫

s

Bi[N ]T [N ] dA

−{c}
∫

v

[B]T [B] dV − {c}
∫

v

φ2[N ]T [N ] dV

]
= 0

(4.12)

The integrals for each specfic element are obtained according to a specified concentration

variation within each element as a function of the nodal concentrations (e.g. linear or

quadratic variation). Since Equation (4.12) should hold true for all possible weighting

33

 
 
 



functions w:

V∑
v

[(∫
v

[B]T [B] dV +

∫
v

φ2[N ]T [N ] dV +

∫
s

Bi[N ]T [N ] dA

)
{c}

]

=
V∑
v

Bi

∫
s

[N ]T dA

Which is of the form

[K]︸︷︷︸
n×n

× {c}︸︷︷︸
n×1

= [F ]︸︷︷︸
n×1

(4.13)

The stiffness matrix [K] and vector [F ] are functions of the geometry and known constants

only, so that the nodal concentrations {c} can be solved for, solving a system of linear

equations.

4.1.2 Reactions of the form rA = αrB = −αkrCACB

In dimensionless form, the reaction-diffusion equations for the reaction rA = αrB =

−αkrCACB in a spherical pellet are:

�2 a − φ2
Aab = 0

�2b − φ2
Bab = 0

a =
CA

CA, bulk

; φA = rp

√
αkrCB, bulk

DA

b =
CB

CB, bulk

; φB = rp

√
krCA, bulk

DB

(4.14)

Following the same route as Equations (4.4) to (4.13), the FEM equations for this reaction

are: [∑
V

(∫
v

[B]T [B] dV +

∫
s

BiA[N ]T [N ] dA

+

∫
v

φ2
A[N ]T [N ]{b}[N ] dV

)]
· {a} =

∑
S

∫
s

BiA[N ]T dA (4.15)[∑
V

(∫
v

[B]T [B] dV +

∫
s

BiB[N ]T [N ] dA

+

∫
v

φ2
A[N ]T [N ]{a}[N ] dV

)]
· {b} =

∑
S

∫
s

BiB[N ]T dA (4.16)

(4.17)
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Since both equations contain the terms {a} and {b}, the equations cannot be solved in

the same fashion as Equation (4.13). The coupled system can be solved by defining the

residuals RA and RB that should be equal to 0 for the correct concentration profiles:

RA =

[∑
V

(∫
v

[B]T [B] dV +

∫
s

BiA[N ]T [N ] dA

+

∫
v

φ2
A[N ]T [N ]{b}[N ] dV

)]
· {a} −

∑
S

∫
s

BiA[N ]T dA (4.18)

RB =

[∑
V

(∫
v

[B]T [B] dV +

∫
s

BiB[N ]T [N ] dA

+

∫
v

φ2
A[N ]T [N ]{a}[N ] dV

)]
· {b} −

∑
S

∫
s

BiB[N ]T dA (4.19)

The concentration profiles for which RA and RB are approximately zero were found by

using the Newton-Rhapson iterative scheme for coupled non-linear systems:[
∂RA

∂{a}
∂RA

∂{b}
∂RB

∂{a}
∂RB

∂{b}

]
×
{

Δa

Δb

}
= −

{
RA

RB

}
(4.20)

{
a

b

}∣∣∣∣∣
i+1

=

{
a

b

}∣∣∣∣∣
i

+

{
Δa

Δb

}∣∣∣∣∣
i

(4.21)

This solution strategy requires the inversion of matrices of double the size of that for a

first-order reaction when the same FEM grid is used, and is therefore more computation-

ally intensive.

4.1.3 Meshing

A tetrahedral mesher for Matlab that was developed by Persson and Strang (2004) was

used to generate 3-dimensional meshes of a sphere. In total, six different meshes were used

for the investigation: Simulations of monodispersed and eggshell particles were performed

with different meshes, since the shell had to be well-defined for the simulation of eggshells.

For a grid size of n nodes, the solution of Equation (4.13) requires the solution of an n×n

system, whereas the iterative solution of Equations (4.18) to (4.20) requires the (iterative)

solution of a 2n × 2n. Therefore, computational limitations required the meshes for the

reaction −rA = αkrCACB to be coarser than the corresponding meshes for first-order

reactions. Meshes were created for both reactions, monodispersed particles; and eggshell

particles with inner to outer shell diameter rations of ρ = 0.9 and ρ = 0.5. Cross-sections

of the meshes for the monodispersed particles an eggshell particles with ρ = 0.9 are shown

in Figure 4.1.
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Figure 4.1: Finite element meshes for (a) a first order reaction in a monodispersed particle;
(b) a first order reaction in an eggshell particle; (c) a reaction of the form −rA =
krCACB in a monodispersed particle; (d) a reaction of the form −rA = krCACB

in an eggshell particle.

Boundary conditions are based on the wetting geometries shown in Chapter 3, Fig-

ure 3.10: each surface triangle in the grid is assigned a Biot number based on its wet-

ting condition (wet or dry). For the liquid reagent, BiB,d = 0 and for the gas reagent

BiA,d � BiA,w. Note that the resolution at which the wetting geometry could be speci-

fied is a function of the mesh resolution. Quadratic interpolation matrices were used for

the integration of the mesh elements. These were found to be more suited to the typical

concentration profiles than linear interpolation.

4.1.4 FEM accuracy

The FEM solution for a first-order elementary reaction can be verified with the following

analytical expressions for the concentration profile in the absence of external mass transfer
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resistances:

For monodispersed catalyst:

c (λ) =
sinh (φ · λ)

sinh φ
(4.22)

For an eggshell catalyst:

c (λ) =
A1e

φ·λ + A2e
−φ·λ

λ
ρ ≤ λ ≤ 1 (4.23)

c (λ) = c (ρ) λ ≤ ρ

A1 =

(
eφ + eφ(1−2ρ)

φ − 1
ρ

φ + 1
ρ

)−1

A2 = eφ − A1e
2φ

Here, c(λ) is the dimensionless radial concentration profile, and ρ = rs/rp where rs is the

inner dimension of the catalyst shell. Solutions are accurate and numerically stable for

φ ≤ 30, as is shown in Figure 4.2.

0 0.2 0.4 0.6 0.8 1
0

1

λ  [−]

c [−]

(a)

0 0.2 0.4 0.6 0.8 1
0

1

λ [−] 

c [−]

(b)
Analytical solution
FEM approximation

Figure 4.2: Numerical solutions for (a) a monodispersed catalyst and (b) an eggshell catalyst
for φ = 30 and no external mass transfer tested against the analytical solutions
given in Equations (4.22).

For the reaction −rA = −αrB = αkrCaCb the FEM solutions can be verified as follows.

• For symmetric boundary conditions, φA � φB and no external mass transfer resis-
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tances, the concentration profile of reagent A should be given by Equations (4.22).

• For symmetric boundary conditions and any value of φ′
A and φ′

B, the following

relationship should hold true2:

b =
a − 1 + γ′

γ′ (4.24)

γ′ =

(
φ′

A

φ′
B

)2

Unlike φA and φB, which are based on bulk concentrations, φ′
A and φ′

B are based

on reagent surface concentrations. The same applies to γ′.

The derivation for this relationship is shown in Appendix A. Numerical and analytical

concentration profiles are shown in Figure 4.3. Since the concentration profile is sharper

for a higher Thiele modulus, increasingly smaller elements are required near the surface

as the Thiele modulus increases. The meshes that were used are limited to a maximum

Thiele modulus of 30, beyond which inaccuracies became unacceptably large. Note that

the steepest concentration profiles are those shown in the figure, and not where φA =

φB = 30 as one may intuitively expect.

4.2 Monodispersed particles

Preliminary results of the FEM simulations showed that the behaviour of partially wet-

ted monodispersed catalysts differs significantly from that of eggshell catalysts. In this

section, the behaviour of partially wetted monodispersed catalysts and different reaction

expressions is described, based on FEM results.

4.2.1 Theory

To obtain an understanding of the behaviour of partially wetted monodispersed catalysts

for different reaction cases, it is first neccesary to understand the relevant existing theories.

Geometry

For the theoretical particle geometries of a semi-infinite slab, a semi-infinite cylinder3 and

a sphere, a first-order reaction and a single boundary condition at the external surface,

2Note that for a reaction that is first order in A and in B,
(

φA

φB

)2

= αDBCB,bulk

DAC∗
A

3A semi-infinite slab has a finite thickness L and an infinite height, and a semi-infinite cylinder has a
finite radius rC and an infinite height.
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Figure 4.3: Numerical and analytical solutions for the reaction rA = αrB = −αkrCACB for
the case where φA � φB = 30. (a) Monodispersed particle, (b) eggshell particle
with ρ = 0.9.
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Equation (4.1) is one-dimensional; and exact analytical expressions for the pellet efficiency

can derived:

Semi-infinite slab: η =
tanh φG

φG

(
φG = L

√
kr

D
=

VR

Sx

√
kr

D

)
(4.25)

Semi-infinite cylinder: η =
2I1(φC)

φCI0(φC)

(
φC = rC

√
kr

D
=

2Vp

Sx

√
kr

D

)
(4.26)

Sphere: η =
3

φ2
(φ coth φ − 1)

(
φ = rp

√
kr

D
=

3Vp

Sx

√
kr

D

)
(4.27)

Aris (1957) showed that the efficiencies of all the above geometries have more or less the

same functionality with the modulus of a slab, φG = L(kr/D)1/2 (termed the generalised

modulus), where L is the ratio between the particle volume and external area. He there-

fore proposed to use Equation (4.25) to approximate pellet efficiency factors, regardless

of the particle shape. The maximum error encountered when modelling a sphere as a

slab, is approximately 10% at intermediate φ. In the limits of L → 0 and L → ∞,

efficiency factors for spheres, cylinders and slabs are exactly the same for the same φG.

The idea of a generalised modulus form the basis for modeling partially wetted particles

under liquid-limited reaction conditions.

One-dimensional geometries are not necessarily limiting cases in terms of the modulus-

efficiency relationship and there is no guarantee that this relationship will be close to that

of a slab for all geometries. Burghardt and Kubaczka (1996) therefore suggested a differ-

ent approach where not only the modulus, but also the modulus-efficiency relationship

is determined by the shape of the particle. This work is based on the fact that the effi-

ciency expressions for the three 1-D geometries can be written in terms of modified Bessel

functions of the first kind4:

η =
h + 1

φ′′
I(h+1)/2(φ

′′
)

I(h−1)/2(φ
′′)

(4.28)

where h = 0, 1 and 2, for a slab, a cylinder and a sphere respectively. The modulus φ
′′

is the modulus relevant to each geometry. Therefore, these authors propose the follow-

ing expression which not only generalises the modulus but also the modulus-efficiency

4Modified Bessel functions are general solutions to the differential equation of diffusion and reaction
in a semi-infinite cylinder. As for any second-order differential equation, two general solutions exist - in
this case the modified Bessel functions of the first and second kind, I0(x) and K0(x)
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relationship for a given geometry:

η =
h + 1

φGC

I(h+1)/2(φGC)

I(h−1)/2(φGC)

h =
Sp.R

′

Vp

− 1

φGC = R′
√

kr

D
(4.29)

where R′ is the maximum reagent penetration depth along the most favourable diffusion

path. More information on how to calculate R′ for a given geometry can be found in

the paper by these authors (Burghardt and Kubaczka, 1996). This method is commonly

known as the generalised cylinder (GC) method. The GC model has never been used

before in the modelling of partially wetted particles.

The expressions so far are for pellet efficiency factors and do not take external mass

transfer resistances into account. To obtain an overall efficiency factor which takes exter-

nal mass transfer resistances into account, one can make use of the following relationship:

η0 = η
Cs

Cbulk

= η

(
1 +

(φG)2 η

Bi′′

)−1

(4.30)

Bi
′′

=
VRkc

SxD
(4.31)

This relationship can be derived from the equality:

Sxkc (Cbulk − Cs) = VRηkrCs (4.32)

Modelling of partial wetting

Effectiveness factors for particles in trickle-bed reactors are complicated by the fact that

the boundary conditions for Equation (4.1) are mixed: Due to incomplete wetting, two

boundary conditions must be satisfied, one for the wetted and one for the dry surface.

Even for the 1-D geometries of a sphere, a slab and a cylinder, the diffusion-reaction

problem obtains extra dimensions5.

For liquid-limited reactions, Dudukovic (1977) made use of the work of Aris (1957)

to derive an expression for the catalyst efficiency of partially wetted particles for liquid-

limited reactions, realising that only the wetted area can supply the reagent so that

Sx = Sp · f :

η =
tanh φG

φG

where: φG =
Vp

f · Sp

√
kr

D
(4.33)

The above equation suggests that partial wetting affects the effective geometry of a par-

5Exceptions are the geometries defined by Beaudry et al. (1987) and Valerius et al. (1996a)
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ticle due to its effect on the external area available for reagent supply. It is important for

the rest of this chapter to realise that if all shapes can be approximated for a slab with

L = VR/Sx then it should also be possible to approximate all shapes with a sphere, so

that Equation (4.33) becomes:

η =
3f2

φ2

(
φ

f
coth

(
φ

f

)
− 1

)
where: φ =

3Vp

Sp

√
kr

D
(4.34)

The overall efficiency that takes external mass transfer limitations into account can easily

be modelled, making use of Equation (4.30), and taking into account that only the wetted

area is available for external mass transfer:

η0 = η
Cs

Cbulk

= η

(
1 +

(φG)2η

Bi′′

)−1

=
tanh φG

φG

(
1 + φG tanh φG

Bi′wf

) Slab geometry (4.35)

or
3f2

(
φ
f

coth φ
f
− 1

)
φ2

(
1 +

f(φ
f

coth φ
f
−1)

Biw

) Sphere geometry (4.36)

The above approach can not be followed for a gas-limited reaction, since the gas enters

via both the wetted and the dry surface area. The most widely accepted model for a gas-

limited reaction in a partially wetted catalyst was provided by Ramachandran and Smith

(1979). The model is based on infinite slab geometry and the assumption that the reactant

entering through the dry part and the wetted part of the slab can be treated separately

and do not interact throughout the slab volume:

η0 =
f · tanh φG

φG

(
1 + φG tanh φG

Bi′w

) +
(1 − f) · tanh φG

φG

(
1 + φG tanh φG

Bi′d

) (4.37)

When compared to Equation (4.30), it is clear that this expression is analagous to that

of a slab where the entire surface is at a surface concentration Cs, where Cs = f ×Cs,w +

(1 − f) × Cs,d. When using Equation (4.37), it is important to realise that this equation

views gas-liquid-particle surface mass tranfer as one step, so that Biw is a combined Biot

number for gas-liquid and liquid-solid mass transfer. This can be done when the rate of

liquid-solid and gas-liquid mass transfer is the same. For high conversions of the liquid

reagent and negligible expense of the gas, this is a reasonable assumption. When the inlet

condition (e.g. saturated liquid, or zero gas-side reagent in the liquid) is of importance6,

the differential description of the concentration profile of the gaseous reagent in the liquid

6For example at low conversions
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that is necessary to evaluate the overall reaction rate r, analogous to equation (4.37), is:

dCbulk

dVc

= kGLaGL (C ∗ −Cbulk) − kLSapf (Cbulk − Cs,w)

kLSap (Cbulk − Cs,w) = ηkRCs,w

−r = fηkRCs,w + (1 − f) ηkRC∗ (4.38)

Clearly, the modelling of gas-limited reactions is completely different from that of

liquid-limited reactions: the limit of equation (4.37) where Bid → 0 is only the same as

the liquid-limited description of equation (4.35) at large moduli.

Valerius et al. (1996b) suggested a particle efficiency model which can take wetting

efficiency into account and can be used for gas-limited and liquid-limited reactions. The

model is based on a hollow cylinder geometry where the outer surface area represents

the wetted area and the inner surface the dry area of a partially wetted pellet, and can

therefore only be used for f > 0.5. This geometry is used in a later paper (Valerius et al.,

1996a) to simplify the numerical calculations for intricate kinetic expressions by trans-

forming a 3-D problem to a 2-D problem, rather than to obtain analytical expressions for

pellet efficiency factors. Only the analytical expression for a liquid-limited reaction was

reported and will be verified in this chapter.

Kinetics

Exact explicit expressions of pellet efficiency factors only exist for simple kinetic ex-

pressions such as zero and first order kinetics (Lee and Kim, 2006). Large amounts of

literature are therefore available, which present methods of approximating effectiveness

factors for arbitrary kinetics. Probably the most important amongst these is that of

Bischoff (1965), who suggested a general modulus for kinetics of any form. This modulus

has more or less the same effect on pellet efficiency independent of the kinetic expression.

To understand how the Bischoff modulus can be used, a short version of the derivation
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of this modulus is now shown:

The diffusion-reaction equation in a slab is given by:

D
d2C

dx2
= r(C)

(
C(0) = Cs;

dC

dx

∣∣∣∣
x=L

= 0

)
(4.39)

Let: p =
dC

dx
, then:

d

dx
= p · d

dC

∴ r(C) = D
d2C

dx2
= D · p dp

dC
=

D

2

d

dC

(
p2
)

(4.40)

Integrate from p = 0 (at x = L) to p:∫ p

0

d
(
p2
)

=
2

D

∫ C

CL

r(β)dβ

∴ p2 =
2

D

∫ C

CL

r(β)dβ

and
dC

dx
= p = −

√
2

D

(∫ C

CL

r(β)dβ

)1/2

(4.41)

The effectiveness factor can be evaluated using the flux of reagent into the slab:

η =
−SpD · dC

dx

∣∣
x=0

Vpr(Cs)

=
Sp

√
2D

(∫ Cs

CL
r(β)dβ

)1/2

Vpr(Cs)
(4.42)

It is well known that for simple order reactions in a slab, the pellet efficiency factor - Thiele

modulus curve has the relationship η = φ−1
G when φG � 1. At such high Thiele moduli,

L or r is very large and CL → Ceq, where Ceq is the concentration where r(Ceq) → 0. For

example Ceq = 0 when a reaction is irreversible and involves only one reagent. To have

the same behaviour for an arbitrary reaction at a large Bischoff modulus (large L and/or

fast reaction), this modulus can be defined as:

φ
′′
T =

(
ηCeq

)−1
=

Vp · r(Cs)

Sp

√
2D

(∫ Cs

Ceq

r(β)dβ

)−1/2

(4.43)
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In the original work, the diffusivity was also allowed to vary as a function of concentration,

resulting in the following expression for the Bischoff modulus:

φ
′′
T =

Vp · r(Cs)

Sp

√
2

(∫ Cs

CL

D(β)r(β)dβ

)−1/2

(4.44)

Where the derivation of Bischoff (1965) was done for a slab (to be used with Equa-

tion 4.25), one can for the same reasons as discussed earlier, define a “spherical” Bischoff

modulus that can be used with Equation (4.27):

φT =
3Vp · r(Cs)

Sp

√
2D

(∫ Cs

Ceq

r(β)dβ

)−1/2

(4.45)

4.2.2 Verification of existing models

Efficiency factors for partially wetted catalysts are only available for completely liquid-

limited and completely gas-limited reactions where only one of the reagents plays a role.

The accuracy of these models can now be evaluated with the FEM models for true wetting

geometries. In this section, the Bischoff approximation for the reaction −rA = αkrCACB

is also derived and verified for fully wetted particles.

Liquid-limited reactions

Monodispersed particle efficiencies of all the photographed particles shown in Figure 3.10

were calculated for 0.1 ≤ φ ≤ 30 in the absence of external mass transfer resistances.

Results are shown in Figure 4.4 as a function of the generalised modulus for partially

wetted particles as suggested by Dudukovic (1977). It is clear from the figure that this

approach yields rather good results, as can also be inspected by the parity plot in the

top left corner.

It is proposed that, as for the generalised modulus approach, the GC method can

be adapted to model the effect of partial wetting on liquid-limited reactions wetting by

adjusting the “effective geometry”:

η =
h + 1

φGC

I(h+1)/2(φGC)

I(h−1)/2(φGC)

φGC = R′
√

kr

D
R′ = rp for a sphere

h(f) = 3f − 1 (4.46)

In this approach, not the characteristic length, but the efficiency-modulus relationship is

influenced by partial wetting and it is therefore completely different from (4.33) where
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the characteristic length is adjusted according to the fractional wetting.

The performance of this “modified GC model” is shown as a parity plot in Figure 4.4,

and is even better than the traditional generalised modulus approach. The cylinder shell

model of Valerius et al. (1996b) performs well, but is limited to f > 0.5. The treatment
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r
e
d

f  > 0.5

Figure 4.4: Particle efficiency versus generalised modulus for partially wetted particles and
liquid-limited reaction conditions for real wetting geometries. The parity plots
show the prediction performance for the discussed models for liquid-limited par-
ticle efficiency.

of external mass transfer for liquid-limited reactions is analytically correct and need not

be verified.

Gas-limited reactions

The most important model for the evaluation of partially wetted particle efficiency

under gas-limited conditions is the “weighting method” of Ramachandran and Smith

(1979), Equation (4.37). This weighting method should be accurate if the difference

between dry and wet surface concentrations is small, so that unsymmetrical bound-

ary conditions do not have a major influence on the concentration profiles in the slab

(Ramachandran and Smith, 1979). Usually, Bid is very high and it was therefore in-

vestigated for which values of Biw the weighting method would still be accurate when

external mass transfer limitations on the dry part of the catalyst were negligible. Results

are shown as parity plots in Figure 4.5. Liquid-solid mass transfer Biot numbers are

typically larger than 10 for trickle-bed reactor applications (see Figure 2.3) as is also the

case for gas-liquid mass transfer (see database reported by Iliuta et al. (1999)). It can be

concluded that equation (4.37) clearly yields accurate results for realistic values of Biw.
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The only significant source of prediction error is the fact that slab geometry is used to

model other pellet geometries (spherical in this work), as can be seen from the subplot

in the bottom right corner. The equivalent of Equation (4.37) for a sphere is:

η0 =
3f (φ coth φ − 1)

φ2
(
1 + φ coth φ−1

Biw

) +
3(1 − f) (φ coth φ − 1)

φ2
(
1 + φ coth φ−1

Bid

) (4.47)

Though the original derivation of Equation (4.37) by Ramachandran and Smith (1979)

was only valid for the slab geometry defined in that work, Goto et al. (1981) have shown

that one can also use Equation (4.47), as can also be seen from the FEM results.
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Figure 4.5: Parity plots of pellet efficiency factors as calculated with the weighting model vs.
FEM results for different extents of mass transfer resistances over the wetted part
of the catalyst if gas-solid mass transfer is negligible. In the last subplot, the
parity between spherical and slab efficiency at the same generalised modulus is
also shown.

The Bischoff modulus

For a completely wetted particle, the Bischoff modulus7 (based on surface concentrations)

for the reaction rA = αrB = −αkrCACB can be derived as follows, starting at the

7The work in this chapter makes use of the “spherical” modulus, Equation (4.45)
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definition of the Bischoff modulus:

φT =
3Vp · r(Cs)

Sp

√
2D

(∫ Cs

Ceq

r(β)dβ

)−1/2

(4.48)

This definition allows for the integration of a reaction rate which is decribed in terms

of one reagent only. If γ > 1, CA,eq = 0 and CB,eq is unknown, so that CB should be

written in terms of CA. This can be done by using Equation (4.24), which relates the

concentrations of A and B in the pellet:

φT =
3Vp · r(CA,s, CB,s)

Sp

√
2DA

(∫ CA,s

0

r(CA)dCA

)−1/2

=
rp · αkrCA,sCB,s√

2DA

(∫ 1

0

αkrC
2
A,sCB,sa

(
a − 1 + γ′

γ′

)
da

)−1/2

=
rp

√
α · krCB,s√
2DA

(∫ 1

0

a2 − a + γ′a
γ′

)−1/2

=
φ′

A√
2

[(
a3

3γ′ −
a2

2γ′ +
1

2

)∣∣∣∣1
0

]−1/2

= φ′
A

(
1 − 1

3γ′

)−1/2

(4.49)

when γ′ < 1, CB,eq = 0 and the above derivation should be performed in terms of CB to

obtain:

φT = φ′
B

(
1 − γ′

3

)−1/2

(4.50)

In this derivation a and b are dimensionless concentrations based on surface concentra-

tions. Either equation (4.49) or (4.50) can be used when γ′ = 1, since the equilibrium

concentration of both reagents will then be equal to zero. Pellet effectiveness factors

for completely wetted particles, rA = αrB = −αkrCACB and negligible external mass

transfer were calculated using FEM. These are shown as a function of the above derived

Bischoff modulus in Figure 4.6. Clearly, the Bischoff modulus for this reaction can be

used for a good approximation of pellet efficiency.

Equation (4.24), describing the relationship between a and b for complete wetting, is

valid for any power law reaction rA = αrB = −krC
n
ACm

B , and one can write a general
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Figure 4.6: Pellet efficiency factors as a function of the Bischoff modulus for the reaction
rA = αrB = −αkrCACB, fully wetted particles with no external mass transfer
resistances. Also shown is the η-φ relationship for a first-order reaction in a sphere

expression for the Bischoff modulus for these types of reactions8:

φT =
φ′

A√
2

(∫ 1

0

an

(
a − 1 + γ′

γ′

)m

da

)−1/2

γ =

(
φ′

A

φ′
B

)2

> 1

φT =
φ′

B√
2

(∫ 1

0

(γ′b + 1 − γ′)n
bmdb

)−1/2

γ =

(
φ′

A

φ′
B

)2

< 1 (4.51)

Where:

φ′
A = rp

√
αkrC

n−1
A,s Cm

B,s

DA

; φB = rp

√
krCn

A,sC
m−1
B

DB

(4.52)

The FEM investigation was performed for n = 1 and m = 1 only, as stated previously.

4.2.3 A unified model for rA = αrB = −αkrCACB

The previous section has shown that the existing models for liquid- and gas-limited re-

actions are satisfactory for true wetting geometries. These models are specific to either

liquid- or gas-limited reactions but provide useful descriptions of the effect of partial

wetting on the behaviour of the liquid and gaseous reagents, that can be summarised as

follows:

• For liquid-limited reactions, the generalised modulus approach (Dudukovic, 1977)

8The dimensionless concentration term in the reaction expression does not play a role in the derivation
of the relationship between a and b, see Appendix A
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can be recommended, giving acceptable predictions while being very simple to use.

According to this approach, partial wetting affects the effective geometry (diffu-

sion path length) of the limiting reagent when a reaction is liquid-limited. For a

monodispersed catalyst pellet, the Thiele modulus of a partially wetted particle

can be corrected for partial wetting by adjusting the effective geometry so that

φcorr = φ/f . Where in the previous discussion the Thiele modulus-efficiency rela-

tionship of a slab was used for any geometry, it is also possible to use that of a

sphere. Overall pellet efficiency can be evaluated by taking external mass trans-

fer resistances into account as is shown in Equation (4.35). Mathematically, the

approach to liquid-limited reactions can be written as:

η0 = η
(
φ

′′
B/f

)
× CB,s

CB,bulk

(4.53)

• Partial wetting affects the average external surface concentration of the limiting

reagent when the reaction is gas-limited. Correcting overall pellet efficiency with the

average external surface concentration weighted according to the fractional wetting,

yield good results for realistic rates of external mass transfer. It is preferable to

use the model of Ramachandran and Smith (1979) in conjunction with the Thiele

modulus - pellet efficiency relationship specific to the particle geometry.

η0 = η (φ′
A) × fCA,s|w + (1 − f)CA,s|d

CA,bulk

(4.54)

Combining the above approaches with the Bischoff modulus derived for the reaction

rA = αrB = −αkrCACB, the following unified model for this reaction is suggested to

50

 
 
 



predict the efficiency of partially wetted particles over the whole γ-range:

η0 =
3CA,sCB,s

φ2
T C∗

ACB,bulk

(φT coth φT − 1) (4.55)

φT = φ′
A

(
1 − φ′

B
2

3φ′
A

2

)−1/2

φ
′
A ≥ φ

′
B

or φT = φ
′
B

(
1 − φ

′
A

2

3φ
′
B

2

)−1/2

φ
′
A < φ

′
B (4.56)

φ
′
A = rp

√
krCB,s

DA

; φ
′
B =

rp

f

√
krCA,s

DB

(4.57)

CA,s = C∗
A

[
f

(
1 +

φ
′
A

2 (φT coth φT − 1)

φ2
T BiA,w

)−1

+ (1 − f)

(
1 +

φ
′
A

2 (φT coth φT − 1)

φ2
T BiA,d

)−1
]

(4.58)

CB,s = CB,bulk

(
1 +

φ
′
B

2f (φT coth φT − 1)

φ2
T BiB,w

)−1

(4.59)

The model treats gas and liquid reagents according to the traditional approaches: the

average surface concentration of the gas and the modulus for the liquid component are af-

fected by fractional wetting according to the models of Ramachandran and Smith (1979)

and Dudukovic (1977) respectively. The liquid external surface concentration is calcu-

lated according to Equation (4.30). The major discrepancy in this model is that it uses

a Bischoff modulus that was derived for fully wetted particles, but the results are good

for a wide γ-range, as is shown in Figure 4.7, especially when compared to predictions

of the traditional liquid-limited and gas-limited models shown in Figure 4.8. As for

Equation (4.37), the unified model makes uses an overall gas-liquid-solid Biot number,

assuming equal rates of gas-liquid and liquid-solid mass transfer. If this does not apply,

the wetted surface concentration of A should be evaluated in a similar fashion as that

shown in equation (4.38). The unified model is reported here in terms of spherical parti-

cles, but there is no reason why it cannot be applied to other shapes, since the principles

of the model are not based on particle geometry.

4.3 Eggshell particles

The first, and probably most obvious, difference between monodispersed and eggshell

catalyst spheres is that the latter tend to behave like a slab as the shell thickness decreases.

This can best be seen from the definition of h in the GC model: h = 0 for a slab, and
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Figure 4.7: Performance of the unified model for the reaction rA = αrB = −αkrCACB.
(a) Liquid-limited reaction, with some external mass transfer resistances for the
gaseous reagent over the wetted surface (BiA,w = 10, BiA,d → ∞, BiB,w → ∞);
(b) reaction that is not classified as either gas or liquid-limited with varying rates
of external mass transfer for the gaseous reagent (γ = 1, BiA,d → ∞, BiB,w → ∞);
(c) gas-limited reaction (BiA,w = 10, BiA,d → ∞, BiB,w → ∞); (d) arbitrarily
chosen conditions (φA = 3, γ = 5, BiA,w = 5, BiA,d = 50, BiB,w = 10). All Thiele
moduli are as defined in the legend of subfigure (a).

52

 
 
 



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 f
0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

 f

η
0

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 f

0

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

 f

η
0

NO APPLICABLE
MODEL AVAILABLE

(γ = 1)

Equation 4−46
(Goto et al., 1981)

Equation 4−35
(Dudukovic, 1977)

Equation 4−46
(Goto et al., 1981)

Figure 4.8: Predictions of the FEM data in Figure 4.7 by traditional models for liquid- and
gas-limited reactions.

h = 2 for a sphere. For an eggshell sphere of inner to outer shell diameter ratio ρ:

h =
Sp

Vp

R
′ − 1

=
4πr2

p

4/3πr3
p (1 − ρ3)

· rp (1 − ρ) − 1

=
3 (1 − ρ)

1 − ρ3
− 1 (4.60)

in the limit of ρ → 1, h → 0, which suggests slab geometry. Gas-limited reactions

in partially wetted egshell particles clearly show “slab behaviour”: for the investigated

eggshell catalysts, Equation (4.37), which assumes slab geometry, works very well for

Biw ≥ 5 (within 5% accuracy for all simulation results). Another reason why gas-limited

reactions within an eggshell catalyst can be predicted so well, is that the dry and wetted

parts of the reaction zone are more segregated than in a monodispersed catalyst.

Liquid limititations are not predicted well by the traditional generalised modulus

approach and incomplete wetting has a more detrimental effect than on monodispersed

catalysts, as is shown in Figure 4.9. The reason why the generalised modulus approach

performs so poorly for a partially wetted eggshell catalyst, is that a zone exists where

diffusion without reaction takes place. The particle can therefore not be directly related
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to a slab with diffusion and reaction throughout its volume. Due to symmetry, such zones

will not exist in a fully wetted particle, so that the generalised modulus approach works

well for eggshell catalysts with a high wetting efficiency.

10−1 100 101
10−1

100

Generalised modulus, φG = (1−ρ3)×Vp(Sp.f)−1

η

f > 0.8
0.8 > f > 0.5
0.5 > f
Generalised
modulus approach

Figure 4.9: Particle efficiency versus generalised modulus for partially wetted particles and
liquid-limited reaction conditions for real wetting geometries on a spherical
eggshell catalyst (ρ = 0.9).

Similarly to the generalised modulus approach, it is difficult to define the characteristic

length to use in the GC method (Equation (4.29, defined as the maximum distance for

diffusion under reaction conditions). For a fully wetted particle this should be equal

to rp (1 − ρ), but for a fractionally wetted particle substantially more. To be consistent

with the modified GC method proposed in section 4.2.2 (equation 4.46), the characteristic

length for ρ = 0 should be equal to rp, independent of the fractional wetting. It is possible

to define a general expression for the characteristic length that meets these requirements:

R
′
= rp (1 − ρ × g(f)) (4.61)

The shape factor, h is then given by:

h =
Sx

VR

R
′ − 1 =

3f × (1 − ρ × g(f))

1 − ρ3
− 1 (4.62)

where g(f) should be equal to 1 for f = 1. Also, R
′

should increase and g(f) should

decrease as f decreases, most likely in a non-linear function. Assuming a quadratic

relationship between g(f) and f , the following function was fitted onto FEM efficiency

data for a liquid-limited reaction in eggshell catalysts with shell dimensions of ρ = 0.9

54

 
 
 



and ρ = 0.5:

g(f) = k1

(
f2 − 1

)
+ k2 (f − 1) + 1 (4.63)

Best-fit values for k1 and k2 are −2 and 4, respectively. Equations (4.61) to (4.63) simplify

to Equations (4.46) for a monodispersed catalyst. The equations imply slab geometry

for very thin eggshells (h → 0 when ρ → 1 and f = 1), which is also correct. The fitted

parameter values for g(f) suggest a limit of R
′

= rp(1 + ρ) when f = 0. Figure 4.10

shows the performance of the proposed partial wetting GC model for eggshell catalysts.

Though empirical, the model performs well for ρ = 0.9, ρ = 0.5 and ρ = 0 (see figure 4.4

for the performance of the modified GC model when ρ = 0). No statement can be made

about the model’s performance when ρ > 0.9 or for shapes other than spheres9. External

mass transfer can be accounted for in the normal fashion (Equation 4.30 or 4.32).
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Figure 4.10: Proposed GC model for liquid-limited, partially wetted eggshell catalysts as
compared with results from FEM simulations for different shell thicknesses: (a)
ρ = 0.5 and (b) ρ = 0.9.

It is not possible to use the modified GC model together with the Bischoff modulus

to obtain a unified model for eggshell catalysts, since the modulus-efficiency relationship

varies with shape in the GC model. For this reason a generalied modulus-type description

is needed for eggshell catalysts. Based on the limits of R′ in the GC model for egghell

particles (R′ = (1 − ρ) for fully wetted particles, and rp (1 + ρ)) and the generalised

modulus for a fully wetted particle, the following correction of the generalised modulus

9An exception is for the case where ρ = 0. Here, it should be clear from the work of
Burghardt and Kubaczka (1996) how to adjust Equation (4.46) for shapes other than spheres. The
accuracy should be more or less the same as that shown in Figure 4.4
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is suggested for eggshell particles:

φG = φ
(1 − ρ3)

3f︸ ︷︷ ︸
φG for partially wetted eggshell sphere

× [1 + ρ (1 − f)]︸ ︷︷ ︸
correction factor

(4.64)

This modified generalised modulus for eggshell catalysts works rather well, especially for

thin shells, as is shown in Figure 4.11. Though possibly somewhat less accurate than

the modified GC model, this generalised eggshell modulus is far easier to use and can

also be used in the unified model. To model eggshells with both liquid and gas reagent

limitations, one should make use of slab geometry so that the unified model becomes:

η0 =
CA,sCB,s

φT C∗
ACB,bulk

tanh φT (4.65)

φT = φ′
A

(
1 − φ′

B
2

3φ′
A

2

)−1/2

φ
′
A ≥ φ

′
B

or φT = φ
′
B

(
1 − φ

′
A

2

3φ
′
B

2

)−1/2

φ
′
A < φ

′
B

φ
′
A =

rp (1 − ρ3)

3

√
krCB,s

DA

φ
′
B =

rp (1 − ρ3) (1 + ρ − ρ · f)

3f

√
krCA,s

DB

(4.66)

CA,s = C∗
A

⎡
⎣f

(
1 +

φ
′
A

2 tanh φT

φT Bi′A,w

)−1

+ (1 − f)

(
1 +

φ
′
A

2 tanh φT

φT Bi′A,d

)−1
⎤
⎦ (4.67)

CB,s = CB,bulk

(
1 +

φ
′
B

2f tanh φT

φT BiB,w

)−1

(4.68)

Performance of the unified model for eggshell catalysts is shown in figure 4.12.

4.4 Summary

The wetting geometries obtained from the colorimetric work in Chapter 3 were used to

investigate the effects of partial wetting on intraparticle diffusion, using FEM simulation.

It was shown that existing models can predict the effectiveness factor of monodispersed

catalyst particles satisfactorily for true wetting geometries for both liquid- and gas-limited

reactions. These models are limited to first-order reactions, with a rate dependence only

on either the gas or the liquid reagent. Adopting the traditional descriptions for partial

56

 
 
 



10−3 10−2 10−1 100 101 102

10−1

100

φ
G

 = r
p
(k

r
/D)1/2   x   (1−ρ3)/3f   x   (1+ρ(1−f))

η

ρ = 0.5
ρ = 0.9

Figure 4.11: Pellet efficiency for partially wetted spherical eggshell catalysts as a function of
the modified eggshell modulus (Equation 4.64)
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Figure 4.12: Overall efficiency factor for the reaction −rA = krCACB in an eggshell catalyst
where ρ = 0.9. (a) Liquid-limited reaction with some external mass transfer
resistances for the gaseous reagent over the wetted surface (BiA,w = 10, BiA,d →
∞ , BiB,w → ∞); (b)reaction that is not classified as either gas- or liquid-limited
with varying rates of external mass transfer for the gaseous reagent (γ = 1,
BiA,d → ∞, BiB,w → ∞); (c) gas-limited reaction (BiA,w = 10, BiA,d → ∞,
BiB,w → ∞). For all data, φi = 10 where i refers to the limiting reagent.
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wetting effects on liquid- and gas-limited reactions, a unified model was developed for

the reaction rA = −αrB = αkrCACB. This unified model can be used over the whole

γ-range, so that a reaction need not be classified as either liquid- or gas-limited.

Eggshell catalysts have not previously been studied for trickle-bed reactor purposes,

though these are quite common for hydrogenation purposes. Based on FEM results,

models are suggested to estimate the effect of partial wetting on eggshell particles for any

value of γ. It was shown that, in term of liquid-limitations, eggshell particles are more

sensitive to partial wetting than monodispersed particles.
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Nomenclature

A1, B1 quantities defined in Equation (4-23), dimensionless
a dimensionless concentration of reagent A
ap ratio of catalyst surface area to catalyst volume in a reactor, m−1

aGL ratio of gas-liquid surface area to catalyst volume in a reactor, m−1

b dimensionless concentration of reagent B
Bi Biot number for a sphere, dimensionless
Bi′ Biot number based on slab geometry, Bi′ = VRkc

SpD

Bi
′′

Biot number based on slab geometry and the external area available for
mass transfer, Bi′ = VRkc

SxD

c dimensionless concentration, c = C
Cbulk

C∗ saturation concentration, mol/m3

Ci concentration of reagent i, mol/m3

Ceq concentration for which reaction rate is zero, mol/m3

CL concentration in centre of slab, mol/m3

Di effective diffusivity of reagent i, m2/s

f fractional wetting, dimensionless
g(f) fitted function to describe the η - f relationship for an eggshell particle

based on the GC model
h shape factor for the GC model
Ix(y) modified Bessel function of the first kind, order x, evaluated at y
Kx(y) modified Bessel function of the second kind, order x, evaluated at y
kr reaction rate constant, based on active catalyst volume, units dependent

on rate expression
kR first-order reaction rate constant, based on catalyst volume in reactor,

1/s

kc mass transfer coefficient for relevant mass transfer step, m/s

kGL gas-liquid mass transfer coefficient, m/s

kLS liquid-solid mass transfer coefficient, m/s

L slab thickness, or VR/Sx

n unit vector normal to external surface, dimensionless
rC radius of semi-infinite cylinder
rp radius of spherical particle, m
ri rate of production of component i, mol/s

R′ characteristic diffusion length for the GC model, m
Ri residual for the estimation of dimensionless concentration i, dimension-

less
s FEM surface triangle area, dimensionless
Sp external surface area of catalyst particle, m2

Sx external surface area of catalyst particle over which mass transfer can
take place, m2

v FEM element volume, dimensionless
Vc volume of catalyst in a reactor, m3

Vp volume of catalyst particle, m3

VR volume of catalyst particle in which reaction can take place. The same
as VP for a monodispersed particle, but not for an eggshell particle

w arbitrary weighting function used in the derivation of FEM equations
x dimensionless position in a slab
y(C) concentration-dependent term in the kinetic description of reaction rate,

units dependent on kinetic expression
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Greek letters
α stoichiometric coefficient, dimensionless
φ

′′
Thiele modulus relevant to specifiec geometry, dimensionless

φC Thiele modulus for a cylinder, dimensionless

φG generalised modulus, L
√

kr/D for a first-order reaction, dimensionless
φGC modulus for the GC model, dimensionless

φi Thiele modulus of component i for a sphere. For a first-order reaction, φ = rp

√
kr

D
.

Note that this definition is not adjusted for an eggshell catalyst.
φ′

i same as φi, but based on surface concentrations for higher-order reactions, dimen-
sionless

φ
′′
T Bischoff modulus for a slab

φT Bischoff modulus for a (partially wetted) sphere
γ (αCB,bulkDB) / (C∗

ADA), dimensionless
η pellet efficiency factor, dimensionless
η0 overall efficiency factor, dimensionless
λ dimensionless radial position in a spherical particle
λ′ same as λ, but based on surface concentrations, dimensionless
ρ ratio of shell inner to outer diameter, dimensionless

Subscripts
A refers to reagent in the gas
B refers to non-volatile reagent
bulk refers to bulk liquid
d refers to dry external area
w refers to wetted external area
s refers to surface
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