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ABSTRACT 

 
Agricultural production is highly sensitive to climate and weather perturbations.  Maize is the main 

crop cultivated in South Africa and production is predominantly rain-fed.  South Africa’s climate, 

especially rainfall, is extremely variable which influences the water available for agriculture and 

makes rain-fed cropping very risky.  In the aim to reduce the uncertainty in the climate of the 

forthcoming season, this study investigates whether seasonal climate forecasts can be used to 

predict maize yields for South Africa with a usable level of skill.  Maize yield, under rain-fed 

conditions, is simulated for each of the magisterial districts in the primary maize producing region of 

South Africa for the period from 1979 to 1999.  The ability of the CERES-Maize model to simulate 

South African maize yields is established by forcing the CERES-Maize model with observed weather 

data.  The simulated maize yields obtained by forcing the CERES-Maize model with observed 

weather data set the target skill level for the simulation systems that incorporate Global Circulation 

Models (GCMs).  Two GCMs produced the simulated fields for this study, they are the Conformal 

Cubic Atmospheric Model (CCAM) and the ECHAM4.5 model.  CCAM ran a 5 and ECHAM4.5 a 6-

member ensemble of simulations on horizontal grids of 2.1° x 2.1° and 2.8° x 2.8° respectively.  Both 

models were forced with observed sea-surface temperatures for the period 1979 to 2003.  The 

CERES-Maize model is forced with each ensemble member of the CCAM-simulated fields and with 

each ensemble member of the ECHAM4.5-simulated fields.  The CERES-CCAM simulated maize 

yields and CERES-ECHAM4.5 simulated maize yields are combined to form a Multi-Model maize 

yield ensemble system.  The simulated yields are verified against actual maize yields.  The CERES-

Maize model shows significant skill in simulating South Africa maize yields.  CERES-Maize model 

simulations using the CCAM-simulated fields produced skill levels comparable to the target skill, 

while the CERES-ECHAM4.5 simulation system illustrated poor skill.  The Multi-Model system 

presented here could therefore not outscore the skill of the best single-model simulation system 

(CERES-CCAM).  Notwithstanding, the CERES-Maize model has the potential to be used in an 

operational environment to predict South African maize yields, provided that the GCM forecast fields 

used to force the model are adequately skilful.  Such a yield prediction system does not currently 

exist in South Africa.     

 
 
 



 iii 

 
 
 
 
 
 
 

 

 

 

 

I declare that the thesis that I hereby submit for the degree ......... at the University of 

Pretoria is my own work and has not previously been submitted by me for degree purposes 

at any other university or institution. 

 
 
 
___________________________                           _____________ 
SIGNATURE                  DATE 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

University of Pretoria, 2009 

 
 
 



 iv 

PREFACE 

 

Agricultural production is highly sensitive to climate and weather perturbations (Podesta et 

al., 1999; Chimeli et al., 2002; Cantelaube and Terres, 2005; Sivakumar, 2006).  Rainfall as 

such, can be considered as the atmospheric variable with the largest limiting effect on crop 

growth and development (Taljaard, 1986; DoA, 2007), which makes rain-fed agriculture 

particularly vulnerable to extreme weather events that significantly influences water 

availability.  In South Africa, crop production is predominantly rain-fed, with only about 1% 

of the total cultivated area being irrigated (Chenje and Johnson, 1994).  Due to the extreme 

variability of South Africa’s climate, crop production is exceptionally risky.  Therefore, the 

climate can be seen as one of the main factors responsible for year-to-year variations in 

South African crop yields.     

 

Agriculture represents one of the main pillars of the economy of South Africa as a 

developing country, not only in terms of crop production and the main source of food, but 

also in terms of employment (Oram, 1989; Sivakumar, 2006; DoA, 2007).  In a country like 

South Africa,  where rain-fed agriculture dominates, a good rainy season normally results in 

good crop production, whereas a season with insufficient rain or the occurrence of a natural 

disaster (drought or flood) can result in crop failure (Arndt et al., 2002; Sivakumar, 2006).  

This vulnerability of crop production to fluctuations in the climate, which consequently leads 

to variable yields, can cause the economy of the entire country to suffer (Cantelaube and 

Terres, 2005; Sivakumar, 2006).  Southern Africa is a region subject to climate extremes 

(Tyson, 1986; Reason et al., 2006a) and as a result often faces threats of food shortages 

(Devereux, 2000).  The world’s population is expected to exceed 8 billion by the year 2020, 

which places even more pressure on the agricultural sector in terms of food security 

(Sivakumar, 2006).       

 

To ensure food security, excellent crop management is of utmost importance.  This is a 

complicated practice, as weather is the primary source of uncertainty in crop management 

(Vossen, 1995).  From the start of the season and right through, farmers have to make 

critical land and water management decisions which are primarily based on climatic 

conditions (Sivakumar, 2006).  These decisions are often made weeks to months in 

advance of a specific weather event, like for instance the onset of the rainfall.  Since 

unexpected climatic extremes can have detrimental effects on the yield, there is a need to 

investigate ways by which the uncertainty in the expected climate regime of the forthcoming 

season can be reduced.  Seasonal climate forecasts provide insight into the expected mean 
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weather conditions of the approaching season, but farmers can benefit more from 

information when it is presented in terms of production outcomes.  

 

In this study a maize yield forecast system is constructed using a crop model and two 

Global Circulation Models (GCMs) that aims to produce useable maize yield predictions for 

South Africa which will allow farmers to take advantage of probable good seasons and 

reduce unwanted impacts in probable poor seasons.    

 

The hypotheses that will be tested are: 

 

1. that the crop model has skill in simulating South African maize yields when forced 

with observed weather data; 

 

2. that crop model-GCM based maize yield simulation systems can produce skill levels 

comparable to the target skill level set by forcing the crop model with observed 

weather data; 

 

3. that the skill of a simple Multi-Model maize yield ensemble system outscores that of 

the best crop model-GCM based maize yield simulation system.   

 

The steps required to test these hypotheses are to: 

 

1. run the crop model for each of the magisterial districts in the primary maize 

producing area of South Africa for the period 1979/80 to 1998/99 with observed 

weather data; 

 

2. quantify the skill of the crop model by comparing the simulated maize yields to 

actual maize yields and so that a target skill level can be set; 

 

3. use the GCM-simulated fields as forcing in the crop model and perform the same 

crop model runs as done with the observed weather data; 

 

4. combine the simulated maize yields from the two crop model-GCM based simulation 

systems to form a simple Multi-Model maize yield ensemble system; 
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5. verify the simulated maize yields obtained from the crop model-GCM based systems 

and from the Multi-Model maize yield ensemble system against actual maize yields 

and against the target skill level. 

 

This dissertation consists of four chapters.  Chapter 1 describes the growth stages of the 

maize plant, the factors influencing South Africa’s climate, the seasonal predictability of 

South African rainfall, seasonal climate forecasting, ensemble and multi-model forecasting 

as well as an overview of crop yield forecasting worldwide.  The data and models used and 

set up of the maize yield simulation experiments are detailed in Chapter 2.  The methods 

used to verify the simulated maize yields are also described in this chapter.  Chapter 3 

discusses the maize yield simulation results.  The simulated maize yields are verified 

spatially, inter-seasonally and probabilistically.  The results are summarized and 

conclusions are made in Chapter 4.    
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confidence level are indicated in bold.         

 

Figure 3.20: Spearman rank correlations calculated between the actual maize yields and CERES-

CCAM ensemble mean maize yields over the 20 year period from 1980 to 1999.  (a) 

Short season maize plant date 1, (b) Short season maize plant date 2, (c) Short 

season maize plant date 3, (d) Medium season maize plant date 1, (e) Medium 

season maize plant date 2, (f) Medium season maize plant date 3, (g) Long season 

maize plant date 1, (h) Long season maize plant date 2 and (i) Long season maize 

plant date 3.  Magisterial districts with statistically significant correlations at the 95% 

confidence level are indicated in bold.         

 

Figure 3.21: Spearman rank correlations calculated between the actual maize yields and Multi-

Model ensemble mean maize yields over the 20 year period from 1980 to 1999.  (a) 

Short season maize plant date 1, (b) Short season maize plant date 2, (c) Short 

season maize plant date 3, (d) Medium season maize plant date 1, (e) Medium 

season maize plant date 2, (f) Medium season maize plant date 3, (g) Long season 

maize plant date 1, (h) Long season maize plant date 2 and (i) Long season maize 

plant date 3.  Magisterial districts with statistically significant correlations at the 95% 

confidence level are indicated in bold.        

 

Figure 3.22: Simulated short season maize yield probabilities.  CERES-CCAM yield (CC), 

CERES-ECHAM4.5 yield (CE) and Multi-Model yield (MM).  The actual maize yield 

(red) and CERES-Observed weather yield (grey) are denoted as A (above-normal), 

N (near-normal) or B (below-normal) at the top of the graph.             

 

Figure 3.23: Simulated medium season maize yield probabilities.  CERES-CCAM yield (CC), 

CERES-ECHAM4.5 yield (CE) and Multi-Model yield (MM).  The actual maize yield 
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(red) and CERES-Observed weather yield (grey) are denoted as A (above-normal), 

N (near-normal) or B (below-normal) at the top of the graph.            

 

Figure 3.24: Simulated long season maize yield probabilities.  CERES-CCAM yield (CC), 

CERES-ECHAM4.5 yield (CE) and Multi-Model yield (MM).  The actual maize yield 

(red) and CERES-Observed weather yield (grey) are denoted as A (above-normal), 

N (near-normal) or B (below-normal) at the top of the graph.             

 

Figure 3.25: Simulated short season maize yield probabilities.  CERES-CCAM yield (CC), 

CERES-ECHAM4.5 yield (CE) and Multi-Model yield (MM).  The actual maize yield 

(red) and CERES-Observed weather yield (grey) are denoted as A (above-normal), 

N (near-normal) or B (below-normal) at the top of the graph.       

 

Figure 3.26: Simulated medium season maize yield probabilities.  CERES-CCAM yield (CC), 

CERES-ECHAM4.5 yield (CE) and Multi-Model yield (MM).  The actual maize yield 

(red) and CERES-Observed weather yield (grey) are denoted as A (above-normal), 

N (near-normal) or B (below-normal) at the top of the graph.            

 

Figure 3.27: Simulated long season maize yield probabilities.  CERES-CCAM yield (CC), 

CERES-ECHAM4.5 yield (CE) and Multi-Model yield (MM).  The actual maize yield 

(red) and CERES-Observed weather yield (grey) are denoted as A (above-normal), 

N (near-normal) or B (below-normal) at the top of the graph.      

 

Figure 3.28: Simulated short season maize yield probabilities.  CERES-CCAM yield (CC), 

CERES-ECHAM45 yield (CE) and Multi-Model yield (MM).  The actual maize yield 

(red) and CERES-Observed weather yield (grey) are denoted as A (above-normal), 

N (near-normal) or B (below-normal) at the top of the graph.             

 

Figure 3.29: Simulated medium season maize yield probabilities.  CERES-CCAM yield (CC), 

CERES-ECHAM4.5 yield (CE) and Multi-Model yield (MM).  The actual maize yield 

(red) and CERES-Observed weather yield (grey) are denoted as A (above-normal), 

N (near-normal) or B (below-normal) at the top of the graph.        

 

Figure 3.30: Simulated long season maize yield probabilities.  CERES-CCAM yield (CC), 

CERES-ECHAM4.5 yield (CE) and Multi-Model yield (MM).  The actual maize yield 

(red) and CERES-Observed weather yield (grey) are denoted as A (above-normal), 

N (near-normal) or B (below-normal) at the top of the graph.     

 

Figure 3.31: ROC curves for above-normal, near-normal and below-normal simulated short 

season maize yields.  (a) CERES-CCAM maize yield simulation system, (b) CERES-

ECHAM4.5 maize yield simulation system and (c) Multi-Model maize yield simulation 

system.      
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Figure 3.32: ROC curves for above-normal, near-normal and below-normal simulated medium 

season maize yields.  (a) CERES-CCAM maize yield simulation system, (b) CERES-

ECHAM4.5 maize yield simulation system and (c) Multi-Model maize yield simulation 

system.      

 

Figure 3.33: ROC curves for above-normal, near-normal and below-normal simulated long 

season maize yields.  (a) CERES-CCAM maize yield simulation system, (b) CERES-

ECHAM4.5 maize yield simulation system and (c) Multi-Model maize yield simulation 

system.      

 

Figure 3.34: ROC curves for above-normal, near-normal and below-normal simulated short 

season maize yields.  (a) CERES-CCAM maize yield simulation system, (b) CERES-

ECHAM4.5 maize yield simulation system and (c) Multi-Model maize yield simulation 

system.     

 

Figure 3.35: ROC curves for above-normal, near-normal and below-normal simulated medium 

season maize yields.  (a) CERES-CCAM maize yield simulation system, (b) CERES-

ECHAM4.5 maize yield simulation system and (c) Multi-Model maize yield simulation 

system.     

 

Figure 3.36: ROC curves for above-normal, near-normal and below-normal simulated long 

season maize yields.  (a) CERES-CCAM maize yield simulation system, (b) CERES-

ECHAM4.5 maize yield simulation system and (c) Multi-Model maize yield simulation 

system.     

 

Figure 3.37: ROC curves for above-normal, near-normal and below-normal simulated short 

season maize yields.  (a) CERES-CCAM maize yield simulation system, (b) CERES-

ECHAM4.5 maize yield simulation system and (c) Multi-Model maize yield simulation 

system.     

 

Figure 3.38: ROC curves for above-normal, near-normal and below-normal simulated medium 

season maize yields.  (a) CERES-CCAM maize yield simulation system, (b) CERES-

ECHAM4.5 maize yield simulation system and (c) Multi-Model maize yield simulation 

system.     

 

Figure 3.39: ROC curves for above-normal, near-normal and below-normal simulated long 

season maize yields.  (a) CERES-CCAM maize yield simulation system, (b) CERES-

ECHAM4.5 maize yield simulation system and (c) Multi-Model maize yield simulation 

system.     
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 AGRICULTURE IN SOUTH AFRICA 

 

The main crops cultivated in South Africa include maize, barley, wheat, sunflower, potatoes, 

sugarcane, soybeans and sorghum.  Figure 1.1 shows the area that was harvested in 2008 

for each of these crops (BFAP, 2008).  It can be seen from Figure 1.1 that maize is the 

primary crop grown in South Africa, with 2.8 million hectares of land harvested.  The second 

largest cultivated crop is barley (746 000 ha) and the third largest cultivated crop is wheat 

(718 000 ha).  As maize is the main crop cultivated in South Africa and significantly 

contributes to the country’s economy, this study focuses on maize.   
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Figure 1.1: The area harvested in 2008 for each of the main crops cultivated in South Africa 

(BFAP, 2008). 
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1.2 THE GROWTH AND DEVELOPMENT OF THE MAIZE PLANT 

 

The maize plant flourishes under warm conditions, and is only grown in areas where the 

average daily temperature is greater than 19°C or where the average temperature of 

summer is greater than 23°C (Du Toit, 1997).  However, a minimum temperature of 10°C is 

needed for germination.  The critical temperature that can negatively influence the yield is 

approximately 32°C, and water availability normally limits maize yields.  To obtain a yield of 

3.2 t/ha a minimum rainfall of 350 mm is required per annum.  Approximately 10 kg to 16 kg 

of grain are produced per hectare for every millimetre of water used.  In the absence of 

moisture stress a total of 250 ℓ of water would have been used by each maize plant by the 

time it reaches maturity.          

 

To understand the vulnerability of maize to climate variability, in particular related to rainfall, 

it is necessary to know the development stages of the maize plant and how each of these 

stages are influenced by unfavourable climatic conditions.  High maize yields can only be 

obtained when the soil and climatic conditions are favourable during all the development 

stages of the plant (Sun et al., 2007).  The ten development stages of the maize plant, as 

stipulated by Hanway (1966) and Du Toit (1997), are described in the following subsections.        

 

1.2.1 Stage 0 – From planting to seed emergence 

 

When maize production takes place under rain-fed conditions, farmers need to wait for the 

first rains before planting can take place as the seed requires sufficient moisture to 

germinate.  Under optimal warm and moist conditions the seedlings will emerge within 6 to 

10 days, while unfavourable cold and dry conditions can lead to the seedlings only 

emerging after 2 weeks.  The optimal temperatures for germination is between 20°C and 

30°C and the plant available water in the soil should optimally be 60% of the capacity of the 

soil.               

 

1.2.2 Stage 1 – Four leaves completely unfolded 

 

The maximum number of leaves and lateral shoots are by now already determined, and 

approximately every 3rd day a new leave unfolds.  The parts of the plant at this stage visible 

above the soil surface are limited to the leaf sheaths and blades.  Tasseling is also initiated 

during this stage.  The rate of development of the primary root system decreases rapidly 

until almost no further development takes place.  If the nodes of the plant below the soil 

surface experience extremely dry or wet conditions, the adventitious roots will not develop 
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which makes the plant solely dependant on the primary root system for nutrient and water 

uptake.  Dry climatic conditions can also lead to the roots shooting deeper.  Unfavourable 

climatic conditions in the early development stages of the maize plant can limit the size of 

the leaves (Sun et al., 2007).   

 

1.2.3 Stage 2 – Eight leaves completely unfolded           

 

During this stage the leave area of the plant increases 5 to 10 times and the mass of the 

stem increases 50 to 100 times.  Thus, the size of the leaves and thickness of the stem are 

determined.  The 9th, 10th and 11th leaves have reached their final size.  The development of 

ears also commence during this stage.   

 

1.2.4 Stage 3 – Twelve leaves completely unfolded          

 

The leaves have now reached their final size.  The stem is thickening and the lowest four 

leaves are dying off.  The tassel in the growth point is now starting to develop rapidly. 

Lateral shoots bearing ears are developing from nodes 6 to 8 above the soil surface and the 

potential number of seed buds of the ear is genetically predetermined.  During this stage 

plant nutrients are absorbed at a very fast rate.  Prop roots are now also developing out of 

the first few nodes above the soil surface.  At this stage the root system can extend up to 

0.8 m in the horizontal and 1.2 m in the vertical. 

 

1.2.5 Stage 4 – Sixteen leaves completely unfolded         

 

The stem is lengthening rapidly and the tassel is almost completely developed.  The tassel 

is pushed up higher in the plant and starts to emerge at the top.  Silks begin to develop and 

lengthen from the base of the upper ear.  Prop roots also develop out of the 7th node above 

the soil surface.   

 

1.2.6 Stage 5 – Silk appearance and pollen shedding        

 

All the leaves are completely unfolded and the tassel has been visible for 2 to 3 days.  

Pollen starts shedding.  By now the plant has also reached its maximum height.  The 

environment plays an important role in the determination of the height of the plant.  Under 

unfavourable conditions, shorter plants may occur.  The lateral shoot bearing the main ear 

have almost reached maturity.  The seed buds are enlarging, while the silks are still 
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lengthening in the preparation for pollination.  At this point leaf loss, high temperatures and 

too much rain can reduce the number of silks produced, cause poor pollination, and limit the 

size or number of kernels which will have detrimental effects on the yield (Ritchie et al., 

1993; Frost, 2006).  The demand for water and nutrients are very high during this stage.     

 

1.2.7 Stage 6 – Green maize stage   

 

Pollination has now taken place.  The ear and lateral shoots are now fully developed and 

starch begins to accumulate in the endosperm.  The kernels are growing in size and rapidly 

increasing in mass.  The kernels are filled with a milky fluid which contains a high 

concentration of sugar.              

 

1.2.8 Stage 7 – Soft dough stage 

 

The kernels are still relatively soft, and can be broken easily (Frost, 2006).  The mass of the 

kernels are still increasing rapidly and the sugar is being converted into starch.  Moisture 

stress can negatively influence the mass of the kernels at this stage.     

 

1.2.9 Stage 8 – Hard dough stage     

 

The sugar in the kernels is disappearing quickly.  Starch accumulates in the crown of the 

kernels and extends downward.  Moisture stress can also influence the mass of the kernels 

at this stage.   

 

1.2.10 Stage 9 – Physiological maturity    

 

The kernels have reached their maximum dry mass and a layer of black cells have 

developed at the base of the kernels.  The kernels are now physiologically mature, but the 

moisture content still needs to be reduced.  As soon as 90% to 95% of the kernels at the 

base of the ear appear black, the moisture content of the kernels should be in the 35% to 

40% range.   

 

1.2.11 Stage 10 – Biological maturity  

 

Even though the kernels are physiologically mature, they have to dry out before reaching 

biological maturity.  The drying of the kernels depends on the climatic conditions.  Under 
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favourable conditions drying takes place at a rate of 5% per week until it reaches 20% 

where after the drying goes much slower.    

   

The yield obtained at any give point is a direct product of the soil conditions and climate that 

prevailed during that specific season (Du Toit, 1997).  Although, non-climatic factors such 

as crop genetic and management technique improvements also influence maize yields over 

time (Podesta et al., 1999; Sun et al., 2007).  An upward trend has been found in South 

African maize production between 1951 and 1981, where after a downward trend followed 

(Du Toit et al., 2001).  The use of high yielding cultivars, improved fertilizer strategies, the 

availability of chemical weed control and improved management practices all contributed to 

the upward trend, while a combination of extreme weather events, rising input costs and the 

unstable maize price may have led to the downward trend (Du Toit et al., 2001).   

 

1.3 SOUTH AFRICAN CLIMATE 

 

South Africa (situated at the southern tip of Africa) lies in the subtropical high pressure belt, 

an atmospheric zone dominated by dry descending air (Preston-Whyte and Tyson, 1993).  

The country has a hot and dry climate, with an average annual rainfall less than 500 mm 

(DoA, 2007).  The distribution of rainfall is uneven, with only 35% of the country receiving 

more than 500 mm of rainfall per annum (DoA, 2007).  The eastern parts of the country 

experience humid, subtropical conditions, while the western parts of the country experience 

dry, desert like conditions (DoA, 2007).  Thus, the summer is characterized by a decrease 

in rainfall from east to west across the country (Preston-Whyte and Tyson, 1993; Schulze 

and Lynch, 2007).  Three distinct regions are evident in South Africa, namely the summer 

rainfall region, winter rainfall region and region receiving rainfall throughout the year.  The 

winter rainfall region is confined to the Western Cape Province and the western parts of the 

Northern Cape Province, the coastline of the Eastern Cape Province and parts of the 

Western Cape Province receives rainfall throughout the year and the remainder of the 

country receives summer rainfall (Schulze and Maharaj, 2007).                     

            

In terms of agriculture, a minimum annual rainfall of 500 mm is required for rain-fed 

cropping (DoA, 2007).  The rainfall of South Africa is highly variable from year to year (Cook 

et al., 2004) and to some extent insufficient.  The country is subject to very high potential 

evapotranspiration that often exceeds the rainfall (DoA, 2007).  The extreme irregularity of 

South Africa’s rainfall largely influences the water resources available for agriculture (Cook 

et al., 2004).   
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Maize production in South Africa is predominantly rain-fed (Martin et al., 2000) and largely 

takes place in the central and northern interior regions of the country.  This area receives 

summer rainfall with seasonal rainfall totals varying between 134 mm and 446 mm in the 

central interior parts, and between 209 mm and 584 mm in the northern interior parts 

(Tennant and Hewitson, 2002).  Another characteristic of this region is the occurrence of 

mid-summer droughts, which normally takes place during January (DoA, 2007).  These mid-

summer droughts often coincide with the tasseling stage of the maize crop (DoA, 2007), a 

critical stage in its development.  Moisture stress during the vital growth stages can have 

damaging effects on the maize plant, as a result limiting the growth and reducing the yield 

(Sun et al., 2007).     

 

1.4 OCEAN-ATMOSPHERE INTERACTIONS AND THE VARIABILITY IN SUMMER 

RAINFALL OVER SOUTH AFRICA  

 

As rainfall is the most important factor essentially regulating maize production in South 

Africa, it is crucial to understand the range of factors responsible for the variability in South 

African summer rainfall.  During the summer, temperature differences develop between the 

land surface of South Africa and the neighbouring oceans.  This results in low surface 

pressure over the continent and higher surface pressure over the oceans (Preston-Whyte 

and Tyson, 1993).  These pressure differences regularly initiate the development of 

subtropical troughs that are normally situated over the west coast of the country (Preston-

Whyte and Tyson, 1993).  Subtropical troughs, mid-latitude frontal systems and tropical 

circulation perturbations are the main forces responsible for moisture advection and 

summer rainfall over southern Africa (Hattle, 1968; Preston-Whyte and Tyson, 1993).  

Southern Africa can be seen as the section of Africa south of the equator.  Early-summer 

moisture transport is mostly influenced by mid-latitude circulation patterns and mid- to late-

summer moisture transport by tropical circulation patterns, causing a change in the synoptic 

flow during December/January (D’Abreton and Tyson, 1995).  An association between wet 

conditions early in the summer and moisture from the tropical southeast Atlantic and south-

west Indian Ocean (SWIO) converging north of South Africa have also been found 

(D’Abreton and Tyson, 1995).  Late summer wet conditions were found to be associated 

with an anomalous Hadley cell, resulting in an increased flow of moisture from the north, 

and with the Inter-Tropical Convergence Zone (ITCZ) shifting to the south.  Except for the 

neighbouring oceans, tropical Africa (D’Abreton and Tyson, 1995) and the Agulhas current 

(Jury et al., 1993) were also investigated as possible sources of moisture, inducing summer 

rainfall over South Africa (Cook et al., 2004).  Furthermore, the heat and moisture fluxes in 
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the Agulhas retroflection region possibly influence the atmospheric pressure over the 

continent which may contribute to summer rainfall patterns over southern Africa (Walker, 

1990; Crimp et al., 1998).   

 

Thus, many factors influence the inter-annual variability of rainfall over South Africa.  A 

number of studies have demonstrated that some variability is remotely forced by ENSO, a 

phenomenon in the Equatorial Pacific Ocean (Nicholson and Entekhabi, 1986; Ropelewski 

and Halpert, 1987; Allan et al., 1996; Mason and Jury, 1997; Reason and Rouault, 2002).  

ENSO is the most dominant and best defined inter-annual mode in the tropical Southern 

Hemisphere (Goddard et al., 2001; Cane, 2004), and most previous work on the variability 

of the climate of southern Africa have focused on ENSO (Reason et al., 2006a).  The 

acronym ENSO originated from its oceanic component El Niño and its atmospheric 

component the Southern Oscillation (Cane, 2004).  The correlation between ENSO and 

summer rainfall over southern Africa has been found to be strongest for the central 

continental parts (Lindesay and Vogel, 1990).  However, a large amount of spatial variation 

occurs in ENSO rainfall impacts over southern Africa from one event to another (Reason 

and Jagadheesha, 2005).  For example, one of the strongest El Niño events on record 

(1997/98) caused less intense dry conditions over southern Africa than the relatively weak 

1991/92 and 2002/03 events that caused severe drought over the region (Reason and 

Jagadheesha, 2005).  The high-phase of the atmospheric part of ENSO, the Southern 

Oscillation, has also been found to correlate with an increase in rainfall and the low-phase 

with a decrease in rainfall over southern Africa (Van Heerden et al., 1988; Mason and Jury, 

1997).  

            

Even though the physical mechanisms related to ENSO are much better understood as 

those responsible for SST variability in the tropical Atlantic and Indian Oceans (Goddard et 

al., 2001), several studies have confirmed that the neighbouring Indian and Atlantic Oceans 

also contribute to the variability in rainfall over South Africa (Walker, 1990; Jury and 

Pathack, 1991; Mason, 1995; Todd and Washington, 1998; Tennant and Hewitson, 2002; 

Reason et al., 2006a).  During wet events over South Africa, warm SSTs can be expected 

to the east and cooler SSTs to the west of the country (Tyson, 1986).  Warm SSTs in the 

SWIO and cooler SSTs in the tropical Indian Ocean to the east of Madagascar were 

demonstrated to result in wet summer conditions over the continental parts of South Africa 

(Walker, 1990; Reason and Mulenga, 1999).  Above-normal rainfall conditions over South 

Africa frequently relate to warm SSTs in the tropical western Indian Ocean (Landman and 

Mason, 1999a).  SSTs south-east of South Africa also appear to be related to rainfall 

fluctuations over the country (Rautenbach and Smith, 2001).  In addition, increasing 
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evidence exists that variability in the Atlantic Ocean is important for the climate of southern 

Africa (Reason et al., 2006a).  The influence of the Atlantic Ocean on the climate of 

southern Africa is largely related to the changing position of the ITCZ and variability in the 

South Atlantic anticyclone and mid-latitude westerlies (Reason et al., 2006a).  The link 

between the Benguela Niño in the Atlantic Ocean and zonal winds over the Equatorial 

Atlantic Ocean has also been found to be important in rainfall variability over southern Africa 

(Shannon et al., 1986; Reason et al., 2006a).   Moisture fluxes, cloudband development and 

rainfall seasonality over some parts of southern Africa are influenced by the cycle in winds 

and SST anomalies over the southeast Atlantic Ocean (Reason et al., 2006a).  El Niño 

events and anomalies over the southeast Atlantic Ocean seem to be the two main factors 

responsible for severe drought conditions over southern Africa (Reason et al., 2006a).  In 

has been found that the upper ocean circulation and SST evolution of the South Atlantic 

responds to ENSO induced changes with a one-season lag (Colberg et al., 2004).  The 

impact of ENSO on the SSTs in the South Atlantic and South Indian Oceans and on the 

South Atlantic anticyclone have also made it evident that ENSO influences the onset of the 

summer rainfall season as well as dry spell frequencies within the summer season of 

southern Africa (Reason et al., 2006a).  Although it is clear that both the Indian and Atlantic 

Oceans potentially influences the climate of southern Africa, and some of these definitely 

have a relationship with ENSO, it must be kept in mind that the SSTs of the South Indian 

Ocean are thought to have a greater impact than the SSTs of the South Atlantic Ocean 

(Nicholson and Entekhabi, 1986; Reason, 2002). 

 

1.5 SOUTH AFRICAN MAIZE YIELDS AND CLIMATE VARIABILITY 

 

Before initiating the development of a maize yield forecast system that will aim to improve 

agricultural management systems by preparing the farmer for the climatic conditions of the 

forthcoming season, there should be a confirmed relationship between climate variability 

and South African maize yields.  In many countries the variability in the climate accounts for 

as much as 80% of the year-to-year variability in crop yields (Petr, 1991; Fageria, 1992; 

Sivakumar, 2006).  To confirm that ENSO-related climate variability largely contributes 

towards the variability in South African maize yields, historical maize yield figures for South 

Africa (GrainSA, 2007) are compared to Oceanic Nino Index (ONI) values (http://www.cpc. 

ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml) averaged over the 

growing season (OND, NDJ, DJF, JFM and FMA) (Figure 1.2).   

 

The ONI is a principal measure for monitoring, assessing and predicting the El Niño 

Southern Oscillation (ENSO) phenomenon.  ENSO results from an interaction between the 
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atmosphere and underlying ocean in the Equatorial Pacific Ocean and is seen as one of the 

key mechanisms responsible for climate variability in many parts of the world (Podesta et 

al., 1999).  This phenomenon involves two phases, a warm phase also known as an El Niño 

event and a cold phase also known as a La Niña event.  The ONI is based on sea surface 

temperature (SST) departures from the average in the Nino 3.4 region in the Equatorial 

Pacific Ocean.  If the SST anomaly is greater than or equal to +0.5°C for five consecutive 

seasons, it indicates an El Niño event, whereas a SST anomaly of less than or equal to -

0.5°C for five consecutive seasons indicates a La Niña event.    

 

ENSO is recognized as a phenomenon that significantly impacts the entire southern Africa 

region (Nicholson and Entekhabi, 1986; Mason and Jury, 1997), with El Niño events 

normally coinciding with below-normal and La Niña events normally coinciding with above-

normal summer rainfall totals over the region (Ropelewski and Halpert, 1987; Mason and 

Jury, 1997; Reason et al., 2006a).  These exact ENSO impacts were observed over the 

central and western interior of South Africa (Rautenbach and Smith, 2001).  The influence 

of ENSO on southern African rainfall was also found to have significant spatial and inter-

event variations (Reason and Jagadheesha, 2005).  Many studies have described the 

relationship between SST anomalies in the Equatorial Pacific Ocean and rainfall over 

southern Africa (van Heerden et al., 1988; Allan et al., 1996).    

 

South African Maize Yield vs. Oceanic Niño Index
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Figure 1.2: Historical maize yield figures for South Africa compared to Oceanic Nino Index 

values averaged over the growing season (OND, NDJ, DJF, JFM and FMA).  
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As ENSO directly affects the rainfall of South Africa, it should also have an effect on South 

African maize yields, seeing that rainfall is the sole source of water for maize production 

under rain-fed conditions.  From Figure 1.2 it can be seen that the maize yield and ONI, are 

inversely proportional to each other.  This means that if the ONI is positive, indicating an El 

Niño season and more often than not below-normal summer rainfall totals, the maize yield 

is low, while if the ONI is negative, indicating a La Niña season and more often than not 

above-normal summer rainfall totals, the maize yield is high.  This is evidence that climate 

variability associated with ENSO contributes significantly towards the variability in South 

African maize yields.      

 

1.6 THE SEASONAL PREDICTABILITY OF SOUTH AFRICAN RAINFALL 

 

Numerical weather predictions of the exact state of the atmosphere is limited to a lead-time 

of about 2 weeks (1963, Lorenz).  This is a result of the uncertainty associated with 

describing the initial state of the atmosphere, and the sensitivity of the dynamics of Global 

Circulation Models (GCMs) to the initial conditions.  Lorenz’s finding leads to the question; 

how is a seasonal climate forecast that provides insight into future averaged weather 

evolution with a lead time of, for example, 3 months then possible?  Seasonal climate 

forecasts are possible due to an increased understanding of air-sea interactions, and in 

particular the interactions related to ENSO (Barnston et al., 1994; Chen et al., 1995; Neelin 

et al., 1998; Palmer et al., 2004; Hansen et al., 2006; Vogel and O’Brien, 2006).  At 

seasonal time scales the ocean plays a vital role (Doblas-Reyes et al., 2006).  The 

atmosphere reacts to changes in the SSTs within a few weeks, while the ocean takes 3 

months or longer to react to changes in the atmosphere (Sivakumar, 2006).  This slow 

evolution of the ocean offers the opportunity for making seasonal climate forecasts (CSIRO, 

1998).  Seasonal climate forecasts are far from perfect, but offer some predictability in 

terms of future temperatures and rainfall amounts (Ziervogel et al., 2005).    

 

Research done over the last few decades has revealed that the seasonal climate of many 

countries in the world is potentially predictable (Goddard et al., 2001), with seasonal 

forecasts proving to be skilful for a number of regions particularly important for agricultural 

production (Challinor et al., 2005).  The highly variable nature of southern African rainfall, 

the key factor in rain-fed maize production, emphasizes the need of accurate and reliable 

seasonal rainfall forecasts prior to the summer season (Klopper, 1999).  Skilful seasonal 

forecasts will allow farmers to alter management practices in light of expected weather 

conditions (Hollinger, 1988; Hammer, 1996; Hansen et al., 2006).   Even though major 

improvements have been made in understanding the seasonal predictability of rainfall over 
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southern Africa (e.g. Landman and Goddard, 2002), the region responds to a large number 

of factors, and this makes seasonal forecasting a challenging task (Reason et al., 2006a).  

SST anomalies provide the main source of predictability of atmospheric developments at 

seasonal time-scales, since changes in the oceans result in changes in the atmosphere 

(Palmer and Anderson, 1994; Goddard et al., 2001; Gong et al., 2003; Sivakumar, 2006).  

Many predictability studies as well as projects involving the development of forecast models 

have focused on establishing relationships between global SSTs and seasonal rainfall 

anomalies over various regions including South Africa (Rautenbach and Smith, 

2001;Tennant and Hewitson, 2002; Landman et al., 2008).  Thus, if a relationship is found 

between SST anomalies and rainfall over southern Africa, skilful seasonal rainfall forecasts 

will be possible if the SSTs responsible for the rainfall variability over land are predictable 

(Goddard et al., 2001; Gong et al., 2003).  SST forcings account for a major portion of 

rainfall variability over southern Africa during the austral summer (Landman and Mason, 

1999b), the most important season in maize production.    

 

High predictability has been found for the Tropics, but most of southern Africa is situated 

outside of the Tropics where in general the seasonal predictability is lower (Palmer and 

Anderson, 1994; Landman and Goddard, 2002).  Tropical atmospheric circulation patterns, 

which result from a direct response to SST changes, were observed to be the main source 

of seasonal predictability for the southern Africa region (Walker, 1990; Mason, 1995).  As 

the peak summer rainfall period from December to February is dominated by tropical 

disturbances in the atmosphere (Harrison, 1984), the highest forecast skill has been 

obtained for this period (Barston et al., 1996; Mason et al., 1996).  One of the most 

predictable tropical disturbances that impact the entire globe is the ENSO phenomenon 

(Allan, 2000; Goddard et al., 2001).  Much of the skill in predicting southern African rainfall 

is derived from ENSO, but definitely not dominated by it (Mason and Jury, 1997).  ENSO 

events interact with other features in the global oceans and atmosphere which may also 

influence rainfall variability over southern Africa (Reason et al., 2000).  Therefore, the SST 

anomalies of the oceans surrounding southern Africa should also be taken into account 

when predicting southern African seasonal rainfall (Walker and Lidesay, 1989).  It should 

also be emphasized that at seasonal time-scales there are no skill in predicting on which 

day a specific region will receive rainfall, but there is usable skill in predicting seasonal 

mean rainfall totals and intra-seasonal weather characteristics which forms part of large-

scale patterns (Jury, 2002; Sun et al., 2005).                             
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1.6.1 Statistical Forecasting 

 

Over the past few years, the South African Weather Service (SAWS) as well as a number of 

local universities started to issue operational seasonal rainfall forecasts for the southern 

Africa region (Mason et al., 1996; Klopper, 1999; Landman and Mason, 1999b).  Many of 

the seasonal forecasts were produced using statistical based techniques that include 

regression analysis, discriminate analysis, canonical correlation analysis, cluster analysis, 

time series analysis, period analysis and analogue methods (Landman and Mason, 1999b).  

The Climatology Research Group at the University of the Witwatersrand used a quadratic 

discriminant analysis model to produce seasonal rainfall outlooks for South Africa (Mason, 

1998).  The rainfall forecasts were produced for regions with similar inter-annual rainfall 

variability by relating the rainfall of each region to principal components of SST anomalies in 

the Indian, Atlantic and Pacific Oceans.  3-month forecasts and 6-month forecasts were 

produced.  Skill in the 3-month forecasts for the summer rainfall region was limited to late-

spring and early-summer, while the 6-month forecasts showed skill for early- to mid-

summer.  Even though forecast skill of the 6-month forecasts was found to be significantly 

higher that that of the 3-month forecasts, the 3-month forecasts revealed a high level of skill 

in predicting ‘very dry’ and ‘very wet’ conditions.  In general, high forecast skill was obtained 

for the largest part of the country throughout the year, with the most reliable forecasts 

evident shortly before or after the start of the summer rainfall season.   

 

Canonical correlation analysis (CCA) has also been used to investigate the variability and 

predictability of summer rainfall over South Africa (Landman and Mason, 1999b).  CCA is a 

statistical method normally used to identify linear relationships between two highly 

correlated variables (Landman and Mason, 1999b).  South African summer rainfall was the 

predictand and SST data of the global oceans the predictor.  For each of the homogeneous 

regions over the country a forecast of total precipitation was produced for the October-

November-December (OND) and January-February-March (JFM) seasons.  The CCA 

model demonstrated low to moderate skill, with correlations higher than 0.5.  Greater rainfall 

predictability was found for the JFM season than that for the OND season, which makes it 

extremely difficult to predict the onset of rainfall.  OND predictability was restricted to the 

north-eastern regions and JFM predictability to the central and western regions.  In general, 

predictions with high skill can only be expected for El Niño and La Niña years, as the 

Equatorial Pacific Ocean is the main source of predictability with weaker signals from the 

Equatorial Indian and Atlantic Oceans (Landman and Mason, 1999b). 
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A statistical model has also been used to investigate the climate signals around southern 

Africa and to predict area-average rainfall (Jury et al., 2004).  The investigation was based 

on the hypothesis that climate signals important in the prediction of southern Africa rainfall 

originate from slowly varying waves.  Sea level pressure (SLP) and SSTs of the Atlantic and 

Indian Oceans as well as southern Africa rainfall were considered.  The multi-variate model 

demonstrated useful skill in predicting southern Africa rainfall at 1-year lead time and is 

particularly skilful in predicting extreme events.  The strongest SST and SLP signals are 

evident 6 to 12 months before the rainfall season which indicates potential predictability 

(Jury et al., 2004).       

 

1.6.2 Multi-tiered Forecasting 

 

Even though most statistical forecast methods make use of linear relationships, many 

climate processes show strong non-linearities (Landman et al., 2001).  This ultimately limits 

the forecast skill of statistical models (Carson, 1998).  However, these non-linearities can 

possibly be simulated with GCMs (Landman and Mason, 1999a).  A GCM represents a 

simplification of the climate system through the equations of motion but suffer from initial 

condition and inherent model uncertainties which may lead to model output not reflecting 

the real system accurately (Holton, 1979; Hollinger, 1988; Doblas-Reyes et al., 2006).  Even 

so, the use of GCMs offers great opportunities for improving the seasonal predictability of 

summer rainfall over South Africa.  The skill of a statistical model and that of a GCM has 

been compared over a 10-year retro-active period when predicting December-January-

February (DJF) summer rainfall for southern Africa (Landman et al., 2001).  CCA was used 

as the statistical model and the GCM used was the Centre for Ocean-Land-Atmosphere 

Studies (COLA) T30 model with a horizontal resolution of approximately 400 km.  The lower 

boundary conditions used to force the GCM was SSTs predicted with the CCA model.  The 

GCM output was downscaled using the perfect prognosis approach (Wilks, 2006).  This 

combination of statistical and dynamical forecasting techniques is known as a multi-tiered 

scheme.  The results found suggested that the multi-tiered approach produce more skilful 

forecasts than that produced by the CCA statistical model.  Even though skilful 1- and 3-

month lead time predictions of Equatorial Pacific and Indian Ocean SSTs anomalies were 

obtained through CCA (Landman and Mason, 2001), improved SST forecasts can result in 

the multi-tiered approach increasing the skill of seasonal rainfall forecasts for South Africa.  

GCMs will most probably form the centre of seasonal forecasting in the years ahead, and 

no longer statistical models (Landman et al., 2001).   
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1.6.3 Dynamical Forecasting 

 

The capability of the CSIRO-9 GCM to model the major global SST forcings that contribute 

to the inter-annual variability in rainfall over South Africa and Namibia has been investigated 

(Rautenbach and Smith, 2001).  The GCM was forced with observed global SST anomalies 

for the 30-year period from 1961 – 1990, and an ensemble of five simulations was 

produced, each initialized with different initial conditions.  Skilful model results that correlate 

strongly with the observations were obtained for the dominant austral summer season 

(October-March).  It was also demonstrated that the model simulated rainfall variability 

during the austral summer season compare well with SST perturbations in the Equatorial 

Pacific and tropical western Indian Oceans.     

 

The ability of a GCM to simulate the impact of five ENSO events on southern Africa rainfall 

has been tested (Reason and Jagadheesa, 2005).  The GCM used was the UKMO 

HadAM3 model which was forced in hindcast mode for a period from 1990 to 2003 with 

observed SSTs.  The model was implemented at the University of Cape Town as part of a 

dynamical seasonal forecasting project.  The investigation focused on the OND and JFM 

seasons.  The GCM showed highest skill for the 1997/8 El Niño event, with lower skill for 

the 1991/2 and 2002/3 El Niño events and 1995/6 and 1999/00 La Niña events.  The GCM 

was found to experience difficulty in capturing changes in the Angola low, a centre of 

tropical convection often associated with rainfall impacts over southern Africa during ENSO 

events.  Therefore, as the GCM did not represent the Angola low properly, it struggled to 

simulate the ENSO rainfall impacts over southern Africa.  In a study done on wet and dry 

spells over South Africa, Cook et al. (2004) also highlighted the importance of the Angola 

low in seasonal rainfall over South Africa.       

  

Due to current computational capabilities, the spatial resolution of seasonal forecasts 

obtained from GCMs is often limited, in the range of 100 km x 100 km (Palmer et al., 2004; 

Hansen et al., 2006) or even courser.  The GCMs focus on large-scale weather systems 

and are less skilful in representing local weather conditions, especially precipitation 

(Cantelaube and Terres, 2005).  To obtain a higher spatial resolution over a specific area 

(downscaling) one can make use of a Regional Climate Model (RCM), which is normally 

nested within the GCM (Kgatuke et al., 2008).  A number of RCMs are currently used for 

seasonal simulations over southern Africa, with the MM5 RCM being used in Ghana, 

Nigeria, Zambia and Zimbabwe (Tadross et al., 2006).  The MM5 RCM has been used to 

simulate rainfall for a wet DJF season (1988/9) and a dry DJF season (1991/2) over 

southern Africa, and at the same time also investigated the influence of two different 
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planetary boundary layer and two different cumulus convection parameterization schemes 

on the model output (Tadross et al., 2006).  The simulated rainfall results were compared to 

observed precipitation (seasonal and diurnal), number of rain days, diurnal short-wave 

fluxes and optical depth.  All four model configurations simulated the total precipitation for 

the wet DJF season well, but it was found that the model underestimates the inter-annual 

change.  It was also demonstrated that the biases in the simulated DJF rainfall are largely 

related to biases in the number of rain days and the diurnal moisture and energy cycles.   

 

From the research described above it appears as if the region and season for which models 

show skill vary from one model to another.  It is also clear that significant progress has been 

made in seasonal forecasting techniques over the last decade.  The majority of seasonal 

forecasting systems currently in use all make use of GCMs, several in multi-tiered or two-

tiered approaches.  Even though seasonal forecasts produced by GCMs will never be 

perfect, GCMs have proved to be skilful in many regions and in particular the Tropics (Hunt 

et al., 1994; Mason et al., 1999).  GCMs are capable of simulating much of the large-scale 

atmospheric circulation, but often struggle to capture local sub-grid-scale variability 

(Goddard et al., 2001).  Even though GCMs tend to overestimate and spatially distort 

rainfall over southern Africa (Joubert and Hewitson, 1997), when forced with observed 

SSTs these models have seem to capture the main austral summer seasonal rainfall 

variability over the region (Rautenbach and Smith, 2001; Goddard and Mason, 2002; 

Reason and Jagadheesha, 2005), but skill is limited in non-ENSO years (Landman and 

Mason, 1999b).  Even in ENSO years when the seasonal predictability is relatively high, it 

must be kept in mind that inter – El Niño differences exist (Hoerling and Kumar, 1997) which 

influences the confidence in the expected conditions predicted during these years (Mason 

and Goddard, 2001).  The predictability of rainfall over the summer rainfall season of South 

Africa, from October to March, varies significantly when using SSTs as precursor (Landman 

and Mason, 1999b).  October rainfall was found to be the least predictable when using only 

SSTs, while November rainfall was predictable using central-south Atlantic SSTs.  The 

Equatorial Pacific Ocean and Arabian Sea were found to be important in predicting 

December rainfall, but January rainfall related poorly to SSTs.  Most predictability for 

February and March rainfall were found to originate from the central Equatorial Indian 

Ocean (Pathack et al., 1993).  

 

The GCM fields that are used in this study as input into the crop model are not actual 

forecasts, but simulation data.  Simulation data are obtained by forcing a GCM with 

simultaneous observed SSTs, while a real-time forecast is obtained by forcing a GCM with 

predicted SSTs.  To recalibrate the circulation patterns generated by a GCM, a model 
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output statistics (MOS) method has been applied and results presented for the DJF rainfall 

season over southern Africa (Landman and Goddard, 2002).  Two datasets were used, the 

first dataset was obtained by forcing the GCM with simultaneous observed SSTs for the 

DJF season (simulation data) and the second dataset was obtained by forcing the GCM 

with persisted November SSTs through the DJF season (hindcast data).  The second 

dataset in effect has a lead-time of one month and could therefore be associated with a 

real-time forecast issued early December for the upcoming DJF season.  Both the 

simulation-MOS and hindcast-MOS forecasts agreed significantly with the observations.  

Thus, similarly skilful seasonal rainfall forecasts could be produced using both the 

simulation data and hindcast data which correspond to a real-time forecast with a 1-month 

lead-time.  Therefore, it can be assumed that the maize yield simulations produced in this 

study using the GCM-simulated fields as input into the crop model will yield similar results to 

maize yield forecasts produced using actual seasonal forecasts with a 1-month lead-time as 

input into the crop model.                                    

 

1.7 ENSEMBLE AND MULTI-MODEL FORECASTING 

 

Model ensembles have become an essential part of forecasting over the last few years 

(Krishnamurti et al., 1999).  Due to the atmosphere behaving in a chaotic manner, the initial 

state of the atmosphere is not certain (Palmer et al., 2004; Sivakumar, 2006).  The initial 

state of the atmosphere is used to initialize a GCM, which then integrates that initial 

conditions into the future to obtain a forecast.  Thus, with an increase in lead time even the 

most sophisticated forecast model will diverge further and further away from reality.  To 

address this source of uncertainty, the GCM is initialized from a number of possible 

atmospheric initial states (Sivakumar, 2006).  In other words, several forecasts are made by 

each time introducing slightly different initial conditions into the GCM (Palmer et al., 2004; 

Doblas-Reyes et al., 2006).  This is called an ensemble, with each forecast representing a 

member of the ensemble.  This approach provides a range of possible outcomes 

(Sivakumar, 2006) and by investigating the ensemble spread the uncertainty in the 

forecasts associated with the initial conditions can be estimated (Barnston et al., 2003; 

Palmer et al., 2004; Hansen et al., 2006).  From the ensemble of forecasts a probability 

distribution function can be obtained (Doblas-Reyes et al., 2006; Hansen et al., 2006) by 

calculating the percentage of ensemble members that fall either within the below-normal, 

near-normal or above-normal categories (Reason et al., 2006b).  When an ensemble of 

seasonal forecasts is produced, the set of forecasts represent the probability distribution of 

climate in its response to SST forcings.  When two or more skilful but independent forecasts 

of the same event are combined, the final forecast will be more accurate than any of the 
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individual forecasts by itself (Leith, 1974).  Thus, ensemble forecasting improves the skill of 

forecasts (Barnston et al., 2003; Palmer et al., 2004).      

 

A number of other factors also contribute to the uncertainty in GCM forecasts.  The main 

factors include the way in which small-scale features are represented within the model 

(parameterization) (Palmer et al., 2005), the way in which data is introduced into the model 

(assimilation), assumptions made within the model and model equation errors (Palmer et 

al., 2005).  To account for these uncertainties more than one GCM can be used, as each 

GCM makes use of different parameterization schemes, data assimilation procedures and 

assumptions and may even have different inherent model equation inaccuracies.  Thus, 

each GCM will probably perform different due to these differences (Landman and Goddard, 

2003).  In effect each individual model runs its own ensemble, which can be combined to 

form a multi-model ensemble or super-ensemble (Barnston et al., 2003; Palmer et al., 2004; 

Sivakumar, 2006).   

 

A number of studies have shown evidence that a multi-model forecast system provides 

more skilful forecasts than any individual model.  In the PROVOST (Prediction of Climate 

Variations on Seasonal to Interannual Timescales) project (Palmer et al., 2004) carried out 

in Europe, a number of GCMs were used to perform 4-month forecasts when forced with 

SSTs.  Each model was initialized 9 times from slightly different atmosphere initial 

conditions, while the same boundary conditions (SSTs) were used to force all the GCMs.  

Results from the PROVOST project showed that regardless of identical SSTs, the 

ensembles from the individual models varied considerably in the seasonal-mean signal from 

the SSTs.  Despite this, the multi-model ensemble system still proved to produce more 

reliable forecasts than any of the single-model ensembles.   

 

In a more complex and more well know study also done in Europe, the DEMETER 

(Development of a European Multi-model Ensemble system for seasonal to inTERannual 

prediction) project (Palmer et al., 2004), 7 coupled ocean-atmosphere global circulation 

models (CGCMs), each running its own ensemble of 9 simulations from different ocean 

initial conditions, were used to perform a series of six-month hindcasts.  Thus, a multi-model 

ensemble of 7 x 9 was produced.  In CGCMs the atmosphere and oceans can evolve freely 

and are consequently allowed to influence each other (Goddard et al., 2001).  The 

DEMETER results indicated that the multi-model forecasting technique is feasible to 

represent model uncertainty on seasonal and inter-annual time-scales.  It was also found 

that on average the multi-model system provides more skilful seasonal forecasts than that 
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produced by a single-model system.  In the USA similar attempts have been made under 

the Dynamic Seasonal Prediction (DPS) projects (Sivakumar, 2006).     

 

An investigation has been done to assess whether the advantage of the multi-model system 

over the single-model system is only due to an increase in ensemble size (Hagedorn et al., 

2005).  A single-model ensemble and a multi-model ensemble of the same size (54-

members) were compared.  Results indicated that even with the same ensemble size, the 

overall performance of the multi-model system is better.   

 

Sufficient evidence has been presented that multi-model systems can improve on the skill of 

both weather and seasonal forecasts produced by a single-model system (Krishnamurti et 

al., 1999; Harrison, 2003; Cantelaube and Terres, 2005; Doblas-Reyes et al., 2006).  The 

question arises whether this is also true for South Africa.  Multi-model summer rainfall 

forecasts for southern Africa have shown to be more skilful than single-model forecasts 

produced for this region (Reason et al., 2006b).  The skill of a multi-model system in 

predicting DJF rainfall for southern Africa has been investigated (Klopper and Landman, 

2003).  The three models used included two statistical models (CCA and quadratic 

discriminate analysis) and one GCM (ECHAM 3.6).  Each model produced forecasts with 

different levels of skill, which means that a combined forecast will incorporate the strengths 

of each model.  The forecasts were combined through simple unweighted averaging.  The 

results showed that the multi-model forecast improved on the skill of the individual model 

forecasts, and that on average the combined forecast showed higher skill, at least for the 

majority of summer rainfall regions over southern Africa.         

 

The skill in predicting DJF rainfall over southern Africa using a multi-model ensemble 

system has been evaluated (Landman and Goddard, 2003).  The analysis used simulation 

data obtained by forcing five GCMs (CCM3.2, ECHAM4.5, NCEP-MRF9, COLA T63, 

NASA-NSIPP1) with simultaneous observed SST anomalies.  Thus, DJF rainfall was 

predicted using observed DJF SST anomalies.  The simulations performed by each GCM 

were recalibrated to homogeneous rainfall regions over southern Africa using the statistical 

method called MOS (Model Output Statistics).  The simulations from the individual models 

were then combined by averaging the downscaled results.  Results suggested that the 

combination of models improve on the performance of the best single-model ensemble 

(ECHAM4.5 – MOS).   
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1.8 OPERATIONAL SEASONAL FORECASTING AT SAWS AND UP  

 

Routine seasonal climate forecasts using the Conformal-Cubic Atmospheric model (CCAM) 

has been produced at the University of Pretoria (UP) since August 2007.  The model is also 

being applied at UP in the fields of climate simulation (Engelbrecht et al., 2009) and short-

range weather forecasting (Potgieter, 2007).  In operational seasonal forecasting mode, 

CCAM is initialized using the 0Z analysis fields obtained from the Global Forecasting 

System (GFS).  A three-month seasonal forecast (having 12 ensemble members initialized 

on 12 consecutive days) is issued on a monthly basis. Lower boundary forcing is prescribed 

from persisted SSTs, as obtained from the GFS.  The model runs globally at C48 

(approximately 200 km) horizontal resolution on a quasi-uniform grid. Output for a number 

of variables is available on a global 1° latitude-longitude grid.  The forecasts are performed 

on the Velocity-cluster at the University of Pretoria and feeds into the multi-model seasonal 

forecast system of SAWS (Landman et al., 2008).  This dissertation reports on the use of 

CCAM-simulated fields as part of a maize yield forecast system for South Africa.     

 

The latest development at the South African Weather Service (SAWS) is described in 

Landman et al. (2008).  Here, the use of multi-model ensembles in operational predictability 

of seasonal to inter-annual rainfall over South Africa has been investigated.  The models 

that were used include the ECHAM4.5 GCM, the CCAM GCM, the UKMO CGCM and a 

statistical CCA SST-rainfall model.  The ECHAM4.5 model output were obtained from the 

International Research Institute (IRI), CCAM output data from UP and UKMO CGCM output 

form the European Centre for Medium-range Weather Forecasts (ECMWF).  The 

ECHAM4.5 model has also been installed on the supercomputer of the SAWS and a 6-

member ensemble of multi-decadal simulations, forcing the model with simultaneous 

observed SSTs, has been performed.  Each model ran its own ensemble of simulations. 

Before combining the ensembles from the individual models, the ensemble mean was 

obtained for each model and MOS was applied to it for downscaling purposes.  It was found 

that the model combinations did not always outscore the individual models, but the use of 

longer training periods and by combining only the best models are necessary requirements 

to improve on forecast skill.  Inclusion of the statistical model that only uses antecedent 

SSTs as predictors in the multi-model systems made the results worse.  It also appeared as 

if seasonal rainfall predictability is limited to mid-summer months which coincide with ENSO 

events and the highest skill during these seasons occur over the north-east and central-

western regions of South Africa.  Overall, useful skill was obtained from the multi-model 

systems for the DJF season.  As a result of this project the first operational multi-model 

forecast, which made use of an 8-member ensemble CCAM forecast and a 24-member 
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ensemble ECHAM4.5 forecast for the April-May-June season, was issued for South Africa 

on 31 March 2008.         

 

In the mean time, the multi-model system has been finalized, and operational rainfall and 

temperature forecasts are currently made routinely for the Southern African Development 

Community (SADC) region.  SAWS has also obtained Global Producing Centre for Long-

Range Forecasting status from the World Meteorological Organisation.  The ECHAM4.5 

GCM, which runs on the NAC SX-8 supercomputer of SAWS, is used for this purpose.  

ECHAM4.5 forecasts are also used in the operational multi-model forecasts mentioned 

above.  This dissertation reports on the use of ECHAM4.5-simulated fields as part of a 

maize yield forecast system for South Africa.     

 

1.9 CROP YIELD FORECASTING 

 

Several studies have emphasized the sensitivity of agricultural production to weather 

(Hollinger, 1988).  The vulnerability of field grown crops to fluctuations in the weather on a 

daily, monthly and seasonal time-scale (Doblas-Reyes et al., 2006) affects the welfare of 

farmers due to the irregularity in crop yields from one year to another (Sivakumar, 2006).  

Therefore, many scientists have attempted to reduce the uncertainties associated with the 

growing season so that famers can make more informed decisions and take advantage of 

good seasons.  The growth, development and yield of a crop are the function of interactions 

between the plant, weather, soil and management practices (Hansen et al., 2006).  The 

recent advances in the ability to predict fluctuations in the climate several months in 

advance have increased the opportunities of seasonal forecasts to alter management 

decisions and reduce the negative impacts of climate variability on crops (Hammer et al., 

2001; Mason, 2001; Sivakumar, 2006).  However, farmers can benefit more from 

information when it is presented in terms of production outcomes than from a seasonal 

climate forecast by itself (Hansen and Indeje, 2004; Hansen et al., 2006).  Crop yield 

forecasts at an early enough lead-time can warn the farmer of a probable poor season and 

consequently allow the farmer to change the planting date, cultivar type as well as 

management and planning activities like the necessity of fertilizer and irrigation, in light of 

the expected conditions (Martin et al., 2000).     

 

Some of the first crop yield forecasting attempts were based on empirical relationships 

between variables in the environment and crop yield (Isard et al., 1995).  An advance in 

agricultural science took place in the 1970’s with the development of the first crop 

simulation model (Fodor and Kovacs, 2003) and since then several simulation models have 
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been developed for a range of different crops (Whisler et al., 1986; Ritchie, 1994).  These 

models are by no means perfect, but can assist in understanding how cropping systems 

function (Bannayan and Court, 1999; Matthews, 2002).  The main aim of the development 

of these crop simulation models was for application in agricultural research (Hoogenboom 

et al., 1992), in particular the possibility of application in yield forecasting (Bannayan and 

Court, 1999).  A crop simulation model is a mathematical representation of the complex 

real-world system (Fodor and Kovacs, 2003) and can simulate crop growth and estimate 

crop yield as a function of weather, soil and crop management conditions (Egli and 

Bruening, 1992; Boote et al., 1996; Hoogenboom, 2000; Matthews, 2002; Palmer et al., 

2004).  Numerous crop yield forecasting efforts have made use and are currently using 

dynamic crop simulation models as a tool to convert weather and climate forecasts into an 

estimation of the production in response to predicted future conditions (Challinor et al., 

2005; Hansen et al., 2006).  

 

Using a crop simulation model to predict crop yield for the forthcoming season or the 

season in progress requires weather input data for the entire growing season (Bannayan 

and Court, 1999; Lawless and Semenov, 2005).  The key weather input variables are 

precipitation, temperature and solar radiation (Hoogenboom, 2000; Doblas-Reyes et al., 

2006).  Thus, a forecast of these weather variables will need to be made weeks or even 

months prior to the specific season of interest (Doblas-Reyes et al., 2006).  The accuracy of 

the weather input data will influence the yield output produced by the crop simulation model 

(Nonhebel, 1994).  Thus, improved weather forecasts will translate into more accurate yield 

forecasts (Challinor et al., 2005).  Many crop yield forecasting studies have used stochastic 

weather generators to construct synthetic weather for the growing season.  These weather 

generators require some form of historical data for each weather variable as input in order 

to generate synthetic weather for a specific site (Bannayan and Court, 1999; Hoogenboom, 

2000; Lawless and Semenov, 2005).  Other crop yield forecasting studies have used daily 

GCM output for the growing season as input to a crop simulation model (Hansen et al., 

2006).  Even though GCMs tend to distort daily variability, particularly precipitation, many of 

these studies were very successful by either calibrating the simulated yields produced with 

the raw GCM data, rescaling to GCM mean bias or by correcting the rainfall frequency and 

intensity of the GCM output (Hansen et al., 2006).  The set up of the crop model-GCM 

based simulation system used in this study is done in such a way to establish the skill of the 

system without any additional GCM output manipulation, therefore setting a baseline 

against which newly developed systems can be compared.   
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1.9.1 Yield Predictions in Europe 

 

A method which uses the SUCROS crop simulation model in combination with the 

SIMMETEO stochastic weather generator has been tested for real-time winter wheat 

biomass and yield predictions at four sites in the UK (Bannayan and Court, 1999).  

Observed monthly mean values were used by SIMMETEO to generate representative 

weather data for each site.  The simulations performed with SUCROS were updated 

throughout the growing season, by combining generated weather data with observed 

weather data.  SUCROS simulated crop biomass, and yields were calculated by multiplying 

the simulated biomass with the measured harvest index at each site.  The correlation 

between simulated and observed biomass and yield were found to increase as the growing 

season progresses, due to model updating.  The forecasts showed reasonable skill which 

would provide an opportunity for the farmer to alter or adapt management before harvest.     

       

In a similar study, the Sirius crop simulation model was used in combination with the LARS-

WG weather generator for predicting within-season wheat yields at five sites in Europe and 

one site in New Zealand (Lawless and Semenov, 2007).  The study aimed to assess lead-

time for making skilful predictions before crop maturity.  LARS-WG produced an ensemble 

of “artificial” weather datasets for each site.  Each of the “artificial” weather ensemble 

members were combined with observed weather data and used to force the Sirius crop 

model.  The combined datasets contained observed weather data for the initial part of the 

season and “artificial” weather data for the remainder of the season.  As the season 

progressed, at 10-day increments, the observed data was increased and the “artificial” 

weather data reduced and new runs performed with the Sirius crop model.  The results 

indicated that the uncertainty in the predictions decreases as the season evolves and that a 

usable level of skill is reached before crop maturity, but that the lead-time of skilful 

predictions varies significantly from one location to another.     

           

Another objective of the DEMETER project was to demonstrate the value of seasonal 

climate forecasts by coupling the multi-model ensemble to application models (Palmer et 

al., 2004).  The WOFOST (WOrld FOod STudies) crop model from the Joint Research 

Centre (JRC) in Europe was used as the application model in this study.  Output from the 7 

CGCMs used in the DEMETER project was on a low spatial (1.5° x 1.5°) and temporal 

(monthly mean values) scale and had to be downscaled in both space and time before the 

data could be used to force the crop model.  Hindcasts for each of the February-July 

seasons within the period from 1995 to 1998 were downscaled using singular value 

decomposition, MOS and a weather generator.  Thereafter, the downscaled meteorological 
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data from each individual ensemble member was used to run the crop model for the four 

year period (1995 - 1998), which resulted in a wheat yield prediction ensemble and could 

consequently be used to derive a probability distribution function of wheat yield for Europe.  

The results were verified against actual wheat yield figures as well as yield simulations 

performed by the operational yield forecasting system of the JRC.  The results were found 

to vary from country to country, with the highest correlation (0.73) between DEMETER-

based yield predictions and actual yield figures found for the main wheat producing 

countries in Europe (France, Germany and the United Kingdom).  It was concluded that 

reliable crop yield predictions is possible with the use of a multi-model ensemble of 

seasonal climate forecasts.    

                            

Crop simulation models have also been used in climate change studies.  An investigation 

on the response of winter wheat production in France to climate change has been done, by 

forcing the CERES-Wheat model with raw daily output from the HadCM2 GCM (Mavromatis 

and Jones, 1998).  The HadCM2-based yield predictions were found to correlate well with 

average yields simulated for the past century using observed weather data as input into the 

crop model.  Furthermore, it was also observed from the results that the CERES-Wheat 

model captured the trend in yield associated with the trend in observed temperature well, 

but that the model did not capture the inter-annual variability in yield very well.     

 

1.9.2 Yield Predictions in the United States of America 

 

The United States Department of Agriculture uses a statistical model, which relates weather 

to yield, for their yield predictions (Lawless and Semenov, 2005).  Long-term mean weather 

data are used as input into this statistical model, but this approach has been demonstrated 

to be inappropriate for yield predictions, due to the non-linear response of crops to their 

environment (Porter and Semenov, 1999).        

 

The crop simulation model CORN-CROPS has been used to simulate the interactions of 

management practices and weather on maize yields in east central Illinois (Hollinger, 1988).  

Five plant dates, three plant populations, three cultivars, each with a different maturity 

rating, and weather data for a 14 year period (1970 - 1983) were considered for the 

analysis.  The crop model was set up and run for the 14 year period and for all possible 

combinations of management inputs.  The simulated yields were verified against actual 

yield estimates for Champaign County.  Results revealed a strong agreement between the 

simulated yields and actual yield estimates, which is evidence that the crop model succeeds 

in representing the real world.  It was concluded that CORN-CROPS has the potential to 
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influence crop management, by proposing different techniques that could lead to increased 

yields under the given weather conditions.  

 

An examination on the possibility of using monthly weather projections for soybean yield 

estimates has been done for the Mississippi Delta (Reddy and Pachepsky, 2000).  The crop 

simulation model GLYCIM and weather projections from three GCMs (GFDL R30, UKMO 

89 and NCAR) were used.  As crop simulation models normally use daily weather data as 

input, the monthly projections from the three GCMs were downscaled to daily weather data.  

Two methods were used to simulate soybean yields.  The first method used the downscaled 

GCM data as input into the GLYCIM crop model and the second method employed a group 

method of data handling (GMDH) network with monthly weather data as input, to relate 

soybean yields to CO2 levels, total solar radiation, average maximum and minimum 

temperature and rainfall for five months of the growing season.  It was found that the GMDH 

network reproduced the GLYCIM simulated yields with a reasonably high level of accuracy 

and that this method could be used to obtain general relationships between crop yields and 

combinations of GCM projected temperature, precipitation and CO2 concentrations.   

        

1.9.3 Yield Predictions in Asia 

 

To investigate the potential effect of climate change of rain-fed and irrigated maize yields in 

eastern China, three GCMs were coupled to the CERES-Maize model (Jinghua and Erda, 

1996).  The three GCMs that were used to produce the climate change projections included 

the Geophysical Fluid Dynamics Laboratory (GFDL) model, the high-resolution United 

Kingdom Meteorological Office (UKMO) model and the Max Planck Institute (MPI) model.  

The seasonal mean changes in temperature and precipitation evident from the output of the 

GCMs were applied to monthly temperature and precipitation of the baseline climate 

created by the Chinese Weather Generator, and this climate change data was then used to 

force the CERES-Maize model.  Output from the CERES-Maize model under the climate 

change scenarios was compared to output from the simulations performed with the baseline 

climate data.  Both rain-fed and irrigated maize yields were found to decrease under climate 

change conditions.  This is a realistic result as an increase in temperature shortens maize 

growth, particularly the grain filling stage, and consequently results in lower yields.     

 

As so many studies have focused on presenting crop yield forecasts deterministically, crop 

yield predictability using a probabilistic method has also been explored (Challinor et al., 

2005).  The use of weather ensembles provides an opportunity for examining crop yield 

predictability probabilistically.  A multi-model ensemble and the GLAM (General Large-Area 
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Model) crop simulation model were used to predict groundnut yields in western India.  Daily 

output from the 7 CGCMs of the DEMETER project, each running their own ensemble of 9 

seasonal hindcasts, were used as input into the GLAM crop model.  GLAM was forced with 

the data of each individual ensemble member to produce both ensemble mean and 

probabilistic groundnut yield forecasts per district.  The ensemble mean yield predictions 

were found to capture the inter-annual variability in yield relatively well, while predictive skill 

was found in predicting crop failure probabilistically.   

 

1.9.4 Yield Predictions in Australia 

 

One of the first studies for Australia, attempted to forecast crop yields by relating historical 

crop yields to the Southern Oscillation Index (SOI) (Nicholls, 1985).  A number of years 

later, an investigation was done on the possibility of producing reliable sorghum yield 

predictions for the shires in Queensland by combining crop simulation and geographical 

information system technologies (Rosenthal et al., 1998).  Spatial rainfall, temperature and 

solar radiation data were overlaid and utilized in driving the QSORG sorghum simulation 

model for 300 locations in Queensland for the period from 1977 – 1988.  Linear regression 

was used to find a relationship between the historical yields and simulated yields to obtain 

calibration equations for each shire.  The predicted yields, at shire and state level, were 

verified against historical yields using regression analysis.  The predicted yields were found 

to correlate exceptionally well with the historical yields at both shire and state level (r = 

0.96).  When comparing maps of predicted yield to maps of historical yield, it was found that 

this combined technique captures the spatial distribution of the yield among shires.  It was 

concluded that this system can produce reliable sorghum production estimates on both 

shire and state level and that there exist good prospects for real-time use, especially in 

terms of the significance of seasonal climate forecasts on decision making at shire scale.  

 

In Queensland the Agricultural Systems Research Unit developed “Whopper Chopper” 

software to predict production risk faced by farmers (Cox et al., 2004).  The software 

combined seasonal climate forecasts with crop modelling to assist farmers in selecting the 

management options that would result in the highest yields under the climatic conditions of 

the upcoming season.  This system allowed farmers to investigate the effect of different 

plant dates, plant populations, nitrogen fertilizer application rates and many other variables 

on the expected yield.       
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1.9.5 Yield Predictions in South America 

 

By using the information contained within seasonal climate forecasts, the potential 

predictability of maize yields in Ceara, Brazil has been investigated (Sun et al., 2007).  The 

predictability was analyzed for a period from 1971 to 2000 through the use of a 10-member 

ensemble of seasonal hindcasts produced by a RCM (the Regional Spectral model) nested 

within a GCM (the ECHAM4.5 model).  The RCM integrations were for the main rainy 

season February-March-April-May.  Two variables were considered to estimate the maize 

yield by means of linear regression in a cross-validated mode.  The variables included 

seasonal mean rainfall and a weather index.  In the maize yield simulations performed with 

the RCM data, the weather index showed superiority over the seasonal mean rainfall.  

When simulating maize yield with observed weather index values, it was found that the 

weather index accounts for almost 50% of the variance in maize yield in Ceara.  It was 

concluded that the hindcasts correlate well with the observations and that the nested RCM 

is skilful in simulating seasonal mean rainfall and within-season weather statistics over the 

Ceara region.        

 

1.9.6 Yield Predictions in Southern Africa 

 

In the past, research mainly focused on relating crop yields to predictors such as rainfall.  

Numerous seasonal crop yield predictions for southern Africa have been derived from 

rainfall forecasts alone, but these forecasts do not account for the response of yields to 

other climatic variables like temperature, radiation, humidity and wind (Martin et al., 2000).   

 

A method for assessing the impact of drought on maize production in South Africa has been 

developed, by predicting the response of maize to drought that might occur during the 

course of the growing season (Du Pisani, 1987).  The proposed method was tested for five 

locations, and historical climate records were used.  For each of the variables in the 

historical climate records, median values were calculated for each month over the entire 

record.  Thus, 12 median values were calculated (January to December) per variable and 

per location.  Thereafter, the months in the historical records that yielded median values 

closest to the median values calculated over the entire record were used to construct a 

“median year” for each location (i.e. rainfall for location 1 can be made up of January 1939, 

February 1969, March 1981, April 1970 etc.).  It was investigated whether it is possible to 

predict climatic impact at the end of December, January and February, by replacing the 

current season’s weather data with the median year’s data for the remainder of the growing 

season (January to May, February to May and March to May) and then forcing the CERES-
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Maize model with these combined sets of genuine and “median year” data.  The yield 

predictions based on the combined set of genuine and “median year” data were found to 

correlate well with the yield predictions based on a full set of genuine data.  It was 

concluded that with the use of this method the impact of drought on maize yield should be 

predictable with a usable level of skill up to four months prior to harvest.      

 

The impact of the ENSO phenomenon on rainfall variability over Zimbabwe and the 

potential for using ENSO predictions for maize management at site level were investigated 

(Phillips et al., 1998).  A period from 1951 to 1991 was selected for the study.  The mean 

NDJ SST anomaly in the Nino-3 region in the Equatorial Pacific Ocean were calculated for 

each of the 40 seasons and then used to group them into El Niño, La Niña and neutral 

years.  Daily weather data, for the period under investigation, for four sites in Zimbabwe 

were used to drive the CERES-Maize model.  The CERES-Maize model ran with different 

management strategies (2 nitrogen fertilizer treatments and 3 plant dates) to test for 

differences in yields between ENSO phases.  The simulated yields were compared to 

observed yields and used as indicator of the potential usefulness of ENSO predictions.  

High variability in rainfall and high variability in the standard deviation of the simulated yields 

at each of the sites were found during all the ENSO phases.  Thus, it was concluded that 

although ENSO is one of the most dominant sources of inter-annual climate variability at the 

four sites under investigation in this study, forecasts based on ENSO categories alone will 

probably not provide information with a level of skill high enough to be used in maize 

production decision making.  In a similar and very successful study the Nino-3 index was 

used as the predictor to forecast both rainfall and maize yield for Zimbabwe (Cane et al., 

1994).  The results of this study indicated a stronger relationship between Zimbabwean 

maize yields and SSTs in the Nino-3 region than between rainfall over Zimbabwe and the 

SSTs in the Nino-3 region.   

         

Seasonal maize water-stress forecasts for the primary maize-growing regions of South 

Africa and Zimbabwe have been prepared using a crop water-balance model (Martin et al., 

2000).  Historical gridded climate data for the period from 1961 to 1994 were used to force 

the simulations with the crop water-balance model.  The model calculates water stress on a 

0.5° x 0.5° grid from gridded rainfall, temperature, soil water holding capacity, plant date, 

monthly average wind speed, monthly average sunshine hours, cloud cover, and vapour 

pressure.  Linear regression was then used to relate the output from the model (water-

stress) to ENSO indices (SOI and Nino-3) with a 4-month lead-time to harvest.  It was found 

that water-stress forecasts relate more strongly to ENSO than seasonal rainfall alone, but 

that the water-stress forecasts may provide a useful indication of climate fluctuations.  
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Exceptionally good results were found when forecasting water-stress for the main maize-

growing regions in South Africa using the SOI.     

 

In a more recent study, it was attempted to forecast maize yield for the Highveld region of 

South Africa using a weather analogue program (WAP) (Du Toit et al., 2001).  WAP 

identifies historical seasons with similar weather characteristics as the current season by 

considering the up-to-date weather conditions of the current season.  Weather data of the 

five best-fitting seasons were used to force the CERES-Maize model to obtain a maize yield 

forecast.  The impacts of climate variability on the economy of South Africa have also been 

examined (Jury, 2002).  As maize production largely contributes to South Africa’s gross 

domestic product (GDP), one of the objectives was to investigate the impact of rainfall 

variability on maize yields.  July-August-September and September-October-November 

were identified as the two key seasons.  The statistical method used intended to predict 

fluctuations in the maize yields at a lead-time of 3 to 6 months.  A total of 18 predictors were 

considered.  The predictors were selected based on principal component analysis of the 

maize yield and by correlation and composite mapping with respect to summer rainfall.  An 

adjusted fit of 38% was found for the maize simulations when outgoing long-wave radiation 

in the central Indian Ocean and the stratospheric quasi-biennial oscillation were used as 

predictors.  It was concluded that more that one-third of the variability in maize yields can be 

predicted at a lead-time of 6 months (a maize yield forecast issued in November for April).    

 

1.10 AIMS AND APPROACH OF RESEARCH   

 

The principal aim of this dissertation is to investigate the possibility of producing usable 

maize yield predictions for South Africa by using seasonal climate forecasts from a multi-

model ensemble system as input into a crop model, thus simulating the response of the 

maize to potential climatic conditions.   

 

The skill of the crop model is tested by firstly forcing it with observed weather data.  These 

crop model integrations are performed for each of the magisterial districts in the main maize 

producing area of South Africa for the period 1979/80 to 1998/99.  This simulation system 

sets the target skill level for the other simulation systems.  The simulated maize yields are 

compared to actual maize yields.   

 

Two crop model-GCM based maize yield simulation systems are described, in which GCM-

simulated fields are used to force the crop model for each of the magisterial districts in the 

main maize producing area of South Africa.  The skill of the two crop model-GCM based 
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simulation systems are tested over the same period used in the target simulations, by 

comparing the simulated maize yields to actual maize yields.   

 

By combining the simulated maize yields produced by the two crop model-GCM based 

simulation systems, it can be tested whether the skill of a multi-model system outscores that 

of the best crop model-GCM based simulation system.   

 

1.11 SUMMARY 

 

To understand the effect of weather on maize yields, the growth stages of the maize plant 

have been described.  The climate of South Africa and factors influencing South Africa’s 

climate and the seasonal predictability of South African rainfall has also been discussed.  

The status of crop yield forecasting, globally as well as locally, has been summarized.  

Finally, the chapter concluded with the aim and approach of the research of this 

dissertation.  In the next chapter the data, methods and models used to conduct the 

research are described in detail.   
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CHAPTER 2 

 

2 DESIGN OF THE YIELD SIMULATIONS OVER SOUTH AFRICA  

 

2.1 INTRODUCTION 

 

In this chapter the research methodology applied and data used to obtain the maize yield 

simulations for South Africa are described in detail.  This chapter is divided into five 

sections.  In the first section the area of interest is depicted.  The second section discusses 

the different weather datasets that are used in this study.  The crop model that is used to 

simulate maize growth and development and to estimate the yield is described in section 3 

and in section 4 all other data, other than weather data, required by the crop model in order 

to successfully simulate maize yield as well as the set up of the experiments, are described.  

The last section discusses the actual maize yields that are used as verification data in this 

study and the methods used to verify the simulated maize yields produced by the crop 

model.        

 

2.2 AREA OF INTEREST 

 

Maize is the primary grain crop grown in South Africa (Du Plessis, 2003).  Approximately 8 

million tons of maize grain is produced annually (Du Toit, 1997).  Although maize production 

takes place across the country under various terrain, soil and climatic conditions (Du 

Plessis, 2003), the Free State and North-West Province constitute 65% of the total area 

under maize production in South Africa and 58% of the national maize yield are obtained 

from these two provinces (Du Toit, 1997).  Based on their enormous contribution towards 

the national maize yield, the Free State and North-West Province are consequently selected 

as the combined area of interest for this study.  Each magisterial district in the Free State 

and North-West Province are considered in this study, but unfortunately a number of 

districts are excluded from the investigation due to the lack of actual maize yields.   

  

Three maize production regions are evident within the two provinces under investigation 

(ARC-GCI, 2008).  These regions are based on spatial rainfall, temperature and heat unit 

differences and are known as the dry/warm western region, temperate eastern region and 

wet/cool eastern region (Figure 2.1).  Different management practices are applied in each of 

the three regions in order to adapt to the climatic conditions (Du Toit et al., 2000).    
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Figure 2.1: The study area and the three maize production regions.  

 

2.3 WEATHER DATASETS 

2.3.1 Observed Data 

 

In order to simulate maize yield, daily rainfall, maximum temperature, minimum temperature 

and solar radiation data are required.  Initially, weather station data was selected as the 

observed weather data in this study, but only 22 weather stations, both Agricultural 

Research Council and South African Weather Service stations, were identified within the 

study area that recorded the required variables for the entire period under investigation 

(1979 to 1999).  From the uneven spatial distribution of the identified weather stations over 

the study area it was clear that the weather station data is not representative of the entire 

study area and therefore it was decided to use the weather data contained within the 

Southern African Quaternary Catchment Database (Schulze et al., 2005) as an alternative.  

 

This database comprises of a dense rain gauge network and originated out of a Water 

Research Commission project that was intended to be used for research purposes (Schulze 
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et al., 2005).  The database contains daily hydroclimatic data for each quaternary 

catchment in South Africa and for a 50-year period from 1950 to 1999.  The hydroclimatic 

variables that are included in this database are rainfall, maximum temperature, minimum 

temperature, vapour pressure deficit, minimum relative humidity, maximum relative 

humidity, solar radiation, Penman-Monteith reference evapotranspiration, soil water content 

in the A-horizon of the soil, soil water content in the B-horizon of the soil, soil moisture 

deficit in the A-horizon of the soil, soil moisture deficit in the B-horizon of the soil, saturated 

drainage from the A-horizon of the soil to the B-horizon of the soil and saturated drainage 

from the B-horizon of the soil to the groundwater zone.  

 

 
 
Figure 2.2: The distribution of the identified weather stations (black dots) within the study area 

compared to the distribution of quaternary catchments within the study area.     

 

Figure 2.2 shows the quaternary catchments for the entire country as well as the positions 

of the 22 originally identified weather stations in the study area.  From this figure it is evident 

that the quaternary catchment weather data is a much better geographical representation of 

the study area than the weather station data.  Another advantage of the quaternary 

catchment database is that the data contained within the database closely fit the specific 

needs of this study.  In other words, daily rainfall, temperature and solar radiation data are 
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available for each quaternary catchment in the study area for the entire period under 

investigation (1979 to 1999).     

 

2.3.2 Simulated Fields 

 

The numerically simulated fields that are used in this study were produced by two Global 

Circulation Models (GCMs). They are the Conformal-Cubic Atmospheric Model (CCAM) 

(McGregor and Dix, 2001) and the ECHAM4.5 model (Roeckner et al., 1996).  In order to 

account for the uncertainty in the initial state of the atmosphere, each model produced an 

ensemble of simulations from varying initial conditions. These two GCMs form a multi-model 

system by statistically combining the ensembles from the individual models.   

 

2.3.2.1 CCAM 

2.3.2.1.1 Model Description 

 

CCAM is a GCM developed by the CSIRO Marine and Atmospheric Research in Australia 

(McGregor, 2005a).  The model may be integrated in variable-resolution mode with high 

resolution over an area of interest using the Schmidt stretching factor, thereby allowing it to 

function as a regional climate model (Engelbrecht et al., 2009).  CCAM replaced the limited-

area nested climate model DARLAM that was used for regional climate modelling 

applications (McGregor and Nguyen, 1999; Engelbrecht et al., 2002).  Variable-resolution 

global modelling offers vast flexibility for dynamic downscaling from other GCMs or 

reanalysis data, effectively requiring only sea surface temperatures (SSTs) and, optionally, 

far-field winds from the global model in which it is nudged (McGregor and Dix, 2001; Wang 

et al., 2004).      

 

The model uses a quasi-uniform grid, which is obtained by projecting the six panels of a 

cube onto the spherical surface of the earth (McGregor and Nguyen, 1999).  Since the grid 

has a fairly uniform resolution over the globe it avoids problems associated with normal 

latitude-longitude grid projections that require filtering in the vicinity of the poles due to the 

clustering of grid points (McGregor, 2005a).   

 

CCAM employs a two-time-level, semi-implicit discretization of the hydrostatic primitive 

equations (McGregor, 1996; McGregor, 2005a).  The model also makes use of a semi-

Lagrangian scheme for horizontal advection, which in combination with the semi-implicit 

procedure ensures numerical stability when using large time steps (McGregor, 2005a).  
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Total-variation-diminishing vertical advection is employed.  An unstaggered grid is used, 

with winds transformed to/from C-staggered locations before/after gravity wave calculations 

(McGregor, 2005b).  More details on the geometrical aspects and dynamic formulation of 

CCAM can be found in McGregor (2005a).   

 

Furthermore, CCAM comprises of a comprehensive set of physical parameterization 

schemes.  These include the CSIRO mass-flux cumulus convection scheme that takes 

downdrafts and the evaporation of rainfall into account, the long and shortwave radiation 

scheme of GFDL (Schwarzkopf and Fels, 1991) with interactive diagnosed cloud 

distributions (Rotstayn, 1997), a gravity wave drag scheme, a stability-dependent boundary 

layer scheme with non-local vertical mixing and a soil and canopy scheme describing six 

soil layers of temperature and moisture as well as three layers for snow (Gordon et al., 

2002).   

 

2.3.2.1.2 Design of Simulations 

 

CCAM performed five 25-year (1979 to 2003) integrations for the entire globe on a 

horizontal grid of approximately 2.1° x 2.1° degrees, with 18 σ-levels in the vertical.  The 

simulations were initialised using a lagged average forecast approach (Hoffman and 

Kalnay, 1983).  Each simulation was forced with observed monthly sea surface 

temperatures (SSTs), obtained from the Atmospheric Model Intercomparison Project (AMIP) 

dataset, at its lower boundary.  Model output is available for a number of variables on a 1° 

latitude-longitude grid, at daily time intervals starting on 1 January 1979 and ending on 31 

December 2003.  These simulations were performed on the Velocity-cluster at the 

University of Pretoria.   

 

2.3.2.2  ECHAM4.5 

2.3.2.2.1 Model Description 

 

The ECHAM4.5 GCM is a primitive equation model that was developed by the Max Planck 

Institute for Meteorology in Hamburg, Germany (Roeckner et al., 1996). Many features of 

this model were adopted from the spectral weather prediction model of the European 

Centre for Medium Range Forecasts (ECMWF).  However, a different set of 

parameterization schemes were employed for ECHAM4.5 than for the ECMWF model. 
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ECHAM4.5 uses a Gaussian transform grid on which the nonlinear terms and most of the 

parameterized physics is calculated.  Furthermore, a semi-implicit time stepping scheme 

and weak time filter are used.  This avoids the decoupling of the solutions at the two time 

levels in the time stepping scheme.  The model employs a 19 – level hybrid sigma-pressure 

coordinate system which extends up to 10 hPa in the vertical.   

 

The model occupies a semi-Lagrangian scheme to calculate the transport of water vapour, 

cloud water and trace constituents (Williams and Rasch, 1994).  Land surface data that are 

supplied to the model include orography, albedo, roughness length, vegetation type, leaf 

area index, soil water holding capacity, soil heat capacity and soil thermal conductivity. 

 

The physical parameterizations that are incorporated in the model includes a horizontal 

diffusion scheme which uses a high-order for diffusion in the troposphere, a surface flux and 

vertical diffusion scheme using the Monin-Obukhov theory to calculate turbulent fluxes at 

the surface, a land surface processes scheme which comprises of water and heat in the 

soil, snow pack over land, the heat budget of land ice, interception of rainfall and 

evapotranspiration, a gravity wave drag scheme using the McFarlane (1987) and Palmer et 

al. (1986) method, a cumulus convection scheme based on the bulk mass flux concept, a 

stratiform clouds scheme and a radiation scheme (Roeckner et al., 1996).             

 

2.3.2.2.2 Design of Simulations 

 

A 6-member ensemble of simulations was produced by ECHAM4.5 for the period 1979 to 

2003.  The model ran globally at a horizontal resolution of approximately 2.8° x 2.8° with 19 

levels in the vertical.  The model was forced at its lower boundary using AMIP SSTs, 

equivalent to the lower boundary forcing applied in the CCAM simulations.  Lagged Average 

Forecasting was likewise used to initialize the different ECHAM4.5 ensemble members. 

Model output, in daily time steps, is available on the 2.8° latitude-longitude grid and for a 

number of variables.  These model runs were performed at the South African Weather 

Service (SAWS).   

 

2.4 CROP GROWTH SIMULATION MODEL 

 

The CERES-Maize model that forms part of the Decision Support System for 

Agrotechnology Transfer (DSSAT) is used in this study to simulate maize growth and 

estimate maize yield.  A total of 25 model configurations are built into DSSAT for a number 
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of different crops such as cereals, legumes, root crops, oil crops, vegetables, forages and 

fruits.   The DSSAT cropping system model was selected for this study based on it being an 

internationally recognized model which is used by researchers worldwide (Jones et al., 

2003) including researchers in South Africa (e.g. Du Toit, 1997; Du Toit et al., 2000).  In 

southern Africa the CERES-Maize model has been used to asses the impact of drought on 

maize production in South Africa (Du Pisani, 1987), to investigate the potential of ENSO 

predictions for maize management in Zimbabwe (Phillips et al., 1998) and to forecast the 

maize yield of the Highveld region of South Africa (Du Toit et al., 2001).     

 

2.4.1 Model Description  

 

DSSAT was developed through the collaboration of a number of researchers across the 

globe (Jones et al., 2003).  The development of this cropping system model formed part of 

the International Benchmark Sites Network for Agrotechnology Transfer (IBSNAT) project 

(Tsuji, 1998).  The main drive behind the development of the DSSAT system was the need 

to make better decisions about transferring production technology from one site to another, 

where completely different soil and climate conditions prevail (Uehara and Tsuji, 1998).  

 

In DSSAT a group of independent programs are joined together in order to predict the 

behaviour of a certain crop under specified conditions (Jones et al., 2003).  In other words, 

the growth, development and yield of a crop is simulated based on prescribed climatic 

conditions, soil conditions, cultivar specific genetic inputs and management information.  

The system allows the user to investigate the effect of different management practices on a 

particular crop in a specified environment (Du Toit et al., 1994).          

 

The CERES-Maize model within DSSAT was designed to simulate maize growth with a 

minimum set of data (Du Toit et al., 2002).  CERES-Maize is a daily time step model and 

therefore requires daily weather data that includes rainfall, maximum air temperature, 

minimum air temperature and solar radiation.  The model uses the weather data supplied to 

compute the rate at which the plant progresses from one growth stage to another, daily 

plant growth, dry matter production, water stress and temperature stress (Jones et al., 

2003).  A detailed description of the soil, in the form of a one dimensional profile, is also 

required by the model.  Soil input data are used to compute daily changes in soil water 

content due to the infiltration of rainfall and irrigation, vertical drainage, unsaturated flow, 

soil evaporation, plant transpiration as well as root water uptake (Jones et al., 2003).  

Another input required by the model is cultivar specific genetic coefficients (Table 2.1) which 

describes the phenology of each maize cultivar.  Lastly, the CERES-Maize model requires 

 
 
 



 37 

information on the management practices applied to the specific maize cultivar cultivated 

under the prescribed climatic and soil conditions.  The management information includes 

data on planting, irrigation, fertilizer, organic amendments, chemical application, tillage and 

harvest.         

 

Variable Description 

P1 
Thermal time from seedling emergence to end of juvenile phase, during which the plant is not 

responsive to changes in photoperiod 

P2 
Extent to which development is delayed for each hour increase in photoperiod above the 

longest photoperiod at which development proceeds at a maximum rate. 

P5 Thermal time from silking to physiological maturity 

G2 Maximum possible number of kernels per plant. 

G3 Kernel filling rate during the linear grain filling stage and under optimum conditions 

PHINT Interval in thermal time between excessive leaf tip appearances  

 
Table 2.1: Genetic coefficients for maize as required by the CERES-Maize model (Jones et al., 

2003).  

 

2.4.2 Agricultural Inputs 

 

CERES-Maize model simulations are performed for each magisterial districts in the study 

area.  Consequently, it is necessary to obtain the agricultural inputs required by the model 

to perform successful simulations for each magisterial district under investigation.  

 

2.4.2.1 Soil Inputs 

 

To simulate maize yield, the CERES-Maize model needs a detailed description of the soil in 

each magisterial district.  The Soil Profile Information System of the Agricultural Research 

Council, Institute for Soil, Climate and Water contains descriptions and analyses data of soil 

profiles taken at numerous points all over South Africa.  The data of all the soil profiles 

taken within the study area are extracted from this database.  The number of soil profiles in 

each magisterial district varies.  Six magisterial districts are eliminated from the study, as no 

soil profile data are available for them.  These districts include Parys, Odendaalsrus, 

Fouriesburg, Clocolan, Frankfort and Ventersburg.  Figure 2.3 shows the eliminated 

magisterial districts (light purple colour).        

 

A number of different soils can occur in a single magisterial district, but it is unknown on 

which of these soils maize is cultivated.  To take this uncertainty into account a range of 
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soils are selected for each magisterial district.  The soils are categorized into four classes; 

high agricultural potential soils, medium agricultural potential soils, low agricultural potential 

soils and soils not suitable for agriculture.  This categorization is based purely on the 

characteristics (soil depth and texture) of each soil.  Out of the several soils that occur 

within a given magisterial district, a soil in each of the classes is selected for use in this 

study.  Thus, three soils are selected per magisterial district, one with high potential, one 

with medium potential and one with low potential.  Not all of the magisterial districts have a 

soil in each of the classes.  This results in several districts with only two selected soils as 

well as districts with only one selected soil.  Table 2.2 shows the soils that are selected for 

each of the magisterial districts as well as the soil profile data which the CERES-Maize 

model requires.      

 

 
 
Figure 2.3: The magisterial districts eliminated from the study due to the lack of soil data (light 

purple colour).      

 

Except for the information in Table 2.2, the CERES-Maize model also requires the colour, 

drainage, runoff potential, percentage stones, total nitrogen percentage of each soil as well 

as the slope of the site where the soil profile was taken.  The colour of the soils is 
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determined from Macvicar et al. (1977) and Soil Classification Working Group (1991).  

Drainage are obtained from Schoeman et al. (2000) and runoff potential from Schulze 

(1985).  The percentage stones in each of the selected soils are assumed to be zero based 

on information in the Land Types of South Africa, Soil Inventory Database (Land Type 

Survey Staff, 1972 – 2008).  As the total nitrogen percentage of 500 soil profiles all range 

between 0.05% and 0.1% (Soil Survey Staff, 2008) an average value of 0.075% is assumed 

for each of the selected soils in Table 2.2.  The slope of the sites are assumed to be 

perfectly flat (slope = 0%).  It is important to keep these assumptions in mind when 

evaluating the model’s performance. 

 

Apart from the soil profile data entered into the CERES-Maize model the model also  

calculates a number of variables which include the lower limit (LL), drained upper limit 

(DUL), saturation, bulk density, saturated hydraulic conduct and root growth factor of each 

soil.  These model calculated values can be edited.  The LL and DUL is the water holding 

properties of the soil (Botha and Eisenberg, 1992).  The LL can be interpreted as the soil 

water content at which the development and growth of a plant stops and the DUL as the 

soil-water content at which drainage from a pre-wetted soil comes to an end (Gebregiorgis 

and Savage, 2006).  Thus, the LL and DUL of the soil plays an important role in crop growth 

in terms of the amount of water available to the plant.  Therefore it was decided to replace 

the model calculated LL and DUL values (Rawls et al., 1982) with values calculated using 

the methods described in Botha and Eisenberg (1992).  These methods use clay content 

and cation exchange capacity to calculate soil water retention.  It was tested for South 

Africa for a range of matric potentials, and excellent results were obtained when comparing 

the calculated water content values with observed values.  The Botha and Eisenberg (1992) 

methods that are used to calculate the new LL and DUL values are as follows: 

 

Lower limit (LL):   LL = 0.393 + 0.2556 * clay% + 0.04043 * CEC 

 

Drained Upper Limit (DUL):  DUL = 2.315 + 0.2796 * clay% + 0.07383 * CEC 

 

where CEC is the Cation Exchange Capacity in me kg -1 and LL and DUL is in %.  
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Number 
Magisterial 

District 
Classification Soil Name 

Master 

Horizon 

Depth  

bottom 

(cm) 

Clay (%) Silt (%) 
Organic 

Carbon (%) 

pH in 

Water 

Cation 

Exchange 

Capacity 

(cmol/kg) 

A 30 9.6 1.4 0.2 6.8 5.0 High  

potential 

Clovelly Setlagole  

(Cv3100) B 120 13.8 2.0 0.2 6.1 7.5 

A1 35 16.7 0.9 0.2 6.1 3.9 Medium 

potential 

Clovelly Annandale 

(Cv33) B21 70 11.8 1.3 0.2 5.8 3 

A1 25 5.7 0.1 0.1 6.9 2.3 

1 Vryburg 

Low  

potential 

Hutton Mangano  

(Hu33) B2 54 11.9 2.7 0.2 6.3 4.9 

A1 20 11.3 2.2 0.5 5.8 3.2 

B21 90 20.2 3.0 0.2 6.2 4.0 
High  

potential 

Avalon Soetmelk  

(Av36) 
B22 140 26.4 3.7 0.2 6.2 4.5 

A 30 12.1 1.6 0.3 7.0 5.8 Medium 

potential 

Avalon Mafikeng 

(Av3200) B1 75 27.8 2.5 0.3 7.2 10.3 

A1 27 10.8 2.0 0.3 6.3 7.4 

2 Delaryville 

Low  

potential 

Glencoe Beatrix  

(Gc33) B21 60 12.9 1.9 0.1 7.6 3.3 

A 35 10.4 2.8 0.5 6.6 6.0 High  

potential 

Hutton Ventersdorp 

(Hu3200) B 120 19.9 1.8 0.3 6.7 7.2 

A 30 11.9 1.7 0.4 7.0 7.3 Medium 

potential 

Avalon Mafikeng 

(Av3200) B1 90 24.4 2.1 0.3 7.1 13.6 

A 20 19.8 3.9 0.8 7.8 7.5 

3 Lichtenburg 

Low  

potential 

Preiska Hougham 

(Pr1110) B 60 22.8 3.4 0.5 7.7 9.4 
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A1 18 13.3 13.2 0.5 5.8 3.8 

B21 62 19.0 9.1 0.4 5.9 4.5 
High  

potential 

Hutton Msinga 

(Hu26) 
B22 120 23.7 10.2 0.2 5.9 3.5 

A1 35 27.9 11.5 0.6 5.9 10.4 Medium  

otential 

Shortlands Glendale 

(Sd21) B21 85 42.9 14.1 0.5 6.3 13.6 

A1 34 5.7 53.1 0.5 5.7 3.5 

4 Marico 

Low  

potential 

Hutton Roodepoort 

(Hu30) B21 80 5.6 3.2 0.3 6.0 3.1 

A1 23 11.6 3.3 0.4 5.9 2.7 
5 Swartruggens 

High  

potential 

Hutton Clansthal  

(Hu24) B2 120 12.7 3.0 0.1 5.8 2.0 

A1 32 25.0 20.5 0.8 6.7 9.5 High  

potential 

Shortlands Glendale 

(Sd21) B21 120 37.6 26.4 0.4 6.5 11.1 

A 20 32.5 9.9 1.4 5.8 9.0 Medium  

potential 

Hutton Suurbekom 

(Hu2200) B1 80 40.9 11.9 0.6 6.2 7.5 

A1 27 15.7 4.9 0.6 5.5 3.5 

6 Koster 

Low  

potential 

Clovelly Southwold 

(Cv26) B2 50 20.0 5.2 0.4 5.3 3.3 

Ap 32 10.2 3.1 0.4 7.2 4.5 

B21 83 38.4 5.8 0.3 7.2 7.3 
High  

potential 

Hutton Doveton 

(Hu27) 
B22 120 28.2 2.4 0.3 7.1 6.8 

A 30 30.4 5.1 1.3 6.0 6.7 Medium 

potential 

Hutton Hayfield 

(Hu2100) B 120 34.9 5.6 0.8 5.8 5.4 

A 25 6.9 4.2 0.5 5.8 1.2 

7 Rustenburg 

Low  

potential 

Westleigh Mareetsane 

(We2000) B1 50 21.8 5.8 0.3 5.5 5.0 
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A 30 15.9 7.8 0.8 7.1 6.2 High  

potential 

Hutton Ventersdorp 

(Hu3200) B 120 22.8 6.9 0.4 7.9 7.0 

A 30 14.7 6.1 0.7 7.9 5.8 Medium 

potential 

Bloemdal Roodeplaat 

(Bd3200) B1 80 23.6 7.0 0.4 8.0 5.8 

A 20 7.8 8.1 0.8 6.8 5.4 

8 Brits 

Low  

potential 

Kroonstad Morgendal 

(Kd1000) G 70 9.2 11.9 0.3 7.5 5.4 

A1 20 23.4 7.4 0.7 5.6 6.8 Medium 

potential 

Hutton Msinga 

(Hu26) B2 70 26.6 7.3 0.3 5.9 5.1 

A 20 14.6 3.6 0.5 5.1 4.3 
9 Ventersdorp 

Low  

potential 

Hutton Suurbekom 

(Hu2200) B1 60 23.7 5.3 0.4 6.2 5.7 

A1 58 21.5 15.8 0.6 6.7 7.8 
10 Potchefstroom 

High  

potential 

Hutton Shorrocks 

(Hu36) B2 110 18.1 19.1 0.2 6.9 5.0 

A 30 14.9 5.5 0.6 5.9 4.8 High  

potential 

Hutton Suurbekom 

(Hu2200) B 120 20.0 5.3 0.3 6.3 7.3 

A 30 15.2 4.1 0.6 6.2 6.0 Medium 

potential 

Bainsvlei Amalia 

(Bv3200) B1 90 25.8 4.1 0.3 6.5 8.2 

A 25 9.3 2.8 0.3 6.7 3.7 

11 Klerksdorp 

Low  

potential 

Hutton Stella  

(Hu3100) B 60 13.4 3.3 0.3 6.6 3.4 

A1 20 24.9 8.0 0.6 6.3 6.5 

B21 56 33.5 13.4 0.6 6.2 8.4 
High  

potential 

Hutton Shorrocks 

(Hu36) 
B22 100 32.7 19.2 0.4 6.0 8.0 

A 30 18.4 5.0 0.5 6.2 6.8 Medium 

potential 

Avalon Mafikeng 

(Av3200) B1 90 31.5 5.4 0.6 6.1 11.9 

A 30 6.9 2.7 0.3 7.9 3.1 

12 Coligny 

Low  

potential 

Bloemdal Vrede 

(Bd3100) B1 70 11.5 3.3 0.2 6.8 3.5 
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A 30 13.5 2.9 0.4 5.2 5.5 High  

potential 

Avalon Mafikeng 

(Av3200) B1 100 21.2 2.6 0.3 6.8 6.7 

A1 20 10.3 5.3 0.4 6.2 5.0 Medium 

potential 

Hutton Shorrocks 

(Hu36) B2 80 17.2 4.7 0.3 6.4 5.4 

A 30 9.5 1.5 0.3 7.1 6.0 

13 Wolmaransstad 

Low  

potential 

Westleigh Mareetsane 

(We2000) B2 80 25.9 1.5 0.3 6.5 12.2 

A1 24 10.9 2.4 0.2 6.3 5.7 High  

potential 

Hutton Portsmouth 

(Hu35) B2 130 6.9 3.1 0.2 6.2 3.8 

A 20 14.1 3.3 0.3 6.1 6.9 Medium 

potential 

Hutton Ventersdorp 

(Hu3200) B 70 26.2 3.2 0.3 6.7 10.7 

A 30 8.3 1.9 0.3 6.8 6.1 

14 
Schweizer 

Reneke 

Low  

potential 

Glencoe Vlakput 

(Gc3200) B1 80 16.1 3.1 0.3 6.8 12.2 

A1 20 14.9 5.4 0.3 6.1 6.6 
15 Bloemhof 

Medium 

potential 

Hutton Shorrocks 

(Hu36) B2 80 25.6 5.3 0.3 6.3 8.6 

A1 25 11.4 1.3 0.4 7.8 6.6 
16 Christiana 

Low  

potential 

Hutton Shorrocks 

(Hu36) B2 55 24.5 1.6 0.4 7.2 12.3 

A1 35 7.4 1.4 0.3 7.6 3.2 

B21 75 11.2 0.8 0.2 7.3 3.2 
High  

potential 

Hutton Mangona 

(Hu33) 
B22 120 14.5 0.6 0.1 6.8 4.3 

A1 32 17.8 5.4 0.6 6.8 8.1 Medium 

potential 

Shortlands Kinross 

(Sd20) B21 95 28.4 4.7 0.4 7.1 13.9 

A1 12 12.5 2.0 0.3 8.1 6.2 

17 Boshof 

Low 

potential 

Sterkspruit Bakklysdrif 

(Ss13) B21 40 28.2 4.8 0.7 7.9 15.3 
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A1 40 8.0 0.2 0.2 8.5 4.7 High  

potential 

Clovelly Makuya 

(Cv34) B2 120 10.6 1.3 0.2 8.4 5.7 

B2 90 23.3 6.0 0.2 8.8 8.4 
18 Hoopstad 

Medium 

potential 

Oaklea Limpopo  

(Oa46) C 130 22.5 36.5 0.1 9.0 7.6 

A1 56 8.4 2.5 0.2 8.5 2.9 

B21 92 12.6 2.4 0.2 6.5 3.6 
High  

potential 

Hutton Mangano 

(Hu33) 
B22 130 18.7 2.2 0.2 6.4 5.5 

A1 18 8.3 2.4 0.4 7.4 3.6 

19 Wesselsbron 

Low 

potential 

Sterkspruit Stanfort 

(Ss23) B2 36 25.6 4.5 0.6 9.1 13.7 

A1 35 5.9 4.9 0.2 7.0 2.8 

B21 100 15.0 4.2 0.2 6.7 4.0 
High  

potential 

Avalon Heidelberg 

(Av34) 
B22 240 18.2 1.5 0.2 7.6 6.3 

A1 25 24.7 3.1 0.3 6.7 9.1 Medium 

potential 

Hutton Shorrocks 

(Hu36) B2 75 25.4 3.8 0.2 6.8 9.1 

A1 31 17.5 3.9 0.6 8.7 11.0 

20 Bothaville 

Low 

potential 

Bonhein Weenen 

(Bo40) B2 70 25.6 4.2 0.2 7.9 13.0 

A1 55 5.7 0.6 0.3 5.1 1.7 

B21 100 8.8 4.8 0.2 4.8 2.3 
Medium 

potential 

Glencoe Weltevrede 

(Gc14) 
B22 110 9.0 3.3 0.2 5.8 3.0 

A11 20 11.6 1.4 0.2 6.2 3.7 

A12 30 21.7 2.3 0.3 5.7 6.5 

21 Viljoenskroon 

Low 

potential 

Westleigh Sibasa 

(We13) 
B2 60 36.8 4.4 0.3 6.1 11.8 

A1 35 20.7 5.7 0.5 6.1 4.6 

B2 87 30.2 8.5 0.3 6.0 5.1 22 Vredefort 
High  

potential 

Hutton Msinga 

(Hu26) 
B3 115 23.3 9.7 0.2 5.7 5.1 
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A1 34 6.2 1.2 0.3 7.1 2.7 

B21 67 8.5 1.1 0.2 7.4 2.4 
High  

potential 

Clovelly Annandale 

(Cv33) 
B22 115 16.7 1.0 0.1 7.2 3.8 

A1 20 12.6 4.9 0.5 6.5 6.6 

23 Bultfontein 

Low 

potential 

Hutton Shorrocks 

(Hu36) B2 60 26.1 4.6 0.4 6.1 11.4 

A1 40 33.6 2.8 0.4 7.5 3.8 

B21 80 23.3 4.4 0.4 7.2 6.2 24 Welkom 
High  

potential 

Avalon Soetmelk 

(Av36) 
B22 120 25.7 2.4 0.2 7.2 5.3 

A1 28 17.8 1.5 0.6 7.2 7.3 
25 Henneman 

Medium 

potential 

Hutton Shorrocks 

(Hu36) B2 72 28.2 2.4 0.5 6.9 12.6 

A1 35 11.3 1.2 0.4 7.7 3.5 
26 Virginia 

Medium 

potential 

Clovelly Blinkklip 

(Cv36) B21 95 22.7 1.2 0.3 7.3 6.6 

A1 35 12.5 1.9 0.3 6.9 3.2 High  

potential 

Clovelly Blinkklip 

(Cv36) B21 120 25.0 2.2 0.3 6.9 5.8 

A1 25 13.8 3.1 0.4 6.7 5.1 
27 Theunissen 

Low 

potential 

Valsrivier Waterval 

(Va11) B21 65 43.0 3.7 0.4 7.1 11.3 

Ap 20 20.0 9.4 0.5 7.9 10.7 

B21 50 26.3 10.1 0.2 8.8 13.9 
High  

potential 

Oaklea Limpopo  

(Oa46) 
B22 120 27.0 17.0 0.2 9.6 14.0 

A1 28 19.9 3.8 0.6 6.9 5.8 

28 Brandfort 

Medium 

potential 

Shortlands Glendale 

(Sd21) B21 68 40.7 2.6 0.3 7.0 12.8 

 
 
 



 46 

 

A1 30 12.9 1.4 0.4 8.2 5.4 

B21 65 24.8 0.6 0.4 7.3 9.5 
High  

potential 

Hutton Shorrocks 

(Hu36) 
B22 120 31.8 1.9 0.3 7.1 11.5 

A1 30 10.8 2.1 0.3 7.6 3.9 Medium 

potential 

Bainsvlei Bainsvlei 

(Bv36) B21 65 27.1 1.8 0.3 6.9 6.9 

A1 33 9.1 2.4 0.4 6.9 4.5 

B21 65 37.9 0.6 0.5 6.6 11.6 

29 Bloemfontein 

Low 

potential 

Valsrivier Waterval 

(Va11) 
B22 90 33.3 1.7 0.3 6.9 12.0 

A1 35 16.4 9.2 0.5 5.7 5.7 

B21 60 33.1 10.7 0.4 6.3 8.4 
Medium 

potential 

Westleigh Rietvlei 

(We12) 
B22 90 70.5 6.1 0.1 6.5 18.1 

A1 30 12.3 8.1 0.7 6.0 5.1 

30 Excelsior 

Low 

potential 

Valsrivier Arniston 

(Va31) B2 60 47.6 6.7 0.7 6.9 16.6 

A1 40 18.1 3.5 0.4 7.8 5.3 Medium 

potential 

Westleigh Sibasa 

(We13) B21 85 33.6 2.8 0.4 6.8 8.4 

A1 30 14.6 11.5 0.4 5.7 4.9 
31 Winburg 

Low 

potential 

Valsrivier Arniston 

(Va31) B21 55 45.7 10.7 0.6 7.1 14.0 

A1 28 14.3 7.6 0.6 5.9 5.3 Medium 

potential 

Oaklea Leeufontain 

(Oa16) B2 60 24.3 8.3 0.3 6.4 6.9 

A1 34 11.2 9.9 0.3 6.5 3.6 
32 Marquard 

Low  

potential 

Westleigh Sibasa 

(We13) B2 60 53.2 7.2 0.6 6.3 13.1 

A1 58 12.8 2.3 0.3 6.2 5.0 Medium  

potential 

Westleigh Sibasa 

(We13) B2 84 55.5 4.0 0.3 6.2 11.7 

A1 23 22.1 8.0 0.7 6.8 7.3 
33 Senekal 

Low  

potential 

Valsrivier 

Sheppardvale (Va42) B2 54 55.2 16.1 0.7 7.6 18.6 
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A1 55 11.5 3.8 0.5 5.9 3.5 
34 Lindley 

Medium  

potential 

Hutton Msinga 

(Hu26) B2 90 15.9 4.9 0.4 5.6 3.6 

A1 32 17.2 3.9 0.4 5.9 4.6 

B21 63 31.5 5.1 0.4 5.8 7.0 
High  

potential 

Avalon Soetmelk 

(Av36) 
B22 115 39.8 6.3 0.2 6.0 8.3 

A1 30 12.7 2.2 0.3 6.4 3.7 

B21 60 20.7 2.7 0.3 6.4 5.3 

35 Kroonstad 

Medium  

potential 

Bainsvlei Bainsvlei 

(Bv36) 
B22 100 23.0 4.6 0.3 6.6 8.2 

A1 49 9.7 2.1 0.2 6.3 4.1 

B21 86 16.0 2.3 0.2 5.8 5.7 36 Koppies 
High  

potential 

Hutton Schorrocks 

(Hu36) 
B22 120 18.5 2.3 0.1 6.1 5.1 

A1 33 23.9 10.4 0.7 6.0 6.5 
37 Heilbron 

Medium  

potential 

Clovelly Southwold 

(Cv26) B2 67 30.4 10.1 0.5 5.8 6.9 

A1 40 3.3 1.3 0.3 5.1 1.5 

B21 110 3.1 0.6 0.1 4.9 1.0 38 Sasolburg 
High 

potential 

Avalon Mooiveld 

(Av31) 
B22 120 9.5 0.8 0.1 5.1 1.7 

A1 60 22.9 4.8 0.9 6.3 6.1 

B21 92 36.0 5.0 0.6 5.8 9.2 
High 

potential 

Avalon Bezuidenhout 

(Av37) 
B22 110 43.8 8.2 0.2 6.3 9.9 

A1 28 34.1 16.7 1.1 5.2 7.3 Medium 

potential 

Clovelly Clovelly 

(Cv17) B2 70 35.2 17.4 0.6 5.1 5.5 

A1 40 16.3 4.2 0.7 5.6 4.2 

39 Vrede 

Low 

potential 

Clovelly Southwold 

(Cv26) B2 65 18.1 1.8 0.5 5.3 3.8 
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A1 45 30.5 9.3 1.2 6.0 10.3 

B21 90 45.9 11.7 0.6 6.6 13.5 
High 

potential 

Avalon Bezuidenhout 

(Av37) 
B22 120 55.1 13.7 0.5 6.8 19.3 

A1 40 25.8 13.1 1.1 5.7 10.0 Medium 

potential 

Oaklea Jozini 

(Oa36) B2 85 28.7 14.8 0.5 5.8 9.5 

A1 35 17.5 10.7 0.7 5.9 5.3 

E 55 11.8 10.3 0.2 6.9 2.4 

40 Harrismith 

Low 

potential 

Longlands Waaisand 

(Lo11) 
B2 70 21.8 11.7 0.1 7.4 6.2 

A1 50 8.0 3.0 0.9 5.8 4.1 

B21 95 8.0 2.0 0.2 5.5 2.4 
High 

potential 

Avalon Bleeksand 

(Av33) 
B22 140 7.0 3.0 0.1 6.2 1.5 

A1 30 19.4 9.0 1.3 6.3 7.9 

B21 60 16.6 5.7 0.7 6.4 4.7 
Medium 

potential 

Clovelly Blinkklip 

(Cv36) 
B22 92 23.5 5.5 0.8 6.7 5.9 

A1 35 17.5 10.7 0.7 5.9 5.3 

E 55 11.8 10.3 0.2 6.9 2.4 

41 Reitz 

Low 

potential 

Longlands Waaisand 

(Lo11) 
B2 70 21.8 11.7 0.1 7.4 6.2 

A1 28 21.4 3.0 1.0 5.8 7.3 

B21 52 35.2 3.2 0.5 5.9 7.8 

B22 80 43.2 4.7 0.2 5.2 11.7 

High 

potential 

Avalon Bezuidenhout 

(Av37) 

B23 106 39.9 5.7 0.2 5.5 14.3 

A1 40 11.0 3.0 0.6 6.9 8.2 Medium 

potential 

Oaklea Jozini 

(Oa36) B2 87 17.3 8.2 0.9 7.8 9.4 

A1 22 27.8 10.7 0.7 7.5 9.1 

42 Bethlehem 

Low 

potential 

Sterkspruit Sterkspruit 

(Ss26) B2 44 60.2 10.5 0.6 7.7 22.5 
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A1 60 13.3 4.8 0.5 6.0 4.3 

B21 110 19.5 5.3 0.2 6.3 4.4 43 Ficksburg 
High 

potential 

Avalon Avalon 

(Av26) 
B22 140 45.5 6.6 0.2 6.0 8.7 

A1 58 12.4 0.2 0.4 5.9 4.0 

B21 90 17.9 5.9 0.3 6.2 5.1 
Medium 

potential 

Avalon Soetmelk 

(Av36) 
B22 130 43.8 6.8 0.3 6.0 9.6 

A1 34 11.8 11.7 0.4 6.2 4.0 

E 56 9.8 13.1 0.2 6.5 2.3 

44 Ladybrand 

Low 

potential 

Estcourt Dohne 

(Es13) 
B2 90 31.2 13.4 0.3 7.0 7.8 

 
Table 2.2: The soils selected for each magisterial district and the corresponding soil profile data (Soil Survey Staff, 2008) as used as input for 

the CERES-Maize model.   
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2.4.2.2 Cultivar Inputs 

 

It is unknown which maize cultivars were planted in each of the magisterial districts over the 

period under investigation (1979 to 1999).  Due to the different climatic conditions, the 

maize cultivars planted in each of the production regions in the study area (Figure 2.1) 

differ.  Cultivar coefficients for a number of maize cultivars that were planted in each of the 

regions are obtained from the Agricultural Research Council, Grain Crops Institute.  In terms 

of the number of days from planting to maturity, three types of maize cultivars can generally 

be distinguished.  They are short season maize (60 - 75 days to flowering), medium season 

maize (65 - 80 days to flowering) and long season maize (70 - 85 days to flowering).  It was 

decided to select three cultivars, a short season maize cultivar, a medium season maize 

cultivar and a long season maize cultivar, for each of the production regions in the study 

area.  The three cultivars selected for each of the respective production regions, are used in 

the CERES-Maize model simulations performed for the magisterial districts that fall within 

each region.  Table 2.3 shows the cultivar coefficients, as needed by the CERES-Maize 

model (Table 2.1), for the three cultivars that are selected for each of the production 

regions.  Thus, as the selected cultivars remain the same over the entire period under 

investigation, it must be kept in mind that this study does not account for the change in 

hardiness of maize cultivars over time.    

 

Production Region 

Growing 

season 

length 

Cultivar 

Name 
P1 P2 P5 G2 G3 PHINT 

Short DK618 198.7 0.659 871.0 945.8 14.13 82.34 

Medium CRN4526 218.0 0.660 999.9 618.0 7.11 75.00 
Dry/Warm Western Region 

(Magisterial districts 1 – 29) 
Long SR52 281.0 1.000 999.9 422.1 7.78 75.00 

Short DK61_24 283.2 0.957 979.0 999.0 18.28 99.00 

Medium RO411 271.0 0.999 999.9 505.0 7.28 75.00 
Temperate Eastern Region 

(Magisterial districts 30 – 38) 
Long PAN6528 241.0 0.660 999.9 734.0 6.80 75.00 

Short KK8202 211.0 0.659 999.0 839.9 14.71 82.34 

Medium PAN6552 221.0 0.660 999.9 546.5 7.55 75.00 
Wet/Cool Eastern Region 

(Magisterial districts 39 – 44) 
Long Tx24 220.0 0.990 999.0 592.0 7.40 75.00 

  
Table 2.3: Cultivar coefficients for the selected cultivars used in the CERES-Maize model 

simulations performed for the magisterial districts under investigation. 
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2.4.2.3 Management Inputs 

 

Different management practices are applied in each of the three production regions in the 

study area.  Thus, the following management inputs, described per production region, are 

used in the CERES-Maize model simulations performed for the magisterial districts that fall 

within each of the respective regions. 

 

2.4.2.3.1 Plant Dates 

 

Broad optimal maize plant dates for the three respective production regions can be 

summarized as follows; the dry/warm western region from the second week in November to 

middle December, the temperate eastern region from the last week in October to middle 

November and the wet/cool eastern region from the beginning of October to the first week in 

November (Du Toit, 1997).  As sufficient soil water is needed before planting can take place 

(Walter, 1967), these optimal plant dates for maize are probably based on the onset of the 

first rains.  The inter-annual variability of the onset of the maize growing season over South 

Africa has been investigated (Tadross et al., 2003).  From the data used to analyse the 

mean onset, it could be seen that the eastern parts of the country receive earlier rains than 

the western parts of the country.  In a study which investigated the rainfall seasonality over 

South Africa, the exact same results were found (Schulze and Maharaj, 2007).    

 

Production Region 
Growing 

season length 
Plant date 1 Plant date 2 Plant date 3 

Short 30-Nov 05-Dec 10-Dec 

Medium 20-Nov 25-Nov 30-Nov 
Dry/Warm Western Region  

(2
nd

 week in Nov. – middle Dec.) 
Long 10-Nov 15-Nov 20-Nov 

Short 10-Nov 15-Nov 20-Nov 

Medium 30-Oct 05-Nov 10-Nov 
Temperate Eastern Region  

(last week in Oct. – middle Nov.) 
Long 20-Oct 25-Oct 30-Oct 

Short 25-Oct 30-Oct 05-Nov 

Medium 15-Oct 20-Oct 25-Oct 
Wet/Cool eastern Region  

(beginning of Oct. – 1
st
 week in Nov.) 

Long 05-Oct 10-Oct 15-Oct 

 
Table 2.4: The range of possible plant dates selected for the cultivars in Table 2.3. 

 

Maize cultivars with different growing season lengths are planted on different plant dates.  

As it is unknown which of the growing season length cultivars (short, medium or long) were 

planted and on which plant dates, a range of possible plant dates (within the optimal 
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planting period for each of the production regions) are selected for each of the cultivars in 

Table 2.3.  Table 2.4 shows the plant dates that are selected, based on the fact that the 

days to flowering only increase with a maximum of 10 days between a short and medium 

season maize cultivar and 10 days between a medium and long season maize cultivar 

(ARC-GCI, 2008). 

 

2.4.2.3.2 Planting Depth 

 

The CERES-Maize model also requires the depth at which the dry maize seed are planted.  

Planting depths for maize normally range between 5 cm and 10 cm depending on the plant 

date and depth of the soil (Du Toit, 1997).  Early plantings can be planted shallower (Du 

Toit, 1997).  Only the plant dates are considered to obtain planting depths for this study.  

Table 2.5 shows the planting depths selected based on the plant dates in Table 2.4.  The 

long season maize cultivars are planted early in the season and therefore planted shallower 

than the other cultivars, while the short season maize cultivars are planted later in the 

season and therefore planted deeper than the other cultivars.  

 

Production Region 
Growing 

season length 

Planting 

depth on 

Plant date 1 

Planting 

depth on 

Plant date 2 

Planting 

depth on 

Plant date 3 

Short 10 cm 10 cm 10 cm 

Medium 7.5 cm 7.5 cm 7.5 cm Dry/Warm Western Region  

Long 5 cm 5 cm 5 cm 

Short 10 cm 10 cm 10 cm 

Medium 7.5 cm 7.5 cm 7.5 cm Temperate Eastern Region  

Long 5 cm 5 cm 5 cm 

Short 10 cm 10 cm 10 cm 

Medium 7.5 cm 7.5 cm 7.5 cm Wet/Cool eastern Region  

Long 5 cm 5 cm 5 cm 

 
Table 2.5: The planting depths selected for each of the selected cultivars in Table 2.3.  

 

2.4.2.3.3 Row Spacing & Plant Population 

 

In South Africa wide rows (150 cm – 210 cm) are used in low to medium rainfall areas, 

whereas narrow rows (90 cm – 100 cm) are used in medium to high rainfall areas (Du Toit, 

1997).  The wider rows in the drier areas are normally accompanied by low plant 

populations.  This production method eliminates competition between the plants by ensuring 
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that each plant has access to soil water (Du Toit et al., 2000).  Narrower rows and more 

dense plant populations are allowed in the wetter parts, as production are not as water-

limited as in the drier parts (Du Toit et al., 2000).        

 

As the dry/warm western production region (see Figure 2.1) receives low to medium rainfall, 

it is assumed that wide rows and low plant populations are used.  The temperate and 

wet/cool eastern production regions receive medium to high rainfall and are therefore 

assumed to utilize narrow rows and more dense plant populations.   

 

Since it is unknown where in the dry/warm western production region 150 cm and where 

210 cm rows are used, a middle value of 180 cm is chosen for the entire region.  A row 

spacing of 90 cm is selected for the wet/cool eastern production region and 100 cm for the 

temperate eastern production region.  

   

To acquire a maize yield of 3 t/ha in each of the production regions in the study area, 

different plant populations needs to be used.  A plant population of 14 000 plants/ha are 

assumed for the dry/warm western region, 16 000 plants/ha for the temperate eastern 

region and 19 000 plants/ha for the wet/cool eastern region (Du Toit, 1997).         

 

2.4.2.3.4 Irrigation 

 

As this study focuses on rain-fed maize, no irrigation is applied to the experiments done for 

each of the magisterial districts under investigation. 

 

2.4.2.3.5 Fertilizer 

 

The CERES-Maize model simulations for each of the magisterial districts are nitrogen non-

limited.  Thus, the plants do not experience any N-stress. The CERES-Maize model 

supplies the plant with Nitrogen as needed.   

 

2.4.2.3.6 Harvest 

 

The CERES-Maize model harvests the maize at maturity.   

 

 

 

 
 
 



 54 

2.4.2.3.7 Other Assumptions 

 

Furthermore it is assumed that weeds, pests and diseases are controlled and that nutrients 

are not limited.  Over the period modelled in this study technology is kept constant.  These 

assumptions may all contribute to an overestimation in simulated yields (Rosenzweig and 

Iglesias, 1994).              

 

2.4.3 Incorporating the Weather Data into the CERES-Maize Model    

2.4.3.1 Observed Data 

 

Daily rainfall, maximum temperature, minimum temperature and solar radiation data for the 

period 1979 to 1999 are extracted from the Southern African Quaternary Catchment 

Database (Schulze et al., 2005) for each of the quaternary catchments in the study area.  

By superimposing the magisterial district boundaries over the quaternary catchment 

boundaries in the study area, the quaternary catchments that fall either completely or 

partially within each magisterial district are identified.  Table 2.6 lists the quaternary 

catchments included in each magisterial district.  The daily data of the quaternary 

catchments in a given magisterial district are then averaged in order to obtain a single 

weather dataset per magisterial district.  These average daily values per district are then 

used as input for the CERES-Maize model to perform the observed weather data 

simulations.   

 

Number Magisterial District Quaternary Catchments 

1 Vryburg C32A, C32B, C32D, C33A, D41B, D41C, D41D, D41E, D41F, D41H 

2 Delaryville C31B, C31D, C31E, C32C, C41B 

3 Lichtenburg C31A, C31B, C31C, D41A 

4 Marico A10C, A31A, A31B, A31C, A31E, A31F, A31J, A32C, A32D, D41A 

5 Swartruggens A22A, A22D, A22E, A31B, A31G  

6 Koster A22A, A22B, A22C, A22G, C23F, C24C 

7 Rustenburg A21K, A22C, A22D, A22F, A22G, A22H  

8 Brits A21H, A21J, A21K, A21L, A22J, A23L, A23A 

9 Ventersdorp C23F, C23G, C24C, C24D, C24E 

10 Potchefstroom C23C, C23G, C23H, C23J, C23K, C23L 

11 Klerksdorp C24A, C24G, C24H, C24J 

12 Coligny C24F 

13 Wolmaransstad C25A, C25C, C25D, C25E 

14 Schweizer Reneke C31F, C31E, C32C, C32D, C91A 

15 Bloemhof C25F, C91A 
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16 Christiana C91B 

17 Boshof C52H, C52K, C91B, C91C, C91D 

18 Hoopstad C25F, C43C, C43D, C91A, C91B 

19 Wesselsbron C25B, C25F, C43B 

20 Bothaville C24J, C25B, C25C, C60J 

21 Viljoenskroon C24B, C24J, C70J, C70K 

22 Vredefort C23C, C23L, C70E, C70F, C70J 

23 Bultfontein C43A, C43C, C43D, C52H, C91C 

24 Welkom C42J, C43B 

25 Henneman C42J, C60H 

26 Virginia C42H, C42J, C42K 

27 Theunissen C41G, C41J, C42K, C42L 

28 Brandfort C41F, C41H, C52C, C52E, C52G, C52H 

29 Bloemfontein C51D, C51E, C52B, C52C, C52D, C52E, C52F, C52G, C52H, C52J  

30 Excelsior C41C, C41D, D23C 

31 Winburg C41A, C41B, C41D, C41E, C42E, C42G, C42K 

32 Marquard C41A, C41B, C42E 

33 Senekal C42A, C42B, C42C, C42D, C42E, C42F, C60E, D22A 

34 Lindley C60A, C60B, C60C, C70A, C83F 

35 Kroonstad C60C, C60D, C60F, C60G, C60H, C70D, C70G, C70H 

36 Koppies C70C, C70D, C70E, C70F, C70G 

37 Heilbron C22G, C23A, C70A, C70B, C70C, C83K, C83L, C83M 

38 Sasolburg C22F, C22G, C22K 

39 Vrede 
C12A, C12B, C12C, C12D, C13C, C13E, C13F, C13G, C13H, C82E, 

C82F, C82H 

40 Harrismith 
C13C, C81A, C81B, C81C, C81D, C81E, C81F, C81G, C81H, C81J, 

C81K, C81L, C81M, C82A, C82B, C82C, C82E 

41 Reitz C82D, C82G, C83E, C83F, C83G, C83H 

42 Bethlehem C42A, C60A, C81G, C83A, C83B, C83C, C83D, D21D  

43 Ficksburg D21H, D22A, D22B, D22D 

44 Ladybrand D22G, D22H, D22L, D23A, D23C, D23D, D23E 

 
Table 2.6: The quaternary catchments either completely or partially within the magisterial 

districts under investigation. 

 

2.4.3.2 Simulated Fields 

2.4.3.2.1  CCAM 

 

CCAM simulated daily rainfall, maximum temperature and minimum temperature are 

available on a 1° x 1° grid for each of the five ensemble members.  The daily weather 

information at the CCAM grid point closest to the centre of a magisterial district is 
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objectively selected to represent the CCAM-simulated weather for that district (nearest 

neighbour approach).  This is then used in the CERES-Maize model simulations performed 

for each district.  Solar radiation was not available from the CCAM output, but is needed by 

the CERES-Maize model to simulate maize yield.  To overcome this limitation, a daily solar 

radiation climatology is calculated for each of the magisterial districts using the observed 

weather data.  This solar radiation data then makes up the complete dataset needed by the 

CERES-Maize model to simulate the yield.     

  

2.4.3.2.2 ECHAM4.5   

 

ECHAM4.5 simulated data are extracted for the domain 16°E to 34°E and 22°S to 35°S.  

Daily simulated rainfall, maximum temperature and minimum temperature data are available 

for each of the six ensemble members.  The daily weather information at the ECHAM4.5 

grid point closest to the centre of a magisterial district is objectively selected to represent 

the ECHAM4.5-simulated weather for that district (nearest neighbour approach).  The 

simulated data of that specific ECHAM4.5 point are then used to run the CERES-Maize 

model for the corresponding magisterial district.  As no ECHAM4.5 simulated solar radiation 

data are available, the same daily solar radiation climatology used in the CERES-Maize 

model runs performed with the CCAM-simulated fields are also used in the CERES-Maize 

model runs performed with the ECHAM4.5-simualted fields.   

 

2.4.4 Set up of CERES-Maize Model Experiments  

 

Due to the uncertainty in the soil on which maize was planted, the cultivar that was planted 

and when the maize was planted, a number of options are considered for each of these 

inputs (Table 2.2, 2.3 and 2.4).  To investigate each soil option, with each cultivar option 

and with each plant date option, a number of scenarios resulted.  A total of 27 scenarios 

can be set up for magisterial districts with three selected soils, 18 scenarios for districts with 

two selected soils and 9 scenarios for districts with only one selected soil.  Table 2.7 shows 

all the possible scenarios that can be set up, while keeping the other management inputs 

(planting depth, plant population and row spacing) and weather inputs constant. 

 

Scenario Description 

1 Short season maize planted on plant date 1 and on a high potential soil 

2 Short season maize planted on plant date 1 and on a medium potential soil 

3 Short season maize planted on plant date 1 and on a low potential soil 

4 Short season maize planted on plant date 2 and on a high potential soil 
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5 Short season maize planted on plant date 2 and on a medium potential soil 

6 Short season maize planted on plant date 2 and on a low potential soil 

7 Short season maize planted on plant date 3 and on a high potential soil 

8 Short season maize planted on plant date 3 and on a medium potential soil 

9 Short season maize planted on plant date 3 and on a low potential soil 

10 Medium season maize planted on plant date 1 and on a high potential soil 

11 Medium season maize planted on plant date 1 and on a medium potential soil 

12 Medium season maize planted on plant date 1 and on a low potential soil 

13 Medium season maize planted on plant date 2 and on a high potential soil 

14 Medium season maize planted on plant date 2 and on a medium potential soil 

15 Medium season maize planted on plant date 2 and on a low potential soil 

16 Medium season maize planted on plant date 3 and on a high potential soil 

17 Medium season maize planted on plant date 3 and on a medium potential soil 

18 Medium season maize planted on plant date 3 and on a low potential soil 

19 Long season maize planted on plant date 1 and on a high potential soil 

20 Long season maize planted on plant date 1 and on a medium potential soil 

21 Long season maize planted on plant date 1 and on a low potential soil 

22 Long season maize planted on plant date 2 and on a high potential soil 

23 Long season maize planted on plant date 2 and on a medium potential soil 

24 Long season maize planted on plant date 2 and on a low potential soil 

25 Long season maize planted on plant date 3 and on a high potential soil 

26 Long season maize planted on plant date 3 and on a medium potential soil 

27 Long season maize planted on plant date 3 and on a low potential soil 

 
Table 2.7: The range of possible scenarios resulting from different combinations of input data.    

 

After setting up the scenarios for each of the magisterial districts, three different sets of 

maize yield simulations are performed by the CERES-Maize model.  Firstly, the CERES-

Maize model is forced with observed weather data (Figure 2.4), secondly with CCAM-

simulated fields (Figure 2.5) and thirdly with ECHAM4.5-simulated fields (Figure 2.6).  One 

observed weather data run, five CCAM-simulated field runs (one for each ensemble 

member) and six ECHAM4.5-simulated field runs (one for each ensemble member) are 

performed by the CERES-Maize model for each magisterial district.  Thus, maize yield is 

simulated for each scenario under observed, CCAM-simulated and ECHAM4.5-simulated 

weather conditions.  A total of 10 044 simulations are performed with the CERES-Maize 

model.  The Multi-Model system is obtained by combining the ensemble of CERES-CCAM 

simulated maize yields and the ensemble of CERES-ECHAM4.5 simulated maize yields 

through a simple un-weighted averaging approach.  This is good first approach to follow, as 

other combination methods struggle to beat the high standard of the simple averaging 

method (Mason, 2008).         
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Figure 2.4: Flow diagram of the simulations performed with the CERES-Maize model.  
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Figure 2.5: Flow diagram of the simulations performed with the CERES-Maize model when 

forced with each of the 5 ensemble members of the CCAM-simulated fields. 
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Figure 2.6: Flow diagram of the simulations performed with the CERES-Maize model when 

forced with each of the 6 ensemble members of the ECHAM4.5-simulated fields.  
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2.5 VERIFICATION OF THE SIMULATED MAIZE YIELDS 

2.5.1 Verification Data 

 

A number of maize yield datasets are available for South Africa.  GrainSA is the custodian 

of a maize yield dataset that contains provincial maize yield figures for a period from 1980 

to 2008.  This dataset is compiled from information gathered from the silos in each province 

with regards to maize intake at the end of the season.  Except for the fact that farmers often 

retain some maize for feed, the transportation process from the farm to the silo also results 

in some maize loss.  Thus, a discrepancy may be evident between the maize yield figures in 

this dataset and the maize yield that was present on the land at the end of the season.   

 

Another provincial maize yield dataset can be obtained from the Crop Estimate Committee 

of South Africa.  This Committee meets once a month, starting at the beginning of the 

growing season, and uses a number of inputs to estimate the expected maize yield for that 

season.  Thus, the yield estimates in this dataset are revised on a monthly basis until the 

final estimate is released.  This data is available for a period from 1980 to 2008. 

 

A subjective yield survey dataset that contains maize yield figures for 2000 random points 

over South Africa is also available from 2001.  These figures are based on a questionnaire 

completed at each point before the start of the growing season.  In these questionnaires the 

farmers state the plant density and area that is going to be planted and then also estimate 

the maize yield for that season.   

 

For the objective yield survey dataset 200 out of the 2000 points in the subjective yield 

survey dataset are visited three times during the growing season.  During these visitations 

the plant population is determined, number of cobs per plant is counted, the cobs are 

weighed and a maize yield is estimated accordingly.  This dataset contains the three maize 

yield estimates for each of the 200 points for a period from 2001 to 2008. 

 

The fifth maize yield dataset that is available for South Africa is the Co-operators yield 

dataset.  This dataset contains maize yield figures per magisterial district for seasons 

1980/1981 to 2007/2008.  On a monthly basis from the start of the season, the Department 

of Agriculture sends questionnaires to the co-operating farmers in each magisterial district 

in which the expected maize yield for that season is stated.  At the end of the season, after 

harvest, the co-operating farmers complete a final questionnaire in which the maize yield 

that was obtained is specified and this information then makes up the Co-operators yield 

dataset.  The number of co-operating farmers in each magisterial district differs and 
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therefore these figures are not necessarily representative.  The data in this dataset is 

confidential, but historical data were made available for research purposes.    

 

In this study the CERES-Maize model simulates maize yield for 20 seasons in the period 

1979 to 1999.  In terms of verification the ideal would be to compare the CERES-Maize 

model results of maize yield to actual maize yield figures for the exact same period.  From 

the five maize yield datasets described above, the Co-operators yield dataset is the only 

dataset suitable to be used as verification data in this study, because the data contained in 

the Co-operators yield dataset are for 19 out of the 20 seasons under investigation and on a 

higher spatial resolution (per magisterial district) than the other datasets that also have data 

for these seasons.  Thus, CERES-Maize model output per magisterial district for the 

seasons 1980/1981 to 1998/1999 are verified against the Co-operators yield.   

 

2.5.2 Verification Methods 

 

Even though CERES-Maize model runs are performed for each of the 5 ensemble members 

of the CCAM-simulated fields and each of the 6 ensemble members of the ECHAM4.5-

simulated fields, only the ensemble mean maize yield results of the CERES-CCAM runs, 

the ensemble mean maize yield results of the CERES-ECHAM4.5 runs and the ensemble 

mean maize yields results of the Multi-Model system are discussed.  Although, the full 

ensemble of each simulation system is considered in the estimation of the skill when the 

maize yield simulations are expressed probabilistically.    

 

From here onwards the maize yield results obtained from the CERES-Maize model runs 

performed with the observed weather data will be referred to as the CERES-Observed 

weather yield, the ensemble mean of the maize yield results obtained from the CERES-

Maize model runs performed with the CCAM-simulated fields will be referred to as the 

CERES-CCAM ensemble mean yield, the ensemble mean of the maize yield results 

obtained from the CERES-Maize model runs performed with the ECHAM4.5-simulated 

fields will be referred to as the CERES-ECHAM4.5 ensemble mean yield and the 

combination between the CERES-CCAM and CERES-ECHAM4.5 maize yield results will be 

referred to as the Multi-Model ensemble mean yield.         

 

Due to the limitation in the availability of soil data the number of soils that are selected for 

each magisterial district range between 1 and 3 (see Table 2.2).  As the scenarios for which 

the CERES-Maize model is run for each magisterial district results from all the possible 

combinations of input data, 3 soils in combination with the other input data make up 27 
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scenarios, 2 soils make up 18 scenarios and 1 soil make up 9 scenarios.  Thus, in the case 

of 3 selected soils, one scenario is duplicated for 3 soils and in the case of 2 selected soils, 

one scenario is duplicated for 2 soils.  To simplify the verification process and obtain 

uniformity between the results obtained for the magisterial districts, the maize yield results 

of the duplicated scenarios are averaged across the different soils.  Consequently each 

magisterial district ends up with maize yield results for only 9 scenarios (Table 2.8) and 

these results are presented in this study.     

 

Scenario Description 

1 Short season maize planted on plant date 1 

2 Short season maize planted on plant date 2 

3 Short season maize planted on plant date 3 

4 Medium season maize planted on plant date 1 

5 Medium season maize planted on plant date 2 

6 Medium season maize planted on plant date 3 

7 Long season maize planted on plant date 1 

8 Long season maize planted on plant date 2 

9 Long season maize planted on plant date 3 

 
Table 2.8: The 9 scenarios for which results are discussed. 

 

2.5.2.1 Spatial Verification 

 

The distribution of the simulated maize yields among magisterial districts is investigated 

through spatial verification.  The aim is to determine whether the different simulation 

systems (CERES-Maize model integrations performed with observed weather data, 

performed with CCAM-simulated fields, performed with ECHAM4.5-simulated fields as well 

as the Multi-Model system) are able to capture the spatial distribution in maize yield across 

the study area.   

 

To compare the simulated maize yields obtained from each of the different simulation 

systems to the actual maize yields, each of the simulated maize yield datasets and the 

actual maize yield dataset are normalized to a standard deviation of one and a mean of 

zero.  Each dataset (simulated and actual) is normalized independently as follows: 
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where x  represents the yield in t/ha of a specific magisterial district for a specific season, x  

represents the average yield in t/ha calculated for that specific season across all the 

magisterial districts in the study area and σ  represents the standard deviation in t/ha 

calculated for that specific season across all the magisterial districts in the study area.  Note 

that these normalized values are unit-less and consequently expressed as an index.  The 

standard deviation is calculated as follows (Steyn et al., 1998): 

 

 

                           (2.2)     

                                                                                                     

 

where x  is the yield in t/ha of a specific magisterial district for a specific season, x  the 

average yield in t/ha calculated for that specific season across all the magisterial districts in 

the study area and N the number of magisterial districts in the study area.  

 

From each of these normalized datasets an average is calculated for each magisterial 

district across the 19 seasons, to obtain a single index value per district.  Spatial maps of 

these average maize yield index values are displayed for the actual and simulated maize 

yields for each of the 9 scenarios in Table 2.8.  The actual maize yield index map indicates 

which magisterial districts normally produce higher yields and which districts normally 

produce lower yields with respect to the entire study area.  The maize yield index maps for 

each of the different simulation systems are visually compared to the actual maize yield 

index map in section 3.2.    

 

2.5.2.2 Inter-Seasonal Variability Verification 

 

This verification procedure examines the season-to-season variability in the simulated 

maize yields over the 19 seasons from 1980/81 to 1998/99.  The aim is to determine 

whether each of the different maize yield simulation systems are able to capture the inter-

seasonal variability in maize yield.   

 

2.5.2.2.1 Subjective Validation 

 

Once again the simulated maize yields obtained from each of the different simulation 

systems and the actual maize yields are normalized before any verification is done.  The 

normalization is done similar to what is done for the spatial verification, although here the x  
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in equation 2.1 and equation 2.2 represents the average yield in t/ha calculated for a 

specific magisterial district across the 19 seasons, σ  in equation 2.1 represents the 

standard deviation in t/ha calculated for that specific magisterial district across the 19 

seasons and N  in equation 2.2 represents the number of seasons.  It must be kept in mind 

that these normalized values are unit-less and therefore expressed as an index.                   

 

Figure 2.3 shows the magisterial districts that fall in each of the three production regions in 

the study area.  The inter-seasonal verification is done per production region and therefore 

averages are calculated across the normalized values of the magisterial districts that fall in 

one production region to obtain one index value per season for each of the production 

regions.  Thus, the normalized values of magisterial districts 1 to 29 are averaged for the 

Dry/Warm Western Region, 30 to 38 for the Temperate Eastern Region and 39 to 44 for the 

Wet/Cool Eastern Region.  This is done for the simulated maize yield datasets of each of 

the different simulation systems as well as the actual maize yield dataset.   

 

Time series graphs which depicts these average maize yield index values for the actual 

yield and simulated yields for each of the 9 scenarios in Table 2.8 are displayed for each of 

the 3 production regions.  The actual maize yield index time series indicates which seasons 

had the highest maize yields and which seasons had the lowest maize yields with respect to 

the entire 20 year period under investigation.  The maize yield index time series of the 

different simulation systems are visually compared to the actual maize yield index time 

series in section 3.3.   

 

2.5.2.2.2 Objective Validation 

 

Spearman’s Rank Correlation Coefficient  

 

Robust and resistant alternatives to the Pearson product-moment correlation are available.  

The first of these is known as the Spearman rank correlation.  The normalized values 

previously calculated for each magisterial district are also used here.  Spearman rank 

correlations are calculated between the actual maize yield index and each of the simulated 

maize yield indices of the different simulation systems for each magisterial district in the 

study area.  Before calculating the correlations between the actual maize yield index and 

one of the simulated maize yield indices, the datasets are ranked, independently from each 

other, from the highest to the lowest value.  The correlations are then calculated as follows 

(Steyn et al., 1998): 
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        (2.3)

   

 

where Di is the difference between the ranks of the actual maize yield index for a specific 

season and the simulated maize yield index for that corresponding season and n is the 

number of seasons.  SR  values range between -1 and 1, where -1 is a perfect negative 

correlation, 0 is no correlation and 1 is a perfect positive correlation (Steyn et al., 1998).    

 

These Spearman rank correlations which indicate the direction and strength of the 

relationship between the actual maize yield index and each of the simulated maize yield 

indices over the 19 seasons are displayed spatially and discussed in section 3.3.    

 

Significance Testing 

 

Here, it is tested if the number of magisterial districts with statistically significant local 

Spearman rank correlations between each of the simulated maize yield datasets and the 

actual maize yield dataset is significantly high (Wilks, 2006).  A Monte Carlo test is 

performed to establish local significance at the 95% level.  Since the magisterial districts are 

correlated spatially, re-randomization of each magisterial district’s data are done by re-

sampling random seasons, i.e., if the third season (1982/83) is the first season selected, 

then the first data vector of the re-randomized data will be the third season for all 

magisterial districts.              

 

The re-randomized datasets for each magisterial district are then correlated with the actual 

maize yields, where after the re-randomization process is repeated for a large number of 

times (e.g., 1000 times).  The subsequent Spearman rank correlations for each magisterial 

district are sorted and the 95th percentile identified.  Thus, a set of Spearman rank 

correlations which represent the critical Spearman rank correlations at the 95% confidence 

level is available.  From the unsorted Spearman rank correlations associated with each 

magisterial district, for each of the 1000 iterations, it is determined if the correlations are 

greater than or equal to its corresponding 95% confidence level.  The number of times the 

95% level is exceeded is counted.  This is done for each magisterial district and for each of 

the 1000 iterations.  Thus, in the end there is a 1000 counts ranging between and including 
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0 and the number of magisterial districts (44).  This whole procedure is done for the data 

obtained from each of the different simulation systems.           

                

If from the actual maize yield data it is established that 21 out of the 44 magisterial districts 

have significant local Spearman rank correlations, the number of the times the counts from 

the above explained procedure are greater than 21, are counted.  This number then gives 

an indication of the probability of getting the actual maize yield results or better by chance.      

The magisterial districts with local significance at the 95% confidence level are described 

together with the Spearman rank correlations in section 3.3. 

 

2.5.2.3 Probability Distributions  

 

In this study the use of weather ensembles provides the opportunity to examine the 

predictability of maize yield probabilistically.  The simulated maize yields, of those 

simulation systems that use weather ensembles, can be expressed probabilistically by 

calculating the percentage of the simulated maize yield ensemble members that fall in the 

below-normal, near-normal and above-normal categories.  The aim is to determine the 

operational potential of this maize yield forecast system, as operational maize yield 

forecasts will most likely be expressed in terms of probabilities.   

 

2.5.2.3.1 Subjective Validation 

 

As the three production regions divide the study area into zones with similar climate and 

zones in which similar maize production methods are used, it would make sense to issue 

operational maize yield forecasts for each of these three production regions.  Therefore, this 

analysis is performed for each of the three production regions.  It is possible to calculate 

probabilities for the CERES-CCAM maize yield integrations (which has 5 ensemble 

members), for the CERES-ECHAM4.5 maize yield integrations (which has 6 ensemble 

members) and for the Multi-Model system (which is a combination between the CERES-

CCAM and CERES-ECHAM4.5 simulations and consequently has 11 ensemble members), 

while the actual maize yields and the CERES-Observed weather yields are expressed 

deterministically.   

 

Averages are calculated across the magisterial districts to obtain maize yield values per 

production region.  This is done for the actual maize yields, the CERES-Observed weather 

maize yields as well as for each of the CERES-CCAM maize yield ensemble members and 
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each of the CERES-ECHAM4.5 maize yield ensemble members.  These average maize 

yield values (actual and simulated) for each production region are then normalized to a 

standard deviation of one and a mean of zero, where x  in equation 2.1 and equation 2.2 

represents the average yield in t/ha calculated for a specific production region across the 19 

seasons, σ  in equation 2.1 represents the standard deviation in t/ha calculated for that 

specific production region across the 19 seasons and N  in equation 2.2 represents the 

number of seasons.  Once again, these normalized maize yield values are unit-less and 

therefore referred to as a maize yield index.      

 

Before organising the maize yield index values into the below-normal, near-normal and 

above-normal categories, it is necessary to establish what ‘near-normal’ refers to.  In this 

study, ‘near-normal’ refers to a range of values.  The 19 maize yield index values of all 5 

ensemble members of the CERES-CCAM simulations are combined (95 maize yield index 

values), sorted ascending and the third of the values in the middle of the arranged dataset 

are used as the ‘near-normal’ range.  This exact procedure is followed to obtain the ‘near-

normal’ range of the CERES-ECHAM4.5 simulated maize yields, but this time for 6 

ensemble members (114 maize yield index values).  From this the CERES-CCAM yield 

probabilities and the CERES-ECHAM4.5 yield probabilities are calculated for each of the 19 

seasons.  The yield probabilities of the Multi-Model system on the other hand are calculated 

by averaging the CERES-CCAM probabilities obtained for a specific season and the 

CERES-ECHAM4.5 probabilities for that same season.  To obtain the ‘near-normal’ range 

of the actual maize yields, the 19 maize yield index values are sorted ascending and the 

values in the middle of the arranged dataset are used.  Based on this, it is determined 

whether the actual maize yield of each of the 19 seasons was below-normal, near-normal or 

above-normal.  This is repeated for the CERES-Observed weather yields.  This whole 

procedure is done for each of the production regions.       

 

Time series graphs of these probabilities are displayed for each of the three production 

regions and for 3 scenarios per region.  Graphs were prepared for all 9 scenarios in Table 

2.8, but as the changes in the probabilities from the one plant date to the next were 

insignificant, it was decided to average across the plant dates to obtain only 3 scenarios 

(Table 2.9).  The CERES-CCAM yield probabilities, CERES-ECHAM4.5 yield probabilities 

and the Multi-Model yield probabilities are compared to the actual maize yields and CERES-

Observed weather yields in section 3.4.   
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Scenario Description 

1 Short season maize  

2 Medium season maize  

3 Long season maize  

 
Table 2.9: The resultant 3 scenarios obtained when averaging over the different plant dates.      

  

2.5.2.3.2 Objective Validation 

      

In probabilistic forecasts, the probability of occurrence of a certain event is estimated 

(Stefanova and Krishnamurti, 2001).  Probabilistic forecasts are verified through the 

combined distribution of forecasts and observations (Stefanova and Krishnamurti, 2001).   

The relative operating characteristic (ROC) is one of the most commonly used methods to 

assess the skill of a forecasting system, by comparing the hit rate and the false-alarm rate 

(Mason, 1982).  ROC scores are used to evaluate the value of probabilistic forecasts 

(Stanski et al., 1989; Mason and Graham, 1999).         

 

The probabilities displayed in the time series graphs of the subjective validation are also 

used here.  ROC curves are constructed for each of the three equiprobable categories 

(below-normal, near-normal and above-normal) of the CERES-CCAM maize yield 

probabilities, CERES-ECHAM4.5 maize yield probabilities and the Multi-Model maize yield 

probabilities.  The ROC curves are obtained by plotting the hit rates (HRs) and false alarm 

rates (FARs) against each other.  HR and FAR are calculated as follows (Kharin and 

Zwiers, 2003):    

 

(2.4) 

 

    (2.5) 

 

 

where crP  is a critical threshold probability, ( )1Pr =E  denote a predictand when the event 

occurs and ( )0Pr =E  when the event does not occur and βΩ  is all the values of β  (a 

potential predictable signal) for which P > crP .  The HRs and FARs of a forecasting system 

with no skill are equal.  The HR of a perfect forecast is 1 and the FAR is 0 (Kharin and 

Zwiers, 2003).  The area under the ROC curve can be defined as the ROC score.  
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Forecasts with no skill have ROC scores of 0.5 and perfect forecasts have ROC scores of 1 

(Kharin and Zwiers, 2003).    

 

The ROC curves and ROC scores which give and indication of the skill of the different 

simulation systems and the value of the simulated maize yield probabilities are displayed 

and discussed in section 3.4 for each of the three production regions and each of the three 

scenarios in Table 2.9.   

  

2.6 SUMMARY 

 

The data, models and methods that are used to construct the different maize yield 

simulation systems have been described.  The properties of the crop model and two GCMs 

used have been highlighted.  The relevant input data required by the crop model and the set 

up of the experiments have been detailed.  Finally, the data and methods used to verify the 

simulated maize yields have been discussed.  In the next chapter the maize yield results 

obtained from each of the simulation systems for the main maize producing region of South 

Africa are discussed.               
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CHAPTER 3 

 

3 VERIFICATION OF THE YIELD SIMULATIONS OVER SOUTH AFRICA 

 

3.1 INTRODUCTION 

 

This chapter describes the results of the yield simulations that are performed with the 

CERES-Maize model for each of the magisterial districts in the main maize producing area 

of South Africa (see Figure 2.1).  The aim of this Chapter is to quantify the skill of the 

CERES-Maize model, evaluate the accuracy of the simulated maize yields obtained from 

each of the different simulation systems, assess the ability of each of the different 

simulation systems in estimating maize yield and determine the operational potential of this 

maize yield forecast system.  Verification is done by comparing the simulated maize yields 

to actual maize yields.  Firstly, the simulated maize yields are verified spatially over the 

entire study area, secondly, the inter-seasonal variability in the simulated maize yields are 

verified for each of the three production regions in the study area and thirdly, the simulated 

maize yields for each of the three production regions are expressed probabilistically and 

then verified against actual maize yields. 

 

3.2 SPATIAL VERIFICATION RESULTS  

 

In Figures 3.1 to 3.9 the actual maize yield index and each of the simulated maize yield 

indices obtained from the different simulation systems are displayed spatially for each of the 

9 scenarios in Table 2.8.  These spatial maps represent the maize yield index values 

obtained from averaging over the 19 seasons from 1980/81 to 1998/99.  In each of these 

figures the actual maize yield index is displayed as map (a).  The actual maize yield index 

map provides a view of the distribution of maize yield across the study area and gives an 

indication of which magisterial districts normally produce higher and which districts normally 

produce lower maize yields with respect to the entire study area.  From the actual maize 

yield index map a decrease in maize yield can be observed from east to west across the 

study area.  Thus, the study area is characterised by high maize yields in the eastern parts 

and lower maize yields in the western parts.  This gradient in maize yield can most likely be 

attributed to the fact that the average annual rainfall of the eastern parts of South Africa is 

higher than that of the western parts of the country (Schulze and Lynch, 2007).  Apart from 

this gradient, a small region with higher maize yields than its surroundings is evident in the 

Free State, directly next to the border separating the Free State and North West Province 
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from each other (magisterial districts Wesselsbron (19), Bothaville (20) and Viljoenskroon 

(21)).  Furthermore it can be seen that magisterial districts Wesselsbron (19), Viljoenskroon 

(21), Harrismith (40) and Bethlehem (42) normally produce the highest maize yields and 

magisterial districts Vryburg (1) and Brandfort (28) the lowest maize yields.   

 

In Figures 3.1 to 3.9 map (b) represents the CERES-Observed weather yield index for each 

of the 9 scenarios.  By comparing the CERES-Observed weather yield index to the actual 

maize yield index, the ability of the CERES-Maize model can be quantified, as this gives an 

indication of how realistically the model can simulate maize yield when the weather 

conditions are perfectly known.  In operational maize yield forecasting, the weather 

conditions will be forecast.  Thus, if the CERES-Maize model is unable to produce realistic 

maize yields under known weather conditions, it will certainly not be able to produce skilful 

maize yield forecasts under predicted weather conditions.  Therefore, the quantification of 

the CERES-Maize model’s ability in simulating South African maize yields is of great 

importance.  The CERES-Observed weather yield index maps of all 9 scenarios show that 

the CERES-Maize model successfully simulates the east-west decrease in maize yield 

across the study area.  Although, for the long season maize scenarios (Figures 3.7 to 3.9) 

the CERES-Maize model extends the high maize yields in the east to a much larger and 

more prominent area than that observed in the actual maize yield index map and for the 

short season maize scenarios (Figures 3.1 to 3.3) the CERES-Maize model simulates the 

maize yield of magisterial district 37 (Heilbron) to be unusually low.  Furthermore, the 

CERES-Maize model is unable to capture the high yields of the small region in the Free 

State described above.  The many uncertainties in the soil, cultivar and management input 

data may have contributed to these misrepresentations.  The CERES-Observed weather 

yield index maps of the medium season maize scenarios (Figures 3.4 to 3.6) seem to show 

the best agreement with the actual maize yield index map, both in terms of the spatial 

distribution of the yields as well as the relative magnitude of the yields.  Very small 

differences are distinguishable in the CERES-Observed weather yield index maps for each 

of the three cultivars (short, medium and long season maize) from the one plant date to the 

next.   

 

The CERES-CCAM ensemble mean yield index for each of the 9 scenarios is displayed as 

map (c) in Figures 3.1 to 3.9.  All 9 scenarios show that the characteristic pattern of high 

maize yields in the eastern parts and lower maize yields in the western parts of the study 

area is captured when the CERES-Maize model is forced with CCAM-simulated fields.  The 

short season maize scenarios (Figures 3.1 to 3.3) show an increase in maize yield in the 

western parts of the Free State, from plant date 1 to plant date 3, the medium season maize 
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scenarios (Figures 3.4 to 3.6) show higher yields in the Free State than in the North-West 

Province and the long season maize scenarios (Figures 3.7 to 3.9) show a similar pattern to 

that evident in the CERES-Observed weather yield index maps, a much larger and more 

prominent high maize yield area in the east than that observed from the actual maize yield 

index map.   

 

Map (d) in Figures 3.1 to 3.9 shows the CERES-ECHAM4.5 ensemble mean yield index for 

each of the 9 scenarios.  Once again all 9 scenarios show higher maize yields in the east 

and lower maize yields in the west.  Thus, the CERES-Maize model forced with ECHAM4.5-

simulated fields is able to capture the gradient in maize yield across the study area.  

Although, for the short and medium season maize scenarios (Figures 3.1 to 3.6) the 

CERES-Maize model simulates the maize yield of the western parts of the North-West 

province to be slightly higher in comparison to the actual maize yield index map.  However, 

this simulation system performs exceptionally well in capturing the distribution in maize yield 

in the eastern part of the Free State (except for magisterial district 39 (Vrede)) in two of the 

short season maize scenarios (plant dates 2 and 3).  The CERES-ECHAM4.5 ensemble 

mean yield index maps of the long season maize scenarios (Figures 3.6 to 3.9) appear 

almost identical to the CERES-CCAM ensemble mean yield index maps and the CERES-

Observed weather yield index maps.         

 

The Multi-Model ensemble mean yield index for each of the 9 scenarios is shown in Figures 

3.1 to 3.9 as map (e).  From these figures it can be seen that the Multi-Model system also 

succeeds in capturing the maize yield gradient from east to west across the study area.  

Once again, two of the short season maize scenarios (Figures 3.2 and 3.3) represent the 

distribution of maize yield in the eastern parts of the Free State exceptionally well.  As this 

Multi-Model system is a combination between the CERES-CCAM integrations and the 

CERES-ECHAM4.5 integrations, the slightly higher maize yields evident in the western 

parts of the North-West Province in the CERES-ECHAM4.5 ensemble mean yield index 

maps for the short and medium season scenarios are somewhat balanced out by the 

CERES-CCAM integrations.  The long season maize scenarios (Figures 3.7 to 3.8) of the 

Multi-Model ensemble mean yield index maps are very similar to that of the CERES-CCAM 

ensemble mean yield index maps and the CERES-ECHAM4.5 ensemble mean yield index 

maps.  Thus, in terms of the spatial distribution of the simulated maize yields, the four 

different maize yield simulation systems successfully simulate the east-west gradient in 

maize yield across the study area.  
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Figure 3.1: Actual maize yield index and simulated maize yield indices for scenario 1 (short 

season maize planted on plant date 1) averaged over the 19 seasons from 1980/81 

to 1998/99.  (a) Actual maize yield index, (b) CERES-Observed weather yield index, 

(c) CERES-CCAM ensemble mean yield index, (d) CERES-ECHAM4.5 ensemble 

mean yield index and (e) Multi-Model ensemble mean yield index.     

Short Season Maize Plant Date 1 
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Figure 3.2: Actual maize yield index and simulated maize yield indices for scenario 2 (short 

season maize planted on plant date 2) averaged over the 19 seasons from 1980/81 

to 1998/99.  (a) Actual maize yield index, (b) CERES-Observed weather yield index, 

(c) CERES-CCAM ensemble mean yield index, (d) CERES-ECHAM4.5 ensemble 

mean yield index and (e) Multi-Model ensemble mean yield index.     

Short Season Maize Plant Date 2 
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Figure 3.3: Actual maize yield index and simulated maize yield indices for scenario 3 (short 

season maize planted on plant date 3) averaged over the 19 seasons from 1980/81 

to 1998/99.  (a) Actual maize yield index, (b) CERES-Observed weather yield index, 

(c) CERES-CCAM ensemble mean yield index, (d) CERES-ECHAM4.5 ensemble 

mean yield index and (e) Multi-Model ensemble mean yield index.     

Short Season Maize Plant Date 3 
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Figure 3.4: Actual maize yield index and simulated maize yield indices for scenario 4 (medium 

season maize planted on plant date 1) averaged over the 19 seasons from 1980/81 

to 1998/99.  (a) Actual maize yield index, (b) CERES-Observed weather yield index, 

(c) CERES-CCAM ensemble mean yield index, (d) CERES-ECHAM4.5 ensemble 

mean yield index and (e) Multi-Model ensemble mean yield index.     

Medium Season Maize Plant Date 1 
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Figure 3.5: Actual maize yield index and simulated maize yield indices for scenario 5 (medium 

season maize planted on plant date 2) averaged over the 19 seasons from 1980/81 

to 1998/99.  (a) Actual maize yield index, (b) CERES-Observed weather yield index, 

(c) CERES-CCAM ensemble mean yield index, (d) CERES-ECHAM4.5 ensemble 

mean yield index and (e) Multi-Model ensemble mean yield index.     

Medium Season Maize Plant Date 2 
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Figure 3.6: Actual maize yield index and simulated maize yield indices for scenario 6 (medium 

season maize planted on plant date 3) averaged over the 19 seasons from 1980/81 

to 1998/99.  (a) Actual maize yield index, (b) CERES-Observed weather yield index, 

(c) CERES-CCAM ensemble mean yield index, (d) CERES-ECHAM4.5 ensemble 

mean yield index and (e) Multi-Model ensemble mean yield index.     

Medium Season Maize Plant Date 3 
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Figure 3.7: Actual maize yield index and simulated maize yield indices for scenario 7 (long 

season maize planted on plant date 1) averaged over the 19 seasons from 1980/81 

to 1998/99.  (a) Actual maize yield index, (b) CERES-Observed weather yield index, 

(c) CERES-CCAM ensemble mean yield index, (d) CERES-ECHAM4.5 ensemble 

mean yield index and (e) Multi-Model ensemble mean yield index.     

Long Season Maize Plant Date 1 
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Figure 3.8: Actual maize yield index and simulated maize yield indices for scenario 8 (long 

season maize planted on plant date 2) averaged over the 19 seasons from 1980/81 

to 1998/99.  (a) Actual maize yield index, (b) CERES-Observed weather yield index, 

(c) CERES-CCAM ensemble mean yield index, (d) CERES-ECHAM4.5 ensemble 

mean yield index and (e) Multi-Model ensemble mean yield index.     

Long Season Maize Plant Date 2 
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Figure 3.9: Actual maize yield index and simulated maize yield indices for scenario 9 (long 

season maize planted on plant date 3) averaged over the 19 seasons from 1980/81 

to 1998/99.  (a) Actual maize yield index, (b) CERES-Observed weather yield index, 

(c) CERES-CCAM ensemble mean yield index, (d) CERES-ECHAM4.5 ensemble 

mean yield index and (e) Multi-Model ensemble mean yield index.     

Long Season Maize Plant Date 3 
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3.3 INTER-SEASONAL VARIABILITY VERIFICATION RESULTS 

3.3.1 Subjective Validation 

3.3.1.1 Dry/Warm Western Region  

 

The time series of the actual maize yield index and simulated maize yield indices, obtained 

from each of the different simulation systems, are shown for the dry/warm western 

production region in Figures 3.10 (scenario 1 to 4), 3.11 (scenario 5 to 8) and 3.12 (scenario 

9).  From the actual yield index time series (AYI - red) it can be observed that over the 20 

year period investigated in this study the 1980’s (1981/82 – 1987/88) was characterised by 

much lower maize yields than the late 1990’s (1995/96 – 1998/99).  This phenomenon can 

possibly be explained by the advances that took place in technology over this 20 years with 

respect to improvements in the climatic tolerance of cultivars and improved crop 

management strategies (Du Toit et al., 2001).  Furthermore, it can also be seen that over 

this 20 year period, the 1995/96 season rendered the highest maize yield and the 1991/92 

season the lowest maize yield.  A La Niña event (cold ENSO phase) was present during the 

1995/96 season and an El Niño event (warm ENSO phase) during the 1991/92 season.  La 

Niña events often coincide with below-normal and El Niño events with above-normal 

summer rainfall totals over the central and western parts of South Africa (Ropelewski and 

Halpert, 1987, Rautenbach and Smith, 2001).  Even though the 1995/96 La Niña event was 

relatively weak, this event was associated with significantly wet anomalies over the south-

eastern parts of southern Africa (Reason and Jagadheesa, 2005).  This could possibly 

explain the high maize yield obtained for that season.  In comparison to the very strong El 

Niño that occurred during the 1997/98 season, the 1991/92 El Niño event was fairly weak 

but led to much more severe summer drought conditions over large parts of southern Africa 

(Reason and Jagadheesa, 2005).  These severe summer drought conditions likely led to the 

low maize yield obtained for the 1995/96 season.     

 

3.3.1.1.1 Short Season Maize  

 

In Figure 3.10, (a), (b) and (c) represent short season maize planted on plant date 1, 2 and 

3 respectively.  Table 2.4 shows the exact month and day plant date 1, 2 and 3 refers to.  

By examining the CERES-Observed weather yield index time series (COYI – green) and 

comparing it to the actual maize yield index time series (AYI – red), it is possible to get an 

idea of the ability of the CERES-Maize model in simulating the inter-seasonal variability in 

maize yield in the dry/warm western production region.  For all three short season maize 

scenarios the CERES-Maize model is able to successfully simulate the low maize yield of 
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the 1991/92 season, the season with the lowest maize yield out of the 19 seasons under 

investigation.  It can also be observed that the CERES-Maize model correctly indicates the 

sign of the anomaly of the yield (above or below normal) of many seasons, especially those 

seasons with an actual maize yield index value (AYI – red) less than -1 and more than 1.  

Another prominent feature in all three short season maize scenarios is that the CERES-

Maize model struggles to simulate the maize yield of the three seasons from 1984/85 to 

1986/87, a La Niña season followed by an ENSO-neutral season followed by an El Niño 

season.  The ability of the CERES-Maize model seems to decrease from plant date 1 to 

plant date 3, as the number of seasons for which the model successfully simulates the sign 

of the anomaly of the yield decreases from 15 to 11.   

 

The CERES-CCAM ensemble mean yield index time series (CCYI – blue) for the three 

short season maize scenarios show that when forced with CCAM-simulated fields the 

CERES-Maize model is unable to capture the low maize yield of the 1991/92 El Niño 

season, but instead makes the maize yields of the 1987/88 and 1994/95 El Niño seasons 

much lower.  This also appears for the 1994/95 La Niña season, the CERES-CCAM 

ensemble mean yield index shows much higher maize yields for the 1988/89 and 1998/99 

La Niña seasons than for the 1994/95 season which in reality produced the highest maize 

yield out of the 19 seasons considered in this study.  Furthermore, it also appear as if the 

CERES-CCAM ensemble mean yield index shows greater variability between seasons than 

that observed from the actual yield index.    

 

From the CERES-ECHAM4.5 ensemble mean yield index time series (CEYI – orange) for 

the three short season maize scenarios it can be seen that the CERES-Maize model fails to 

capture the sign of the anomaly of the yield of almost three quarters of the seasons when it 

is forced with ECHAM4.5-simulated fields.  Another interesting observation that can be 

made is the fact that the seasons for which the CERES-Maize model forced with 

ECHAM4.5-simulated fields  actually succeeds in capturing the sign of the anomaly of the 

yield, are primarily ENSO-neutral seasons (1980/81, 1981/82, 1990/91 and 1992/93).  The 

Multi-model system (MMYI – purple) on the other hand performs better in simulating the 

change in the sign of the anomaly of the yield from one season to another than that of the 

CERES-ECHAM4.5 maize yield simulation system, but does not perform better than the 

CERES-CCAM maize yield simulation system.      
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3.3.1.1.2 Medium Season Maize  

 

The time series of the maize yield indices (actual and simulated) for medium season maize 

planted on plant date 1, 2 and 3 are shown in Figure 3.10 (d) and Figure 3.11 (e) and (f) 

respectively.  From the CERES-Observed weather yield index time series (COYI – green) it 

can be seen that the CERES-Maize model successfully simulates the low maize yield of the 

1991/92 El Niño season.  In all three scenarios the CERES-Maize model performs very well 

in simulating the relative magnitude of the yields of the 1980/81 and 1983/84 ENSO-neutral 

seasons.  Furthermore, the ability of the CERES-Maize model in simulating the yield 

appears to improve from plant date 1 to plant date 3, as the number of seasons for which 

the model correctly indicates the sign of the anomaly of the yield increases from 10 to 15.  

Similar to the short season maize scenarios, the CERES-Maize model once again struggles 

to simulate the maize yield of the 4 seasons from 1984/85 to 1987/88.      

 

From the CERES-CCAM ensemble mean yield index time series (CCYI – blue) for the three 

medium season maize scenarios it can be observed that the medium season maize planted 

on plant date 2 scenario (Figure 3.11 (e)) shows the best agreement with the actual yield 

index time-series, both in terms of the sign of the anomaly of the yield and the relative 

magnitude of the yield.  For this scenario the CERES-Maize model is able to correctly 

simulate the sign of the anomaly of the yield for 15 out of the 19 seasons.  Also evident from 

these three time series graphs is that when forced with CCAM-simulated fields the CERES-

Maize model seems to perform the best for seasons with actual maize yield index values 

(AYI – red) less than -1 and more than 1.  This is particularly true for the seasons in the 

1980’s.  As with the short season maize scenarios, the maize yield results of the medium 

season maize scenarios also show that the CERES-Maize model forced with CCAM-

simulated fields fails to capture the low maize yield of the 1991/92 season and the high 

maize yield of the 1995/96 season, but instead simulates the impact of other El Niño and La 

Niña events on the maize yield in the dry/warm western production region to be much more 

severe.   

 

The CERES-ECHAM4.5 ensemble mean yield index time series (CEYI – orange) for the 

three medium season maize scenarios show that the CERES-Maize model does not 

perform well in simulating the maize yield of the dry/warm western production region when it 

is forced with ECHAM4.5-simulated fields.  This simulation system can only indicate the 

sign of the anomaly of the yield for 5 out of the 19 seasons correctly.   
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The Multi-Model ensemble mean yield index time series (MMYI – purple) for the medium 

season maize scenarios show little variation from plant date 1 to plant date 3.  As this 

simulation system is a combination between the CERES-CCAM integrations and the 

CERES-ECHAM4.5 integrations, it performs better than the CERES-ECHAM4.5 simulation 

system, but does not perform as good as the CERES-CCAM simulation system.  Besides 

this, the Multi-Model ensemble mean yield index captures the relative magnitude of the 

1980/81 and 1982/83 yields exceptionally well.   

 

3.3.1.1.3 Long Season Maize  

 

Figure 3.11 (g) and (h) and Figure 3.12 shows the maize yield indices (actual and 

simulated) for each of the 19 seasons considered in this study for long season maize 

planted on plant date 1, 2 and 3 respectively.  When the CERES-Observed weather yield 

index time series (COYI – green) of each of the three long season maize scenarios are 

examined, it can be seen that the CERES-Maize model performs well in simulating both the 

sign of the anomaly and relative magnitude of the maize yields.  The feature that stands out 

from the CERES-Observed weather yield index time series is the fact that the CERES-

Maize model is able to capture both the high maize yield of the 1995/96 La Niña season as 

well as the low maize yield of the 1991/92 El Niño season.  In addition, the CERES-Maize 

model also represents the relative magnitude of the maize yields of the 1980/81, 1982/83, 

1983/84, 1986/87, 1988/89, 1996/97 and 1997/98 seasons exceptionally well.  In terms of 

getting the sign of the anomaly of the yield correct, the CERES-Maize model performs the 

best for the first plant date (Figure 3.11 (g)), in which the sign of the anomaly of the yield for 

15 out the 19 seasons are simulated successfully. 

 

The CERES-CCAM ensemble mean yield index time series (CCYI – blue) shows that the 

CERES-Maize model forced with CCAM-simulated fields is once again, as in the short and 

medium season maize scenarios, unable to simulate the high maize yield of the 1995/96 La 

Niña season and the low maize yield of the 1991/92 El Niño season.  In these long season 

maize scenarios the CERES-Maize model makes the maize yield of the 1998/99 La Niña 

season the highest and the maize yield of the 1987/88 El Niño the lowest out of the 19 

seasons investigated in this study.  Those seasons for which the CERES-Maize model 

forced with CCAM-simulated fields produce realistic yields in comparison to both the actual 

yield index (AYI – red) and the CERES-Observed weather yield index (COYI – green) 

include the 1983/84 (see in particular Figure 3.12), 1986/87 (see in particular Figure 3.11 

(g)) and 1988/89 (see in particular Figure 3.11 (h)) seasons.  In all three scenarios the sign 
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of the anomaly of the yield for 13 out of the 19 seasons are indicated correctly by the 

CERES-Maize model.    

           

The CERES-ECHAM4.5 ensemble mean yield index time series (CEYI – orange) and Multi-

Model ensemble mean yield index time series (MMYI – purple) for the long season maize 

scenarios show similar results to that found for the short and medium season maize 

scenarios.  When forced with ECHAM4.5-simulated fields the CERES-Maize model does 

not perform well in simulating the maize yields.  This simulation system fails to capture the 

sign of the anomaly of the yield for 13 out of the 19 seasons.  The Multi-Model simulation 

system on the other hand shows somewhat better results than the CERES-ECHAM4.5 

simulation system, with the best results found for the long season maize planted on plant 

date 1 scenario (Figure 3.11 (g)).       

 

In general, the ability of the different simulation systems in simulating the season-to-season 

change in maize yield seems to be the lowest for the short season maize scenarios and the 

highest for the long season maize scenarios.  The CERES-Observed weather yield index 

performs the best in simulating the maize yields of the long season maize planted on plant 

date 1 scenario.  
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Figure 3.10: Maize yield index time-series (1980/81 – 1998/99) for the Dry/Warm Western Region.  Actual maize yield index (AYI), CERES-Observed 

weather yield index (COYI), CERES-CCAM ensemble mean yield index (CCYI), CERES-ECHAM4.5 ensemble mean yield index (CEYI) and 

Multi-Model ensemble mean yield index (MMYI).  Graphs (a) to (d) represent scenarios 1 to 4, as described in Table 2.8.                    
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Figure 3.11: Maize yield index time-series (1980/81 – 1998/99) for the Dry/Warm Western Region.  Actual maize yield index (AYI), CERES-Observed 

weather yield index (COYI), CERES-CCAM ensemble mean yield index (CCYI), CERES-ECHAM4.5 ensemble mean yield index (CEYI) and 

Multi-Model ensemble mean yield index (MMYI).  Graphs (e) to (h) represent scenarios 5 to 8, as described in Table 2.8.   
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Figure 3.12: Maize yield index time-series (1980/81 – 1998/99) for the Dry/Warm Western 

Region.  Actual maize yield index (AYI), CERES-Observed weather yield index 

(COYI), CERES-CCAM ensemble mean yield index (CCYI), CERES-ECHAM4.5 

ensemble mean yield index (CEYI) and Multi-Model ensemble mean yield index 

(MMYI).  This graph represents scenario 9, as described in Table 2.8.   

 

3.3.1.2 Temperate Eastern Region  

 

The time series of the actual maize yield index and simulated maize yield indices, obtained 

from each of the different simulation systems, are shown for the temperate eastern  

production region in Figures 3.13 (scenario 1 to 4), 3.14 (scenario 5 to 8) and 3.15 (scenario 

9).  From the actual yield index time series (AYI - red) it can be observed that the maize 

yields of the 1980’s were generally much lower than the maize yields of the 1990’s, except 

for the 1991/92 and 1994/95 seasons.  Two interesting features evident from the actual 

yield index time series include the increasing trend in the maize yield from the 1982/83 

season to the 1988/89 season and the decreasing trend in the maize yield from the 1993/94 

season to the 1998/99 season.  The decrease in maize yield in the late 1990’s could have 

been due to climatic conditions, rising input costs and the unstable maize price which all 

added to the fact that maize production with the use of the production systems available at 

that stage were no longer economically viable (Du Toit et al., 2001).  Furthermore, it can 

also be seen that over this 20 year period, the 1993/94 ENSO-neutral season rendered the 

highest maize yield and the 1991/92 El Niño season, the same as for the dry/warm western 

production region, the lowest maize yield.  Reasonable variation has been found in the 
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rainfall impacts of ENSO over southern Africa (Reason and Jagadheesa, 2005).  Weak El 

Niño (La Niña) events can lead to more widespread and more severe rainfall impacts over 

southern Africa than strong El Niño (La Niña) events (Reason and Jagadheesa, 2005).  This 

may explain the fact that in the temperate eastern production region an ENSO-neutral 

season resulted in the highest maize yield over the 19 seasons, while in the dry/warm 

western production region a La Niña season produced the highest maize yield.    

 

3.3.1.2.1 Short Season Maize  

 

Figure 3.13, (a), (b) and (c) represent short season maize planted on plant date 1, 2 and 3 

respectively.  To quantify the ability of the CERES-Maize model in simulating the inter-

seasonal variability in maize yield of the temperate eastern production region it is necessary 

to investigate the CERES-Observed weather yield index time series (COYI – green) and 

compare it to the actual maize yield index time series (AYI – red).  For all three short 

season maize scenarios the CERES-Maize model is able to successfully simulate the low 

maize yield of the 1991/92 El Niño season, but unable to simulate the high maize yield of 

the 1993/94 ENSO-neutral season.  The CERES-Maize model performs well in capturing 

the increase in maize yield from the 1982/83 season to the 1988/89 season, but it is 

simulated in much more prominent steps than that observed in reality (AYI - red).  

Furthermore, the CERES-Maize model is able to correctly indicate the sign of the anomaly 

of the yield for 11 out of the 19 seasons and additionally simulates the relative magnitude of 

the yield of the 1981/82, 1983/84 and 1992/93 seasons remarkably well.        

 

The CERES-CCAM ensemble mean yield index time series (CCYI – blue) for the three 

short season maize scenarios show that when forced with CCAM-simulated fields the 

CERES-Maize model is unable to capture the extremely low maize yield of the 1991/92 

season and the high maize yield of the 1993/94 season.  It can also be observed that for 

short season maize this simulation system does not perform well in simulating the relative 

magnitude of the yields.  Furthermore, the ability of the CERES-CCAM simulation system in 

simulating the maize yield seems to decrease from plant date 1 to plant date 3, as the 

number of seasons for which the sign of the anomaly of the yield is successfully simulated 

decreases from 8 to 6.   

 

From the CERES-ECHAM4.5 ensemble mean yield index time series (CEYI – orange) for 

the three short season maize scenarios it can be seen that for approximately 80% of the 

seasons the inter-seasonal variability in terms of the sign of the anomaly of the yield follows 

the same pattern as the CERES-CCAM ensemble mean yield index (CCYI – blue), which 
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results in the Multi-Model ensemble mean yield index (MMYI – purple) also following the 

same pattern.  Similar to the results obtained for the CERES-CCAM simulation system, the 

CERES-ECHAM4.5 and Multi-Model simulation systems also do not perform well in 

simulating the relative magnitude of the yields.  The 1981/82 season stands out, as for this 

season the CERES-ECHAM4.5 and Multi-Model simulation systems perform much better in 

simulating the yield than the CERES-CCAM simulation system.        

 

3.3.1.2.2 Medium Season Maize  

 

The time series of the maize yield indices (actual and simulated) for medium season maize 

planted on plant date 1, 2 and 3 are shown in Figure 3.13 (d) and Figure 3.14 (e) and (f) 

respectively.  The first observation that can be made from the CERES-Observed weather 

yield index time series (COYI – green) for the three medium season maize scenarios, is that 

both the sign of the anomaly and relative magnitude of the yields are best represented by 

the CERES-Maize model in the medium season maize planted on plant date 1 and 2 

scenarios.  The sign of the anomaly of the yield for 16 out of the 19 seasons are simulated 

successfully by the CERES-Maize model in the medium season maize planted on plant 

date 1 and 2 scenarios.  For the medium season maize planted on plant date 3 scenario, 

the CERES-Maize model struggles to simulate the relative magnitude of the maize yields of 

the 1995/1996, 1996/97 and 1997/98 seasons, while the CERES-Maize performs well in 

capturing the relative magnitude of the yields of these seasons in the other two medium 

season maize scenarios. In all three scenarios the CERES-Maize model produces the most 

realistic maize yields for the 1980/81, 1982/83, 1983/84, 1991/92 and 1992/93 seasons.   

 

When the CERES-CCAM ensemble mean yield index time series (CCYI – blue) for each of 

the three medium season maize scenarios are examined, it can  be seen that the CERES-

Maize model forced with CCAM-simulated fields fails to simulate the high maize yield of the 

1993/94 ENSO-neutral season and the low maize yield of the 1991/92 El Niño season.  A 

prominent feature that can be observed from the CERES-CCAM ensemble mean yield 

index time series is the extremely high maize yield of the 1998/99 La Niña season.  The 

CERES-CCAM ensemble mean yield index appears to show greater variability between 

seasons than that observed from the actual yield index.  Similar to the CERES-Observed 

weather yield index, the CERES-CCAM simulation system also performs better in 

simulating the sign of the anomaly of the yields of the medium season maize planted on 

plant date 1 and 2 scenarios than the medium season maize planted on plant date 3 

scenario.      
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The CERES-ECHAM4.5 ensemble mean yield index time series (CEYI – orange) for the 

three medium season maize scenarios show a decrease in performance from plant date 1 

to plant date 3.  When forced with ECHAM4.5-simulated fields the CERES-Maize model 

does not capture the low maize yield of the 1991/92 season, but instead simulates the 

maize yield of the 1988/89 La Niña season to be unusually low.  From the Multi-Model 

ensemble mean yield index time series (MMYI – purple) for the three medium season maize 

scenarios it can be seen that for several seasons the Multi-Model simulation system 

provides better yield estimates than the CERES-CCAM or CERES-ECHAM4.5 simulation 

systems on their own.  These seasons include 1981/82 (see Figure 3.13 (d)), 1983/84 (see 

Figure 3.14 (f)), 1984/85 (see Figure 3.13 (d)) and 1996/97 (see Figure 3.13 (d)).       

 

3.3.1.2.3 Long Season Maize  

 

Figure 3.14 (g) and (h) and Figure 3.15 shows the maize yield indices (actual and 

simulated) for the 19 seasons considered in this study for long season maize planted on 

plant date 1, 2 and 3 respectively.  By examining the CERES-Observed weather yield index 

time series (COYI – green) it can be seen that the CERES-Maize model correctly indicates 

the sign of the anomaly of the yield of almost all the seasons.  The CERES-Observed 

weather yield index shows little variation between the three scenarios.  In all three scenarios 

the CERES-Maize model performs very well in simulating the relative magnitude of the 

yields of those seasons with actual yield index values less that -1, as can be seen for the 

1982/83, 1983/84 and 1991/92 seasons.             

 

The CERES-CCAM ensemble mean yield index time series (CCYI – blue) for the three long 

season maize scenarios show that for 12 out of the 19 seasons considered here the 

CERES-CCAM simulation system is able to correctly indicate the sign of the anomaly of the 

yield.  It can also be noted that the CERES-Maize model largely overestimates the maize 

yields of the 1988/89 and 1998/99 La Niña seasons.  In all three scenarios the CERES-

Maize model forced with CCAM-simulated fields performs exceptionally well in capturing the 

relative magnitude of the yield of the 1994/95 El Niño season.   

 

The time series of the CERES-ECHAM4.5 ensemble mean yield index (CEYI – orange) for 

long season maize planted on plant date 1, 2 and 3 show that even though the CERES-

Maize model forced with ECHAM4.5-simulated fields is unable to capture the sign of the 

anomaly of the yield of almost half of the seasons considered in this study, for several 

seasons the relative magnitude of the yield is estimated extremely well.  In all three 
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scenarios this simulation system captures the relative magnitude of the yield of the 1985/86, 

1990/91 and 1997/98 seasons better than any of the other simulation systems.    

 

The combination between the CERES-CCAM and CERES-ECHAM4.5 integrations for the 

long season maize scenarios is expressed as the Multi-Model ensemble mean yield index 

(MMYI – purple) in Figure 3.14 (g) and (h) and Figure 3.15.  In all three scenarios the Multi-

Model simulation system succeeds in simulating the sign of the anomaly of the yield of 10 

seasons.  This system also performs relatively well in estimating the relative magnitude of 

the yields of the 1980/81, 1982/83 and 1996/97 seasons.  Even though the yield estimates 

for these seasons are not necessarily an improvement from the CERES-CCAM ensemble 

mean yield index (CCYI – blue) or CERES-ECHAM4.5 ensemble mean yield index (CEYI – 

orange), these estimates are still fairly good.              

 

In general, all four simulation systems show a decrease in performance from plant date 1 to 

plant date 3 in the short season maize scenarios, better performance for plant dates 1 and 2 

in the medium season maize scenarios than for plant date 3 and the best performance for 

the long season maize scenarios.  The best results are once again found for the long 

season maize planted on plant date 1 scenario.  For this scenario the CERES-Observed 

weather simulation system correctly indicates the sign of the anomaly of the yield of almost 

all 19 seasons.       
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Figure 3.13: Maize yield index time-series (1980/81 – 1998/99) for the Temperate Eastern Region.  Actual maize yield index (AYI), CERES-Observed 

weather yield index (COYI), CERES-CCAM ensemble mean yield index (CCYI), CERES-ECHAM4.5 ensemble mean yield index (CEYI) and 

Multi-Model ensemble mean yield index (MMYI).  Graphs (a) to (d) represent scenarios 1 to 4, as described in Table 2.8.                    
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Figure 3.14: Maize yield index time-series (1980/81 – 1998/99) for the Temperate Eastern Region.  Actual maize yield index (AYI), CERES-Observed 

weather yield index (COYI), CERES-CCAM ensemble mean yield index (CCYI), CERES-ECHAM4.5 ensemble mean yield index (CEYI) and 

Multi-Model ensemble mean yield index (MMYI).  Graphs (e) to (h) represent scenarios 5 to 8, as described in Table 2.8.       
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Figure 3.15: Maize yield index time-series (1980/81 – 1998/99) for the Temperate Eastern 

Region.  Actual maize yield index (AYI), CERES-Observed weather yield index 

(COYI), CERES-CCAM ensemble mean yield index (CCYI), CERES-ECHAM4.5 

ensemble mean yield index (CEYI) and Multi-Model ensemble mean yield index 

(MMYI).  This graph represents scenario 9, as described in Table 2.8.                    

 

3.3.1.3 Wet/Cool Eastern Region  

 

The time series of the actual maize yield index and simulated maize yield indices, obtained 

from each of the different simulation systems, are shown for the wet/cool eastern  

production region in Figures 3.16 (scenario 1 to 4), 3.17 (scenario 5 to 8) and 3.18 (scenario 

9).  From the actual yield index time series (AYI - red) it can be observed that maize 

production in the 1980’s in the wet/cool eastern production region was characterised by 

relatively low maize yields from the 1981/82 season to the 1983/84 season, followed by a 

period of slightly higher (at least above normal) yields from the 1984/85 season to the 

1990/91 season, with the exception of the 1986/87 season.  The 1990’s on the other hand 

commenced with the lowest maize yield of the entire 20 year period (1991/92), followed 

shortly by the highest maize yield of the entire 20 year period (1993/94) where after a 

decrease in maize yield took place from the 1995/96 season to the 1997/98 season.  As 

mentioned for the dry/warm western and temperate eastern production regions, an El Niño 

event occurred during the 1991/92 season, while 1993/94 was an ENSO-neutral season.   
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3.3.1.3.1 Short Season Maize            

 

Figure 3.16 (a), (b) and (c) shows the yield indices (actual and simulated) for short season 

maize planted on plant date 1, 2 and 3 respectively.  It is essential to quantify the ability of 

the CERES-Maize model in simulating the yield of the wet/cool eastern production region.  

This is done by examining the CERES-Observed weather yield index time series (COYI – 

green).  From the three graphs it can be seen that the ability of the CERES-Maize model in 

simulating the sign of the anomaly of the yield decreases from plant date 1 to plant date 3.  

Even though the relative magnitude of the yields are not simulated that well, in the short 

season maize planted on plant date 1 scenario (Figure 3.16 (a)) the CERES-Maize model is 

able to capture the increase in maize yield from 1982/83 to 1985/86.  Furthermore it is also 

evident that when forced with observed weather data the CERES-Maize model fails to 

simulate the anomalously low maize yield of the 1991/92 El Niño season and the 

anomalously high maize yield of the 1993/94 ENSO-neutral season.  In all three short 

season maize scenarios the relative magnitude of the yields of the 1980/81, 1983/84 and 

1984/85 seasons are simulated very well.             

 

The time series of the CERES-CCAM ensemble mean yield index (CCYI – blue) for short 

season maize shows that this simulation system struggles to simulate the maize yields of 

the late 1980’s to early 1990’s (1985/86 – 1990/91), except for the 1988/89 season.  Thus, 

the CERES-Maize model forced with CCAM-simulated fields performs a great deal better in 

simulating the maize yields of the early 1980’s and late 1990’s than it performs for the 

period in between.  In all three short season maize scenarios this simulation system 

simulates the relative magnitude of the yields of the 1982/83, 1988/89, 1994/95 and 

1996/97 seasons extremely well.  Another interesting feature is the fact that the CERES-

CCAM ensemble mean yield index shows a large overestimation of the yield of the 1998/99 

La Niña season    

 

When the CERES-ECHAM4.5 ensemble mean yield index time series (CEYI – orange) of 

each of the three short season maize scenarios are examined, it can be seen that this 

simulation system largely underestimates the yield of the 1988/89 La Niña season, but 

performs better than the CERES-CCAM simulation system in estimating the yield of the 

1987/88 El Niño season.  Furthermore, the CERES-ECHAM4.5 ensemble mean yield index 

reveals a realistic maize yield for the 1998/99 season (see in particular Figure 3.16 (b) and 

(c)).   
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From the Multi-Model ensemble mean yield index time series (MMYI – purple) it can be 

seen that this simulation system also severely overestimates the maize yield of the 1998/99 

La Niña season, as is the case with the CERES-CCAM simulation system.  Another 

observation that can be made is the fact that the Multi-Model simulation system does not 

perform well in capturing the sign of the anomaly of the yield of the five seasons from 

1989/90 to 1993/94.  Furthermore, over the three short season maize scenarios this 

simulation system is able to correctly indicate the sign of the anomaly of the yield of an 

average for 9 seasons out of the 19 under investigation.              

 

3.3.1.3.2 Medium Season Maize      

 

Time series of the maize yield indices (actual and simulated) for medium season maize 

planted on plant date 1, 2 and 3 are shown in Figure 3.16 (d) and Figure 3.17 (e) and (f) 

respectively.  From the CERES-Observed weather yield index times series (COYI – green) 

for these three scenarios it can be seen that the CERES-Maize model performs well in 

capturing the sign of the anomaly of the yield, but fails to simulate the relative magnitude of 

the yields.  Furthermore, it also appears as if the relative magnitude of the simulated yields 

vary considerably between the three scenarios, which makes it difficult to determine for 

which medium season maize scenario the CERES-Maize model performs the best.   

 

When the CERES-CCAM ensemble mean yield index time series (CCYI – blue) for each of 

the three medium season maize scenarios are examined, the first observation that can be 

made is the large overestimation of the yield of the 1998/99 La Niña season.  This 

simulation system performs relatively well in capturing the relative magnitude of the maize 

yields. 

 

The CERES-ECHAM4.5 ensemble mean yield index time series (CEYI – orange) for the 

three medium season maize scenarios show that this simulation system succeeds in 

simulating the sign of the anomaly of the yield for 9 out of the 19 seasons considered in this 

study.  It can also be seen that the CERES-Maize model forced with ECHAM4.5-simulated 

fields  performs the best in simulating the relative magnitude of the maize yields of the 

medium season maize planted on plant date 2 scenario, as can be seen, for example, for 

the 1980/81, 1982,83, 1996/97 and 1997/98 seasons.    

 

From the Multi-Model ensemble mean yield index time series (MMYI – purple) for the three 

medium season maize scenarios it can be seen that even though this simulation system 

captures the sign of the anomaly of the yield of several seasons, it often fails to simulate the 
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relative magnitude of the maize yields.  Although, it can be seen that the relative magnitude 

of the yields of a number of seasons (1980/81, 1983/84 and 1996/97) are captured the best 

for the medium season maize planted on plant date 3 scenario.   

        

3.3.1.3.3 Long Season Maize             

 

In Figure 3.17 (g) and (h) and Figure 3.18 the maize yield indices (actual and simulated) for 

long season maize planted on plant date 1, 2 and 3 can be seen.  The CERES-Observed 

weather yield index time series (COYI – green) for these three long season maize scenarios 

show that the CERES-Maize model performs well in simulating the sign of the anomaly of 

the maize yields of the wet/cool eastern production region.  In the long season maize 

planted on plant date 1 scenario (Figure 3.17 (g)) the CERES-Maize model is able to 

correctly indicate the sign of the anomaly of the yield  for 17 out of the 19 season.  The high 

maize yield of the 1993/94 ENSO-neutral season is underestimated by the model and the 

low maize yield of the 1991/92 El Niño season is overestimated.       

 
The CERES-CCAM ensemble mean yield index time series (CCYI – blue) for the long 

season maize scenarios show that when forced with CCAM-simulated fields the CERES-

Maize model performs well in simulating the relative magnitude of the yields of many 

seasons.  This can primarily be seen for the seasons in the 80’s and include 1980/81, 

1982/83, 1985/86, 1986/87 and 1988/89.  An overestimation of the yield of the 1998/99 La 

Niña season can once again be seen.  This simulation system is able to capture the sign of 

the anomaly of the yield for 14 out of the 19 seasons under investigation in this study.  

 

From the CERES-ECHAM4.5 ensemble mean yield index time series (CEYI – orange) for 

the three long season maize scenarios it can be seen that when the CERES-Maize model is 

forced with ECHAM4.5-simulated fields, the ability to simulate the sign of the anomaly of the 

yield decreases from plant date 1 to plant date 3, as the number of season for which the 

model correctly indicates the sign of the anomaly of the yield decreases from 11 to 8.  In 

general, this simulation system struggles to simulate the maize yields of the four seasons 

from 1986/87 to 1989/90.  Furthermore it is also evident that for a number of seasons this 

simulation system produces more realistic maize yields than the CERES-CCAM simulation 

system, as can be seen for the 1991/92, 1996/97, and 1997/98 seasons.      

        

From the Multi-Model ensemble mean yield index time series (MMYI – purple) for the long 

season maize scenarios it can be seen that the Multi-model simulation system performs 

better in simulating the sign of the anomaly of the yield than the CERES-ECHAM4.5 maize 
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yield simulation system, but does not perform as good as the CERES-CCAM maize yield 

simulation system.  For some seasons the Multi-Model ensemble mean yield index time 

series show better results in terms of the relative magnitude of the yield than both the 

CERES-CCAM and CERES-ECHAM4.5 simulation systems, as can be seen, for example, 

for the 1998/99 season.                                      

 

In general, all four simulation systems show a decrease in performance from plant date 1 to 

plant date 3 in the short season maize scenarios, similar results for all three plant dates in 

the medium season maize scenarios and a decrease in performance from plant date 1 to 

plant date 3 in the long season maize scenarios.  Thus, out of the 9 scenarios investigated, 

the simulation systems show the best results for the long season maize planted on plant 

date 1 scenario.     
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Figure 3.16: Maize yield index time-series (1980/81 – 1998/99) for the Wet/Cool Eastern Region.  Actual maize yield index (AYI), CERES-Observed 

weather yield index (COYI), CERES-CCAM ensemble mean yield index (CCYI), CERES-ECHAM4.5 ensemble mean yield index (CEYI) and 

Multi-Model ensemble mean yield index (MMYI).  Graphs (a) to (d) represent scenarios 1 to 4, as described in Table 2.8.       
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Figure 3.17: Maize yield index time-series (1980/81 – 1998/99) for the Wet/Cool Eastern Region.  Actual maize yield index (AYI), CERES-Observed 

weather yield index (COYI), CERES-CCAM ensemble mean yield index (CCYI), CERES-ECHAM4.5 ensemble mean yield index (CEYI) and 

Multi-Model ensemble mean yield index (MMYI).  Graphs (e) to (h) represent scenarios 5 to 8, as described in Table 2.8.       
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Figure 3.18: Maize yield index time-series (1980/81 – 1998/99) for the Wet/Cool Eastern Region.  

Actual maize yield index (AYI), CERES-Observed weather yield index (COYI), 

CERES-CCAM ensemble mean yield index (CCYI), CERES-ECHAM4.5 ensemble 

mean yield index (CEYI) and Multi-Model ensemble mean yield index (MMYI).  This 

graph represents scenario 9, as described in Table 2.8.       

 

3.3.2 Objective Validation 

3.3.2.1 Actual Maize Yield vs. CERES-Observed Weather Maize Yield 

 

Figure 3.19 (a) to (i) shows the Spearman rank correlations between the actual maize yields 

and CERES-Observed weather maize yields for each of the 9 scenarios in Table 2.8.  The 

magisterial districts with statistically significant correlations are indicated in bold.  Strong 

correlations indicate areas where the association between the actual maize yield and 

CERES-Observed weather maize yield is greatest, and weak correlations indicate the areas 

where the association is poor.  The threshold correlation for local significance at the 95% 

level of confidence is approximately 0.46.   

 

The three short season maize scenarios (Figure 3.19 (a), (b) and (c)) show higher 

correlations for the North-West Province than for the Free State, and also reveal an 

increase in the correlations from east to west across the study area, with much lower 

correlations in the east than in the west.  In all three short season maize scenarios, the 

western part of the North-West Province shows the highest correlations.  It can also be 

seen that the skill of the CERES-Maize model decreases from plant date 1 to plant date 3, 

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5
N

o
rm

a
li

z
e
d

 Y
ie

ld
 I

n
d

e
x

19
80

/8
1

19
81

/8
2

19
82

/8
3

19
83

/8
4

19
84

/8
5

19
85

/8
6

19
86

/8
7

19
87

/8
8

19
88

/8
9

19
89

/9
0

19
90

/9
1

19
91

/9
2

19
92

/9
3

19
93

/9
4

19
94

/9
5

19
95

/9
6

19
96

/9
7

19
97

/9
8

19
98

/9
9

Season

Long Season Maize Plant Date 3

AYI

COYI

CCYI

CEYI

MMYI

i). 

 
 
 



 103 

as 25 magisterial districts (significant at the 95% level, see section 2.5.2.2.2) have 

statistically significant correlations for plant date 1 (Figure 3.19 (a)), but only 21 (significant 

at 95% level) for plant date 2 (Figure 3.19 (b)) and 14 (significant at 95% level) for plant 

date 3 (Figure 3.19 (c)).  The short season maize planted on plant date 3 scenario shows 

that most of the magisterial districts in the Free State do not have statistically significant 

correlations.   
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Figure 3.19: Spearman rank correlations calculated between the actual maize yields and CERES-

Observed weather maize yields over the 20 year period from 1980 to 1999.  (a) 

Short season maize plant date 1, (b) Short season maize plant date 2, (c) Short 

season maize plant date 3, (d) Medium season maize plant date 1, (e) Medium 

season maize plant date 2, (f) Medium season maize plant date 3, (g) Long season 

maize plant date 1, (h) Long season maize plant date 2 and (i) Long season maize 

plant date 3.  Magisterial districts with statistically significant correlations at the 95% 

confidence level are indicated in bold.         

 

The three medium season maize scenarios (Figure 3.19 (d), (e) and (f)) also show higher 

correlations in the western parts of the study area than in the eastern parts of the study 

area, with the highest correlations (> 0.81) found for the western part of the North-West 

Province and central part of the Free State.  The medium season maize planted on plant 

date 2 scenario (Figure 3.19 (e)) shows 25 magisterial districts (significant at 95% level) 

with statistically significant correlations, with only 21 (significant at 95% level) for the 

medium season maize planted on plant date 1 scenario (Figure 3.19 (d)) and 22 (significant 
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at 95% level) for the medium season maize planted on plant date 3 scenario (Figure 3.19 

(f)).  All three scenarios reveal that the CERES-Maize model has poor skill in simulating the 

maize yield of magisterial district Ficksburg (43). 

 

In the three long season maize scenarios (Figure 3.19 (g), (h) and (i)) the highest 

correlations, greater than 0.81, are evident for the western and central parts of the North-

West Province.  Once again, as with the short season maize scenarios, the skill of the 

CERES-Maize model appears to decrease from plant date 1 to plant date 3.  Statistically 

significant correlations can be seen for 39 (significant at 95% level) out of the 44 magisterial 

districts in the long season maize planted on plant date 1 scenario (Figure 3.19 (g)).  The 

other two scenarios show slightly lower correlations in the east than in the west, with 37 

magisterial districts (significant at 95% level) with statistically significant correlations in the 

long season maize planted on plant date 2 scenario (Figure 3.19 (h)) and 32 (significant at 

95% level) in the long season maize planted on plant date 3 scenario (Figure 3.19 (i)).                       

 

Thus, in all 9 scenarios the strongest correlations are typically found for the western part of 

the North-West Province, with correlations frequently exceeding 0.81.  Furthermore, all 9 

scenarios reveal a stronger association between the CERES-Observed weather maize 

yields and actual maize yields in the western parts of the study area than in the eastern 

parts.  In general, the skill of the CERES-Maize model increases from the short season 

maize scenarios to the long season maize scenarios, with the overall highest correlations 

found for long season maize planted on plant date 1 (Figure 3.19 (g)).  This is in agreement 

with the results found in the subjective validation.     

 

3.3.2.2 Actual Maize Yield vs. CERES-CCAM Ensemble Mean Maize Yield  

 

Figure 3.20 (a) to (i) shows the Spearman rank correlations between the actual maize yields 

and CERES-CCAM ensemble mean maize yields for each of the 9 scenarios in Table 2.8.  

The skill of the CERES-CCAM simulation system is evaluated in terms of the association 

between the simulated and actual maize yields.  The magisterial districts with statistically 

significant correlations are indicated in bold.  The threshold correlation for local significance 

at the 95% level of confidence is approximately 0.46.   

 

The first feature that can be observed from the three short season maize scenarios (Figure 

3.20 (a), (b) and (c)) is that the highest correlations occur in the western part of the Free 

State.  The correlations of the magisterial districts in the North-West Province are primarily 
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not statistically significant and negative correlations are found for the temperate eastern 

production region.  Thus, the CERES-CCAM simulation system shows poor skill in 

simulating the maize yields of this production region.  It can also be seen that when forced 

with CCAM-simulated fields the skill of the CERES-Maize model decreases rather 

drastically from plant date 1 to plant date 3, as 21 magisterial districts (significant at 95% 

level) have statistically significant correlations for plant date 1 (Figure 3.20 (a)), but only 13 

(significant at 95% level) for plant date 2 (Figure 3.20 (b)) and 11 (significant at 95% level) 

for plant date 3 (Figure 3.20 (c)).   

            

In general, the three medium season maize scenarios (Figure 3.20 (d), (e) and (f)) show 

more magisterial districts with statistically significant correlations than the short season 

maize scenarios (Figure 3.20 (a), (b) and (c)).  The medium season maize planted on plant 

date 1 scenario (Figure 4.23 (d)) shows 22 magisterial districts (significant at 95% level) 

with statistically significant correlations, with 21 (significant at 95% level) for the medium 

season maize planted on plant date 2 scenario (Figure 3.20 (e)) and 20 (significant at 95% 

level) for the medium season maize planted on plant date 3 scenario (Figure 3.20 (f)).  

Thus, the skill of the CERES-CCAM simulation system decreases slightly from plant date 1 

to plant date 3.  The medium season maize planted on plant date 3 scenario also shows 

negative correlations for the temperate eastern production region as can be seen in the 

three short season maize scenarios.  The highest correlations occur adjacent to the border 

separating the Free State from the North-West Province, and in the western part of the Free 

State.   

 

In the three long season maize scenarios (Figure 3.20 (g), (h) and (i)) the highest 

correlations (0.61 – 0.8) occur once again in the western part of the Free State and to some 

extent also in the western part of the North-West Province (see Figure 3.20 (g) and (h)).  

Similar to the short and medium season maize scenarios, for the long season maize 

scenarios the skill of the CERES-CCAM simulation system also decreases from plant date 1 

to plant date 3.  Statistically significant correlations can be seen for 21 (significant at 95% 

level) out of the 44 magisterial districts in the long season maize planted on plant date 1 

scenario (Figure 3.20 (g)), 17 (significant at 95% level) out of the 44 magisterial districts in 

the long season maize planted on plant date 2 scenario (Figure 3.20 (h)) and 10 (significant 

at 95% level) out of the 44 magisterial districts for the long season maize planted on plant 

date 3 scenario (Figure 3.20 (i)).  It can also be seen that this simulation system does not 

perform well in simulating the maize yields of the magisterial districts in the eastern parts of 

both the Free State and North-West Province.       
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Thus, in all 9 scenarios the strongest correlations are typically found for the western part of 

the Free State, with correlations ranging between 0.61 and 0.8.  Furthermore, it is evident in 

all 9 scenarios that the CERES-CCAM simulation system does not perform well in 

simulating the maize yields of a large part of the temperate eastern production region, with 

a 
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Figure 3.20: Spearman rank correlations calculated between the actual maize yields and CERES-

CCAM ensemble mean maize yields over the 20 year period from 1980 to 1999.  (a) 

Short season maize plant date 1, (b) Short season maize plant date 2, (c) Short 

season maize plant date 3, (d) Medium season maize plant date 1, (e) Medium 

season maize plant date 2, (f) Medium season maize plant date 3, (g) Long season 

maize plant date 1, (h) Long season maize plant date 2 and (i) Long season maize 

plant date 3.  Magisterial districts with statistically significant correlations at the 95% 

confidence level are indicated in bold.         

 

correlations either being negative or not significant.  In general, the CERES-Maize model 

forced with CCAM-simulated fields reveals the highest skill in simulating the maize yields of 

the first plant dates, thus short season maize planted on plant date 1, medium season 

maize planted on plant date 1 and long season maize planted on plant date 1 (Figure 3.20 

(a), (d) and (g).  An increase in skill from the short season maize scenarios to the long 

season maize scenarios are also revealed, with the highest correlations found for long 

season maize planted on plant date 1 (figure 3.20 (g)).  This phenomenon can also be seen 
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in the CERES-CCAM simulated maize yields discussed in the subjective validation section 

(3.3.1).   

 

3.3.2.3 Actual Maize Yield vs. CERES-ECHAM4.5 Ensemble Mean Maize Yield  

 

The Spearman rank correlations between the actual maize yields and CERES-ECHAM4.5 

ensemble mean maize yields are not shown, since the skill of this simulation system is poor.  

A number of factors could have contributed to this result.  The ECHAM4.5-simulated fields 

are on a course grid of approximately 2.8° x 2.8°.  Raw output from ECHAM4.5 is used as 

input into the CERES-Maize model.  The same is done for the CERES-CCAM simulation 

system.  Raw output from CCAM is used as input into the CERES-Maize model, but the 

simulated fields produced by CCAM are written out on a 1° x 1° grid.  Due to the higher 

spatial resolution of the CCAM-simulated fields, the CERES-CCAM simulation system has 

an advantage over the CERES-ECHAM4.5 simulation system.  As a result of the low spatial 

resolution of the ECHAM4.5-simualted fields it is possible that the ECHAM4.5 GCM is not 

skilful in providing a good representation of sub-grid scale features like precipitation.  GCMs 

tend to overestimate rainfall over southern Africa, and often also distort the spatial pattern of 

the rainfall (Joubert and Hewitson, 1997).  It may be possible to improve on the spatial 

resolution of the ECHAM4.5-simulated fields by nesting a Regional Climate Model (RCM) 

within the ECHAM4.5 GCM.  In this study from the gridded GCM output a nearest neighbour 

approach is used to obtain representative GCM-simulated weather-type data for each 

magisterial district (see section 2.4.3.2).  Thus, the use of a different interpolation routine 

may also improve the reliability of the GCM-simulated fields.   

      

By investigating the seasonal long-term mean simulated fields of both ECHAM4.5 and 

CCAM, it is found that ECHAM4.5 has lower skill than CCAM in simulating mid-summer 

rainfall over the study area.  So, it is not too surprising that CCAM produced more reliable 

weather-type data than ECHAM4.5.  Mid-summer is a critical period in the development of 

the maize plant and therefore any misrepresentations in the rainfall in this season could 

have led to discrepancies in the maize yields simulated by the CERES-ECHAM4.5 

simulation system.            

 

3.3.2.4 Actual Maize Yield vs. Multi-Model Ensemble Mean Maize Yield  

 

Figure 3.21 (a) to (i) shows the Spearman rank correlations between the actual maize yields 

and Multi-Model ensemble mean maize yields for each of the 9 scenarios in Table 2.8.  The 
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magisterial districts with statistically significant correlations are indicated in bold.  Strong 

correlations indicate high skill and weak correlations indicate poor skill.  The threshold 

correlation for local significance at the 95% level of confidence is approximately 0.46.   

 

The three short season maize scenarios (Figure 3.21 (a), (b) and (c)) show higher 

correlations for the North-West Province than for the Free State.  It can also be seen that in 

all three scenarios only a few magisterial districts have statistically significant correlations.  

The highest correlations primarily occur in the western parts of the study area.   

 

From the three medium season maize scenarios (Figure 3.21 (d), (e) and (f)) it can be seen 

that the highest correlations are either found in the eastern part of the Free State or in the 

western part of the North-West Province or adjacent to the border separating the Free State 

from the North-West Province. It also appears as if the Multi-Model simulation system 

performs better in simulating the maize yields of the western parts of the study area than 

the eastern parts of the study area.  The medium season maize planted on plant date 1 and 

plant date 3 scenarios (Figure 3.21 (d) and (f)) both show 4 magisterial districts (not 

significant at 95% level) with statistically significant correlations, while only 3 (not significant 

at 95% level) is evident for the medium season maize planted on plant date 2 scenario 

(Figure 3.21 (d)).   

 

Similar to the medium season maize scenarios the long season maize scenarios (Figure 

3.21 (g), (h) and (i)) also show the highest correlations either in the eastern part of the Free 

State or adjacent to the border separating the Free State from the North-West Province.  In 

all three scenarios negative correlations are found for the eastern part of the North-West 

Province.  Statistically significant correlations can be seen for 6 (not significant at 95% level) 

out of the 44 magisterial districts in the long season maize planted on plant date 1 scenario 

(Figure 3.21 (g)), 4 (not significant at 95% level) out of the 44 magisterial districts in the long 

season maize planted on plant date 2 scenario (Figure 3.21 (h)) and 3 (not significant at 

95% level) out of the 44 magisterial districts for the long season maize planted in plant date 

3 scenario (Figure 3.21 (i)).  Thus, the skill of the Multi-Model simulation system in 

simulating the maize yields decreases from plant date 1 to plant date 3.   

 

Thus, all 9 scenarios illustrate relatively poor skill.  This can be explained by the fact that the 

Multi-Model simulation system is a combination between the CERES-CCAM simulation 

system and the CERES-ECHAM4.5 simulation system.  Therefore, even though good skill 

is obtained for the maize yields produced by the CERES-CCAM simulation system, the low 

skill of the CERES-ECHAM4.5 simulation system negatively affects the skill of the Multi-
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Model simulation system.  In the construction of the Multi-Model simulation system used in 

this study, equal weights are given to both the CERES-GCM based simulation systems 

regardless of the skill of each individual simulation system.  By giving the simulation 

systems weights proportional to their skill may perhaps improve the skill of the multi-model 

simulation system, but this should be investigated.    
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Figure 3.21: Spearman rank correlations calculated between the actual maize yields and Multi-

Model ensemble mean maize yields over the 20 year period from 1980 to 1999.  (a) 

Short season maize plant date 1, (b) Short season maize plant date 2, (c) Short 

season maize plant date 3, (d) Medium season maize plant date 1, (e) Medium 

season maize plant date 2, (f) Medium season maize plant date 3, (g) Long season 

maize plant date 1, (h) Long season maize plant date 2 and (i) Long season maize 

plant date 3.  Magisterial districts with statistically significant correlations at the 95% 

confidence level are indicated in bold.        

 

Once again the skill of the Multi-Model simulation system increases from the short season 

maize scenarios to the long season maize scenarios, with the highest correlations found for 

the long season maize planted on plant date 1 scenario.  This result can be confirmed by 

the results found in the subjective validation.     
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3.4 PROBABILITY DISTRIBUTION RESULTS 

3.4.1 Subjective Validation 

3.4.1.1 Dry/Warm Western Region 

3.4.1.1.1 Short Season Maize  

 

In Figure 3.22 the simulated short season maize yields are expressed probabilistically.  The 

actual maize yields and CERES-Observed weather maize yields are displayed 

deterministically at the top op the graph.  When the CERES-Observed weather maize yields 

are compared to the actual maize yields it can be seen that the CERES-Maize model is able 

to correctly indicate the category of the yield (above-normal, near-normal or below-normal) 

for 8 out of the 19 seasons considered in this study, of which 4 seasons are ENSO-neutral 

seasons, 3 are El Niño seasons and 1 is a La Niña season.  Another interesting feature that 

can be observed for the other 11 seasons is the fact that the CERES-Observed weather 

maize yields are always within one category of the actual maize yields and never two 

categories away from the actual maize yields, as can be seen, for example, for the 1981/82 

season in which the actual maize yield is near-normal and the CERES-Observed weather 

maize yield is below-normal. 
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Figure 3.22: Simulated short season maize yield probabilities.  CERES-CCAM yield (CC), 

CERES-ECHAM4.5 yield (CE) and Multi-Model yield (MM).  The actual maize yield 

(red) and CERES-Observed weather yield (grey) are denoted as A (above-normal), 

N (near-normal) or B (below-normal) at the top of the graph.             
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When the probabilistic short season maize yields, obtained from the different simulation 

systems, are compared to the actual maize yields, the 1980/81 ENSO-neutral season 

stands out, as for this season the Multi-Model simulation system performs better than the 

single model simulation systems (CERES-CCAM and CERES-ECHAM4.5), although the 

level of confidence in the probability for above-normal maize yields is not very high (37%).  

The probability distributions for the 1982/83, 1983/84 and 1994/95 seasons show that one 

of the single model simulation systems (CERES-CCAM or CERES-ECHAM4.5) and the 

Multi-Model simulation system correctly indicates the category of the yield (above-normal, 

near-normal or below-normal), while the probabilities of the other single model system are 

less reliable.  Another interesting season is the 1988/89 season for which the CERES-

CCAM simulation system correctly simulates the maize yield to be above-normal with a high 

level of confidence (80%).   

 

3.4.1.1.2 Medium Season Maize  
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Figure 3.23: Simulated medium season maize yield probabilities.  CERES-CCAM yield (CC), 

CERES-ECHAM4.5 yield (CE) and Multi-Model yield (MM).  The actual maize yield 

(red) and CERES-Observed weather yield (grey) are denoted as A (above-normal), 

N (near-normal) or B (below-normal) at the top of the graph.            

 

The probability distributions for medium season maize, as simulated by each of the different 

simulation systems, are shown in Figure 3.23.  In comparison to the actual maize yields the 
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CERES-Observed weather maize yields reveal that the CERES-Maize model is able to 

correctly simulate the category of the yield (above-normal, near-normal or below-normal) for 

10 out of the 19 seasons considered in this study.  From the actual maize yields it can be 

seen than 7 out of the 19 seasons are above-normal maize yield seasons.  The CERES-

Maize model correctly indicates the category for 5 out of the 7 above-normal maize yield 

seasons.  Thus, the CERES-Maize model appears to perform the best in simulating the 

maize yields of the above-normal maize yield seasons.  Furthermore, the CERES-Maize 

model performs exceptionally well in capturing the category of the maize yields of the early 

1980’s (1980/81 – 1984/85).  For one season, 1985/86, the CERES-Observed weather 

maize yield is two categories away from the category of the actual maize yield, which shows 

that the CERES-Maize model failed in this season.           

 

When the probabilities of the simulated medium season maize yields are assessed, the 

1982/83 El Niño season stands out, as for this season all three simulation systems 

(CERES-CCAM, CERES-ECHAM4.5 and Multi-Model) successfully simulates the category 

of the maize yield with relatively high probabilities of  60% and higher.  For the 1993/94 

season, the Multi-Model simulation system performs better than the single model simulation 

systems (CERES-CCAM and CERES-ECHAM4.5), but once again the level of confidence 

in the above-normal category is relatively low (37%).  The probability distributions for the 

1980/81 and 1983/84 seasons show that both the CERES-CCAM and Multi-Model 

simulation systems are reliable, while the CERES-ECHAM4.5 simulation system is unable 

to represent the correct outcome (above-normal, near-normal or below-normal maize 

yields).  The CERES-CCAM simulation system once again simulates the category of the 

maize yield of the 1988/89 season correctly, with a high probability of 80%.  The 1991/92 

season was one of the driest seasons on record.  The CERES-CCAM, CERES-ECHAM4.5 

and Multi-Model simulation systems simulates a 0% probability for below-normal maize 

yield for this season, while the CERES-Observed weather simulation system correctly 

indicated the below-normal category.  This is a result of the fact that GCMs did not 

anticipate the excessively dry conditions of the 1991/92 season.  From this it can be seen 

that the CERES-Maize model is highly dependant on the weather input data with which it is 

forced.     

 

3.4.1.1.3 Long Season Maize  

 

Figure 3.24 shows the simulated long season maize probabilities.  From the actual maize 

yields and CERES-Observed weather maize yields displayed deterministically at the top op 

the graph, it can be seen that the CERES-Maize model is able to correctly indicate the 
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category of the yield (above-normal, near-normal or below-normal) for 13 out of the 19 

seasons investigated in this study.  Here, the category of 6 out of the 7 above-normal maize 

yield season are simulated correctly by the CERES-Maize model which once again points to 

the fact that the CERES-Maize performs better in capturing above-normal maize yield 

seasons than near-normal and below-normal maize yields seasons.  Moreover, for the other 

seasons the CERES-Observed weather maize yields are always within one category of the 

actual maize yields and never two categories away from the actual maize yields.   
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Figure 3.24: Simulated long season maize yield probabilities.  CERES-CCAM yield (CC), 

CERES-ECHAM4.5 yield (CE) and Multi-Model yield (MM).  The actual maize yield 

(red) and CERES-Observed weather yield (grey) are denoted as A (above-normal), 

N (near-normal) or B (below-normal) at the top of the graph.             

 

When the long season maize yield probabilities, obtained from the different simulation 

systems, are examined, it can be seen that the maize yield of the 1982/83 El Niño season is 

once again successfully simulated by all three simulation systems (CERES-CCAM, CERES-

ECHAM4.5 and Multi-Model) with relatively high probabilities of 60% and higher.  For the 

1996/97 season, the Multi-Model simulation system performs better than the single model 

simulation systems (CERES-CCAM and CERES-ECHAM4.5), but the level of confidence in 

the above-normal category is relatively low (37%).  The probability distributions for the 

1980/81, 1983/84 and 1984/85 seasons show that one of the single model simulation 

systems (CERES-CCAM or CERES-ECHAM4.5) and the Multi-Model simulation system 

correctly indicates the category of the yield (above-normal, near-normal or below-normal), 
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while the probabilities of the other single model system is less reliable.  The 1992/93 and 

1996/97 seasons are very interesting as for these two seasons the CERES-ECHAM4.5 

simulation system is the only system able to correctly simulate the category of the maize 

yields.   

 

In general, it can be seen that the ability of the CERES-Observed weather simulation 

system in simulating the category of the maize yield increases from the short season maize 

scenario to the long season maize scenario, with the best performance in capturing above-

normal maize yield seasons.  The CERES-CCAM simulation system performs relatively well 

in all three scenarios, while the CERES-ECHAM4.5 simulation system does not perform 

well.  The Multi-Model simulation system performs the best in simulating below-normal 

maize yields.    

 

3.4.1.2 Temperate Eastern Region 

3.4.1.2.1 Short Season Maize  

 

The probability distributions of the simulated short season maize yields are shown in Figure 

3.25.  The actual maize yields and CERES-Observed weather maize yields are displayed 

deterministically at the top op the graph.  When the CERES-Observed weather maize yields 

are compared to the actual maize yields it can be seen that the CERES-Maize model is able 

to correctly indicate the category of the yield (above-normal, near-normal or below-normal) 

for 9 out of the 19 seasons investigated in this study, of which 4 seasons are ENSO-neutral 

seasons, 3 are El Niño seasons and 2 are La Niña seasons.  From the actual maize yields it 

can be seen that 6 out of the 19 seasons are below-normal maize yield seasons, and the 

CERES-Maize model is able to correctly simulate the category for 4 out of the 6 below-

normal seasons.  Thus, the CERES-Maize model performs better in simulating the maize 

yields of below-normal maize yield seasons than above-normal and near-normal maize 

yield seasons.  Another notable feature is the fact that for four seasons the CERES-

Observed weather maize yields are two categories away from the actual maize yields, as 

seen for example for the 1985/86 (1988/89) season in which the actual maize yield is 

below-normal (above-normal) and the CERES-Observed weather maize yield is above-

normal (below-normal).            

 
In comparison to the actual maize yields, the simulated short season maize yield 

probabilities show that for the 1985/86, 1987/88 and 1989/90 seasons all three simulation 

systems (CERES-CCAM, CERES-ECHAM4.5 and Multi-Model) successfully simulate the 
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maize yields with reasonably high probabilities ranging between 50% and 83%.  The 

probability distributions for the 1983/84 and 1991/92 seasons show that one of the single 

model simulation systems (CERES-CCAM or CERES-ECHAM4.5) and the Multi-Model 

simulation system correctly indicates the category of the yield (above-normal, near-normal 

or below-normal), while the probabilities of the other single model system is either over or 

under confident and consequently gives a different category the highest probability.  Other 

interesting seasons include the 1986/87, 1995/96 and 1998/99 seasons for which the 

CERES-CCAM simulation system correctly simulates the category of the maize yields with 

probabilities of 60% and higher, and the 1981/82 season for which the CERES-ECHAM4.5 

simulation system correctly indicates the category of the maize yield with a probability of 

67%.   
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Figure 3.25: Simulated short season maize yield probabilities.  CERES-CCAM yield (CC), 

CERES-ECHAM4.5 yield (CE) and Multi-Model yield (MM).  The actual maize yield 

(red) and CERES-Observed weather yield (grey) are denoted as A (above-normal), 

N (near-normal) or B (below-normal) at the top of the graph.       

 

3.4.1.2.2 Medium Season Maize  

 

The simulated medium season maize yield probabilities are shown in Figure 3.26.  In 

comparison to the actual maize yields the CERES-Observed weather maize yields reveal 

that the CERES-Maize model is able to correctly simulate the category of the yield (above-

normal, near-normal or below-normal) for 13 out of the 19 seasons considered in this study.  
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The CERES-Maize model once again appears to perform the best in capturing the maize 

yields of the below-normal maize yield seasons, with the category for 5 out of the 6 seasons 

indicated correctly.  Furthermore, it can also be seen that the maize yields of the 1980’s 

(1980/81 – 1983/84) and late 1990’s (1994/95 – 1998/99) are simulated exceptionally well 

by the CERES-Maize model.   

 

From the probability distributions of the simulated medium season maize yields it can be 

seen that for the 1981/82, 1985/86, 1989/90, 1990/91 and 1993/94 seasons one of the 

single model simulation systems (CERES-CCAM or CERES-ECHAM4.5) and the Multi-

Model simulation system correctly indicates the category of the yield (above-normal, near-

normal or below-normal), while the other single model simulation system is unable to 

represent the correct category.  For the 1983/84 and 1995/96 seasons the CERES-CCAM 

simulation system successfully simulates the maize yields with probabilities of 60% and for 

the 1980/81 season the CERES-ECHAM4.5 simulation system correctly indicates the maize 

yield with a somewhat lower probability of 50%.   
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Figure 3.26: Simulated medium season maize yield probabilities.  CERES-CCAM yield (CC), 

CERES-ECHAM4.5 yield (CE) and Multi-Model yield (MM).  The actual maize yield 

(red) and CERES-Observed weather yield (grey) are denoted as A (above-normal), 

N (near-normal) or B (below-normal) at the top of the graph.            
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3.4.1.2.3 Long Season Maize  

 

In Figure 3.27 the simulated long season maize yields are expressed probabilistically.  The 

actual maize yields and CERES-Observed weather maize yields are displayed 

deterministically at the top op the graph and shows that the CERES-Maize model is able to 

correctly indicate the category of the yield (above-normal, near-normal or below-normal) for 

11 out of the 19 seasons considered in this study.  Here the CERES-Maize model also 

appears to perform the best in simulating the maize yields of below-normal maize yield 

seasons, with the category of 5 out of the 6 below-normal seasons indicated correctly.  For 

the remainder of the seasons, it can be seen that the CERES-Observed weather maize 

yields are always within one category of the actual maize yields, as seen for the 1984/85 

season in which the actual maize yield is near-normal and the CERES-Observed weather 

maize yield is above-normal. 
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Figure 3.27: Simulated long season maize yield probabilities.  CERES-CCAM yield (CC), 

CERES-ECHAM4.5 yield (CE) and Multi-Model yield (MM).  The actual maize yield 

(red) and CERES-Observed weather yield (grey) are denoted as A (above-normal), 

N (near-normal) or B (below-normal) at the top of the graph.      

 

When the probabilities of the simulated long season maize yields are compared to the 

actual maize yields, the 1982/83 El Niño season stands out, as for this season all three 

simulation systems (CERES-CCAM, CERES-ECHAM4.5 and Multi-Model) successfully 

simulate the maize yield to be below-normal with reasonably high probabilities ranging 
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between 67% and 80%.  The probability distributions of the 1988/89, 1990/91, 1992/93, 

1994/95 and 1996/97 seasons show that one of the single model simulation systems 

(CERES-CCAM or CERES-ECHAM4.5) and the Multi-Model simulation system are able to 

correctly indicate the category of the yield (above-normal, near-normal or below-normal).  

Furthermore, the 1980/81, 1985/86, 1986/87 and 1987/88 seasons are also interesting as 

for these seasons the CERES-ECHAM4.5 simulation system is the only system that 

successfully simulates the outcome of the maize yields.   

 

In general, it can be seen that the performance of the CERES-Observed weather simulation 

system in simulating the category of the maize yield is the best for the medium season 

maize scenario.  This simulation system performs very well in simulating below-normal 

maize yields.  The CERES-CCAM simulation system performs better in simulating above-

normal maize yields that below-normal and near-normal maize yields, while the CERES-

ECHAM4.5 simulation system shows the best performance for near-normal maize yield 

seasons.   

 

3.4.1.3 Wet/Cool Eastern Region 

3.4.1.3.1 Short Season Maize  

 

The probability distributions of the simulated short season maize yields are shown in Figure 

3.28.  The actual maize yields and CERES-Observed weather maize yields displayed at the 

top of the graph show that the CERES-Maize model correctly indicates the category of the 

yield (above-normal, near-normal or below-normal) for 8 out of the 19 seasons, of which 4 

seasons are ENSO-neutral seasons, 2 are El Niño seasons and 2 are La Niña seasons.  As 

for the remainder of the seasons, the CERES-Observed weather maize yields are mostly 

within one category of the actual maize yields, although for three seasons (1986/87, 

1988/89 and 1996/97) the CERES-Observed weather maize yields are two categories away 

from the actual maize yields, but this is in the minority of cases.  

 

When the probabilistic short season maize yields, obtained from the different simulation 

systems, are compared to the actual maize yields, it can be seen that all three simulation 

systems (CERES-CCAM, CERES-ECHAM4.5 and Multi-Model) are able to successfully 

simulate the above-normal maize yield of the 1998/99 La Niña season, with probabilities 

ranging between 50% and 100%.  The 1993/94 season is also a prominent season, since 

the Multi-Model simulation system correctly indicates the above-normal maize yield of this 

season, while the single model systems (CERES-CCAM and CERES-ECHAM4.5) do not.  
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The probabilities of the CERES-CCAM and Multi-Model simulation systems both correctly 

indicates the category of the maize yields (above-normal, near-normal or below-normal) of 

the 1982/83, 1983/84, 1989/90, 1992/93, 1996/97 and 1997/98 seasons, while the 

probabilities of the CERES-ECHAM4.5 simulation system is less reliable.  Four of these 

seasons are ENSO-neutral seasons and the other two are El Niño seasons.  Moreover, the 

CERES-CCAM simulation system is the only system able to correctly simulate the below-

normal maize yield of 1981/82 season and the above-normal maize yield of the 1988/89 

season with probabilities of 50% and higher.               
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Figure 3.28: Simulated short season maize yield probabilities.  CERES-CCAM yield (CC), 

CERES-ECHAM45 yield (CE) and Multi-Model yield (MM).  The actual maize yield 

(red) and CERES-Observed weather yield (grey) are denoted as A (above-normal), 

N (near-normal) or B (below-normal) at the top of the graph.             

 

3.4.1.3.2 Medium Season Maize  

 

The simulated medium season maize yield probabilities are shown in Figure 3.29.  In 

comparison to the actual maize yields the CERES-Observed weather maize yields reveal 

that the CERES-Maize model is able to correctly simulate the category of the yield (above-

normal, near-normal or below-normal) for 9 out of the 19 seasons considered in this study.  

Furthermore it appears as if the CERES-Maize model performs the best in capturing the 

maize yields of the below-normal maize yield seasons, with the category of 5 out of the 6 
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seasons indicated correctly.  The 1986/87 and 1988/89 seasons are the only two seasons 

in which the CERES-Observed weather maize yields are two categories away from that of 

the actual maize yields.   

 

In comparison to the actual maize yields, the simulated medium season maize yield 

probabilities show that for the 1982/83 and 1996/97 seasons all three simulation systems 

(CERES-CCAM, CERES-ECHAM4.5 and Multi-Model) successfully simulates the maize 

yields with relatively high probabilities ranging between 50% and 80%.  The probability 

distributions of the 1986/87, 1988/89, 1990/91 and 1998/99 seasons show that one of the 

single model simulation systems (CERES-CCAM or CERES-ECHAM4.5) as well as the 

Multi-Model simulation system correctly indicates the category of the maize yields (above-

normal, near-normal or below-normal), while the other single model system is either over or 

under confident and therefore simulates a different category to have the highest probability.  

For the 1991/92 season the Multi-Model simulation system shows an improvement from the 

two single model systems (CERES-CCAM and CERES-ECHAM4.5), while for the 1994/95 

season the CERES-CCAM simulation system is the only system able to correctly indicate 

the below-normal maize yield. 
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Figure 3.29: Simulated medium season maize yield probabilities.  CERES-CCAM yield (CC), 

CERES-ECHAM4.5 yield (CE) and Multi-Model yield (MM).  The actual maize yield 

(red) and CERES-Observed weather yield (grey) are denoted as A (above-normal), 

N (near-normal) or B (below-normal) at the top of the graph.        
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3.4.1.3.3 Long Season Maize  

 

Figure 3.30 shows the simulated long season maize probabilities.  The actual maize yields 

and CERES-Observed weather maize yields are displayed deterministically at the top op 

the graph.  When the CERES-Observed weather maize yields are compared to the actual 

maize yields it can be seen that the CERES-Maize model is able to correctly indicate the 

category of the yield (above-normal, near-normal or below-normal) for 11 out of the 19 

seasons investigated in this study.  From the actual maize yields it can be seen that 6 out of 

the 19 seasons are below-normal maize yield seasons, and the CERES-Maize model is 

able to correctly indicate the category of 5 out of the 6 below-normal seasons.  Thus, the 

CERES-Maize model performs better in simulating the maize yields of below-normal maize 

yield seasons than above-normal and near-normal maize yield seasons.  Furthermore, the 

CERES-Maize model performs well in capturing the category of the maize yields of the early 

1980’s (1980/81 – 1984/85).   
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Figure 3.30: Simulated long season maize yield probabilities.  CERES-CCAM yield (CC), 

CERES-ECHAM4.5 yield (CE) and Multi-Model yield (MM).  The actual maize yield 

(red) and CERES-Observed weather yield (grey) are denoted as A (above-normal), 

N (near-normal) or B (below-normal) at the top of the graph.     

 

From the probability distributions of the simulated long season maize yields it can be seen 

that for the 1982/83 El Niño season and 1996/97 ENSO-neutral season all three simulation 

systems (CERES-CCAM, CERES-ECHAM4.5 and Multi-Model) successfully simulate the 
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below-normal (1982/83) and above-normal (1996/97) maize yields for these two seasons.  

The probability distributions for the 1980/81, 1988/89, 1990/91, 1994/95 and 1998/99 

seasons show that the CERES-CCAM simulation system and Multi-Model simulation 

system correctly indicates the category of the maize yields (above-normal, near-normal or 

below-normal), while the CERES-ECHAM4.5 simulation system fails to get the category 

correct.  The 1992/93 season is also interesting as for this season the CERES-CCAM 

simulation system is the only system able to correctly simulate the category of the maize 

yield with a high probability of 67%.  Furthermore, for many season all three simulation 

systems simulates the same incorrect category to have the highest probability, as can be 

seen, for example, for the 1984/85 season in which all three simulation systems gives the 

highest probability to the near-normal category.      

 

In general, it can be seen that the performance of the CERES-Observed weather simulation 

system in simulating the category of the maize yield increases from the short season maize 

scenario to the long season maize scenario, with the best performance evident for below-

normal maize yields.  The CERES-CCAM and Multi-Model simulation systems seem to 

perform the best for above-normal maize yield seasons, while the CERES-ECHAM4.5 

simulation system does not perform well.    

 

3.4.2 Objective Validation 

3.4.2.1 Dry/Warm Western Region 

3.4.2.1.1 Short Season Maize  

 

Figure 3.31 shows the short season maize ROC curves for each of the maize yield 

simulation systems.  The CERES-CCAM simulation system (a) shows the best skill in 

simulating below-normal maize yields for the dry/warm western production region.  The 

ROC curves of the CERES-ECHAM4.5 simulation system (b) falls beneath the no-skill 

diagonal, which indicates that this simulation system does not have skill in simulating any of 

the probability categories.  Similar to the CERES-CCAM simulation system the Multi-Model 

simulation system (c) also reveals the highest skill in simulating below-normal maize yields 

with considerably less skill for the other two categories (near-normal and above-normal).  

Table 3.1, which shows the ROC scores, confirms these results.  All the ROC scores are 

either equal to or less that 0.5 except for the below-normal category of the CERES-CCAM 

and Multi-Model simulation systems which are 0.65 and 0.62 respectively.    
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Figure 3.31: ROC curves for above-normal, near-normal and below-normal simulated short 

season maize yields.  (a) CERES-CCAM maize yield simulation system, (b) CERES-

ECHAM4.5 maize yield simulation system and (c) Multi-Model maize yield simulation 

system.      

 
Simulation system Below-normal Near-normal Above-normal 

CERES-CCAM 0.65 0.08 0.51 

CERES-ECHAM4.5 0.31 0.41 0.26 

Multi-Model 0.62 0.20 0.35 

 
Table 3.1: ROC scores for the simulated short season maize yield probabilities. 

 

3.4.2.1.2 Medium Season Maize  

 

The ROC curves for medium season maize can be seen in Figure 3.32.  The maize yield 

simulations performed by the CERES-CCAM simulation system (a) show somewhat higher 

skill for the above-normal category than for the below-normal category and substantially 

less skill for the near-normal category.  This is not a surprising result, as the skill of GCMs in 

capturing the main summer seasonal rainfall variability over southern Africa tends to be 

higher in ENSO years (Landman and Mason, 1999b).  Thus, GCMs are more skilful in El 

Niño and La Niña years than in ENSO-neutral years.  El Niño years greatly enhances the 
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probabilities for below-normal maize yields and La Niña years greatly enhances the 

probabilities for above-normal maize yields.  The ROC curves of the CERES-ECHAM4.5 

simulation system (b) are once again beneath the no-skill diagonal with ROC scores 

ranging between 0.17 and 0.43 (see Table 3.2).  The Multi-Model simulation system shows 

poor skill in simulating any of the probability categories.  

 

  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.32: ROC curves for above-normal, near-normal and below-normal simulated medium 

season maize yields.  (a) CERES-CCAM maize yield simulation system, (b) CERES-

ECHAM4.5 maize yield simulation system and (c) Multi-Model maize yield simulation 

system.      

 
Simulation system Below-normal Near-normal Above-normal 

CERES-CCAM 0.63 0.18 0.74 

CERES-ECHAM4.5 0.33 0.38 0.18 

Multi-Model 0.47 0.20 0.39 

 
Table 3.2: ROC scores for the simulated medium season maize yield probabilities. 

 

4.6.2.1.3 Long Season Maize  

 
In Figure 3.33 the long season maize ROC curves are shown for each of the maize yield 

simulation systems.  From the ROC curves for the CERES-CCAM simulation system (a) it 

can be observed that the highest skill occurs for above-normal maize yields, with slightly 
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lower skill for below-normal maize yields and much reduced skill for near-normal maize 

yields.  The CERES-ECHAM4.5 simulation system (b) shows relatively high skill for the 

near-normal category, but with the curves of the below-normal and above-normal categories 

falling beneath the no-skill diagonal.  The Multi-Model simulation system (c) on the other 

hand shows low skill for all three probability categories.  Table 3.3 shows the ROC scores 

for each of the simulation systems and for each of the equiprobable categories.  The 

highest ROC scores are evident for the above-normal category of the CERES-CCAM 

simulation system (0.62) and the near-normal category of the CERES-ECHAM4.5 

simulation system (0.62).   

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.33: ROC curves for above-normal, near-normal and below-normal simulated long 

season maize yields.  (a) CERES-CCAM maize yield simulation system, (b) CERES-

ECHAM4.5 maize yield simulation system and (c) Multi-Model maize yield simulation 

system.      

 
Simulation system Below-normal Near-normal Above-normal 

CERES-CCAM 0.56 0.24 0.62 

CERES-ECHAM4.5 0.35 0.62 0.26 

Multi-Model 0.47 0.40 0.36 

 
Table 3.3: ROC scores for the simulated long season maize yield probabilities. 
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In general, the ROC scores seem to increase from the short season maize scenario to the 

long season maize scenario.  Although, the highest ROC score (0.74) is evident for the 

medium season maize scenario (Table 3.2).    

  

3.4.2.2 Temperate Eastern Region 

3.4.2.2.1 Short Season Maize  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.34: ROC curves for above-normal, near-normal and below-normal simulated short 

season maize yields.  (a) CERES-CCAM maize yield simulation system, (b) CERES-

ECHAM4.5 maize yield simulation system and (c) Multi-Model maize yield simulation 

system.     

 

Simulation system Below-normal Near-normal Above-normal 

CERES-CCAM 0.58 0.72 0.45 

CERES-ECHAM4.5 0.55 0.58 0.47 

Multi-Model 0.51 0.70 0.35 

 
Table 3.4: ROC scores for the simulated short season maize yield probabilities. 

 

The ROC curves for short season maize can be seen in Figure 3.34.  The CERES-CCAM 

simulation system (a) shows that for the near-normal category the hit rate largely outscores 
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the false alarm rate.  Thus, the below-normal and above-normal categories are somewhat 

less skilful than the near-normal category.  The ROC curves of the CERES-ECHAM4.5 

simulation system (b) shows that the near-normal curve deviates furthest away from the no-

skill diagonal, which implies that this simulation approach has highest skill in simulating 

near-normal maize yield seasons.  The Multi-Model simulation system (c) also indicates 

highest skill for the near-normal category; with a ROC score of 0.70 (see Table 3.4).     

 

3.4.2.2.2 Medium Season Maize  

 

Figure 3.35 shows the medium season maize ROC curves for each of the maize yield 

simulation systems.  The CERES-CCAM simulation system (a) shows the best skill in 

simulating above-normal maize yields for the temperate eastern production region.  The 

ROC curves of the CERES-ECHAM4.5 simulation system (b) shows best skill for the near-

normal category, with much lower skill for the above-normal and below-normal categories.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.35: ROC curves for above-normal, near-normal and below-normal simulated medium 

season maize yields.  (a) CERES-CCAM maize yield simulation system, (b) CERES-

ECHAM4.5 maize yield simulation system and (c) Multi-Model maize yield simulation 

system.     
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The ROC curves of the Multi-Model simulation system (see Table 3.5) shows that this 

simulation system performs the best in simulating above-normal maize yields, with ROC 

scores of 0.65 for above-normal, 0.55 for near-normal and 0.5 for below-normal. 

 

 
Table 3.5: ROC scores for the simulated medium season maize yield probabilities. 

  

3.4.2.2.3 Long Season Maize  

 

  
  

 
 
  

  
 
  
 
 
 
 
 
 
 
 

 
  
 
 
 
 
 
 
 
Figure 3.36: ROC curves for above-normal, near-normal and below-normal simulated long 

season maize yields.  (a) CERES-CCAM maize yield simulation system, (b) CERES-

ECHAM4.5 maize yield simulation system and (c) Multi-Model maize yield simulation 

system.     

 

In Figure 3.36 the long season maize ROC curves are shown for each of the maize yield 

simulation systems.  From the ROC curves for the CERES-CCAM simulation system (a) it 

can be observed that both the above-normal and below-normal categories show high skill, 

with ROC scores of 0.83 and 0.66 respectively (see Table 3.6).  The CERES-ECHAM4.5 

Simulation system Below-normal Near-normal Above-normal 

CERES-CCAM 0.50 0.41 0.79 

CERES-ECHAM4.5 0.53 0.70 0.49 

Multi-Model 0.50 0.55 0.65 
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simulation system (b) reveals once again best skill for the near-normal category.  The ROC 

curves of the Multi-Model simulation system show that the above-normal simulations 

produced by this simulation system are most reliable.    

 

 
Table 3.6: ROC scores for the simulated long season maize yield probabilities. 

 

In general, in the short season maize scenario the highest ROC scores occur for the near-

normal category, while in the medium season maize scenario and long season maize 

scenario the highest ROC scores occur for the above-normal category.  The highest ROC 

score of 0.85 is evident for the long season maize scenario (Table 3.6).     

 

3.4.2.3 Wet/Cool Eastern Region 

3.4.2.3.1 Short Season Maize  

 

Figure 3.37 shows the short season maize ROC curves for each of the different simulation 

systems.  From the ROC curves for the CERES-CCAM simulation system (a) it can be 

observed that all three curves are almost completely above the no-skill diagonal line with 

ROC scores of 0.83 for above-normal, 0.77 for below-normal and 0.57 for near-normal (see 

Table 3.7).  Thus, this simulation system performs best in simulating above-normal maize 

yields.  The CERES-ECHAM4.5 simulation system (b) shows that all three curves fall 

beneath the no-skill diagonal line, which means that this simulation system does not have 

skill in simulating any of the equiprobable categories.  The Multi-Model simulation system 

(c) on the other hand shows some skill for the below-normal and above-normal categories.   

 

  
Table 3.7: ROC scores for the simulated short season maize yield probabilities. 

 

 

 

 

 

 

 

Simulation system Below-normal Near-normal Above-normal 

CERES-CCAM 0.66 0.08 0.83 

CERES-ECHAM4.5 0.49 0.62 0.57 

Multi-Model 0.64 0.33 0.85 

Simulation system Below-normal Near-normal Above-normal 
CERES-CCAM 0.77 0.57 0.83 

CERES-ECHAM4.5 0.28 0.35 0.32 

Multi-Model 0.57 0.48 0.54 
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Figure 3.37: ROC curves for above-normal, near-normal and below-normal simulated short 

season maize yields.  (a) CERES-CCAM maize yield simulation system, (b) CERES-

ECHAM4.5 maize yield simulation system and (c) Multi-Model maize yield simulation 

system.     

 

3.4.2.3.2 Medium Season Maize  

 

Table 3.8: ROC scores for the simulated medium season maize yield probabilities. 

 

The ROC curves for medium season maize can be seen in Figure 3.38.  The maize yield 

simulations performed by the CERES-CCAM simulation system (a) show somewhat higher 

skill for the below-normal category than for the above-normal category and substantially 

less skill for the near-normal category.  The ROC curves of the CERES-ECHAM4.5 

simulation system (b) are mainly beneath the no-skill diagonal with ROC scores ranging 

between 0.37 and 0.46 (see Table 3.8).  The Multi-Model simulation system shows some 

Simulation system Below-normal Near-normal Above-normal 

CERES-CCAM 0.74 0.48 0.68 

CERES-ECHAM4.5 0.46 0.43 0.37 

Multi-Model 0.56 0.41 0.57 
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skill for the below-normal and above-normal categories, but no skill for the near-normal 

category.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.38: ROC curves for above-normal, near-normal and below-normal simulated medium 

season maize yields.  (a) CERES-CCAM maize yield simulation system, (b) CERES-

ECHAM4.5 maize yield simulation system and (c) Multi-Model maize yield simulation 

system.     

 

3.4.2.3.3 Long Season Maize  

 

Figure 3.39 shows the long season maize ROC curves for each of the maize yield 

simulation systems and Table 3.9 shows the ROC scores.  The CERES-CCAM simulation 

system (a) shows highest skill for above-normal maize yields (ROC score = 0.75), slightly 

lower skill for below-normal maize yields (ROC score = 0.74) and much reduced skill for 

near-normal maize yields (ROC score = 0.38).  The ROC curves of the CERES-ECHAM4.5 

simulation system (b) reveals highest skill for the below-normal category, with the above-

normal and near-normal curves falling beneath the no-skill diagonal.  It can be seen from 

the ROC curves of the Multi-Model simulation system that this simulation system is a 

combination between the CERES-CCAM and CERES-ECHAM4.5 simulation systems.  The 
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ROC scores of the Multi-Model simulation system are 0.70 for the above-normal category, 

0.63 for the below-normal category and 0.41 for the near-normal category.      

 

 
Table 3.9: ROC scores for the simulated long season maize yield probabilities. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 

Figure 3.39: ROC curves for above-normal, near-normal and below-normal simulated long 

season maize yields.  (a) CERES-CCAM maize yield simulation system, (b) CERES-

ECHAM4.5 maize yield simulation system and (c) Multi-Model maize yield simulation 

system.     

 

In general, the ROC scores of the below-normal category remain similar in all three 

scenarios.  The above and below-normal categories of all three scenarios show relatively 

high ROC scores with the highest ROC score (0.83) evident for the short season maize 

scenario (Table 3.7).    

Simulation system Below-normal Near-normal Above-normal 

CERES-CCAM 0.74 0.38 0.75 

CERES-ECHAM4.5 0.59 0.48 0.40 

Multi-Model 0.63 0.41 0.70 
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3.5 SUMMARY 

 

The simulated maize yields obtained from the different simulation systems for the primary 

maize producing region of South Africa have been presented.  The simulation systems are 

tested over 19 seasons from 1980/81 to 1998/99.  The simulation systems are constructed 

by forcing the CERES-Maize model with observed weather data, CCAM-simulated fields 

and ECHAM4.5 simulated fields.  The combination between the CERES-CCAM simulated 

maize yields and CERES-ECHAM4.5 simulated maize yields forms the Multi-Model system.   

 

In terms of the spatial distribution of the simulated maize yields, the four different maize 

yield simulation systems capture the east-west gradient in maize yield across the study 

area.  The ability of the different simulation systems in simulating the season-to-season 

change in maize yield seems to be the lowest for the short season maize scenarios and the 

highest for the long season maize scenarios.  The long season maize planted on plant date 

1 scenario stands out as the scenario for which most of the simulation systems show the 

best results.                              

 

The CERES-Maize model shows high skill in simulating South African maize yields, with 

statistically significant correlations found for several magisterial districts across the study 

area.  The CERES-CCAM simulation system produces skill levels comparable to that of the 

CERES-Observed weather simulation system.  The CERES-ECHAM4.5 simulation system 

reveals overall poor skill.  Since the CERES-Maize model is highly dependant on the 

weather input data, improved ECHAM4.5-simulated fields will most probably improve the 

maize yield simulations from the CERES-ECHAM4.5 simulation system.  The CERES-

ECHAM4.5 simulated maize yields negatively affect the Multi-Model system, as a simple 

un-weighted averaging approach is used as the combination method to construct the Multi-

Model system.  The ECHAM4.5-simulated fields can possibly be improved through 

downscaling and the use of a different combination method which can lead to improved 

Multi-Model simulations.         
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CHAPTER 4 

 

4 SUMMARY AND CONCLUSIONS 

 

South Africa’s climate is highly variable and crop production in the country is predominantly 

rain-fed.  Since weather is the primary source of uncertainty in crop management, 

unexpected climatic extremes can have detrimental effects on South African crop yields.  

Therefore, weather and climate variations can be seen as the main factors responsible for 

year-to-year variations in the crop yields.  An investigation on ways to reduce the 

uncertainty in expected weather regime changes of a forthcoming season has therefore 

become essential.  However, farmers can benefit more from information when it is 

presented in terms of production outcomes rather than from a weather or seasonal forecast 

that only gives an indication of variations in rainfall and temperature.                

 

Since maize is the primary crop grown in South Africa, this dissertation has investigated the 

use of seasonal climate forecasts in the prediction of South African maize yields.  To do 

this, a crop model has been run with both observed weather data and GCM-simulated 

fields.  The ability of the crop model to simulate South African maize yields has been 

established by comparing the maize yield output obtained from forcing the crop model with 

observed weather data to actual maize yields.  The maize yields produced by the crop 

model-GCM based maize yield simulation systems have been investigated to establish 

whether these simulation systems can produce skill levels similar to the target skill level set 

by the crop model forced with observed weather data.  Finally, the two crop model-GCM 

based maize yield simulation systems have been combined through simple un-weighted 

averaging of the simulated maize yields to form a multi-model maize yield simulation system 

to establish whether the skill of this multi-model system outscores the skill of the best crop 

model-GCM based simulation system.  The simulation systems have been tested over 19 

seasons from 1980/81 to 1998/99.        

 

The findings of the research are summarised as follows: 

 

A. Quantifying the skill of the CERES-Maize model 

 

1. The east to west decrease in maize yield across the study area has been 

successfully simulated by the CERES-Maize model.  The spatial distribution of the 
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medium season maize (65 – 70 days to flowering) yields seem to show the best 

agreement with the spatial distribution of the actual maize yields.    

 

2. For all three of the production regions, the CERES-Maize model has performed the 

best in simulating the inter-seasonal variability of the long season maize (70 – 75 

days to flowering) yield scenarios (especially for the first plant date).  The CERES-

Maize model has performed well in simulating both the relative magnitude and the 

sign of the anomaly of the maize yields.       

 

3. All 9 scenarios have shown high skill for the western part of the North-West Province 

(correlations > 0.81).  The association between the CERES-Observed weather 

maize yields and actual maize yields has been found to be stronger for the western 

parts of the study area than for the eastern parts of the study area.  The highest 

correlations are evident for the long season maize planted on plant date 1 scenario, 

with the correlations of 39 out of the 44 magisterial districts being statistically 

significant at the 95% level of confidence and a high level of field significance.     

 

4. In simulating the category of the maize yields (above-normal, near-normal or below-

normal) of the dry/warm western production region, the skill of the CERES-Maize 

model seems to increase from the short season maize (60 – 65 days to flowering) 

scenario to the long season maize scenario.  Highest skill levels have been found for 

above-normal maize yields.  The categorical simulations for the temperate eastern 

production region have shown high skill levels for the medium season maize 

scenario and for simulating below-normal maize yields.  For the wet/cool eastern 

production region skill has decreased from the long season maize scenario to the 

short season maize scenario, and the CERES-Maize model has performed the best 

in simulating below-normal maize yields.     

 

B. Simulating maize yields with the CERES-CCAM simulation system 

 

1. The CERES-CCAM simulation system has captured the characteristic pattern of 

high maize yields in the eastern parts and lower maize yields in the western parts of 

the study area. 

 

2. Overall, the CERES-CCAM simulation system has performed better in simulating the 

sign of the anomaly of the maize yields than the relative magnitude of the maize 
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yields.  However, this simulation system has failed to correctly simulate the season 

with the lowest maize yield and the season with the highest maize yield.   

 

3. All 9 scenarios have shown high skill for the western part of the Free State 

(correlations between 0.61 and 0.8).  High skill levels have been found in simulating 

the maize yields of the first plant dates, thus short season maize planted on plant 

date 1, medium season maize planted on plant date 1 and long season maize 

planted on plant date 1.  The simulated maize yields for the medium season maize 

scenarios have shown the most magisterial districts with statistically significant 

correlations (22 out of the 44) and high levels of field significance.                  

 

4. The probabilistic simulations have shown that for the dry/warm western production 

region the CERES-CCAM simulation system has performed better in simulating the 

above-normal yield category of the medium season maize scenario than simulating 

near-normal and below-normal maize yields.  For the temperate eastern production 

region highest skill has been found for the above-normal category of the long 

season maize scenario and for the wet/cool eastern production region highest skill 

has been found for the above-normal category of the short season maize scenario.      

 

C. Simulating maize yields with the CERES-ECHAM4.5 simulation system 

 

1. The CERES-ECHAM4.5 simulation system has also captured the gradient in maize 

yield across the study area and in the short season maize scenarios this system has 

performed well in simulating the distribution in maize yield in the eastern part of the 

Free State. 

 

2. Possibly due to the low spatial resolution of the ECHAM4.5-simulated fields, the 

CERES-ECHAM4.5 simulation system has struggled to simulate the sign of the 

anomaly of the yields over the 19 seasons considered in this study.  However, in the 

long season maize scenarios for the temperate eastern production region this 

simulation system has produced more realistic maize yields (in terms of the relative 

magnitude of the yield) for the 1985/86, 1990/91 and 1997/98 seasons than that 

produced by the, CERES-CCAM and Multi-Model simulation systems.  In the long 

season maize scenarios for the wet/cool eastern production region the CERES-

ECHAM4.5 simulation system has performed better than the CERES-CCAM 

simulation system in simulating the relative magnitude of the maize yields of the 

1991/92, 1996/97, and 1997/98 seasons.   

 
 
 



 140 

3. The probabilistic simulations have shown that for the dry/warm western and wet/cool 

eastern production regions the CERES-ECHAM4.5 simulation system has no skill in 

simulating any of the categories for the short and medium season maize scenarios, 

but show at least some skill in simulating near-normal maize yields and below-

normal maize yields for the long season maize scenario in the dry/warm western 

production region and wet/cool eastern production region respectively.  For the 

temperate eastern production region the CERES-ECHAM4.5 simulation system has 

shown to have some skill in simulating both below-normal and near-normal maize 

yields for the short season maize scenario, relatively high skill in simulating near-

normal maize yields for the medium season maize scenario and some skill in 

simulating the near-normal and above-normal categories for the long season maize 

scenario.         

 

4. Improved GCM-simulated fields should result in more skilful maize yield simulations.  

It may be possible to improve on the spatial resolution of the ECHAM4.5-simulated 

fields by nesting a Regional Climate Model (RCM) within the ECHAM4.5 GCM.  This 

process of downscaling will provide more detailed simulated fields, which will 

represents sub-grid scale features, like precipitation, much better.   

 

D. Simulating maize yields with the Multi-Model simulation system 

 

1. Similarly to the two single model simulation systems (CERES-CCAM and CERES-

ECHAM4.5) the Multi-Model simulation system has also captured the east to west 

decrease in the spatial distribution of the maize yield across the study area.    

 

2. Even though this Multi-Model simulation system has performed better than both the 

CERES-CCAM and CERES-ECHAM4.5 simulation systems in simulating the 

relative magnitude of the maize yields of 1981/82, 1983/84, 1984/85 and 1996/97 

seasons in the temperate eastern production region, overall the inter-seasonal 

variability in maize yields as simulated by the Multi-Model simulation system was 

only slightly better than that of the CERES-ECHAM4.5 simulation system and did 

not outscore the CERES-CCAM simulation system.     

 

3. The Multi-Model simulated maize yields expressed probabilistically have shown that 

for the dry/warm western production region this simulation system has no skill in 

simulating any of the categories for the medium and long season maize scenarios, 

but has some skill in simulating below-normal maize yields for the short season 
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maize scenario.  For the temperate eastern production region the Multi-Model 

simulation system has shown relatively high skill levels in simulating both above-

normal and near-normal maize yields, while for the wet/cool eastern region some 

skill has been seen for the above-normal and below-normal categories.   

 

4. The combination between the CERES-CCAM simulated maize yields and CERES-

ECHAM4.5 simulated maize yields did not improve on the CERES-CCAM simulation 

system’s skill in simulating South African maize yields.  Due to the fact that the 

CERES-ECHAM4.5 simulation system has not performed well, the potential 

advantage to use an equal-weights multi-model system has not been demonstrated 

in this study.           

  

The CERES-Maize model has been used to simulate maize yields for each of the 

magisterial districts in the main maize producing area of South Africa.  The crop model has 

been forced with observed weather data, CCAM-simulated fields and ECHAM4.5-simulated 

fields.  The simulated maize yields from the CERES-CCAM simulation system and CERES-

ECHAM4.5 simulation system have been combined, using simple un-weighted averaging, to 

form a multi-model maize yield system.  The simulated maize yields from the different 

simulation systems have been compared to actual maize yields.  From the CERES-

Observed weather simulated maize yields it has been found that the CERES-Maize model 

has significant skill in simulating South African maize yields.  This crop model can possibly 

be used in an operational environment, provided that the forcing fields (e.g. CCAM-

simulated fields and ECHAM4.5-simulated fields) are adequately skilful.  The CERES-

CCAM simulation system has shown comparable skill levels to that of the CERES-

Observed weather simulation system, but the CERES-ECHAM4.5 simulation system has 

shown poor skill.  Due to this, the Multi-Model simulation system did not outscore the skill of 

the best single-model simulation system (CERES-CCAM).  Provided that the GCM-

simulated fields can be improved, the multi-model simulation system has the potential to 

improve significantly.  This can possibly be achieved by downscaling the raw output from 

the GCMs.         

          

The most important conclusion of this dissertation is that the potential for seasonal maize 

yield forecasting in South Africa using a multi-model ensemble system is high.  However, 

before this goal can be realized, it will be necessary to improve the GCM fields that will be 

used to force the CERES-Maize model.   
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The maize yield forecast system proposed in this study can provide farmers with usable 

information on the possible successes of short, medium and long season maize.  This study 

has shown that it is possible to simulate maize yield for South Africa with raw output from 

high resolution GCMs, which are already being used operationally.  Thus, maize yield 

forecasts with a usable level of skill can be made with the use of an objective maize yield 

forecast system that incorporates GCMs.  Such a system does not currently exist in South 

Africa.          
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