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ABSTRACT 

The effect of austenitising and tempering practice on the microstructure and 

mechanical properties of two martensitic stainless steels was examined with the aim 

of supplying heat treatment guidelines to the consumer or fabricator that, if followed, 

would result in a martensitic structure with minimal retained austenite, evenly 

dispersed carbides and a hardness of between 610 HV and 740 HV (hardness on the 

Vickers scale) after quenching and tempering.  The steels examined during the 

course of this examination conform in composition to medium-carbon AISI type 420 

martensitic stainless steel, except for the addition of 0.13% vanadium and 0.62% 

molybdenum to one of the alloys.  The effect of various austenitising and tempering 

heat treatments was examined.  Steel samples were austenitised at temperatures 

between 1000°C and 1200°C, followed by quenching in oil.  The as-quenched 

microstructures were found to range from almost fully martensitic structures to 

martensite with up to 35% retained austenite after quenching, with varying amounts 

of carbide precipitates.  The influence of tempering, double tempering, and sub-zero 

treatment was investigated.  Optical and scanning electron microscopy was used to 

characterise the as-quenched microstructures, and X-ray diffraction analysis was 

employed to identify the carbide present in the as-quenched structures and to 

quantify the retained austenite contents.  Hardness tests were performed to 

determine the effect of heat treatment on mechanical properties.  As-quenched 

hardness values ranged from 700 HV to 270 HV, depending on the amount of 

retained austenite.  Thermodynamic predictions (using the CALPHAD� model) were 

used to explain these microstructures based on the solubility of the carbide particles 

in the matrix at various austenitising temperatures.  The carbide particles were found 

to be mainly in the form of M7C3 at elevated temperatures, transforming to M23C6 on 

cooling. 
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