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ABSTRACT 


Various different statistical reduction techniques were used to determine the 

best curves that would fit through apparent resistivity and impedance phase 

versus frequency data . The major problem in processing magnetotelluric data is 

the presence of manmade electromagnetic noise. This noise causes outliers to 

appear on the data and as a result does not always have a Gaussian 

distribution. Most of the conventional reduction techniques like those based on 

the L1- and L2 -norm assume that the noise in the data is normally distributed. 

To address this problem two additional techniques were applied to the data, 

namely the robust M-estimation technique, and the Lp norm technique. The 

robust M-estimation technique minimises a loss function with a known 

distribution. Different weights are applied to the impedance data depending on 

the position in the error distribution. The adaptive Lp norm technique uses the 

real distribution of the data to determine the value of p used in the reduction. 

These methods were first tested on synthetic data and then applied to real data 

collected in the Northern Cape Province of South Africa. The synthetic tests 

showed the L1 - norm and Lp - norm to provide good results. It also became 

clear that the adaptive Lp-norm method is more susceptible to the starting 

impedance values than the robust M-estimation technique. When applied to real 

magnetotelluric data, very similar results were obtained from all the techniques 

when the data quality was relatively good . For bad quality data, the robust M

estimation method gave the best results. It is clear that the effectiveness of the 

statistical techniques is dependent on the quality of the data. 
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