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SUMMARY

Low molecular mass aldehydes, such as formaldehyde (HCHO) and acrolein, are
introduced into the environment through incomplete fuel combustion and tobacco
smoke. Indoors, formaldehyde is emitted mainly by Urea Formaldehyde (UF)-resin
treated furniture. These aldehydes have long been suspected carcinogens and for
this reason several methods exist to monitor them. The methods that can most
effectively and selectively pre-concentrate aldehydes involve in-situ derivatisation.
Unfortunately, the derivatising agents as well as their associated solvents or

adsorbents, are responsible for problems encountered with these methods. A




recently developed method using Solid Phase MicroExtraction (SPME), introduced
polydimethylsiloxane as the absorbent for the derivatising agent, with promising

results. However, this method is not ideal for field sampling.

In our study, the use of the silicone rubber trap, developed in our laboratory, as a
pre-concentrating device for volatile aldehydes in the air, was investigated. The
silicone rubber is saturated with the dynamic headspace of 0-(2,3,4,56-
PentaFluoroBenzyl) Hydroxyl Amine (PFBHA). Carbonyl compounds are pre-
concentrated, by reaction with the sorbed PFBHA, to form the stable oxime-
derivative. The oxime-derivatives are then thermally desorbed, cryogenically
focussed and analysed using Gas Chromatography-Mass Spectrometry and Gas

Chromatography-Flame lonisation Detection.

The reaction efficiency of HCHO with PFBHA was experimentally determined to be
between 75% to 95%. Breakthrough of the HCHO-Oxime did not occur even after a
collection volume of 3 litres. Our detection limit for HCHO is restricted by the HCHO-
oxime impurity in the PFBHA blank. The minimum detected HCHO concentration was
0.1ppm. Lower detection limits for acetaldehyde, acrolein and crotonal were obtained
as they are absent in the PFBHA blank. They were 0.035ppm, 0.057ppm and
0.064ppm respectively for a collection volume of 10ml, and s/n of 3. The trap was
also tested on real gaseous indoor and outdoor air samples and headspace analysis

of beer.

Derivatisation on a silicone rubber trap is a promising technique. The simpler method
for coating the trap with PFBHA reduces sample preparation time. The silicone
rubber is inert, and after thermal desorption is immediately reusable. Analysis of the
traps can easily be automated, and the sampling set-up is inexpensive, convenient

and portable for fieldwork.
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SAMEVATTING

Lae-molekuléremassa aldehiede, soos formaldehied (HCHO) en akroleien, word
vrygestel in die omgewing deur onvolledige verbrandingsprosesse en deur tabak-
rook. Binnemuurs, word formaldehied hoofsaaklik vrygestel deur Ureum-
Formaldehied (UF) - hars behandelde meubels. Hierdie aldehiede is lankal verdagte
karsinogene, daarom bestaan daar 'n verskeidenheid metodes om hulle te moniteer.
Die beste metodes wat aldehiede effektief en selektief prekonsentreer maak gebruik
van in-situ derivatisering. Probleme word egter ondervind met die

derivatiseringsmiddels asook hul geassosieerde oplosmiddels en adsorbeerders. 'n
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Nuwe, baie belowende metode wat SoliedeFaseMikroEkstraksie (SFME) gebruik,
stel polidimetielsiloksaan bekend as die absorbeerder vir die derivatiseringsreagens.
Ongelukkig is hierdie metode minder geskik vir monsterneming buite die

laboratorium.

In ons studie word die gebruik van silikoonrubber-opvangers, wat in ons laboratorium
ontwikkel is, vir die prekonsentrasie van viugtige aldehiede in lug ondersoek. Die
silikoonrubber word versadig met die dinamiese dampruim van O-(2,3,4,5,6-
PentaFluoroBenziel)HydroksielAmien  (PFBHA). Karbonielverbindings  word
gekonsentreer, deur reaksie met die geabsorbeerde PFBHA, om stabiele oksiem-
derivate te vorm. Die oksiem-derivate word daarna termies gedesorbeer, gefokus
deur afkoeling en geanaliseer deur middel van gaschromatografie en

gaschromatografie-massaspektrometrie.

Eksperimenteel is vasgestel dat die reaksie van HCHO met PFBHA tussen 75% en
95% volledig verloop. Geen deurbraak van die HCHO-oksiem het na 'n
versamelvolume van 3 liter plaasgevind nie. Die deteksielimiet vir HCHO was beperk
deur die HCHO-oksiem onsuiwerheid in die PFBHA. Die minimum waarneembare
HCHO-konsentrasie was 0.1dpm. Laer deteksielimiete is moontlik vir asetaldehied,
akroleien en krotonaldehied omdat hul reaksieprodukte nie teenwoordig was in die
PFBHA reagens nie. Hul deteksielimiete was 0.035dpm, 0.057dpm en 0.064dpm
onderskeidelik vir 'n versamelvolume van 10ml (s/n 3). Die opvanger is ook getoets

met werklike binne- en buitemuur lugmonsters en bier-dampruim.

Derivatisering in silikoonrubber-opvangers is 'n belowende tegniek. 'n Makliker
metode om die opvanger met PFBHA te bedek verminder die hoeveelheid
monstervoorbereidingstyd. Die silikoonrubber is inert en na termiese desorpsie is dit

dadelik herbruikbaar. Analiese van die opvangers kan maklik geoutomatiseer word



en die monsternemingstelsel is goedkoop, gerieflik en draagbaar vir monsterneming

buite die laboratorium.
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