University of Pretoria, etd - Van der Westhuizen, A L (2003)

01

. INTRODUCTION

The project can be defined as a response to the immediate socio -economical needs as delineated in the Hatfield Urban Design Framework (Van der Westhuizen \& Roccon, 2003), and that of the proposed Hatfield Gautrans Station Development (HGSD). (Roccon, EB, 2003, MArch (Prof). The project is therefore difficult to address through a conventional briefing document. This section will elaborate on the decisions that where taken to define the functions of the project.

The vision for the project is to establish a vibrant urban development while reacting to the needs of the local community and neighbouring projects. The development therefore forms a prototype of how urban developments could take place to count er unsustainable developments, such as urban sprawl and other practices, currently undermining the integrity of the built environment in South Africa.

Project Overview

13 CONTEXT

In a broader context, the development will take place in Pretoria, within Gauteng, one of nine provinces in South Africa. Many workers staying in Pretoria commute to Johannesburg daily, resulting in the need for a reliable public transport sys between the two cities. The proposed Gautrans Rapid Rail Link, to be initiated by Blue IQ, an affiliation of the Gauteng Provincial Government, will address the commuter needs for many years to come. Construction of the rail link is planned to start in 2007.

This project proposal will be undertaken with the assumption that the rail line will be built, responding to the HGSD, as proposed by Bernard Roccon, (thesis proposal, MArch(Prof) 2003).

On a smaller scale, the development will take place in Hatfiel d, a suburb in Pretoria, home to mostly students and young professionals. Recent proliferation of commercial enterprises, such as motor show rooms, has started to diminish the residential character of this area. Some important spatial linkages to other fun ctions, for instance the Hatfield Plaza Retail development, do exist, and will form part of the master plan for the development.

1.4 LOCATION

The project is located on erf 717 , in Hatfield, between Schoeman street to the north and School street to the south. As a result of the adjacent HGSD, two road servitudes penetrate the site in the form of a shuttle road as well as a service r oad also used for feeding the bus terminal.
1.1 Diagram of programme generators
1.2 Map of South Africa indicating Gauteng and Pretoria
1.3 Gautrain Rapid Rail Link route and stations,
1.4 Hatfield, Pretoria

Following pages:
ollowing pages
1.5 Context plan for proposed development.
1.6 Hatfield Gautrain Station Development Master Plan.

SCHOEMAN STREET one way west-east \rightarrow

3

Office Park
ARCADIA STREET two way west-east

the area between Arcadia street and the rail

 the area between Arcadia street and the raillines has been designated for use as CAR facilities for the Hatfield Gautrans station. Train Sevitude

SCHOEMAN STREET one way west-east

.5_SOCIO-ECONOMICAL NEEDS

The project aims at ensuring a vibrant urban atmosphere in the modal transfer area. The following socio-economical needs of both the HGSD and the local community are addressed

The HGSD's needs are
_24-hour activity to ensur e active and passive security.
An intercity bus terminal
_A temporary storage, and loading facility
forming part of the service road to service the development.
_Overnight accommodation for commuters and temporary workers
Police presence.

Local Community's needs
According to the Hatfield Urban Design
Framework (HUDF, 2003), a large part of the local community consists of students of various nearby institutions, including the University of Pretoria. Their needs in terms of a recruitment agency, a s well as certain on -site jobs with flexible shifts, will be catered for
_Hostel type accommodation for students.
-The creation of jobs and the promotion of work in a commuter and institutional zone.

1.6 FUNCTION

To react to the aforementioned needs, a rather unique programme has been adopted. The following functions will form part of the accommodation schedule to be implemented:
_An Intercity Bus Terminal providing a coach service to nearby cities a nd towns, not covered by the Metro -rail and Gautrans networks. Public ablutions, ticketing and concessions are ablutions,
included.
__A warehouse facility allowing secure and dry temporary storage and loading of goods. This includes offices and ablution facilities fo workers.
_A Job Centre, functionally linked to the warehouse facility acting, as a recruitment agency, while providing on -site jobs. The type of jobs available, warehouse and office work, will revolve around a 24 -hour shift schedule.
A Satellite polic e station, overlooking the HGSD, will provide active security.

Office developments overlooking the Bus
Terminal included to allow "eyes" on the street during office hours.
_-A large part of the development will include overnight accommodation. This aspect of the project will also provide passive security through 24-hour activity.

Because of logistical reasons, the Project Profile (Chapter 02), mainly deals with the Job Centre part of the complex.

1.7_URBAN DESIGN

The following main guidelines are to be used to ensure a safe, secure and vibrant urban development:
_-Avoidance of blank walls facing the street.
Keeping the design as visually permeable as
possible to ensure passive surveillance.
_Keeping building heights restricted to 15 m .
Occupants will be able to maintain contact with ground level, ensuring "eyes on the street".
__Clear sight lines are to be maintained at all times to enhance visual security.
__Ensure a gradual transition between pub lic and private space.
_Security in terms of access to spaces should rather be implied than forced.
_-The most vibrant, and therefore safest, space will be one with 24 -hour activity.
Mixed use functions allow for variety in terms of movement, at all times.

1.8_SITE

The site historically formed part of the old Hatfield Primary School, a heritage building protected by the Simon van der Stel
Foundation through a clause. The only
remains left of the school has been
incorporated into the design of the adjacent
Barloworld Delta Motor Showrooms
Currently the site, and its
infrastructure, in the form of motor showrooms, is owned by Saab Motor Company South Africa. The only vegetation found on the site is ground creepers framing the main showroom window to the north.

The new development will require the current building to be demolished. The structure, aluminum and glass, can be reconstructed elsewhere.

The current character of the site is harsh, defined by brick paving blocks and motorcars.

1.9 BIOPHYSICAL

Pretoria's climate is extremely predictable, and the implications of such a climate should be reflected in the design of the development.

The average daily temperatures for January are $16 \quad \mathrm{C}_{\text {min }}$ and $28.1 \quad \mathrm{C}_{\max }$ with a lowest and highest temp erature of 8 C and 37.0 C respectively. This implies hot summers, with mild evenings. Rainfall during the summer months is mostly limited to afternoon thundershowers. General prevailing wind direction is from east and northwest directions in summer, with the highest average prevailing velocities (7.3 m per second in December) from a southeasterly direction. This implies relevantly low natural air movement, which increases surface temperature

The average daily temperatures for July are $7 \quad C_{\text {min }}$ and $19.5 \quad C_{\text {max }}$ with a lowest and highest temperature of $3.6 \quad \mathrm{C}$ and 25.9 C respectively. This implies mild winter days, with cold evenings. The mean monthly precipitation for July is 3 mm with a minimum of 0 mm , which implies clear weather during winter. This aspect o Pretoria's weather is rather predictable, and ensures sunny days during winter.

Low wind velocities imply the possibility of an increase in surface temperature on exposed surfaces, which could be utilized in a building's thermal performance.
The mean annual precipitation in this region is 494 mm per year (min), 686 mm per year (average) and 1069 mm per year (max). Most of this rain occurs during summer months, requiring harvesting and storage of rain for use during winter months. Hail does occur four days per year on average, enough to be considered a threat to building materials and vegetation.

The weather information portrays an extremely predictable and manageable climate, which could be utilized and optimized to narrow the distinction between inside and outside in the built environment.

The building should promote externa circulation, and the opening of spaces to the outside. A further aspect is the full usage of the climatic c onditions to optimize the thermal performance of the building to minimize the use of mechanical systems.

Management of the effect of the sun will be the most significant factor. The information given in terms of solar angles at 12:00 can be interpreted in the following way:
_88 8° to 65° : block the sun _ 65° to 40° : use the sun

1.11

Solar times	Date	06.00	08.00	10.00	12.00	14.00	16.00	18.00
Clock times		06.18	08.18	10.18	12.18	14.18	16.18	18.18
Azimuth	$21 / 12$	112 E	101 E	91 E	0	91 W	101 W	112 W
Altitude	$21 / 12$	10	35	63	88	63	35	10
Azimuth	$21 / 3 \& 9$	90 E	76 E	53 E	0	53 W	76 W	90 W
Altitude	$21 / 3 \& 9$	0	26	51	65	51	26	0
Azimuth	$21 / 6$	-	55 E	34 E	0	34 W	55 W	-
Altitude	$21 / 6$	-	14	32	40	32	14	-

