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Summary 
 

Statistical quality control charts originated in the late 1920’s by Shewhart (1926, 1931 

and 1939). Their applications in various disciplines have been ever-increasing. Although most 

control charts are distribution-based, recent literature witnessed the development of a 

considerable number of distribution-free or nonparametric control charts.  

 

The purpose of this thesis is to present the concepts and introduce the researcher to the 

essentials of univariate nonparametric control charts. Various properties of nonparametric 

control charts are comprehensively discussed and concepts are clearly explained. Proofs and 

detailed calculations have been given to help the reader to study and understand the subject 

more thoroughly. This text contains a wide variety of illustrative examples to give an overall 

picture of how nonparametric control charts are used. Both simulated and real data examples 

have been integrated throughout the text. Since most practical problems are too large to be 

solved using hand calculations, some type of statistical software package is required to solve 

these problems. There are several excellent statistical packages available and in this thesis we 

make use of Microsoft Excel, SAS, Minitab, Mathcad and Mathematica to construct (almost 

all) the tables in this thesis. We point out that a number of Mathematica programs are 

provided by Chakraborti and Van de Wiel (2003) by means of the website 

www.win.tue.nl/~markvdw.  

 

The aim throughout is to convey the concepts of univariate nonparametric control 

charts in a way that readers will find attractive and interesting. Since the majority of 

nonparametric procedures, to be distribution-free, require a continuous population, only 

variables control charts are covered. We only consider control charts for monitoring the 

location of a process, since very few nonparametric charts are available for monitoring the 

spread. In this thesis we consider the three main classes of control charts: the Shewhart, 

CUSUM and EWMA control charts and their refinements. The text is divided into several 

chapters. An introduction to nonparametric control charts is presented in Chapter 1. A 

discussion of some of the advantages of nonparametric control charts is included while 

pointing out some of the disadvantages. In Chapter 2 we describe the Shewhart-, CUSUM- 

and EWMA-type sign control charts with (and without) warning limits. In Chapter 3 we 

describe the Shewhart-, CUSUM- and EWMA-type signed-rank control charts with (and 
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without) runs-type signalling rules. The Shewhart-type sign-like control chart with (and 

without) signalling rules is considered in Chapter 4. In Chapter 5 we consider the Shewhart-

type signed-rank-like control chart. Finally, in Chapter 6 we consider the Shewhart- and 

CUSUM-type Mann-Whitney-Wilcoxon control charts. We considered decision problems 

under both Phase I and Phase II (see Section 1.5 for a distinction between the two phases). In 

all the sections of this thesis we considered Phase II process monitoring, except in Section 6.2 

where a CUSUM-type control chart for the preliminary Phase I analysis of individual 

observations based on the Mann-Whitney two-sample test is proposed. In the last chapter we 

have some concluding remarks along with some ideas for future research.
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Chapter 1: Introduction 
 

1.1. Notation 

 
SPC Statistical process control 

NSPC Nonparametric statistical process control 
pmf Probability mass function 
cdf Cumulative distribution function 
pgf Probability generating function 
mgf Moment generating function 
cgf Cumulant generating function 
n  Sample size 

nXXX ,..., 21  Random variables in a sample 

nxxx ,..., 21  Observations in a sample 

0θ  Target value / Known or specified in-control location parameter1 
CUSUM Cumulative sum 
EWMA Exponentially weighted moving average 

ARL  Average run length 

0ARL  In-control average run length 

δARL  Out-of-control average run length 
SDRL Standard deviation of the run length 
MRL Median run length 
UCL Upper control limit 
CL Center line 

LCL Lower control limit 
FAR False alarm rate 
FAP False alarm probability 
VSI Variable sampling interval 
FSI Fixed sampling interval 

Ua  Upper action limit / Upper control limit 

Uw  Upper warning limit 

Lw  Lower warning limit 

La  Lower action limit / Lower control limit 
TPM Transition probability matrix 

A Absorbent 
NA Non-absorbent 

 

                                                 
1 The location parameter could be the mean, median or some percentile of the distribution. When the underlying 
distribution is known to be highly skewed, the median or some percentile is preferred to the mean. 
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1.2. Distribution of chance causes 

 

One of the main goals of statistical process control (SPC) is to distinguish between 

two sources of variability, namely common cause (chance cause) variability and assignable 

cause (special cause) variability. Common cause variability is an inherent or natural (random) 

variability that is present in any repetitive process, whereas assignable cause variability is a 

result of factors that are not solely random. In SPC, the pattern of chance causes is usually 

assumed to follow some parametric distribution (such as the normal). The charting statistic 

and the control limits depend on this assumption and as such the properties of these control 

charts are “exact” only if this assumption is satisfied. However, the chance distribution is 

either unknown or far from being normal in many applications and consequently the 

performance of standard control charts is highly affected in such situations. Thus there is a 

need for some easy to use, flexible and robust control charts that do not require normality or 

any other specific parametric model assumption about the underlying chance distribution. 

Distribution-free or nonparametric control charts can serve this broader purpose. On this point 

see for example, Woodall and Montgomery (1999) and Woodall (2000). These researchers 

and others provide more than enough reasons for the development of nonparametric control 

charts. 

   

1.3. Nonparametric or distribution-free 

 

The term nonparametric is not intended to imply that there are no parameters involved, 

in fact, quite the contrary. While the term distribution-free seems to be a better description of 

what we expect from these charts, that is, they remain valid for a large class of distributions, 

nonparametric is perhaps the term more often used. In the statistics literature there is now a 

rather vast collection of nonparametric tests and confidence intervals and these methods have 

been shown to perform well compared to their normal theory counterparts. Remarkably, even 

when the underlying distribution is normal, the efficiency of some nonparametric methods 

relative to the corresponding (optimal) normal theory methods can be as high as 0.955 (see, 

e.g., Gibbons and Chakraborti, 2003). In fact, for some heavy-tailed distributions like the 

double exponential, nonparametric tests can be more efficient. It may be argued that 

nonparametric methods will be “less efficient” than their parametric counterparts when one 

has a complete knowledge of the process distribution for which that parametric method was 

specifically designed. However, the reality is that such information is seldom, if ever, 
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available in practice. Thus it seems natural to develop and use nonparametric methods in SPC 

and the quality practitioners will be well advised to have these techniques in their toolkits.   

 

We only discuss univariate nonparametric control charts designed to track the location 

of a continuous process since very few charts are available for monitoring the scale and 

simultaneously monitoring the location and scale of a process. The field of multivariate 

control charts is interesting and the body of literature on nonparametric multivariate control 

charts is growing. However, in our opinion, it hasn’t yet reached a critical mass and a 

discussion on this topic is better postponed for the future. 

  

1.4. Nonparametric control charts 

 

Chakraborti, Van der Laan and Bakir (2001) (hereafter CVB) provided a systematic 

and thorough account of the nonparametric control chart literature. A nonparametric control 

chart is defined in terms of its in-control run length distribution. If the in-control run length 

distribution of a control chart is the same for every continuous distribution, the chart is called 

nonparametric or distribution-free. CVB summarized the advantages of nonparametric control 

charts as follows: (i) simplicity, (ii) no need to assume a particular parametric distribution for 

the underlying process, (iii) the in-control run length distribution is the same for all 

continuous distributions, (iv) more robust and outlier resistant, (v) more efficiency in 

detecting changes when the true distribution is markedly non-normal, particularly with 

heavier tails, and (vi) no need to estimate the variance to set up charts for the location 

parameter. It is emphasized that from a technical point of view most nonparametric 

procedures require the population to be continuous in order to be distribution-free and thus in 

a SPC context we consider the so-called “variables control charts.” Some disadvantages of 

nonparametric control charts are as follows: (i) they will be “less efficient” than their 

parametric counterparts when one has a complete knowledge of the process distribution for 

which that parametric method was specifically designed, (ii) one usually requires special 

tables when the sample sizes are small, and (iii) nonparametric methods are not well-known 

amongst all researchers and quality practitioners. 
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1.5. Terminology and formulation 

 

Two important problems in usual SPC are monitoring the process mean and/or the 

process standard deviation. In the nonparametric setting, we consider, more generally, 

monitoring the center or the location (or a shift) parameter and/or a scale parameter of a 

process. The location parameter represents a typical value and could be the mean or the 

median or some percentile of the distribution; the latter two are especially attractive when the 

underlying distribution is expected to be skewed. Also in the nonparametric setting, the 

processes are implicitly assumed to follow (i) a location model, with a cdf )( θ−xF , where θ  

is the location parameter or (ii) a scale model, with a cdf �
�

�
�
�

�

τ
x

F , where )0(>τ  is the scale 

parameter. Even more generally, one might consider (iii) the location-scale model with cdf 

�
�

�
�
�

� −
τ

θx
F , where θ  and τ  are the location and the scale parameter, respectively. Under these 

model assumptions, the problem is to track θ  and τ  (or both), based on random samples or 

subgroups taken (usually) at equally spaced time points. In the usual (parametric) control 

charting problems F  is assumed to be the cdf Φ  of the standard normal distribution whereas 

in the nonparametric setting, for variables data, F  is some unknown continuous cdf. 

Although the location-scale model seems to be a natural model to consider paralleling the 

normal theory case with mean and variance both unknown, most of what is currently available 

in the nonparametric statistical process control (NSPC) literature deals mainly with the 

location model.  

   

As we noted earlier, a comprehensive survey of the literature until about 2000 can be 

found in CVB. Here, we mention some of the key contributions and ideas and a few of the 

more recent developments in the area; the literature on nonparametric methods continues to 

grow at a rapid pace. In fact, Woodall and Montgomery (1999) stated: ‘There would appear to 

be an increasing role for nonparametric methods, particularly as data availability increases’. 

Most nonparametric charts, however, have been developed for Phase II applications. There 

are generally two phases in SPC. In Phase I (also called the retrospective phase), typically, 

preliminary analysis is done which includes planning, administration, data collection, data 

management, exploratory work including graphical and numerical analysis, goodness-of-fit 

analysis etc. to ensure that the process is in-control. This means that the process is managed to 

operate at or near some acceptable target value along with some natural variation and no 
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special causes of concern are expected to be present. Once this is ascertained, SPC moves to 

the next phase, Phase II, (or the prospective phase), where the control limits and/or the 

estimators obtained in Phase I are used for process monitoring based on new samples of data. 

When the underlying parameters of the process distribution are known or specified, this is 

referred to as the “standard(s) known” case and is denoted case K. In contrast, if the 

parameters are unknown and need to be estimated, it is typically done in Phase I, with in-

control data. This situation is referred to as the “standard(s) unknown” case and is denoted 

case U. In this text we are going to consider decision problems under both Phase I and Phase 

II. One of the main differences between the two phases is the fact that the FAR (or in-control 

average run length 0ARL ) is typically used to construct and evaluate Phase II control charts, 

whereas the false alarm probability (FAP) is used to construct and evaluate Phase I control 

charts. The FAP is the probability of at least one false alarm out of many comparisons, 

whereas the FAR is the probability of a single false alarm involving only a single comparison. 

Various authors have studied the Phase I problem; see for example King (1954), Chou and 

Champ (1995), Sullivan and Woodall (1996), Jones and Champ (2002), Champ and Chou 

(2003), Champ and Jones (2004), Koning (2006) and Human, Chakraborti and Smit (2007). 

Since not much is typically known or can be assumed about the underlying process 

distribution in a Phase I setting, nonparametric Phase I control charts are of great use.  

   

There are three main classes of control charts: the Shewhart chart, the cumulative sum 

(CUSUM) chart and the exponentially weighted moving average (EWMA) chart and their 

refinements. Relative advantages and disadvantages of these charts are well documented in 

the literature (see, e.g., Montgomery, 2001). Analogs of these charts have been considered in 

the nonparametric setting. We describe some of the charts under each of the three classes. 

 

1.6. Shewhart-type charts 

 

Shewhart-type charts are the most popular charts in practice because of their 

simplicity, ease of application, and the fact that these versatile charts are quite efficient in 

detecting moderate to large shifts. Both one-sided and two-sided charts are considered. The 

one-sided charts are more useful when only a directional shift (higher or lower) in the median 

is of interest. The two-sided charts, on the other hand, are typically used to detect a shift or 

change in the median in any direction. 
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1.7. CUSUM-type charts 

 

While the Shewhart-type charts are widely known and most often used in practice 

because of their simplicity and global performance, other classes of charts, such as the 

CUSUM charts are useful and sometimes more naturally appropriate in the process control 

environment in view of the sequential nature of data collection. These charts, typically based 

on the cumulative totals of a plotting statistic, obtained as data accumulate, are known to be 

more efficient for detecting certain types of shifts in the process. The normal theory CUSUM 

chart for the mean is typically based on the cumulative sum of the deviations of the individual 

observations (or the subgroup means) from the specified target mean. It seems natural to 

consider analogs of these charts using the nonparametric plotting statistics discussed earlier. 

These lead to nonparametric CUSUM (NPCUSUM) charts. 

 

1.8. EWMA-type charts 

 

Another popular class of control charts is the exponentially weighted moving average 

(EWMA) charts. The EWMA charts also take advantage of the sequentially (time ordered) 

accumulating nature of the data arising in a typical SPC environment and are known to be 

efficient in detecting smaller shifts but are easier to implement than the CUSUM charts.   
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Section A: Monitoring the location of a process when the target 

location is specified (Case K) 

 

Chapter 2: Sign control charts 
 

2.1. The Shewhart-type control chart 

 

2.1.1. Introduction 

 

The sign test is one of the simplest and broadly applicable nonparametric tests (see, e.g., 

Gibbons and Chakraborti, 2003) that can be used to test hypotheses (or find confidence intervals) 

for the median (or any specified percentile) of a continuous distribution. In this thesis, we will 

only consider the 50th percentile, i.e. the median. The fact that the sign test is applicable for any 

continuous population is an advantage to quality practitioners. Suppose that the median of a 

continuous process needs to be maintained at a specified value 0θ . Amin et al. (1995) presented 

Shewhart-type nonparametric charts for this problem using what are called “within group sign” 

statistics. This is called a sign chart (also referred to as the SN chart). 

 

2.1.2. Definition of the sign test statistic 

 

Let inii XXX ,...,, 21  denote the thi  ,...)2,1( =i  sample or subgroup of independent 

observations of size 1>n  from a process with an unknown continuous distribution function F . 

Let 0θ  denote the known or specified value of the median when the process is in-control, then 0θ  

is called the target value. Compare each ijx  ),...,2,1( nj =  with 0θ . Record the difference 

between 0θ  and each ijx  by subtracting 0θ  from ijx . There will be n  such differences, 0θ−ijx  

),...,2,1( nj = , in the thi  sample. Let +n  denote the number of observations with values greater 

than 0θ  in the thi  sample. Let −n  denote the number of observations with values less than 0θ  in 

the thi  sample.  Provided there are no ties we have that nnn =+ −+ . 
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Define 

 �
=

−=
n

j
iji xsignSN

1
0 )( θ  (2.1)  

where )(xsign  = -1, 0, 1 if 0<x , 0= , 0> .  

 

Then iSN  is the difference between +n  and −n  in the thi  sample, i.e. iSN  is the 

difference between the number of observations with values greater than 0θ  and the number of 

observations with values less than 0θ  in the thi  sample.  

 

Define 

 
2

nSN
T i

i

+
= , (2.2) 

assuming there are no ties within a subgroup. The random variable iT  is the number of sample 

observations greater than or equal to 0θ  in the thi  sample. In (2.2) the statistic iT  is expressed in 

terms of the sign test statistic iSN . Using the relationship in (2.2), the sign test statistic iSN  can 

be expressed in terms of the statistic iT  (if there are no ties within a subgroup) and we obtain 

 nTSN ii −= 2 . (2.3) 

This relationship is evident from the fact that 

 ( ) nTxxsignSN i

n

j
ij

n

j
iji −=−−=−= ��

==

21)(2)(
1

0
1

0 θψθ   

where 0)( =xψ , 1 if 0≤x , 0> .   

 

In the literature the statistic iT  is also well-known under the name sign test statistic (see, 

for example, Gibbons and Chakraborti (2003)). For the purpose of this study, iSN  will be 

referred to as the sign test statistic. 
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Zero differences 

 

For a continuous random variable, X , the probability of any particular value is zero; thus, 

0)( == aXP  for any a . Since the distribution of the observations is assumed to be continuous, 

0)0( 0 ==−θijXP . Theoretically, the case where 0)( 0 =−θijxsign  should occur with zero 

probability, but in practice zero differences do occur as a result of, for example, truncation or 

rounding of the observed values. A common practice in such cases is to discard all the 

observations leading to zero differences and to redefine n as the number of nonzero differences. 

 

2.1.3. Plotting statistic 

 

Sign control charts are based on the well-known sign test. A control chart is a graph 

consisting of values of a plotting (or charting) statistic and the associated control limits. The 

plotting statistic for the sign chart is �
=

−=
n

j
iji xsignSN

1
0 )( θ  for ,...3,2,1=i  .  

 

Distributional properties of the charting statistic 

 

The random variable iT  has a binomial distribution with parameters n  and 

)( 0θ≥= ijXPp , i.e. ),(~ pnBINTi . Hence, we can find the distribution of iSN  via the 

relationship given in (2.3). 
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Table 2.1. Moments and the probability mass function of the iT  and iSN  statistics, respectively. 

 Ti SNi 

Expected value npTE i =)(  

)12(

)2(

)(

−=
−=

pn

nTE

SNE

i

i

 

Variance ( ) )1(var pnpTi −=  

)1(4

)2var(

)var(

pnp

nT

SN

i

i

−=
−=  

Standard deviation )1()( pnpTstdev i −=  
)1(2

)(

pnp

SNstdev i

−=
 

Probability mass function 
(pmf) 

( ) ( ) tnt
i pp

t

n
tTPtf −−��

�

�
��
�

�
=== )1(  

( )
( )

�
�

�
�
�

� +==

=−=
==

2

)2(

sn
TP

snTP

sSNP

sf

i

i

i

 

 

The probability distributions of iT  and iSN  are both symmetric* as long as the median 

remains at 0θ . In this case: 

• the probability distributions are referred to as the in-control probability distributions; 

• 5.0)( 0 =≥= θijXPp ; and 

• since the in-control distribution of the plotting statistic iSN  is symmetric, the control 

limits will be equal distances away from 0. 

 

Figure 2.1 illustrates for 10=n  that the in-control probability distributions of iT  and iSN  are 

symmetric about their means, that is, iT  is symmetric around its mean given by 

55.010 =×=× pn  and iSN  is symmetric around its mean given by 

( ) 015.0210)12( =−×=−pn . 

 

                                                 
* Ti and SNi are symmetric about np and zero, respectively, as long as the median remains at 

0θ . 
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Figure 2.1. The in-control probability distribution of iT  and iSN  for 10=n . 

 

2.1.4. Determination of control limits 

 

In order to find the control limits and study chart performance, the distribution of iSN  is 

necessary; this can be most easily obtained using the relationship nTSN ii −= 2 . Since the in-

control distribution of iT  is binomial with parameters n  and 5.0 , it follows that the in-control 

distribution of iSN  is symmetric about 0 and hence the control limits and the center line of the 

two-sided nonparametric Shewhart-type sign chart (for the median) are given by 

 

cLCL

CL

cUCL

−=
=

=
0  (2.4) 

where },...,2,1{ nc ∈ . 

 

 If the plotting statistic iSN  falls between the control limits, that is, cSNc i <<− , the 

process is declared to be in-control, whereas if the plotting statistic iSN  falls on or outside one of 
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the control limits, that is, if cSN i −≤  or cSN i ≥ , the process is declared to be out-of-control. In 

the latter case corrective action and a search for assignable causes is necessary. 

 

 Take note that iT  can also be calculated and plotted against the control limits. This is 

done by assuming that the LCL  is equal to some constant a  and that the UCL  is equal to some 

constant b , i.e. the control limits are given by: bUCL =  and aLCL = . Since the in-control 

probability distribution of iT  is symmetric when working with the median, that is, 

)()( anTPaTP ii −=== , a sensible choice for b  is therefore an − .  

 

 The control limits and the center line of the nonparametric Shewhart chart (for the 

median) using iT  as the plotting statistic are given by 

 

aLCL

npCL

anUCL

=
=

−=
   

where a  denotes a positive integer which is selected such that UCLLCL < . 

 

 Although both iT  and iSN  can be calculated for each sample and be compared to the 

control limits, the statistic iSN  has the advantage of keeping the control limits symmetric around 

zero. Therefore, the plotting statistic iSN  is calculated and used as the plotting statistic. The 

terms ‘plotting statistic’ and ‘charting statistic’ will be used interchangeably throughout this text. 

 

 The question arises: When using iSN  as the plotting statistic, what should the values of 

the control limits be set equal to? In other words, what is the value of the charting constant c ? 

Specifying control limits is one of the critical decisions that must be made in designing a control 

chart. By moving the control limits farther away from the center line, we decrease the risk of a 

type I error – that is, the risk of a point falling beyond the control limits, indicating an out-of-

control condition when no assignable cause is present. However, widening the control limits will 

also increase the risk of a type II error – that is, the risk of a point falling between the control 

limits when the process is really out-of-control. If we move the control limits closer to the center 

line, the opposite effect is obtained: The risk of type I error is increased, while the risk of type II 
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error is decreased. Consequently, the control limits are chosen such that if the process is in-

control, nearly all of the sample points will fall between them. In other words, the charting 

constant c  is typically obtained for a specified in-control average run length, which, in case K, is 

equal to the reciprocal of the nominal FAR , α . Thus, using the symmetry of the binomial 

distribution, c  is the smallest integer such that ( )
20

α
θ ≤≥ cSNP i . For example, using Table G of 

Gibbons and Chakraborti (2003) we give some  ( )tTP ≥
0θ  values in Table 2.2 that may be 

considered “small” in a SPC context. The charting constant c  is obtained using ntc −= 2  (recall 

that the sign test statistic iSN  is expressed in terms of the statistic iT   by the relationship 

nTSN ii −= 2 ). The false alarm rate is obtained by adding the probability in the left tail, 

( )tnTP −≤
0θ , and the probability in the right tail, ( )tTP ≥

0θ , i.e. =FAR  

( ) ( )tTPtnTP ≥+−≤
00 θθ . Since the probability distribution of iT  is symmetric (as long as the 

median remains at 0θ ), the FAR  is also obtained using ( )tTPFAR ≥=
0

2 θ . For example, for 

5=n  we get 5=t  and thus 5=c  for a FAR  of 0624.0)0312.0(2 =  and this is the lowest FAR  

achievable. However for 10=n  the FAR  drops to 0.0020 if 10=c . It should be noted that the 

lowest attainable FAR  is always obtained when tn = .   

 

Table 2.2.  FAR  and 0ARL  of a sign control chart for various values of n  = t . 

n 5 6 7 8 9 10 
)(

0
tTP ≥≥≥≥θθθθ  0.0312 0.0156 0.0078 0.0039 0.0020 0.0010 
)(ααααFAR  0.0624 0.0312 0.0156 0.0078 0.0040 0.0020 

0ARL  16.00 32.00 64.00 128.00 256.00 512.00 
 

Looking at the attainable FAR  and 0ARL  values shown in Table 2.2, we see that unless 

the sample size is at least 10, the sign chart would be somewhat unattractive (from an operational 

point of view) in SPC applications, where one often stipulates a large in-control average run 

length, as large as 370 or 500, and a small FAR , as small as 0.0027. If, for example, the FAR  is 

too ‘large’, which is the case for ‘small’ sample sizes, many false alarms will be expected by this 

chart leading to a possible loss of time and resources. Then again, the sign chart is the simplest of 

nonparametric charts that works under minimal assumptions. In fact, from the hypothesis testing 
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literature, it is known that the sign test (and so the chart) is more robust and efficient when the 

chance distribution is symmetric like the normal but with heavier tails such as the double 

exponential. 

 

Example 2.1 

A Shewhart-type sign chart for the Montgomery (2001) piston ring data 

 

We illustrate the Shewhart-type sign chart using a set of data from Montgomery (2001; 

Tables 5.1 and 5.2) on the inside diameters of piston rings manufactured by a forging process. A 

part of this data, fifteen prospective samples (Table 5.2) each of five observations, is used here. 

The rest of the data (Table 5.1) will be used later. We assume that the underlying distribution is 

symmetric with a known median 740 =θ mm. From Table G (see Gibbons and Chakraborti 

(2003)) we obtain 5=t  (when 5=n ) for an achieved false alarm rate of 0624.0)0312.0(2 = . 

Therefore, 5552 =−×=c  and the control limits and the center line of the nonparametric 

Shewhart sign chart are given by 5=UCL , 0=CL  and 5−=LCL . 

 

Panel a of Table 2.3 displays the sample number. The two rows of each cell in panel b 

shows the individual observations and )( 0θ−ijxsign  values, respectively. The iSN  and iT  values 

are shown in panel c and panel d, respectively. 

 

As an example, the calculation of 1SN  (found in Table 2.3) is given. 

)()()()()( 0150140130120111 θθθθθ −+−+−+−+−= xsignxsignxsignxsignxsignSN   
)7474()7473.986()7474.030()7474.015()7474.012( −+−+−+−+−= signsignsignsignsign

)0()014.0()03.0()015.0()012.0( signsignsignsignsign +−+++=  

.2
01111

=
+−++=
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Table 2.3. Data and calculations for the Shewhart sign chart*. 

Panel a Panel b Panel c Panel d 
Sample 
number 

Individual observations 
)( 0θθθθ−−−−ijxsign  iSN  iT  

1 74.012† 
1 

74.015 
1 

74.030 
1 

73.986 
-1 

74.000 
0 2 3 

2 73.995 
-1 

74.010 
1 

73.990 
-1 

74.015 
1 

74.001 
1 1 3 

3 73.987 
-1 

73.999 
-1 

73.985 
-1 

74.000 
0 

73.990 
-1 -4 0 

4 74.008 
1 

74.010 
1 

74.003 
1 

73.991 
-1 

74.006 
1 3 4 

5 74.003 
1 

74.000 
0 

74.001 
1 

73.986 
-1 

73.997 
-1 0 2 

6 73.994 
-1 

74.003 
1 

74.015 
1 

74.020 
1 

74.004 
1 3 4 

7 74.008 
1 

74.002 
1 

74.018 
1 

73.995 
-1 

74.005 
1 3 4 

8 74.001 
1 

74.004 
1 

73.990 
-1 

73.996 
-1 

73.998 
-1 -1 2 

9 74.015 
1 

74.000 
0 

74.016 
1 

74.025 
1 

74.000 
0 3 3 

10 74.030 
1 

74.005 
1 

74.000 
0 

74.016 
1 

74.012 
1 4 4 

11 74.001 
1 

73.990 
-1 

73.995 
-1 

74.010 
1 

74.024 
1 1 3 

12 74.015 
1 

74.020 
1 

74.024 
1 

74.005 
1 

74.019 
1 5 5 

13 74.035 
1 

74.010 
1 

74.012 
1 

74.015 
1 

74.026 
1 5 5 

14 74.017 
1 

74.013 
1 

74.036 
1 

74.025 
1 

74.026 
1 5 5 

15 74.010 
1 

74.005 
1 

74.029 
1 

74.000 
0 

74.020 
1 4 4 

 

The sign chart is shown in Figure 2.2 with 5=UCL , 0=CL  and 5−=LCL . 

 

                                                 
* See SAS Program 1 in Appendix B for the calculation of the values in Table 2.3. 
† The two rows of each cell in panel b shows the ijx  and )( 0θ−ijxsign  values, respectively, for example,  

012.7411 =x  

1)( 011 =− θxsign  
is presented as 

74.012 

1 
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Figure 2.2. Shewhart-type sign control chart for Montgomery (2001) piston ring data. 

 

Observations 12, 13 and 14 lie on the upper control limit which indicates that the process 

is out-of-control starting at sample 12.  It appears most likely that the process median has shifted 

upwards from the target value of 74 mm. Corrective action and a search for assignable causes is 

necessary. 

 

Control charts are often compared on the basis of various characteristics of the run length 

distribution, such as the ARL . One prefers a “large” in-control average run length (denoted 

0ARL ) and a “small” out-of-control ARL  (denoted δARL ) under a shift. Amin et al. (1995) 

compared the ARL  of the classical Shewhart X  chart and the Shewhart-type sign chart for 

various shift sizes and underlying distributions. One practical advantage of sign charts, and of all 

nonparametric charts (if, of course, their assumptions are satisfied), is that the FAR  (and the 

0ARL ) remains the same (eg. 0624.0=FAR  and 160 =ARL  for 5=n ) for all continuous 

distributions. This is so because the in-control run length distribution is the same for every 

continuous distribution, for nonparametric charts, by definition. This does not hold for parametric 

charts (except for EWMA charts), and, as a result, parametric charts (again, with the EWMA 

chart being the exception) do not enjoy the same kind of robustness properties as nonparametric 
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charts do. It should be noted that the EWMA control chart can be designed so that it is robust to 

the normality assumption. On this point, Borror, Montgomery and Runger (1999) showed that the 

0ARL  of the EWMA chart is reasonably close to the normal-theory value for both skewed and 

heavy-tailed symmetric non-normal distributions. 

 

2.1.5. Run length distribution 

 

The number of subgroups or samples that need to be collected (or, equivalently, the 

number of plotting statistics that must be plotted) before the next out-of-control signal is given by 

a chart is called the run length. The run length is a random variable denoted by N . A popular 

measure of chart performance is the ‘expected value’ or the ‘mean’ of the run length distribution, 

called the average run length ( ARL ). Various researchers, see for example, Barnard (1959) and 

Chakraborti (2007), have suggested using other characteristics for assessment of chart 

performance, for example, the standard deviation of the run length distribution ( SDRL ), the 

median run length ( MRL ) and/or other percentiles of the run length distribution. This 

recommendation is warranted seeing as (i) the run-length can only take on positive integer values 

by definition, (ii) the shape of this distribution is significantly right-skewed and (iii) it’s known 

that in a right-skewed distribution the mean is greater than the median and thus is usually not a 

fair representation of a typical observation or the center.   

 

Since the observations plotted on the control chart are assumed to be independent, the 

number of points that must be plotted until the first plotted point plots on or exceeds a control 

limit is a geometric random variable with parameter p , where p  denotes the probability of a 

success (or, equivalently, the probability of a signal). Therefore, Signal))((~ PGEON  where 

pP =Signal)( . The well-known properties of the geometric distribution are given in panel a of 

Table 2.4 and we use the fact that if q denotes the probability of no signal then 

1Signal) No(Signal)( =+=+ qpPP , i.e. pq −= 1 . The properties of the run length N  are 

derived using the well-known properties of the geometric distribution and they are displayed in 

panel b of Table 2.4. 
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Table 2.4. The properties of the geometric and run length distribution. 

a b 
 )(~ pGEOX  ))((~ SignalPGEON  

Expected value 
p

XE
1

)( =  
)Signal(

1
)(

P
ARLNE ==  

Variance ( )
2var

p
q

X =  
( )2)Signal(

)Signal(1
)var(

P

P
N

−=  

Standard deviation 
p
q

Xstdev =)(  
)Signal(

)Signal(1
P

P
SDRL

−
=  

Probability mass 
function (pmf) 

1)1()()( −−=== xppxXPxf  
for ,...3,2,1=x  
 

1))Signal(1)(Signal()( −−== aPPaNP  
for ,...3,2,1=a  

Cumulative 
distribution 

function (cdf) 

xpxXPxF )1(1)()( −−=≤=  
for ,...3,2,1=x  

aPaNP ))Signal(1(1)( −−=≤  for 
,...3,2,1=a  

 

The thρ100  )10( << ρ  percentile is defined as the smallest l  such that the cdf, given by 

lPlNP )Signal(1(1)( −−=≤  for ,.....2,1=l , at the integer l  is at least ( )%100 ρ× , that is,  

 }))Signal(1(1:min{ ρ≥−−= jPjl  for ,...2,1=j  (2.5) 

which reduces to finding the smallest positive integer l  such that 

 
))Signal(1ln(

)1ln(
P

l
−

−≥ ρ
. (2.6) 

 

The run length distribution can be described via percentiles, for example, using the 5th, 

25th (the first quartile, 1Q ), 50th (the median run length, MRL ), 75th (the third quartile, 3Q ) and 

the 95th percentiles by substituting ρ  in expression (2.6) by 0.05, 0.25, 0.50, 0.75 and 0.95, 

respectively. 
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2.1.6. One-sided control charts 

 

A lower one-sided chart will have a LCL  equal to some constant value with no UCL , 

whereas an upper one-sided chart will have an UCL  equal to some constant value with no LCL . 

One-sided control charts are particularly useful in situations where only an upward (or only a 

downward) shift in a particular process parameter is of interest. For example, we might be 

monitoring the breaking strength of material used to make parachutes. If the breaking strength of 

the material decreases it might tear at a critical time, whereas if the breaking strength of the 

material increases it is beneficial to the user, since the material would, most likely, not tear while 

being used. In such a scenario a lower one-sided chart will be sufficient, since we are only 

interested in detecting a downward shift in a process parameter.  

 

For the sign control chart, if we are only interested in detecting a downward shift we will 

use a lower one-sided sign control chart with cLCL −=  and no upper control limit. 

Consequently, if the plotting statistic iSN  falls on or below the LCL  the process is declared to be 

out-of-control. On the other hand, if we are only interested in detecting an upward shift we will 

use an upper one-sided sign control chart with cUCL =  and no lower control limit. 

Consequently, if the plotting statistic iSN  falls on or above the UCL  the process is declared to be 

out-of-control. 

 

2.1.6.1. Lower one-sided control charts 

 

Result 2.1: Probability of a signal 

 

The probability that the control chart signals, that is, the probability that the plotting 

statistic iSN  is smaller than or equal to the lower control limit, can be expressed in terms of 

)( 0θ≥= ijXPp , the sample size n  and the constant c . Let )Signal(LP  denote the probability of 

a signal, where superscript L  refers to the lower one-sided chart. The probability of a signal is 

then given by 
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     )()()Signal( cSNPLCLSNPP i
L

i
LL −≤=≤= )2( cnTP i

L −≤−= �
�

�
�
�

� −≤=
2

cn
TP i

L . (2.7) 

Note that (2.7) can be solved by using the cdf of a Binomial distribution. 

  

The probabilities, )Signal(LP ’s, were computed using Mathcad (see Mathcad Program 2 

in Appendix B). In doing so, we kept in mind that we ultimately wanted to use the iT  statistic in 

the calculation of )Signal(LP , because then we could use the cdf of a Binomial distribution to 

find )Signal(LP . Therefore, the probability of a signal for the lower one-sided sign chart was 

computed using 

 ini
a

i
i

L
i

LL pp
i

n
aTPLCLTPP −

=

−��
�

�
��
�

�
=≤=≤= � )1()()()Signal(

0

. (2.8) 

The results are given in Tables 2.5, 2.6 and 2.7 for 5=n , 10=n  and 15=n , respectively, for 

9.0)1.0(1.0=p  and na )1(0= . The shaded column ( 5.0=p ) contains the value of the in-control 

average run length ( 0ARL ) and the false alarm rate ( FAR ), whereas the rest of the columns 

( 5.0≠p ) contain the values of the out-of-control average run length ( δARL ) and the probability 

of a signal (when the process is considered to be out-of-control). 

 

Result 2.2:  Average run length 

 

Since the run length has a geometric distribution (recall that ))Signal((~ LPGEON  the 

expected value of this specific geometric distribution will be equal to 
)Signal(

1
LP

. The ARL  is 

the mean of the run length distribution. Therefore, we have that  

 
)Signal(

1
)(

L
L

P
NEARL == . (2.9) 
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Result 2.3:  Standard deviation of the run length 

 

Since the run length has a geometric distribution (see Result 2.2) the standard deviation 

will be equal to 
)Signal(

)Signal(1
L

L

P

P−
. Therefore, we have that  

 
)Signal(

)Signal(1
)(

L

L
L

P

P
NSDRL

−
= . (2.10) 

 
Example 2.2 
 

For a sample size of 10 ( 10=n ), 5.0=p  and 2=a , we can calculate the probability of a 

signal and the average run length using (2.8) and (2.9), respectively, and we obtain =)Signal(LP  

055.0)5.01()5.0(
10 10

2

0

=−��
�

�
��
�

� −

=
� ii

i i
 and 29.18

055.0
1 ==LARL . 

 

2.1.6.2. Upper one-sided control charts 

 

Result 2.4:  Probability of a signal 

 

The probability that the control chart signals, that is, the probability that the plotting 

statistic iSN  is greater than or equal to the upper control limit, can be expressed in terms of 

)( 0θ≥= ijXPp , the sample size n  and the constant c . Let )Signal(UP  denote the probability 

of a signal, where superscript U  refers to the upper one-sided chart. The probability of a signal is 

then given by 

 )()()Signal( cSNPUCLSNPP i
U

i
UU ≥=≥= �

�

�
�
�

� +≥=
2

cn
TP i

U
�
�

�
�
�

� −+≤−= 1
2

1
cn

TP i
U . (2.11) 

Note that (2.11) can be solved by using the cdf of a Binomial distribution. 

  

The probabilities, )Signal(UP ’s, were computed using Mathcad (see Mathcad Program 1 

in Appendix B). In doing so, we kept in mind that we ultimately wanted to use the iT  statistic in 
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the calculation of )Signal(UP , because then we could use the cdf of a Binomial distribution to 

find )Signal(UP . Therefore, the probability of a signal for the upper one-sided sign chart was 

computed using 

 ini
n

ani
i

U
i

UU pp
i

n
anTPUCLTPP −

−=

−��
�

�
��
�

�
=−≥=≥= � )1()()()Signal( . (2.12) 

The results are given in Tables 2.5, 2.6 and 2.7 for 5=n , 10=n  and 15=n , respectively, for 

9.0)1.0(1.0=p  and na )1(0= . The shaded column ( 5.0=p ) contains the value of the in-control 

average run length ( 0ARL ) and the false alarm rate ( FAR ), whereas the rest of the columns 

( 5.0≠p ) contain the values of the out-of-control average run length ( δARL ) and the probability 

of a signal (when the process is considered to be out-of-control). 

 

Result 2.5:  Average run length 

 

Since the run length has a geometric distribution (recall that ))Signal((~ UPGEON  the 

expected value of this specific geometric distribution will be equal to 
)Signal(

1
UP

. The ARL  is 

the mean of the run length distribution. Therefore, we have that  

 
)Signal(

1
)(

U
U

P
NEARL == . (2.13) 

 

Result 2.6:  Standard deviation of the run length 

 

Since the run length has a geometric distribution (see Result 2.5) the standard deviation 

will be equal to 
)Signal(

)Signal(1
U

U

P

P−
. Therefore, we have that  

 
Signal)(

)Signal(1
)(

U

U
U

P

P
NSDRL

−
= . (2.14) 
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Example 2.3 
 

For a sample size of 10 ( 10=n ), 5.0=p  and 2=a , we can calculate the probability of a 

signal and the average run length using (2.12) and (2.13), respectively, and we obtain 

055.0)5.01()5.0(
10

)Signal( 10
10

210

=−��
�

�
��
�

�
= −

−=
� ii

i

U

i
P  and 29.18

055.0
1 ==UARL . 

 

Application 

 

The average run length values for the lower and upper one-sided Shewhart sign charts are 

calculated by evaluating expressions (2.8) and (2.9) for the lower one-sided chart and expressions 

(2.12) and (2.13) for the upper one-sided chart using 10,5=n  and 15 , respectively. These values 

are shown in Table 2.5, Table 2.6 and Table 2.7, respectively.* As mentioned previously, the 

shaded column ( 5.0=p ) contains the value of the in-control average run length ( 0ARL ) and the 

false alarm rate ( FAR ), whereas the rest of the columns ( 5.0≠p ) contain the values of the out-

of-control average run length ( δARL ) and the probability of a signal (when the process is 

considered to be out-of-control). 

 

                                                 
* Table 2.5, Table 2.6 and Table 2.7 should preferably be studied together. 
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Table 2.5. The average run length for the one-sided Shewhart sign chart with 5=n .** 
Up  0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 ARL  

P(Signal) Lp  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0 1.69 
0.590 

3.05 
0.328 

5.95 
0.168 

12.86 
0.078 

32.00 
0.031 

97.66 
0.010 

411.52 
0.002 

3125.00 
0.000 

100000.00 
0.000 

1 1.09 
0.919 

1.36 
0.737 

1.89 
0.528 

2.97 
0.337 

5.33 
0.188 

11.49 
0.087 

32.49 
0.031 

148.81 
0.007 

2173.91 
0.000 

2 1.01 
0.991 

1.06 
0.942 

1.19 
0.837 

1.47 
0.683 

2.00 
0.500 

3.15 
0.317 

6.13 
0.163 

17.27 
0.058 

116.82 
0.009 

3 1.00 
1.000 

1.01 
0.993 

1.03 
0.969 

1.10 
0.913 

1.23 
0.813 

1.51 
0.663 

2.12 
0.472 

3.81 
0.263 

12.28 
0.081 

4 1.00 
1.000 

1.00 
1.000 

1.00 
0.998 

1.01 
0.990 

1.03 
0.969 

1.08 
0.922 

1.20 
0.832 

1.49 
0.672 

2.44 
0.410 

a 

5 1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

 

                                                 
** See Mathcad Programs 1 and 2 in Appendix B for the calculation of the values in Table 2.5. 
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Table 2.6. The average run length for the one-sided Shewhart sign chart with 10=n .†† 
Up  0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 ARL  

P(Signal) Lp  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0 2.87 
0.349 

9.31 
0.107 

35.40 
0.028 

165.38 
0.006 

1024.00 
0.001 

9536.74 
0.000 

169350.88 
0.000 

9765625.00 
0.000 

10000000000.00 
0.000 

1 1.36 
0.736 

2.66 
0.376 

6.70 
0.149 

21.57 
0.046 

93.09 
0.011 

596.05 
0.002 

6959.63 
0.000 

238185.98 
0.000 

109890109.89 
0.000 

2 1.08 
0.930 

1.48 
0.678 

2.61 
0.383 

5.98 
0.167 

18.29 
0.055 

81.34 
0.012 

628.78 
0.002 

12832.62 
0.000 

2676659.53 
0.000 

3 1.00 
0.987 

1.14 
0.879 

1.54 
0.650 

2.62 
0.382 

5.82 
0.172 

18.26 
0.055 

94.41 
0.011 

1156.93 
0.001 

109629.89 
0.000 

4 1.00 
0.998 

1.03 
0.967 

1.18 
0.850 

1.58 
0.633 

2.65 
0.377 

6.02 
0.166 

21.12 
0.047 

157.00 
0.006 

6807.23 
0.000 

5 1.00 
1.000 

1.01 
0.994 

1.05 
0.953 

1.20 
0.834 

1.61 
0.623 

2.73 
0.367 

6.65 
0.150 

30.49 
0.033 

611.64 
0.002 

6 1.00 
1.000 

1.00 
0.999 

1.01 
0.989 

1.06 
0.945 

1.21 
0.828 

1.62 
0.618 

2.85 
0.350 

8.27 
0.121 

78.15 
0.013 

7 1.00 
1.000 

1.00 
1.000 

1.00 
0.998 

1.01 
0.988 

1.06 
0.945 

1.20 
0.833 

1.62 
0.617 

3.10 
0.322 

14.25 
0.070 

8 1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.00 
0.998 

1.01 
0.989 

1.05 
0.954 

1.18 
0.851 

1.60 
0.624 

3.79 
0.264 

9 1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.00 
0.999 

1.01 
0.994 

1.03 
0.972 

1.12 
0.893 

1.54 
0.651 

a 

10 1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

 

                                                 
†† See Mathcad Programs 1 and 2 in Appendix B for the calculation of the values in Table 2.6. 
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Table 2.7. The average run length for the one-sided Shewhart sign chart with 15=n .‡‡ 
Up  0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 ARL  

P(Signal) Lp  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0 4.86 
0.206 

28.42 
0.035 

210.63 
0.005 

2126.82 
0.000 

32768.00 
0.000 

931322.57 
0.000 

69691719.38 
0.000 

30517578125.00 
0.000 

999999999999987.00 
0.000 

1 1.82 
0.549 

5.98 
0.167 

28.35 
0.035 

193.35 
0.005 

2048.00 
0.000 

39630.75 
0.000 

1935881.09 
0.000 

500288165.98 
0.000 

7352941176470.50 
0.000 

2 1.23 
0.816 

2.51 
0.398 

7.88 
0.127 

36.88 
0.027 

270.81 
0.004 

3585.46 
0.000 

114687.42 
0.000 

17528764.00 
0.000 

115727346371.95 
0.000 

3 1.06 
0.944 

1.54 
0.648 

3.37 
0.297 

11.05 
0.091 

56.89 
0.018 

518.73 
0.002 

10910.04 
0.000 

988871.98 
0.000 

2938272765.74 
0.000 

4 1.01 
0.987 

1.20 
0.836 

1.94 
0.515 

4.60 
0.217 

16.88 
0.059 

106.98 
0.009 

1487.58 
0.001 

80245.85 
0.000 

107571980.98 
0.000 

5 1.00 
0.998 

1.07 
0.939 

1.39 
0.722 

2.48 
0.403 

6.63 
0.151 

29.56 
0.034 

273.78 
0.004 

8831.92 
0.000 

5358475.36 
0.000 

6 1.00 
1.000 

1.02 
0.982 

1.15 
0.869 

1.64 
0.610 

3.29 
0.304 

10.52 
0.095 

65.61 
0.015 

1273.91 
0.001 

351310.79 
0.000 

7 1.00 
1.000 

1.00 
0.996 

1.05 
0.950 

1.27 
0.787 

2.00 
0.500 

4.69 
0.213 

19.99 
0.050 

235.86 
0.004 

29739.88 
0.000 

8 1.00 
1.000 

1.00 
0.999 

1.02 
0.985 

1.11 
0.905 

1.44 
0.696 

2.56 
0.390 

7.63 
0.131 

55.37 
0.018 

3219.26 
0.000 

9 1.00 
1.000 

1.00 
1.000 

1.00 
0.996 

1.04 
0.966 

1.18 
0.849 

1.68 
0.597 

3.59 
0.278 

16.38 
0.061 

444.51 
0.002 

10 1.00 
1.000 

1.00 
1.000 

1.00 
0.999 

1.01 
0.991 

1.06 
0.941 

1.28 
0.783 

2.06 
0.485 

6.09 
0.164 

78.61 
0.013 

11 1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.00 
0.998 

1.02 
0.982 

1.10 
0.909 

1.42 
0.703 

2.84 
0.352 

18.00 
0.056 

12 1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.00 
0.996 

1.03 
0.973 

1.15 
0.873 

1.66 
0.602 

5.43 
0.184 

13 1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.01 
0.995 

1.04 
0.965 

1.20 
0.833 

2.22 
0.451 

14 1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.00 
0.995 

1.04 
0.965 

1.26 
0.794 

a 

15 1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

 

 

                                                 
‡‡ See Mathcad Programs 1 and 2 in Appendix B for the calculation of the values in Table 2.7. 
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2.1.7. Two-sided control charts 

 

Result 2.7: Probability of a signal 

 

The probability that the control chart signals, that is, the probability that the plotting 

statistic iSN  is greater than or equal to the UCL , or smaller than or equal to the LCL , can be 

expressed in terms of )( 0θ≥= ijXPp , the sample size n  and the constant c . The probability of 

a signal is then given by 

 �
�

�
�
�

� −≤+�
�

�
�
�

� −+≤−=<−<−−=
2

1
2

1)2(1)Signal(
cn

TP
cn

TPcnTcPP iii .  (2.15) 

Note that (2.15) can be solved by using the cdf of a binomial distribution. 

 

Result 2.8: Average run length 

 

Since the run length has a geometric distribution we have that  

 
)Signal(

1
)(

P
NEARL == . (2.16) 

Compare expression (2.16) to expressions (2.9) and (2.13). 
 

Result 2.9: Standard deviation of the run length 

 

Since the run length has a geometric distribution we have that 

 
Signal)(

)Signal(1
)(

P

P
NSDRL

−
= . (2.17) 

Compare expression (2.17) to expressions (2.10) and (2.14). 
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2.1.8. Summary 

 

In Section 2.1 we have described and evaluated the nonparametric Shewhart-type sign 

control chart. Generally speaking, when the underlying process distribution is either asymmetric 

or symmetric with heavy tails, sign charts are more efficient while the reverse is true for normal 

and normal-like distributions with light tails. One practical advantage of the nonparametric 

Shewhart-type sign control chart is that there is no need to assume a particular parametric 

distribution for the underlying process (see Section 1.4 for other advantages of nonparametric 

charts). 

 

2.2. The Shewhart-type control chart with warning limits 

 

2.2.1. Introduction 

 

It is known that standard Shewhart charts are efficient in detecting large process shifts 

quickly, but are insensitive to small shifts (see, for example, Montgomery (2005)). Additional 

supplementary rules have been suggested to increase the sensitivity of standard Shewhart charts 

to small process shifts. Shewhart (1941) gave the first proposal in making the standard Shewhart 

chart more sensitive to small process shifts by proposing that additional sensitizing tests should 

be incorporated into the standard Shewhart chart. Various rules or ‘tests for special causes’ have 

been considered in the literature for parametric control charts; see for example, the rules 

associated with the Shewhart control chart in Nelson (1984) and in the Western Electric 

handbook (1956). See also the discussion in Montgomery (2001).  

 

Runs rules can be used to increase the sensitivity of standard Shewhart charts. Denote 

each runs rule by ),,,( lknrR  where a signal is given if r  out of the last n  points fall in the 

interval ),( lk , where nr ≤  are integers and lk < . The well-known standardized Shewhart X  

control chart is denoted by )},3,1,1()3,,1,1({ ∞∪−−∞ RR , since the standardized Shewhart X  

control chart signals if any charting statistic (1 out of 1 point) falls in the interval )3,( −−∞  or if 

any charting statistic (1 out of 1 point) falls in the interval ),3( ∞ . 
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Page (1955) considered a Markov-chain approach for simple combinations of runs rules. 

Amin et al. (1995) considered Shewhart-type sign charts with warning limits and runs rules. Page 

(1962), Weindling, Littauer and Oliveira (1979) and Champ and Woodall (1987) studied the 

properties of X  charts with warning limits.  

 

Incorporating the runs rules )},,1,1(),,1,1({ ∞∪−∞ UL aRaR  into the Shewhart sign chart is 

similar to using action limits where action will be taken if any 1 point falls outside the action 

limits. Incorporating the two runs rules )},,,(),,,({ LLUU warrRawrrR ∪  into the Shewhart sign 

chart is similar to using warning limits where action will be taken if  r  successive points fall 

between the warning and action limits, that is, action will be taken if r  successive points fall 

between Uw  and Ua  or action will be taken if r  successive points fall between La  and Lw . 

Hence, rule A  follows: Action will be taken if r  successive points fall between Uw  and Ua , or 

if r  successive points fall between La  and Lw , or if any point falls outside the action limits. Let 

L  denote the ARL  of rule A . Assume that the upper action and upper warning limits are equal 

to some constants represented by a  and w , respectively, that is, aaU =  and wwU = . In the case 

of the Shewhart-type sign control chart with warning limits, sensible choices for the lower action 

and lower warning limits are a−  and w− , respectively, that is, aaL −=  and wwL −= . The 

latter choices are sensible, since the in-control distribution of iSN  is symmetric about zero (see 

Section 2.1.3). 

  

In Section 2.2.3.1 two runs rules are incorporated into the upper one-sided Shewhart sign 

chart. Similarly, in Section 2.2.3.2 two runs rules are incorporated into the lower one-sided 

Shewhart sign chart. The average run lengths are computed for the upper and lower charts, 

respectively. Finally, in Section 2.2.4 two runs rules are incorporated into the two-sided Shewhart 

sign chart.  
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2.2.2. Markov chain representation 

 

A Markov chain representation of a Shewhart chart supplemented with runs rules is used 

for calculating the probability that any subset of runs rules will give an out-of-control signal. In 

this section some basic concepts of matrices and transition probabilities are given and explained. 

An illustrative example follows in the next section, i.e. Section 2.2.3.1. 

 

Let ijp  represent the probability that the process will, when in state i , next make a 

transition to state j . Since probabilities are non-negative, 0≥ijp . Let TPM denote the matrix of 

one-step transition probabilities. The abbreviation TPM will be used throughout the text for 

transition probability matrix which is given by  

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

==+×+

nnnn

inii

n

n

ijnn

ppp

ppp

ppp

ppp

pTPM

�

����

�

����

�

�

10

10

11110

00100

)1()1( ][   for  ni ,...,1,0=  and nj ,...,1,0=  with 2≥n . 

The thi  row, ),...,,( 10 inii ppp , contains all the transition probabilities to go from state i  to one of 

the states in Ω , where Ω  denotes the state space, i.e. },...,1,0{ n=Ω . We have that 

 �
Ω∈

∀=
j

ij ip 1  (2.18) 

since it’s certain that starting in state i  the process will go to one of the states in one step. 
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2.2.3. One-sided control charts 

 

2.2.3.1. Upper one-sided control charts 

 

The upper one-sided Shewhart sign chart, described previously, is efficient in detecting 

large process shifts quickly. Since it is known to be inefficient in detecting small process shifts, 

an upper warning limit is drawn below the upper action limit to increase its sensitivity for 

detecting small shifts. 

 

Define rule UA  as: ‘Action will be taken if r  successive points fall between Uw  and Ua  

(denoted by ),,,( UU awrrR ) or if any point falls above Ua (denoted by ),,1,1( ∞UaR )’. Clearly, 

rule UA  is created to detect upward shifts. Let UL  denote the ARL  of rule UA . UL  can be 

calculated by enumerating the possible combinations of the positions of the plotted points and 

treating them as the states of a discrete Markov process. The following set of rules is used: 

{ ),,1,1(),,,( ∞∪ uuu aRawrrR }. The 3 mutually exclusive intervals (also referred to as zones) 

which are considered are given by: 

 

Zone 0Z  = the interval ),( Uw−∞  

Zone 1Z  = the interval ),[ UU aw  

Zone 2Z = the interval ),[ ∞Ua  

 
These zones are graphically represented in Figure 2.3.
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Figure 2.3. A control chart partitioned into 3 zones*. 

 

),,,( uu awrrR : The chart will signal if any r  successive points fall in Zone 1Z ; or 

),,1,1( ∞uaR : The chart will signal if any 1 point falls in Zone 2Z . 

 

Classification of states 

 

If a state is entered once and can’t be left, the state is said to be absorbent. As a result, the 

probability of going from an absorbent state to the same absorbent state is equal to one. The 

transient (non-absorbent) states are the remaining states of which the time of return or the number 

of steps before return is uncertain. 

 

Table 2.8. Classifications and descriptions of states. 

State 
number Description of state 

Absorbent (A)/ 
Non-absorbent 

(NA) 
0 1 point plots in Zone 0Z  NA 
1 1 point plots in Zone 1Z  NA 
2 2 successive points plot in Zone 1Z  NA 
3 3 successive points plot in Zone 1Z  NA 
�  �  �  

1−r  1−r  successive points plot in Zone 1Z  NA 

r  r  successive points plot in Zone 1Z  or 1 point plots in Zone 2Z  A 

                                                 
* Any point plotting on a line is to be taken as plotting into the adjacent more extreme zone of the chart. 
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Let ip  denote the probability of plotting in Zone iZ  for 2,1,0=i . Therefore: 

0p  is the probability of plotting in Zone 0Z ; )(0 Ui wSNPp <= ; 

1p  is the probability of plotting in Zone 1Z ; )(1 UiU aSNwPp <≤= ; and 

2p  is the probability of plotting in Zone 2Z ; )(2 Ui aSNPp ≥= . 

Clearly, �
=

=++=
2

0
210 1

i
i pppp , since the statistic must plot in one of the 3 zones. The 

transition probability matrix, ][ ijpTPM = , for ri ,...,2,1,0=  and rj ,...,2,1,0=  is given by 
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From expression (2.18) we have �
Ω∈

∀=
j

ij ip 1 . This is easily proven for ri ,...,2,1,0= . 

For example, for 0=i  we have that  100 210
0

0 =+++++=�
=

pppp
r

j
j � . The rest of the 

calculations follow similarly. Table 2.9 illustrates that the TPM can be partitioned into 4 sections. 

 

Table 2.9. Transition probabilities for a Markov chain with one absorbing state. 

 States at time t + 1 States at time t + 1 
States 
at time 

t 

0 
(N
A) 

1 
(NA) 

2 
(NA) … r - 1 

(NA) 
r 

(A) 
0 

(NA) 
1 

(NA) 
2 

(NA) … r - 1 
(NA) 

r 
(A) 

0 
(NA) 0p  1p  0 … 0 2p  

1 
(NA) 0p  0 1p  … 0 2p  

2 
(NA) 0p  0 0 … 0 2p  

�  �  �  �  … �  �  
r - 1 
(NA) 0p  0 0 … 0 21 pp +

 

rrQ ×  1×r
p  

r 
(A) 0 0 0 … 0 1 

= 

r×1'0  111 ×  
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where the sub-matrix rrQ ×

�
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�
�
�
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p

pp

pp

 is called the essential transition probability 

sub-matrix and it contains all the transition probabilities of going from a non-absorbent 

(transient) state to a non-absorbent state, Q ( )NANA →: . 
1×r

p ( )'
21222 ppppp += �  

contains all the transition probabilities of going from each non-absorbent state to the absorbent 

states, p ( )ANA →: . r×1'0 ( )0000 �=  contains all the transition probabilities of going 

from each absorbent state to the non-absorbent states, '0  ( )NAA →: . '0  is a row vector with all 

its elements equal to zero, since it is impossible to go from an absorbent state to a non-absorbent 

state, because once an absorbent state is entered, it is never left. 111 ×  represents the scalar value 

one which is the probability of going from an absorbent state to an absorbent state, 1 ( )AA →: . 

Therefore, 

 =+×+ )1()1( rrTPM
�
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�
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�

−−−
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××
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. (2.19) 

 

Let U
iL  denote the run length of the upper one-sided chart with initial state i  for 

1,...,2,1,0 −= ri . To calculate the probability mass function, define the 1×r  vector U
hL  by 
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Brook and Evans (1972) showed that these vectors can be calculated recursively using 

1)(1 QILU −=  

and               (2.20) 

 U
h

U
h LQL 1−=  for ,...3,2=h  
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where 1 is a 1×r  column vector of s'1 , I  is the rr ×  identity matrix and Q  is the rr ×  

essential transition probability sub-matrix obtained from the partitioned TPM. 

 

Multiplying out the matrices in (2.20) we get expressions for U
iL  for 1,...2,1 −= ri . 

U
i

UU
i LpLpL 11001 +++=   for  )2,...,2,1,0( −= ri  

and  (2.21) 

 UU
r LpL 001 1+=− . 

 

These equations may be solved recursively for U
r

U LL 11 ,..., −  in terms of UL0 : 
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It can be proven by induction on r  that 
1
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expression (2.22) can be simplified to  
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Expression (2.23) of this thesis is given in Amin et al. (1995) and determined in Page 

(1962). Expression (2.23) is a closed form expression of the in-control average run length of a 

one-sided chart with warning and action limits in the positive direction only. 

 

 Therefore, the in-control average run length of the one-sided (upper or positive direction) 

chart with warning limit Uw  and control limit (action limit) at Ua  is given by (2.23) where  
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The derivations of (2.24) and (2.25) are given below. 
 
Derivation of expression (2.24): 
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since the upper warning limit is equal to some constant w , i.e. wwU =  (see Section 2.2.1) we 
obtain 
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Derivation of expression (2.25): 
 

)(
1

UiU aSNwP

p

<≤=
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since the upper action and warning limits are equal to constant values represented by a  and w , 

respectively, i.e. aaU =  and wwU =  (see Section 2.2.1), we obtain 
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  The in-control average run length of the one-sided (lower or negative direction) chart with 

warning limit at Lw  and control limit (action limit) at La  can be found by replacing 0p  and 1p  

by 0q  and 1q  where )(0 Li wSNPq >=  and ).(1 LiL wSNaPq ≤<=  The in-control average run 

length for the two-sided chart, denoted 0L , can then be obtained using a result in Roberts (1958), 

LU LLL 000

111 += . The lower one-sided and two-sided charts with warning limits are discussed in 

detail in Sections 2.2.3.2 and 2.2.4 respectively. 

 

The in-control average run length for the upper one-sided control chart with both warning 

and action limits is calculated for a specific example ( 10=n , 5.0=p ) by evaluating expressions 

(2.23), (2.24) and (2.25). These values are shown in Table 2.10. Amin, Reynolds and Bakir 
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(1995) studied Shewhart charts with both warning and action limits. They constructed a table 

containing the values of UL0  for Shewhart charts using the sign statistic when 10=n  and 

5.0=p . The values of UL0  were noted for 10  and  8=Ua , 8)2(0=Uw  and 7,...,3,2=r . Table 

2.10 is similar to the table constructed by Amin, Reynolds and Bakir (1995). Note that the values 

of UL0  can also be constructed for other values of rwan UU  and ,, . 

 

Table 2.10. Values of UL0  for Shewhart charts with both warning and action limits when 10=n  

and 5.0=p .* 

 8====Ua  10====Ua  

Uw  

r  

0 2 4 6 2 4 6 8 

2 4.1 9.2 30.2 79.4 9.6 38.6 269.2 933.7 
3 7.9 23.0 70.1 92.4 27.8 194.7 890.3 1023.0 
4 13.5 44.7 88.4 93.1 73.0 593.7 1015.8 1024.0 
5 21.2 66.9 92.3 93.1 175.4 911.2 1023.6 1024.0 
6 31.0 81.5 93.0 93.1 364.4 1002.8 1024.0 1024.0 
7 42.2 88.5 93.1 93.1 609.8 1020.3 1024.0 1024.0 

 

Studying Table 2.10 we observe the following. For values of Uw  close to Ua  and r  

reasonably large, the introduction of warning lines will have little effect on UL0 . The reason being 

that if  Uw  is close to Ua , the probability of having r  successive points plot in this small interval 

),[ Uu aw  is small. As an example, the calculation of the in-control average run length for 10=n , 

5.0=p , 8=Ua , 2=Uw  and 6=r  will be given. By substituting these values into equations 

(2.23), (2.24) and (2.25) we obtain  
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* See Mathcad Program 3 in Appendix B for the calculation of the values in Table 2.10. This table also appears in 
Amin, Reynolds and Bakir (1995), page 1606, Table 2. 
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2.2.3.2. Lower one-sided control charts 

 

The lower one-sided Shewhart sign chart, described previously, is efficient in detecting 

large process shifts quickly. Since it is known to be inefficient in detecting small process shifts, a 

lower warning limit is drawn above the lower action limit to increase its sensitivity for detecting 

small shifts. 

 

Define rule LA  as: ‘Action will be taken if r  successive points fall between La  and Lw  

(denoted by ),,,( LL warrR ) or if any point falls below La  (denoted by ),,1,1( LaR −∞ )’. Clearly, 

rule LA  is created to detect downward shifts. Let LL  denote the ARL  of rule LA . LL0  can be 

computed similarly as UL0  (see equation (2.23)) with 0p  and 1p  being replaced by 0q  and 1q , 

where 0q  denotes the probability that a given sample point falls above Lw  and 1q  denotes the 

probability that a given sample point falls between La  and Lw . Therefore, we have that  
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Compare expressions (2.27) and (2.28) to (2.24) and (2.25). 
 

The in-control average run length for the lower one-sided control chart with both warning 

and action limits is calculated for a specific example ( 10=n , 5.0=p ) by evaluating expressions 

(2.26), (2.27) and (2.28). These values are shown in Table 2.11. 
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Table 2.11. Values of LL0  for Shewhart charts with both warning and action limits when 10=n  

and 5.0=p .* 

 8====La  10====La  

Lw  
 
r  

0 2 4 6 2 4 6 8 

2 4.1 9.2 30.2 79.4 9.6 38.6 269.2 933.7 
3 7.9 23.0 70.1 92.4 27.8 194.7 890.3 1023.0 
4 13.5 44.7 88.4 93.1 73.0 593.7 1015.8 1024.0 
5 21.2 66.9 92.3 93.1 175.4 911.2 1023.6 1024.0 
6 31.0 81.5 93.0 93.1 364.4 1002.8 1024.0 1024.0 
7 42.2 88.5 93.1 93.1 609.8 1020.3 1024.0 1024.0 

 

Studying Table 2.11 we observe the following. For values of Lw  close to La  and r  

reasonably large, the introduction of warning lines will have little effect on LL0 . The reason being 

that if Lw  is close to La , the probability of having r  successive points plot in this small interval 

],( LL wa  is small. As stated earlier, due to the symmetry of the Binomial distribution we have 

that if aaU =  then let aaL −=  and if wwU =  then let wwL −= . As a result the values of LL0  

and the values of UL0  are equal. 

 

As an example, the calculation of the in-control average run length for 10=n , 5.0=p , 

8=La , 2=Lw  and 6=r  will be given. By substituting these values into equations (2.26), 

(2.27) and (2.28) we obtain  
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* See Mathcad Program 3 in Appendix B for the calculation of the values in Table 2.11. 
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2.2.4. Two-sided control charts 

 

Roberts (1958) provided a method of approximating the ARL of the two-sided Shewhart 

chart with both warning and action limits. The ARL for each separate one-sided Shewhart chart 

was calculated and then combined by applying equation (2.29) 

 
LU LLL 000

111 += . (2.29) 

(See Appendix A Theorem 1 for a step-by-step derivation of equation (2.29)). Equation (2.29) 

can be re-written as 

 
UL

UL

LL
LL

L
00

00
0 +

=  (2.30) 

where 0L  denotes the ARL of a two-sided chart. In practice some observations can be tied with 

the specified median. If the number of such cases, within a sample, is small (relative to n) one can 

drop the tied cases and reduce n accordingly. On the other hand, if the number of ties is large, 

more sophisticated analysis might be necessary. 

 

The in-control average run length for the two-sided control chart with both warning and 

action limits is calculated by evaluating expression (2.30). These values are shown in Table 2.12 

for 10=n , 5.0=p , 8=a  and 10, 8)2(0=w  and 7,...,3,2=r . 

 

Table 2.12. Values of 0L  for Shewhart charts with both warning and action limits when 10=n  

and 5.0=p .* 

 8====a  10====a  
w  
 
r  

0 2 4 6 2 4 6 8 

2 2.1 4.6 15.1 39.7 4.8 19.3 134.6 466.9 
3 4.0 11.5 35.0 46.2 13.9 97.4 445.2 511.5 
4 6.7 22.4 44.2 46.5 36.5 296.8 507.9 512.0 
5 10.6 33.5 46.2 46.5 87.7 455.6 511.8 512.0 
6 15.5 40.7 46.5 46.5 182.2 501.4 512.0 512.0 
7 21.1 44.2 46.5 46.5 304.9 510.2 512.0 512.0 

                                                 
* See Mathcad Program 3 in Appendix B for the calculation of the values in Table 2.12. 
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Studying Table 2.12 we observe the following: For values of w  close to a  and r  

reasonably large, the introduction of warning limits will have little effect on 0L . The reason being 

that if w  is close to a  (and, consequently, w−  is close to a− ), the probability of having r  

successive points plot in the small interval ),[ aw  or ],( wa −−  is small. These procedures can’t be 

meaningfully illustrated using the data of Montgomery (2001) because the sample size n = 5 used 

there is too small. It may be noted that the highest possible 0L  values for the basic (without 

warning limits) two-sided sign chart can be seen to be 12 −n  (see Amin, Reynolds and Bakir 

(1995) pp. 1609-1610 and their Appendix on pp. 1620-1621 for a detailed discussion on and a 

proof that max 1
0 2 −= nL ). Thus, achievable values of 0L  are too small for practical use, unless n  

is about 10. In Table 2.13, the charting constants, i.e. the warning and action limits, are shown, 

along with the achieved ARL values, for the in-control and one out-of-control case. The ARL 

values for the two-sided sign chart, without the warning limits, are shown in each case, within 

parentheses, for reference.  

 

Table 2.13. In-control ARL values for the two-sided sign chart with and without warning limits 

for 10=n *. 

 2====r  3====r  6====r  
 w = 7 and a = 10 

5.0====p  
(in-control) 

208.97 
(512.00) 

476.03 
(512.00) 

511.99 
(512.00) 

6.0====p  
(out-of-control) 

35.03 
(162.60) 

103.28 
(162.60) 

162.17 
(162.60) 

 w = 7 and a = 8 
5.0====p  

(in-control) 
42.86 

(46.55) 
46.37 

(46.55) 
46.55 

(46.55) 
6.0====p  

(out-of-control) 
16.37 

(20.82) 
20.16 

(20.82) 
20.82 

(20.82) 
 

It is seen that adding warning limits to a control chart decreases its average run length.  

For example, adding a warning limit at 7 to the basic sign chart with an action limit at 10 

decreases the 0ARL  approximately 59% (from 512 to 208.97), when 2=r , 7% (512 to 476.03) 

when 3=r  and 0.002% (512 to 511.99) when 6=r , respectively.  The out-of-control average 

                                                 
* See Mathcad Program 3 in Appendix B for the calculation of the values in Table 2.13. 
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run length is decreased by approximately 79% (from 162.6 to 35.03) when 2=r , 36% (from 

162.6 to 103.28) when 3=r  and 0.26% (from 162.6 to 162.17) when 6=r , respectively. Note 

that although the out-of-control average run length is reduced significantly (which means a 

quicker detection of shift) by the addition of warning limits, the 0ARL  is also reduced 

significantly.  This poses a dilemma in practice, since it is desirable to have a high 0ARL  and a 

low FAR, so one would need to strike a balance.  One possibility is to use warning limits closer to 

the action limits. For example, from the second panel of Table 2.13, we see that adding a warning 

limit at 7 to the sign chart with an action limit of 8, decreases the 0ARL  by only 8% (from 46.55 

to 42.86) when 2=r  and has little effect on 0ARL  when r  is reasonably large. Amin et al. 

(1995) concluded that for the upper one-sided Shewhart-type sign chart, introduction of warning 

limits will have little effect on the in-control average run length, but can significantly reduce the 

out-of-control average run length for small shifts when the warning limits are chosen close to the 

action limits and r  is reasonably large.  Similar conclusions are expected to hold for two-sided 

charts. 

 

Up to this point we have discussed methods to increase the sensitivity of standard 

Shewhart control charts to small process shifts. Another method is to extend the existing charts 

by incorporating various signaling rules involving runs of the plotting statistic. The signaling 

rules considered include the following: A process is declared to be out-of-control when (a) a 

single point (charting statistic) plots outside the control limit(s) (1-of-1 rule)  (b) k consecutive 

points (charting statistics) plot outside the control limit(s) (k-of-k rule) or (c) exactly k  of the last 

w points (charting statistics) plot outside the control limit(s)  (k-of-w rule). We can consider these 

signaling rules where both k  and w  are positive integers with wk ≤≤1  and 2≥w . Rule (a) is 

the simplest and is the most frequently used in the literature.  Thus, the 1-of-1 rule corresponds to 

the usual control chart, where a signal is given when a plotting statistic falls outside the control 

limit(s). Rules (a) and (b) are special cases of rule (c); rules (b) and (c) have been used in the 

context of supplementing the Shewhart charts with warning limits and zones.  
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Example 2.4 

A two-sided Shewhart chart incorporating the 2-of-2 rule with one absorbing state that 

corresponds to the out-of-control signal 

 

In this example, a control chart is viewed as consisting of the zones shown in Figure 2.4. 

 

 

Figure 2.4.  A control chart partitioned into 5 zones. 

 

Let ip  denote the probability of plotting in Zone iZ  for 5,4,3,2,1=i . To illustrate the 

calculation of signal probabilities, the following set of rules is used: 

 

)},,1,1(),,2,2(),,2,2(),,1,1({ ∞∪∪∪−∞ UUULLL aRawRwaRaR . 

 

),,1,1( LaR −∞ : The chart will signal if any 1 point falls in Zone 1Z  (below LCL ). 

),,2,2( LL waR : The chart will signal if any 2 successive points fall in Zone 2Z . 

),,2,2( UU awR : The chart will signal if any 2 successive points fall in Zone 4Z . 

),,1,1( ∞UaR : The chart will signal if any 1 point falls in Zone 5Z  (above UCL ). 
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Table 2.14. Classifications and descriptions of states. 

State 
number Description of state 

Absorbent (A)/ 
Non-absorbent 

(NA) 
0 No points beyond any of the control limits. Point plots in Zone 3Z  NA 

1 Point plots in Zone 2Z  NA 
2 Point plots in Zone 4Z  NA 

3 
Point plots below La  or above Ua  or 2 successive points fall between 

Uw  and Ua  or 2 successive points fall between Lw  and La . 
A 

 

Clearly, 154321

5

1

=++++=�
=

pppppp
i

i , since the statistic must plot in one of the 5 

zones. The transition probabilities are given in the transition probability matrix, ][ ijpTPM = , for 

3,2,1,0=i  and 3,2,1,0=j . 
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From (2.18) we have �
Ω∈

∀=
j

ij ip 1 . This is easily shown for 3,2,1,0=i . For example, 

for 0=i  we have that 151423

3

0
0 =++++=�

=

pppppp
j

j . The rest of the calculations follow 

similarly. Table 2.15 illustrates that the TPM can be partitioned into 4 sections. 
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Table 2.15. Transition probabilities of the 2-of-2 rule for a Markov chain with one absorbing 

state. 

 States at time t + 1 States at time t + 1 
States 

at 
time 

t 

0 
(NA) 

1 
(NA) 

2 
(NA) 

3 
(A) 

0 
(NA) 

1 
(NA) 

2 
(NA) 

3 
(A) 

0 
(NA) 3p  2p  4p  51 pp +  

1 
(NA) 3p  0 4p  251 ppp ++  

2 
(NA) 3p  2p  0 451 ppp ++  

33×Q  
13×

p  

3 
(A) 0 0 0 1 

= 

31'0 ×  111 ×  

 

Brook and Evans (1972) showed that the ARL for initial state i  can be calculated by 

adding the elements in the thi  row of 1
3333 )( −

×× − QI . Making use of 1)( −− QI  is typically done in 

stochastic processes where one works with recurrence and first passage times (see, for example, 

Bartlett (1953)). 
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The ARL for initial state i  can be calculated by adding the elements in the thi  row of 
1

3333 )( −
×× − QI  for 3,2,1=i . 
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Example 2.5 

A two-sided Shewhart chart incorporating the 2-of-2 rule with more than one absorbing 

state that corresponds to an out-of-control signal. 

 

This example is similar to the previous example in having three transient states, but 

differs from the previous example by having more than one absorbing state. By changing the 

classification of the states, the generalization to more than one absorbing state is considered. We 

need to introduce a rule number and this is done by adding a subscript to each rule, i.e. in general 

we have that ),,,( lknrR  which now becomes ),,,( lknrR j  where j denotes the rule number. This 

modification allows for a separate absorbing state, jA , that is associated with each of the runs 

rules, ),,,( lknrR j . This modification of Champ and Woodall’s (1987) method was done by 

Champ and Woodall (1997). As a result, we have the following rules with the corresponding 

absorbing states (see Figure 2.4 for the partitioning of the control chart into 5 zones): 

 

• ),,1,1(1 LaR −∞  associated with absorbing state 1A : The chart will signal if any 1 point 

falls in Zone 1Z  (below LCL ). 

• ),,2,2(2 LL waR  associated with absorbing state 2A : The chart will signal if any 2 

successive points fall in Zone 2Z . 

• ),,2,2(3 UU awR  associated with absorbing state 3A : The chart will signal if any 2 

successive points fall in Zone 4Z . 

• ),,1,1(4 ∞UaR  associated with absorbing state 4A : The chart will signal if any 1 point falls 

in Zone 5Z  (above UCL ). 
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Table 2.16. States and next-state transitions by zones. 

 Zones  

State 
number 

State 
vector 

Z1 
],( La−∞−∞−∞−∞  

Z2 
],( LL wa  

Z3 
),( UL ww  

Z4 
),[ UU aw  

Z5 
),[ ∞∞∞∞Ua  

Absorbent (A)/ 
Non-absorbent 

(NA) 
0 (0,0) 1A  (1,0) (0,0) (0,1) 4A  NA 
1 (1,0) 1A  2A  (0,0) (0,1) 4A  NA 
2 (0,1) 1A  (1,0) (0,0) 3A  4A  NA 
3 1A  1A  1A  1A  1A  1A  A 
4 2A  2A  2A  2A  2A  2A  A 
5 3A  3A  3A  3A  3A  3A  A 
6 4A  4A  4A  4A  4A  4A  A 

 

Each non-absorbing state in Table 2.16 is represented by a vector of 0’s and 1’s. The 

vector indicates by the 1’s only those observations that may contribute to an out-of-control 

signal. Let ip  denote the probability of plotting in Zone iZ  for 5,4,3,2,1=i . Clearly, 
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i , since the statistic must plot in one of the 5 zones. The 

transition probabilities are given in the transition probability matrix, ][ ijpTPM = , for 6,...,1,0=i  

and 6,...,1,0=j . 
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TPM . 

From (2.18) we have �
Ω∈

∀=
j

ij ip 1 . This is easily shown for 6,...,1,0=i . For example, for 0=i  

we have that 100 51423

6

0
0 =++++++=�

=

pppppp
j

j . The rest of the calculations follow 

similarly. Table 2.17 illustrates that the TPM can be partitioned into 4 sections. 
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Table 2.17. Transition probabilities of the 2-of-2 rule for a Markov chain with more than one 

absorbing state. 

 States at time t + 1 States at time t + 1 
States 
at time 

t 

0 
(NA) 

1 
(NA) 

2 
(NA) 

3 
(A) 

4 
(A) 

5 
(A) 

6 
(A) 

0 
(NA) 

1 
(NA) 

2 
(NA) 

3 
(A) 

4 
(A) 

5 
(A) 

6 
(A) 

0 
(NA) 3p  2p  4p  1p  0 0 5p  

1 
(NA) 3p  0 4p  1p  2p  0 5p  

2 
(NA) 3p  2p  0 1p  0 4p  5p  

33×Q  43×C  

3 
(A) 0 0 0 1 0 0 0 
4 

(A) 0 0 0 0 1 0 0 
5 

(A) 0 0 0 0 0 1 0 
6 

(A) 0 0 0 0 0 0 1 

 
= 

34×Z  44×I  

 

where the essential transition probability sub-matrix 
�
�
�

�

�

�
�
�

�

�

=×

0
0

23

43

423

33

pp

pp

ppp

Q  contains all the 

transition probabilities of going from a non-absorbent state to a non-absorbent state, 

( )NANAQ →: . 
�
�
�

�

�

�
�
�

�

�

=×

541

521

51

43

0
0
00

ppp

ppp

pp

C  contains all the transition probabilities of going 

from each non-absorbent state to the absorbent states, ( )ANAC →: . 

�
�
�
�
�

�

�

�
�
�
�
�

�

�

=×

000
000
000
000

34Z  contains 

all the transition probabilities of going from each absorbent state to the non-absorbent states, 

( )NAAZ →: . The Z  matrix is the zero matrix, since it is impossible to go from an absorbent 

state to a non-absorbent state, because once an absorbent state is entered, it is never left. 

�
�
�
�
�

�

�

�
�
�
�
�

�

�

=×

1000
0100
0010
0001

44I  contains all the transition probabilities of going from an absorbent state to 

an absorbent state, ( )AAI →: . A square matrix of this form is called the identity matrix. 
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1TPMTPM =  represents the probability that the process will, when in state i , next make 

a transition to state j , in one step. Consider the matrix, nTPM  (read: “TPM  to the power of 

n ”), the non-absorbing state i  and the absorbing state j . The thj  component of nTPM  is the 

probability that a signal will be caused by the thj  set of runs rules that can cause a signal on or 

before the thn  sampling stage given the chart begins in non-absorbing state i . For that reason, an 

equation for nTPM  is desired. In addition, we will show that ��
�

�
��
�

�
=

∞→ IZ

BZ
TPM n

n
lim  where the 

elements of the matrix B  are the probabilities that the chart will go from a non-absorbent state 

(where no signal is given) to an absorbent state (where a signal is given) in n  transitions. We are 

interested in the matrix B , because the thji ),(  element of B  is the long run proportion of times 

the thj  set of runs rules causes the chart to signal given the chart starts in a non-absorbing state 

i . 

 

Probabilities on the nth sampling stage 
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continuing in this way, we obtain 
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This expression can be simplified by applying the following Corollary. 

 

Corollary 2.1 

CQIQICIQQQ nnn )()()...( 121 −−=+++ −−−  

 

Proof: 
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where ( ) 43
1

333343 ×
−

××× −= CQIB . 
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3333lim ××∞→
= ZQ n

n
, because the elements of nQ 33×  are the transition probabilities that the chart will go 

from a non-absorbent state to a non-absorbent state in n  transitions. These probabilities will tend 

to 0 as n  tends to infinity, because once the system has moved from a non-absorbent state to an 

absorbent state, that absorbent state can’t be left, i.e. the system will not be able to move back to 

a non-absorbent state. 

 

Recall that we are interested in the matrix B , because the thji ),(  element of B  is the 

long run proportion of times the thj  set of runs rules causes the chart to signal given the chart 

starts in a non-absorbing state i . 
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The effort in inverting ( )QI −  could be substantial and therefore some type of statistical 

software package is desirable. Using Mathcad’s Symbolics →Evaluate →Symbolically we can 

easily calculate the inverse of ( )QI −  and multiply the two matrices,  ( ) 1−− QI  and C , to get an 

expression for the matrix B . The long run signal probabilities are given by 

3332312423222114131211 ,,,,,,,,,, bbbbbbbbbbb  and 34b . Since these are all very long 

expressions, only one will be given and explained: 
4332432342

421
11 1

)1)(1(
pppppppppp

ppp
b

−−−−−
++

=  

is the long run proportion of times that the runs rule 1R  causes the chart to signal when the chart 
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starts in state 1. In general: ijb  is the long run proportion of times that the runs rule jR  causes the 

chart to signal when the chart starts in state i . 

 

2.2.5. Summary 

 

The necessary steps for calculating the probability that any subset of runs rules will give 

an out-of -control signal: 

 

STEP 1: Classification of states: 

� State number 

� Description of state 

� Absorbent (A) / Non-absorbent (NA) 

 

STEP 2: Setting up the transition probability matrix ][ ijpTPM =  

STEP 3: Partitioning of the transition probability matrix into 4 sections ��
�

�
��
�

�
==

IZ

CQ
pTPM ij ][  

� )(: NANAQ →  

� )(: ANAC →  

� )(: NAAZ →  

� )(: AAI →  

 

STEP 4: Obtain 1)( −− QI  

 

STEP 5: Calculate CQIB 1)( −−=  

 

STEP 6: Interpret B . ijb  is the long run proportion of times that the runs rule jR  causes the 

chart to signal when the chart starts in state i . 
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2.3. The tabular CUSUM control chart 

 

2.3.1. Introduction 

 

Cumulative sum (or CUSUM) control charts were first introduced by Page (1954) 

(although not in its present form) and have been studied by many authors, for example, 

Barnard (1959), Ewan and Kemp (1960), Johnson (1961), Goldsmith and Whitfield (1961), 

Page (1961), Ewan (1963), Van Dobben de Bruyn (1968), Woodall and Adams (1993) and 

Hawkins and Olwell (1998). Montgomery (2005) related CUSUM ideas to other SPC 

methodologies. 

 

The statistical design of CUSUM charts 

 

While the Shewhart-type charts are widely known and most often used in practice 

because of their simplicity and global performance, other classes of charts, such as the 

CUSUM charts are useful and sometimes more naturally appropriate in the process control 

environment in view of the sequential nature of data collection. The CUSUM chart 

incorporates all the information in the sequence of sample values by plotting a function of the 

cumulative sums of the deviations of the sample values from a target value. For example, 

suppose that samples of size 1=n  are collected and let jx  denote the thj  observation. The 

case of individual observations occurs very often in practice, so that situation will be treated 

first. Later we will see how to modify these results for subgroups. Then if 0θ  is the target 

value, the CUSUM chart is formed by plotting iC  where 

.)()()()( 100

1

1
00

1
−

−

==

+−=−+−=−= �� ii

i

j
ji

i

j
ji CxxxxC θθθθ  

 

The upper one-sided CUSUM works by accumulating deviations from K+0θ  that are 

above target. For the upper one-sided CUSUM chart we use 

 ])(,0max[ 01 KxCC iii −−+= +
−

+ θ     for ,...3,2,1=i  (2.31) 

to detect positive deviations from 0θ . A signaling event occurs for the first i  such that 

HCi ≥+ . 
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The lower one-sided CUSUM works by accumulating deviations from K−0θ  that are 

below target. For the lower one-sided CUSUM chart we use 

 ])(,0min[ 01 KxCC iii +−+= −
−

− θ     for ,...3,2,1=i  (2.32) 

or 

 ])(,0max[ 0

*

1

*
KxCC iii −−−= −

−
− θ     for ,...3,2,1=i  (2.33) 

to detect negative deviations from 0θ . A signaling event occurs for the first i  such that 

HCi −≤−  (if expression (2.32) is used) or HCi ≥−*
 (if expression (2.33) is used). For a 

visually appealing chart, expression (2.32) will be used to construct the lower one-sided 

CUSUM.  

 

The two-sided CUSUM chart signals for the first  i  at which either one of the two 

inequalities is satisfied, that is, either HCi ≥+  or HCi −≤− . Both K  and H  are non-

negative integers and they are needed in order to implement the CUSUM chart. Details 

regarding how to choose these constants are given in Section 2.3.1 in the sub-section called 

Recommendations for the design of the CUSUM control chart. 

 

Note that both +
iC  and −

iC  accumulate deviations from the target value 0θ  that are 

greater than K . Originally, Page (1954) set the starting values equal to zero, that is, 00 =+C  

and 00 =−C . Later on, Lucas and Crosier (1982) recommended setting the starting values 

equal to some nonzero value to improve the sensitivity of the CUSUM at process start-up. 

This is referred to as the fast initial response (FIR) or head start feature. 

 

The standardized CUSUM 

 

The variable ix  can be standardized by subtracting its mean and dividing by its 

standard deviation, that is,  

 
( )

σ
θ0−

= i
i

x
y . (2.34) 

The resulting standardized upper one-sided CUSUM is given by 

 ],0max[ 1 kySS iii −+= +
−

+     for ,...3,2,1=i  (2.35) 

while the resulting standardized lower one-sided CUSUM is given by 
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 ],0min[ 1 kySS iii ++= −
−

−     for ,...3,2,1=i  (2.36) 

or 

 ],0max[
*

1

*
kySS iii −−= −

−
−   for ,...3,2,1=i  (2.37) 

 

The two-sided standardized CUSUM is constructed by running the upper and lower 

one-sided standardized CUSUM charts simultaneously and signals at the first i  such that 

si HS ≥+  or si HS −≤− *. Both k  and sH  are non-negative integers and they are needed in 

order to implement the standardized CUSUM chart. As mentioned previously, details 

regarding how to choose these constants are given in Section 2.3.1 in the sub-section called 

Recommendations for the design of the CUSUM control chart. 

 

The unstandardized CUSUM iC  and the standardized CUSUM iS  contains the same 

information. The question arises: Should unstandardized or standardized data be used? 

Unstandardized data has the advantage that the units of the vertical axis are in their original 

measurements which makes interpretation easier. Standardized data has the advantage that 

different CUSUM charts can be compared. 

 

The CUSUM for monitoring the process mean and other sample statistics 

 

A CUSUM chart for monitoring the process mean can be obtained by replacing ix  in 

expression (2.34) with the sample average ix  and by replacing σ  by nσ . It is also 

possible to develop CUSUM charts for other sample statistics, for example, standard 

deviations and defects. These CUSUM charts for other sample statistics have been studied by 

many authors, for example, Lucas (1985), Gan (1993) and White, Keats and Stanley (1997). 

 

Recommendations for the design of the CUSUM control chart 

 

Phase II CUSUM charts should be designed on the basis of ARL performance. The 

parameters K  and H  are obtained for a specified in-control average run length. Both 

                                                 
* The vertical axis of the standardized CUSUM will be measured in multiples of the standard deviation ( σ ) of 
the data, whereas the vertical axis of the unstandardized data will be measured in the same units of X, for 
example, in meters, millimeters, ect. To avoid confusion, H and Hs will be used to denote the decision intervals 
for the unstandardized and standardized CUSUM charts, respectively. 
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parameters are non-negative integers. Let σ  denote the standard deviation of the sample 

variable used in forming the cumulative sum. Parametric CUSUM charts (see Page (1954)) 

are used for detecting shifts in a normal mean based on the cumulative sum of differences 

from target. Let σhH =  and σkK =  where h  is usually taken to be equal to 4 or 5 and k  is 

usually taken to equal 0.5 (see Montgomery (2005) page 395). By choosing 4=h  or 5=h  

and 5.0=k  (the values most commonly used in practice) we generally get a good average run 

length performance for parametric CUSUM charts. In the next section we will show that 

choosing 4=h  or 5=h  and 5.0=k  is not recommended for nonparametric CUSUM charts, 

since it usually gives a poor in-control average run length performance. Since we will not be 

using σ4=H  or σ5  and σ5.0=K  for nonparametric control charts, we will denote the 

decision interval and reference value by h  and k, respectively, from this point forward. 

 

The proposed nonparametric CUSUM chart 

 

Amin, Reynolds and Bakir (1995) proposed a nonparametric CUSUM chart for the 

median (or any other percentile) of any continuous population based on sign statistics. Recall 

that for the thi  random sample the plotting statistic in the Shewhart-type chart was 

�
=

−=
n

j
iji xsignSN

1
0 )( θ . The chart proposed by Amin et al. (1995) instead uses the cumulative 

sum of the statistic iSN  with a stopping rule. They also calculated the ARL of the chart using 

a Markov chain approach where the transition probabilities are calculated via the distribution 

of the sign statistic, which is of course binomial.  The procedure is distribution-free since the 

in-control distribution of iSN  does not depend on the underlying distribution for all 

continuous distributions. A CUSUM sign chart can be obtained by replacing iy  in 

expressions (2.35), (2.36) and (2.37) with iSN . In other words, for the upper one-sided 

CUSUM sign chart we use  

 ],0max[ 1 kSNSS iii −+= +
−

+     for ,...3,2,1=i  (2.38) 

to detect positive deviations from the known target value 0θ . A signaling event occurs for the 

first i  such that hS i ≥+ .  

 

For a lower one-sided CUSUM sign chart we use  

 ],0min[ 1 kSNSS iii ++= −
−

−     for ,...3,2,1=i  (2.39) 
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or 

 ],0max[
*

1

*
kSNSS iii −−= −

−
−     for ,...3,2,1=i  (2.40) 

to detect negative deviations from the known target value 0θ . A signaling event occurs for the 

first i  such that hS i −≤−  (if expression (2.39) is used) or hS i ≥−*
 (if expression (2.40) is 

used).  

 

The corresponding two-sided CUSUM chart signals for the first i  at which either one 

of the two inequalities is satisfied, that is, either hS i ≥+  or hS i −≤− . Starting values are 

typically chosen to equal zero, that is, 000 == −+ SS .  

 

The constants k  and h  are obtained for a specified in-control average run length. In-

control average run length ( 0ARL ), standard deviation of the run length ( 0SDRL ), th5 , th25  

(the first quartile, 1Q ), th50  (the median run length, 0MRL ), th75  (the third quartile, 3Q ) and 

th95  percentile values will be computed and tabulated for various values of h  and k  later on.   

 

2.3.2. One-sided control charts 

  

2.3.2.1. Upper one-sided control charts 

 

Various expressions for the exact run length distribution and its parameters have been 

given for the normal theory one-sided CUSUM procedure by, for example, Ewan and Kemp 

(1960), Brook and Evans (1972), Woodall (1983) and Hawkins and Olwell (1998). Many 

authors have presented various approximations for the run length distribution and its 

parameters for the one-sided CUSUM procedure. A Markov chain representation of the one-

sided CUSUM procedure based on integer-valued cumulative sums is presented in this 

section. The number of states included in the Markov chain is minimized in order to make the 

methods as efficient as possible. 
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Markov chain approach 

 

Brook and Evans (1972) and Amin et al. (1995) considered a method for evaluating 

the exact average run length and its moments for the upper one-sided CUSUM chart by 

treating the cumulative sum as a Markov chain with the state space a subset of },...,2,1,0{ h . 

Markov techniques have a great advantage as they are adjustable to many runs related 

problems and they often simplify the solutions to the specific problems they are applied on. 

Fu, Spiring and Xie (2002) presented three results that must be satisfied before implementing 

the finite-state Markov chain approach. 

 

Let +
tS  be a finite-state homogenous Markov chain on the state space +Ω  with a TPM 

such that (i) },...,,{ 110 −+
+ =Ω srςςς  where hsr =<<<= −+ 110 ...0 ςςς  and 1−+srς  is an 

absorbent state; (ii) the TPM is given by ][ ijpTPM =  for 1,...,1,0 −+= sri  and 

1,...,1,0 −+= srj  where r denotes the number of non-absorbent states and s the number of 

absorbent states, respectively, and (iii) the starting value should be in the “dummy” state with 

probability one, that is, 1)( 00 ==+ ςSP , to ensure the process starts in-control . Assume that 

the Markov chain +
tS  satisfies conditions (i), (ii) and (iii), then from Fu, Spiring and Xie 

(2002) and Fu and Lou (2003) we have 

 1)()0|( 1
0 QIQSnNP n −=== −+ ξ  (2.41) 

 ( ) ( ) 11−−= QINE ξ   (2.42) 

 ( ) ( )( ) 122 −−+= QIQINE ξ  (2.43) 

 ( ) ( ) ( )( ) ( )( )21222 11)()var( −− −−−+=−= QIQIQINENEN ξξ  (2.44) 

 ( )( ) ( )( )212 11)var( −− −−−+== QIQIQINSDRL ξξ  (2.45) 

where the essential transition probability sub-matrix Q  is the rr ×  matrix that contains all the 

transition probabilities of going from a non-absorbent state to a non-absorbent state, I  is the 

rr ×  identity matrix, ξ  is a r×1  row vector with 1 at the st1  element and zero elsewhere and 

1 is an 1×r  column vector with all elements equal to unity. See Theorem 2 in Appendix A 

for the derivations done by Fu, Spiring and Xie (2002) and Fu and Lou (2003). 
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The time that the procedure signals is the first time such that the finite-state Markov 

chain +
tS  enters one of the absorbent states where the state space is given by 

},...,,{ 110 −+
+ =Ω srςςς , 00 =+S  and  

 { }{ }kSNShS ttt −+= +
−

+
1,0max,min . (2.46) 

 

The state corresponding to a signal by the CUSUM chart is called an absorbent state. 

Clearly, there is only one absorbent state, since the chart signals when +
tS  falls on or above h, 

i.e. 1=s . 

 

The distribution of tSN  can easily be obtained from the binomial distribution (recall 

that nTSN ii −= 2  i∀ , where iT  is binomially distributed with parameters n  and 

)( 0θ≥= ijXPp ) . The binomial probabilities are given in Table G of Gibbons and 

Chakraborti (2003) and can easily be calculated using some type of statistical software 

package, for example, Excel or SAS. 

 

Example 2.6 

An upper one-sided CUSUM sign chart where the sample size is odd ( 5====n ) 

 

The statistical properties of an upper one-sided CUSUM sign chart with a decision 

interval of 4 ( 4=h ), a reference value of 1 ( 1=k ) and a sample size of 5 ( 5=n ) is 

examined. For n  odd, the reference value is taken to be odd, because this leads to the sum 

( )� − kSN i  being equal to even values which reduces the size of the state space for the 

Markov chain. This will halve the size of the matrices of transition probabilities. For 4=h  

we have that the state space is }4,2,0{},,{ 210 ==Ω+ ςςς  with h=<<= 2100 ςςς . The state 

space is calculated using equation (2.46) and the calculations are shown in Table 2.18. 
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Table 2.18. Calculation of the state space when 4=h , 1=k  and 5=n . 

tSN  kSNS tt −−−−++++++++
−−−−1  {{{{ }}}}kSNS tt −−−−++++++++

−−−−1,0max  {{{{ }}}}{{{{ }}}}kSNShS ttt −−−−++++==== ++++
−−−−

++++
1,0max,min  

-5 -6* 0 0 
-3 -4 0 0 
-1 -2 0 0 
1 0 0 0 
3 2 2 2 
5 4 4 4 

 

Table 2.19. Classifications and descriptions of the states. 

State number Description of the state Absorbent (A)/ Non-absorbent (NA) 
0 0=+

tS  NA 

1 2=+
tS  NA 

2 4=+
tS  A 

 

From Table 2.19 we see that there are two non-absorbent states, i.e. 2=r , and one 

absorbent state, i.e. 1=s . Therefore, the corresponding TPM will be a 33)()( ×=+×+ srsr  

matrix. It can be shown (see Table 2.20) that the TPM is given by 
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where the essential transition probability sub-matrix )(:22 NANAQ →×  is an 22 ×=× rr  

matrix, )(:
12

ANAp →
×

 is an 121)1( ×=×−+ sr  column vector, )(:'0 21 NAA →×  is a 

21)1(1 ×=−+× sr  row vector and )(:1 11 AA →×  represents the scalar value one. 

 

The one-step transition probabilities are calculated by substituting tSN  in expression 

(2.46) by nT −2  and substituting in values for h , k , +
tS  and +

−1tS . The calculation of the 

one-step transition probabilities are given in Table 2.20 for illustration. 

 

The probabilities in the last column of the TPM can also be calculated using the fact 

that �
Ω∈

=
j

ijp 1 i∀  (see equation (2.18)). Therefore, 

                                                 
* Note: Since only the state space needs to be described, +

−1tS  can be any value from +Ω  and we therefore take, 

without loss of generality, 01 =+
−tS . Any other possible value for +

−1tS  would lead to the same +Ω . 
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32
1

32
5

32
26

010002 )(1)(1 =+−=+−= ppp ; 

32
6

32
10

32
16

111012 )(1)(1 =+−=+−= ppp ; and 

1)00(1)(1 212022 =+−=+−= ppp . 

Since it is easier to calculate the probabilities in the last column of the TPM using the latter 

approach, it will be used throughout the text from this point forward. 

 

Table 2.20. The calculation of the transition probabilities when 4=h , 1=k  and 5=n . 
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)4|0( 1

20

=== −tt SSP

p
 

0= * 0

)4|2( 1

21

=
=== −tt SSP

p

 )4|4( 1

22

=== −tt SSP

p
  

1= † 
 

Using the TPM the ARL  can be calculated using ( ) 11−−= QIARL ξ . A well-known 

concern is that important information about the performance of a control chart can be missed 

when only examining the ARL (this is especially true when the process distribution is 

skewed). Various authors, see for example, Radson and Boyd (2005) and Chakraborti (2007), 

have suggested that one should examine a number of percentiles, including the median, to get 

the complete information about the performance of a control chart. Therefore, we now also 

consider percentiles. The 100 thρ  percentile is defined as the smallest integer l  such that the 

                                                 
* The probability equals zero, because it is impossible to go from an absorbent state to a non-absorbent state. 
† The probability equals one, since the probability of going from an absorbent state to an absorbent state is equal 
to one (once an absorbent state is entered, it is never left). 
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cdf is at least ( )%100 ρ× . Thus, the 100 thρ  percentile l  is found from ρ≥≤ )( lNP . The 

median ( th50  percentile) will be considered, since it is a more representative performance 

measure than the ARL (see the discussion in Section 2.1.5). The first and third quartiles ( th25  

and th75  percentiles) will also be considered, since it contains the middle half of the 

distribution. The ‘tails’ of the distribution should also be examined and therefore the th5  and 
th95  percentiles are calculated. The calculation of these percentiles is shown in Table 2.21 for 

illustration purposes. The first column of Table 2.21 contains the values that the run length 

variable ( N ) can take on. 

 

Table 2.21. Calculation of the percentiles when 4=h , 1=k  and 5=n *. 

N )( lNP ≤≤≤≤  The 5th, 25th, 50th, 75th and 95th percentiles 
1 0.0313  
2 0.0859 =05.0ρ 2 (smallest integer such that the cdf is at least 0.05) 
3 0.1420  
4 0.1954  
5 0.2456  
6 0.2928 =25.0ρ  6 (smallest integer such that the cdf is at least 0.25) 
7 0.3370  
8 0.3784  
9 0.4173  

10 0.4537  
11 0.4878  
12 0.5198 =5.0ρ 12 (smallest integer such that the cdf is at least 0.5) 
13 0.5499  
14 0.5780  
15 0.6044  
16 0.6291  
17 0.6523  
18 0.6740  
19 0.6944  
20 0.7135  
21 0.7314  
22 0.7482  
23 0.7639 =75.0ρ 23 (smallest integer such that the cdf is at least 0.75) 
24 0.7787  
25 0.7925  
26 0.8055  
27 0.8176  
28 0.8290  
29 0.8397  
30 0.8497  
�  �   

48 0.9530 =95.0ρ 48 (smallest integer such that the cdf is at least 0.95) 
49† 0.9559  

                                                 
* See SAS Program 2 in Appendix B for the calculation of the values in Table 2.21. 
† The value of the run length variable is only shown for some values up to N=49 for illustration purposes. 
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The formulas of the moments and some characteristics of the run length distribution 

have been studied by Fu, Spiring and Xie (2002) and Fu and Lou (2003) – see equations 

(2.41) to (2.45). By substituting )01(
21

=
×

ξ , ��
�

�
��
�

�
=× 1016

526

32
1

22Q  and ��
�

�
��
�

�
=× 1

1
1 12   into these 

equations, we obtain the following: 

 

( ) ( ) 62.1611 =−== −QINEARL ξ  

( ) ( )( ) 59.516122 =−+= −QIQINE ξ  

( ) ( ) 51.15)()( 22 =−== NENENVarSDRL  

2  percentile 5 05.0 == ρth  

6  percentile 25 25.0 == ρth  

12  percentile 50 Median 5.0 === ρth  

23  percentile 75 75.0 == ρth  

48  percentile 95 95.0 == ρth  

 

Other values of h, k and n were also considered and the results are given in Table 2.22. 

 

Table 2.22. The in-control average run length ( +
0ARL ), standard deviation of the run length 

( SDRL ), th5 , th25 , th50 , th75  and th95  percentile* values for the upper one-sided CUSUM 

sign chart when 5=n †. 

h k 2 3 or 4 

1 
5.33 
4.81 

(1, 2, 4, 7, 15) 

16.62 
15.51 

(2, 6, 12, 23, 48) 

3 
32.00 
31.50 

(2, 10, 22, 44, 95) 

‡ 

 

                                                 
* The three rows of each cell shows the +

0ARL , the SDRL , and the percentiles ( 5ρ , 25ρ , 50ρ , 75ρ , 95ρ ), 
respectively. 
† See SAS Program 2 in Appendix B for the calculation of the values in Table 2.22. 
‡ Since the decision interval is taken to satisfy knh −≤  there are open cells in Table 2.22. 
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Note that the summary measures for odd values of h  will be equal to the summary 

measures of the subsequent even integer. More on this later (refer to example (2.8)). Values of 

k  and h  are restricted to be integers so that the Markov chain approach could be employed to 

obtain expressions for the exact run length distribution and its parameters. In order to allow 

for the possibility of stopping after one sample, i.e. issuing a signal, the values of h  is taken 

to satisfy knh −≤ .  

  

The five percentiles (given in Table 2.22) are displayed in boxplot-like graphs for 

various h  and k  values in Figure 2.5. It should be noted that these boxplot-like graphs differ 

from standard box plots. In the latter case the whiskers are drawn from the ends of the box to 

the smallest and largest values inside specified limits, whereas, in the case of the boxplot-like 

graphs, the whiskers are drawn from the ends of the box to the 5th and 95th percentiles, 

respectively. In this thesis “boxplot” will refer to a boxplot-like graph from this point forward. 

  

Figure 2.5 clearly shows the effects of h  and k  on the run length distribution and it 

portrays the run length distribution when the process is in-control. We would prefer a 

“boxplot” with a high valued (large) in-control average run length and a small spread. 

Applying this criterion, we see that the “boxplot” corresponding to the )3,2(),( =kh  

combination has the largest in-control average run length, which is favorable, but it also has 

the largest spread which is unattractive. The “boxplot” furthest to the right is exactly opposite 

from the “boxplot” furthest to the left. The latter has the smallest spread, which is favorable, 

but it also has the smallest in-control average run length, which is unattractive. In conclusion, 

no “boxplot” is optimal relative to the others.  
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Figure 2.5. Boxplot-like graphs for the in-control run length distribution of various upper 

one-sided CUSUM sign charts when 5=n .  The whiskers extend to the 5th and the 95th  

percentiles.  The symbols “ ”, “ ” and “ ” denote the ARL, SDRL* and MRL, 

respectively. 

 

Example 2.7 

An upper one-sided CUSUM sign chart where the sample size is even (n=6) 

 

The statistical properties of an upper one-sided CUSUM sign chart with a decision 

interval of 4 ( 4=h ), a reference value of 2 ( 2=k ) and a sample size of 6 ( 6=n ) is 

examined. For n  even, the reference value is taken to be even, because this leads to the sum 

( )� − kSN i  being equal to even values which reduces the size of the state space for the 

Markov chain. For 4=h  we have that the state space is }4,2,0{},,{ 210 ==Ω+ ςςς  with 

h=<<= 2100 ςςς . The state space is calculated using equation (2.46) and the calculations 

are shown in Table 2.23. 

                                                 
* For ease of interpretation, the standard deviation (as measure of spread) is included in the (location) measures 
of percentiles. 
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Table 2.23. Calculation of the state space when 4=h , 2=k  and 6=n . 

tSN  kSNS tt −−−−++++++++
−−−−1  {{{{ }}}}kSNS tt −−−−++++++++

−−−−1,0max  {{{{ }}}}{{{{ }}}}kSNShS ttt −−−−++++==== ++++
−−−−

++++
1,0max,min  

-6 -8* 0 0 
-4 -6 0 0 
-2 -4 0 0 
0 -2 0 0 
2 0 0 0 
4 2 2 2 
6 4 4 4 

 

Table 2.24. Classifications and descriptions of the states. 

State number Description of the state Absorbent (A)/ Non-absorbent (NA) 
0 0=+

tS  NA 

1 2=+
tS  NA 

2 4=+
tS  A 

 

From Table 2.24 we see that there are two non-absorbent states, i.e. 2=r , and one 

absorbent state, i.e. 1=s . Therefore, the corresponding TPM will be a 33)()( ×=+×+ srsr  

matrix. It can be shown (see Table 2.25) that the TPM is given by 
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where the essential transition probability sub-matrix )(:22 NANAQ →×  is an 22 ×=× rr  

matrix, )(:
12

ANAp →
×

 is an 121)1( ×=×−+ sr  column vector, )(:'0 21 NAA →×  is a 

21)1(1 ×=−+× sr  row vector and )(:1 11 AA →×  represents the scalar value one. The one-

step transition probabilities are calculated by substituting tSN  in expression (2.46) by nT −2  

and substituting in values for h , k , +
tS  and +

−1tS . The calculation of the one-step transition 

probabilities are given in Table 2.25 for illustration. 

 

                                                 
* Note: Since only the state space needs to be described, +

−1tS  can be any value from +Ω  and we therefore take, 

without loss of generality, 01 =+
−tS . Any other possible value for +

−1tS  would lead to the same +Ω . 
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Table 2.25. The calculation of the transition probabilities when 4=h , 2=k  and 6=n . 
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The formulas of the moments and some characteristics of the run length distribution 

have been studied by Fu, Spiring and Xie (2002) and Fu and Lou (2003) – see equations 

(2.41) to (2.45). By substituting )01(
21

=
×

ξ , ��
�

�
��
�

�
=× 1542

657

64
1

22Q  and ��
�

�
��
�

�
=× 1

1
1 12  into these 

equations, we obtain the following: 

 

( ) ( ) 68.3811 =−== −QINEARL ξ  

( ) ( )( ) 19.2918122 =−+= −QIQINE ξ  

( ) ( ) 71.37)()( 22 =−== NENENVarSDRL  

3  percentile 5 05.0 == ρth  

12  percentile 25 25.0 == ρth  

27  percentile 50 Median 5.0 === ρth  

53  percentile 75 75.0 == ρth  

114  percentile 95 95.0 == ρth  

 
                                                 
* The probability equals zero, because it is impossible to go from an absorbent state to a non-absorbent state. 
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Other values of h, k and n were also considered and the results are given in Table 2.26. 

 

Table 2.26. The in-control average run length ( +
0ARL ), standard deviation of the run length 

( SDRL ), th5 , th25 , th50 , th75  and th95  percentile* values for the upper one-sided CUSUM 

sign chart when 6=n †. 

h k 2 3 or 4 5 or 6 

0 
2.91 
2.36 

(1, 1, 2, 4, 8) 

5.92 
4.96 

(1, 2, 4, 8, 16) 

10.66 
8.80 

(2, 4, 8, 14, 28) 

2 
9.14 
8.63 

(1, 3, 6, 12, 26) 

38.68 
37.71 

(3, 12, 27, 53, 114) 

‡ 

4 
64.00 
63.50 

(4, 19, 45, 89, 191) 
  

 

The five percentiles (given in Table 2.26) are displayed in boxplot-like graphs for 

various h  and k  values in Figure 2.6. Recall that we would prefer a “boxplot” with a high 

valued (large) in-control average run length and a small spread. Applying this criterion, we 

see that the “boxplot” corresponding to the )4,2(),( =kh  combination has the largest in-

control average run length, which is favorable, but it also has the largest spread which is 

unattractive. The “boxplot” furthest to the right is exactly opposite from the “boxplot” furthest 

to the left. The latter has the smallest spread, which is favorable, but it also has the smallest 

in-control average run length, which is unattractive. In conclusion, no “boxplot” is optimal 

relative to the others.  

                                                 
* The three rows of each cell shows the +

0ARL , the SDRL , and the percentiles ( 5ρ , 25ρ , 50ρ , 75ρ , 95ρ ), 
respectively. 
† See SAS Program 2 in Appendix B for the calculation of the values in Table 2.26. 
‡ Since the decision interval is taken to satisfy knh −≤  there are open cells in Table 2.26. 
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Figure 2.6. Boxplot-like graphs for the in-control run length distribution of various upper 

one-sided CUSUM sign charts when 6=n .  The whiskers extend to the 5th and the 95th 

percentiles. The symbols “ ”, “ ” and “ ” denote the ARL, SDRL* and MRL, 

respectively. 

 

                                                 
* For ease of interpretation, the standard deviation (as measure of spread) is included in the (location) measures 
of percentiles. 
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On the performance side, note that the largest in-control average run length that the 

upper one-sided CUSUM sign chart can obtain is n2 . Therefore, for a sample size of 6 the 

largest +
0ARL  equals 6426 =  (this is obtained when 2=h  and 4=k ). For this case we find 

the ��
�

�
��
�

�
=

10
64

1
64

63

TPM  and as a result the in-control average run length equals 

( ) 641)1(11 1
64

631
0 =×−×=−= −−+ QIARL ξ . Since the largest +

0ARL  is only 64 for 6=n , 

many false alarms will be expected by this chart leading to a possible loss of time and 

resources. Larger sample sizes should therefore preferably be taken when implementing the 

upper one-sided CUSUM sign chart. 

 

....................................................................................................................................................... 

Example 2.8 

An upper one-sided CUSUM sign chart with a decision interval of 4 (h=4), a reference 

value of 1 (k=1) and a sample size of 5 (n=5) 

 

In the previous two examples it can be seen that summary measures for odd values of 

h  will be equal to the summary measures of the subsequent even integer. This will be 

illustrated by the use of an example. 

 

For the upper one-sided CUSUM sign chart with a decision interval of 4 ( 4=h ), a 

reference value of 1 ( 1=k ) and a sample size of 5 ( 5=n ) the TPM was given by 

�
�
�

�

�

�
�
�

�

�

=
100
32

6
32

10
32

16

32
1

32
5

32
26

TPM  (see example (2.6). By keeping the reference value and the sample 

size fixed and changing h  to an odd integer ( 3=h ) we obtain the same TPM and therefore 

we obtain the same summary measures. Stated differently, the summary measures of h  odd 

( 3=h ) will be equal to the summary measures of the subsequent even integer ( 4=h ). 

 

……………………………………………………………………………………………........... 

 

We’ve considered sample sizes of 5=n  and 6 and established that larger sample sizes 

should preferably be taken when implementing the upper one-sided CUSUM sign chart. 

Therefore, a larger sample size ( 10=n ) is considered and the results are given in Table 2.27. 

 
 
 



 82 

Table 2.27. The in-control average run length ( +
0ARL ), standard deviation of the run length 

( SDRL ), th5 , th25 , th50 , th75  and th95  percentile* values for the upper one-sided CUSUM 

sign chart when 10=n †. 

h k 3 or 4 5 or 6 7 or 8 

2 
14.34 
13.58 

(1, 5, 10, 20, 41) 

36.81 
35.48 

(3, 12, 26, 51, 108) 

91.59 
89.45 

(7, 28, 64, 126, 270) 

4 
77.97 
77.29 

(5, 23, 54, 108, 232) 

464.86 
463.68 

(25, 135, 323, 644, 1390) 
 ‡ 

6 
929.97 
929.37 

(48, 268, 645, 1289, 2785) 
  

 

Table 2.27 gives values of +
0ARL  for various values of h  and k  when the sample size 

is equal to 10. Amin, Bakir and Reynolds (1995) provided a similar Table (see Table 5 on 

page 1613) containing the in-control run length summary values for the upper one-sided 

CUSUM sign chart ( +
0ARL ) for a range of k  and h  values when 10=n . 

 

The five percentiles (given in Table 2.27) are displayed in boxplot-like graphs for 

various h  and k  values in Figure 2.7. Recall that we would prefer a “boxplot” with a high 

valued (large) in-control average run length and a small spread. Applying this criterion, we 

see that the “boxplot” corresponding to the )6,3(),( =kh  or )6,4(),( =kh  combination has 

the largest in-control average run length, which is favorable, but it also has the largest spread 

which is unattractive. The “boxplot” furthest to the right is exactly opposite from the 

“boxplot” furthest to the left. The latter has the smallest spread, which is favorable, but it also 

has the smallest in-control average run length, which is unattractive. In conclusion, no 

“boxplot” is optimal relative to the others.  

 

 

 

                                                 
* The three rows of each cell shows the +

0ARL , the SDRL , and the percentiles ( 5ρ , 25ρ , 50ρ , 75ρ , 95ρ ), 
respectively. 
† See SAS Program 2 in Appendix B for the calculation of the values in Table 2.27. 
‡ Since the decision interval is taken to satisfy knh −≤  there are open cells in Table 2.27. 
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Figure 2.7. Boxplot-like graphs for the in-control run length distribution of various upper 

one-sided CUSUM sign charts when 10=n .  The whiskers extend to the 5th and the 95th 

percentiles. The symbols “ ”, “ ” and “ ” denote the ARL, SDRL* and MRL, 

respectively. 

                                                 
* For ease of interpretation, the standard deviation (as measure of spread) is included in the (location) measures 
of percentiles. 
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Example 2.9 

An upper one-sided CUSUM sign chart for the Montgomery (2001) piston ring data 

 

We conclude this sub-section by illustrating the upper one-sided CUSUM sign chart 

using a set of data from Montgomery (2001; Table 5.2) on the inside diameters of piston rings 

manufactured by a forging process. The dataset contains 15 samples (each of size 5). We 

assume that the underlying distribution is symmetric with a known target value of 

740 =θ mm. 

 

 Let 3=k . Once k is selected, the constant h should be chosen to give the desired in-

control average run length performance. By choosing 2=h  we obtain an in-control average 

run length of 32 which is the highest in-control average run length attainable when 5=n  (see 

Table 2.22). 

 

The plotting statistics for the Shewhart sign chart ( iSN  for 15,...,2,1=i ) are given in 

the second row of Table 2.28. The upper one-sided CUSUM plotting statistics ( +
iS  for 

15,...,2,1=i ) are given in the third row of Table 2.28. 

 

Table 2.28. iSN  and +
iS  values for the piston ring data in Montgomery (2001)*. 

Sample No: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
iSN  2 1 -4 3 0 3 3 -1 3 4 1 5 5 5 4 

++++
iS  0 0 0 0 0 0 0 0 0 1 0 2 4 6 7 

 

To illustrate the calculations, consider sample number 1. The equation for the plotting 

statistic +
iS  is 0]1,0max[]320,0max[],0max[ 101 =−=−+=−+= ++ kSNSS  where a 

signaling event occurs for the first i  such that hS i ≥+ , that is, 2≥+
iS . The graphical display 

of the upper one-sided CUSUM sign chart is shown in Figure 2.8. 

 

                                                 
* See SAS Program 3 in Appendix B for the calculation of the values in Table 2.28. 
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Figure 2.8. The upper one-sided CUSUM sign chart for the Montgomery (2001) piston ring 

data. 

 

The upper one-sided CUSUM sign chart signals at sample 12, indicating a most likely 

upward shift from the known target value 0θ . The action taken following an out-of-control 

signal on a CUSUM chart is identical to that with any control chart. A search for assignable 

causes should be done, corrective action should be taken (if required) and, following this, the 

CUSUM is reset to zero. Different control charts are compared by designing the control charts 

to have the same 0ARL  and then evaluating the δARL . The control chart with the lower 

δARL  is the preferred chart. These procedures can not be meaningfully illustrated using the 

data from Montgomery (2001) because the sample size 5=n  used here is too small. It may 

be noted that the highest +
0ARL  is 32 for 5=n . Thus, achievable values of +

0ARL  are too 

small for practical use, unless n is ‘large’. 

 
 
 



 86 

 

2.3.2.2. Lower one-sided control charts 

 

Analogous to the previous section, a Markov chain representation of the one-sided 

CUSUM procedure based on integer-valued cumulative sums is presented in this section. The 

number of states included in the Markov chain is minimized in order to make the methods as 

efficient as possible. The time that the procedure signals is the first time such that the finite-

state Markov chain −
tS  enters the state 0ς  where the state space is given by 

},...,,{ 110 −+
− =Ω srςςς  with 0... 10 =<<=− −+srh ςς ,  00 =−S  and  

 { }{ }kSNShS ttt ++−= −
−

−
1,0min,max . (2.47) 

Clearly, there is only one absorbent state, since the chart signals when −
tS  falls on or below 

h− , i.e. 1=s . 

 

The distribution of tSN  can easily be obtained from the binomial distribution (recall 

that nTSN ii −= 2  i∀ , where iT  is binomially distributed with parameters n  and 

)( 0θ≥= ijXPp ) . The binomial probabilities are given in Table G of Gibbons and 

Chakraborti (2003) and can easily be calculated using some type of statistical software 

package, for example, Excel or SAS. 

 

Example 2.10 

A lower one-sided CUSUM sign chart where the sample size is odd ( 5====n ) 

 

The statistical properties of a lower one-sided CUSUM sign chart with a decision 

interval of 4 ( 4=h ), a reference value of 1 ( 1=k ) and a sample size of 5 ( 5=n ) is 

examined. For n  odd, the reference value is taken to be odd, because this leads to the sum 

( )� − kSN i  being equal to even values which reduces the size of the state space for the 

Markov chain. For 4=h  we have =Ω−  =},,{ 210 ςςς }0,2,4{ −−  with 0210 =<<=− ςςςh . 

The state space is calculated using equation (2.47) and the calculations are shown in Table 

2.29. 
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Table 2.29. Calculation of the state space when 4=h , 1=k  and 5=n . 

tSN  kSNS tt ++++++++−−−−
−−−−1  {{{{ }}}}kSNS tt ++++++++−−−−

−−−−1,0min  {{{{ }}}}{{{{ }}}}kSNShS ttt ++++++++−−−−==== −−−−
−−−−

−−−−
1,0min,max  

-5 -4* -4 -4 
-3 -2 -2 -2 
-1 0 0 0 
1 2 0 0 
3 4 0 0 
5 6 0 0 

 

Table 2.30. Classifications and descriptions of the states. 

State number Description of the state Absorbent (A)/ Non-absorbent (NA) 
0 0=−

tS  NA 

1 2−=−
tS  NA 

2 4−=−
tS  A 

 

From Table 2.30 we see that there are two non-absorbent states, i.e. 2=r , and one 

absorbent state, i.e. 1=s . Therefore, the corresponding TPM will be a 33)()( ×=+×+ srsr  

matrix. It can be shown (see Table 2.31) that the TPM is given by 

�
�
�

�

�

�
�
�

�

�

−−−=

��
�
�
�

�

�

��
�
�
�

�

�

−−−−
=

�
�
�

�

�

�
�
�

�

�

=

××

××

−−−−−

−−−−−

−−

×

1121

1222
32

6
32

10
32

16

32
1

32
5

32
26

)4)(4()2)(4(0)4(

)4)(2()2)(2(0)2(

)4(0)2(000

33

1|'0

|

1|00

|
|

pQ

ppp

ppp

ppp

TPM  

where the essential transition probability sub-matrix )(:22 NANAQ →×  is an 22 ×=× rr  

matrix, )(:
12

ANAp →
×

 is an 121)1( ×=×−+ sr  column vector, )(:'0 21 NAA →×  is a 

21)1(1 ×=−+× sr  row vector and )(:1 11 AA →×  represents the scalar value one. 

 

The one-step transition probabilities are calculated by substituting tSN  in expression 

(2.47) by nT −2  and substituting in values for h , k , −
tS  and −

−1tS . The calculation of the 

one-step transition probabilities are given for illustration in Table 2.31. 

 

                                                 
* Note: Since only the state space needs to be described, −

−1tS  can be any value from −Ω  and we therefore take, 

without loss of generality, 01 =−
−tS . Any other possible value for −

−1tS  would lead to the same −Ω .     
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Table 2.31. The calculation of the transition probabilities when 4=h , 1=k  and 5=n . 

32
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00
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)152(
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)0}10,0(min{
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The formulas of the moments and some characteristics of the run length distribution 

have been studied by Fu, Spiring and Xie (2002) and Fu and Lou (2003) – see equations 

(2.41) to (2.45). By substituting )01(
21

=
×

ξ , ��
�

�
��
�

�
=×

32
10

32
16

32
5

32
26

22Q  and ��
�

�
��
�

�
=× 1

1
1 12  into these 

equations, we obtain the following: 

 

( ) ( ) 62.1611 =−== −QINEARL ξ  

( ) ( )( ) 59.516122 =−+= −QIQINE ξ  

( ) ( ) 51.15)()( 22 =−== NENENVarSDRL  

2  percentile 5 5 == ρth  

6  percentile 25 25 == ρth  

                                                 
* The probability equals zero, because it is impossible to go from an absorbent state to a non-absorbent state. 
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12  percentile 50 Median 50 === ρth  

23  percentile 75 75 == ρth  

48  percentile 95 95 == ρth  

 

The in-control average run length values, standard deviation of the run length values 

and percentiles for the lower one-sided CUSUM sign chart are exactly the same as for the 

upper one-sided CUSUM sign chart, since the one-step transition probabilities matrices are 

the same (compare the transition probabilities matrices of examples 2.6 and 2.10). Therefore, 

we obtain Result 2.10: 

 

Result 2.10: 

 

The in-control average run length ( +
0ARL ), standard deviation of the run length ( SDRL ), 

th5 , th25 , th50 , th75  and th95  percentile values tabulated for the upper one-sided CUSUM sign 

chart will also hold for the lower one-sided CUSUM sign chart. 

 

 

Example 2.11 

A lower one-sided CUSUM sign chart for the Montgomery (2001) piston ring data 

 

We conclude this sub-section by illustrating the lower one-sided CUSUM sign chart 

using a set of data from Montgomery (2001; Table 5.2) on the inside diameters of piston rings 

manufactured by a forging process. The dataset contains 15 samples (each of size 5). We 

assume that the underlying distribution is symmetric with a known target value of 

740 =θ mm. 

 

From Table 2.22 it can be seen that the in-control average run length equals 32 when 

2=h  and 3=k  (recall that this is the largest possible in-control average run length value 

that the chart can obtain, since 3225 = ). The plotting statistics for the Shewhart sign chart 

( iSN  for 15,...,2,1=i ) are given in the second row of Table 2.32. The lower one-sided 

CUSUM plotting statistics ( −
iS  for 15,...,2,1=i ) are given in the third row of Table 2.32. 
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Table 2.32. iSN  and −
iS  values for the piston ring data in Montgomery (2001)*. 

Sample No: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
iSN  2 1 -4 3 0 3 3 -1 3 4 1 5 5 5 4 

−−−−
iS  0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 

 

To illustrate the calculations, consider sample number 1. The equation for the plotting 

statistic −
1S  is  

 0]5,0max[]320,0max[],0max[ 101

**

=−=−−=−−= −− kSNSS  (2.48)  

or  

 0]5,0min[]320,0min[],0min[ 101 ==++=++= −− kSNSS . (2.49) 

 

A signaling event occurs for the first i  such that hS i ≥−*

, that is, 2
*

≥−
iS  if 

expression (2.48) is used or hS i −≤− , that is, 2−≤−
iS  if expression (2.49) is used. 

 

The graphical display of the lower one-sided CUSUM sign chart (using expression 

(2.49)) is shown in Figure 2.9 and does not signal. 
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Figure 2.9. The lower one-sided CUSUM sign chart for the Montgomery (2001) piston ring 

data. 

                                                 
* See SAS Program 3 in Appendix B for the calculation of the values in Table 2.32. 
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2.3.3. Two-sided control charts 

 

Various authors have studied the two-sided CUSUM scheme, for example, Kemp 

(1971) gives the average run length of the two-sided CUSUM scheme in terms of the average 

run lengths of the two corresponding one-sided schemes. Lucas and Crosier (1982) used a 

Markov chain representation of the two-sided CUSUM scheme to determine the run length 

distribution and the average run length. In this thesis, the approach taken by Brook and Evans 

(1972) for the one-sided CUSUM scheme is extended to the two-sided CUSUM scheme. A 

Markov chain representation of the two-sided CUSUM scheme based on integer-valued 

random variables will be presented. This is done since the nonparametric statistics that are the 

building blocks of the CUSUM scheme are discrete random variables.  The number of states 

included in the Markov chain is minimized by taking the reference value k  so that the state 

space of the Markov chain is a set of even numbers. This reduces the size of the TPM and 

thus eliminates unnecessary calculations in order to make the methods as efficient as possible. 

 

Recall that for the upper one-sided CUSUM sign chart we use  

 { }},0max{,min 1
+
−

+ +−= ttt SkSNhS  for ,...2,1=n  (2.50) 

For a lower one-sided CUSUM sign chart we use  

 { }},0min{,max 1
−
−

− ++−= ttt SkSNhS  for ,...2,1=n  (2.51) 

For the two-sided scheme the two one-sided schemes are performed simultaneously. The 

corresponding two-sided CUSUM chart signals for the first t  at which either one of the two 

inequalities is satisfied, that is, either hSt ≥+  or hSt −≤− . Starting values are typically chosen 

to equal zero, that is, 000 == −+ SS . The two-sided scheme signals at 

{ }hShStN ttt
−≤≥= −+ or:min  where h  is a positive integer.  

 

The two-sided CUSUM scheme can be represented by a Markov chain with states 

corresponding to the possible combinations of values of +
tS  and −

tS . The states corresponding 

to values for which a signal is given by the CUSUM scheme are called absorbent states. 

Clearly, there are two absorbent states since the chart signals when +
tS  falls on or above h  or 

when −
tS  falls on or below h− , i.e. 2=s . Recall that r denotes the number of non-absorbent 
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states and, consequently, the corresponding TPM is an )()( srsr +×+ , i.e. an 

)2()2( +×+ rr  matrix. 

 

The time that the procedure signals is the first time such that the finite-state Markov 

chain enters the state 0ς  or 1−+srς  where the state space is given by Ω  = −+ Ω∪Ω  = 

},...,,{ 110 −+srςςς  with hh sr =<<=− −+ 10 ... ςς . 

 

Example 2.12 

A two-sided CUSUM sign chart where the sample size is odd ( 5====n ) 

 

The statistical properties of a two-sided CUSUM sign chart with a decision interval of 

4 ( 4=h ), a reference value of 1 ( 1=k ) and a sample size of 5 ( 5=n ) is examined. For n  

odd, the reference value k is taken to be odd, because this leads to the sum ( )� − kSN i  being 

equal to even values which reduces the size of the state space for the Markov chain. This 

reduces the size of the TPM and thus eliminates unnecessary calculations in order to make the 

methods as efficient as possible. Let Ω  denote the state space for the two-sided chart. Ω  is 

the union of the state space for the upper one-sided chart }4,2,0{=Ω+  and the state space for 

the lower one-sided chart }0,2,4{ −−=Ω− . Therefore, Ω  = −+ Ω∪Ω  = }4,2,0{}0,2,4{ ∪−−  = 

}4,2,0,2,4{ −−  = },,,,{ 43210 ςςςςς  with hh =<<<<=− 43210 ςςςςς . 
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Table 2.33. Classifications and descriptions of the states. 

State number Values of the CUSUM statistic(s) Absorbent (A) 
Non-absorbent (NA) 

0 0=−
tS  and 0=+

tS  NA 

1 2=−
tS  or 2=+

tS * NA 

2 2−=−
tS  or 2−=+

tS † NA 

3 4=−
tS  or 4=+

tS ‡ A 

4 4−=−
tS  or 4−=+

tS § A 
 

From Table 2.33 we see that there are three non-absorbent states, i.e. 3=r , and two 

absorbent states, i.e. 2=s . Therefore, the corresponding TPM will be a 

55)()( ×=+×+ srsr  matrix. The layout of the TPM is as follows. There are three transient 

states and two absorbent states.  By convention we first list the non-absorbent states and then 

we list the absorbent states.  In column one we compute the probability of moving from state 

i  to state 0, for all i . Note that the process reaches state 0 when both the upper and the lower 

cumulative sums equal zero. In columns two and three, we compute the probabilities of 

moving from state i  to the remaining non-absorbent states, for all i . Finally, in the remaining 

two columns we compute the probabilities of moving from state i  to the absorbent states, for 

all i . Thus, the TPM can be conveniently partitioned into 4 sections given by 
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TPM  

                                                 
* Moving from state 0 to state 1 can happen when either the upper cumulative sum or the lower cumulative sum 
equals 2. But the lower cumulative sum can not equal 2 since by definition the lower cumulative sum can only 
take on integer values smaller than or equal to zero. Therefore, we only use the probability that the upper 
cumulative sum equals 2 in the calculation of the probabilities in the TPM. 
 
† Moving from state 0 to state 2 can happen when either the upper cumulative sum or the lower cumulative sum 
equals -2. But the upper cumulative sum can not equal -2 since by definition the upper cumulative sum can only 
take on integer values greater than or equal to zero. Therefore, we only use the probability that the lower 
cumulative sum equals -2 in the calculation of the probabilities in the TPM. 
 
‡ A similar argument to the argument in the first footnote on this page holds. Therefore, we only use the 
probability that the upper cumulative sum equals 4 in the calculation of the probabilities in the TPM. 
 
§ A similar argument to the argument in the second footnote on this page holds. Therefore, we only use the 
probability that the lower cumulative sum equals -4 in the calculation of the probabilities in the TPM. 
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where the essential transition probability sub-matrix )(:33 NANAQ →×  is an 33×=× rr  

matrix, )(:23 ANAC →×  is an 23×=× sr  matrix, )(:32 NAAZ →×  is an 32 ×=× rs  matrix 

and )(:22 AAI →×  is a 22 ×=× ss  matrix. 

 

The calculation of the elements of the TPM is illustrated next. Note that this 

essentially involves the calculation of the matrices Q  and C . First consider the transient 

states.  Note that the process moves to state 0, i.e., 0=j , when both the upper and the lower 

cumulative sums equal 0.  Thus the required probability of moving to 0, from any other 

transient state, is the probability of an intersection of two sets involving values of the upper 

and the lower CUSUM statistics, respectively. On the other hand, the probability of moving to 

any state 0≠j , from any other state, is the probability of a union of two sets involving values 

of the upper and the lower CUSUM statistics, respectively.  However, one of these two sets is 

empty so that the required probability is the probability of only the non-empty set. 

 

The calculation of the entry in the first row and the first column of the matrix Q , 00p , 

will be discussed in detail. This is the probability of moving from state 0 to state 0 in one step. 

As we just described, this can happen only when the upper and the lower cumulative sums 

both equal 0 at time t .  For the upper one-sided CUSUM 00p  is the probability that the upper 

CUSUM equals 0 at time t , given that the upper CUSUM equaled 0 at time 1−t , that is, 

)0|0( 1 == +
−

+
tt SSP . For the lower one-sided procedure 00p  is the probability that the lower 

CUSUM equals 0 at time t , given that the lower CUSUM equaled 0 at time 1−t , that is, 

)0|0( 1 == −
−

−
tt SSP . For the two-sided procedure the two one-sided procedures are performed 

simultaneously. Therefore we have that { } { }( )0|00|0 1100 ==∩=== −
−

−+
−

+
tttt SSSSPp .  
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We have that  

{ } { }( )0|00|0 11

00

==∩=== −
−

−+
−

+
tttt SSSSP

p
 

this is computed by substituting in values for h , k , +
tS , +

−1tS ,  −
tS  and −

−1tS  into equations 

(2.50) and (2.51) 

{ }{ } { }{ }( )
{ } { }( )
( ) ( )( )
( ) ( )( )11

00101

0}01,0min{0}01,0max{

0}01,0min{,4max0}01,0max{,4min

−≥∩≤=
≥++∩≤−=

=++∩=+−=
=++−∩=+−=

tt

tt

tt

tt

SNSNP

SNSNP

SNSNP

SNSNP

 

recall that nTSNt −= 2  where T  is binomially distributed with parameters n  and 
)( 0θ≥= ijXPp  

( ) ( )( )
( ) ( )( )23

152152
≥∩≤=

−≥−∩≤−=
TTP

TTP
 

( )
32

20

32
102

)2(2
)3()2(

=
×=

==
=+==

TP

TPTP

 

since T  is binomially distributed with parameters 5=n  and 5.0=p . 

 

The remaining entries in the first column of the matrix Q  can be calculated similarly 

and we find that 32
10

10 =p  and 32
10

20 =p . 

 

Next we discuss the calculation of the entry in the first row and the second column of 

the matrix Q , 01p , in detail. This is the probability of moving from state 0 to state 1 in one 

step. This can happen when either the upper cumulative sum or the lower cumulative sum 

equals 2. But the lower cumulative sum can not equal 2 since by definition the lower 

cumulative sum can only take on integer values smaller than or equal to zero. Therefore 

although the required probability is the probability of the union of two sets involving values 

of the upper and the lower CUSUM statistics, one of these sets is empty so that the required 

probability is the probability of only the non-empty set. Hence, in this case, we will only have 

to calculate the upper one-sided probability. For the upper one-sided CUSUM, 01p  is the 

probability that the upper cumulative sum equals 2 at time t , given that the upper cumulative 

sum equaled 0 at time 1−t , that is, )0|2( 1 == +
−

+
tt SSP . We have that 
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)0|2( 1

01

=== +
−

+
tt SSP
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TP

TP
 

32
5= . 

  

The remaining entries in the second column of the matrix Q  can be calculated 

similarly and we find that 32
10

11 =p  and 32
5

21 =p . 

 

Next we discuss the calculation of the entry in the first row and the third column of the 

matrix Q , 02p , in detail. This is the probability of moving from state 0 to state 2 in one step. 

This happens when only the lower cumulative sum moves to -2, since the upper cumulative 

sum can not move to -2. Recall that the upper cumulative sum can only take on integer values 

greater than or equal to zero. As in the case of 01p ,  this probability is also the probability of 

the union of two sets, involving values of the CUSUM statistics, one of which is empty, so 

that the required probability is the probability of only the non-empty set. Hence, in this case 

since the lower CUSUM is involved, we will only have to calculate the probability associated 

with the lower one-sided procedure. Now, for the lower one-sided procedure 02p  is the 

probability that the lower cumulative sum equals -2 at time t , given that the lower cumulative 

sum equaled 0 at time 1−t , that is, )0|2( 1 =−= −
−

−
tt SSP . We have that  

)0|2( 1
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−

−
tt SSP

p
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The remaining entries in the third column of the matrix Q  can be calculated similarly 

and we find that 32
5

12 =p  and 32
10

22 =p . 

 

Next we discuss the calculation of the entry in the first row and the first column of the 

matrix C , 03p , in detail. This is the probability of moving from state 0 to an absorbent state, 

state 3, in one step. Again, this can happen when only the upper cumulative sum moves to 4, 

since the lower cumulative sum can not move to 4. Recall that the lower cumulative sum can 

only take on integer values smaller than or equal to zero. Therefore, once again the required 

probability is the probability of the union of two sets involving values of the CUSUM 

statistics, one of which is empty so that the probability is the probability of only the non-

empty set. Therefore we will only have to calculate the upper one-sided probability in this 

case. For the upper one-sided procedure 03p  is the probability that the upper cumulative sum 

equals 4 at time t , given that the upper cumulative sum equaled 0 at time 1−t , that is, 

)0|4( 1 == +
−

+
tt SSP . We have that  

)0|4( 1

03

=== +
−

+
tt SSP

p
 

{ }( )
( )
( )
( )
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≥−=

≥=
≥−=
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TP
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SNP

SNP

SNP

t

t

t

 

32
1= . 

 

The remaining entries in the first column of the matrix C  can be calculated similarly 

and we find that 32
6

13 =p  and 32
1

23 =p . 

 

Next we discuss the calculation of the entry in the first row and the last column of the 

matrix C , 04p , in detail. This is the probability of moving from state 0 to state 4 in one step. 

This can happen when only the lower cumulative sum moves to -4, since the upper cumulative 

sum can not move to -4. Recall that the upper cumulative sum can only take on integer values 

greater than or equal to zero. Therefore although the required probability is the probability of 

the union of two sets involving values of the upper and the lower CUSUM statistics, one of 

these sets is empty so that the required probability is the probability of only the non-empty 
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set. Therefore we will only have to calculate the lower one-sided probability. For the lower 

one-sided procedure 04p  is the probability that the lower cumulative sum equals -4 at time t , 

given that the lower cumulative sum equaled 0 at time 1−t , that is, )0|4( 1 =−= −
−

−
tt SSP . We 

have that 

)0|4( 1

04

=−== −
−

−
tt SSP

p
 

{ }( )
( )
( )
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( )0
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−≤+=

−=++−=
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SNP

t

t

t

 

32
1= . 

 

The remaining entries in the last column of the matrix C  can be calculated similarly 

and we find that 32
1

14 =p  and 32
6

24 =p . 

 

The run length distribution and its parameters 

 

The run length distribution and its parameters are calculated using the matrix Q . The 

ARL is given by ( ) 11−− QIξ  where )001(
31

=
×

ξ , 
�
�
�

�

�

�
�
�

�

�

=×

10510
51010

5520

32
1

33Q  and 
�
�
�

�

�

�
�
�

�

�

=×

1
1

1

1 13 . 

As a result, ( ) ( ) 31.811 =−== −QINEARL ξ . 

 

Let +ARL  and −ARL  denote the average run lengths of the upper and lower one-sided 

charts, respectively. The ARL  of the two-sided chart can be expressed as a function of the 

average run lengths of the one-sided charts through the expression  

 ( )−+

−+

+
=

ARLARL
ARLARL

ARL
))((

  (2.52) 

(see Theorem 1 in Appendix A for the proof of result (2.52)). 
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From the lower- and upper CUSUM sign sections we have that 62.16=+ARL  and 

62.16=−ARL . Using equation (2.52) we have that ( ) 31.8
62.1662.16

)62.16)(62.16( =
+

=ARL . 

 

Table 2.34. The in-control average run length ( 0ARL ), standard deviation of the run length 

( SDRL ), th5 , th25 , th50 , th75  and th95  percentile* values for the two-sided CUSUM sign chart 

when 5=n †. 

h k 2 3 or 4 

1 
2.67 
2.11 

(1, 1, 2, 3, 7) 

8.31 
7.16 

(1, 3, 6, 11, 23) 

3 
16.00 
15.50 

(1, 5, 11, 22, 47) 

‡ 

 

Analogous to what was done for the upper one-sided chart, the five percentiles (given 

in Table 2.34) are displayed in boxplot-like graphs for various h  and k  values in Figure 2.10. 

Recall that we would prefer a “boxplot” with a high valued (large) in-control average run 

length and a small spread. Applying this criterion, we see that the “boxplot” corresponding to 

the )3,2(),( =kh  combination has the largest in-control average run length, which is 

favorable, but it also has the largest spread which is unattractive. The “boxplot” furthest to the 

right is exactly opposite from the “boxplot” furthest to the left. The latter has the smallest 

spread, which is favorable, but it also has the smallest in-control average run length, which is 

unattractive. In conclusion, no “box plot” is optimal relative to the others.  

                                                 
* The three rows of each cell shows the ARL0, the SDRL , and the percentiles ( 5ρ , 25ρ , 50ρ , 75ρ , 95ρ ), 
respectively. 
† See SAS Program 2 in Appendix B for the calculation of the values in Table 2.34. 
‡ Since the decision interval is taken to satisfy knh −≤  there are open cells in Table 2.34. 
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Figure 2.10. Boxplot-like graphs for the in-control run length distribution of various two-

sided CUSUM sign charts when 5=n .  The whiskers extend to the 5th and the 95th 

percentiles. The symbols “ ”, “ ” and “ ” denote the ARL, SDRL* and MRL, 

respectively. 

 
                                                 
* For ease of interpretation, the standard deviation (as measure of spread) is included in the (location) measures 
of percentiles. 
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Other values of h, k and n were also considered and the results are given in Table 2.35. 

 

Table 2.35. The in-control average run length ( 0ARL ), standard deviation of the run length 

( SDRL ), th5 , th25 , th50 , th75  and th95  percentile* values for the two-sided CUSUM sign chart 

when 6=n †. 

h k 2 3 or 4 5 or 6 

0 
1.45 
0.81 

(1, 1, 1, 2, 3) 

2.96 
1.88 

(1, 2, 3, 4, 7) 

5.33 
4.22 

(1, 2, 4, 7, 14) 

2 
4.57 
4.04 

(1, 2, 3, 6, 13) 

19.34 
18.36 

(2, 6, 14, 26, 56) 

‡ 

4 
32.00 
31.50 

(2, 10, 22, 44, 95) 
  

 

 

 

                                                 
** The three rows of each cell shows the ARL0, the SDRL , and the percentiles ( 5ρ , 25ρ , 50ρ , 75ρ , 95ρ ), 
respectively. 
† See SAS Program 2 in Appendix B for the calculation of the values in Table 2.35. 
‡ Since the decision interval is taken to satisfy knh −≤  there are open cells in Table 2.35. 
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Figure 2.11. Boxplot-like graphs for the in-control run length distribution of various two-

sided CUSUM sign charts when 6=n .  The whiskers extend to the 5th and the  

95th percentiles.  The symbols “ ”, “ ” and “ ” denote the ARL, SDRL* and MRL, 

respectively. 

                                                 
* For ease of interpretation, the standard deviation (as measure of spread) is included in the (location) measures 
of percentiles. 
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Table 2.36. The in-control average run length ( 0ARL ), standard deviation of the run length 

( SDRL ), th5 , th25 , th50 , th75  and th95  percentile* values for the two-sided CUSUM sign chart 

when 10=n †. 

h k 3 or 4 5 or 6 7 or 8 

2 
7.17 
6.39 

(1, 3, 5, 10, 20) 

18.41 
17.05 

(2, 6, 13, 25, 52) 

45.80 
43.63 

(4, 15, 32, 63, 133) 

4 
38.98 
38.30 

(3, 12, 27, 54, 115) 

232.43 
231.26 

(13, 68, 161, 322, 694) 

‡ 

6 
464.98 
464.39 

(24, 134, 322, 644, 1392) 
  

 

 

 

 

 

 

                                                 
* The three rows of each cell shows the ARL0, the SDRL , and the percentiles ( 5ρ , 25ρ , 50ρ , 75ρ , 95ρ ), 
respectively. 
† See SAS Program 2 in Appendix B for the calculation of the values in Table 2.36. 
‡ Since the decision interval is taken to satisfy knh −≤  there are open cells in Table 2.36. 
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Figure 2.12. Boxplot-like graphs for the in-control run length distribution of various two-

sided CUSUM sign charts when 10=n .  The whiskers extend to the 5th and the  

95th percentiles.  The symbols “ ”, “ ” and “ ” denote the ARL, SDRL* and MRL, 

respectively. 

                                                 
* For ease of interpretation, the standard deviation (as measure of spread) is included in the (location) measures 
of percentiles. 
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Example 2.13 

A two-sided CUSUM sign chart for the Montgomery (2001) piston ring data 

 

We conclude this sub-section by illustrating the two-sided CUSUM sign chart using 

the piston ring data set from Montgomery (2001). We assume that the underlying distribution 

is symmetric with a known target value of 740 =θ mm. Let 3=k . Once k is selected, the 

constant h should be chosen to give the desired in-control average run length performance. By 

choosing 2=h  we obtain an in-control average run length of 16 which is the highest in-

control average run length attainable when 5=n  (see Table 2.34). Table 2.37 shows the 

upper and lower sign CUSUM statistics, respectively. 

 

Table 2.37. One-sided sign ( +
iS  and −

iS ) statistics*. 

Sample 
number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

++++
iS  0 0 0 0 0 0 0 0 0 1 0 2 4 6 7 
−−−−
iS  0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 

 

��������	�
��

�
	
�
	
��
�
�
�
��
	
�

��������������	
�����

	




�

�

�

�

�

�

��

��

����

������

��������

������������������������� �

!"#���������������������� �

 
Figure 2.13. The two-sided CUSUM sign chart for the Montgomery (2001) piston ring data. 

 
                                                 
* See SAS Program 3 in Appendix B for the calculation of the values in Table 2.37. 
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The two-sided CUSUM sign chart signals at sample number 12, indicating a most like 

upward shift in the process median. The action taken following an out-of-control signal on a 

CUSUM chart is identical to that with any control chart. A search for assignable causes 

should be done, corrective action should be taken (if required) and, following this, the 

CUSUM is reset to zero.  

 

2.3.4. Summary 

 

While the Shewhart-type charts are widely known and most often used in practice 

because of their simplicity and global performance, other classes of charts, such as the 

CUSUM charts are useful and sometimes more naturally appropriate in the process control 

environment in view of the sequential nature of data collection. In this section we have 

described the properties of the CUSUM sign chart and given tables for its implementation. 

Detailed calculations have been given to help the reader to understand the subject more 

thoroughly. 

 

2.4. The EWMA control chart 

 

2.4.1. Introduction 

 

The exponentially weighted moving average (EWMA) scheme was first introduced by 

Roberts (1959). In a subsequent article, Roberts (1966) compared the performance of EWMA 

charts to Shewhart and CUSUM charts. Various authors have studied EWMA charts (see for 

example Robinson and Ho (1978) and Crowder (1987)). EWMA charts have become very 

popular over the last few years. It is one of several charting methods aimed at correcting a 

deficiency of the Shewhart chart – insensitivity to small process shifts.  

 

An EWMA control chart scheme accumulates statistics ,...,, 321 XXX with the plotting 

statistics defined as  

 1)1( −−+= iii ZXZ λλ  (2.53) 

where 10 ≤< λ  is a constant called the weighting constant. The starting value 0Z  is often 

taken to be the process target value, i.e. 00 θ=Z . 
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The EWMA chart is constructed by plotting iZ  against the sample number i  (or 

time). If the plotting statistic iZ  falls between the two control limits, that is, 

UCLZLCL i << , the process is considered to be in-control. If the plotting statistic iZ  falls on 

or outside one of the control limits, that is LCLZ i ≤  or UCLZ i ≥ , the process is considered 

to be out-of-control. 

 

To illustrate that the plotting statistic iZ  is a weighted average of all the previous 

statistics, 1−iZ  may be substituted by 211 )1( −−− −+= iii ZXZ λλ  in equation (2.53) to obtain 

( )

( )
.)1()1()1(

)1()1()1(

)1()1(

)1()1(

3
3

2
2

1

32
2

1

2
2

1

21

−−−

−−−

−−

−−

−+−+−+=

−+−+−+=

−+−+=

−+−+=

iiii

iiii

iii

iiii

ZXXX

ZXXX

ZXX

ZXXZ

λλλλλλ
λλλλλλ

λλλλ
λλλλ

 

 

This method of substitution is called recursive substitution. By continuing the process 

of recursive substitution for piZ − , tp ,...,3,2= , we obtain 

 0

1

0

)1()1( ZXZ i
pi

i

p

p
i λλλ −+−= −

−

=
� . (2.54) 

We can see from expression (2.54) that iZ  can be written as a moving average of the current 

and past observations which has geometrically decreasing weights p)1( λλ −  associated with 

increasingly aged observations piX −  ( ,...2,1=p ). Therefore, the EWMA has been referred to 

as a geometric moving average (see, for example, Montgomery (2005)). 

 

If the observations ,...}2,1,{ =iX i  are independent identically distributed variables 

with mean µ  and variance 2σ , then the mean and the variance of the plotting statistic iZ  are 

given by 

 µµ == )( iZ ZE
i

  for  ,...2,1=i   

and  

 ( )i
Z i

222 )1(1
2

λ
λ

λσσ −−�
�

�
�
�

�

−
=   for  ,...2,1=i  .  
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The exact control limits and the center line of the EWMA control chart are given by 

 

( )

( )i

i

LLCL

CL

LUCL

2
0

0

2
0

)1(1
2

)1(1
2

λ
λ

λσθ

θ

λ
λ

λσθ

−−�
�

�
�
�

�

−
−=

=

−−�
�

�
�
�

�

−
+=

. (2.55) 

 

From (2.55) we see that we have two design parameters of interest, namely the 

multiplier L , ( 0>L ) and the smoothing constant λ . We also see that ( ) 1)1(1 2 →−− iλ  as i  

increases. Therefore, as i  increases the control limits will approach steady-state values given 

by 

 

 

�
�

�
�
�

�

−
−=

�
�

�
�
�

�

−
+=

λ
λσθ

λ
λσθ

2

2

0

0

LLCL

LUCL

. (2.56) 

The above-mentioned control limits are called steady-state control limits. 

 

Various authors recommend choosing the EWMA constants L  and λ  by minimizing 

the average run length at a specified shift for a desired in-control average run length. In 

general, values of λ  in the interval 25.005.0 ≤≤ λ  work well in the normal theory case with 

05.0=λ , 1.0=λ  and 2.0=λ  being popular choices. The 0ARL , standard deviation of the 

run length ( SDRL ), th5 , th25  (the first quartile, 1Q ), th50  (the median run length, MRL ), 

th75  (the third quartile, 3Q ) and th95  percentile values can be computed and tabulated for 

various values of L  and λ .   

 

Lucas and Saccucci (1990) have investigated some properties of the EWMA chart 

under the assumption of independent normally distributed observations. Lucas and Saccucci’s 

most important contribution is the use of a Markov-chain approach to evaluate the run-length 

properties of the EWMA chart. It is important to note that the successive observations are 

assumed to be independent over time in their evaluation. Lucas and Saccucci (1990) used a 

procedure similar to that described by Brook and Evans (1972) to approximate the properties 

of an EWMA scheme. They evaluate the properties of the continuous state Markov chain by 
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discretizing the infinite state transition probability matrix (TPM). This procedure entails 

dividing the interval between the upper control limit and the lower control limit into N 

subintervals of width δ2 . Then the plotting statistic, iZ , is said to be in the non-absorbing 

state j  at time i  if  

             δδ +≤<− jij SZS    for   1,...,2,1 −= Nj  

and 

 δδ +<<− jij SZS    for   Nj =   

where jS  denotes the midpoint of the thj  interval. Let r  denote the number of non-absorbing 

states. iZ  is said to be in the absorbing state if iZ  falls on or outside one of the control limits, 

that is, LCLZ i ≤  or UCLZ i ≥ . Clearly, there are 1+r  states, since there are r  non-

absorbing states and one absorbing state. Lucas and Saccucci (1990) have done a thorough 

job of evaluating the run length properties of the EWMA chart and provided helpful tables for 

the design of the EWMA chart. Additional tables are provided in the technical report by 

Lucas and Saccucci (1987). In their 1990 paper they concentrate on the average run length 

characteristics of various charting combinations. The authors conclude that EWMA 

procedures have average run length properties similar to those for CUSUM procedures. This 

point has also been made by various authors, for example, Ewan (1963), Roberts (1966) and 

Montgomery, Gardiner and Pizzano (1987). In this thesis, the approach taken by Lucas and 

Saccucci (1990) is extended to the use of the sign statistic resulting in an EWMA sign chart 

that accumulates the statistics ,...,, 321 SNSNSN  . 

 

2.4.2. The proposed EWMA sign chart 

 

A nonparametric EWMA-type of control chart based on the sign statistic can be 

obtained by replacing iX  in expression (2.53) with iSN  (recall that �
=

−=
n

j
iji xsignSN

1
0 )( θ ). 

The EWMA sign chart accumulates the statistics ,...,, 321 SNSNSN  with the plotting statistics 

defined as  

 1)1( −−+= iii ZSNZ λλ  (2.57) 

where 10 ≤< λ  and the starting value 0Z  is usually taken to equal zero, i.e. 00 =Z . 
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The expected value, variance and standard deviation of iSN  are found from the fact 

that the distribution of iSN  can easily be obtained from the distribution of the binomial 

distribution (recall that nTSN ii −= 2  if there are no ties within a subgroup, where iT  has a 

binomial distribution with parameters n  and )( 0θ≥= ijXPp ). The formulas for the 

expected value, variance and standard deviation of iSN  was derived in Section 2.1 and we 

obtained )12()( −= pnSNE i , )1(4)var( pnpSN i −=  and )1(2)( pnpSNstdev
iSNi −== σ , 

respectively. The starting value 0Z  can also be taken to be the expected value of iSN , 

therefore ( ) )12(0 −== pnSNEZ i  and in the in-control case where 5.0=p  we have 

0)15.02(0 =−×= nZ  for all n . 

 

From the similarity between the definitions of the normal EWMA scheme and the sign 

EWMA scheme, it follows that the exact control limits and the center line of the EWMA sign 

control chart can be obtained by replacing σ  in (2.55) with 
iSNσ  which yields 
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+=

. (2.58) 

 

It is important to note 0θ  in (2.55) is replaced by 0 in (2.58). This is because the 

EWMA sign chart is designed for the sign test statistic and not for the observations (the 

iX ’s). 

 

Similarly, the steady-state control limits can be obtained by replacing σ  in (2.56) 

with 
iSNσ  and 0θ  by zero which yields 
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. (2.59) 
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2.4.3. Markov-chain approach 

 

Lucas and Saccucci (1990) evaluated the properties of the continuous state Markov 

chain by discretizing the infinite state TPM. This procedure entails dividing the interval 

between the UCL  and the LCL  into N  subintervals of width δ2 . The width of each 

subinterval can be obtained by setting 
( )

N
LCLUCL −×=

2
1δ  and we get that the width of an 

interval equals 
( )

N
LCLUCL −=δ2 . Thus, the endpoints of the subintervals will be given by 

,LCL  
( )

N
LCLUCL

LCL
−+ , 

( )
,2

N
LCLUCL

LCL
−+ …, 

( )
,)1(

N
LCLUCL

NLCL
−−+ UCL , 

respectively (see Figure 2.14). In general, the endpoints of the thj  interval will be given by 

  

( ) ( ) ( )
.,)1(, �
�

�
�
�

� −×+−×−+=
N

LCLUCL
jLCL

N
LCLUCL

jLCLUCLLCL jj  

 

The midpoint of the thj  interval, jS , is easily obtained by taking the sum of the two 

endpoints of the thj  interval and dividing it by 2. Thus, we obtain 
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Figure 2.14. Partitioning of the interval between the UCL  and the LCL  into N  subintervals. 

 

Then the plotting statistic, iZ , is said to be in the non-absorbing state j  at time i  if  

 δδ +≤<− jij SZS    for   1,...,2,1 −= Nj  (2.60)  

and 

 δδ +<<− jij SZS    for   Nj = .  (2.61) 

iZ  is said to be in the absorbing state if iZ  falls on or outside one of the control limits, that is, 

LCLZ i ≤  or UCLZ i ≥ . 

 

Let ijp  denote the probability of moving from state i  to state j  in one step. We have 

that =ijp ( )ijP statein|statetoMoving . To calculate this probability we assume that the 

plotting statistic is equal to iS  whenever it is in state i . For all j  non-absorbing we obtain 

( )ikjkjij SZSZSPp =+≤<−= −1|δδ . This is the probability that kZ  is within state j , 

conditioned on 1−kZ  being equal to the midpoint of state i . By using the definition of the 

plotting statistic given in expression (2.57) this transition probability can be written as 
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( )ikjkkjij SZSZSNSPp =+≤−+<−= −− 11 |)1( δλλδ  
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Recall that nTSN kk −= 2  where kT  is binomially distributed with parameters n  and 
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. (2.62) 

 

The probability of transition to the out-of-control state can be determined similarly. 

For all j  absorbing we obtain 
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Since the values δ , λ , n , iS  and jS  are known constants the binomial probabilities 

in expressions (2.62) and (2.63) can easily be calculated using some type of statistical 

software package, for example, Excel or SAS. 
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Once the one-step transition probabilities are calculated, the TPM can be constructed 

and is given by 
�
�
�

�

�

�
�
�

�

�

−−−=
1|'0

| pQ

TPM  (written in partitioned form) where Q  is the matrix that 

contains all the transition probabilities of going from a non-absorbing state to a non-absorbing 

state. In other words, Q  is the transition matrix among the in-control states, Q ( )NANA →: . 

p  contains all the transition probabilities of going from each non-absorbing state to the 

absorbing states, p ( )ANA →: . '0 ( )0000 �=  contains all the transition 

probabilities of going from the absorbing state to each non-absorbing state, '0  ( )NAA →: . 1 

represents the scalar value one which is the probability of going from the absorbing state to 

the absorbing state, 1 ( )AA →: . 

 

Lucas and Saccucci (1990) have investigated some properties of the EWMA chart 

under the assumptions of independent normally distributed observations. From the similarity 

between the definitions of the normal EWMA scheme and the sign EWMA scheme, it follows 

that the formulas derived by Lucas and Saccucci (1990) can be extended to the use of the sign 

EWMA scheme. The formulas derived by Lucas and Saccucci (1990) have been studied by 

other authors, for example, Fu, Spiring and Xie (2002) and Fu and Lou (2003). The latter two 

used the moment generating function and the probability generating function, respectively, to 

derive expressions for the first and second moments of the run length variable N . See 

Theorem 2 in Appendix A for the derivations done by Fu, Spiring and Xie (2002) and Fu and 

Lou (2003). For the formulas refer to equations (2.41) to (2.45) of this thesis. 
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Example 2.14 

The EWMA sign chart where the sample size is even (n = 6) 

 

We consider the EWMA sign chart with a smoothing constant of 0.1 ( 1.0=λ ) and a 

multiplier of 3 ( 3=L ). The interval between the UCL  and the LCL  is divided into 4 

subintervals ( 4=N ). For a sample size of 6, the sign statistic iSN  can take on the values 

}6,4,2,0,2,4,6{ −−−  and the statistic iT  takes on the values }6,5,4,3,2,1,0{ . 

 

The steady-state control limits are given in (2.59) by 
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where 3=L , 1.0=λ ,  and 449.2=
iSNσ , since =

iSNσ =− )1(2 pnp  

449.2)5.01)(5.0(62 =− .  

 

Clearly, we only have to calculate the UCL  since UCLLCL −= . We have that 

686.1
1.02

1.0
449.23 =�

�

�
�
�

�

−
×=UCL . Therefore, 686.1−=LCL . 

 

This Markov-chain procedure entails dividing the interval between the UCL  and the 

LCL  into subintervals of width δ2 . Figure 2.15 illustrates the partitioning of the interval 

between the UCL  and the LCL  into subintervals. 
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Figure 2.15. Partitioning of the interval between the UCL  and the LCL  into 4 subintervals. 

 

From Figure 2.15 we see that there are 4 non-absorbing states, i.e. 4=r . The TPM is 

given by  

�
�
�

�

�

�
�
�

�

�

−−−=

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

=

××

××

×

1141

1444

4443424140

3433323130

2423222120

1413121110

0403020100

55

1|'0

| pQ

ppppp

ppppp

ppppp

ppppp

ppppp

TPM  . 

 

The plotting statistic, iZ , is said to be in the non-absorbing state j  at time i  if 

δδ +≤<− jij SZS  for 3,2,1,0=j  where jS  denotes the midpoint of the thj  interval. Each 

sub-interval has a width of 843.02 =δ , therefore 4215.0=δ . 
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Table 2.38. Calculation of the one-step probabilities in the first row of the TPM. 

( )0|000 stateinstatetoMovingPp =  

( )0100 | SZSZSP kk =+≤<−= −δδ  

using expression (2.62) we obtain 
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with 4215.0=δ , 1.0=λ , 3=L  and 265.10 =S  
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( )0|101 stateinstatetoMovingPp =  

( )0111 | SZSZSP kk =+≤<−= −δδ  

using expression (2.62) we obtain 
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( )0|202 stateinstatetoMovingPp =  

( )0122 | SZSZSP kk =+≤<−= −δδ  

using expression (2.62) we obtain 
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( )0|303 stateinstatetoMovingPp =  

( )0133 | SZSZSP kk =+≤<−= −δδ  

using expression (2.62) we obtain 
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( )0|404 stateinstatetoMovingPp =  

( ) ( )0101 || SZUCLZPSZLCLZP kkkk =≥+=≤= −−  

using expression (2.63) we obtain 
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The calculations of the other transition probabilities can be done similarly. Therefore 

the TPM is given by 
�
�
�

�

�

�
�
�

�

�

−−−=

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

=

××

××

1141

1444

64
1

64
56

64
7

64
1

64
56

64
7

64
7

64
56

64
1

64
1

64
7

64
56

1|'0

|

10000
00

00
00

00
pQ

TPM . 

 

Other values of the multiplier (L) and the smoothing constant ( λ ) were also 

considered and the results are given in Tables 2.39 and 2.40*. 

 

Table 2.39. The in-control average run length ( 0ARL ), standard deviation of the run length 

( SDRL ), th5 , th25 , th50 , th75  and th95  percentile values† for the EWMA sign chart when 

6=n  and 5=N , i.e. there are 5 subintervals between the lower and upper control limit‡.  

 1====L  2====L  3====L  

05.0====λλλλ  
6.79 
8.56 

(1, 1, 3, 9, 24) 

22.86 
30.29 

(1, 3, 10, 31, 85) 

736.00 
827.24 

(4, 134, 472, 1051, 2393) 

1.0====λλλλ  
4.84 
5.36 

(1, 1, 3, 7, 16) 

83.69 
104.13 

(1, 6, 47, 121, 294) 

736.00 
819.78 

(4, 142, 477, 1049, 2377) 

2.0====λλλλ  
4.73 
5.08 

(1, 1, 3, 6, 15) 

34.12 
39.63 

(1, 5, 21, 49, 114) 

585.80 
608.31 

(9, 152, 398, 820, 1800) 
 

Similar tables can be constructed by changing the sample size (n), the number of 

subintervals between the lower and upper control limit (N), the multiplier (L) and the 

smoothing constant ( λ ) in the SAS program for the EWMA sign chart given in Appendix B. 

 

                                                 
* These results were calculated through the formulas given in equations (2.41) to (2.45). 
† The three rows of each cell shows the ARL0, the SDRL, and the percentiles ( 5ρ , 25ρ , 50ρ , 75ρ , 95ρ ) , 
respectively. 
‡ See SAS Program 4 in Appendix B for the calculation of the values in Table 2.39. 
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Table 2.40. The in-control average run length ( 0ARL ), standard deviation of the run length 

( SDRL ), th5 , th25 , th50 , th75  and th95  percentile values* for the EWMA sign chart when 

10=n  and 5=N , i.e. there are 5 subintervals between the lower and upper control limit†.  

 1====L  2====L  3====L  

05.0====λλλλ  
25.47 
31.96 

(1, 2, 13, 37, 90) 

166.06 
207.27 

(1, 11, 93, 241, 585) 

1773.34 
2089.12 

(6, 228, 1087, 2557, 5970) 

1.0====λλλλ  
10.35 
11.02 

(1, 2, 7, 14, 33) 

75.61 
81.91 

(1, 16, 50, 107, 204) 

845.42 
890.53 

(9, 208, 570, 1188, 2624) 

2.0====λλλλ  
3.67 
3.68 

(1, 1, 2, 5, 11) 

25.47 
31.96 

(1, 2, 13, 37, 90) 

272.79 
305.97 

(1, 51, 176, 389, 886) 
 

From Tables 2.39 and 2.40 we see that the 0ARL , SDRL  and percentiles increase as 

the value of the multiplier (L) increases. In contrast, the 0ARL , SDRL  and percentiles 

decrease as the value of the smoothing constant ( λ ) increases. From Table 2.40 we find an 

in-control average run length of 272.79 for 10=n  when the multiplier is taken to equal 3 

( 3=L ) and the smoothing constant 0.2 ( 2.0=λ ). The chart performance is good, since the 

attained in-control average run length of 272.79 is in the region of the desired in-control 

average run length which is generally taken to be 370 or 500. 

 

2.4.4. Summary 

 

EWMA charts are popular control charts; they take advantage of the sequentially (time 

ordered) accumulating nature of the data arising in a typical SPC environment and are known 

to be efficient in detecting smaller shifts but are easier to implement than the CUSUM charts. 

We have described the properties of the EWMA sign chart and given tables for its 

implementation. Although a lot has been done over the past few years concerning EWMA-

type charts, more work is necessary on the practical implementation of the charts as well as 

on adaptations in case U. 

                                                 
* The three rows of each cell shows the ARL0, the SDRL, and the percentiles ( 5ρ , 25ρ , 50ρ , 75ρ , 95ρ ) , 
respectively. 
† See SAS Program 4 in Appendix B for the calculation of the values in Table 2.40. 
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Chapter 3: Signed-rank charts 
 

3.1. The Shewhart-type control chart 

 

3.1.1. Introduction 

 

As mentioned in Chapter 2, samples of fixed size are taken at regular intervals and the 

plotting statistic is then plotted. The question is: Which quality parameter should be used as 

the plotting statistic? In Chapter 2 the sign test statistic iSN  was described and it was 

mentioned that the sign test statistic is only influenced by the signs of the deviations 

)( 0θ−ijx . There is an alternative statistic that can be used to track the location of a process. 

The statistic is a function of both the magnitudes and signs of the )( 0θ−ijx ’s, called the 

signed-rank statistic. 

 

3.1.2. Definition of the signed-rank test statistic 

 

The signed-rank test is a nonparametric test that can be used to test hypotheses on or 

construct confidence intervals (see Gibbons and Chakraborti (2003)) for the median of any 

symmetric continuous population distribution. Let inii XXX ,...,, 21  denote the thi  ,...)2,1( =i  

sample or subgroup of independent observations of size 1>n  from a process with an 

unknown continuous distribution function denoted by F . Let 0θ  denote the known in-control 

location parameter (also called the target value). Let +
ijR  denote the rank of the absolute 

deviations, 0θ−ijx , within the subgroup ( )00201 ,...,, θθθ −−− inii xxx  for ...3,2,1=i  . 

Then +
ijR  is referred to as the within-group absolute rank of the deviations. The signed-rank 

test statistic is given by 

 �
=

+−=
n

j
ijiji RxsignSR

1
0 )( θ  for ...3,2,1=i  (3.1) 

where )(xsign  = -1, 0, 1 if 0<x , 0= , 0> . 
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3.1.3. Plotting statistic 

 

The signed-rank test statistic, iSR  (given in (3.1)), is used as the plotting statistic on 

the Shewhart signed-rank chart. If the plotting statistic iSR  falls between the two control 

limits, that is, UCLSRLCL i << , the process is considered to be in-control. If the plotting 

statistic iSR  falls on or outside one of the control limits, that is LCLSRi ≤  or UCLSRi ≥ , 

the process is considered to be out-of-control. 

 

The plotting statistic is linearly related to the well-known Wilcoxon signed-rank 

statistic +
nT  through the formula (see Bakir (2003), page 424, equation 2.4) 

 
2

)1(
2

+−= + nn
TSR ni  (3.2) 

where �
=

++ −=
n

j
ijijn RxT

1
0 )( θψ ,  1,0)( =xψ  if 0,0 >≤x . 

 
Example 3.1 

A two-sided Shewhart signed-rank chart for the Montgomery (2001) piston ring data 

 

We illustrate the Shewhart-type signed-rank chart using the same set of data from 

Montgomery (2001) that was used in example 2.1. We assume that the underlying distribution 

is symmetric with a known median 740 =θ mm. Panel a of Table 3.1 exhibits the individual 

observations of 15 independent samples, each of size 5 i.e. 5=n . The absolute deviations 

0θ−ijx  and )( 0θ−ijxsign  are shown in panel b and panel c of Table 3.1, respectively. The 

known target value is taken to be 74, that is, 740 =θ . The within-group absolute rank of the 

deviations +
ijR  and the +− ijij Rxsign )( 0θ  values are shown in panel a and panel b of Table 3.2, 

respectively. Panel c of Table 3.2 holds the signed-ranks i.e. iSR  for 15,...,3,2,1=i . 
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Table 3.1. Data and calculations for the signed-rank chart*. 

Panel a  Panel b Panel c 

Sample 
number 

 1ix  2ix  3ix  4ix  5ix  

     

     

1 74.012 74.015 74.030 73.986 74.000 0.012 0.015 0.030 0.014 0.000 1 1 1 -1 0 

2 73.995 74.010 73.990 74.015 74.001 0.005 0.010 0.010 0.015 0.001 -1 1 -1 1 1 

3 73.987 73.999 73.985 74.000 73.990 0.013 0.001 0.015 0.000 0.010 -1 -1 -1 0 -1 

4 74.008 74.010 74.003 73.991 74.006 0.008 0.010 0.003 0.009 0.006 1 1 1 -1 1 

5 74.003 74.000 74.001 73.986 73.997 0.003 0.000 0.001 0.014 0.003 1 0 1 -1 -1 

6 73.994 74.003 74.015 74.020 74.004 0.006 0.003 0.015 0.020 0.004 -1 1 1 1 1 

7 74.008 74.002 74.018 73.995 74.005 0.008 0.002 0.018 0.005 0.005 1 1 1 -1 1 

8 74.001 74.004 73.990 73.996 73.998 0.001 0.004 0.010 0.004 0.002 1 1 -1 -1 -1 

9 74.015 74.000 74.016 74.025 74.000 0.015 0.000 0.016 0.025 0.000 1 0 1 1 0 

10 74.030 74.005 74.000 74.016 74.012 0.030 0.005 0.000 0.016 0.012 1 1 0 1 1 

11 74.001 73.990 73.995 74.010 74.024 0.001 0.010 0.005 0.010 0.024 1 -1 -1 1 1 

12 74.015 74.020 74.024 74.005 74.019 0.015 0.020 0.024 0.005 0.019 1 1 1 1 1 

13 74.035 74.010 74.012 74.015 74.026 0.035 0.010 0.012 0.015 0.026 1 1 1 1 1 

14 74.017 74.013 74.036 74.025 74.026 0.017 0.013 0.036 0.025 0.026 1 1 1 1 1 

15 74.010 74.005 74.029 74.000 74.020 0.010 0.005 0.029 0.000 0.020 1 1 1 0 1 

                                                 
* See SAS Program 5 in Appendix B for the calculation of the values in Table 3.1. 
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Table 3.2. Calculations for the signed-rank chart*. 

Panel a Panel b Panel c 

 
Sample 
number 

 

++++
1iR  ++++

2iR  ++++
3iR  ++++

4iR  ++++
5iR  

     

iSR  

1 2 4 5 3 1 2 4 5 -3 0 8 

2 2 4 4 5 1 -2 4 -4 5 1 4 

3 4 2 5 1 3 -4 -2 -5 0 -3 -14 

4 3 5 1 4 2 3 5 1 -4 2 7 

5 4 1 2 5 4 4 0 2 -5 -4 -3 

6 3 1 4 5 2 -3 1 4 5 2 9 

7 4 1 5 3 3 4 1 5 -3 3 10 

8 1 4 5 4 2 1 4 -5 -4 -2 -6 

9 3 2 4 5 2 3 0 4 5 0 12 

10 5 2 1 4 3 5 2 0 4 3 14 

11 1 4 2 4 5 1 -4 -2 4 5 4 

12 2 4 5 1 3 2 4 5 1 3 15 

13 5 1 2 3 4 5 1 2 3 4 15 

14 2 1 5 3 4 2 1 5 3 4 15 

15 3 2 5 1 4 3 2 5 0 4 14 

 

Let +
0ARL  and +

0FAR  denote the in-control average run length and the false alarm rate 

for the upper one-sided Shewhart signed-rank control chart, respectively. For an upper one-

sided chart we would take 15=UCL  since it is related to a false alarm rate of 0.0313 

( 0313.00 =+FAR ) and an in-control average run length of 32 ( 320 =+ARL ) - see Table 3.3. 

Although the in-control average run length of 32 is far from the desired value, which is 

generally taken to be 370 or 500, it is the best under present conditions. The false alarm rate 

( 0FAR ) and the in-control average run length ( 0ARL ) for the symmetric two-sided Shewhart 

signed-rank chart can be obtained through the relationships += 00 2FARFAR  and 

2
0

0

+

=
ARL

ARL , respectively (see Bakir (2003)). A symmetric two-sided chart is obtained by 

choosing UCLLCL −= .  We take 15=UCL  for the two-sided Shewhart signed-rank chart, 

                                                 
* See SAS Program 5 in Appendix B for the calculation of the values in Table 3.2. 
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since it is related to a false alarm rate of 0.0626 ( 0626.00313.022 00 =×== +FARFAR ) and 

an in-control average run length of 16 ( 16
2

32
2

0
0 ===

+ARL
ARL ). The two-sided signed-rank 

chart is shown in Figure 3.1 with 15=UCL , 0=CL  and 15−=LCL . 
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Figure 3.1. Signed-rank control chart for Montgomery (2001) piston ring data. 

 

The chart signals at sample number 12. Therefore, a search for assignable causes is 

necessary. It appears most likely that the process median has shifted upwards from the target 

value of 74mm. 

 

3.1.4. Determination of chart constants 

 

The control limits in example 3.1 were chosen to give a certain false alarm rate or in-

control ARL . Values of various control limits are given by Bakir (2003). Bakir included the 

following table in his article which gives the false alarm rates and the in-control average run 

lengths for the upper one-sided Shewhart signed-rank charts based on subgroups of sizes 

,4=n  5 and 6 .  
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Table 3.3. FAR ’s and 0ARL ’s for the upper one-sided Shewhart signed-rank chart. 

4====n  5====n  6====n  
UCL  ++++

0ARL  ++++
0FAR  ++++

0ARL  ++++
0FAR  ++++

0ARL  ++++
0FAR  

10 16.00 0.0625 10.66 0.0938 6.40 0.1563 
11 ∞  0 10.66 0.0938 6.40 0.1563 
12   16.00 0.0630 9.14 0.1094 
13   16.00 0.0630 9.14 0.1094 
14   32.00 0.0313 12.80 0.0781 
15   32.00 0.0313 12.80 0.0781 
16   ∞  0 21.33 0.0469 
17     21.33 0.0469 
18     32.00 0.0312 
19     32.00 0.0312 
20     64.00 0.0156 
21     64.00 0.0156 
22     ∞  0 

 

Table 3.3 shows the false alarm rates and the in-control average run lengths for the 

upper one-sided Shewhart signed-rank chart as calculated using the null distribution of the 

Wilcoxon signed-rank statistic (see Hollander and Wolfe (1973) and Bakir (2003)). 

 

In Table 3.3 we see that there are some duplicates in the data. We consider a specific 

example to shed light on the occurrence of these duplicates. Suppose 5=n  and 12=UCL . 

Then =+
0FAR )5.13()control-In|12( ≥=≥ +

ni TPSRP  (using (3.2)). The last probability 

equals 0630.0)14( =≥+
nTP , because +

nT  has zero probability at 13.5. When 5=n  and 

13=UCL  we have that 0630.0)14()control-In|13(0 =≥=≥= ++
ni TPSRPFAR  (by using 

the null distribution of the Wilcoxon signed-rank statistic). Since 

0630.0)14(0 =≥= ++
nTPFAR  for two different values of the upper control limit, we have 

duplicates in the data. This example points out an error* in Table 1 of Bakir (2003). The 

probability of )5.13( ≥+
nTP  equals )14( ≥+

nTP  which equals 0.0630 (and not 0.0938 

corresponding to )13( ≥+
nTP  as reported by Bakir’s (2003) paper). This type of correction 

was applied to the other entries of Bakir’s (2003) Table 1 and are given in Table 3.3 of this 

thesis. The false alarm rates and in-control average run lengths for the two-sided Shewhart 

signed-rank chart were calculated using SAS (with the appropriate corrections made) and are 

shown in Table 3.4. 

                                                 
* This error is also pointed out by Chakraborti and Eryilmaz (2007). 

 
 
 



 127 

Table 3.4. FAR ’s and 0ARL ’s for the two-sided Shewhart signed-rank chart*. 

n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 UCL ARL0 FAR ARL0 FAR ARL0 FAR ARL0 FAR ARL0 FAR ARL0 FAR ARL0 FAR 
11 8.018 0.125 3.248 0.308 2.307 0.433 2.132 0.469 1.830 0.546 1.526 0.655 1.447 0.691 
12 ∞  0 5.382 0.186 3.163 0.316 2.126 0.470 1.811 0.552 1.779 0.562 1.606 0.623 
13   5.392 0.185 3.234 0.309 2.643 0.378 2.146 0.466 1.730 0.578 1.613 0.620 
14   8.003 0.125 4.557 0.219 2.675 0.374 2.194 0.456 2.022 0.494 1.802 0.555 
15   7.896 0.127 4.623 0.216 3.360 0.298 2.597 0.385 1.991 0.502 1.788 0.559 
16   15.922 0.063 6.302 0.159 3.399 0.294 2.616 0.382 2.354 0.425 2.033 0.492 
17   ∞  0 6.483 0.154 4.552 0.220 3.201 0.312 2.346 0.426 2.032 0.492 
18     10.797 0.093 4.553 0.220 3.276 0.305 2.770 0.361 2.276 0.439 
19     10.762 0.093 6.514 0.154 4.004 0.250 2.778 0.360 2.345 0.426 
20     16.291 0.061 6.307 0.159 3.999 0.250 3.350 0.299 2.635 0.379 
21     15.982 0.063 9.164 0.109 5.053 0.198 3.309 0.302 2.664 0.375 
22     29.890 0.033 9.152 0.109 5.149 0.194 4.034 0.248 3.071 0.326 
23     ∞  0 12.655 0.079 6.611 0.151 4.055 0.247 3.139 0.319 
24       12.618 0.079 6.632 0.151 5.055 0.198 3.641 0.275 
25       20.939 0.048 9.244 0.108 5.047 0.198 3.682 0.272 
26       21.115 0.047 9.299 0.108 6.032 0.166 4.355 0.230 
27       31.380 0.032 12.862 0.078 6.053 0.165 4.226 0.237 
28       31.118 0.032 12.898 0.078 7.768 0.129 5.225 0.191 
29       64.444 0.016 18.447 0.054 7.812 0.128 5.108 0.196 
30       ∞  0 17.947 0.056 10.180 0.098 6.286 0.159 
31         25.216 0.040 10.554 0.095 6.315 0.158 
32         25.285 0.040 13.573 0.074 7.670 0.130 
33         42.248 0.024 13.357 0.075 7.638 0.131 
34         42.872 0.023 18.499 0.054 9.505 0.105 
35         63.492 0.016 18.409 0.054 9.728 0.103 
36         64.492 0.016 25.763 0.039 12.004 0.083 
37         129.711 0.008 25.676 0.039 11.531 0.087 
38         ∞  0 37.023 0.027 15.663 0.064 
39           36.507 0.027 15.514 0.064 
40           50.919 0.020 20.504 0.049 
41           51.913 0.019 20.542 0.049 

                                                 
* See SAS Program 6 in Appendix B for the calculation of the values in Table 3.4. This table is an extension of Tables 1 and 2 given in Bakir (2003). 
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42           87.428 0.011 27.510 0.036 
43           84.898 0.012 26.771 0.037 
44           127.219 0.008 36.928 0.027 
45           128.950 0.008 37.308 0.027 
46           251.312 0.004 50.234 0.020 
47           ∞  0 52.249 0.019 
48             73.736 0.014 
49             74.261 0.013 
50             104.300 0.010 
51             101.973 0.010 
52             165.381 0.006 
53             168.821 0.006 
54             251.693 0.004 
55             249.627 0.004 
56             443.132 0.002 
57             ∞  0 
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3.1.5. Summary 

 

The signed-rank test is a popular nonparametric test for the median of a 

symmetric continuous population. The signed-rank test is more powerful than the sign 

test, but while the sign test is applicable for all continuous distributions, the 

assumption of symmetry must be made, in addition, for the signed-rank test. 

Furthermore, the sign test applies to all percentiles, whereas the signed-rank test is 

proposed only for the median. Another drawback of the signed-rank chart is that the 

FAR values for the chart are too high (in other words the 0ARL  values are too short) 

unless the subgroup size is ‘large’. One way to remedy this problem is to use some 

signaling rules to enhance the sensitivity of the charts. This will be considered next. 

 

3.2. The Shewhart-type control chart with runs-type signaling rules 

 

3.2.1. Introduction 

 

In addition to defining warning limits or zones on control charts (see Section 2.2), we 

can extend the existing charts by incorporating various signaling rules involving runs of the 

plotting statistic. The signaling rules considered include the following:  A process is declared 

to be out-of-control when (a) a single point (charting statistic) plots outside the control limit(s) 

(1-of-1 rule)  (b) k consecutive points (charting statistics) plot outside the control limit(s) (k-

of-k rule) or (c) exactly k of the last w points (charting statistics) plot outside the control 

limit(s)  (k-of-w rule). We can consider these signaling rules where both k  and w  are positive 

integers with wk ≤≤1  and 2≥w . Rule (a) is the simplest and is the most frequently used in 

the literature. Thus, the 1-of-1 rule corresponds to the usual control chart, where a signal is 

given when a plotting statistic falls outside the control limit(s). Rules (a) and (b) are special 

cases of rule (c); rules (b) and (c) have been used in the context of supplementing the 

Shewhart charts with warning limits and zones. Rules (a), (b) and (c) have been studied by 

various authors (see for example Klein (2000) and Khoo (2004)). Klein (2000) suggested two 

rules namely the 2-of-2 and 2-of-3 rules. Both control charts are easily implemented and have 

better ARL performance than the 1-of-1 rule. Khoo (2004) conducted a study of the ARL 

performance of the 2-of-2, 2-of-3, 2-of-4, 3-of-3 and 3-of-4 charts and concluded that the 3-of-

4 chart is the most sensitive scheme for detecting small process shifts. 
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Chakraborti and Eryilmaz (2007) considered simple alternatives to the Bakir (2004)’s 

class of nonparametric charts, using the signed-rank statistic but incorporating runs rules of 

the type discussed above to define new signaling rules. If we set k  equal to 2 in rule (b) 

above, we obtain the simplest of the k-of-k type rules which are called the 2-of-2 DR and the 

2-of-2 KL charts. The 2-of-2 KL chart signals, for example, when the two most recent signed-

rank statistics both fall either on or above or on or below the control limits. The 2-of-2 DR 

chart is almost similar, but here a signal is indicated when both of the signed-rank statistics 

fall either both on or above or both on or below or one on or above (below) and the next one 

on or below (above) the control limits. It is shown that the new charts are nonparametric, have 

much smaller FAR (and thus larger 0ARL ) than the 1-of-1 signed-rank chart of Bakir. 

Moreover, the new charts have better out-of-control performance than the 1-of-1 signed-rank 

chart for heavy-tailed and skewed distributions such as the Cauchy. We illustrate these 

procedures using the Montgomery (2001) piston ring data. 

 

3.2.2. Example 

 

Example 3.2 

A two-sided Shewhart signed-rank chart with signaling rules for the Montgomery (2001) 

piston ring data 

 

We illustrate the signed-rank chart with signaling rules using the Montgomery (2001) 

piston ring data. Recall that the dataset contains 15 samples (each of size 5). The signed-rank 

statistics were calculated and given in Table 3.2 and graphically represented in Figure 3.1. 

The symmetric two-sided control limits for the 1-of-1 and 2-of-2 signed-rank charts are given 

by Chakraborti and Eryilmaz (2007) for 6,5,4=n  and 10. The table for samples of size 5 is 

given here for reference. 
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Table 3.5. False alarm rates and in-control ARL values for the two-sided 1-of-1 and 2-of-2    

            signed-rank charts under DR and KL schemes, 5=n *. 

 1-of-1 2-of-2  DR 2-of-2  KL 

UCL  0ARL  FAR0 0,DRARL  FARDR,0 0,KLARL  FARKL,0 

11 5.33 0.1876 33.74 0.0352 62.15 0.0176 
13 8.00 0.1250 72.00 0.0156 136.00 0.0078 
15 15.97 0.0626 271.15 0.0039 526.34 0.0019 

 

 For 5=n , the control limits for the 1-of-1 (Bakir’s chart), the 2-of-2 DR and the 2-of-

2 KL charts, based on the signed-rank statistic, are set at 15± . These yield FAR values 

0.0626, 0.0039, and 0.0019, respectively.  If the control limits were taken to be 13± , the FAR 

would have been much higher: 0.1250, 0.0156, and 0.0078, respectively. Although the control 

limits are the same, namely 15± , the signaling rules are quite different operationally and the 

performance of the resulting charts turn out to be quite different. The 1-of-1 chart signals 

when the first signed-rank statistic falls on or outside of either of the two control limits; the 2-

of-2 KL chart signals when, for the first time, two consecutive signed-rank statistics fall either 

on or above or on or below the two control limits, while the 2-of-2 DR chart signals when for 

the first time two consecutive signed-rank statistics fall on or outside the control limits, either 

both on or above, or both on or below, or one on or above the next on or below, or one on or 

below and the next on or above. On the performance side, note that the 1-of-1 SR chart has a 

FAR of 0.0626 and an 0ARL  of approximately 16. Thus many more false alarms will be 

signaled by this chart leading to a possible loss of time and resources. Compared to that, the 

2-of-2 KL chart has a FAR of 0.0019 and an 0ARL  of 526.34, whereas the 2-of-2 DR chart 

has a FAR of 0.0039 and an 0ARL  of 271.15. Thus both of these run-rule-enhanced charts 

provide reasonable and practical false alarm rates and can be used in practice, depending on 

the type of shift one expects.  

 

From Figure 3.1 we see that the DR and KL 2-of-2 signed-rank charts both signal at 

sample 13, indicating a most likely upward shift in the process median.  The 1-of-1 signed-

rank chart, on the other hand, signals earlier, at sample 12, but note the much higher FAR of 

0.0626 (and correspondingly a much lower and less desirable 0ARL , 15.97) associated with 

this chart. It is interesting to note that, as shown in Montgomery (2001), for these data the 
                                                 
* Table 3.5 appears in Chakraborti and Eryilmaz (2007), Table 11. 
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Shewhart X  chart indicates a shift in the mean at sample 11 for these data. However, the key 

difference is that an application of the Shewhart chart can raise several questions such as the 

form of the underlying distribution (small 5=n ), and more importantly about the in-control 

(stable) performance of the chart in terms of the FAR (or the 0ARL ), since it is known that the 

in-control performance of the Shewhart X  chart is not robust in typical quality control 

applications. Compared to this, the proposed nonparametric charts provide a more generally 

applicable alternative monitoring scheme with a known (stable/robust) in-control performance 

and a better or equal out-of-control performance than the 1-of-1 signed-rank chart. 

 

3.2.3. Summary 

 

In this section we examined signed-rank control charts with runs-type signaling rules. 

Human, Chakraborti and Smit (2008) recently studied Shewhart-type sign charts with runs-

type signaling rules. These charts are similar in spirit to the Shewhart-type signed-rank charts 

with runs-type signaling rules (see Section 3.2). In the paper by Human et al. they derived 

expressions for the run length distributions using Markov chain theory. The in-control and 

out-of-control performance of these charts were studied and compared to those of the existing 

signed-ranked charts under the normal, double exponential and Cauchy distributions, using 

the ARL, SDRL, FAR and some percentiles of the run length. These runs rules enhanced sign 

charts have the advantage that one does not have to assume symmetry of the underlying 

distribution and they can be applied in situations where the data are dichotomous.  
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3.3. The tabular CUSUM control chart 

 

3.3.1. Introduction 

 

Bakir and Reynolds (1979) investigated the CUSUM chart using the Wilcoxon signed-

rank statistic. They used methods that are analogous to the methods used on the CUSUM sign 

chart (see Section 2.3), that is, a Markov chain approach is used to find the moments and other 

characteristics of the run length distribution for the CUSUM signed-rank chart. 

 

3.3.2. One-sided control charts 

 

3.3.2.1. Upper one-sided control charts 

 

Fu, Spiring and Xie (2002) and Fu and Lou (2003) presented three results that must be 

satisfied before implementing the finite-state Markov chain approach. Let +
tS  be a finite-state 

homogenous Markov chain on the state space +Ω  with a transition probability matrix (TPM) 

such that (i) },...,,{ 110 −+
+ =Ω srςςς  where hsr =<<<= −+ 110 ...0 ςςς  and 1−+srς  is an absorbent 

state; (ii) the TPM is given by ][ ijpTPM =  for 1,...,1,0 −+= sri  and 1,...,1,0 −+= srj  where r 

denotes the number of non-absorbent* states and s the number of absorbent† states, respectively, 

and (iii) the starting value should equal zero with probability one, that is, 1)0( 0 ==+SP  (this is to 

ensure that the process starts in-control). Assume that the Markov chain +
tS  satisfies conditions 

(i), (ii) and (iii), then the formulas given in (2.41) to (2.45) hold. 

 

The time that the procedure signals is the first time such that the finite-state Markov chain 
+
tS  enters the state 1−+srς  where the state space is given by },...,,{ 110 −+

+ =Ω srςςς , 00 =+S  and  

 { }{ }kSRShS ttt −+= +
−

+
1,0max,min  (3.3) 

                                                 
* The transient (non-absorbent) states are the states for which eventual return is uncertain. 
† If a state is entered once and is never left, the state is said to be absorbent. 
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3.4. The EWMA control chart 

 

3.4.1. Introduction 

 

In this section, the approach taken by Lucas and Saccucci (1990) is extended to the use of 

the signed-rank statistic resulting in an EWMA signed-rank chart that accumulates the statistics 

,...,, 321 SRSRSR  . Section 3.4 is analogous to Section 2.4 where the approach taken by Lucas and 

Saccucci (1990) was extended to the use of the sign statistic resulting in an EWMA sign chart. 

Therefore, the reader is frequently referred back to Section 2.4 throughout this section.  

 

3.4.2. The proposed EWMA signed-rank chart 

 

A nonparametric EWMA-type of control chart based on the signed-rank statistic (recall 

that �
=

+−=
n

j
ijiji RxsignSR

1
0 )( θ ) can be obtained by replacing iX  in expression (2.53) of Section 

2.4 with iSR . The EWMA signed-rank chart accumulates the statistics ,...,, 321 SRSRSR  with the 

plotting statistics defined as  

 1)1( −−+= iii ZSRZ λλ  (3.10) 

where 10 ≤< λ  is a constant called the weighting constant. The starting value 0Z  could be taken 

to equal zero, i.e. 00 =Z . 

 

The EWMA signed-rank chart is constructed by plotting iZ  against the sample number i  

(or time). If the plotting statistic iZ  falls between the two control limits, that is, UCLZLCL i << , 

the process is considered to be in-control. If the plotting statistic iZ  falls on or outside one of the 

control limits, that is LCLZ i ≤  or UCLZ i ≥ , the process is considered to be out-of-control. 

 

The exact control limits and the center line of the EWMA signed-rank control chart can 

be obtained by replacing σ  and 0θ  by 
iSRσ  and 0, respectively, in expression (2.55) of Section 

2.4 to obtain 
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Similarly, the steady-state control limits can be obtained by replacing σ  and 0θ  by 
iSRσ  

and 0, respectively, in expression (2.56) to obtain 
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where 
iSRσ  denotes the in-control standard deviation of the signed-rank statistic iSR  if there are 

no ties within a subgroup. 

 

The in-control standard deviation of iSR  is given by == )var( iSR SR
i

σ  

6
)12)(1(

2
)1(

2var
++=�

�

�
�
�

� +−+ nnnnn
T . This is obtained by using the relationship between 

iSR  and +T  (recall that 
2

)1(
2

+−= + nn
TSRi  if there are no ties within a subgroup) and the fact 

that 
24

)12)(1(
)var(

++=+ nnn
T  (see Gibbons and Chakraborti (2003) page 198). 

 

3.4.3. Markov-chain approach 

 

Lucas and Saccucci (1990) evaluated the properties of the continuous state Markov chain 

by discretizing the infinite state TPM . This procedure entails dividing the interval between the 

UCL  and the LCL  into N  subintervals of width δ2 . Then the plotting statistic, iZ , is said to be 

in the non-absorbing state j  at time i  if δδ +≤<− jij SZS  where jS  denotes the midpoint of 

the thj  interval. iZ  is said to be in the absorbing state if iZ  falls on or outside one of the control 
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limits, that is, LCLZ i ≤  or UCLZ i ≥ . Let ijp  denote the probability of moving from state i  to 

state j  in one step, i.e. ( )istateinjstatetoMovingPpij |= . To approximate this probability we 

assume that the plotting statistic is equal to iS  whenever it is in state i . For all j  non-absorbing 

we obtain ( )ikjkjij SZSZSPp =+≤<−= −1|δδ . By using the definition of the plotting 

statistic given in expression (3.10) we obtain 
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For all j  absorbing we obtain 
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Since the values LCL, UCL, δ , λ , n , iS  and jS  are known constants the Wilcoxon 

signed-rank probabilities in expressions (3.13) and (3.14) can easily be calculated. The 

probabilities for the Wilcoxon signed-rank statistics are given in Table H of Lehmann (1975) for 

 
 
 



 191 

samples sizes up to 20 and they are tabulated (more recently) in Table H of Gibbons and 

Chakraborti (2003) for sample sizes up to 15. 

 

Once the one-step transition probabilities are calculated, the TPM can be constructed and 

is given by 
�
�
�

�

�

�
�
�

�

�

−−−==
1|'0

|
][

pQ

pTPM ij  (written in partitioned form) where the essential transition 

probability sub-matrix Q  is the matrix that contains all the transition probabilities of going from 

a non-absorbing state to a non-absorbing state, Q ( )NANA →: , p  contains all the transition 

probabilities of going from each non-absorbing state to the absorbing states, p ( )ANA →: , 

'0 ( )0000 �=  contains all the transition probabilities of going from each absorbing state 

to the non-absorbing states. '0  is a row vector with all its elements equal to zero, because it is 

impossible to go from an absorbing state to a non-absorbing state, because once an absorbing 

state is entered, it is never left, '0  ( )NAA →: , and 1 represents the scalar value one. The 

probability of going of going from an absorbing state to an absorbing state is equal to one, 

because once an absorbing state is entered, it is never left, 1 ( )AA →: . The one-step TPM is used 

to calculate the expected value (ARL), the second raw moment, the variance, the standard 

deviation and the probability mass function (pmf) of the run-length variable N  which are given in 

equations (2.41) to (2.45). 

 

Example 3.10 

The EWMA signed-rank chart where the sample size is even ( 6====n ) 

 

The EWMA signed-rank chart is investigated for a smoothing constant of 0.1 ( 1.0=λ ) 

and a multiplier of 3 ( 3=L ). The steady-state control limits are given by 
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where 3=L , 1.0=λ , and 539.9=
iSRσ , since =

iSRσ =++
6

)12)(1( nnn =++
6

)112)(16(6
 

539.9 . Clearly, we only have to calculate the UCL  since UCLLCL −= . We obtain 

565.6
1.02

1.0
539.93 =�

�

�
�
�

�

−
×=UCL . Therefore, 565.6−=LCL . 

 

This Markov-chain procedure entails dividing the interval between the UCL  and the 

LCL  into N  subintervals of width δ2 . For this example N  is taken to equal 4. Figure 3.13 

illustrates the partitioning of the interval between the UCL  and the LCL  into subintervals. 

 

    

Figure 3.13. Partitioning of the interval between the UCL  and the LCL  into 4 subintervals. 

 

From Figure 3.13 we see that there are 4 non-absorbing states, i.e. 4=r . The TPM is 

given by 
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Table 3.31. Calculation of the one-step probabilities in the first row of the TPM. 

( )0|000 stateinstatetoMovingPp =  

( )0100 | SZSZSP kk =+≤<−= −δδ  from (3.13) 
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with 641.1=δ , 1.0=λ , 3=L  and 924.40 =S  
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64
57=  from Gibbons and Chakraborti (2003) 

( )0|101 stateinstatetoMovingPp =  
( )0111 | SZSZSP kk =+≤<−= −δδ  from (3.13) 
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( )0|202 stateinstatetoMovingPp =  

( )0122 | SZSZSP kk =+≤<−= −δδ  from (3.13) 
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( )0|303 stateinstatetoMovingPp =  
( )0133 | SZSZSP kk =+≤<−= −δδ  from (3.13) 
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( )0|404 stateinstatetoMovingPp =  

( ) ( )0101 || SZUCLZPSZLCLZP kkkk =≥+=≤= −−  from (3.14) 
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 The one-step probabilities in the remaining rows can be calculated similarly. Therefore, 

the TPM is given by 
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Other values of the multiplier (L) and the smoothing constant ( λ )  were also considered 

and the results are given in Tables 3.32 and 3.33. 
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Table 3.32. The in-control average run length ( 0ARL ), standard deviation of the run length 

( SDRL ), th5 , th25 , th50 , th75  and th95  percentile values* for the EWMA signed-rank chart when 

6=n  and 5=N , i.e. there are 5 subintervals between the lower and upper control limit†.  

 1====L  2====L  3====L  

05.0====λλλλ  
10.45 
12.32 

(1, 2, 6, 15, 35) 

56.69 
72.45 

(1, 5, 29, 82, 204) 

** 
 

1.0====λλλλ  
7.32 
8.38 

(1, 1, 4, 10, 24) 

33.83 
40.28 

(1, 4, 20, 48, 115) 

330.67 
369.33 

(2, 63, 213, 471, 1070) 

2.0====λλλλ  
4.95 
4.90 

(1, 1, 3, 7, 15) 

35.21 
39.63 

(1, 6, 22, 50, 115) 

361.92 
384.29 

(3, 87, 243,  510, 1130) 
** The inverse of the matrix ( QI − ) does not exist and as a result the ARL (given by 

( ) ( ) 11−−= QINE ξ ) can not be calculated for this combination of ( L,λ ). 

 

In example 3.10 we considered a sample size that may be considered “small”. The results 

are given for a larger sample size ( 10=n ) for various values of λ  and L in Table 3.33. 

 

Table 3.33. The in-control average run length ( 0ARL ), standard deviation of the run length 

( SDRL ), th5 , th25 , th50 , th75  and th95  percentile values‡ for the EWMA signed-rank chart when 

10=n  and 5=N , i.e. there are 5 subintervals between the lower and upper control limit§.  

 1====L  2====L  3====L  

05.0====λλλλ  
11.17 
13.49 

(1, 2, 6, 16, 39) 

67.94 
83.82 

(1, 7, 38, 98, 238) 

1448.44 
1573.37 

(10, 316, 956, 2052, 4595) 

1.0====λλλλ  
6.85 
7.74 

(1, 1, 4, 9, 23) 

48.87 
57.73 

(1, 6, 29, 70, 165) 

352.72 
384.51 

(3, 76, 232, 500, 1122) 

2.0====λλλλ  
5.05 
5.07 

(1, 1, 3, 7, 15) 

33.96 
38.48 

(1, 6, 21, 48, 111) 

336.34 
357.54 

(3, 80, 226, 474, 1051) 
 

                                                 
* The three rows of each cell shows the ARL0, the SDRL, and the percentiles ( 5ρ , 25ρ , 50ρ , 75ρ , 95ρ ) , respectively. 
† See SAS Program 8 in Appendix B for the calculation of the values in Table 3.32. 
‡ The three rows of each cell shows the ARL0, the SDRL, and the percentiles ( 5ρ , 25ρ , 50ρ , 75ρ , 95ρ ) , respectively. 
§ See SAS Program 8 in Appendix B for the calculation of the values in Table 3.33. 
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These tables can be extended by changing the sample size (n), the number of subintervals 

between the lower and upper control limit (N), the multiplier (L) and the smoothing constant ( λ ) 

in SAS Program 8  for the EWMA signed-rank chart given in Appendix B. 

 

From Tables 3.32 and 3.33 we see that the 0ARL , SDRL  and percentiles increase as the 

value of the multiplier (L) increases. From Table 3.33 we find an in-control average run length of 

336.34 for 10=n  when the multiplier is taken to equal 3 ( 3=L ) and the smoothing constant 0.2 

( 2.0=λ ). The chart performance is good, since the attained in-control average run length of 

336.34 is in the region of the desired in-control average run length which is generally taken to be 

370 or 500. 

 

3.4.4. Summary 

 

The EWMA control chart is one of several charting methods aimed at correcting a 

deficiency of the Shewhart chart - insensitivity to small shifts. Lucas and Saccucci (1990) have 

investigated some properties of the EWMA chart under the assumption of independent normally 

distributed observations, whereas in this section we have described and evaluated the 

nonparametric EWMA signed-rank chart. The main advantage of the nonparametric EWMA 

chart is that there is no need to assume a particular parametric distribution for the underlying 

process (see Section 1.4 for other advantages of the nonparametric EWMA chart). 
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where h is the decision interval and k is the reference value (see Section 2.3.1 for a detailed 

discussion on how the values of k and h are chosen). Equation (3.3) is obtained by replacing tSN  

with tSR  in (2.46). 

 

The distribution of tSR  can easily be obtained from the distribution of the Wilcoxon 

signed-rank statistic +T  (recall that 
2

)1(
2

+−= + nn
TSR ii  i∀ ). The probabilities for the 

Wilcoxon signed-rank statistics are given in Table H of Lehmann (1975) for samples sizes up to 

20 and they are tabulated (more recently) in Table H of Gibbons and Chakraborti (2003) for 

sample sizes up to 15. 

 

Example 3.3 

An upper one-sided CUSUM signed-rank chart where the sample size is even (n=4) 

 

The statistical properties of an upper one-sided CUSUM signed-rank chart with a decision 

interval of 6 ( )6=h , a reference value of 2 ( )2=k  and a sample size of 4 ( )4=n  is examined. 

We start by examining the pmf of the well-known Wilcoxon signed-rank statistic +T , since the 

plotting statistic iSR  is linearly related to +T . 
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Table 3.6. Enumeration for the distribution of +T  for a sample size of 4. 

Value 
of 

++++T  

Ranks associated 
with positive differences 

Number 
of  sample 

points 
)(tu  

)( tTP ====++++  )( tTP ≤≤≤≤++++  

0  1 16
1  16

1  
1 1 1 16

1  16
2  

2 2 1 16
1  16

3  
3 {1,2}; {3} 2 16

2  16
5  

4 {1,3}; {4} 2 16
2  16

7  
5 {1,4}; {2,3} 2 16

2  16
9  

6 {1,2,3}; {2,4} 2 16
2  16

11  
7 {1,2,4}; {3,4} 2 16

2  16
13  

8 {1,3,4} 1 16
1  16

14  
9 {2,3,4} 1 16

1  16
15  

10 {1,2,3,4} 1 16
1  16

16  
 

From Table 3.6 if follows that the pmf of +T  when the sample size is 4 is 

( )
�
�

�
�

�

=
=

=== +
+

otherwise0
7,6,5,4,3
10,9,8,2,1,0

)( 16
2

16
1

t

t

tTPtf
T

 

 

The values of tSR  are either the even or the odd integers between (and including) 

2
)1( +− nn

 and 
2

)1( +nn
, depending on whether 

2
)1( +nn

 is even or odd. In example 3.3 

10
2

)14(4
2

)1( =+=+nn
 which is even and as a result the possible values for tSR  are even 

integers between -10 and 10 inclusive. Thus, we have that 1010 ≤≤− tSR . In both cases 

(whether 
2

)1( +nn
 is even or odd) the sum ( )� − kSRi  will be an integer since both tSR  and k  

are integers. For this example, the reference value is taken to be equal to two, because this leads 

to the sum ( )� − kSRi  being equal to even values which reduces the size of the state space for 

the Markov chain. For 6=h  we have that }6,4,2,0{},,,{ 3210 ==Ω+ ςςςς  with 

 
 
 



 136 

h=<<<= 32100 ςςςς . The state space is calculated using equation (3.3) and the calculations 

are shown in Table 3.7. 

 

Table 3.7. Calculation of the state space when 6=h , 2=k  and 4=n . 

tSR  kSRS tt −−−−++++++++
−−−−1  {{{{ }}}}kSRS tt −−−−++++++++

−−−−1,0max  {{{{ }}}}{{{{ }}}}kSRShS ttt −−−−++++==== ++++
−−−−

++++
1,0max,min  

-10 -12* 0 0 
-8 -10 0 0 
-6 -8 0 0 
-4 -6 0 0 
-2 -4 0 0 
0 -2 0 0 
2 0 0 0 
4 2 2 2 
6 4 4 4 
8 6 6 6 
10 8 8 6 

 

Table 3.8. Classification of the states. 

State number Description of the state Absorbent (A)/ Non-absorbent (NA) 
0 0=+

tS  NA 

1 2=+
tS  NA 

2 4=+
tS  NA 

3 6=+
tS  A 

 

From Table 3.8 we see that there are three non-absorbent states, i.e. 3=r , and one 

absorbent state, i.e. 1=s . Therefore, the corresponding TPM will be a 44)()( ×=+×+ srsr  

matrix. It can be shown (see Table 3.9) that the TPM is given by 
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3
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16
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16
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16
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1|000
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pQ

pppp

pppp

pppp

pppp

TPM  

                                                 
* Note: Since only the state space needs to be described, +

−1tS  can be any value from +Ω  and we therefore take, 

without loss of generality, 01 =+
−tS . Any other possible value for +

−1tS  would lead to the same +Ω .   
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where the essential transition probability sub-matrix )(:33 NANAQ →×  is an 33×=× rr  matrix, 

)(:
13

ANAp →
×

 is an 131)1( ×=×−+ sr  column vector, )(:'0 31 NAA →×  is a 

31)1(1 ×=−+× sr  row vector and )(:1 11 AA →×  represents the scalar value one. 

 

The one-step transition probabilities are calculated by substituting tSR  in expression (3.3) 

by 
2

)1(
2

+−+ nn
T  and substituting in values for h , k , +

tS  and +
−1tS . The calculation of the one-

step transition probabilities are given for illustration in Table 3.9. 

 

The probabilities in the last column of the TPM can be calculated using the fact that 

�
Ω∈

∀=
j

ij ip 1  (see equation (2.18)). Therefore, 

16
2

16
1

16
2

16
11

04020006 )(1)(1 =++−=++−= pppp ; 

16
3

16
2

16
2

16
9

24222026 )(1)(1 =++−=++−= pppp ; 

16
5

16
2

16
2

16
7

44424046 )(1)(1 =++−=++−= pppp ; 

1)000(1)(1 64626066 =++−=++−= pppp . 
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Table 3.9. The calculation of the transition probabilities when 6=h , 2=k  and 4=n . 

00p  
( )0|0 1 === −tt SSP  

{ }{ }( )020,0max,6min =−+= tSRP

{ }( )02,0max =−= tSRP  
( )02 ≤−= tSRP  
( )2≤= tSRP  
( )2102 ≤−= +TP  
( )6≤= +TP  

16
11=  

02p  
( )0|2 1 === −tt SSP  

{ }{ }( )220,0max,6min =−+= tSRP

{ }( )22,0max =−= tSRP  
( )22 =−= tSRP  
( )4== tSRP  
( )4102 =−= +TP  
( )7== +TP  

16
2=  

04p  
( )0|4 1 === −tt SSP  

{ }{ }( )420,0max,6min =−+= tSRP

{ }( )42,0max =−= tSRP  
( )42 =−= tSRP  
( )6== tSRP  
( )6102 =−= +TP  
( )8== +TP  

16
1=  

20p  
( )2|0 1 === −tt SSP  

{ }{ }( )022,0max,6min =−+= tSRP

{ }( )0,0max == tSRP  
( )0≤= tSRP  
( )0102 ≤−= +TP  
( )5≤= +TP  

16
9=  

22p  
( )2|2 1 === −tt SSP  

{ }{ }( )222,0max,6min =−+= tSRP

{ }( )2,0max == tSRP  
( )2== tSRP  
( )2102 =−= +TP  
( )6== +TP  

16
2=  

24p  
( )2|4 1 === −tt SSP  

{ }{ }( )422,0max,6min =−+= tSRP

{ }( )4,0max == tSRP  
( )4== tSRP  
( )4102 =−= +TP  
( )7== +TP  

16
2=  

40p  
( )4|0 1 === −tt SSP  

{ }{ }( )024,0max,6min =−+= tSRP
{ }( )02,0max =+= tSRP  

( )02 ≤+= tSRP  
( )2−≤= tSRP  
( )2102 −≤−= +TP  
( )4≤= +TP  

16
7=  

42p  
( )4|2 1 === −tt SSP  

{ }{ }( )224,0max,6min =−+= tSRP
{ }( )22,0max =+= tSRP  

( )22 =+= tSRP  
( )0== tSRP  
( )0102 =−= +TP  
( )5== +TP  

16
2=  

44p  
( )4|4 1 === −tt SSP  

{ }{ }( )424,0max,6min =−+= tSRP
{ }( )42,0max =+= tSRP  

( )42 =+= tSRP  
( )2== tSRP  
( )2102 =−= +TP  
( )6== +TP  

16
2=  

60p  
( )6|0 1 === −tt SSP  

0= * 

62p  
( )6|2 1 === −tt SSP  

0=  

64p  
( )6|4 1 === −tt SSP  

0=  
 

Using the TPM the ARL  can be calculated using ( ) 11−−= QIARL ξ . A well-known 

concern is that important information about the performance of a control chart can be missed 

when only examining the ARL (this is especially true when the process distribution is skewed). 

Various authors, see for example, Radson and Boyd (2005) and Chakraborti (2007), have 

                                                 
* The probability equals zero, because it is impossible to go from an absorbent state to a non-absorbent state. 
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suggested that one should examine a number of percentiles, including the median, to get the 

complete information about the performance of a control chart. Therefore, we now also consider 

percentiles. The 100 thρ  percentile is defined as the smallest integer l  such that the cdf is at least 

( )%100 ρ× . Thus, the 100 thρ  percentile l  is found from ρ≥≤ )( lNP . The median ( th50  

percentile) will be considered, since it is a more representative performance measure than the 

ARL. The first and third quartiles ( th25  and th75  percentiles) will also be considered, since it 

contains the middle half of the distribution. The ‘tails’ of the distribution should also be 

examined and therefore the th5  and th95  percentiles are calculated. The calculation of these 

percentiles is shown below for illustration purposes. 

 

Table 3.10. Calculation of the percentiles when 6=h , 2=k  and 4=n *. 

N )( lNP ≤≤≤≤  The 5th, 25th, 50th, 75th and 95th percentiles 
1 0.125 =05.0ρ 1 (smallest integer such that the cdf is at least 0.05) 

2 0.254 =25.0ρ 2 (smallest integer such that the cdf is at least 0.25) 
3 0.366  
4 0.462  
5 0.544 =5.0ρ 5 (smallest integer such that the cdf is at least 0.5) 
6 0.613  
7 0.671  
8 0.721  
9 0.763 =75.0ρ 9 (smallest integer such that the cdf is at least 0.75) 

10 0.799  
11 0.829  
12 0.855  
13 0.877  
14 0.896  
15 0.912  
16 0.925  
17 0.936  
18 0.946  
19 0.954 =95.0ρ 19 (smallest integer such that the cdf is at least 0.95) 
20† 0.961  
 

                                                 
* See SAS Program 7 in Appendix B for the calculation of the values in Table 3.10. 
† The value of the run length variable is only shown up to N = 20 for illustration purposes. 
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The formulas of the moments and some characteristics of the run length distribution have 

been studied by Fu, Spiring and Xie (2002) and Fu and Lou (2003) – see equations (2.41) to 

(2.45). By substituting )001(
31

=
×

ξ , 
�
�
�

�

�

	
	
	




�

=×

16
2

16
2

16
7

16
2

16
2

16
9

16
1

16
2

16
11

33Q  and 
�
�
�

�

�

	
	
	




�

=×

1
1
1

1 13  into these 

equations, we obtain the following: 

 

( ) ( ) 81.611 =−== −QINEARL ξ  

( ) 64.831))(( 22 =−+= −QIQINE ξ  

( ) ( ) 11.6)()( 22 =−== NENENVarSDRL  

1  percentile 5 5 == ρth  

2  percentile 25 25 == ρth  

5  percentile 50 Median 50 === ρth  

9  percentile 75 75 == ρth  

19  percentile 95 95 == ρth  

 

Other values of h, k and n were also considered and the results are given in Table 3.11. 
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Table 3.11. The in-control average run length ( +
0ARL ), standard deviation of the run length 

( SDRL ), th5 , th25 , th50 , th75  and th95  percentile values* for the upper one-sided CUSUM signed-

rank chart when 4=n †. 

h  k  2 4 6 8 10 

0 
2.29 
1.71 

(1, 1, 2, 3, 6) 

3.05 
2.44 

(1, 1, 2, 4, 8) 

4.27 
3.50 

(1, 2, 3, 6, 11) 

5.49 
4.55 

(1, 2, 4, 7, 15) 

7.24 
5.98 

(1, 3, 5, 10, 19) 

2 
3.20 
2.65 

(1, 1, 2, 4, 8) 

4.92 
4.31 

(1, 2, 4, 7, 14) 

6.81 
6.11 

(1, 2, 5, 9, 19) 

10.17 
9.21 

(1, 4, 7, 14, 29) 

 
 
 

4 
5.33 
4.81 

(1, 2, 4, 7, 15) 

7.74 
7.19 

(1, 3, 6, 11, 22) 

13.28 
12.58 

(1, 4, 9, 18, 38) 

 
 
 

 
 
 

6 
8.00 
7.48 

(1, 3, 6, 11, 23) 

15.06 
14.49 

(1, 5, 11, 21, 44) 

 
 

 
 

 
 

8 
16.00 
15.49 

(1, 5, 11, 22, 47) 

 
 

 
 

 
  

 

In order to allow for the possibility of stopping after one group, the values of h  is taken 

to satisfy k
nn

h −+≤
2

)1(
. For example, for 4=n  and 0=k , the reference value h  is taken to 

be smaller than or equal to 10, since 100
2

)14(4
2

)1( =−+=−+
k

nn
. 

 

The five percentiles are displayed in boxplot-like‡ graphs in Figure 3.2 for all the ),( kh -

combinations that are shaded in Table 3.11. It clearly shows the effects of h  and k  on the run 

length distribution. Figure 3.2 describes the run-length distribution when the process is in-

control. We would prefer a “boxplot” with a high valued (large) in-control average run length and 

a small spread. The “boxplots” are classified into 3 categories, namely, small ( 4≤+ kh ), 

                                                 
*The three rows of each cell shows the +

0ARL , the SDRL , and the percentiles ( 5ρ , 25ρ , 50ρ , 75ρ , 95ρ ) , respectively. 
† See SAS Program 7 in Appendix B for the calculation of the values in Table 3.11. 
‡ It should be noted that these boxplot-like graphs differ from standard box plots. In the latter case the whiskers are 
drawn from the ends of the box to the smallest and largest values inside specified limits, whereas, in the case of the 
boxplot-like graphs, the whiskers are drawn from the ends of the box to the 5th and 95th percentiles, respectively. In 
this thesis “boxplot” will refer to a boxplot-like graph from this point forward. 
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moderate ( 85 ≤+≤ kh ) and large ( 9≥+ kh ). If the sum of the reference value, k, and the 

decision interval, h, is small (moderate or large), the corresponding “boxplot” is classified under 

small (moderate or large). For example, where 4=+ kh , the “boxplot” is classified as small, 

since the +
0ARL , SDRL and percentile values are small for 4=n . In contrast, where 10=+ kh , 

the “boxplot” is classified as large, since the +
0ARL , SDRL and percentile values are large for 

4=n . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Boxplot-like graphs for the in-control run length distribution of various upper one-

sided CUSUM signed-rank charts when 4=n .  The whiskers extend to the 5th and the 95th  

percentiles.  The symbols “ ”, “ ” and “ ” denote the ARL, SDRL* and MRL, respectively. 

                                                 
* For ease of interpretation, the standard deviation (as measure of spread) is included in the (location) measures of 
percentiles. 
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Example 3.4 

An upper one-sided CUSUM signed-rank chart where the sample size is odd (n=5) 

 

The statistical properties of an upper one-sided CUSUM signed-rank chart with a decision 

interval of 6 ( )6=h , a reference value of 3 ( )3=k  and a sample size of 5 ( )5=n  is examined. 

We start by examining the pmf of the well-known Wilcoxon signed-rank statistic +T , since the 

plotting statistic iSR  is linearly related to +T  (see equation (3.2)). 

 

Table 3.12. Enumeration for the distribution of +T  for a sample size of 5. 

Value 
of 

++++T  

Ranks associated 
with positive differences 

Number 
of sample 

points 
)(tu  

)( tTP ====++++  )( tTP ≤≤≤≤++++  

0  1 32
1  32

1  
1 1 1 32

1  32
2  

2 2 1 32
1  32

3  
3 {1,2}; {3} 2 32

2  32
5  

4 {1,3}; {4} 2 32
2  32

7  
5 {1,4}; {2,3}; {5} 3 32

3  32
10  

6 {1,2,3}; {1,5}; {2,4} 3 32
3  32

13  
7 {1,2,4}; {2,5}; {3,4} 3 32

3  32
16  

8 {1,2,5}; {1,3,4}; {3,5} 3 32
3  32

19  
9 {1,3,5};  {2,3,4}; {4,5} 3 32

3  32
22  

10 {1,2,3,4}; {1,4,5}; {2,3,5} 3 32
3  32

25  
11 {1,2,3,5}; {2,4,5} 2 32

2  32
27  

12 {1,2,4,5}; {3,4,5} 2 32
2  32

29  
13 {1,3,4,5} 1 32

1  32
30  

14 {2,3,4,5} 1 32
1  32

31  
15 {1,2,3,4,5} 1 32

1  32
32  
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From Table 3.12 if follows that the pmf of +T  when the sample size is 5 is 

( )
�
�

�

�
�

�

�

=
=

=

=== +
+

otherwise0
10,9,8,7,6,5

12,11,4,3
15,14,13,2,1,0

)(
32

3

32
2

32
1

t

t

t

tTPtf
T

 

 

The reference value was taken to be equal to three, because this leads to the sum 

( )� − kSRi  being equal to even values which reduces the size of the state space for the Markov 

chain. For 6=h  we have that }6,4,2,0{},,,{ 3210 ==Ω+ ςςςς  with h=<<<= 32100 ςςςς . 

The state space is calculated using equation (3.3) and the calculations are shown in Table 3.13. 

 

Table 3.13. Calculation of the state space when 6=h , 3=k  and 5=n . 

tSR  kSRS tt −−−−++++++++
−−−−1  {{{{ }}}}kSRS tt −−−−++++++++

−−−−1,0max  {{{{ }}}}{{{{ }}}}kSRShS ttt −−−−++++==== ++++
−−−−

++++
1,0max,min  

-15 -18* 0 0 
-13 -16 0 0 
-11 -14 0 0 
-9 -12 0 0 
-7 -10 0 0 
-5 -8 0 0 
-3 -6 0 0 
-1 -4 0 0 
1 -2 0 0 
3 0 0 0 
5 2 2 2 
7 4 4 4 
9 6 6 6 
11 8 8 6 
13 10 10 6 
15 12 12 6 

 

                                                 
* Note: Since only the state space needs to be described, +

−1tS  can be any value from +Ω  and we therefore take, 

without loss of generality, 01 =+
−tS . Any other possible value for +

−1tS  would lead to the same +Ω .   
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Table 3.14. Classification of the states. 

State number Description of the state Absorbent (A)/ Non-absorbent (NA) 
0 0=+

tS  NA 

1 2=+
tS  NA 

2 4=+
tS  NA 

3 6=+
tS  A 

 

From Table 3.14 we see that there are three non-absorbent states, i.e. 3=r , and one 

absorbent state, i.e. 1=s . Therefore, the corresponding TPM will be a 44)()( ×=+×+ srsr  

matrix. It can be shown (see Table 3.15) that the TPM is given by 

�
�
�

�

�

	
	
	




�

−−−=

�
�
�
�
�
�

�

�

	
	
	
	
	
	




�

−−−−−
=

�
�
�
�
�

�

�

	
	
	
	
	




�

=

××

××

×

1131

1333

32
10

32
3

32
3

32
16

32
7

32
3

32
3

32
19

32
5

32
2

32
3

32
22

66646260

46444240

26242220

06040200

44

1|'0

|

1|000

|
|
|

pQ

pppp

pppp

pppp

pppp

TPM  

where the essential transition probability sub-matrix )(:33 NANAQ →×  is an 33×=× rr  matrix, 

)(:
13

ANAp →
×

 is an 131)1( ×=×−+ sr  column vector, )(:'0 31 NAA →×  is a 

31)1(1 ×=−+× sr  row vector and )(:1 11 AA →×  represents the scalar value one. The 

calculation of the one-step transition probabilities are given for illustration in Table 3.15. 

 

Recall that the probabilities in the last column of the TPM are calculated using the fact 

that �
Ω∈

∀=
j

ij ip 1  (see equation (2.18)). Therefore, 

32
5

32
2

32
3

32
22

04020006 )(1)(1 =++−=++−= pppp ; 

32
7

32
3

32
3

32
19

24222026 )(1)(1 =++−=++−= pppp ; 

32
10

32
3

32
3

32
16

44424046 )(1)(1 =++−=++−= pppp ; 

1)000(1)(1 64626066 =++−=++−= pppp . 
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Table 3.15. The calculation of the transition probabilities when 6=h , 3=k  and 5=n . 

00p  
( )0|0 1 === −tt SSP  

{ }{ }( )030,0max,6min =−+= tSRP

{ }( )03,0max =−= tSRP  
( )03 ≤−= tSRP  
( )3≤= tSRP  
( )3152 ≤−= +TP  
( )9≤= +TP  

32
22=  

02p  
( )0|2 1 === −tt SSP  

{ }{ }( )230,0max,6min =−+= tSRP

{ }( )23,0max =−= tSRP  
( )23 =−= tSRP  
( )5== tSRP  
( )5152 =−= +TP  
( )10== +TP  

32
3=  

02p  
( )0|4 1 === −tt SSP  

{ }{ }( )430,0max,6min =−+= tSRP  
{ }( )43,0max =−= tSRP  

( )43 =−= tSRP  
( )7== tSRP  
( )7152 =−= +TP  
( )11== +TP  

32
2=  

20p  
( )2|0 1 === −tt SSP  

{ }{ }( )032,0max,6min =−+= tSRP

{ }( )01,0max =−= tSRP  
( )01 ≤−= tSRP  
( )1≤= tSRP  
( )1152 ≤−= +TP  
( )8≤= +TP  

32
19=  

22p  
( )2|2 1 === −tt SSP  

{ }{ }( )232,0max,6min =−+= tSRP

{ }( )21,0max =−= tSRP  
( )21 =−= tSRP  
( )3== tSRP  
( )3152 =−= +TP  
( )9== +TP  

32
3=  

24p  
( )2|4 1 === −tt SSP  

{ }{ }( )432,0max,6min =−+= tSRP  
{ }( )41,0max =−= tSRP  

( )41 =−= tSRP  
( )5== tSRP  
( )5152 =−= +TP  
( )10== +TP  

32
3=  

40p  
( )4|0 1 === −tt SSP  

{ }{ }( )034,0max,6min =−+= tSRP

{ }( )01,0max =+= tSRP  
( )01 ≤+= tSRP  
( )1−≤= tSRP  
( )1152 −≤−= +TP  
( )7≤= +TP  

32
16=  

42p  
( )4|2 1 === −tt SSP  

{ }{ }( )234,0max,6min =−+= tSRP

{ }( )21,0max =+= tSRP  
( )21 =+= tSRP  
( )1== tSRP  
( )1152 =−= +TP  
( )8== +TP  

32
3=  

44p  
( )4|4 1 === −tt SSP  

{ }{ }( )434,0max,6min =−+= tSRP  
{ }( )41,0max =+= tSRP  

( )41 =+= tSRP  
( )3== tSRP  
( )3152 =−= +TP  

( )9== +TP  

32
3=  

60p  
( )6|0 1 === −tt SSP  

0= * 

62p  
( )6|2 1 === −tt SSP  

0=  

64p  
( )6|4 1 === −tt SSP  

0=  
 

 

 

 

                                                 
* The probability equals zero, because it is impossible to go from an absorbent state to a non-absorbent state. 
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The formulas of the moments and some characteristics of the run length distribution have 

been studied by Fu, Spiring and Xie (2002) and Fu and Lou (2003) – see equations (2.41) to 

(2.45). By substituting )001(
31

=
×

ξ , 
�
�
�

�

�

	
	
	




�

=×

32
3

32
3

32
16

32
3

32
3

32
19

32
2

32
3

32
22

33Q  and 
�
�
�

�

�

	
	
	




�

=×

1
1
1

1 13  into these 

equations, we obtain the following: 

 

( ) ( ) 79.511 =−== −QINEARL ξ  

( ) ( )( ) 14.60122 =−+= −QIQINE ξ  

( ) ( ) 16.5)()( 22 =−== NENENVarSDRL  

1  percentile 5 5 == pth  

2  percentile 25 25 == pth  

4  percentile 50 Median 50 === pth  

8  percentile 75 75 == pth  

16  percentile 95 95 == pth  

 

Other values of h, k and n were also considered and the results are given in Table 3.16. 
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Table 3.16. The in-control average run length ( +
0ARL ), standard deviation of the run length ( SDRL ), th5 , th25 , th50 , th75  and th95  

percentile values* for the upper one-sided CUSUM signed-rank chart when 5=n †. 

h  k  
2 4 6 8 10 12 14 

1 
2.46 
1.90 

(1, 1, 2, 3, 6) 

3.11 
2.53 

(1, 1, 2, 4, 8) 

4.08 
3.42 

(1, 2, 3, 5, 11) 

5.14 
4.38 

(1, 2, 4, 7, 14) 

6.71 
5.73 

(1, 3, 5, 9, 18) 

8.29 
7.13 

(1, 3, 6, 11, 22) 

10.46 
8.99 

(2, 4, 8, 14, 28) 

3 
3.20 
2.65 

(1, 1,2, 4, 8) 

4.39 
3.82 

(1, 2, 3, 6, 12) 

5.79 
5.16 

(1, 2, 4, 8, 16) 

8.13 
7.34 

(1, 3, 6, 11, 23) 

10.68 
9.75 

(1, 4, 8, 14, 30) 

14.78 
13.56 

(2, 5, 11, 20, 42) 
 

5 
4.57 
4.04 

(1, 2, 3, 6, 13) 

6.24 
5.69 

(1, 2, 4, 8, 18) 

9.44 
8.79 

(1, 3, 7, 13, 27) 

13.04 
12.31 

(1, 4, 9, 18, 38) 

20.16 
19.22 

(2, 6, 14, 28, 59) 
  

7 
6.40 
5.88 

(1, 2, 5, 9, 18) 

10.24 
9.68 

(1, 3, 7, 14, 30) 

14.77 
14.18 

(1, 5, 10, 20, 43) 

25.17 
24.43 

(2, 8, 18, 35, 74) 
   

9 
10.67 
10.15 

(1, 3, 8, 15, 31) 

15.75 
15.22 

(1, 5, 11, 22, 46) 

29.15 
28.55 

(2, 9, 20, 40, 86) 
    

11 
16.00 
15.49 

(1, 5, 11, 22, 47) 

31.03 
30.50 

(2, 9, 22, 43, 92) 
     

13 
32.00 
31.50 

(2, 10, 22, 44, 95) 
      

 

 

                                                 
* The three rows of each cell shows the +

0ARL , the SDRL , and the percentiles ( 5ρ , 25ρ , 50ρ , 75ρ , 95ρ ) , respectively. 
† See SAS program 7 in Appendix B for the calculation of the values in Table 3.16. 
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The five percentiles are displayed in boxplot-like graphs in Figure 3.3 for all the ),( kh -

combinations that are shaded in Table 3.16. It clearly shows the effects of h  and k  on the run 

length distribution. Figure 3.3 describes the run-length distribution when the process is in-

control. We would prefer a “boxplot” with a high valued (large) in-control average run length and 

a small spread. The “boxplots” are classified into 3 categories, namely small ( 5≤+ kh ), 

moderate ( 106 ≤+≤ kh ) and large ( 11≥+ kh ). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3. Boxplot-like graphs for the in-control run length distribution of various upper one-

sided CUSUM signed-rank charts when 5=n .  The whiskers extend to the 5th and the 

95th percentiles.  The symbols “ ”, “ ” and “ ” denote the ARL, SDRL* and MRL, 

respectively. 

 
                                                 
* For ease of interpretation, the standard deviation (as measure of spread) is included in the (location) measures of 
percentiles. 
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Examples 3.3 and 3.4 illustrated the Markov chain approach used to calculate run length 

characteristics for n  even and odd, respectively. On the performance side, note that the largest 

in-control average run length that the upper one-sided CUSUM signed-rank can obtain is n2 . 

Therefore, for a sample size of 4 the largest +
0ARL  equals 1624 =  (this is obtained when 2=h  

and 8=k ). Thus, a large number of false alarms will be signaled by this chart leading to a 

possible loss of time and resources. Compared to this, for a sample of size 5 the largest +
0ARL  

equals 3225 =  (this is obtained when 2=h  and 13=k ). Both examples considered sample 

sizes that may be considered “small”. Some results will be given for larger sample sizes ( =n 6 

and 10).  
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Table 3.17. The in-control average run length ( +
0ARL ), standard deviation of the run length ( SDRL ), th5 , th25 , th50 , th75  and th95  

percentile values* for the upper one-sided CUSUM signed-rank chart when 6=n †. 

h  k  
2 4 6 8 10 12 14 16 18 

1 
2.37 
1.80 

(1, 1, 2, 3, 6) 

2.86 
2.28 

(1, 1, 2, 4, 7) 

3.39 
2.79 

(1, 1, 3, 4, 9) 

4.08 
3.42 

(1, 2, 3, 5, 11) 

5.03 
4.25 

(1, 2, 4, 7, 13) 

6.10 
5.17 

(1, 2, 5, 8, 16) 

7.24 
6.17 

(1, 3, 5, 10, 20) 

8.72 
7.41 

(2, 3, 6, 12, 23) 

10.21 
8.69 

(2, 4, 8, 14, 28) 

3 
2.91 
2.36 

(1, 1, 2, 4, 8) 

3.51 
2.95 

(1, 1, 3, 5, 9) 

4.33 
3.74 

(1, 2, 3, 6, 12) 

5.55 
4.87 

(1, 2, 4, 7, 15) 

7.00 
6.21 

(1, 3, 5, 9, 19) 

8.63 
7.72 

(1, 3, 6, 12, 24) 

10.99 
9.86 

(2, 4, 8, 15, 31) 

13.43 
12.12 

(2, 5, 10, 18, 38) 

16.78 
15.18 

(2, 6, 12, 23, 47) 

5 
3.56 
3.01 

(1, 1, 3, 5, 10) 

4.49 
3.94 

(1, 2, 3, 6, 12) 

5.95 
5.35 

(1, 2, 4, 8, 17) 

7.82 
7.14 

(1, 3, 6, 11, 22) 

10.02 
9.25 

(1, 3, 7, 14, 28) 

13.55 
12.60 

(2, 5, 10, 18, 39) 

17.39 
16.29 

(2, 6, 12, 24, 50) 

23.44 
22.07 

(2, 8, 17, 32, 67) 
 

7 
4.57 
4.04 

(1, 2, 3, 6, 13) 

6.24 
5.70 

(1, 2, 4, 8, 18) 

8.50 
7.91 

(1, 3, 6, 12, 24) 

11.26 
10.61 

(1, 4, 8, 15, 32 

16.17 
15.39 

(2, 5, 11, 22, 47) 

21.79 
20.90 

(2, 7, 15, 30, 63) 

32.01 
30.88 

(3, 10, 23, 44, 94) 
  

9 
6.40 
5.88 

(1, 2, 5, 9, 18) 

8.96 
8.42 

(1, 3, 6, 12, 26) 

12.16 
11.60 

(1, 4, 9, 17, 35) 

18.48 
17.83 

(2, 6, 13, 25, 54) 

25.89 
25.17 

(2, 8, 18, 36, 76) 

41.56 
40.64 

(2, 13, 29, 57, 123) 

 
 
 

 
 
 

 
 
 

11 
9.14 
8.63 

(1, 3, 6, 12, 26) 

12.64 
12.12 

(1, 4, 9, 17, 37) 

20.05 
19.48 

(2, 6, 14, 28, 59) 

28.88 
28.27 

(2, 9, 20, 40, 85) 

50.26 
49.52 

(3, 15, 35, 69, 149) 

 
 

 
 

 
 

 
 

13 
12.80 
12.29 

(1, 4, 9, 18, 37) 

20.90 
20.37 

(2, 6, 15, 29, 62) 

30.76 
30.22 

(2, 9, 21, 42, 91) 

56.62 
55.99 

(3, 17, 39, 78, 168) 

 
 

 
 

 
 

 
 

 
 

15 
21.33 
20.83 

(2, 6, 15, 29, 63) 

31.75 
31.24 

(2, 9, 22, 44, 94) 

61.08 
60.53 

(4, 18, 43, 84, 182) 
      

17 
32.00 
31.50 

(2, 10, 22, 44, 95) 

63.02 
62.50 

(4, 18, 44, 87, 188) 
       

19 
64.00 
63.50 

(4, 19, 45, 89, 191) 
        

 

 

                                                 
* The three rows of each cell shows the +

0ARL , the SDRL , and the percentiles ( 5ρ , 25ρ , 50ρ , 75ρ , 95ρ ) , respectively. 
† See SAS Program 7 in Appendix B for the calculation of the values in Table 3.17. 
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Figure 3.4. Boxplot-like graphs for the in-control run length distribution of various upper one-

sided CUSUM signed-rank charts when 6=n .  The whiskers extend to the 5th and the  

95th percentiles.  The symbols “ ”, “ ” and “ ” denote the ARL, SDRL* and MRL, 

respectively†. 

                                                 
* For ease of interpretation, the standard deviation (as measure of spread) is included in the (location) measures of 
percentiles. 
† The “boxplots” are classified into 3 categories, namely small ( 7≤+ kh ), moderate ( 168 ≤+≤ kh ) and large 

( 17≥+ kh ). 
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Table 3.18. The in-control average run length ( +
0ARL ), standard deviation of the run length ( SDRL ), th5 , th25 , th50 , th75  and th95  

percentile values* for samples of size 10=n  for 14,...,4,2=h  and 23,...,3,1=k  for the upper one-sided CUSUM signed-rank chart†. 

h k 2 4 6 8 10 12 14 

1 
2.17 
1.59 

(1, 1, 2, 3, 5) 

2.36 
1.78 

(1, 1, 2, 3, 6) 

2.57 
1.99 

(1, 1, 2, 3, 7) 

2.81 
2.22 

(1, 1, 2, 4, 7) 

3.07 
2.47 

(1, 1, 2, 4, 8) 

3.36 
2.73 

(1, 1, 3, 4, 9) 

3.68 
3.02 

(1, 2, 3, 5, 10) 

3 
2.36 
1.80 

(1, 1, 2, 3, 6) 

2.59 
2.02 

(1, 1, 2, 3, 7) 

2.84 
2.27 

(1, 1, 2, 4, 7) 

3.12 
2.54 

(1, 1, 2, 4, 8) 

3.44 
2.84 

(1, 1, 3, 5, 9) 

3.79 
3.17 

(1, 2, 3, 5, 10) 

4.18 
3.52 

(1, 2, 3, 6, 11) 

5 
2.60 
2.04 

(1, 1, 2, 3, 7) 

2.87 
2.31 

(1, 1, 2, 4, 7) 

3.16 
2.60 

(1, 1, 2, 4, 8) 

3.50 
2.93 

(1, 1, 3, 5, 9) 

3.88 
3.29 

(1, 2, 3, 5, 10) 

4.31 
3.69 

(1, 2, 3, 6, 12) 

4.79 
4.14 

(1, 2, 4, 6, 13) 

7 
2.88 
2.32 

(1, 1, 2, 4, 8) 

3.19 
2.64 

(1, 1, 2, 4, 8) 

3.55 
2.99 

(1, 1, 3, 5, 10) 

3.96 
3.39 

(1, 2, 3, 5, 11) 

4.42 
3.83 

(1, 2, 3, 6, 12) 

4.95 
4.34 

(1, 2, 4, 7, 14) 

5.55 
4.91 

(1, 2, 4, 7, 15) 

9 
3.20 
2.65 

(1, 1, 2, 4, 8) 

3.58 
3.03 

(1, 1, 3, 5, 10) 

4.01 
3.46 

(1, 2, 3, 5, 11) 

4.51 
3.94 

(1, 2, 3, 6, 12) 

5.08 
4.50 

(1, 2, 4, 7, 14) 

5.75 
5.14 

(1, 2, 4, 8, 16) 

6.49 
5.85 

(1, 2, 5, 9, 18) 

11 
3.59 
3.05 

(1, 1, 3, 5, 10) 

4.05 
3.51 

(1, 2, 3, 5, 11) 

4.57 
4.03 

(1, 2, 3, 6, 13) 

5.19 
4.63 

(1, 2, 4, 7, 14) 

5.91 
5.33 

(1, 2, 4, 8, 17) 

6.73 
6.12 

(1, 2, 5, 9, 19) 

7.69 
7.05 

(1, 3, 6, 10, 22) 

13 
4.06 
3.53 

(1, 2, 3, 5, 11) 

4.61 
4.08 

(1, 2, 3, 6, 13) 

5.26 
4.72 

(1, 2, 4, 7, 15) 

6.03 
5.48 

(1, 2, 4, 8, 17) 

6.92 
6.35 

(1, 2, 5, 9, 20) 

7.97 
7.37 

(1, 3, 6, 11, 23) 

9.24 
8.60 

(1, 3, 7, 13, 26) 

15 
4.63 
4.10 

(1, 2, 3, 6, 13) 

5.31 
4.78 

(1, 2, 4, 7, 15) 

6.12 
5.59 

(1, 2, 4, 8, 17) 

7.06 
6.52 

(1, 2, 5, 10, 20) 

8.20 
7.63 

(1, 3, 6, 11, 23) 

9.58 
8.99 

(1, 3, 7, 13, 28) 

11.19 
10.56 

(1, 4, 8, 15, 32) 

17 
5.33 
4.81 

(1, 2, 4, 7, 15) 

6.18 
5.65 

(1, 2, 4, 8, 17) 

7.17 
6.64 

(1, 2, 5, 10, 20) 

8.37 
7.83 

(1, 3, 6, 11, 24) 

9.86 
9.30 

(1, 3, 7, 13, 28) 

11.60 
11.02 

(1, 4, 8, 16, 34) 

13.74 
13.12 

(1, 4, 10, 19, 40) 

19 
6.21 
5.68 

(1, 2, 4, 8, 18) 

7.23 
6.71 

(1, 2, 5, 10, 21) 

8.50 
7.97 

(1, 3, 6, 12, 24) 

10.07 
9.53 

(1, 3, 7, 14, 29) 

11.93 
11.37 

(1, 4, 8, 16, 35) 

14.24 
13.66 

(1, 5, 10, 20, 42) 

17.12 
16.50 

(1, 5, 12, 23, 50) 

21 
7.26 
6.74 

(1, 2, 5, 10, 21) 

8.57 
8.05 

(1, 3, 6, 12, 25) 

10.21 
9.69 

(1, 3, 7, 14, 30) 

12.18 
11.64 

(1, 4, 9, 17, 35) 

14.64 
14.08 

(1, 5, 10, 20, 43) 

17.73 
17.15 

(1, 6, 12, 24, 52) 

21.60 
21.00 

(2, 7, 15, 30, 64) 

23 
8.61 
8.09 

(1, 3, 6, 12, 25) 

10.30 
9.79 

(1, 3, 7, 14, 30) 

12.34 
11.82 

(1, 4, 9, 17, 36) 

14.93 
14.39 

(1, 5, 11, 20, 44) 

18.20 
17.65 

(1, 6, 13, 25, 53) 

22.36 
21.79 

(2, 7, 16, 31, 66) 

28.16 
27.56 

(2, 9, 20, 39, 83) 

 

                                                 
* The three rows of each cell shows the +

0ARL , the SDRL , and the percentiles ( 5ρ , 25ρ , 50ρ , 75ρ , 95ρ ) , respectively. 
† See SAS Program 7 in Appendix B for the calculation of the values in Table 3.18. 
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Table 3.18 continued for h = 2, 4, ..., 14 and k = 25, 27, ..., 53. 
h k 2 4 6 8 10 12 14 

25 
10.34 
9.83 

(1, 3, 7, 14, 30) 

12.44 
11.93 

(1, 4, 9, 17,  36) 

15.12 
14.60 

(1, 5,  11, 21, 44) 

18.55 
18.02 

(1, 6, 13, 26, 55) 

22.93 
22.38 

(2, 7, 16, 32, 68) 

29.14 
28.57 

(2, 9, 20, 40, 86) 

37.30 
36.70 

(2, 11, 26, 51, 111) 

27 
12.49 
11.98 

(1, 4, 9, 17, 36) 

15.23 
14.72 

(1, 5, 11, 21, 45) 

18.77 
18.25 

(1, 6, 13, 26, 55) 

23.33 
22.80 

(2, 7, 16, 32, 69) 

29.87 
29.33 

(2, 9, 21, 41, 88) 

38.56 
38.00 

(3, 11, 27, 53, 114) 

49.52 
48.94 

(3, 15, 35, 68, 147) 

29 
15.28 
14.78 

(1, 5, 11, 21, 45) 

18.91 
18.40 

(1, 6, 13, 26, 56) 

23.59 
23.08 

(2, 7, 17, 33, 70) 

30.39 
29.87 

(2, 9, 21, 42, 90) 

39.50 
38.96 

(3, 12, 28, 55, 117) 

51.09 
50.53 

(3, 15, 36, 71, 152) 

67.68 
67.10 

(4, 20, 47, 94, 202) 

31 
18.96 
18.46 

(1, 6, 13, 26, 56) 

23.75 
23.24 

(2, 7, 17, 33, 70) 

30.74 
30.22 

(2, 9, 21, 42, 91) 

40.17 
39.64 

(3, 12, 28, 55, 119) 

52.23 
51.70 

(3, 15, 36, 72, 155) 

69.70 
69.14 

(4, 20, 48, 96, 208) 

95.33 
94.76 

(5, 28, 66, 132, 284) 

33 
23.81 
23.31 

(2, 7, 17, 33, 70) 

30.94 
30.43 

(2, 9, 22, 43, 92) 

40.60 
40.09 

(3, 12, 28, 56, 121) 

53.02 
52.51 

(3, 16, 37, 73, 158) 

71.14 
70.61 

(4, 21, 49, 98, 212) 

98.00 
97.46 

(6, 9, 68, 136, 292) 

137.20 
136.63 

(8, 40, 95, 190, 410) 

35 
31.03 
30.53 

(2, 9, 22, 43, 92) 

40.86 
40.35 

(3, 12, 28, 56, 121) 

53.53 
53.02 

(3, 16, 37, 74, 159) 

72.12 
71.61 

(4, 21, 50, 100, 215) 

99.90 
99.37 

(6, 29, 69, 138, 298) 

140.75 
140.21 

(8, 41, 98, 195, 421) 

194.51 
193.96 

(11, 56, 135, 269, 582) 

37 
40.96 
40.46 

(3, 12, 29, 57, 122) 

53.80 
53.29 

(3, 16, 37, 74, 160) 

72.71 
72.20 

(4, 21, 51, 101, 217) 

101.12 
100.60 

(6, 29, 70, 140, 302) 

143.15 
142.63 

(8, 42, 99, 198,428) 

198.67 
198.14 

(11, 58, 138, 275, 594) 

323.14 
322.58 

(17, 93, 224, 448, 967) 

39 
53.89 
53.39 

(3, 16, 38, 75, 160) 

73.02 
72.51 

(4, 21, 51, 101, 218) 

101.84 
101.33 

(6, 30, 71, 141, 304) 

144.68 
144.17 

(8, 42, 100, 200, 432) 

201.42 
200.90 

(11, 58, 140, 279, 602) 

330.31 
329.78 

(17, 95, 229, 458, 988) 

490.25 
489.71 

(26, 141, 340, 679, 1468) 

41 
73.14 
72.64 

(4, 21, 51, 101, 218) 

102.24 
101,74 

(6, 30, 71, 142, 305) 

145.61 
145.11 

(8, 42, 101, 202, 435) 

203.16 
203.65 

(11, 59, 141, 281, 608) 

335.17 
334.65 

(18, 97, 232, 464, 1003) 

499.40 
498.88 

(26, 144, 346, 692, 1495) 

973.74 
973.19 

(50, 281, 675, 1350, 2916) 

43 
102.40 
101.90 

(6, 30, 71, 142, 306) 

146.10 
145.60 

(8, 42, 101, 202, 437) 

204.16 
203.66 

(11, 59, 142, 283, 611) 

338.24 
337.73 

(18, 98, 235, 469, 1012) 

505.29 
504.77 

(26, 146, 350, 700, 1513) 

994.57 
994.05 

(52, 286, 690, 1379, 2978) 
 

45 
146.29 
145.78 

(8, 42, 102, 203, 437) 

204.64 
204.14 

(11, 59, 142, 283, 612) 

340.00 
339.50 

(18, 98, 236, 471, 1018) 

508.76 
508.25 

(27, 147, 353, 705, 1523) 

1008.16 
1007.64 

(52, 290, 699, 1397, 3019) 
  

47 
204.80 
204.30 

(11, 59, 142, 284, 613) 

340.89 
340.39 

(18, 98, 236, 472, 1020) 

510.75 
510.25 

(27, 147, 354, 708, 1529) 

1016.04 
1015.53 

(53, 293, 704, 1408, 3043) 
   

49 
341.33 
340.83 

(18, 99, 237, 473, 1022) 

511.75 
511.25 

(27, 148, 355, 709, 1532) 

1021.00 
1020.50 

(53, 294, 708, 1415, 
3058) 

    

51 
512.00 
511.50 

(27, 148, 355, 710, 1533) 

1023.00 
1022.50 

(53, 295, 709, 1418, 3064) 
     

53 
1024.00 
1023.50 

(53, 295, 710, 1419, 3067) 
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Table 3.18 continued for h = 16, 18, ..., 28 and k = 1, 3, ..., 25. 

h  k  
16 18 20 22 24 26 28 

1 
4.03 
3.33 

(1, 2, 3, 5, 11) 

4.41 
3.67 

(1, 2, 3, 6, 12) 

4.83 
4.03 

(1, 2, 4, 6, 13) 

5.27 
4.41 

(1, 2, 4, 7, 14) 

5.76 
4.82 

(1, 2, 4, 8, 15) 

6.28 
5.26 

(1, 3, 5, 8, 17) 

6.83 
5.72 

(1, 3, 5, 9, 18) 

3 
4.61 
3.91 

(1, 2, 3, 6, 12) 

5.09 
4.34 

(1, 2, 4, 7, 14) 

5.60 
4.80 

(1, 2, 4, 7, 15) 

6.18 
5.31 

(1, 2, 5, 8, 17) 

6.80 
5.86 

(1, 3, 5, 9, 18) 

7.47 
6.44 

(1, 3, 6, 10, 20) 

8.19 
7.07 

(1, 3, 6, 11, 22) 

5 
5.33 
4.64 

(1, 2, 4, 7, 15) 

5.93 
5.18 

(1, 2, 4, 8, 16) 

6.59 
5.79 

(1, 2, 5, 9, 18) 

7.34 
6.47 

(1, 3, 5, 10, 20) 

8.14 
7.19 

(1, 3, 6, 11, 22) 

9.03 
7.99 

(1, 3, 7, 12, 25) 

10.00 
8.87 

(1, 4, 7, 13, 28) 

7 
6.23 
5.54 

(1, 2, 5, 8, 17) 

6.99 
6.25 

(1, 3, 5, 9, 19) 

7.86 
7.06 

(1, 3, 6, 11, 22) 

8.82 
7.95 

(1, 3, 6, 12, 25) 

9.90 
8.95 

(1, 4, 7, 13, 28) 

11.10 
10.06 

(1, 4, 8, 15, 31) 

12.43 
11.30 

(2, 4, 9, 17, 35) 

9 
7.36 
6.68 

(1, 3, 5, 10, 21) 

8.37 
7.63 

(1, 3, 6, 11, 24) 

9.49 
8.69 

(1, 3, 7, 13, 27) 

10.77 
9.90 

(1, 4, 8, 15, 31) 

12.23 
11.28 

(1, 4, 9, 17, 35) 

13.88 
12.85 

(2, 5, 10, 19, 40) 

15.83 
14.69 

(2, 5, 11, 22, 45) 

11 
8.83 
8.15 

(1, 3, 6, 12, 25) 

10.12 
9.38 

(1, 3, 7, 14, 29) 

11.62 
10.83 

(1, 4, 8, 16, 33) 

13.36 
12.50 

(1, 4, 10, 18, 38) 

15.38 
14.44 

(2, 5, 11, 21, 44) 

17.82 
16.78 

(2, 6, 13, 24, 51) 

20.61 
19.47 

(2, 7, 15, 28, 59) 

13 
10.69 
10.01 

(1, 4, 8, 15, 31) 

12.41 
11.69 

(1, 4, 9, 17, 36) 

14.45 
13.67 

(1, 5, 10, 20, 42) 

16.85 
16.00 

(2, 5, 12, 23, 49) 

19.85 
18.91 

(2, 6, 14, 27, 58) 

23.36 
22.32 

(2, 7, 17, 32, 68) 

27.32 
26.19 

(2, 9, 19, 37, 80) 

15 
13.13 
12.46 

(1, 4, 9, 18, 38) 

15.46 
14.74 

(1, 5, 11, 21, 45) 

18.26 
17.48 

(2, 6, 13, 25, 53) 

21.85 
21.00 

(2, 7, 15, 30, 64) 

26.15 
25.21 

(2, 8, 18, 36, 76) 

31.11 
30.09 

(3, 10, 22, 43, 91) 

37.23 
36.10 

(3, 12, 26, 51, 109) 

17 
16.36 
15.70 

(1, 5, 12, 22, 48) 

19.54 
18.84 

(2, 6, 14, 27, 57) 

23.74 
22.97 

(2, 7, 17, 33, 70) 

28.88 
28.03 

(2, 9, 20, 40, 85) 

34.92 
34.00 

(3, 11, 24, 48, 103) 

42.59 
41.57 

(3, 13, 30, 59, 126) 

52.23 
51.12 

(4, 16, 37, 72, 154) 

19 
20.67 
20.02 

(2, 6, 15, 28, 61) 

25.45 
24.74 

(2, 8, 18, 35, 75) 

31.43 
30.67 

(2, 10, 22, 43, 93) 

38.60 
37.77 

(3, 12, 27, 53, 114) 

47.93 
47.02 

(3, 14, 34, 66, 142) 

60.03 
59.03 

(4, 18, 42, 83, 178) 

75.33 
74.23 

(5, 22, 53, 104, 223) 

21 
26.93 
26.28 

(2, 8, 19, 37, 79) 

33.72 
33.02 

(2, 10, 24, 46, 100) 

41.99 
41.23 

(3, 13, 29, 58, 124) 

53.02 
52.20 

(3, 16, 37, 73, 157) 

67.73 
66.84 

(4, 20, 47, 94, 201) 

86.89 
85.90 

(5, 26, 61, 120, 258) 

110.04 
108.97 

(7, 32, 77, 152, 327) 

23 
35.69 
35.04 

(2, 11, 25, 49, 106) 

44.98 
44.29 

(3, 13, 31, 62, 133) 

57.66 
57.66 

(4, 17, 40, 80, 171) 

75.02 
74.21 

(5, 22, 52, 104, 223) 

98.22 
97.34 

(6, 29, 68, 136, 292) 

126.80 
125.85 

(7, 37, 88, 175, 378) 

175.50 
174.41 

(10, 51, 122, 243, 524) 

25 
47.50 
46.87 

(3, 14, 33, 66, 141) 

61.69 
61.02 

(4, 18, 43, 85, 183) 

81.56 
80.84 

(5, 24, 57, 113, 243) 

108.78 
107.99 

(6, 32, 76, 150, 324) 

142.88 
142.04 

(8, 42, 99, 198, 426) 

204.49 
203.53 

(11, 60, 142, 283, 611) 

275.50 
274.45 

(15, 80, 191, 382, 823) 

 
 
 



 156 

Table 3.18 continued for h = 16, 18, ..., 28 and k = 27, 29, ..., 53. 

h  k  
16 18 20 22 24 26 28 

27 
65.03 
64.41 

(4, 19, 45, 90, 194) 

87.16 
86.50 

(5, 26, 61, 121, 260) 

118.11 
117.40 

(7, 34, 82, 163, 352) 

157.47 
156.72 

(9, 46, 109, 218, 470) 

232.48 
231.62 

(13, 67, 161, 322, 695) 

320.44 
319.51 

(17, 93, 222, 444, 958) 

500.06 
498.96 

(27, 145, 347, 693, 
1496) 

29 
91.75 
91.14 

(5, 27, 64, 127, 274) 

126.00 
125.35 

(7, 37, 88, 174, 376) 

170.09 
169.40 

(9, 49, 118, 236, 508) 

258.15 
257.38 

(14, 75, 179, 358, 772) 

363.03 
362.21 

(19, 105, 252, 503, 1086) 

594.47 
593.50 

(31, 172, 412, 824, 
1779) 

 

31 
132.34 
131.74 

(7, 38, 92, 183, 395) 

180.44 
179.81 

(10, 52, 125, 250, 539) 

280.37 
279.68 

(15, 81, 195, 388, 839) 

400.92 
400.19 

(21, 116, 278, 556, 1200) 

686.75 
685.89 

(36, 198, 476, 952, 2056) 
  

33 
188.52 
187.93 

(10, 55, 131, 261, 564) 

298.55 
297.92 

(16, 86, 207, 414, 893) 

432.84 
432.18 

(23, 125, 300, 600, 1295) 

770.90 
770.13 

(40, 222, 535, 1068, 2308) 
   

35 
312.77 
312.18 

(17, 90, 217, 433, 936) 

458.19 
457.58 

(24, 132, 318, 635, 
1371) 

824.79 
842.11 

(44, 243, 584, 1168, 2523) 
    

37 

476.93 
476.36 

(25, 138, 331, 661, 
1428) 

899.99 
899.36 

(47, 259, 624, 1247, 
2695) 

     

39 

942.81 
942.23 

(49, 272, 654, 1307, 
2823) 

      

41        
43        
45        
47        
49        
51        
53        
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Table 3.18 continued for h = 30, 32, ..., 42 and k = 1, 3, ..., 53. 
h k 30 32 34 36 38 40 42 

1 
7.41 
6.21 

(1, 3, 6, 10, 20) 

8.03 
6.72 

(1, 3, 6, 11, 21) 

8.68 
7.26 

(2, 4, 7, 12, 23) 

9.38 
7.84 

(2, 4, 7, 12, 25) 

10.10 
8.44 

(2, 4, 8, 13, 27) 

10.84 
9.05 

(2, 4, 8, 14, 29) 

11.61 
9.70 

(2, 5, 9, 15, 31) 

3 
8.79 
7.75 

(1, 3, 7, 12, 24) 

9.80 
8.47 

(2, 4, 7, 13, 27) 

10.71 
9.26 

(2, 4, 8, 14, 29) 

11.66 
10.09 

(2, 5, 9, 16, 32) 

12.65 
10.96 

(2, 5, 9, 17, 34) 

13.71 
11.89 

(2, 5, 10, 18, 37) 

14.82 
12.87 

(2, 6, 11, 20, 40) 

5 
11.05 
9.82 

(2, 4, 8, 15, 31) 

12.24 
10.89 

(2, 5, 9, 16, 34) 

13.50 
12.04 

(2, 5, 10, 18, 37) 

14.84 
13.25 

(2, 5, 11, 20, 41) 

16.28 
14.57 

(2, 6, 12, 22, 45) 

17.84 
15.99 

(3, 7, 13, 24, 50) 

19.49 
17.50 

(3, 7, 14, 26, 54) 

7 
13.96 
12.71 

(2, 5, 10, 19, 39) 

15.63 
14.26 

(2, 6, 11, 21, 44) 

17.41 
15.93 

(2, 6, 13, 24, 49) 

19.39 
17.79 

(2, 7, 14, 26, 55) 

21.57 
19.83 

(3, 7, 16, 29, 61) 

23.92 
22.04 

(3, 8, 17, 32, 68) 

26.43 
24.42 

(3, 9, 19, 36, 75) 

9 
18.01 
16.76 

(2, 6, 13, 24, 51) 

20.38 
19.01 

(2, 7, 15, 28, 58) 

23.07 
21.58 

(3, 8, 16, 31, 66) 

26.10 
24.48 

(3, 9, 19, 36, 75) 

29.44 
27.69 

(3, 10, 21, 40, 85) 

33.06 
31.17 

(3, 11, 24, 45, 95) 

37.30 
35.26 

(4, 12, 27, 51, 108) 

11 
23.71 
22.46 

(2, 8, 17, 32, 69) 

27.32 
25.95 

(3, 9, 19, 37, 79) 

31.48 
29.99 

(3, 10, 22, 43, 91) 

36.20 
34.57 

(3, 12, 26, 50, 105) 

41.38 
39.62 

(4, 13, 29, 57, 120) 

47.70 
45.79 

(4, 15, 34, 65, 139) 

54.39 
52.34 

(5, 17, 38, 75, 159) 

13 
32.08 
30.83 

(3, 10, 23, 44, 94) 

37.72 
36.35 

(3, 12, 27, 52, 110) 

44.27 
42.77 

(4, 14, 31, 61, 130) 

51.58 
49.97 

(4, 16, 36, 71, 151) 

60.93 
59.16 

(5, 19, 43, 84, 179) 

70.90 
69.00 

(5, 22, 50, 98, 209) 

83.34 
81.28 

(6, 25, 58, 115, 246) 

15 
44.70 
43.46 

(3, 14, 31, 61, 131) 

53.62 
52.26 

(4, 16, 38, 74, 158) 

63.77 
62.30 

(5, 19, 45, 88, 188) 

77.41 
75.78 

(6, 23, 54, 107, 229) 

92.09 
90.34 

(6, 28, 64, 127, 272) 

111.35 
109.43 

(8, 33, 78, 154, 330) 
 

17 
64.08 
62.85 

(4, 19, 45, 88, 190) 

77.84 
76.51 

(5, 23, 54, 107, 231) 

97.39 
95.89 

(6, 29, 68, 134, 289) 

118.64 
117.02 

(8, 35, 83, 164, 352) 

148.17 
146.38 

(9, 44, 103, 205, 440) 
  

19 
93.47 
92.27 

(6, 28, 65, 129, 278) 

120.80 
119.44 

(7, 36, 84, 167, 359) 

150.87 
149.40 

(9, 44, 105, 209, 449) 

195.52 
193.87 

(12, 57, 136, 270, 582) 
   

21 
147.14 
145.92 

(9, 43, 102, 204, 438) 

188.54 
187.22 

(11, 55, 131, 261, 562) 

254.71 
253.20 

(14, 74 , 177, 353, 760) 
    

23 
230.72 
229.53 

(13, 67, 160, 319, 689) 

326.23 
324.86 

(18, 95, 227, 452, 975) 
     

25 
409.08 
407.84 

(22, 119, 284, 567, 1223) 
      

27        
29        

�         

53        
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Table 3.18 continued for h = 44, 46, ..., 54 and k = 1, 3, ..., 53. 

h  k  
44 46 48 50 52 54 

1 
12.42 
10.37 

(2, 5, 9, 16, 33) 

13.25 
11.06 

(2, 5, 10, 18, 35) 

14.09 
11.78 

(3, 6, 11, 19, 38) 

14.99 
12.53 

(3, 6, 11, 20, 40) 

15.90 
13.30 

(3, 7, 12, 21, 42) 

16.85 
14.10 

(3, 7, 13, 22, 45) 

3 
15.99 
13.90 

(3, 6, 12, 21, 44) 

17.19 
14.96 

(3, 7, 13, 23, 47) 

18.49 
16.11 

(3, 7, 14, 25, 51) 

19.82 
17.30 

(3, 8, 15, 27, 54) 

21.23 
18.56 

(3, 8, 16, 28, 58) 
 

5 
21.22 
19.10 

(3, 8, 15, 29, 59) 

23.14 
20.86 

(3, 8, 17, 31, 65) 

25.10 
22.69 

(3, 9, 18, 34, 70) 

27.25 
24.67 

(4, 10, 20, 37, 76) 
  

7 
29.27 
27.11 

(3, 10, 21, 40, 83) 

32.22 
29.92 

(4, 11, 23, 44, 92) 

35.53 
33.07 

(4, 12, 25, 48, 101) 
   

9 
41.75 
39.57 

(4, 14, 30, 57, 121) 

46.88 
44.55 

(5, 15, 33, 64, 136) 
    

11 
62.38 
60.18 

(5, 20, 44, 86, 182) 
     

13       
15       

�        

53       

 

Recall that the reason why there are so many open cells is because the values of h  is taken to satisfy k
nn

h −+≤
2

)1(
. For example, for 

11=k  the reference value h  is taken to be smaller than or equal to 44, since 44115511
2

)110(10
2

)1( =−=−+=−+
k

nn
. 
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Figure 3.5. Boxplot-like graphs for the in-control run length distribution of various upper one-

sided CUSUM signed-rank charts when 10=n .  The whiskers extend to the 5th and the  

95th percentiles.  The symbols “ ”, “ ” and “ ” denote the ARL, SDRL* and MRL, 

respectively†. 

                                                 
* For ease of interpretation, the standard deviation (as measure of spread) is included in the (location) measures of 
percentiles. 
† The “boxplots” are classified into 3 categories, namely small ( 25≤+ kh ), moderate ( 5025 ≤+< kh ) and large 

( 50>+ kh ). 
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Example 3.5 

An upper one-sided CUSUM signed-rank chart for the Montgomery (2001) piston ring data 

 

We conclude this sub-section by illustrating the upper one-sided CUSUM signed-rank 

chart using the Montgomery (2001) piston ring data. Recall that the dataset contains 15 samples 

(each of size 5). For illustration take 3=k  and 8=h . From Table 3.16 it can be seen that the in-

control average run length equals 8.13 when )3,8(),( =kh . Generally, one chooses the chart 

constants so that a specified in-control average run length, such as 500, or 370, is obtained. 

Taking this into consideration, an in-control average run length of 8.13 is considered small. 

Recall that unless the sample size n  is 10 or more, the signed-rank chart is somewhat unattractive 

(from an operational point of view) in SPC applications. The plotting statistics for the Shewhart 

signed-rank chart ( iSR  for 15,...,2,1=i ) are given in the second row of Table 3.19. The upper 

one-sided CUSUM plotting statistics ( +
iS  for 15,...,2,1=i ) are given in the last row of Table 

3.19. 

 

Table 3.19. iSR  and +
iS  values for the piston ring data in Montgomery (2001)*. 

Sample No: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
iSR  8 4 -14 7 -3 9 10 -6 12 14 4 15 15 15 14 

++++
iS  5 6 0 4 0 6 13 4 13 24 25 37 49 61 72 

 

To illustrate the calculations, consider sample number 1. The equation for the plotting 

statistic is =+
1S =−++ ],0max[ 10 kSRS =−+ ]380,0max[ 5]5,0max[ =  where a signaling event 

occurs for the first i  such that hS i ≥+ , that is, 8≥+
iS . The graphical display of the upper one-

sided CUSUM signed-rank chart is shown in Figure 3.6. 

 

                                                                                                                                                              
 
* The values in Table 3.19 were generated using Microsoft Excel. 
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Figure 3.6. The upper one-sided CUSUM signed-rank chart for the Montgomery (2001) piston 

ring data. 

 

The upper one-sided CUSUM signed-rank chart signals at sample 7, indicating a most 

likely positive deviation from the known target value 0θ . The action taken following an out-of-

control signal on a CUSUM chart is identical to that with any control chart. A search for 

assignable causes should be done, corrective action should be taken (if required) and, following 

this, the CUSUM is reset to zero.  

 

3.3.2.2.  Lower one-sided control charts 

 

The time that the procedure signals is the first time such that the finite-state Markov chain 
−
tS  enters the state 0ς  where the state space is given by },...,,{ 110 −+

− =Ω srςςς  with 

0... 10 =<<=− −+srh ςς ,  00 =−S  and  

 { }{ }kSRShS ttt ++−= −
−

−
1,0min,max . (3.4) 
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Example 3.6 

A lower one-sided CUSUM signed-rank chart where the sample size is even (n=4) 

 

The statistical properties of a lower one-sided CUSUM signed-rank chart with a decision 

interval of 6 ( 6=h ), a reference value of 2 ( 2=k ) and a sample size of 4 ( 4=n ) is examined. 

For n even, the reference value is taken to be even, because this leads to the sum ( )� − kSRi  

being equal to even values which reduces the size of the state space for the Markov chain. For 

6=h  we have }0,2,4,6{0)2( −−−=−=Ω− h . The state space is calculated using equation (3.4) 

and the calculations are shown in Table 3.20. 

 

Table 3.20. Calculation of the state space when 6=h , 2=k  and 4=n . 

tSR  kSRS tt ++++++++−−−−
−−−−1  {{{{ }}}}kSRS tt ++++++++−−−−

−−−−1,0min  {{{{ }}}}{{{{ }}}}kSRShS ttt ++++++++−−−−==== −−−−
−−−−

−−−−
1,0min,max  

-10 -8* -8 -6 
-8 -6 -6 -6 
-6 -4 -4 -4 
-4 -2 -2 -2 
-2 0 0 0 
0 2 0 0 
2 4 0 0 
4 6 0 0 
6 8 0 0 
8 10 0 0 
10 12 0 0 

 

Table 3.21. Classification of the states. 

State number Description of the state Absorbent (A)/ Non-absorbent (NA) 
0 0=+

tS  NA 

1 2−=+
tS  NA 

2 4−=+
tS  NA 

3 6−=+
tS  A 

 

                                                 
* Note: Since only the state space needs to be described, −

−1tS  can be any value from −Ω  and we therefore take, 

without loss of generality, 01 =−
−tS . Any other possible value for −

−1tS  would lead to the same −Ω .     

 
 
 



 163 

From Table 3.21 we see that there are three non-absorbent states, i.e. 3=r , and one 

absorbent state, i.e. 1=s . Therefore, the corresponding TPM will be a 44)()( ×=+×+ srsr  

matrix. It can be shown (see Table 3.22) that the TPM is given by 

�
�
�

�

�
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1333
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5

16
2

16
2

16
7

16
3

16
2

16
2

16
9

16
2

16
1

16
2

16
11

)6)(6()4)(6()2)(6(0)6(

)6)(4()4)(4()2)(4(0)4(

)6)(2()4)(2()2)(2(0)2(

)6(0)4(0)2(000

44

1|'0

|

1|000

|
|
|

pQ

pppp

pppp

pppp

pppp

TPM  

where the essential transition probability sub-matrix )(:33 NANAQ →×  is an 33×=× rr  matrix, 

)(:
13

ANAp →
×

 is an 131)1( ×=×−+ sr  column vector, )(:'0 31 NAA →×  is a 

31)1(1 ×=−+× sr  row vector and )(:1 11 AA →×  represents the scalar value one. 

 

The one-step transition probabilities are calculated by substituting tSR  in expression (3.4) 

by 
2

)1(
2

+−+ nn
T  and substituting values for h , k , −

tS  and −
−1tS . The calculation of the one-step 

transition probabilities are given for illustration in Table 3.22. 

 

Recall that the probabilities in the last column of the TPM are calculated using the fact 

that �
Ω∈

∀=
j

ij ip 1  (see equation (2.18)). Therefore, 

16
2

16
1

16
2

16
11

)4(0)2(000)6(0 )(1)(1 =++−=++−= −−− pppp ; 

16
3

16
2

16
2

16
9

)4)(2()2)(2(0)2()6)(2( )(1)(1 =++−=++−= −−−−−−− pppp ; 

16
5

16
2

16
2

16
7

)4)(4()2)(4(0)4()6)(4( )(1)(1 =++−=++−= −−−−−−− pppp ; 

1)000(1)(1 4)6(2)6(0)6()6)(6( =++−=++−= −−−−− pppp . 
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Table 3.22. The calculation of the transition probabilities when 6=h , 2=k  and 4=n . 
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* The probability equals zero, because it is impossible to go from an absorbent state to a non-absorbent state. 
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The formulas of the moments and some characteristics of the run length distribution have 

been studied by Fu, Spiring and Xie (2002) and Fu and Lou (2003) – see equations (2.41) to 

(2.45). By substituting )001(
31

=
×

ξ , 
�
�
�

�

�

	
	
	




�

=×

16
2

16
2

16
7

16
2

16
2

16
9

16
1

16
2

16
11

33Q  and 
�
�
�

�

�

	
	
	




�

=×

1
1
1

1 13  into these 

equations, we obtain the following: 

 

( ) ( ) 81.611 =−== −QINEARL ξ  

( ) ( )( ) 64.83122 =−+= −QIQINE ξ  

( ) ( ) 11.6)()( 22 =−== NENENVarSDRL  

1  percentile 5 5 == ρth  

2  percentile 25 25 == ρth  

5  percentile 50 Median 50 === ρth  

9  percentile 75 75 == ρth  

19  percentile 95 95 == ρth  

 

  The in-control average run length ( −
0ARL ) values, standard deviation of the run length 

( SDRL ) values and percentiles for the lower one-sided CUSUM signed-rank chart are exactly the 

same as for the upper one-sided CUSUM signed-rank chart, since the one-step transition 

probabilities matrices are the same. Therefore, the in-control average run length ( 0ARL ), 

standard deviation of the run length ( SDRL ), th5 , th25 , th50 , th75  and th95  percentile values for 

the upper one-sided CUSUM signed-rank chart will also hold for the lower one-sided CUSUM 

signed-rank chart. 
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Example 3.7 

A lower one-sided CUSUM signed-rank chart for the Montgomery (2001) piston ring data 

 

We conclude this sub-section by illustrating the lower one-sided CUSUM signed-rank 

chart using the Montgomery (2001) piston ring data. Recall that the dataset contains 15 samples 

(each of size 5). For illustration take 3=k  and 8=h . From Table 3.16 it can be seen that the in-

control average run length equals 8.13 when )3,8(),( =kh . Generally, one chooses the chart 

constants so that a specified in-control average run length, such as 500, or 370, is obtained. 

Taking this into consideration, an in-control average run length of 8.13 is considered small. 

Recall that unless the sample size n  is 10 or more, the signed-rank chart is somewhat unattractive 

(from an operational point of view) in SPC applications. 

 

The plotting statistics for the Shewhart signed-rank chart ( iSR  for 15,...,2,1=i ) are given 

in the second row of Table 3.23. The lower one-sided CUSUM plotting statistics ( −
iS  for 

15,...,2,1=i ) are given in the last row of Table 3.23. 

 

Table 3.23. iSR  and −
iS  values for the piston ring data in Montgomery (2001)*. 

Sample No: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
iSR  8 4 -14 7 -3 9 10 -6 12 14 4 15 15 15 14 

−−−−
iS  0 0 -11 -1 -1 0 0 -3 0 0 0 0 0 0 0 

 

To illustrate the calculations, consider sample number 1. The equation for the plotting 

statistic −
1S  is  

 0]11,0max[]380,0max[],0max[ 101

**

=−=−−=−−= −− kSRSS  (3.5) 

or 

 0]11,0min[]380,0min[],0min[ 101 ==++=++= −− kSRSS  (3.6) 

                                                 
* The values in Table 3.23 were generated using Microsoft Excel. 
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A signaling event occurs for the first i  such that hS i ≥−*

, that is, 8
*

≥−
iS  if expression 

(3.5) is used or hS i −≤− , that is, 8−≤−
iS  if expression (3.6) is used. The graphical display of the 

lower one-sided CUSUM signed-rank chart is shown in Figure 3.7. 
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Figure 3.7. The lower one-sided CUSUM signed-rank chart for the Montgomery (2001) piston-

ring data. 

 

The lower one-sided CUSUM signed-rank chart signals at sample 3. Recall that the lower 

one-sided CUSUM sign chart did not signal at all. This emphasizes the fact that the signed-rank 

test is more powerful than the sign test. The question arises: Why not always use the signed-rank 

test if it is more powerful than the sign test? The sign test is applicable for all continuous 

distributions, while the assumption of symmetry must be made, in addition, for the signed-rank 

test. Also, the sign test applies to all percentiles while the signed-rank test is proposed only for 

the median. 
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3.3.3. Two-sided control charts 

 

Recall that for the upper one-sided CUSUM signed-rank chart we use  

 { }},0max{,min 1
+
−

+ +−= ttt SkSRhS  for ,...2,1=t  (3.7) 

For a lower one-sided CUSUM signed-rank chart we use  

 { }},0min{,max 1
−
−

− ++−= ttt SkSRhS  for ,...2,1=t  (3.8) 

For the two-sided scheme the two one-sided schemes are performed simultaneously. The 

corresponding two-sided CUSUM chart signals for the first n  at which either one of the two 

inequalities is satisfied, that is, either hS t ≥+  or hS t −≤− . Starting values are typically chosen to 

equal zero, that is, 000 == −+ SS . The two-sided scheme signals at N  where 

 { }hShStN ttt
−≤≥= −+ or:min  (3.9) 

where h  is a positive integer.  

 

The two-sided CUSUM scheme can be represented by a Markov chain with states 

corresponding to the possible combinations of values of +
tS  and −

tS . The states corresponding to 

values for which a signal is given by the CUSUM scheme are called absorbing states. Clearly, 

there are two absorbing states ( 2=s ) since the chart signals when +
tS  falls on or above h  or 

when −
tS  falls on or below h− . The probability of going from an absorbing state to the same 

absorbing state is equal to one, because once an absorbing state is entered, it is never left. The 

transient states are the remaining states for which eventual return is uncertain. Let r  denote the 

number of remaining states, i.e. r  denotes the number of transient (non-absorbing) states. 

Clearly, in total there are sr +  states and therefore the corresponding TPM will be an 

)()( srsr +×+  matrix. 

 

The time that the procedure signals is the first time such that the finite-state Markov chain 

enters the state 0ς  or 1−+srς  where the state space is given by Ω  = −+ Ω∪Ω  = },...,,{ 110 −+srςςς  

with hh sr =<<=− −+ 10 ... ςς . 
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Example 3.8 

A two-sided CUSUM signed-rank chart where the sample size is even (n=4) 

 

The statistical properties of a two-sided CUSUM signed-rank chart with a decision 

interval of 4 ( 4=h ), a reference value of 2 ( 2=k ) and a sample size of 4 ( 4=n ) is examined.   

Let Ω  denote the state space for the two-sided chart. Ω  is the union of the state space for the 

upper one-sided chart }4,2,0{=Ω+  and the state space for the lower one-sided chart 

}0,2,4{ −−=Ω− . Therefore, Ω  = −+ Ω∪Ω  = }4,2,0{}0,2,4{ ∪−−  = }4,2,0,2,4{ −−  = 

},,,,{ 43210 ςςςςς  with hh =<<<<=− 43210 ςςςςς . 

 

  Table 3.24. Classification of the states. 

State number Values of the CUSUM statistic(s) Absorbing (A) 
Non-absorbing (NA) 

0 0=−
tS  and 0=+

tS  NA 

1 2=−
tS  or 2=+

tS * NA 

2 2−=−
tS  or 2−=+

tS † NA 

3 4=−
tS  or 4=+

tS ‡ A 

4 4−=−
tS  or 4−=+

tS § A 
 

From Table 3.24 we see that there are three non-absorbing states, i.e. 3=r , and two 

absorbing states, i.e. 2=s . Therefore the corresponding TPM will be a )55( ×  matrix. The 

layout of the TPM is as follows. There are three transient states and two absorbing states.  By 

                                                 
* Moving from state 0 to state 1 can happen when either the upper cumulative sum or the lower cumulative sum 
equals 2. But the lower cumulative sum can not equal 2 since by definition the lower cumulative sum can only take 
on integer values smaller than or equal to zero. Therefore, we only use the probability that the upper cumulative sum 
equals 2 in the calculation of the probabilities in the TPM. 
 
† Moving from state 0 to state 2 can happen when either the upper cumulative sum or the lower cumulative sum 
equals -2. But the upper cumulative sum can not equal -2 since by definition the upper cumulative sum can only take 
on integer values greater than or equal to zero. Therefore, we only use the probability that the lower cumulative sum 
equals -2 in the calculation of the probabilities in the TPM. 
 
‡ A similar argument to the argument in the first footnote on this page holds. Therefore, we only use the probability 
that the upper cumulative sum equals 4 in the calculation of the probabilities in the TPM. 
 
§ A similar argument to the argument in the second footnote on this page holds. Therefore, we only use the 
probability that the lower cumulative sum equals -4 in the calculation of the probabilities in the TPM. 
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convention we first list the non-absorbing states and then we list the absorbing states.  In column 

one we compute the probability of moving from state i  to state 0, for all i . Note that the process 

reaches state 0 when both the upper and the lower cumulative sums equal zero. In columns two 

and three, we compute the probabilities of moving from state i  to the remaining non-absorbing 

states, for all i . Finally, in the remaining two columns we compute the probabilities of moving 

from state i  to the absorbing states, for all i . Thus, the TPM can be conveniently partitioned into 

4 sections given by 
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TPM  

where )(:33 NANAQ →×  is an 33×=× rr  matrix, )(:23 ANAC →×  is an 23×=× sr  matrix, 

)(:32 NAAZ →×  is an 32 ×=× rs  matrix and )(:22 AAI →×  is an 22 ×=× ss  matrix . 

 

The calculation of the elements of the TPM is illustrated next. Note that this essentially 

involves the calculation of the matrices Q  and C . First consider the transient states.  Note that 

the process moves to state 0, i.e., 0=j , when both the upper and the lower cumulative sums 

equal 0.  Thus the required probability of moving to 0, from any other transient state, is the 

probability of an intersection of two sets involving values of the upper and the lower CUSUM 

statistics, respectively. On the other hand, the probability of moving to any state 0≠j , from any 

other state, is the probability of a union of two sets involving values of the upper and the lower 

CUSUM statistics, respectively.  However, one of these two sets is empty so that the required 

probability is the probability of only the non-empty set. 

 

The calculation of the entry in the first row and the first column of the TPM, 00p , will be 

discussed in detail. This is the probability of moving from state 0 to state 0 in one step at time t. 

As we just described, this can happen only when the upper and the lower cumulative sums both 

equal 0 at time t . For the upper one-sided CUSUM 00p  is the probability that the upper CUSUM 
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equals 0 at time t , given that the upper CUSUM equaled 0 at time 1−t , that is, 

)0|0( 1 == +
−

+
tt SSP . For the lower one-sided procedure 00p  is the probability that the lower 

CUSUM equals 0 at time t , given that the lower CUSUM equaled 0 at time 1−t , that is, 

)0|0( 1 == −
−

−
tt SSP . For the two-sided procedure the two one-sided procedures are performed 

simultaneously. Therefore we have that { } { }( )0|00|0 1100 ==∩=== −
−

−+
−

+
tttt SSSSPp  . We have 

that 

{ } { }( )0|00|0 11

00

==∩=== −
−

−+
−

+
tttt SSSSP

p
 

this is computed by substituting in values for h , k , +
tS , +

−1tS ,  −
tS  and −

−1tS  into (3.7) and (3.8) 

{ }{ } { }{ }( )
{ } { }( )
( ) ( )( )
( ) ( )( )22

00202

0}02,0min{0}02,0max{

0}02,0min{,4max0}02,0max{,4min

−≥∩≤=
≥++∩≤−=

=++∩=+−=
=++−∩=+−=

tt

tt

tt

tt

SRSRP

SRSRP

SRSRP

SRSRP

 

recall that 
2

)1(
2

+−= + nn
TSRt  where +T  is the Wilcoxon signed-rank statistic 

( ) ( )( )
( ) ( )( )46

21022102

≥∩≤=
−≥−∩≤−=

++

++

TTP

TTP
 

.
)6()5()4(

16
6=

=+=+== +++ TPTPTP
 

 

The remaining entries of the TPM can be calculated similarly. In doing so, we find that  

�
�
�
�
�
�

�

�
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=

10000
01000
16
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16
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16
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16

2
16
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16
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16
5

16
2

16
2

16
4

16
3

16
3

16
2

16
2

16
6

TPM . 

 

Using the TPM the ARL  can be calculated using ( ) 11−−= QIARL ξ . A well-known 

concern is that important information about the performance of a control chart can be missed 

when only examining the ARL (this is especially true when the process distribution is skewed). 

Various authors, see for example, Radson and Boyd (2005) and Chakraborti (2007), have 
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suggested that one should examine a number of percentiles, including the median, to get the 

complete information about the performance of a control chart. Therefore, we now also consider 

percentiles. The calculation of these percentiles is shown in Table 3.25 for illustration purposes. 

The first column of Table 3.25 contains the values that the run length variable ( N ) can take on.  

 

Table 3.25. Calculation of the percentiles when 4=h , 2=k  and 4=n *. 

N )( lNP ≤≤≤≤  The 5th, 25th, 50th, 75th and 95th percentiles 
1 0.3750000 =25.0ρ 1 (smallest integer such that cdf is at least 0.05 and 0.25) 

2 0.6406250 =5.0ρ 2 (smallest integer such that cdf is at least 0.50) 

3 0.7949219 =75.0ρ 3 (smallest integer such that cdf is at least 0.75) 
4 0.8830566  
5 0.9333191  
6 0.9619789 =95.0ρ 6 (smallest integer such that cdf is at least 0.95) 
7† 0.9783206  

 

The formulas of the moments and some characteristics of the run length distribution have 

been studied by Fu, Spiring and Xie (2002) and Fu and Lou (2003) – see equations (2.41) to 

(2.45). By substituting )001(
31

=
×

ξ , 
�
�
�

�

�

	
	
	




�

=×

16
2

16
2

16
4

16
2

16
2

16
4

16
2

16
2

16
6

33 16
1

Q  and 
�
�
�

�

�

	
	
	




�

=×

1
1
1

1 13  into these 

equations, we obtain the following: 

 

( ) ( ) 46.211 =−== −QINEARL ξ  

( ) ( )( ) 28.9122 =−+= −QIQINE ξ  

( ) ( ) 79.1)()( 22 =−== NENENVarSDRL  

1  percentile 5 05.0 == pth  

1  percentile 25 25.0 == pth  

2  percentile 50 Median 5.0 === pth  

                                                 
* See SAS Program 7 in Appendix B for the calculation of the values in Table 3.25. 
† The value of the run length variable is only shown up to N = 7 for illustration purposes. 

 
 
 



 173 

3  percentile 75 75.0 == pth  

6  percentile 95 95.0 == pth  

 

Other values of h, k and n were also considered and the results are given in Table 3.26. 

 

Table 3.26. The in-control average run length ( 0ARL ), standard deviation of the run length 

( SDRL ), th5 , th25 , th50 , th75  and th95  percentile values* for samples of size 4=n  and various 

values of h and k  for the two-sided CUSUM signed-rank chart†. 

h  k  
2 4 6 8 10 

0 
1.14 
0.40 

(1, 1, 1, 1, 2) 

1.52 
0.81 

(1, 1, 1, 2, 3) 

2.14 
1.51 

(1, 1, 1, 3, 5) 

2.74 
2.19 

(1, 1, 2, 3, 7) 

3.62 
2.80 

(1, 1, 2, 4, 10) 

2 
1.60 
0.98 

(1, 1, 1, 2, 4) 

2.46 
1.79 

(1, 1, 2, 3, 6) 

3.41 
2.66 

(1, 1, 2, 4, 9) 

5.09 
4.07 

(1, 2, 4, 7, 13) 
 

4 
2.67 
2.11 

(1, 1, 2, 3, 7) 

3.87 
3.29 

(1, 1, 3, 5, 10) 

6.64 
5.92 

(1, 2, 5, 9, 18) 
  

6 
4.00 
3.46 

(1, 1, 3, 5, 11) 

7.53 
6.95 

(1, 3, 5, 10, 21) 
   

8 
8.00 
7.45 

(1, 2, 5, 11, 23) 
    

 

Values of k  and h  are restricted to be integers so that the Markov chain approach could 

be employed to obtain exact values for the average run length. In order to allow for the possibility 

of stopping after one group, the values of h  is taken to satisfy k
nn

h −+≤
2

)1(
. For example, for 

4=n  and 0=k , the reference value h  is taken to be smaller than or equal to 10, since 

100
2

)14(4
2

)1( =−+=−+
k

nn
. The five percentiles are displayed in boxplot-like graphs in 

Figure 3.8 for all the ),( kh -combinations that are shaded in Table 3.26. The “boxplots” are 

                                                 
* The three rows of each cell shows the ARL0, the SDRL , and the percentiles ( 5ρ , 25ρ , 50ρ , 75ρ , 95ρ ) , respectively.  
† See SAS Program 7 in Appendix B for the calculation of the values in Table 3.26. 
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classified into 3 categories, namely small ( 4≤+ kh ), moderate ( 85 ≤+≤ kh ) and large 

( 9≥+ kh ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8. Boxplot-like graphs for the in-control run length distribution of various two-sided 

CUSUM signed-rank charts when 4=n .  The whiskers extend to the 5th and the 95th percentiles. 

The symbols “ ”, “ ” and “ ” denote the ARL, SDRL* and MRL, respectively. 

                                                 
* For ease of interpretation, the standard deviation (as measure of spread) is included in the (location) measures of 
percentiles. 
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Table 3.27. The in-control average run length ( 0ARL ), standard deviation of the run length 

( SDRL ), th5 , th25 , th50 , th75  and th95  percentile values* for samples of size 5=n  and various 

values of h and k  for the two-sided CUSUM signed-rank chart†. 
h k 2 4 6 8 10 12 14 

1 
1.23 
0.53 

(1, 1, 1, 1, 2) 

1.56 
0.88 

(1, 1, 1, 2, 3) 

2.04 
1.30 

(1, 1, 2, 3, 5) 

2.57 
1.87 

(1, 1, 2, 3, 7) 

3.36 
2.97 

(1, 1, 3, 5, 11) 

4.15 
3.46 

(1, 1, 3, 5, 11) 

5.23 
4.38 

(1, 2, 4, 7, 14) 

3 
1.60 
0.98 

(1, 1, 1, 2, 4) 

2.20 
1.57 

(1, 1, 2, 3, 5) 

2.90 
2.22 

(1, 1, 2, 4, 7) 

4.07 
3.23 

(1, 2, 3, 5, 10) 

5.34 
4.36 

(1, 2, 4, 7, 14) 

7.39 
6.61 

(1, 2, 5, 10, 21) 
 

5 
2.29 
1.71 

(1, 1, 2, 3, 6) 

3.12 
2.54 

(1, 1, 2, 4, 8) 

4.72 
4.05 

(1, 2, 3, 6, 13) 

6.52 
5.77 

(1, 2, 5, 9, 18) 

10.09 
9.11 

(1, 4, 7, 14, 28) 
  

7 
3.20 
2.65 

(1, 1, 2, 4, 8) 

5.12 
4.55 

(1, 2, 4, 7, 14) 
 

7.39 
6.78 

(1, 3, 5, 10, 21) 

12.58 
11.83 

(1, 4, 9, 17, 36) 
   

9 
5.33 
4.81 

(1, 2, 4, 7, 15) 

7.87 
7.34 

(1, 3, 6, 11, 23) 

14.57 
13.97 

(1, 5, 10, 20, 42) 
    

11 
8.00 
7.48 

(1, 3, 6, 11, 23) 

15.52 
14.98 

(1, 5, 11, 21, 45) 
     

13 
16.00 
15.49 

(1, 5, 11, 22, 47) 
      

 

The five percentiles are displayed in boxplot-like graphs in Figure 3.9 for all the ),( kh -

combinations that are shaded in Table 3.27. The “boxplots” are classified into 3 categories, 

namely small ( 5≤+ kh ), moderate ( 106 ≤+≤ kh ) and large ( 11≥+ kh ). 

 

 

 

 

 

 

 

 

 

 

 

                                                 
* The three rows of each cell shows the ARL0, the SDRL , and the percentiles ( 5ρ , 25ρ , 50ρ , 75ρ , 95ρ ) , respectively.  
† See SAS Program 7 in Appendix B for the calculation of the values in Table 3.27. 
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Figure 3.9. Boxplot-like graphs for the in-control run length distribution of various two-sided 

CUSUM signed-rank charts when 5=n .  The whiskers extend to the 5th and the 95th  percentiles. 

 The symbols “ ”, “ ” and “ ” denote the ARL, SDRL* and MRL, respectively. 

                                                 
* For ease of interpretation, the standard deviation (as measure of spread) is included in the (location) measures of 
percentiles. 
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Table 3.28. The in-control average run length ( +
0ARL ), standard deviation of the run length ( SDRL ), th5 , th25 , th50 , th75  and th95  

percentile values* for samples of size 6=n  and various values of h and k   for the two-sided CUSUM signed-rank chart†. 

h k 
2 4 6 8 10 12 14 16 18 

1 
1.19 
0.47 

(1, 1, 1, 1, 2) 

1.43 
0.75 

(1, 1, 1, 2, 3) 

1.69 
1.01 

(1, 1, 1, 2, 4) 

2.08 
1.37 

(1, 1, 1, 2, 5) 

2.52 
2.10 

(1, 1, 2, 3, 6) 

3.05 
2.48 

(1, 1, 2, 4, 8) 

3.62 
3.09 

(1, 1, 2, 5, 10) 

4.36 
3.32 

(1, 1, 3, 6, 11) 

5.11 
4.24 

(1, 2, 4, 7, 14) 

3 
1.45 
0.81 

(1, 1, 1, 2, 3) 

1.75 
1.13 

(1, 1, 1, 2, 4) 

2.17 
1.52 

(1, 1, 2, 3, 5) 

2.77 
2.04 

(1, 1, 2, 4, 7) 

3.50 
2.65 

(1, 2, 3, 5, 9) 

4.32 
3.36 

(1, 1, 3, 6, 12) 

5.49 
4.72 

(1, 2, 4, 8, 15) 

6.72 
5.96 

(1, 2, 5, 9, 19) 

8.39 
7.49 

(1, 3, 6, 11, 24) 

5 
1.78 
1.18 

(1, 1, 1, 2,4) 

2.25 
1.65 

(1, 1, 1, 2, 3, 6) 

2.98 
2.34 

(1, 1, 2, 4, 8) 

3.91 
3.20 

(1, 2, 3, 5, 10) 

5.01 
4.21 

(1, 2, 4, 7, 13) 

6.77 
5.79 

(1, 3, 5, 9, 18) 

8.69 
7.56 

(1, 3, 6, 12, 24) 

11.72 
10.54 

(1, 5, 11, 22, 47) 
 

7 
2.29 
1.71 

(1, 1, 2, 3, 6) 

3.12 
2.54 

(1, 1, 2, 4, 8) 

4.25 
3.63 

(1, 2, 3, 6, 11) 

5.63 
4.96 

(1, 2, 4, 8, 16) 

8.09 
7.28 

(1, 3, 6, 11, 23) 

10.90 
9.98 

(1, 4, 8, 15, 31) 

16.01 
14.85 

(2, 5, 11, 22, 46) 
  

9 
3.20 
2.65 

(1, 1, 2, 4, 8) 

4.48 
3.93 

(1, 2, 3, 6, 12) 

6.08 
5.50 

(1, 2, 4, 8, 17) 

9.24 
8.57 

(1, 3, 7, 13, 26) 

12.95 
12.21 

(1, 4, 9, 18, 37) 

20.78 
19.85 

(2, 7, 15, 28, 60) 
   

11 
4.57 
4.04 

(1, 2, 3, 6, 13) 

6.32 
5.78 

(1, 2, 5, 9, 18) 

10.02 
9.44 

(1, 3, 7, 14, 29) 

14.44 
13.82 

(1, 5, 10, 20, 24) 

25.13 
24.38 

(2, 8, 18, 35, 74) 
    

13 
6.40 
5.88 

(1, 2, 5, 9, 18) 

10.45 
9.91 

(1, 3, 7, 14, 30) 

15.38 
14.83 

(1, 5, 11, 21, 45) 

28.31 
27.68 

(2, 9, 20, 39, 84) 
     

15 
10.67 
10.15 

(1, 3, 8, 15, 31) 

15.87 
15.36 

(1, 5, 11, 22, 47) 

30.54 
29.99 

(2, 9, 21, 42, 90) 
      

17 
16.00 
15.49 

(1, 5, 11, 22, 47) 

31.51 
30.99 

(2, 9, 22, 43, 93) 
       

19 
32.00 
31.50 

(2, 10, 22, 44, 95) 
        

 

                                                 
* The three rows of each cell shows the ARL0, the SDRL , and the percentiles ( 5ρ , 25ρ , 50ρ , 75ρ , 95ρ ) , respectively.  
† See SAS Program 7 in Appendix B for the calculation of the values in Table 3.28. 
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Figure 3.10. Boxplot-like graphs for the in-control run length distribution of various two-sided 

CUSUM signed-rank charts when 6=n .  The whiskers extend to the 5th and the 95th percentiles. 

 The symbols “ ”, “ ” and “ ” denote the ARL, SDRL and MRL, respectively*.

                                                 
* The “boxplots” are classified into 3 categories, namely small ( 7≤+ kh ), moderate ( 168 ≤+≤ kh ) and large 

( 17≥+ kh ). 
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Table 3.29. The in-control average run length ( 0ARL ), standard deviation of the run length ( SDRL ), th5 , th25 , th50 , th75  and th95  

percentile values* for samples of size 10=n  for 14,...,4,2=h  and 23,...,3,1=k  for the two-sided CUSUM signed-rank chart†. 

h k 2 4 6 8 10 12 14 

1 
1.09 
0.80 

(1, 1, 1, 1, 2) 

1.18 
0.89 

(1, 1, 1, 1, 3) 

1.29 
1.00 

(1, 1, 1, 1, 3) 

1.41 
1.11 

(1, 1, 1, 2, 3) 

1.54 
1.24 

(1, 1, 1, 2, 4) 

1.68 
1.37 

(1, 1, 1, 2, 4) 

1.84 
1.51 

(1, 1, 1, 2, 5) 

3 
1.18 
0.90 

(1, 1, 1, 1, 3) 

1.30 
1.01 

(1, 1, 1, 1, 3) 

1.42 
1.14 

(1, 1, 1, 2, 3) 

1.56 
1.27 

(1, 1, 1, 2, 4) 

1.72 
1.42 

(1, 1, 1, 2, 4) 

1.90 
1.59 

(1, 1, 1, 2, 5) 

2.09 
1.76 

(1, 1, 1, 3, 5) 

5 
1.30 
1.02 

(1, 1, 1, 1, 3) 

1.44 
1.16 

(1, 1, 1, 2, 3) 

1.58 
1.30 

(1, 1, 1, 2, 4) 

1.75 
1.47 

(1, 1, 1, 2, 4) 

1.94 
1.65 

(1, 1, 1, 2, 5) 

2.16 
1.85 

(1, 1, 1, 3, 6) 

2.40 
2.07 

(1, 1, 2, 3, 6) 

7 
1.44 
1.16 

(1, 1, 1, 2, 4) 

1.60 
1.32 

(1, 1, 1, 2, 4) 

1.78 
1.50 

(1, 1, 1, 2, 5) 

1.98 
1.70 

(1, 1, 1, 2, 5) 

2.21 
1.92 

(1, 1, 1, 3, 6) 

2.48 
2.17 

(1, 1, 2, 3, 7) 

2.78 
2.46 

(1, 1, 2, 3, 7) 

9 
1.60 
1.33 

(1, 1, 1, 2, 4) 

1.79 
1.52 

(1, 1, 1, 2, 5) 

2.01 
1.73 

(1, 1, 1, 2, 5) 

2.26 
1.97 

(1, 1, 1, 3, 6) 

2.54 
2.25 

(1, 1, 2, 3, 7) 

2.88 
2.57 

(1, 1, 2, 4, 8) 

3.25 
2.93 

(1, 1, 2, 4, 9) 

11 
1.80 
1.53 

(1, 1, 1, 2, 5) 

2.03 
1.76 

(1, 1, 1, 2, 5) 

2.29 
2.02 

(1, 1, 1, 3, 6) 

2.60 
2.32 

(1, 1, 2, 3, 7) 

2.96 
2.67 

(1, 1, 2, 4, 8) 

3.37 
3.06 

(1, 1, 2, 4, 9) 

3.85 
3.53 

(1, 1, 3, 5, 11) 

13 
2.03 
1.77 

(1, 1, 1, 2, 5) 

2.31 
2.04 

(1, 1, 1, 3, 6) 

2.63 
2.36 

(1, 1, 2, 3, 7) 

3.02 
2.74 

(1, 1, 2, 4, 8) 

3.46 
3.18 

(1, 1, 2, 4, 10) 

3.99 
3.69 

(1, 1, 3, 5, 11) 

4.62 
4.30 

(1, 1, 3, 6, 13) 

15 
2.32 
2.05 

(1, 1, 1, 3, 6) 

2.66 
2.39 

(1, 1, 2, 3, 7) 

3.06 
2.80 

(1, 1, 2, 4, 8) 

3.53 
3.26 

(1, 1, 2, 5, 10) 

4.10 
3.82 

(1, 1, 3, 5, 11) 

4.79 
4.50 

(1, 1, 3, 6, 14) 

5.60 
5.28 

(1, 2, 4, 7, 16) 

17 
2.67 
2.41 

(1, 1, 2, 3, 7) 

3.09 
2.83 

(1, 1, 2, 4, 8) 

3.59 
3.32 

(1, 1, 2, 5, 10) 

4.19 
3.92 

(1, 1, 3, 5, 12) 

4.93 
4.65 

(1, 1, 3, 6, 14) 

5.80 
5.51 

(1, 2, 4, 8, 17) 

6.87 
6.56 

(1, 2, 5, 9, 20) 

19 
3.11 
2.84 

(1, 1, 2, 4, 9) 

3.62 
3.36 

(1, 1, 2, 5, 10) 

4.25 
3.99 

(1, 1, 3, 6, 12) 

5.04 
4.77 

(1, 1, 3, 7, 14) 

5.97 
5.69 

(1, 2, 4, 8, 17) 

7.12 
6.83 

(1, 2, 5, 10, 21) 

8.56 
8.25 

(1, 2, 6, 11, 25) 

21 
3.63 
3.37 

(1, 1, 2, 5, 10) 

4.29 
4.03 

(1, 1, 3, 6, 12) 

5.11 
4.85 

(1, 1, 3, 7, 15) 

6.09 
5.82 

(1, 2, 4, 8, 17) 

7.32 
7.04 

(1, 2, 50, 10, 21) 

8.87 
8.58 

(1, 3, 6, 12, 26) 

10.80 
10.50 

(1, 3, 7, 15, 32) 

23 
4.31 
4.05 

(1, 1, 3, 6, 12) 

5.15 
4.90 

(1, 1, 3, 7, 15) 

6.17 
5.91 

(1, 2, 4, 8, 18) 

7.47 
7.20 

(1, 2, 5, 10, 22) 

9.10 
8.83 

(1, 3, 6, 12, 26) 

11.18 
10.90 

(1, 3, 8, 15, 33) 

14.08 
13.78 

(1, 4, 10, 19, 41) 

 

                                                 
* The three rows of each cell shows the +

0ARL , the SDRL , and the percentiles ( 5ρ , 25ρ , 50ρ , 75ρ , 95ρ ) , respectively. 
† See SAS Program 7 in Appendix B for the calculation of the values in Table 3.29. 
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Table 3.29 continued for h = 2, 4, ..., 14 and k = 25, 27, ..., 53. 
h k 2 4 6 8 10 12 14 

25 
5.17 
4.92 

(1, 1, 3, 7, 15) 

6.22 
5.97 

(1, 2, 4, 8, 18) 

7.56 
7.30 

(1, 2, 5, 10, 22) 

9.28 
9.01 

(1, 3, 6, 13, 27) 

11.47 
11.19 

(1, 3, 8, 16, 34) 

14.57 
14.29 

(1, 4, 10, 20, 43) 

18.65 
18.35 

(1, 5, 13, 25, 55) 

27 
6.25 
5.99 

(1, 2, 4, 8, 18) 

7.62 
7.36 

(1, 2, 5, 10, 22) 

9.39 
9.13 

(1, 3, 6, 13, 27) 

11.67 
11.40 

(1, 3, 8, 16, 34) 

14.94 
14.67 

(1, 4, 10, 20, 44) 

19.28 
19.00 

(1, 5, 13, 26, 57) 

24.76 
24.47 

(1, 7, 17, 34, 73) 

29 
7.64 
7.39 

(1, 2, 5, 10, 22) 

9.46 
9.20 

(1, 3, 6, 13, 28) 

11.80 
11.54 

(1, 3, 8, 16, 35) 

15.20 
14.94 

(1, 4, 10, 21, 45) 

19.75 
19.48 

(1, 6, 14, 27, 58) 

25.55 
25.27 

(1, 7, 18, 35, 76) 

33.84 
33.55 

(2, 10, 23, 47, 101) 

31 
9.48 
8.97 

(1, 3, 7, 13, 27) 

11.87 
11.36 

(1, 4, 8, 16, 35) 

15.37 
14.85 

(1, 5, 11, 21, 45) 

20.08 
19.56 

(2, 6, 14, 28, 59) 

26.12 
25.58 

(2, 8, 18, 36, 77) 

34.85 
34.29 

(2, 10, 24, 48, 103) 

47.67 
47.38 

(2, 14, 33, 66, 142) 

33 
11.91 
11.40 

(1, 4, 8, 16, 35) 

15.47 
14.96 

(1, 5, 11, 21, 45) 

20.30 
19.79 

(2, 6, 14, 28, 60) 

26.51 
25.99 

(2, 8, 19, 37, 78) 

35.57 
35.04 

(2, 11, 25, 49, 105) 

49.00 
48.45 

(3, 14, 34, 68, 146) 

68.60 
68.32 

(4, 20, 47, 95, 205) 

35 
15.52 
15.01 

(1, 5, 11, 21, 45) 

20.43 
19.92 

(2, 6, 14, 28, 60) 

26.76 
26.25 

(2, 8, 19, 37, 79) 

36.06 
35.54 

(2, 11, 25, 50, 107) 

49.95 
49.42 

(3, 15, 35, 69, 149) 

70.38 
69.83 

(4, 21, 49, 97, 210) 

97.26 
96.98 

(5, 28, 67, 134, 291) 

37 
20.48 
19.97 

(2, 6, 14, 28, 60) 

26.90 
26.39 

(2, 8, 19, 37, 80) 

36.35 
35.85 

(2, 11, 25, 50, 108) 

50.56 
50.04 

(3, 15, 35, 70, 150) 

71.58 
71.05 

(4, 21, 50, 99, 213) 

99.34 
98.80 

(6, 29, 69, 138, 297) 

161.57 
161.29 

(8, 46, 112, 224, 483) 

39 
26.95 
26.44 

(2, 8, 19, 37, 80) 

36.51 
36.00 

(2, 11, 25, 50, 108) 

50.92 
50.41 

(3, 15, 35, 70, 152) 

72.34 
71.83 

(4, 21, 50, 100, 216) 

100.71 
100.19 

(6, 29, 70, 139, 301) 

165.16 
164.62 

(9, 48, 115, 229, 494) 

245.13 
244.86 

(13, 70, 170, 339, 734) 

41 
36.57 
36.07 

(2, 11, 26, 51, 109) 

51.12 
50.62 

(3, 15, 36, 71, 152) 

72.81 
72.30 

(4, 21, 51, 101, 217) 

101.58 
101.07 

(6, 30, 71, 141, 303) 

167.59 
167.07 

(9, 49, 116, 232, 501) 

249.70 
249.18 

(13, 72, 173, 346, 747) 

486.87 
486.60 

(25, 140, 337, 675, 1458) 

43 
51.20 
50.70 

(3, 15, 36, 71, 152) 

73.05 
72.55 

(4, 21, 51, 101, 218) 

102.08 
101.58 

(6, 30, 71, 141, 305) 

169.12 
168.61 

(9, 49, 117, 234, 506) 

252.64 
252.13 

(13, 73, 175, 350, 756) 

497.29 
496.76 

(26, 143, 345, 689, 1489) 
 

45 
73.14 
72.64 

(4, 21, 51, 101, 218) 

102.32 
101.82 

(6, 30, 71, 142, 306) 

170.00 
169.50 

(9, 49, 118, 235, 508) 

254.38 
253.87 

(14, 74, 176, 352, 761) 

504.08 
503.56 

(26, 145, 350, 699, 1509) 
  

47 
102.40 
101.90 

(6, 30, 71, 142, 306) 

170.44 
169.94 

(9, 49, 118, 236, 510) 

255.38 
254.87 

(14, 74, 177, 354, 764) 

508.02 
507.51 

(27, 147, 352, 704, 1521) 
   

49 
170.67 
170.17 

(9, 49, 118, 236, 510) 

255.87 
255.37 

(14, 74, 178, 355, 766) 

510.50 
510.00 

(27, 147, 354, 708, 1528) 
    

51 
256.00 
255.50 

(14, 74, 178, 355, 766) 

511.50 
511.00 

(27, 148, 355, 709, 1531) 
     

53 
512.00 
511.50 

(27, 148, 355, 710, 1533) 
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Table 3.29 continued for h = 16, 18, ..., 28 and k = 1, 3, ..., 25. 

h  k  
16 18 20 22 24 26 28 

1 
2.02 
1.67 

(1, 1, 1, 2, 5) 

2.21 
1.84 

(1, 1, 1, 3, 6) 

2.42 
2.02 

(1, 1, 2, 3, 6) 

2.64 
2.21 

(1, 1, 2, 3, 7) 

2.88 
2.41 

(1, 1, 2, 4, 7) 

3.14 
2.63 

(1, 1, 2, 4, 8) 

3.42 
2.86 

(1, 1, 2, 4, 9) 

3 
2.31 
1.96 

(1, 1, 1, 3, 6) 

2.55 
2.17 

(1, 1, 2, 3, 7) 

2.80 
2.40 

(1, 1, 2, 3, 7) 

3.09 
2.66 

(1, 1, 2, 4, 8) 

3.40 
2.93 

(1, 1, 2, 4, 9) 

3.74 
3.22 

(1, 1, 3, 5, 10) 

4.10 
3.54 

(1, 1, 3, 5, 11) 

5 
2.67 
2.32 

(1, 1, 2, 3, 7) 

2.97 
2.59 

(1, 1, 2, 4, 8) 

3.30 
2.90 

(1, 1, 2, 4, 9) 

3.67 
3.24 

(1, 1, 2, 5, 10) 

4.07 
3.60 

(1, 1, 3, 5, 11) 

4.52 
4.00 

(1, 1, 3, 6, 12) 

5.00 
4.44 

(1, 2, 3, 6, 14) 

7 
3.12 
2.77 

(1, 1, 2, 4, 8) 

3.50 
3.13 

(1, 1, 2, 4, 9) 

3.93 
3.53 

(1, 1, 3, 5, 11) 

4.41 
3.98 

(1, 1, 3, 6, 12) 

4.95 
4.48 

(1, 2, 3, 6, 14) 

5.55 
5.03 

(1, 2, 4, 7, 15) 

6.22 
5.65 

(1, 2, 4, 8, 17) 

9 
3.68 
3.34 

(1, 1, 2, 5, 10) 

4.19 
3.82 

(1, 1, 3, 5, 12) 

4.75 
4.35 

(1, 1, 3, 6, 13) 

5.39 
4.95 

(1, 2, 4, 7, 15) 

6.12 
5.64 

(1, 2, 4, 8, 17) 

6.94 
6.43 

(1, 2, 5, 9, 20) 

7.92 
7.35 

(1, 2, 5, 11, 22) 

11 
4.42 
4.08 

(1, 1, 3, 6, 12) 

5.06 
4.69 

(1, 1, 3, 7, 14) 

5.81 
5.42 

(1, 2, 4, 8, 16) 

6.68 
6.25 

(1, 2, 5, 9, 19) 

7.69 
7.22 

(1, 2, 5, 10, 22) 

8.91 
8.39 

(1, 3, 6, 12, 25) 

10.31 
9.74 

(1, 3, 7, 14, 29) 

13 
5.35 
5.01 

(1, 2, 4, 7, 15) 

6.21 
5.85 

(1, 2, 4, 8, 18) 

7.23 
6.84 

(1, 2, 5, 10, 21) 

8.43 
8.00 

(1, 2, 6, 11, 24) 

9.93 
9.46 

(1, 3, 7, 13, 29) 

11.68 
11.16 

(1, 3, 8, 16, 34) 

13.66 
13.10 

(1, 4, 9, 18, 40) 

15 
6.57 
6.23 

(1, 2, 4, 9, 19) 

7.73 
7.37 

(1, 2, 5, 10, 22) 

9.13 
8.74 

(1, 3, 6, 12, 26) 

10.93 
10.50 

(1, 3, 7, 15, 32) 

13.08 
12.61 

(1, 4, 9, 18, 38) 

15.56 
15.05 

(1, 5, 11, 21, 45) 

18.62 
18.05 

(1, 6, 13, 25, 54) 

17 
8.18 
7.85 

(1, 2, 6, 11, 24) 

9.77 
9.42 

(1, 3, 7, 13, 28) 

11.87 
11.49 

(1, 3, 8, 16, 35) 

14.44 
14.02 

(1, 4, 10, 20, 42) 

17.46 
17.00 

(1, 5, 12, 24, 51) 

21.30 
20.79 

(1, 6, 15, 29, 63) 

26.12 
25.56 

(2, 8, 18, 36, 77) 

19 
10.34 
10.01 

(1, 3, 7, 14, 30) 

12.73 
12.37 

(1, 4, 9, 17, 37) 

15.72 
15.34 

(1, 5, 11, 21, 46) 

19.30 
18.89 

(1, 6, 13, 26, 57) 

23.97 
23.51 

(1, 7, 17, 33, 71) 

30.02 
29.52 

(2, 9, 21, 41, 89) 

37.67 
37.12 

(2, 11, 26, 52, 111) 

21 
13.47 
13.14 

(1, 4, 9, 18, 39) 

16.86 
16.51 

(1, 5, 12, 23, 50) 

21.00 
20.62 

(1, 6, 14, 29, 62) 

26.51 
26.10 

(1, 8, 18, 36, 78) 

33.87 
33.42 

(2, 10, 23, 47, 100) 

43.45 
42.95 

(2, 13, 30, 60, 129) 

55.02 
54.49 

(3, 16, 38, 76, 163) 

23 
17.85 
17.52 

(1, 5, 12, 24, 53) 

22.49 
22.15 

(1, 6, 15, 31, 66) 

28.83 
28.50 

(2, 8, 20, 40, 85) 

37.51 
37.11 

(2, 11, 26, 52, 111) 

49.11 
48.67 

(3, 14, 34, 68, 146) 

63.40 
62.93 

(3, 18, 44, 87, 189) 

87.75 
87.21 

(5, 25, 61, 121, 262) 

25 
23.75 
23.44 

(1, 7, 16, 33, 70) 

30.85 
30.51 

(2, 9, 21, 42, 91) 

40.78 
40.42 

(2, 12, 28, 56, 121) 

54.39 
54.00 

(3, 16, 38, 75, 162) 

71.44 
71.02 

(4, 21, 49, 99, 213) 

102.25 
101.77 

(5, 30, 71, 141, 305) 

137.75 
137.23 

(7, 40, 95, 191, 411) 
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Table 3.29 continued for h = 16, 18, ..., 28 and k = 27, 29, ..., 53. 

h  k  
16 18 20 22 24 26 28 

27 
32.52 
32.21 

(2, 9, 22, 45, 97) 

43.58 
43.25 

(2, 13, 30, 60, 130) 

59.06 
58.70 

(3, 17, 41, 81, 176) 

78.74 
78.36 

(4, 23, 54, 109, 235) 

116.24 
115.81 

(6, 33, 80, 161, 347) 

160.22 
159.76 

(8, 46, 111, 222, 479) 

250.03 
249.48 

(13, 72, 173, 346, 748) 

29 
45.88 
45.57 

(2, 13, 32, 63, 137) 

63.00 
62.68 

(3, 18, 44, 87, 188) 

85.05 
84.70 

(4, 24, 59, 118, 254) 

129.08 
128.69 

(7, 37, 79, 179, 386) 

181.52 
181.11 

(9, 52, 126, 251, 543) 

297.24 
296.75 

(15, 86, 206, 412, 889) 
 

31 
66.17 
65.87 

(3, 19, 46, 91, 197) 

90.22 
89.91 

(5, 26, 62, 125, 269) 

140.19 
139.84 

(7, 40, 97, 194, 419) 

200.46 
200.10 

(10, 58, 139, 278, 600) 

343.38 
342.95 

(18, 99, 238, 476, 1028) 
  

33 
94.26 
93.97 

(5, 27, 65, 130, 282) 

149.28 
148.96 

(8, 43, 103, 207, 446) 

216.42 
216.09 

(11, 62, 150, 300, 647) 

385.45 
385.06 

(20, 111, 267, 534, 1154) 
   

35 
156.39 
156.09 

(8, 45, 108, 216, 468) 

229.10 
228.79 

(12, 66, 159, 317, 685) 

412.40 
421.06 

(22, 121, 292, 584, 1261) 
    

37 
238.47 
238.18 

(12, 69, 165, 330, 714) 

450.00 
449.68 

(23, 129, 312, 623, 1347) 
     

39 
471.21 
471.12 

(24, 136, 327, 653, 1411) 
      

41        
43        
45        
47        
49        
51        
53        
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Table 3.29 continued for h = 30, 32, ..., 42 and k = 1, 3, ..., 53. 
h k 30 32 34 36 38 40 42 

1 
3.71 
3.11 

(1, 1, 3, 5, 10) 

4.02 
3.36 

(1, 1, 3, 5, 10) 

4.34 
3.63 

(1, 2, 3, 6, 11) 

4.69 
3.92 

(1, 2, 3, 6, 12) 

5.05 
4.22 

(1, 2, 4, 6, 13) 

5.41 
4.53 

(1, 2, 4, 7, 14) 

5.81 
4.85 

(1, 2, 4, 7, 15) 

3 
4.40 
3.88 

(1, 1, 3, 6, 12) 

4.90 
4.24 

(1, 2, 3, 6, 13) 

5.36 
4.63 

(1, 2, 4, 7, 14) 

5.83 
5.05 

(1, 2, 4, 8, 16) 

6.33 
5.48 

(1, 2, 4, 8, 17) 

6.86 
5.95 

(1, 2, 5, 9, 18) 

7.41 
6.44 

(1, 3, 5, 10, 20) 

5 
5.53 
4.91 

(1, 2, 4, 7, 15) 

6.12 
5.45 

(1, 2, 4, 8, 17) 

6.75 
6.02 

(1, 2, 5, 9, 18) 

7.42 
6.63 

(1, 2, 5, 10, 20) 

8.14 
7.29 

(1, 3, 6, 11, 22) 

8.92 
8.00 

(1, 3, 6, 12, 25) 

9.75 
8.75 

(1, 3, 7, 13, 27) 

7 
6.98 
6.36 

(1, 2, 5, 9, 19) 

7.82 
7.13 

(1, 3, 5, 10, 22) 

8.71 
7.97 

(1, 3, 6, 12, 24) 

9.70 
8.90 

(1, 3, 7, 13, 27) 

10.79 
9.92 

(1, 3, 8, 14, 30) 

11.96 
11.02 

(1, 4, 8, 16, 34) 

13.22 
12.21 

(1, 4, 9, 18, 37) 

9 
9.01 
8.38 

(1, 3, 6, 12, 25) 

10.19 
9.51 

(1, 3, 7, 14, 29) 

11.54 
10.79 

(1, 4, 8, 15, 33) 

13.05 
12.24 

(1, 4, 9, 18, 37) 

14.72 
13.85 

(1, 5, 10, 20, 42) 

16.53 
15.59 

(1, 5, 12, 22, 47) 

18.65 
17.63 

(2, 6, 13, 25, 54) 

11 
11.86 
11.23 

(1, 4, 8, 16, 34) 

13.66 
12.98 

(1, 4, 9, 18, 39) 

15.74 
15.00 

(1, 5, 11, 21, 45) 

18.10 
17.29 

(1, 6, 13, 25, 52) 

20.69 
19.81 

(2, 6, 14, 28, 60) 

23.85 
22.90 

(2, 7, 17, 32, 69) 

27.20 
26.17 

(2, 8, 19, 37, 79) 

13 
16.04 
15.42 

(1, 5, 11, 22, 47) 

18.86 
18.18 

(1, 6, 13, 26, 55) 

22.14 
21.29 

(2, 7, 15, 30, 65) 

25.79 
24.99 

(2, 8, 18, 35, 75) 

30.47 
29.58 

(2, 9, 21, 42, 89) 

35.45 
34.50 

(2, 11, 25, 49, 104) 

41.67 
40.64 

(3, 12, 29, 57, 123) 

15 
22.35 
21.73 

(1, 7, 15, 30, 65) 

26.81 
26.13 

(2, 8, 19, 37, 79) 

31.89 
31.15 

(2, 9, 22, 44, 94) 

38.71 
37.89 

(3, 11, 27, 53, 114) 

46.05 
45.17 

(3, 14, 32, 63, 136) 

55.68 
54.71 

(4, 16, 39, 77, 165) 
 

17 
32.04 
31.43 

(2, 9, 22, 44, 95) 

38.92 
38.26 

(2, 11, 27, 53, 115) 

48.70 
47.95 

(3, 14, 34, 67, 144) 

59.32 
58.51 

(4, 17, 41, 82, 176) 

74.09 
73.19 

(4, 22, 51, 102, 220) 
  

19 
46.74 
46.14 

(3, 14, 32, 64, 139) 

60.40 
59.72 

(3, 18, 42, 83, 179) 

75.44 
74.70 

(4, 22, 52, 104, 224) 

97.76 
96.94 

(6, 28, 68, 135, 291) 
   

21 
73.57 
72.96 

(4, 21, 51, 102, 219) 

94.27 
93.61 

(5, 27, 65, 130, 281) 

127.36 
126.60 

(7, 37 , 88, 176, 380) 
    

23 
115.36 
114.77 

(6, 33, 80, 159, 344) 

163.12 
162.43 

(9, 47, 113, 226, 487) 
     

25 
204.54 
203.92 

(11, 59, 142, 283, 611) 
      

27        
29        

�         

53        
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Table 3.29 continued for h = 44, 46, ..., 54 and k = 1, 3, ..., 53. 

h  k  
44 46 48 50 52 54 

1 
6.21 
5.19 

(1, 2, 4, 8, 16) 

6.63 
5.53 

(1, 2, 5, 9, 17) 

7.05 
5.89 

(1, 3, 5, 9, 19) 

7.50 
6.27 

(1, 3, 5, 10, 20) 

7.95 
6.65 

(1, 3, 6, 10, 21) 

8.43 
7.05 

(1, 3, 6, 11, 22) 

3 
8.00 
6.95 

(1, 3, 6, 10, 22) 

8.60 
7.48 

(1, 3, 6, 11, 23) 

9.25 
8.06 

(1, 3, 7, 12, 25) 

9.91 
8.65 

(1, 4, 7, 13, 27) 

10.62 
9.28 

(1, 4, 8, 14, 29) 
 

5 
10.61 
9.55 

(1, 4, 7, 14, 29) 

11.57 
10.43 

(1, 4, 8, 15, 32) 

12.55 
11.35 

(1, 4, 9, 17, 35) 

13.63 
12.34 

(2, 5, 10, 18, 38) 
  

7 
14.64 
13.56 

(1, 5, 10, 20, 41) 

16.11 
14.96 

(2, 5, 11, 22, 46) 

17.77 
16.54 

(2, 6, 12, 24, 50) 
   

9 
20.88 
19.79 

(2, 7, 15, 28, 60) 

33.44 
22.28 

(2, 7, 16, 32, 68) 
    

11 
31.19 
30.09 

(2, 10, 22, 43, 91) 
     

13       
15       

�        

53       
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Figure 3.11. Boxplot-like graphs for the in-control run length distribution of various two-sided 

CUSUM signed-rank charts when 10=n .  The whiskers extend to the 5th and the 95th percentiles. 

 The symbols “ ”, “ ” and “ ” denote the ARL, SDRL* and MRL, respectively†. 
                                                 
* For ease of interpretation, the standard deviation (as measure of spread) is included in the (location) measures of 
percentiles. 
† The “boxplots” are classified into 3 categories, namely small ( 25≤+ kh ), moderate ( 5025 ≤+< kh ) and large 

( 50>+ kh ). 
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Example 3.9 

A two-sided CUSUM signed-rank chart for the Montgomery (2001) piston ring data 

 

We conclude this sub-section by illustrating the two-sided CUSUM signed-rank chart 

using the piston ring data set from Montgomery (2001). We assume that the underlying 

distribution is symmetric with a known target value of 740 =θ mm. For illustration take 3=k  

and 8=h . From Table 3.27 it can be seen that the in-control average run length equals 4.07 when 

)3,8(),( =kh . Generally, one chooses the chart constants so that a specified in-control average 

run length, such as 500, or 370, is obtained. Taking this into consideration, an in-control average 

run length of 4.07 is considered small. Table 3.30 shows the upper and lower signed-rank 

CUSUM statistics, respectively. 

 

Table 3.30.  One-sided signed-rank ( +
iS  and −

iS ) statistics*. 

Sample 
number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

++++
iS  5 6 0 4 0 6 13 4 13 24 25 37 49 61 72 
−−−−
iS  0 0 -11 -1 -1 0 0 -3 0 0 0 0 0 0 0 

 

                                                 
* The values in Table 3.30 we generated using Microsoft Excel. 
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Figure 3.12. The two-sided CUSUM signed-rank chart for the Montgomery (2001) piston ring 

data. 

 

The two-sided CUSUM signed-rank chart signals at sample number 3, indicating a most 

likely upward shift in the process median. The action taken following an out-of-control signal on 

a CUSUM chart is identical to that with any control chart. A search for assignable causes should 

be done, corrective action should be taken (if required) and, following this, the CUSUM is reset 

to zero.  

 

3.3.4. Summary 

 

While the Shewhart-type charts are the most widely known and used control charts in 

practice because of their simplicity and global performance, other classes of charts, such as the 

CUSUM charts are useful and sometimes more naturally appropriate in the process control 

environment in view of the sequential nature of data collection. In this chapter we have described 

the properties of the CUSUM signed-rank chart and given tables for its implementation. Detailed 

calculations have been given to help the reader to understand the subject more thoroughly. 
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3.4. The EWMA control chart 

 

3.4.1. Introduction 

 

In this section, the approach taken by Lucas and Saccucci (1990) is extended to the use of 

the signed-rank statistic resulting in an EWMA signed-rank chart that accumulates the statistics 

,...,, 321 SRSRSR  . Section 3.4 is analogous to Section 2.4 where the approach taken by Lucas and 

Saccucci (1990) was extended to the use of the sign statistic resulting in an EWMA sign chart. 

Therefore, the reader is frequently referred back to Section 2.4 throughout this section.  

 

3.4.2. The proposed EWMA signed-rank chart 

 

A nonparametric EWMA-type of control chart based on the signed-rank statistic (recall 

that �
=

+−=
n

j
ijiji RxsignSR

1
0 )( θ ) can be obtained by replacing iX  in expression (2.53) of Section 

2.4 with iSR . The EWMA signed-rank chart accumulates the statistics ,...,, 321 SRSRSR  with the 

plotting statistics defined as  

 1)1( −−+= iii ZSRZ λλ  (3.10) 

where 10 ≤< λ  is a constant called the weighting constant. The starting value 0Z  could be taken 

to equal zero, i.e. 00 =Z . 

 

The EWMA signed-rank chart is constructed by plotting iZ  against the sample number i  

(or time). If the plotting statistic iZ  falls between the two control limits, that is, UCLZLCL i << , 

the process is considered to be in-control. If the plotting statistic iZ  falls on or outside one of the 

control limits, that is LCLZ i ≤  or UCLZ i ≥ , the process is considered to be out-of-control. 

 

The exact control limits and the center line of the EWMA signed-rank control chart can 

be obtained by replacing σ  and 0θ  by 
iSRσ  and 0, respectively, in expression (2.55) of Section 

2.4 to obtain 
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Similarly, the steady-state control limits can be obtained by replacing σ  and 0θ  by 
iSRσ  

and 0, respectively, in expression (2.56) to obtain 
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 (3.12) 

where 
iSRσ  denotes the in-control standard deviation of the signed-rank statistic iSR  if there are 

no ties within a subgroup. 

 

The in-control standard deviation of iSR  is given by == )var( iSR SR
i

σ  

6
)12)(1(

2
)1(

2var
++=�

�

�
�
�

� +−+ nnnnn
T . This is obtained by using the relationship between 

iSR  and +T  (recall that 
2

)1(
2

+−= + nn
TSRi  if there are no ties within a subgroup) and the fact 

that 
24

)12)(1(
)var(

++=+ nnn
T  (see Gibbons and Chakraborti (2003) page 198). 

 

3.4.3. Markov-chain approach 

 

Lucas and Saccucci (1990) evaluated the properties of the continuous state Markov chain 

by discretizing the infinite state TPM . This procedure entails dividing the interval between the 

UCL  and the LCL  into N  subintervals of width δ2 . Then the plotting statistic, iZ , is said to be 

in the non-absorbing state j  at time i  if δδ +≤<− jij SZS  where jS  denotes the midpoint of 

the thj  interval. iZ  is said to be in the absorbing state if iZ  falls on or outside one of the control 
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limits, that is, LCLZ i ≤  or UCLZ i ≥ . Let ijp  denote the probability of moving from state i  to 

state j  in one step, i.e. ( )istateinjstatetoMovingPpij |= . To approximate this probability we 

assume that the plotting statistic is equal to iS  whenever it is in state i . For all j  non-absorbing 

we obtain ( )ikjkjij SZSZSPp =+≤<−= −1|δδ . By using the definition of the plotting 

statistic given in expression (3.10) we obtain 

( )

�
�

�

�

�
�

�

� −−+
≤<

−−−
=

+≤−+<−=

λ
λδ

λ
λδ

δλλδ

ij
k

ij

jikjij

SS
SR

SS
P

SSSRSPp

)1()()1()(

)1(

 

recall that 
2

)1(
2

+−= + nn
TSR kk   

�
�

�

�

�
�

�

� −−+
≤+−<

−−−
= +

λ
λδ

λ
λδ ij

k
ij

ij

SSnn
T

SS
Pp

)1()(

2
)1(

2
)1()(

 

�
�
�
�
�

�

�

�
�
�
�
�

�

�

�
�

�

�

�
�

�

� ++
−−+

≤<
�
�

�

�

�
�

�

� ++
−−−

= +

2

2
)1()1()(

2

2
)1()1()( nnSS

T

nnSS

P

ij

k

ij

λ
λδ

λ
λδ

. (3.13) 

 

For all j  absorbing we obtain 
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Since the values LCL, UCL, δ , λ , n , iS  and jS  are known constants the Wilcoxon 

signed-rank probabilities in expressions (3.13) and (3.14) can easily be calculated. The 

probabilities for the Wilcoxon signed-rank statistics are given in Table H of Lehmann (1975) for 
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samples sizes up to 20 and they are tabulated (more recently) in Table H of Gibbons and 

Chakraborti (2003) for sample sizes up to 15. 

 

Once the one-step transition probabilities are calculated, the TPM can be constructed and 

is given by 
�
�
�

�

�

�
�
�

�

�

−−−==
1|'0

|
][

pQ

pTPM ij  (written in partitioned form) where the essential transition 

probability sub-matrix Q  is the matrix that contains all the transition probabilities of going from 

a non-absorbing state to a non-absorbing state, Q ( )NANA →: , p  contains all the transition 

probabilities of going from each non-absorbing state to the absorbing states, p ( )ANA →: , 

'0 ( )0000 �=  contains all the transition probabilities of going from each absorbing state 

to the non-absorbing states. '0  is a row vector with all its elements equal to zero, because it is 

impossible to go from an absorbing state to a non-absorbing state, because once an absorbing 

state is entered, it is never left, '0  ( )NAA →: , and 1 represents the scalar value one. The 

probability of going of going from an absorbing state to an absorbing state is equal to one, 

because once an absorbing state is entered, it is never left, 1 ( )AA →: . The one-step TPM is used 

to calculate the expected value (ARL), the second raw moment, the variance, the standard 

deviation and the probability mass function (pmf) of the run-length variable N  which are given in 

equations (2.41) to (2.45). 

 

Example 3.10 

The EWMA signed-rank chart where the sample size is even ( 6====n ) 

 

The EWMA signed-rank chart is investigated for a smoothing constant of 0.1 ( 1.0=λ ) 

and a multiplier of 3 ( 3=L ). The steady-state control limits are given by 
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where 3=L , 1.0=λ , and 539.9=
iSRσ , since =

iSRσ =++
6

)12)(1( nnn =++
6

)112)(16(6
 

539.9 . Clearly, we only have to calculate the UCL  since UCLLCL −= . We obtain 

565.6
1.02

1.0
539.93 =�

�

�
�
�

�

−
×=UCL . Therefore, 565.6−=LCL . 

 

This Markov-chain procedure entails dividing the interval between the UCL  and the 

LCL  into N  subintervals of width δ2 . For this example N  is taken to equal 4. Figure 3.13 

illustrates the partitioning of the interval between the UCL  and the LCL  into subintervals. 

 

    

Figure 3.13. Partitioning of the interval between the UCL  and the LCL  into 4 subintervals. 

 

From Figure 3.13 we see that there are 4 non-absorbing states, i.e. 4=r . The TPM is 

given by 
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Table 3.31. Calculation of the one-step probabilities in the first row of the TPM. 

( )0|000 stateinstatetoMovingPp =  

( )0100 | SZSZSP kk =+≤<−= −δδ  from (3.13) 
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 The one-step probabilities in the remaining rows can be calculated similarly. Therefore, 

the TPM is given by 
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Other values of the multiplier (L) and the smoothing constant ( λ )  were also considered 

and the results are given in Tables 3.32 and 3.33. 
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Table 3.32. The in-control average run length ( 0ARL ), standard deviation of the run length 

( SDRL ), th5 , th25 , th50 , th75  and th95  percentile values* for the EWMA signed-rank chart when 

6=n  and 5=N , i.e. there are 5 subintervals between the lower and upper control limit†.  

 1====L  2====L  3====L  

05.0====λλλλ  
10.45 
12.32 

(1, 2, 6, 15, 35) 

56.69 
72.45 

(1, 5, 29, 82, 204) 

** 
 

1.0====λλλλ  
7.32 
8.38 

(1, 1, 4, 10, 24) 

33.83 
40.28 

(1, 4, 20, 48, 115) 

330.67 
369.33 

(2, 63, 213, 471, 1070) 

2.0====λλλλ  
4.95 
4.90 

(1, 1, 3, 7, 15) 

35.21 
39.63 

(1, 6, 22, 50, 115) 

361.92 
384.29 

(3, 87, 243,  510, 1130) 
** The inverse of the matrix ( QI − ) does not exist and as a result the ARL (given by 

( ) ( ) 11−−= QINE ξ ) can not be calculated for this combination of ( L,λ ). 

 

In example 3.10 we considered a sample size that may be considered “small”. The results 

are given for a larger sample size ( 10=n ) for various values of λ  and L in Table 3.33. 

 

Table 3.33. The in-control average run length ( 0ARL ), standard deviation of the run length 

( SDRL ), th5 , th25 , th50 , th75  and th95  percentile values‡ for the EWMA signed-rank chart when 

10=n  and 5=N , i.e. there are 5 subintervals between the lower and upper control limit§.  

 1====L  2====L  3====L  

05.0====λλλλ  
11.17 
13.49 

(1, 2, 6, 16, 39) 

67.94 
83.82 

(1, 7, 38, 98, 238) 

1448.44 
1573.37 

(10, 316, 956, 2052, 4595) 

1.0====λλλλ  
6.85 
7.74 

(1, 1, 4, 9, 23) 

48.87 
57.73 

(1, 6, 29, 70, 165) 

352.72 
384.51 

(3, 76, 232, 500, 1122) 

2.0====λλλλ  
5.05 
5.07 

(1, 1, 3, 7, 15) 

33.96 
38.48 

(1, 6, 21, 48, 111) 

336.34 
357.54 

(3, 80, 226, 474, 1051) 
 

                                                 
* The three rows of each cell shows the ARL0, the SDRL, and the percentiles ( 5ρ , 25ρ , 50ρ , 75ρ , 95ρ ) , respectively. 
† See SAS Program 8 in Appendix B for the calculation of the values in Table 3.32. 
‡ The three rows of each cell shows the ARL0, the SDRL, and the percentiles ( 5ρ , 25ρ , 50ρ , 75ρ , 95ρ ) , respectively. 
§ See SAS Program 8 in Appendix B for the calculation of the values in Table 3.33. 
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These tables can be extended by changing the sample size (n), the number of subintervals 

between the lower and upper control limit (N), the multiplier (L) and the smoothing constant ( λ ) 

in SAS Program 8  for the EWMA signed-rank chart given in Appendix B. 

 

From Tables 3.32 and 3.33 we see that the 0ARL , SDRL  and percentiles increase as the 

value of the multiplier (L) increases. From Table 3.33 we find an in-control average run length of 

336.34 for 10=n  when the multiplier is taken to equal 3 ( 3=L ) and the smoothing constant 0.2 

( 2.0=λ ). The chart performance is good, since the attained in-control average run length of 

336.34 is in the region of the desired in-control average run length which is generally taken to be 

370 or 500. 

 

3.4.4. Summary 

 

The EWMA control chart is one of several charting methods aimed at correcting a 

deficiency of the Shewhart chart - insensitivity to small shifts. Lucas and Saccucci (1990) have 

investigated some properties of the EWMA chart under the assumption of independent normally 

distributed observations, whereas in this section we have described and evaluated the 

nonparametric EWMA signed-rank chart. The main advantage of the nonparametric EWMA 

chart is that there is no need to assume a particular parametric distribution for the underlying 

process (see Section 1.4 for other advantages of the nonparametric EWMA chart). 
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Section B: Monitoring the location of a process when the target 

location is unspecified or unknown (Case U) 
 

Introduction 

 

In Section A we focussed on monitoring the location of a chart when the location is 

specified (case K). This ‘standard(s) known’ case is when the underlying parameters of the 

process distribution are known or specified. In Section B we focus on monitoring the location 

of a chart when the location is unspecified or unknown (case U). This ‘standard(s) unknown’ 

case is when the parameters are unknown and need to be estimated.  

 

Chapter 4: Sign-like control charts 
 

4.1. The Shewhart-type control chart 

 

4.1.1. Introduction 

 

Janacek and Meikle (1997) proposed a Phase II nonparametric control chart useful in 

case U. The control limits of this chart are given by two selected order statistics of a Phase I 

reference sample. The charting statistic is the median iM  of the Phase II samples taken 

sequentially.  

  

Chakraborti, Van der Laan and Van de Wiel (2004; hereafter CVV) generalized the 

work of Janacek and Meikle (1997). They considered using some order statistic of a Phase II 

sample as the charting statistic and control limits constructed from a Phase I reference sample.  

Their work involves a class of two-sample nonparametric statistics, called precedence 

statistics and their Shewhart-type charts are called precedence charts. The terms precedence 

charts and sign-like charts will be used interchangeably throughout this text.  

 

Assume that a reference sample of size m , mXXX ,...,, 21 , is available from an in-control 

process with an unknown continuous cdf )(xF . The estimated control limits of the 

precedence chart are given by two reference sample order statistics, say, ):(
ˆ

maXLCL =  and 
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):(
ˆ

mbXLCU = , where mba ≤<≤1 . Let h
n

hh
h

YYY ,...,, 21  , ,...,2,1=h  denote the thh   test sample 

of size hn . The plotting statistic h
nj h

Y ):(  is the thj  order statistic from the thh  Phase II sample 

of size hn . Let )(yG h  denote the cdf of the distribution of the thh  Phase II sample. 

)()( yGyG h =  h∀ , since the Phase II samples are all assumed to be identically distributed.  

Assume that the Phase II samples are all of the same size, n , so that the subscript h  can be 

suppressed. Under this assumption the plotting statistic is denoted by ):( njY . For illustration 

purposes the plotting statistic is taken to be the median, but it can be any percentile of the 

Phase II sample. CVV provided recommendations and tables for the implementation of 

precedence charts and examined the chart performance in terms of the average run length.  

The overall conclusion is that the Shewhart-type precedence charts are more robust than their 

parametric counterparts, such as the Shewhart X  chart. The precedence chart, being 

nonparametric, has the in-control robustness property (such as the same 0ARL  or the FAR for 

all continuous distributions), whereas as we noted earlier, the performance of the Shewhart X  

(and other parametric charts) is significantly (highly) degraded if the distributional form of 

the observations differs from normality. 

 

4.1.2. Preliminary 

 

Let jW  denote the number of X -observations that precede ):( njY . The statistic jW  is 

called a precedence statistic and subsequently a test based on a precedence statistic is called a 

precedence test. Chakraborti and Van der Laan (1996, 1997; hereafter CV) gave an overview 

of some nonparametric procedures based on precedence statistics. CV’s procedures included 

both hypothesis testing and confidence intervals. CV also highlighted the fact that precedence 

tests are simple and robust nonparametric procedures that are useful for comparing two or 

more distributions.  

 

Let )( wWP jC =  denote the in-control probability distribution of jW , where the 

subscript C  refers to the in-control case. If wW j =  it means that w  X -observations precede 

):( njY . If w  X -observations are less than or equal to ):( njY , then )( wm −  X -observations are 

greater than ):( njY . If we combine the reference sample (containing m  X -observations) with 
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the test sample (containing n  Y -observations) we obtain a single sample consisting of 

nmN +=  observations. From this combined sample, w  X -observations and j  Y -

observations are less than or equal to ):( njY . On the other hand, )( wm −  X -observations and 

)( jn −  Y -observations are greater than ):( njY . There are a total of 1−+ jw  observations that 

are less than ):( njY  and a total of wjnmjnwm −−+=−+− )()(  observations that are 

greater than ):( njY . The in-control distribution of jW   can be obtained by using combinatorics 

which allows one to count the number of experimental outcomes when the experiment 

involves selecting a number of objects, say r , from a larger set of objects, say R . The rule 

then states that the number of combinations of R  objects taken r  at a time is given by ��
�

�
��
�

�

r

R
. 

By using such combinatorial arguments the in-control distribution of jW  can be obtained and 

is given by 

 

��
�

�
��
�

� +

��
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�
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�

�

−
−−+

��
�

�
��
�

� −+

==

m

nm
wm

wjnm

w

jw

wWP jC

1

)(   with  mw ,...,2,1,0= . (4.1) 

Note that the in-control probability distribution of jW , i.e. when GF = , only depends on the 

number of observations in the reference sample m , the number of observations in each test 

sample n  and the chosen percentile of the Phase II sample j . Thus, the in-control run length 

distribution of these precedence charts are distribution-free. The only condition is that the 

distribution of the reference sample and the distribution of the test sample be continuous and 

identical which is the case when the process is under control. It should be noted that this result 

is also given by Randles and Wolfe (1979), Theorem 11.4.4. 

 

As illustration, let the number of observations in the Phase I reference sample be 25 

( 25=m ), the number of observations in each Phase II test sample be 15 ( 15=n ) and the 

chosen percentile of the Phase II sample be the median �
�

�
�
�

� =+=+= 8
2

115
 

2
1n

j . The in-

control distribution, i.e. when GF = , of jW  is then given by 
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Figure 4.1 represents the in-control distribution of jW  when 25=m , 15=n  and 

8=j . Note that the in-control probability distribution of jW  is symmetric. In general, the in-

control probability distribution of jW  is symmetric when n  is odd and the chosen percentile 

of the Phase II sample is the median of an odd Phase II sample. 
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Figure 4.1. The in-control distribution of jW  when 25=m , 15=n  and 8=j . 

 

Figure 4.2 represents the in-control probability distribution of jW  when the number of 

observations in the reference sample is kept at 25 ( 25=m ), the number of observations in 

each test sample is kept at 15 ( 15=n ), but the chosen percentile of the Phase II sample is not 

the median, i.e. 8≠j . We take 4=j  for illustration purposes. Note that the in-control 

probability distribution of jW  is now asymmetric. 
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Figure 4.2. The in-control distribution of jW  when 25=m , 15=n  and 4=j . 

 

4.1.3. Probability of no signal 

 

Recall that ):(
ˆ

maXLCL =  and ):(
ˆ

mbXLCU = . A non-signalling event in the case of the 

two-sided chart occurs when ):():():( mbnjma XYX ≤≤ . Stated differently, a non-signalling event 

occurs when at least a  X -observations precede ):( njY  and at most 1−b  X -observations 

precede ):( njY , i.e. 1−≤≤ bWa j . Let the probability of no signal be denoted by p . Then, the 

probability of no signal is given by  

                    ( ) ( )1),;,,( ):():():( −≤≤=≤≤== bWaPXYXPGFjnmpp jmbnjma . (4.3) 

From (4.3) it can be seen that the probability of no signal, p , can be expressed in terms of the 

precedence statistic jW , thus simplifying the probability calculations (see Randles and Wolfe 

(1979), Example 11.4.19). 

 

Let 0p  denote the in-control value of p . A process is said to be in-control when 

FG = . Therefore, the expression for 0p  can be obtained by simply substituting FG =  in 

expression (4.3). Thus, 

 ( )1control)-In |Signal No(),;,,(0 −≤≤=== bWaPPFFjnmpp jC . (4.4) 
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Recall that a false alarm is given when a signaling event occurs, given that the process 

is actually in-control. Therefore, the probability of a false alarm (also referred to as the false 

alarm rate (FAR)) is given by 

 FARPPp ==−=− control)-In |(Signalcontrol)-In |Signal No(11 0 . (4.5) 

 

4.1.4. Determination of chart constants 

 

The charting constants a  and b  are typically selected so that a specified false alarm 

rate or a specified in-control average run-length is attained. The exact expression for the 

0ARL  is derived later on in this chapter using a conditioning method. In this section we will 

focus on the FAR. Hence, the charting constants a  and b  are found by either setting the FAR 

(given by 01 p− ) to a desirable small value, say 01 P− , or by setting 0p  to some desirable 

large value, say 0P . Take note that 0P  will usually be chosen to be a large value such as 0.95 

or 0.99 and the desired or specified value of the FAR, given by 01 P− , will be a small value 

such as 0.05 or 0.01. The charting constants are found such that 

control)-In|Signal No(0 Pp =  is not smaller than the desired or specified value 0P , that is, 

00 control)-In|Signal No( PPp ≥=  (this is due to the discrete nature of the distribution of 

jW ). Stated differently, the charting constants are selected such that 

control)-In|Signal(1 0 Pp =−  is not larger than the desired or specified value 01 P− , that is, 

00 1control)-In|Signal(1 PPp −≤=− . Since the statistic jW  is discrete, not all desired or 

specified 0P  values are attainable for all combinations of ,m  n  and j . The inequality sign in 

(4.6) ensures that we are conservative. The charting constants are found such that 
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. (4.6) 

 

We can use any test sample order statistic (including the median) when implementing 

the two-sided precedence chart. If the plotting statistic is taken to be the median, the in-

control probability distribution of jW  is symmetric (for odd sample sizes) and a reasonable 

choice for b  is 1+− am . Once the charting constants a  and b  are found, the estimated 
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control limits ):(
ˆ

maXLCL =  and ):(
ˆ

mbXLCU =  can be determined. Therefore, when the 

plotting statistic is taken to be the median, we replace b  by 1+− am  in (4.6) to obtain 
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. (4.7) 

 

For example, let the number of observations in the reference sample be 125 

( 125=m ), the number of observations in each test sample be 5 ( 5=n ) and the chosen 

percentile of the Phase II sample be the median �
�

�
�
�

� =+=+= odd) is (when 3
2

15
 

2
1

n
n

j . By 

substituting 125=m , 5=n  and 3=j  into (4.7) we obtain 

 0
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. (4.8) 

Possible control limits were calculated using (4.8) and are shown in Table 4.1. 

 

Table 4.1*. False alarm rate ( FAR ) and chart constant ( a ) values for the Shewhart sign-like 

chart when 125=m , 5=n  and 3=j . 

a  3 4 5 6 7 8 9 10 
FAR  0.000546 0.001079 0.001865 0.002948 0.004368 0.006164 0.008372 0.011025 
 

 From Table 4.1 we see that for a false alarm rate of 0.004368 one can take 7=a  so 

119171251 =+−=+−= amb  so that the control limits are the 7th and 119th ordered values 

of the reference sample. Thus, )125:7(
ˆ XLCL =  and )125:119(

ˆ XLCU = . For another example on 

exceedance statistics see Randles and Wolfe (1979), Example 11.4.19.  

 

                                                 
* The values in Table 4.1 were generated using Microsoft Excel. Table 4.1 is an extension of Table 3 given in 
Chakraborti, Eryilmaz and Human (2006). 
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4.1.5. The median chart 

 

Let 12 += sn , where ,...,2,1,0=s  (so that n  is odd). Therefore, the median is 

uniquely given by 1
2

1)12(
 

2
1 +=++=+= s

sn
j . The statistic 1+sW  is called the median 

statistic of Mathisen (1943). The in-control probability distribution of 1+sW  is found by 

substituting 12 += sn  and 1+= sj  into (4.1) and is given by 
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wWP sC 12
)( 1  (4.9) 

(see Randles and Wolfe (1979), Example 11.4.5). Recall that the in-control distribution of jW  

(in this case, 1+sW ) is symmetric when n  is odd and the chosen percentile of the Phase II 

sample is the median. In this case a reasonable choice for b  is 1+− am . The charting 

constant a  is found by substituting 12 += sn , 1+= sj  and 1+−= amb  into equation (4.6) 

and then solving for a  such that (4.10) is satisfied. 
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+ . (4.10) 

Once the charting constant a  is found using expression (4.10), the charting constant b  is 

found from the relationship 1+−= amb . Thereafter, the control limits ):(
ˆ

maXLCL =  and 

):(
ˆ

mbXLCU =  can be determined. By using symmetry we have that   

)( amWaP jC −≤≤  

( ))1()10(1 mWamPaWP jCjC ≤≤+−+−≤≤−=  

)10(21 −≤≤−= aWP jC  

and by setting 0)10(21 PaWP jC ≥−≤≤−  we obtain 

 
2

1
)10( 0P

aWP jC

−
≤−≤≤ . (4.11) 

Therefore, expression (4.10) can be re-written as expression (4.11) which is more convenient 

to work with. 
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For example, let the number of observations in the reference sample be 125 ( 125=m ) 

and 2=s  so that 512 =+= sn  and 31 =+= sj . By substituting 125=m  and 2=s  into 

(4.10) we obtain 

 0

125

3

125
130

125
1272

)125( p
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which is equal to expression (4.8). Therefore, the FAR  values given in Table 4.1 can be used 

in this example, meaning that one can take 7=a  so 119171251 =+−=+−= amb  so that 

the control limits are the 7th and 119th ordered values of the reference sample. Thus, 

)125:7(
ˆ XLCL =  and )125:119(

ˆ XLCU = , which yield a FAR  of 0.004368. 

 

4.1.6. Control charts for other percentiles 

 

Since we could be interested in other percentiles than the median (see Radson and 

Boyd (2005) and Shmueli and Cohen (2003)), the distribution of jW  is not symmetric (in 

such cases) and finding the charting constants a  and b  is much more difficult. 

 

Chakraborti, Van der Laan and Van de Wiel (2004) proposed the equal-tailed* 

procedure when the 100 thρ  percentile is of interest where 10 << ρ . The equal-tailed 

procedure is as follows: 

 

Find the largest integer a  ])[1( ρma ≤≤  such that 

 
2

1
)10( 0P

aWP jC

−
≤−≤≤ ,  

and the smallest integer b  )( mba ≤<  such that  

 
2

1
)1( 0P

mWbP jC

−
≤≤≤+ .  

 
These a and b values are then substituted in the control limits ):(

ˆ
maXLCL =  and 

):(
ˆ

mbXLCU = . 
 

                                                 
* Note that in general 1+−≠ amb  in this case so that the “equal-tailed” means equality in tail probabilities. 
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4.1.7. Properties of order statistics 

 

The ordered values of a sample are known as the order statistics. Various authors have 

studied order statistics (see for example Randles and Wolfe (1979)). Our goal is to study the 

distribution of order statistics. In addition, we give some well-known properties and results of 

order statistics that will be used later on. 

 

Suppose that nXXX ,...,, 21  denotes a random sample of size n  from a continuous 

pdf, )(xf . The pdf of the thk  order statistic ):( nkX  is given by 

 ( ) ( ) )()(1)(
)!()!1(

!
)( ):():(

1
):():( nk

kn
nk

k
nknkk xfxFxF

knk
n

xg −− −
−−

= . (4.12) 

 
The joint pdf for ):( nkX  and ):( nlX  is given by 

 ×
−−−−

=
)!()!1()!1(

!
),( ):():( lnklk

n
xxg nlnkkl  

 ( ) ( ) ( ) )()(1)()()( ):():(
1

):():():(
1

):( nl
ln
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kl

nknlnk
k

nk xfxFxxFxfxF −−−− −− . (4.13) 

 

Let ):( nkU  denote the thk  order statistic of a sample of size n from the Uniform(0,1) 

distribution. The pdf of ):( nkU  is given by 

 knk
U uu

knk
uf
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−− −
+−

= )1(
)1,(

1
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):( β
 (4.14) 

where 
!

)!()!1(
)1(

)1()(
)1,(

n
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n
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knk
−−=

+Γ
+−ΓΓ=+−β . 

 
 

The binomial series arises in connection with distributions of order statistics. The 

binomial theorem gives the expansion of kba )( + . Using the binomial theorem we obtain  

 �
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nnknk ba
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0

)1()(  (4.15) 

where a  and b  are any real numbers and k  is a positive integer. 
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4.1.8. One-sided control charts 

 

In this section the lower- and upper one-sided precedence control charts are 

considered. The lower one-sided chart will have a LCL ˆ  equal to some constant value and an 

∞=LCU ˆ . In contrast, the upper one-sided chart will have an LCU ˆ  equal to some constant 

and a −∞=LCL ˆ . 

 

4.1.8.1. Lower one-sided control charts 

 

For the lower one-sided chart we have the ):(
ˆ

maXLCL = . Therefore, a non-signalling 

event occurs when ):():( manj XY ≥ . 

 

Result 4.1: Probability of no signal - conditional 

 

( )xXP ma =):( | Signal No �
−− −

+−
=

1

)(

1 )1(
)1,(

1

xG

jnj duuu
jnjβ

 

 

Using the probability integral transformation (PIT) (see, for example, Gibbons and 

Chakraborti (2003)), we know that )( ):(
1

):( njnj UGY −=  and )( ):(
1

):( mama UFX −=  where F and 

G are both continuous cdf’s. 

 
( )xXP ma =):( | Signal No   )(xpL= , say, 

( )xXxYP manj =≥= ):():(  |  

( )xXxUGP manj =≥= −
):():(

1  |)(  

( )xXxGUP manj =≥= ):():(  |)(  

�
−− −

+−
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1

)(

1 )1(
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1

xG

jnj duuu
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since jnj uu
jnj

−− −
+−

)1(
)1,(

1 1

β
 is the pdf of ):( njU  (see equation (4.14)). 
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Result 4.2: Probability of no signal – unconditional 

 

Let Lp  denote the unconditional probability of no signal, then: 
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Lp  
( )Signal NoP=  
( )):():( manj XYP ≥=  

( ))|( ):():():():( mamanjX XXYPE
ma

≥=  

( ))|)()(( ):():():():( mamanjX XXGYGPE
ma

≥=  

 
By the PIT we have that )( ):():( njnj YGU =  where G  is the continuous cdf of the Phase II 

sample nYYY ,...,, 21 . Using this we obtain 

 

( ))|)(( ):():():():( mamanjX XXGUPE
ma

≥=  

 

By the PIT we have that )( ):():( mama XFU =  so that )( ):(
1

):( mama UFX −=  where F  is the 

continuous cdf of the reference sample mXXX ,...,, 21 . Using this we obtain 
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where )(vf  is the pdf of ):( maU  which is given by ama vv
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)1(  by using a binomial expansion (see equation (4.15)) and we obtain 
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By taking all the constants out of the integral sign and simplifying by setting hjhj uuu +−− = 11  

we obtain 
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which simplifies to 
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Result 4.3: Probability of a signal - conditional 

 

A signalling event occurs when ):():( manj XY < .  
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Result 4.4: Probability of a signal - unconditional 
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Result 4.5: Probability of a false alarm - conditional 
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Follows immediately from Result 4.3, since FG = . 

 

Result 4.6: Probability of a false alarm – unconditional 
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Follows immediately from Result 4.4, since FG =  and therefore vvFFvGF == −− )()( 11 . 
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Result 4.7: Run-length distribution - conditional 
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The conditional run length, denoted by xXN ma =):(| , will have a geometric 

distribution with parameter )(1 xpL− , because all the signalling events are independent. 

Therefore we have that 
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Consequently, the cumulative distribution function (cdf) is found from 
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We also have that 
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Result 4.8: Average run-length - conditional 
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Since the conditional run length, denoted by xXN ma =):(|  has a geometric 

distribution with parameter )(1 xpL− , the conditional average run length is given by 
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)(1

1
| ):( xp

xXNECARL
L

ma −
=== . 

The second expression follows immediately from the geometric expansion of 1))(1( −− xpL  

for 1)( <xpL . 
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Result 4.9: Run-length distribution - unconditional 
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By taking all the constants out of the integral sign and simplifying by setting hjhj uuu +−− = 11  
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Result 4.10: In-control run-length distribution 
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Recall that the reference sample of size m , mXXX ,...,, 21 , is available from an in-

control process with a continuous cdf, )(xF .  The plotting statistic h
njY ):(  is the thj  order 

statistic from the thh  Phase II sample of size hn . Let )(yG h  denote the cdf of the distribution 

of the thh  Phase II sample. A process is said to be in-control at stage h  when FG h = .  

Assume that the Phase II samples are all of the same size, n , so that the subscript h  can be 

suppressed. Therefore, a process is said to be in-control when FG = . Therefore, the in-

control run length distribution is obtained by setting FG =  into the equation for the out-of-

control run length distribution. 

 

The out-of-control run length distribution for the lower one-sided chart is given by 
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Therefore, the in-control run length distribution for the lower one-sided chart is obtained by 

setting FG =  into equation (4.16) and we obtain 
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Result 4.11: Out-of-control average run-length - unconditional   
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Let δ,LUARL  denote the unconditional average run length, where δ  refers to the out-

of-control case. To derive an expression for the δ,LUARL , recall that 
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Result 4.12: In-control average run-length - unconditional 
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Let 0,LUARL  denote the unconditional average run length, where 0 refers to the in-

control case. To derive an expression for the 0,LUARL , recall that the in-control run length 

distribution for the lower one-sided chart is given by 
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4.1.8.2. Upper one-sided control charts 

 

For the upper one-sided chart we have ):(
ˆ

mbXLCU = . Therefore, a non-signalling 

event occurs when ):():( mbnj XY ≤ . 

 

Result 4.13: Probability of no signal - conditional 
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Using the PIT, we know that )( ):(
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both continuous cdf’s. 
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Result 4.14: Probability of no signal – unconditional 
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By taking all the constants out of the integral sign and simplifying by setting hjhj uuu +−− = 11  
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which simplifies to 
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Result 4.15: Probability of a signal - conditional 

 

A signalling event occurs when ):():( mbnj XY > .  
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Result 4.16: Probability of a signal – unconditional 
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Result 4.17: Probability of a false alarm - conditional 
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Follows immediately from Result 4.15, since FG = . 

 

Result 4.18: Probability of a false alarm - unconditional 

 

dvvv
bmb

m
v

h

jn

hjjnj
FAR bmbhj

jn

h

h
−−+

−

=

−
−−�

�
�

�
�
�
�

�
��
�

�
��
�

� −
+

−
+−

−= � )1(
)!()!1(

!)1(
)1,(

1
1 1

0β
 

 

Follows immediately from Result 4.16, since FG =  and therefore vvFFvGF == −− )()( 11 . 
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Result 4.19: Run-length distribution - conditional 
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Result 4.21: Run-length distribution - unconditional 
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By taking all the constants out of the integral sign and simplifying by setting hjhj uuu +−− = 11  
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Result 4.22: In-control run-length distribution 
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Recall that the reference sample of size m , mXXX ,...,, 21 , is available from an in-

control process with a continuous cdf, )(xF .  The plotting statistic h
njY ):(  is the thj  order 

statistic from the thh  Phase II sample of size hn . Let )(yG h  denote the cdf of the distribution 

of the thh  Phase II sample. A process is said to be in-control at stage h  when FG h = .  

Assume that the Phase II samples are all of the same size, n , so that the subscript h  can be 

suppressed. Therefore, a process is said to be in-control when FG = . Therefore, the in-

control run length distribution is obtained by setting FG =  into the equation for the out-of-

control run length distribution. 

 

The out-of-control run length distribution for the upper one-sided chart is given by 
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Therefore, the in-control run length distribution for the upper one-sided chart is obtained by 

setting FG =  into equation (4.18) and we obtain 
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Result 4.23: Out-of-control average run-length - unconditional 
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Let δ,UUARL  denote the unconditional average run length, where δ  refers to the out-

of-control case. To derive an expression for the δ,UUARL , recall that 
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Finally, we have that (from the second expression in Result 4.20) 
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Result 4.24: In-control average run-length - unconditional 
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Let 0,UUARL  denote the unconditional average run length, where 0 refers to the in-

control case. To derive an expression for the 0,UUARL , recall that the in-control run length 

distribution for the upper one-sided chart is given by 
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0,UUARL  

�
∞

=
=

0

)(
k

U kD  

( )��
∞

=

=
0

1

0

)(),,(
k

k
U dvvfnjvS  

( ) dvvfnjvS
k

k
U )(),,(

1

0 0
��

∞

=

=  

dvvf
njvSU

)(
),,(1

11

0
� −

= . 

 

4.1.9. Two-sided control charts 

 

For the two-sided chart we have ):(
ˆ

maXLCL =  and ):(
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mbXLCU = . Therefore, a non-

signalling event occurs when ):():():( mbnjma XYX ≤≤ . 

 

Result 4.25: Probability of no signal - conditional 
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Using the PIT, we know that )( ):(
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 is the pdf of ):( njU  (see equation 4.14). 

 

Result 4.26: Probability of no signal – unconditional 

 

Let p denote the unconditional probability of no signal, then: 
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By the PIT we have that )( ):():( njnj YGU =  where G  is the continous cdf of the Phase II 
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By taking all the constants out of the integral sign and simplifying by setting hjhj uuu +−− = 11  

we obtain 

 

×
−−−−�

�

�

�

�
�

�

�

��
�

�
��
�

� −
−

+−
= � � ��

−

−

+−
−

= )!()!1()!1(
!

)1(
)1,(

11

0 0

)(

)(

1

0

1

1 bmaba
m

duu
h

jn

jnj

t
k

tGF

sGF

hj
jn

h

h

β
 

    dsdttsts bmaba −−−− −− )1()( 11  
 

By integrating 
( ) ( )

hj
sGFtGF

hj
u

duu
hjhjtGFu

sGFu

hjtGF

sGF

hj

+
−=

+
=

+−+−=

=

+
+−

−

−

−

−
�

)()( 11)(

)(

)(

)(

1

1

1

1

1

 we obtain 

 
 
 



 230 

 

( ) ( )( ) ×��
�

�
�
�
�

�
−��

�

�
��
�

� −
+

−
+−

= � � �
+−+−

−

=

1

0 0

11

0

)()(
)1(

)1,(
1t

hjhj
jn

h

h

sGFtGF
h

jn

hjjnjβ
   

    dsdttsts
bmaba

m bmaba −−−− −−
−−−−

)1()(
)!()!1()!1(

! 11 .  

 

Result 4.27: Probability of a signal - conditional 

 

A signalling event occurs when ):():( manj XY <  or  ):():( mbnj XY > . 
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Result 4.28: Probability of a signal - unconditional 
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Result 4.29: Probability of a false alarm - conditional 
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Follows immediately from Result 4.27, since FG = .
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Result 4.30: Probability of a false alarm - unconditional 
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Follows immediately from Result 4.28, since FG =  and therefore ssFFsGF == −− )()( 11  
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Result 4.31: Run-length distribution - conditional 
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Result 4.32: Average run-length - conditional 
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The second expression follows immediately from the geometric expansion of 1)),(1( −− zxp  

for 1),( <zxp . 

 

Result 4.33: Run-length distribution - unconditional 
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By taking all the constants out of the integral sign and simplifying by setting hjhj uuu +−− = 11  

we obtain 
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By integrating 
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Result 4.34: In-control run-length distribution 
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Recall that the reference sample of size m , mXXX ,...,, 21 , is available from an in-

control process with a continuous cdf, )(xF .  The plotting statistic h
njY ):(  is the thj  order 

statistic from the thh  Phase II sample of size hn . Let )(yG h  denote the cdf of the distribution 

of the thh  Phase II sample. A process is said to be in-control at stage h  when FG h = .  

Assume that the Phase II samples are all of the same size, n , so that the subscript h  can be 

suppressed. Therefore, a process is said to be in-control when FG = . Therefore, the in-

control run length distribution is obtained by setting FG =  into the equation for the out-of-

control run length distribution. 

 

The out-of-control run length distribution for the two-sided chart is given by 

 )()1()( ** kDkDkNP −−==    for   ,...3,2,1=k ,   1)0(* =D   

and  (4.20) 
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Therefore, the in-control run length distribution for the two-sided chart is obtained by setting 

FG =  into equation (4.20) and we obtain 
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Result 4.35: Out-of-control average run-length - unconditional 
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Let δUARL  denote the unconditional average run length, where δ  refers to the out-of-

control case. To derive an expression for the δUARL , recall that 
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Finally, we have that (from the second expression in Result 4.32) 
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Result 4.36: In-control average run-length - unconditional 
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Let 0UARL  denote the unconditional average run length, where 0 refers to the in-

control case. To derive an expression for the 0UARL , recall that the in-control run length 

distribution for the two-sided chart is given by 
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Finally, we have that 
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4.1.10. Run-length distribution and ARL under some alternatives  

 

In the nonparametric setting, we consider, more generally, monitoring the center value 

or the location parameter and/or a scale parameter of a process. The location parameter 

represents a typical value and could be the mean or the median or some other percentile of the 

distribution; the latter two are especially attractive when the underlying distribution is 

skewed. When the underlying distribution is symmetric, the mean and the median are the 

same. Also in the nonparametric setting, the processes are implicitly assumed to follow (i) a 

location model, with a cdf )( θ−xF , where θ  is the location parameter or (ii) a scale model, 

with a cdf �
�

�
�
�

�

τ
x

F , where )0(>τ is the scale parameter.  Even more generally, one might 

consider (iii) the location-scale model with cdf �
�

�
�
�

� −
τ

θx
F , where θ  and τ  are the location 

and the scale parameter, respectively. 

 

Recall that the reference sample is available from an in-control process with a continuous 

cdf, )(xF , and that )( yG  denotes the cdf of the distribution of the Phase II sample. The run 

length distribution depends on F  and G , through the function 1−= GFψ . A process is said 

to be in-control when FG = . In this case ( ) ( ) uuFFuFGu === −− )()()( 11ψ . 
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4.1.10.1. Location alternatives 

 

)()( 1θ−= xHxF  and )()( 2θ−= xHxG , where H  is a continuous cdf, ℜ∈x  and 

ℜ∈21 ,θθ , ))(()( 1
21 uHHu −+−= θθψ . For example, let both F and G be normally 

distributed with a change in the mean, i.e. )()( xxF Φ=  and )()( θ−Φ= xxG . But )(uψ  

))(( 1 uFG −= (by definition) and therefore )(uψ ))(( 1 θ−ΦΦ= − u . 

 

4.1.10.2. Scale alternatives 
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4.1.10.3. Location-scale alternatives 
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4.1.10.4. Lehmann alternatives 

 

 )()( xFxG δ= , where ℜ∈x  and +ℜ∈δ , δψ uu =)( . For example, let uxF =)(  and 

δ))(()( xFxG = . But )(uψ ))(( 1 uFG −=  (by definition) and therefore =)(uψ  

δδ uuFF =− )))((( 1 . 

 

• For :1=δ  )()( xFuu ==ψ . 

• For :2=δ  )()( 22 xFuu ==ψ . 

 

4.1.10.5. Proportional hazards alternatives 

 
γ))(1(1)( xFxG −−= , where ℜ∈x  and +ℜ∈γ , γψ )1(1)( uu −−= . For example, let 

uxF =)(  and γ))(1(1)( xFxG −−= . But )(uψ ))(( 1 uFG −=  (by definition) and therefore 

=)(uψ  γγ )1(1)))((1(1 1 uuFF −−=−− − . 

 

4.1.10.6. Summary 

 

Although a lot of research has been done in the last few years regarding Lehmann and 

proportional hazard alternatives (see for example Van der Laan and Chakraborti (1999)), 

more remains to be done. Van der Laan and Chakraborti (1999) showed that the power of a 

precedence test can be determined for both the Lehmann and proportional hazards 

alternatives. The body of literature on Lehmann and proportional hazards alternatives is 

growing. However, in our opinion, a discussion on this topic is better postponed for the 

future. 

 

4.2. The Shewhart-type control chart with runs-type signalling rules 

 

4.2.1. Introduction 

 

Chakraborti, Eryilmaz and Human (2006) considered enhancing the precedence charts 

with 2-of-2 type signalling rules. The 2-of-2 DR and 2-of-2 KL rules were defined previously 

(see Section 3.2). Recall that the 2-of-2 KL chart signals when two of the most recent charting 
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statistics both fall either on or above or on or below the control limits, whereas the 2-of-2 DR 

chart signals when the charting statistics fall either both on or above or both on or below or 

one on or above (below) and the next one on or below (above) the control limits. We illustrate 

these procedures using the Montgomery (2001) piston ring data. 

 

4.2.2. Example 

 

Example 4.1 

A sign-like control chart based on the Montgomery (2001) piston ring data 

 

We illustrate the sign-like control charts using a set of data from Montgomery (2001, 

Tables 5.1 and 5.2) on inside diameters of piston rings manufactured by a forging process. 

Table 5.1 of Montgomery (2001) contains 25 retrospective or Phase I samples, each of size 

five, that were collected when the process was thought to be in-control. When working with 

individual observations, we have 125525 =× , i.e. 125=m , individual observations. Table 

5.2 of Montgomery (2001) contains 15 prospective or Phase II samples, each of five 

observations.  

 

In order to implement the control charts, the charting constants are needed. Generally, 

one finds the chart constants so that a specified 0ARL , such as 500 or 370, is obtained. For 

the precedence type charts, symmetric control limits are used so that 1+−= amb  and only 

one charting constant a  )1(≥  needs to be found. Possible control limits for the three charts 

are shown in Table 4.2 for 125=m , 5=n  and 3=j , along with the corresponding FAR and 

0ARL  values. The basic Shewhart-type precedence chart is referred to as the 1-of-1 chart. 
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Table 4.2.  In-control average run length ( 0ARL ), false alarm rate (FAR) and chart constant 

( a ) for the 1-of-1, 2-of-2 DR and 2-of-2 KL precedence charts when 125=m , 5=n  and 

3=j *. 

 1-of-1 2-of-2  DR 2-of-2  KL 
a 0ARL  FAR a 0ARL  FAR a 0ARL  FAR 
5 1315.98 0.001865 19 464.38 0.004020 19 819.47 0.002355 
6 695.09 0.002948 20 344.73 0.005195 20 608.81 0.003019 
7 413.80 0.004358 21 260.69 0.006627 21 460.54 0.003823 
8 267.40 0.006164 22 200.46 0.008356 22 354.09 0.004788 

 

Thus, for an 0ARL  of 500, one can take 7=a  and 119=b  so that the control limits 

for the 1-of-1 precedence chart are the 7th and the 119th ordered values of the reference 

sample. Thus 984.73ˆ
)125:7( == XLCL  and 017.74ˆ

)125:119( == XLCU , which yield an in-

control average run length of 413.80 and a FAR of 0.0044.  A plot of the sample medians for 

the 1-of-1 chart is shown in Figure 4.3. It is seen that the 1-of-1 precedence chart signals on 

the 12th sample in the prospective phase.  

 

 
Figure 4.3. 1-of-1 Precedence chart for the Montgomery (2001) piston ring data. 

 

                                                 
* Table 4.2 appears in Chakraborti, Eryilmaz and Human (2006), Table 3. 
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For the 2-of-2 DR chart, take 19=a  so that 107119125 =+−=b  and the resulting 

limits, 992.73ˆ
)125:19( == XLCL  and 012.74ˆ

)125:107( == XLCU , yield an 0ARL  and FAR of 

464.38 and 0.0040, respectively. Note however that if one chooses 20=a  so that 106=b , 

the control limits are )125:20(
ˆ XLCL =  and )125:106(

ˆ XLCU =  and the 0ARL  decreases to 344.73, 

whereas the FAR slightly increases to 0.0052.  The 2-of-2 DR chart is shown in Figure 4.4. 

 

 
Figure 4.4. 2-of-2 DR precedence chart for the Montgomery (2001) piston ring data. 

 

For the 2-of-2 KL chart take 21=a  so that 105121125 =+−=b  so that 

992.73ˆ
)125:21( == XLCL  and 011.74ˆ

)125:105( == XLCU , and this yields an 0ARL  of 460.54 

and a FAR of 0.0038, respectively. This 2-of-2 KL chart is almost identical to the DR chart in 

Figure 4.4.  
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Figure 4.5. 2-of-2 KL precedence chart for the Montgomery (2001) piston ring data. 

 

Both the 2-of-2 DR and KL charts signal on the 10th sample in the prospective phase.  

Note, however, that the achieved FAR values for all three charts are much larger than the 

nominal FAR of 0.0027.   

 

4.2.3. Summary 

 

In this chapter we examined sign-like control charts with runs-type signalling rules. 

We illustrated these procedures using the piston ring data from Montgomery (2001) to help 

the reader to understand the subject more thoroughly. There are many advantages to using 

these nonparametric charts (see Section 1.4). Chakraborti, Eryilmaz and Human (2006) draw 

attention to two advantages in particular, namely, that these charts can be applied as soon as 

the required order statistics are observed (recall that both the control limits and the charting 

statistic are based on order statistics), whereas for the Shewhart X  charts one needs the full 

dataset to calculate the average. Moreover, these charts can be adapted to and applied in the 

case of ordinal data. As a result Chakraborti, Eryilmaz and Human (2006) recommend that 

these charts be used in practice. 
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Chapter 5: Signed-rank-like charts 
 

5.1. The Shewhart-type control chart 

 

5.1.1. Introduction 

 
The statistics used in nonparametric control charts are mostly signs, ranks and signed-

ranks and related to nonparametric procedures, such as the Wilcoxon signed-rank test and the 

Mann-Whitney-Wilcoxon rank-sum test. When considering nonparametric tests based on 

ranks, such tests deal with the ranking of independent, identically distributed (iid) random 

variables (under the assumption that the process is in-control). In Chapter 5 we consider 

nonparametric tests that involve ranking random variables that are exchangeable (again, this 

holds under the assumption that the process is in-control), meaning that each possible ranking 

is equally likely. Randles and Wolfe (1979) state that the term rank-like is used to describe a 

type of test procedure where the variables that are ranked are not the original observations, 

but are, instead, functions of them. The term rank-like was first introduced by Moses (1963).  

Moses’s rank-like test is a nonparametric test for comparing differences in dispersion between 

two samples in which the medians are not equal. This requires randomly allocating the sample 

observations into two subgroups, ranking the subgroups according to their dispersion indexes 

and calculating the ranks sums for each subgroup. It should be noted that although Moses’s 

rank-like test uses rankings of iid random variables (under the assumption that the process is 

in-control), these variables are not the original observations, but instead, functions of them. 

Bakir (2006) considered what are called signed-rank-like (SRL) statistics and used these to 

construct distribution-free charts. He uses the median of a reference sample (taken when the 

process was operating in-control) to estimate the unknown in-control process center.  

 
5.1.2. Definition of the signed-rank-like test statistic 

 
Assume that a reference sample of size 1>m , mXXX ,...,, 21 , is available from an in-

control process with an unknown continuous cdf )(xF . Let inii YYY ,...,, 21  , ,...,2,1=i  denote 

the thi   test sample of size n . In case U the median of the in-control distribution (assumed to 

be symmetric) is unknown and can be estimated by the median of a reference sample, say M. 
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Let *
ijR  denote the rank of Myij −  within the subgroup ( )MyMy ini −− ,...,1  for 

...3,2,1=i . *
ijR  can be calculated using  

 |)|||(1
1

* MyMyIR ij

n

k
ikij −<−+= �

=

 for nj ,...,2,1=  (5.1) 

where I is the indicator function defined by 0,1)( =xI  if x  is true or false.  
 

The charting statistic is given by 

 ( ) *

1
ij

n

j
iji RMysignSRL �

=
−=   for  ...3,2,1=i  (5.2) 

where )(xsign  = -1, 0, 1 if 0<x , 0= , 0> . The charting statistic, iSRL ,  is a direct analog of 

the plotting statistic iSR  used in case K. If the charting statistic iSRL  falls between the two 

control limits, that is, UCLSRLLCL i << , the process is considered to be in-control. If the 

charting statistic iSRL  falls on or outside one of the control limits, that is LCLSRLi ≤  or 

UCLSRLi ≥ , the process is considered to be out-of-control. 

 
Example 5.1 

A Shewhart-type signed-rank-like statistic for the Montgomery (2001) piston ring data 

 

We illustrate the Shewhart-type signed-rank-like chart using a set of data from 

Montgomery (2001; Tables 5.1 and 5.2) on the inside diameters of piston rings manufactured 

by a forging process. Table 5.1 of Montgomery (2001) contains the reference sample of size 

125=m  (see example 4.1 for an explanation of why m  is equal to 125 (and not 25 like some 

of the earlier examples) and the median of this reference sample equals 74.001, i.e. 

001.74=M .   

 

Panel a of Table 5.1 exhibits the individual observations of 15 independent samples, 

each of size 5 i.e. 5=n . The absolute deviations Myij −  and ( )Mysign ij −  are shown in 

panel b and panel c of Table 5.1, respectively. The rank *
ijR  and the ( )Mysign ij − *

ijR  values 

are shown in panel a and panel b of Table 5.2, respectively. Panel c of Table 5.2 holds the 

SRL-values i.e. iSRL  for 15,...,3,2,1=i . 
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Table 5.1. Data and calculations for the signed-rank-like chart.* 
 

Panel a  Panel b Panel c 

 
Sample 
number 

 
1iy  2iy  3iy  4iy  5iy  

     
     

1 74.012 74.015 74.030 73.986 74.000 0.011 0.014 0.029 0.015 0.001 1 1 1 -1 -1 

2 73.995 74.010 73.990 74.015 74.001 0.006 0.009 0.011 0.014 0.000 -1 1 -1 1 0 

3 73.987 73.999 73.985 74.000 73.990 0.014 0.002 0.016 0.001 0.011 -1 -1 -1 -1 -1 

4 74.008 74.010 74.003 73.991 74.006 0.007 0.009 0.002 0.01 0.005 1 1 1 -1 1 

5 74.003 74.000 74.001 73.986 73.997 0.002 0.001 0.000 0.015 0.004 1 -1 0 -1 -1 

6 73.994 74.003 74.015 74.020 74.004 0.007 0.002 0.014 0.019 0.003 -1 1 1 1 1 

7 74.008 74.002 74.018 73.995 74.005 0.007 0.001 0.017 0.006 0.004 1 1 1 -1 1 

8 74.001 74.004 73.990 73.996 73.998 0.000 0.003 0.011 0.005 0.003 0 1 -1 -1 -1 

9 74.015 74.000 74.016 74.025 74.000 0.014 0.001 0.015 0.024 0.001 1 -1 1 1 -1 

10 74.030 74.005 74.000 74.016 74.012 0.029 0.004 0.001 0.015 0.011 1 1 -1 1 1 

11 74.001 73.990 73.995 74.010 74.024 0.000 0.011 0.006 0.009 0.023 0 -1 -1 1 1 

12 74.015 74.020 74.024 74.005 74.019 0.014 0.019 0.023 0.004 0.018 1 1 1 1 1 

13 74.035 74.010 74.012 74.015 74.026 0.034 0.009 0.011 0.014 0.025 1 1 1 1 1 

14 74.017 74.013 74.036 74.025 74.026 0.016 0.012 0.035 0.024 0.025 1 1 1 1 1 

15 74.010 74.005 74.029 74.000 74.020 0.009 0.004 0.028 0.001 0.019 1 1 1 -1 1 

 

                                                 
* See SAS Program 10 in Appendix B for the calculation of the values in Table 5.1. 
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Table 5.2. Calculations for the signed-rank-like chart*. 
Panel a  Panel b Panel c 

 
Sample 
number 

 

*
1iR  *

2iR  *
3iR  *

4iR  *
5iR  

     

iSRL  

1 2 3 5 4 1 2 3 5 -4 -1 5 

2 2 3 4 5 1 -2 3 -4 5 0 2 

3 4 2 5 1 3 -4 -2 -5 -1 -3 -15 

4 3 4 1 5 2 3 4 1 -5 2 5 

5 3 2 1 5 4 3 -2 0 -5 -4 -8 

6 3 1 4 5 2 -3 1 4 5 2 9 

7 4 1 5 3 2 4 1 5 -3 2 9 

8 1 2.5 5 4 2.5 0 2.5 -5 -4 -2.5 -9 

9 3 1.5 4 5 1.5 3 -1.5 4 5 -1.5 9 

10 5 2 1 4 3 5 2 -1 4 3 13 

11 1 4 2 3 5 0 -4 -2 3 5 2 

12 2 4 5 1 3 2 4 5 1 3 15 

13 5 1 2 3 4 5 1 2 3 4 15 

14 2 1 5 3 4 2 1 5 3 4 15 

15 3 2 5 1 4 3 2 5 -1 4 13 

 
The control limits are chosen to give a certain false alarm rate or in-control ARL . A 

symmetric two-sided chart is obtained by choosing UCLLCL −= . For 5=n , the control 

limits for the signed-rank-like chart are set at 15± . These control limits yield an in-control 

ARL  of 16 and a FAR  of 0.0626 (these values were obtained by the use of a simulation study 

(see SAS Program 6 in Appendix B) where 500=m  and 5=n ). With such a small in-control 

average run length, many false alarms will be signalled by this chart leading to possible loss 

of time and resources. The chart is shown in Figure 5.1 with control limits at 15± . 

 

                                                 
* See SAS Program 10 Appendix B for the calculation of the values in Table 5.2. 
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Figure 5.1. Shewhart-type signed-rank-like control chart for Montgomery (2001) piton ring 

data. 
 

Observations 3, 12, 13 and 14 lie on the upper control limit which indicates that the 

process is out-of-control starting at sample 3. It appears most likely that the process median 

has shifted upwards from the target value of 74mm. Corrective action and a search for 

assignable causes is necessary. 

 

5.1.3. Distribution-free properties 

 

We want to establish that the charting statistic iSRL  is distribution-free. If the latter is 

true, then the signed-rank-like chart based on the iSRL  statistic will be distribution-free. To 

establish that iSRL  is distribution-free, we first have to look at some properties. Randles and 

Wolfe (1979) provided various definitions and theorems that are useful in this text.  

 

Definition 1 

(See Definition 1.3.1. of Randles and Wolfe (1979), pg. 13) 

 

Two random variables S and T are said to be equal in distribution if they have the 

same cdf. To denote ‘equal in distribution’ we use the notation TS
d
= . 
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Definition 2 

(See Definition 1.3.6 of Randles and Wolfe (1979), pg. 15) 

 

A collection of random variables nXXX ,...,, 21  is said to be exchangeable if for every 

permutation ( )nααα ,...,, 21  of the integers ),...,2,1( n , ( ) ( )
n

XXXXXX
d

n ααα ,...,,,...,,
2121 =  . 

 

Theorem 1 

(See Theorem 1.3.7 of Randles and Wolfe (1979), pg. 16) 

 

If YX
d
=  and )(⋅U  is a (measurable) function (possibly vector valued) defined on the 

common support of these random variables, then )()( YUXU
d
= . 

 

Theorem 2 

(See Theorem 11.2.3 of Randles and Wolfe (1979), pg. 356) 

 

Let ( )ipiii XXXX ,...,, 21= , ni ,...,2,1=  be a random sample from some p-variate 

continuous distribution. Let )(⋅g  be any function of n p-vectors that is symmetric in its 

arguments. Let ),( ⋅⋅h  be any real-valued function of a p-tuple and the function values of )(⋅g  

and define the random variables ( )),...,(, 1 nii XXgXhW = , ni ,...,2,1= . Then nWWW ,...,, 21  

are exchangeable random variables, i.e. ),...,,(),...,,(
2121 n

WWWWWW
d

n ααα=  where 

( )nααα ,...,, 21  is any permutation of ),...,2,1( n . 

 

Theorem 2 can be generalized to complement our problem. Suppose 

( ) FXXXXX m ~,...,, 211 ==  and ( ) GYYYYX n ~,...,, 212 ==  are independent random 

samples and F and G are continuous distributions. Let )(⋅g  be a function of X  that is 

symmetric in its arguments and let ),( ⋅⋅h  be any real-valued function of Y  and the function 

values of )(⋅g . Then define ( ) ( )),...,(,)(, 1 mjjj XXgYhXgYhW ==  for nj ,...,1= . Then, 

from Theorem 2, we have that nWWW ,...,, 21  are exchangeable random variables when GF = . 
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Corollary 1 

(See Corollary 2.4.5 of Randles and Wolfe (1979), pg. 50) 

 

Let ),( *RS Ψ  be a statistic that depends on the observations nXXX ,...,, 21  only 

through  nΨΨΨ ,...,, 21  and *R . Then the statistic )(⋅S  is distribution-free over Θ , the 

collection of joint distributions of n iid continuous random variables, each symmetrically 

distributed about zero. 

 

Corollary 2 

(See Corollary 11.2.5 of Randles and Wolfe (1979), pg. 357) 

 

Let nWWW ,...,, 21  be defined as in Theorem 2 and let *
iR  denote the rank of iW  among 

nWWW ,...,, 21 . If ( ) 0== ji WWP  for every ji ≠ , then ( )
!

1*

n
rRP ==  for every r , a 

permutation of the integers ( )n,...,1 . Thus any statistic that is a function of the sample 

observations nXX ,...,1  only through the ranks ** ,..., ni RR  is nonparametric distribution-free 

over the class of all  p-variate continuous distribution. 

 

Lemma 1 

(See Lemma 2.4.2 of Randles and Wolfe (1979), pg. 49) 

 

Let Z  be a continuous random variable with a distribution that is symmetric about 0. 

Then the random variables Z  and )(ZΨ=Ψ  are stochastically independent. 

 

Establishing that the charting statistic SRLi is distribution-free for an in-control process 

 

The first step in establishing that the charting statistic iSRL  is distribution-free, is by 

proving that when the process is in-control, i.e. GF = , nVVV ,...,, 21  are exchangeable random 

variables, where jV  is defined as MYV jj −= , nj ,...,2,1= , and M  is the median of 

mXX ,...,1 . The proof to this follows from Theorem 2 by setting ( ) MXXgXg m == ),...,( 1  

and =jW  ( ) MYXXgYh jmj −=),...,(, 1 . 
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The second step in establishing that the charting statistic iSRL  is distribution-free, is 

by proving that when GF = , nUUU ,...,, 21  are exchangeable random variables, where jU  is 

defined as ( )MYsignU jj −= , nj ,...,2,1= . The proof to this follows from Theorem 2 by 

setting ( ) MXXgXg m == ),...,( 1  and ( ) ( )MYsignXXgYhW jmjj −== ),...,(, 1 . 

 

The next step is to prove that when GF = , the joint distribution of nUUU ,...,, 21  is 

distribution-free. To prove this we need to keep two things in mind. The first being that 

( )
2
1

0or  1 ==jUP  since ( )MY j −  is symmetric about zero when GF = . The second fact to 

recall is that nUUU ,...,, 21  are exchangeable when GF = . The proof follows 

straightforwardly by combining these two facts. 

 

In addition, when GF = , ( )MYsignU jj −=  and MYV jj −=  for nj ,...,2,1= , are 

independent random variables. The proof follows from Lemma 1, since the distribution of 

( )MY j −  is symmetric about zero when GF = . 

 

Next, we define ),...,,( **
2

*
1

*
nRRRR =  where �

=

<+=
n

k
jkj VVIR

1

* )(1  

( )�
=

−<−+=
n

k
jk MYMYI

1

||||1  for nj ,...,2,1=  (note that *
jR  is directly comparable to *

ijR  in 

equation (5.1)). Therefore,  *R  is the vector of ranks of nVVV ,...,, 21 , i.e. *R  is the vector of 

ranks of ||...,|,||,| 21 MYMYMY n −−− . We can prove, using Corollaries 1 and 2, that when 

GF = , any statistic that depends on the observations only through nUUU ,...,, 21 , i.e. 

)(...,),(),( 21 MYsignMYsignMYsign n −−− , and *R  is distribution-free over the class of 

continuous symmetric distributions. Consequently, the statistic ( ) *

1
ij

n

j
iji RMysignSRL �

=

−=  is 

distribution-free. Since iSRL  is now known to be distribution-free, so is the signed-rank-like 

chart. 
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5.1.4. Simulation study 

 

Bakir (2006) performed a simulation study where the robustness of the standard 

Shewhart X  chart and that of the proposed Shewhart signed-rank-like chart are compared 

using the contaminated normal distribution. The contaminated normal distribution has been 

considered by various authors in an SPC context (see, for example, Wu, Zhao and Wang 

(2002) and Sheu and Yang (2006)). The cdf of the contaminated normal distribution is given 

by 

 ),()1,()1(),( 22 σθθσθ Φ+Φ−=Φ ppp  (5.3) 

where )1()0( ≤≤ p  denotes the percentage of contamination, 2σ  (>0) denotes the severity of 

contamination and Φ  denotes the cdf of the normal distribution, respectively. It should be 

noted that if 0=p  and 0=θ  equation (5.3) reduces to the standard normal distribution. 

Bakir (2006) proved, through simulation, that if a process is contaminated by outliers it is ill-

advised to use the standard Shewhart X  chart, especially if the percentage of contamination 

( p ) and/or the severity of contamination ( 2σ ) is high, i.e. 01.0>p  and/or 42 >σ . Bakir 

concludes that the Shewhart X  chart is not robust against outliers, whereas the proposed 

Shewhart signed-rank-like chart is robust against outliers for all possible combinations of 

),( 2σp . This is what we expected to find: the Shewhart signed-rank-like chart wouldn’t be 

affected by outliers, since the median from the reference sample, the signs from the test 

sample and the ranks from the test sample aren’t affected by outliers (recall that 

*

1

)( ij

n

j
iji RMysignSRL �

=

−= ). 

 

Table 5.3 shows the simulated values of the 0ARL ’s of the two-sided Shewhart X  

chart for all possible combinations of ),( 2σp  with =p 0.01, 0.05, 0.10, 0.15, 0.20, 1 and 

2σ = 4, 9, 16. These values are graphically illustrated in Figure 5.2. These simulated values 

are for a stable process with the presense of sporadic outliers. The case where the process is 

operational with no outliers, i.e. 0=p , is also given for reference. In these simulation studies 

500 reference samples, each of size 39=m , were generated from the standard normal 

distribution. In addition, 500 test samples, each of size 10=n , were generated from the 

contaminated normal distribution.  

 

 
 
 



 254 

Table 5.3. Simulated values of the 0ARL ’s for the two-sided Shewhart X  chart*. 
Severity of contamination 

42 ====σσσσ  92 ====σσσσ  162 ====σσσσ  
Level of severity 8.2/ ±±±±====UCLLCL  

Low Moderately 
high High 

0====p  
(0%) 

None 163 163 163 

01.0====p  
(1%) 

Low 159 115 70 

05.0====p  
(5%) 

90 39 21 

10.0====p  
(10%) 

Moderately 
high 

61 22 12 

15.0====p  
(15%) 

41 15 8 

Pe
rc

en
ta

ge
 o

f c
on

ta
m

in
at

io
n 

20.0====p  
(20%) 

L
ev

el
 o

f  
p 

High 
33 11 6 

 
Intuitively, we would expect the ARL  to decrease (which would lead to an increase in 

the number of false alarms) as the percentage and/or severity of contamination increases. This 

is evident by looking at the lowest ),( 2σp  combination, i.e. =),( 2σp  (0, 4), opposed to the 

highest ),( 2σp  combination, i.e. =),( 2σp  (0.20, 16). The former shows that the ARL  

equals 163 when the process is operational with no outliers, whereas the latter shows that the 

ARL  equals 6 when both the percentage and severity of contamination are high. These 

numbers indicate that there should be about 27 times as many false alarms when =),( 2σp  

(0.20, 16) as opposed to )4,0(),( 2 =σp . 

 

Next, we look at what happens when both p  and 2σ  are low. This is done by looking 

at the =),( 2σp  (0.01, 4) combination compared to the =),( 2σp  (0, 4) combination. The 

latter shows that the ARL equals 163 when the process is operational with no outliers, whereas 

the former shows that the ARL equals 159 when both the percentage and severity of 

contamination are low. These numbers indicate that there should be about the same number of 

false alarms when =),( 2σp  (0.01, 4) as opposed to )4,0(),( 2 =σp . 

 

                                                 
* Table 5.3 appears in Bakir (2006), page 751, Table 1. 
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Next, we look at what happens when p  is low, but 2σ  is moderately high. This is 

done by looking at the =),( 2σp  (0.01, 9) combination where the ARL has dropped to 115. 

This indicates that there should be about 1.42 times as many false alarms as the expected ARL 

of 163. Subsequently, we look at what happens when p  is moderately high, but 2σ  is low. 

This is done by looking at the =),( 2σp  (0.05, 4) combination where the ARL has dropped to 

90. This indicates that there should be about 1.81 as many false alarms as the expected  ARL 

of 163. The rest of table can be interpreted similarly. The main conclusion that can be drawn 

from Table 5.3 is that it is ill-advised to use the Shewhart X  chart when a process is 

contaminated by outliers, especially if the percentage of contamination ( p ) and/or the 

severity of contamination ( 2σ ) is high, i.e. 01.0>p  and/or 42 >σ . 
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Figure 5.2. Simulated 0ARL  values for the two-sided Shewhart X  chart for various 

values of p and 2σ . 
 

5.1.5. Comparisons 

 

The first comparison between the standard Shewhart X  chart and the proposed 

Shewhart signed-rank-like chart. 
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Table 5.4. Simulated values of the ARL for the two-sided Shewhart X  control chart ( CCX ) and the Shewhart signed-rank-like control chart 
( CCSRL )*. 
 

 Severity of contamination 
 42 ====σσσσ  92 ====σσσσ  162 ====σσσσ  
 Level of severity 
 Low Moderately high High 

 
01.0====p  

(1%) 
10.0====p  

(10%) 
01.0====p  

(1%) 
10.0====p  

(10%) 
01.0====p  

(1%) 
10.0====p  

(10%) 
Control 

chart CCX  CCSRL  CCX  CCSRL  CCX  CCSRL  CCX  CCSRL  CCX  CCSRL  CCX  CCSRL  

UCLLCL /  85.2±±±±  53±±±±  25.3±±±±  53±±±±  96.2±±±±  53±±±±  98.3±±±±  53±±±±  24.3±±±±  53±±±±  92.4±±±±  53±±±±  
0.0====θθθθ  170.0 166.0 165.0 166.0 167.4 166.0 166.7 166.0 164.6 166.0 167.0 166.0 
2.0====θθθθ  122.8 121.8 131.8 128.3 115.4 120.4 124.3 122.2 137.3 130.2 145.6 128.6 
4.0====θθθθ  43.9 50.9 59.8 54.4 56.4 60.7 65.4 66.2 60.6 61.7 88.3 65.0 
6.0====θθθθ  10.6 24.2 13.5 27.2 14.4 23.7 27.5 26.5 17.7 22.1 42.8 31.5 
8.0====θθθθ  3.5 11.1 5.4 10.6 4.2 9.3 11.9 10.3 6.7 8.4 22.6 11.3 
0.1====θθθθ  1.9 4.4 2.8 5.5 2.1 4.7 5.3 5.6 3.5 4.5 13.4 5.9 

                                                 
* Table 5.4 appears in Bakir (2006), page 754, Table 3. 
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Bakir (2006) compared the proposed Shewhart signed-rank-like chart to the Shewhart 

X  chart using the contaminated normal distribution (the observations are normally 

distributed with occasional outliers). Both charts are designed to have approximately the same 

in-control average run length to ensure fair comparison between the charts. The out-of-control 

average run lengths were computed, using these chart constants, for various values of the 

median θ , the percentage of contamination (p) and the severity of contamination ( )2σ . We 

typically want the δARL  to be small, i.e. the chart with the smallest δARL  will be the 

preferred chart.  

 

From Table 5.4 we see that the median ranges from 0 (the in-control value) to 1 in 

increments of 0.2; the severity of contamination ranges from low to high, that is, 42 =σ  

(low), 92 =σ  (moderately high) and 162 =σ  (high); and the percentage of contamination is 

taken to be 1% (low) and 10% (moderately high), respectively. 

 

We start by investigating the lowest percentage and severity of contamination levels 

for the smallest process shift of 0.2. The δARL  of the Shewhart X  chart (=122.8) is almost 

equivalent to the δARL  of the Shewhart signed-rank-like chart (=121.8). Therefore, for a low 

percentage and severity of contamination and a small process shift, both charts are performing 

equally well. More generally, for low to moderately high levels of  p (= 0.01 or 0.1) and 2σ  

(= 4 or 9) and small process shifts ( =θ 0.2 or 0.4), the δARL  values of the Shewhart signed-

rank-like chart are almost equivalent to the δARL  values of the Shewhart X  chart. 

 

In contrast, we investigate the highest percentage and severity of contamination for the 

largest process shift of 1. The δARL  of the Shewhart X  chart (=13.4) is higher than the 

δARL  of the Shewhart signed-rank-like chart (=5.9). Consequently, we see that the Shewhart 

signed-rank-like chart performs better than the Shewhart X  chart for a high percentage and 

severity of contamination and a large process shift. More generally, we find that for 1.0=p  

and 162 =σ  the δARL  values of the Shewhart X  chart are all higher than the δARL  values 

of the Shewhart signed-rank-like chart for all process shifts ( =θ 0.2, 0.4, 0.6, 0.8 and 1). As a 

result we conclude that the Shewhart signed-rank-like chart performs better than the Shewhart 

X  chart for high levels of  p and 2σ  over all process shifts. 
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It should be noted that there are various cases where the Shewhart X  chart performs 

better than the Shewhart signed-rank-like chart. An illustration of the latter is, for example, 

for low to moderately high levels of p (= 0.01 or 0.1), 42 =σ  and large process shifts 

( =θ 0.6, 0.8 and 1) the δARL  values of the Shewhart X  chart are lower than those of the 

Shewhart signed-rank-like chart. Hence, in some cases the Shewhart X  chart outperforms the 

Shewhart signed-rank-like chart and vice versa. Table 5.5 indicates which chart, between the 

Shewhart X  chart and the proposed signed-rank-like chart, is the preferred chart for various 

values of  p, 2σ  and θ . The term ‘comparable’ in Table 5.5 implies that the proposed signed-

rank-like chart is as efficient as the Shewhart X  chart. 

 

Table 5.5. Summary of the first comparison between the Shewhart X  chart and the proposed 

signed-rank-like chart*. 

 42 ====σσσσ  92 ====σσσσ  162 ====σσσσ  

01.0====p  

 
Small shifts: Comparable 
 
Large shifts: X  
 

 
Small shifts: Comparable 
 
Large shifts: X  

 
Small shifts: Comparable 
 
Large shifts: X  

10.0====p  

 
Small shifts: Comparable 
 
Large shifts: X  
 

 
All shifts:  
Comparable 

 
All shifts: 
Signed-rank-like chart 

 

The second comparison between the standard Shewhart X  chart and the proposed 

Shewhart signed-rank-like chart. 

 

The out-of-control ARL is examined for three distributions, namely, the Normal, 

Laplace and Cauchy distributions, respectively. Recall that we want the δARL  to be small in 

all cases. 

 

                                                 
* Small shifts refer to 2.0=θ  or 0.4, whereas large shifts refer to 8.0,6.0=θ  or 1. 
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Figure 5.3. The shapes of the three distributions under consideration. 

 
 
(i)    The Normal distribution 
 

 
For the Normal distribution we would expect the out-of-control performance of the 

Shewhart X  chart to be better than that of the Shewhart signed-rank-like chart. The chart 

constants for both the Shewhart signed-rank-like and Shewhart X  charts are chosen such that 

the in-control average run length is approximately equal ( 1640 ≈ARL ) for both charts: 

80.2/ ±=XUCLLCL  and 53/ ±=SRLUCLLCL . The out-of-control average run length 

values were computed, using these chart constants, for various values of the median θ . The 

median ranges from 0 (the in-control value) to 1 in increments of 0.2. The results are shown 

below in Figure 5.4. 
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Figure 5.4. Comparison of the Shewhart signed-rank-like chart with the Shewhart X  chart 

under Normal shift alternatives. 

 
When comparing the Shewhart signed-rank-like chart with the Shewhart X  chart 

under Normal shift alternatives we find that the Shewhart X  chart is performing better than 

the Shewhart signed-rank-like chart, since the out-of-control average run length values for the 

Shewhart X  chart are smaller than the out-of-control average run length values for the 

Shewhart signed-rank-like chart. However, it should be noted that the differences are small 

and it appears to fade away when the process is shifted from its in-control value of 0 to values 

greater than 0.8. 

 
(ii)    The Double Exponential distribution 
 

 
The Double Exponential distribution, also called the Laplace distribution, is 

comparable to the Normal distribution (since they are both symmetric around 0), but it has 

heavier tails (see Figure 5.3). As a result, there are higher probabilities associated with 

extreme values when working with the Double Exponential distribution as opposed to using 

the Normal distribution. The scale parameter λ  of the Double Exponential distribution is set 

equal to 2/1  so that the Double Exponential distribution has a standard deviation of 1.  For 

the Double Exponential distribution we would expect the out-of-control performance of the 

Shewhart signed-rank-like chart to be better than that of the Shewhart X  chart. The chart 

constants for both the Shewhart signed-rank-like and Shewhart X  chart are chosen such that 
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the in-control average run length is approximately equal ( 1500 ≈ARL ) for both charts: 

85.2/ ±=XUCLLCL  and  53/ ±=SRLUCLLCL . The results are shown below in Figure 5.5. 
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Figure 5.5. Comparison of the Shewhart signed-rank-like chart with the Shewhart X  chart 

under Double Exponential shift alternatives. 

 

When comparing the Shewhart signed-rank-like chart with the Shewhart X  chart 

under Double Exponential shift alternatives we find that the Shewhart signed-rank-like chart 

is performing better than the Shewhart X  chart, since the out-of-control average run length 

values for the Shewhart signed-rank-like chart are smaller than the out-of-control average run 

length values for the Shewhart X  chart. However, it should be noted that the differences are 

small and it appears to fade away when the process is shifted from its in-control value of 0 to 

values greater than 0.8.  

 

(iii)    The Cauchy distribution 
 

 
The scale parameter λ  of the Cauchy distribution is set equal to 0.2605 so that the 

Cauchy distribution has a probability of 0.95 to the left of 1.645 (which is also the case for the 

standard normal distribution). For the Cauchy distribution we would expect the out-of-control 

performance of the Shewhart signed-rank-like chart to be better than that of the Shewhart X  

chart. The chart constants for both the Shewhart signed-rank-like and Shewhart X  chart are 

chosen such that the in-control average run length is approximately equal ( 1640 ≈ARL ) for 
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both charts: 22/ ±=XUCLLCL  and  53/ ±=SRLUCLLCL .  The results are shown below in 

Figure 5.6. 
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Figure 5.6. Comparison of the Shewhart signed-rank-like chart with the Shewhart X  chart 

under Cauchy shift alternatives. 

 

When comparing the Shewhart signed-rank-like chart with the Shewhart X  chart 

under Cauchy shift alternatives we find that the Shewhart signed-rank-like chart is performing 

better than the Shewhart X  chart, since the out-of-control average run length values for the 

Shewhart signed-rank-like chart are smaller than the out-of-control average run length values 

for the Shewhart X  chart. It should be noted that these differences are large for all values of 

the median θ . 

 
In conclusion we found that the Shewhart signed-rank-like chart performs better than 

the Shewhart X  chart under heavy tailed distributions. In addition, recall that the Shewhart 

X  chart is not robust against outliers, whereas the proposed Shewhart signed-rank-like chart 

is, for the most part, robust against outliers. These are two key motivations to why the user 

should rather use the Shewhart signed-rank-like chart as opposed to using the Shewhart X  

chart.  
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Table 5.6. Summary of the second comparison between the Shewhart X  chart and the 

proposed signed-rank-like chart. 

Distribution Preferred control chart 
Normal Shewhart X  chart 
Double Exponential Shewhart signed-rank-like chart 
Cauchy Shewhart signed-rank-like chart 

 

5.1.6. The tabular CUSUM control chart 

 

Bakir (2006) proposed a tabular CUSUM signed-rank-like chart. Generally, the 

standardized upper one-sided CUSUM is given by 

 ],0max[ 1 kySS iii −+= +
−

+     for ,...3,2,1=i  (5.4) 

while the resulting standardized lower one-sided CUSUM is given by 

 ],0min[ 1 kySS iii ++= −
−

−     for ,...3,2,1=i  (5.5) 

or 

 ],0max[
*

1

*
kySS iii −−= −

−
−   for ,...3,2,1=i  (5.6) 

The two-sided standardized CUSUM is constructed by running the upper and lower one-sided 

standardized CUSUM charts simultaneously and signals at the first i  such that hS i ≥+  or 

hS i −≤− . 

 

The chart proposed by Bakir (2006) instead uses the cumulative sum of the statistic 

iSRL  (defined in (5.2)) with a stopping rule. A CUSUM signed-rank-like chart can be 

obtained by replacing iy  in expressions (5.4), (5.5) and (5.6) with iSRL . In other words, for 

the upper one-sided CUSUM signed-rank-like chart we use 

 ],0max[ 1 kSRLSS iii −+= +
−

+     for ,...3,2,1=i  (5.7) 

to detect positive deviations from zero. A signalling event occurs for the first i  such that 

hS i ≥+ .  

 

For a lower one-sided CUSUM signed-rank-like chart we use  

 ],0min[ 1 kSRLSS iii ++= −
−

−     for ,...3,2,1=i  (5.8) 

or 

 ],0max[
*

1

*
kSRLSS iii −−= −

−
−     for ,...3,2,1=i  (5.9) 
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to detect negative deviations from zero. A signalling event occurs for the first i  such that 

hS i −≤−  (if expression (5.8) is used) or hS i ≥−*
 (if expression (5.9) is used).    

 

The corresponding two-sided CUSUM chart signals for the first i  at which either one 

of the two inequalities is satisfied, that is, either hS i ≥+  or hS i −≤− . Starting values are 

typically chosen to equal zero, that is, 000 == −+ SS .  

 

A CUSUM signed-rank-like chart can also be constructed by replacing iy  in 

expressions (5.4), (5.5) and (5.6) with the standardized signed-rank-like statistic. 

 

Although Bakir (2006) provided the general idea of how to construct a CUSUM 

signed-rank-like control chart, he failed to do any simulation studies or to give any tables that 

can be used for the implementation of the chart. More research is necessary on CUSUM 

signed-rank-like control charts, for example, one could look at the implementation of the 

CUSUM signed-rank-like chart and study its performance. 

 

5.1.7. The EWMA control chart 

 

Bakir (2006) proposed an EWMA signed-rank-like chart. Generally, an EWMA 

control chart scheme accumulates statistics ,...,, 321 XXX with the plotting statistics defined as  

 1)1( −−+= iii ZXZ λλ  (5.10) 

where 10 ≤< λ  is a constant called the weighting constant. The starting value 0Z  is often 

taken to be zero. 

 

A nonparametric EWMA-type of control chart based on the signed-rank-like statistic 

can be obtained by replacing iX  in expression (5.10) with iSRL . Therefore, the EWMA 

signed-rank-like chart accumulates the statistics ,...,, 321 SRLSRLSRL  with the plotting 

statistics defined as  

 1)1( −−+= iii ZSRLZ λλ  (5.11) 

where 10 ≤< λ  and the starting value 0Z  could be taken to equal zero, i.e. 00 =Z . 
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 An EWMA signed-rank-like chart can also be constructed by replacing iX  in 

expression (5.10) with the standardized signed-rank-like statistic. 

 

Although Bakir (2006) provided the general idea of how to construct an EWMA 

signed-rank-like control chart, he failed to do any simulation studies or to give any tables that 

can be used for the implementation of the chart. More research is necessary on EWMA 

signed-rank-like control charts, for example, one could look at the implementation of the 

EWMA signed-rank-like chart and study its performance. 

 

5.1.8. Summary 

 

In this chapter we examined the Shewhart-type signed-rank-like chart proposed by 

Bakir (2006). We illustrated these procedures using the piston ring data from Montgomery 

(2001) to help the reader to understand the subject more thoroughly. The proposed chart is 

recommended when the process distribution is known to be heavy-tailed or to be 

contaminated by occasional outliers. We also briefly looked at CUSUM- and EWMA-type 

signed-rank-like charts. Although Bakir (2006) provided general ideas on how to construct 

CUSUM- and EWMA-type signed-rank-like control charts, he failed to do any simulation 

studies or to give any tables that can be used for the implementation of these charts. More 

research is necessary on CUSUM- and EWMA-type signed-rank-like control charts, for 

example, one could look at the implementation of these charts and study their performance. 
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Chapter 6: Mann-Whitney-Wilcoxon control charts 
 

6.1. The Shewhart-type control chart 

 

6.1.1. Introduction 

 

While the precedence chart is a step in the right direction, the precedence test is not the 

most popular or the most powerful of nonparametric two-sample tests. That honour goes to 

the Mann-Whitney test (see for example, Gibbons and Chakraborti, 2003). The Mann-

Whitney (hereafter MW) test (equivalent to the popular Wilcoxon rank-sum test) is a well-

known nonparametric competitor of the two-independent-sample t-test. The test is known to 

be more powerful than the precedence test for light tailed distributions and hence MW charts 

are expected to be more efficient for such cases. Of course, the MW chart is also distribution-

free and therefore has the same in-control robustness advantage as the precedence chart, 

namely that its in-control distribution is completely known. Park and Reynolds (1987) 

considered Shewhart-type control charts for monitoring the location parameter of a 

continuous process in case U. One of the special cases of their charts is the MW chart based 

on the Mann-Whitney-Wilcoxon (hereafter MWW) statistic. The control limits of these charts 

are established using Phase I reference data. However, they only considered properties of this 

chart when the reference sample size approaches infinity. Chakraborti and Van de Wiel 

(2003) considered the Shewhart-type MW chart for finite reference sample size, studied its 

properties, and provided tables for its implementation. These authors show that in some cases 

the MW chart is more efficient than the precedence chart.  

 

Assume that a reference sample of size m , mXXX ,...,, 21 , is available from an in-control 

process with an unknown continuous cdf )(xF . Let h
n

hh
h

YYY ,...,, 21 , ,...,2,1=h  denote the thh  

test sample of size hn . Let )(yG h  denote the cdf of the distribution of the thh  Phase II 

sample. )()( yGyG h =  h∀ , since the Phase II samples are all assumed to be identically 

distributed. Accordingly, the superscript h  can be suppressed from this point forward. For 

convenience, assume that the Phase II samples are all of the same size, n . The Mann-Whitney 

test is based on the total number of ( )YX ,  pairs where the Y -observation (Phase II sample) is 

strictly greater than the X -observation (Phase I sample).  
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6.1.2. Plotting statistic 

 

The Mann-Whitney statistic is defined to be 

 ijjiXY XYYXM >=  with ),( pairs ofnumber  the  (6.1)  

for mi ,...,2,1=  and nj ,...,2,1= . Expression (6.1) can be written as 

 ��
= =

>=
m

i

n

j
ijXY XYIM

1 1

)(  (6.2) 

where )( ij XYI >  is the indicator function, i.e. 

 
�
�
�

≤
>

=>
ij

ij
ij XY

XY
XYI

if0
if1

)( .  

There are a total of mn  ( )ji YX ,  pairs for each Phase II sample. Therefore, if all the Y -

observations are greater than the X -observations, XYM  would be equal to mn . On the other 

hand, if all the Y -observations are smaller than the X -observations, XYM  would be equal to 

0 . Therefore, we have that mnM XY ≤≤0 . For large values of XYM , that is, if a large 

number of the Y -observations are greater than the X -observations, this would be indicative 

of a positive shift from the X  to the Y  distribution. On the other hand, for small values of 

XYM , that is, if a large number of the Y -observations are smaller than the X -observations, 

this would be indicative of a negative shift from the X  to the Y  distribution.  

 

The proposed MW chart plots the XYM  statistics, that is, ,..., 21
XYXY MM , versus the 

test sample number. XYM  is referred to as the plotting statistic. The chart signals if the 

plotting statistic falls on or above the upper control limit (UCL ) or if the plotting statistic falls 

on or below the lower control limit ( LCL ). Since the in-control distribution of the plotting 

statistic, XYM , is symmetric about the mean 
2

mn
 (see Gibbons and Chakraborti (2003)), the 

control limits are taken to be symmetric. Because of symmetry, we have that 

)()( amnMPaMP XYXY −===  for the constant a  with mna ≤≤0 , so it is reasonable to 

take mnmn UmnL −=  where mnU  and mnL  denote the upper and lower control limits, 

respectively. If the plotting statistic XYM  falls between the control limits, that is, 

mnXYmn UML << , the process is declared to be in-control, whereas if the plotting statistic 
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XYM  falls on or outside one of the control limits, that is, if mnXY LM ≤  or mnXY UM ≥ , the 

process is declared to be out-of-control. 

 

6.1.3. Properties of the run-length distribution 

 

Result 6.1: Probability of a signal - conditional 

 

Let )(xpG  denote the probability of a signal with any test (Phase II) sample, given the 

reference sample ( ) ( )mm xxxXXX ,...,,,...,, 2121 =  (in short, xX = ). 

 

=)(xpG ( )mnYxG UMP ≥2   

 

( )
( ) ( )mnYxGmnYxG

GG

UMPLMP

xXPxp

≥+≤=
== |Signal)(

  

( ) ( )mnYxGmnYxG UMPUmnMP ≥+−≤=  

( )mnYxG UMP ≥= 2 .    
 

The last equality follows on account of symmetry (see Section 6.1.2). From Result 6.1 

it can be seen that the calculation of )(xpG  essentially requires the calculation of the upper-

tailed probability ( )mnYxG UMP ≥ . More detail on this point appears in Section 6.1.4. 

 

Result 6.2: Probability of no signal - conditional 

 

( ) ( )mnYxGGG UMPxpxXP ≥−=−== 21)(1|Signal No  

 

Result 6.3: Run-length distribution - conditional 

 

( ) ( ) ( ))()(1| 1 xpxpxXkNP G
k

G
−−===  for ,...3,2,1=k  

 

The conditional run length, denoted by xXN =| , will have a geometric distribution 

with parameter )(xpG , because all the Phase II samples are independent if we condition on 

the reference sample. A detailed motivation for using the method of conditioning is given by 
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Chakraborti (2000), but, in brief, the signalling events are dependent and by means of 

conditioning on the reference sample we don’t have to be concerned about the dependence. 

Consequently we have that 

xXN =|  ~ GEO ( )(xpG ) 

( ) ( ) ( ))()(1| 1 xpxpxXkNP G
k

G
−−===    for   ,...3,2,1=k  

Consequently, the cumulative distribution function (cdf) is found from 

( ) ( ) ( )�
=

−−==≤
k

i
G

i
G xpxpxXkNP

1

1 )()(1|    for   ,...3,2,1=k  

 

Result 6.4: Average run-length – conditional  

 

( )
)(

1
|

xp
xXNECARL

G
G ===  

 

Since the conditional run length, denoted by xXN =| , has a geometric distribution 

with parameter )(xpG , the conditional average run length is given by  

( )
)(

1
|

xp
xXNECARL

G
G === .  

 

Result 6.5: Average run-length – unconditional  

 

UARL ( ) )()()(),...,(),( 121 mm xdFxdFxGxGxG ��� �
∞

∞−

∞

∞−

= υ  

where 

υ  is some function of G  and mxxx ,...,, 21 . 
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�

�
		



�
=
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)()(
)(

1
1 m

G

xdFxdF
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��� �
∞

∞−

∞

∞−

= .  (6.3) 
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The second equality in (6.3) follows from extending the notion of expectation to the 

conditional framework. The third equality in (6.3) follows from Result 6.4. The fourth 

equality in (6.3) follows from the definition of expected values (see, for example, Bain and 

Engelhardt (1992)). 

 

From (6.3) it can be seen that the unconditional ARL  is an m -dimensional integral, 

since the reference sample is of size m . Equation (6.3) can be expressed differently by 

writing 
)(

1
xpG

 as ( ) ( ))(),...,(),()(),...,(),( 2121 mmjjj xGxGxGxYPxYPxYP υυ =<<< , 

where υ  is some function of G  and mxxx ,...,, 21 . By substituting 
)(

1
xpG

 in (6.3) with 

( ))(),...,(),( 21 mxGxGxGυ  we obtain 

 

UARL  

( ) )()()(),...,(),( 121 mm xdFxdFxGxGxG ��� �
∞

∞−

∞

∞−

= υ . (6.4) 

 

Recall that a process is said to be in-control when FG = . Therefore, the in-control 

(unconditional) ARL  is obtained by substituting FG =  into the equation for the 

unconditional ARL  given in (6.3) and we obtain the m -dimensional integral 

 )()(
)(

1
10 m

F

xdFxdF
xp

UARL ��� �
∞

∞−

∞

∞−

= , (6.5) 

where the subscript 0 refers to the in-control state. 

 

In the out-of-control case the unconditional ARL  is given by the m -dimensional integral 

 )()(
)(

1
1 m

G

xdFxdF
xp

UARL ��� �
∞

∞−

∞

∞−

=δ , (6.6) 

where δ  signifies a shift between F  and G .  
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Recall that 
)(

1
xpG

 was re-written as ( ))(),...,(),( 21 mxGxGxGυ  where υ  is some 

function of G  and mxxx ,...,, 21 . Similarly, 
)(

1
xpF

 can be re-written as 

( ))(),...,(),( 21 mxFxFxFυ  and we obtain 

 

( ) )()()(),...,(),( 121

0

mm xdFxdFxFxFxF

UARL

��� �
∞

∞−

∞

∞−

= υ
 

( ) mm duduuuu ��� �=
1

0

1

0
121 ,...,,υ  

m
U

dudu
up

��� �=
1

0

1

0
1)(

1
,  (6.7) 

by the probability integral transformation (see, for example, Gibbons and Chakraborti 

(2003)). The subscript U  refers to the uniform(0,1) distribution and )(upU  is the conditional 

probability of a signal at any test sample, given the reference sample, when the process is in-

control. 

 

Recall that for the in-control case, the distributions of both the reference and test 

samples can be assumed to be uniformly(0,1) distributed*, which shows that the unconditional 

ARL , for the in-control situation, of the MW chart does not depend on the underlying process 

distributions F  and G . The same argument can be used to show that the in-control run 

length distribution does not depend on the underlying process distributions F  and G , thus 

establishing that the proposed MW chart is distribution-free. 

 

We have to calculate the unconditional ARL , for the in-control situation, using (6.7) 

to implement the chart. Following this, we have to calculate the unconditional ARL , for the 

out-of-control situation, using (6.3) to evaluate chart performance. We run into two problems 

in doing so, that is, (i) we don’t have exact formulas for the signal probabilities )(xpG  and 

)(upU ; and (ii) it could be difficult and time-consuming estimating (6.3) and (6.7), since both 

                                                 
* For the in-control case, the distributions of both the reference and test samples can be assumed to be 
uniformly(0,1) distributed. This is due to the well-known probabitliy integral transformation (see, for example, 
Gibbons and Chakraborti (2003)). 
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unconditional average run length formulas (for the in-control and out-of-control situations, 

respectively) are m -dimensional integrals. 

 

Chakraborti and Van de Wiel (2003) proposed a possible solution to both of these 

problems. Their proposed solution proceeds in two steps. Firstly, fast computations (or 

approximations) of the signal probabilities are done. It should be noted that although the 

computation of )(xpG  will be discussed in detail (in the following section), the computation 

of )(upU  is omitted, since it follows similarly to the computation of )(xpG . Secondly, 

Monte Carlo simulation is applied to approximate the unconditional ARL ’s (for the in-control 

and out-of-control situations, respectively). The Monte Carlo estimates are given by 

 �
=

≈
K

i iG xpK
LRA

1 )(
11ˆ  (6.8) 

and 

 �
=

≈
K

i iU upK
LRA

1
0 )(

11ˆ  (6.9) 

where K  denotes the number of Monte Carlo samples, ),...,,( 21 imiii xxxx =  and 

),...,,( 21 imiii uuuu =  denote the thi  Monte Carlo sample, Ki ,...,2,1= , of which each element 

is taken from some specified F  for the LRA ˆ  (for the out-of-control situations) and from the 

uniform(0,1) distribution for the 0
ˆLRA  (for the in-control situation). 

 

 One concern is the size of K , that is, how may Monte Carlo samples should be used? 

Although larger sizes of K  can result in more accurate approximations and smaller Monte 

Carlo errors, using larger Monte Carlo samples may be more time-consuming. This concern 

will be addressed in Section 6.1.6. 

 

6.1.4. The computation of the signal probability 

 

The Mann-Whitney statistic, given in (6.2), can be written in a simpler (more 

straightforward) form given by �
=

=
n

j
jYx CM

1

, where jC  denotes the number of x -

observations that precede jY , nj ,...,2,1= . Also recall that since =)(xpG  ( )mnYxG UMP ≥2 , 
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the calculation of )(xpG  essentially requires the calculation of the upper-tailed probability 

( )mnYxG UMP ≥ . The computation of the latter proceeds in two steps, namely: (i) listing of all 

n -tuples ),...,,( 21 nCCC  for which the sum is greater than or equal to mnU ; and (ii) the 

summation of the probabilities for these tuples. 

 

The Central Limit Theorem states that if nS  is the sum of n  variables, then the 

distribution of nS  approaches the normal distribution as n  approaches infinity, i.e. →nS  

Normal distribution as ∞→n . Using this result, we can find a normal approximation to the 

upper-tailed probability ( )mnYxG UMP ≥ , since �
=

=
n

j
jYx CM

1

 approaches the normal 

distribution as ∞→n . Although using a normal approximation to the upper-tailed probability 

is a possible solution, it is not ideal. The reason being that although normal approximations 

work well when n  is large (and improve as sample size increases), normal approximations do 

not work well when n  is considered small. In our applications we typically use sample sizes 

that may be considered small and as a result using normal approximations would be 

somewhat unattractive. Clearly, a better approach is needed. 

 

6.1.5. Saddlepoint approximations 

 

Saddlepoint approximations (or saddlepoint expansions) provide good approximations 

(with a small relative error) to very small tail probabilities. Consequently, saddlepoint 

approximations can be applied to the problem of finding )(xpG , which is usually set to be 

rather small (typically 0.0027). Jensen (1995) provides ample justifications for the application 

of saddlepoint expansions when approximating small probabilities. In Chapter 2 of Jensen 

(1995) the classical saddlepoint approximations for tail probabilities for sums of independent 

random variables are given. For our problem (the calculation of the upper-tailed probability 

)( mnYxG UMP ≥ ), we make use of the Lugannani-Rice formula (hereafter LR-formula) which 

is a saddlepoint expansion formula.  

 

Prior to defining the LR-formula, a few concepts will be explained. To begin with, let 

la  denote the probability that l  x -observations (given xX = ) precede jY  for nj ,...,2,1=  
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and ml ,...,1,0= , respectively. Therefore, ( ) ( ))1()(| +≤<==== ljljl xYxPxXlCPa  where 

)()2()1( mxxx ≤≤≤ �  are the order statistics.  

 

Since the pgf provides a very useful tool for studying the sum of independent random 

variables we turn to the conditional probability generating function (pgf) of jC , and 

subsequently to the conditional pgf of YxM . In view of the fact that jC , nj ,...,2,1= , is a 

random variable whose possible values are restricted to the nonnegative integers },...,1,0{ m , 

the conditional pgf of jC  is given by 

 ( )� �
= =

====Π
m

l

m

l

l
l

l
j zazxXlCPz

0 0
1 |)( . (6.10) 

 

It’s a well-known fact that if, for example, X  and Y  are independent random 

variables with probability generating functions )(zXΠ  and )(zYΠ , respectively, we have 

that  

 )()()( zzz YXYX ΠΠ=Π +  (6.11)  

(see, for example, Bain and Engelhardt (1992)). 
 

YxM  is the sum of n  independent identical variables (recall that �
=

=
n

j
jYx CM

1

) and 

therefore, by using (6.10) and (6.11), the conditional pgf of YxM  is given by 

 ( )� �
= =

�
�

�

�

	
	




�
===Π

mn

j

n
m

j

j
j

j
Yx zazjMPz

0 0
2 )( . (6.12) 

By implication jC , for nj ,...,2,1= , are independent identically distributed, conditionally. 
 

Next we examine the cumulant generating function (cgf) of jC . The cgf is just the 

logarithm of the moment generating function (mgf). Mathematically, the mgf and the cgf are 

equivalent. The cgf generates the mean and variance, instead of the uncentered moments. We 

can think of )('tκ  and )('' tκ  as the mean and variance, respectively, where )(tκ  denotes the 

cgf. Hence, the cgf of jC  can be obtained by taking the logarithm of the pgf in (6.12) at the 

point tez = . As a result, the cgf of  jC  is given by  
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The first and second order derivatives of the cgf is simply )('tκ  and )('' tκ  so that 

)()(' tmt =κ  and )()('' 2 tt σκ = . Also, let 
n

U mn=µ  and 
n

M
M Yx

Yx = . The saddlepoint, γ , is 

the solution to the equation µ=)(tm . In other words, we solve µ=)(tm  for t (see Theorem 3 

in Appendix A for a detailed discussion on saddlepoint techniques). 

 

Finally, we want to use a saddlepoint expansion to approximate the upper-tailed 

probability )( mnYxG UMP ≥ . Jensen (1995) defined an upper-tailed probability, denoted by 

( )xXP ≥ , in equation (3.3.17) on page 79 by 

 ( ) ( ) ( )( ) ( )�
�

�
	



� +−++Φ−=≥ −− 2/32 11
)(1)(1 nO

r
rnOrxXP

λ
φ  (6.14) 

with  

 ( ) ( ))(ˆ1 ))(ˆ( xen x θσλ θ−−=  and ( ) ( )( ) 2/1
))(ˆ()(ˆ2))(ˆsgn( xxxnxr θκθθ −=  (6.15) 

where )(ˆ xθ  denotes the saddlepoint, 1,1))(ˆsgn( −=xθ  or 0 depending on whether )(ˆ xθ  is 

positive, negative or zero and )(⋅O  is the big O  function. In general, the notation 

))(()( ngOnf =  means there is a real constant 0>c  and an integer 0n  such that 

|)(||)(| ngcnf ≤  for all 0nn ≥  and where )(nf  and )(ng  are functions of the variable n . In 

other words, the notation ))(()( ngOnf =  states that the function |)(| nf  is bounded above by 

a constant multiple of the function |)(| ng  for all sufficiently large values of n indicated by 

0nn ≥ . Getting back to equations (6.14) and (6.15) it should be noted that the derivation of r  

was done separately on page 75 of Jensen (1995) using equations (3.3.2) and (3.3.3). The 

Lugannani and Rice (1980) paper was the first to give formula (6.14). Although they were the 

first to give formula (6.14), their paper is perhaps not easy to read. However, Daniels (1987) 

has given a very readable account where formula (6.14) is also given. In this thesis we mostly 

refer to Jensen (1995), because Jensen’s textbook gives a rigorous account of the underlying 

mathematical theory of saddlepoint methods. 
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Using (6.14) and (6.15) we obtain 

 ( ) ( ) �
�

�
	



� −+Φ−≈≥=�
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� ≥=≥
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rrMP
n

U
MPUMP Yx

mn
YxmnYx

11
)()(1

λ
φµ  (6.16) 

with  

 )()1( γσλ γ−−= en  and ( )( ) 21))((2)sgn( γκγµγ −= nr  (6.17) 

where γ  denotes the saddlepoint.  

 

Using (6.16) we can approximate the signal probability )(xpG  given in Result 6.1. 

 

6.1.6. Monte Carlo simulation 

 

We run into a problem when computing the out-of-control and in-control 

unconditional average run lengths, since both formulas (see equations (6.3) and (6.7)) are m -

dimensional integrals. A solution to this problem is using Monte Carlo simulation. Monte 

Carlo methods are based on the use of random numbers and probability statistics to 

investigate problems. It consists of a collection of ways for generating random samples on a 

computer and then using them to solve problems by providing approximate solutions to those 

problems. Moreover, Monte Carlo methods are useful for obtaining numerical solutions to 

problems which are too complicated to solve analytically and are, in this thesis, used to 

evaluate multiple integrals. Monte Carlo simulation is applied here to approximate the 

unconditional ARL ’s for the in-control and out-of-control situations, respectively. It should 

be noted that these are approximations to m-dimensional integrals (see equations (6.3) and 

(6.7) for the out-of-control and in-control unconditional average run length formulas, 

respectively). The Monte Carlo estimates are given by (6.8) and (6.9), respectively, and by 

studying these formulas we see that the computations of )(xpG  (for the out-of-control 

situation) and )(upU  (for the in-control situation) are repeated K  times to obtain the Monte 

Carlo estimates given in (6.8) and (6.9).  
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Monte Carlo simulation used to approximate the unconditional ARL  for the in-control 

situation 

 

Chakraborti and Van de Wiel (2003) proposed five methods for computing (or 

approximating) 0ARL . The first three methods are similar in the sense that they all make use 

of Monte Carlo simulation using (6.9), but they differ in the way that )(upU  is computed or 

approximated. The five methods are as follows: 

 

(i) Exact 

 

Monte Carlo simulation is applied to approximate the 0ARL  using (6.9), with 

)(upU  computed exactly using (6.12).  

 

(ii) Lugannani-Rice formula 

 

Monte Carlo simulation is applied to approximate the 0ARL  using (6.9), with 

)(upU  computed approximately using (6.16).  

 

(iii) Normal Approximation 

 

Monte Carlo simulation is applied to approximate the 0ARL  using (6.9), with 

)(upU  computed using a normal approximation.  

 

 The first three methods have the same problem, namely, that we need to compute 

)(upU  K  times for K  Monte Carlo reference samples, where a reference sample is drawn 

from the uniform(0,1) distribution. Each element is taken from the uniform(0,1) distribution, 

since we’re approximating the in-control average run length. The number of Monte Carlo 

reference samples K  should be taken large enough so that the Monte Carlo error is 

acceptably small and, consequently, using methods (i), (ii) or (iii) may be time-consuming. 

By fixing the reference sample we would only need to compute )(upU  once. This is done in 

the fourth method by using the empirical cdf of mXXX ,...,, 21 . 
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(iv) Fixed reference sample 

 

Recall that )(xF  denotes the unknown continuous cdf of each of mXXX ,...,, 21 . Let 

)(xFm  denote the empirical cdf of mXXX ,...,, 21 . By the law of strong numbers (see, for 

example, Bain and Engelhardt (1992)), when m  is large, the empirical cdf )(xFm  

converges to )(xF  (which is the cdf of the uniform(0,1) distribution), i.e. )()( xFxFm →  

as ∞→m , almost surely for fixed x . Using this, we can replace the thi  reference sample 

observation by the ( )thmi )1( +  quantile, mi ,...,2,1= , of the uniform(0,1) distribution. 

Since this quantile is equal to )1( +mi  (say, )1( += miqi ), we can approximate 0ARL  

by )(1 qpU  where ( ))1(,...,)1(1),...,,( 21 ++== mmmqqqq m . It should be noted that 

one should only use the empirical cdf (and as a result fix the reference sample to 

qux == ) when m  is large. Using this method we only require one reference sample and 

we only compute )(upU  once.  

 

(v) Reciprocal of the false alarm rate 

 

A quick way to approximate the 0ARL  is by using the fact that if the charting 

statistics, ,..., 21
XYXY MM , were independent, the 0ARL  would be equal to the 

reciprocal of the false alarm rate, i.e. ( )mnXY UMPFAR
ARL

≥
==

2
11

0 . When 

implementing this method, the FAR  is estimated using the Fix-Hodges approximation 

formula (see Fix and Hodges (1955)). This approximation improves the normal 

approximation by including moments of order three and higher. Since the charting 

statistics are in fact dependent, we can only use the reciprocal of the false alarm rate as 

a quick approximation to the 0ARL . Further motivation for using the reciprocal of the 

false alarm rate as a quick approximation to the 0ARL  is given by Chakraborti (2000). 

In that paper the author showed that for the Shewhart X  chart, 
FAR

1
 can be used as a 
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lower bound to the 0ARL . Following this, we use the reciprocal of the false alarm rate 

as a quick approximation to the 0ARL . 

 

 Methods (iv) and (v) have the advantage that we don’t have to draw K  reference 

samples, since we approximate 0ARL  by )(1 qpU  (using method (iv)) and by 

( )mnXY UMP ≥21  (using method (v)). 

 

The five abovementioned methods show one how to calculate (or approximate) the 

unconditional 0ARL  corresponding to a given value of the UCL . A table containing values of 

the unconditional 0ARL , for various values of m  and n , is provided (see Table 1, 

Chakraborti and Van de Wiel (2003)). The table is given on the next page for reference. K  is 

kept constant ( 1000=K ) to obtain a fair comparison regarding the computing times. The 

values in Table 6.1 were computed using all five abovementioned methods. The table shows 

two computing times. The first computing time is the time it took a 3.2GHz Pentium PC with 

512MB of internal RAM to compute the values using Mathematica 6.0. The second 

computing time (given in brackets) is the computing time found by Chakraborti and Van de 

Wiel (2003) using a 1.7GHz Pentium PC with 128MB of internal RAM. 

 

Certain in-control average run length values (indicated by ** in Table 6.1) could not 

be computed within a practical time. Chakraborti and Van de Wiel (2003) determined these 

computing times by multiplying the computing time for K  = 1 by 1 000 and, consequently, 

getting a computing time for  K = 1 000. In this paper the same course of action was taken to 

estimate the computing times for K = 1 000. From Table 6.1 we see that the 3.2GHz Pentium 

PC with 512MB of internal RAM is at least three times faster than the 1.7GHz Pentium PC 

with 128MB of internal RAM. Interpreting the times in Table 6.1 we find that the exact 

method is exceptionally time-consuming, particularly so as m increases. Similarly, using the 

LR-formula is also very time-consuming, again, particularly as m increases, but it’s not as 

severely time-consuming as the exact method. Although fast approximations are given by the 

normal approximation, they are inaccurate. Fast approximations are also given by the fixed-

reference-sample method and the reciprocal-of-the-false-alarm-rate method. 
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Table 6.1*. 0ARL  approximations and computing times for various m and n values and 

4344=mnU †. 

m n Exact 
 

Lugannani-
Rice 

formula 
 

Normal 
Approximation 

Fixed 
reference 

sample 
 

Reciprocal 
of the false 
alarm rate 

  0
ˆLRA  

Time 
(sec.) 0

ˆLRA  
Time 
(sec.) 0

ˆLRA  
Time 
(sec.) 0

ˆLRA  
Time 
(sec.) 0

ˆLRA  
Time 
(sec.) 

50 5 486 18 
(54) 506 12 

(36) 307 0.33 
(1.00) 403 0.02 

(0.05) 247 0.003 
(0.01) 

 10 504 132 
(395) 505 12 

(34) 327 0.33 
(1.00) 524 0.02 

(0.05) 226 0.003 
(0.01) 

 25 488 1618 
(4850) 491 10 

(31) 
425 

 
0.40 

(1.20) 
694 

 
0.02 

(0.05) 119 0.003 
(0.01) 

100 5 496 75 
(220) 505 18 

(48) 219 0.40 
(1.20) 478 0.02 

(0.05) 353 0.003 
(0.01) 

 10 505 640 
(1920) 506 16 

(47) 339 0.42 
(1.30) 531 0.02 

(0.05) 332 0.003 
(0.01) 

 25 ** 8900 
(26168) 503 18 

(48) 422 0.42 
(1.30) 683 0.03 

(0.06) 233 0.003 
(0.01) 

500 5 491 3544 
(10633) 496 70 

(207) 226 0.40 
(1.20) 492 0.07 

(0.20) 445 0.003 
(0.01) 

 10 ** 24500 
(73516) 513 60 

(179) 367 0.60 
(1.70) 537 0.07 

(0.21) 484 0.003 
(0.01) 

 25 ** 2.53*105 

(7.59*105) 494 60 
(176) 445 0.55 

(1.60) 578 0.10 
(0.29) 450 0.003 

(0.01) 

1000 5 ** 10601 
(31766) 500 120 

(356) 235 0.70 
(2.10) 513 0.16 

(0.48) 471 0.003 
(0.01) 

 10 ** 1.15*105 

(3.42*105) 499 126 
(373) 355 0.80 

(2.40) 516 0.18 
(0.49) 488 0.003 

(0.01) 

 25 ** 1.05*106 

(3.15*106) 500 117 
(348) 442 0.61 

(1.70) 548 0.20 
(0.63) 482 0.003 

(0.01) 

2000 5 ** 0.57*105 

(1.71*105) 503 240 
(713) 234 0.70 

(2.10) 506 0.22 
(0.67) 474 0.003 

(0.01) 

 10 ** 0.48*106 

(1.44*106) 504 221 
(659) 354 0.64 

(1.90) 513 0.24 
(0.71) 499 0.003 

(0.01) 

 25 ** 0.43*107 

(1.29*107) 509 229 
(676) 446 0.71 

(2.10) 531 0.48 
(1.41) 497 0.003 

(0.01) 
 

                                                 
* Chakraborti and Van de Wiel (2003) wrote a Mathmatica program to approximate the ARL0 for a given m, n 
and value of the UCL. This Mathematica program can be downloaded using the website 
www.win.tue.nl/~markvdw. For more details on this Mathematica program see Mathematica Program 1 in 
Appendix B.  
 
† Table 6.1 appears in Chakraborti and Van de Wiel (2003), Table 1. It should be noted that Chakraborti and Van 
de Wiel (2003) failed to say what the value of the UCL was set equal to when constructing this table. Turning to 
their Mathematica program we see that the user specific parameters are set equal to m=1000, n=5 and 
UCL=4344. Recall that only the UCL needs to be specified, since the LCL can be calculated using Lmn=mn-Umn. 
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In Table 6.1 we have the exact formula and various approximations for the 

unconditional 0ARL . We see that although the exact formula gives us 0ARL  values close to 

500 (which is desirable), the exact computations are very time-consuming for most values of 

m  and n . Focusing on the approximations, the closer an 0ARL  value is to 500, the better the 

approximation. Using this criteria we see that the normal approximation is inaccurate for all 

values of m  and n . The fixed-reference-sample and the reciprocal-of-the-false-alarm-rate 

approximations are relatively good for 1000≥m  and, in particular, the fixed-reference-

sample approximation performs better for ‘small’ values of n  ( 5=  or 10) than for n  ‘large’ 

( 25=n ). It seems that the best approximation is the LR-formula, since all the corresponding 

0ARL  values are close to 500. In summary, the best method of calculating the unconditional 

0ARL  is by using the exact formula, if it’s not too time-consuming, otherwise the LR-formula 

is the best approximation. 

 

Monte Carlo simulation used to approximate the unconditional ARL  for the out-of-

control situation 

 

Monte Carlo simulation is used to approximate the unconditional ARL  for the out-of-

control situation. There are concerns about the number of Monte Carlo samples used, namely, 

that although larger sizes of K  will result in more accurate approximations and smaller 

Monte Carlo errors, using larger Monte Carlo samples may be time-consuming or 

computationally expensive or both. 

 

 Since the unconditional ARL  is the average of the conditional )(XARLG  over all 

possible sX '  and the K  Monte Carlo reference samples are independent, the Monte Carlo 

standard error of the estimate LRA ˆ  is given by  

 
( )

K

XARLG
mc

)(σσ =  (6.18) 

where ( ))(XARLGσ  denotes the unknown standard deviation of )(XARLG . From (6.18) we 

see that the standard error decreases with the square root of the number of Monte Carlo 

samples used. If we, for example, quadruple the number of Monte Carlo samples used, we 

will half the standard error. While increasing K  is one technique for reducing the standard 
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error, doing so can be time-consuming or computationally expensive or both. Clearly, a better 

approach is needed. 

 

Let D  denote some specified value such that 

 
( )

D
K

XARLs
s G

mc ≤=
)(

. (6.19) 

where the sample standard deviation ( ))(XARLs G  is used to estimate ( ))(XARLGσ  and, 

subsequently, 
( )

K

XARLs
s G

mc

)(
=  is used to estimate 

( )
K

XARLG
mc

)(σσ = . 

 

We want to find the smallest K  such that (6.19) is satisfied. We start by taking K  

‘small’, say 100=K , for example, and then we compute the corresponding standard error 

mcs . If (6.19) is not satisfied we increase K  and the process is repeated until the standard 

error is smaller than or equal to some specified value D . It should be noted that D  could also 

be taken to be some percentage of the estimate LRA ˆ . By implementing (6.19), we find an 

accurate approximation (with a small Monte Carlo error) of the unconditional ARL  for the 

out-of-control situation.  

 

6.1.7. Determination of chart constants 

 

Up to this point we’ve addressed the problem where one has to calculate the 

(unknown) unconditional 0ARL  for a given (known) upper control limit. In this section we 

address the opposite problem where one has to calculate the (unknown) upper control limit for 

a specified (known) 0ARL . In order to solve the latter problem, we use an iterative procedure 

based on linear interpolation. An initial value for the UCL, say UCL(1), is needed to start the 

iteration. We can limit our search of UCL(1) (and ultimately of UCL) to integer values 

between 0 and mn, since the MW charting statistic only takes on integer values between 0 and 

mn (recall that mnM XY ≤≤0 ). In addition, we use the fact that 0ARL  is strictly increasing in 

UCL (and subsequently, )(upU  is strictly decreasing in UCL). Let the desired unconditional 

5000 =ARL . 
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To obtain UCL(1), the fixed-reference-sample approximation or the reciprocal-of-the-

FAR  approximation can be used, since they are both very fast and relatively accurate 

approximations. For the latter approach, we equate the reciprocal of the false alarm rate to 

500, meaning that we have to solve for ( ) 500
)(2

1 =
uFH

, where )(uFH  denotes the Fix-

Hodges approximation for the upper tail probability ( )uMP Yx ≥0 . We estimate (through 

Monte Carlo simulation) 0ARL  at UCL(1) using (6.9), where the LR-approximation is used to 

calculate )(upU . In doing so, we obtain a new 0ARL , say )1(
0ARL . If )1(

0ARL  is smaller than 

500, we increase the value of UCL(1) by a specified amount, say s, to obtain UCL(2) = UCL(1) + 

s. On the contrary, if )1(
0ARL  is greater than 500, we decrease the value of UCL(1) to obtain 

UCL(2) = UCL(1) - s.  Using UCL(2), the search procedure is repeated until 0ARL  is 

‘satisfactorily close’ to the target value of 500. 

 

A question arises: How close is ‘satisfactorily close’? To answer this Chakraborti and 

Van de Wiel (2003) suggest using a target interval, say 500500 λ± , where λ  denotes the 

percentage deviation from the target value that is acceptable. Suppose we allow a deviation of 

3%, i.e. 03.0=λ , the search procedure stops at the thl  step if 515485 )(
0 ≤≤ lARL . The larger 

this margin, the faster the algorithm, and as a result, the faster a solution is found. If the 

specifications can’t be met, the algorithm returns one or more solutions for which 0ARL  is 

close to the target value. If 0=λ , the search procedure stops at the thl  step if )(lUCL  has a 

corresponding 5000 <ARL  and 1)( +lUCL  has a corresponding 5000 ≥ARL , and as a result, 

the practitioner has to decide whether to use )(lUCL  or 1)( +lUCL . 

 

We illustrate this search procedure with an example. Suppose the reference sample 

size is 50 (m = 50), the test sample size is 5 (n = 5) and we want to find the chart constants 

( mnU  and mnmn UmnL −= ) such that the specified target 5000 =ARL . Suppose we specify 

that a 3% deviation from the target value is acceptable, i.e. 03.0=λ . In doing so, the search 

procedure stops when 515ˆ485 0 ≤≤ LRA  and yields the corresponding chart constants. In 

addition, we specify that the Monte Carlo standard error, mcs , be smaller than or equal to 

2.5% of the estimate of 0ARL . Then 5.12500025.0 =×=D  is the maximum value of the 
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standard error of the estimate that we allow. The output from the program is given in Table 

6.2. 

 

Table 6.2. Finding chart constants for m=50, n=5, target 0ARL =500, 03.0=λ  and 

5.12=D *. 

1/(false alarm rate approximation) 
(1)  ucl= 222  lcl= 28  ARL0= 500 
Fixed reference sample approximation 
(2)  ucl= 222  lcl= 28  ARL0= 874.22 
(3)  ucl= 212  lcl= 38  ARL0= 206.763 
(4)  ucl= 216  lcl= 34  ARL0= 351.068 
(5)  ucl= 218  lcl= 32  ARL0= 467.529 
LR-approximation 
(6)  ucl= 218  lcl= 32  ARL0= 571.016  smc= 15.4659  5% perc= 122.654  K= 2000 
(7)  ucl= 208  lcl= 42  ARL0= 138.825  smc= 3.46778  5% perc= 44.3363  K= 1061 
(8)  ucl= 216  lcl= 34  ARL0= 426.735  smc= 11.7639  5% perc= 95.169  K= 2000 
(9)  ucl= 217  lcl= 33  ARL0= 494.728  smc= 13.6655  5% perc= 105.761  K= 2000 
{231.156,Null} 
 

From Table 6.2 it can be seen that one iteration has been carried out under the 

reciprocal-of-the-FAR approximation and that four iterations have been carried out under the 

fixed-reference-sample approximation. These five iterations didn’t take long, since both the 

reciprocal-of-the-FAR and the fixed-reference-sample approximations are fast 

approximations. For each of these five iterations, the values of mnU  (denoted ucl in the 

output), mnL  (denoted lcl in the output) and the corresponding unconditional 0ARL  (denoted 

ARL0 in the output) are given. 

 

From Table 6.2 it can also be seen that four iterations have been carried out under the 

Lugannani-Rice approximation. For each of these four iterations, the values of mnU , mnL , the 

corresponding unconditional 0ARL , the standard error of the estimated 0ARL  (denoted smc 

in the output), the estimated 5th percentile of the conditional in-control ARL distribution 

(denoted 5% perc in the output) and the number of Monte Carlo samples used to obtain the 

estimates (denoted by K in the output) are given. In total there were nine iterations that have 

been carried out in approximately 231 seconds. The final chart constants are found at iteration 

number 9. They are 217=mnU  and 33=mnL  with a corresponding unconditional 

                                                 
* The values in Table 6.2 were obtained by running the Mathematica program provided by Chakraborti and Van 
de Wiel (2003). See Mathematica Program 1 in Appendix B for more information on this Mathematica program. 
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728.4940 =ARL . The 5th percentile of the conditional in-control ARL distribution is equal to 

105.761, meaning that 95% of all reference samples (that could possibly have been taken 

from the in-control process) will generate a conditional 0ARL  of at least 106. Previously 

stated is the fact that K  is chosen such that the standard error of the estimate is smaller than 

or equal to 2.5% of the estimate. Stated differently, K  is chosen such that Dsmc ≤ . When 

studying iteration number 9, we see that this condition is not satisfied, since 

5.126655.13 >=mcs . The reason for this is that the maximum number of Monte Carlo 

samples is set to 2 000 in the Mathematica program. If there were no restriction put on the 

number of Monte Carlo samples, the iterative procedure would have increased K  and 

repeated the process until the standard error is smaller than or equal to 5.12=D . Table 6.3 

contains the chart constants for various values of m and n with 03.0=λ  and where mcs  must 

be smaller than or equal to 2.5% of the estimate of 0ARL . 

 

Table 6.3. Control limits for various values of m and n*. 

m n 3700 ====ARL  5000 ====ARL  

  mnL  mnU  mnL  mnU  
50 5 35 215 33 217 

 10 115 385 111 389 
 25 400 850 393 857 

100 5 69 431 65 435 
 10 231 769 224 776 
 25 805 1695 793 1707 

500 5 348 2152 328 2172 
 10 1170 3830 1128 3872 
 25 4081 8419 4016 8484 

1000 5 698 4302 653 4347 
 10 2344 7656 2268 7732 
 25 8169 16831 8058 16942 

2000 5 1397 8603 1309 8691 
 10 4682 15318 4540 15460 
 25 16392 33608 16145 33855 

 

                                                 
* The values in Table 6.3 were obtained by running the Mathematica program provided by Chakraborti and Van 
de Wiel (2003). See Mathematica Program 1 in Appendix B for more information on this Mathematica program. 
Table 6.3 also appears in Chakraborti and Van de Wiel (2003), Table 3. 
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Example 6.1 

A Mann-Whitney control chart based on the Montgomery (2001) piston ring data 

 

For the piston-ring data with 125=m  (see example 4.1 for an explanation of why m is 

equal to 125 (and not 25 like some of the earlier examples)) and 5=n , Chakraborti and Van 

de Wiel (2003) found the upper and lower control limits of the Shewhart-type MW chart to be 

540 and 85, respectively. The control limits are obtained by setting the user-specific 

parameters equal to 125=m , 5=n , target 4000 =ARL , 02.0=λ  and 6=D  in the 

Mathematica program provided by Chakraborti and Van de Wiel (2003). By setting 6=D  we 

require that 6≤mcs . By setting 02.0=λ  we specify that a 2% deviation from the target value 

is acceptable. In doing so, the search procedure stops when 408ˆ392 0 ≤≤ LRA  and yields the 

corresponding chart constants, which (in this case) equal 85=mnL  and 540=mnU . The 

fifteen Phase II samples and the reference sample lead to fifteen MW statistics shown in 

Table 6.4 (read from left to right and to left) and the MW control chart is shown in Figure 6.1. 

 

Table 6.4. Phase II MW statistics for the Piston-ring data in Montgomery (2001)*. 

429.0 333.0 142.5 370.5 241.5 410.5 393.0 240.5 
471.0 486.0 340.5 561.0 575.5 601.5 484.5  
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Figure 6.1 MW Chart for the Montgomery (2001) piston ring data. 

                                                 
*The values in Table 6.4 were calculated using Minitab. 
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It is seen that all but three of the test groups, 12, 13 and 14 are in-control. The 

conclusion from the MW chart is that the medians of test groups 12, 13 and 14 have shifted to 

the right in comparison with the median of the in-control distribution, assuming that G is a 

location shift of F. It may be noted that the Shewhart X  chart shown in Montgomery (2001) 

led to the same conclusion with respect to the means. Of course, the advantage with the MW 

chart (and with any nonparametric chart) is that it is distribution-free, so that regardless of the 

underlying distribution, the in-control ARL  of the chart is roughly equal to 400 and there is 

no need to worry about (non-) normality, as one must for the X  chart. For comparison 

purposes, the distribution-free 1-of-1 precedence chart for this data for an unconditional 

4000 =ARL  is found to be 982.73=LCL  and 017.74=UCL  for an attained 0.4140 ≈ARL . 

Consequently, the precedence chart declares the 12th and the 14th groups to be out of control 

but not the 13th group, unlike the MW and the Shewhart chart. This is not entirely surprising 

since the MW test is generally more powerful than the precedence test. 

 

6.1.8. Control chart performance 

 

The performance of a control chart is usually judged in terms of certain characteristics 

associated with its run-length distribution. For the most part the ARL  is used to evaluate chart 

performance, since it indicates, on average, how long one has to wait before the chart signals. 

Some researchers have advocated using other characteristics than the ARL , such as 

percentiles of the run length distribution (see Section 2.1.5 for a detailed discussion on this 

issue). Chakraborti and Van de Wiel (2003) examined the ARL , the 5th and the 95th 

percentiles (denoted 5ρ  and 95ρ , respectively) of the conditional distribution for the MW 

chart. The question may be raised about why the authors decided to use (only) the conditional 

distribution when both the conditional and unconditional distributions provide key 

information concerning the performance of a chart. Recall that the unconditional distribution 

results from averaging over all possible reference samples and in practice researchers would 

(almost certainly) not have the benefit of averaging. 

 

Chakraborti and Van de Wiel (2003) compared the MW chart to the Shewhart X  

chart. For the latter we assume case UU, when both the mean and variance are unknown, and 

consequently both parameters need to be estimated from the reference sample. Therefore, the 

MW chart is compared to the Shewhart X  chart with estimated parameters. Additionally, 
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both charts are designed to have the same in-control average run length ( 5000 ≈ARL ). The 

latter two conditions are necessary to ensure a fair comparison between the MW and 

Shewhart X  chart. The in-control case is considered first. 

 

In-control performance 

 

For the in-control case a lower order percentile, specifically the 5th percentile, should 

be examined (the 95th percentile is also examined for completeness). Recall that we want the 

in-control ARL  to be large and, by the same token, large values of the 5th percentile are 

desirable. The test sample size, n , was taken to equal 5 for all cases, whereas the reference 

sample size, m , varies from 50 to 2000. Both the reference and test samples were drawn from 

a normal distribution, specifically a )1,0(N  distribution. The results were obtained using 

1000=K  simulations and are shown in Table 6.5. 

 

Table 6.5. The 5th and 95th percentiles and standard deviations of the conditional in-control 

distribution with 5=n  and 5000 ≈ARL *. 

MW chart Shewhart X  Chart 

m Upper 
Control 
Limit 

5ρρρρ  95ρρρρ  Standard 
Deviation 

Upper 
Control 
Limit 

5ρρρρ  95ρρρρ  Standard 
Deviation 

50 217 97 1292 553 3.01996 49 1619 854 
75 326 146 1219 461 3.05156 87 1379 645 

100 435 182 1146 358 3.06535 112 1290 463 
150 654 251 1090 315 3.07715 154 1197 377 
300 1304 284 845 197 3.08607 232 927 235 
500 2172 322 700 140 3.08848 270 828 174 
750 3258 360 677 107 3.08935 314 765 140 

1000 4347 379 674 83 3.08969 338 721 121 
2000 8691 420 629 55 3.09007 376 651 84 
 

From Table 6.5 we find that for the MW chart with 100=m  and a control chart 

constant of 435 ( 435=mnU ), 1825 =ρ , meaning that 95% of the in-control average run 

lengths are at least 182, whereas for the Shewhart X  chart with 100=m  and a control chart 

                                                 
* The values in Table 6.5 were obtained by running the Mathematica program provided by Chakraborti and Van 
de Wiel (2003). See Mathematica Program 1 in Appendix B for more information on this Mathematica program. 
Table 6.5 also appears in Chakraborti and Van de Wiel (2003), Table 4. 
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constant of 3.06535, 1125 =ρ , meaning that 95% of the in-control average run lengths are at 

least 112. Since 182 > 112 it can be concluded that the in-control performance of the MW 

chart is better than that of the Shewhart X  chart with estimated parameters. Moreover, all the 

5th percentiles of the MW chart are larger than those of the Shewhart X  chart with estimated 

parameters, particularly for 150≤m , further supporting the statement that the in-control 

performance of the MW chart is better than that of the Shewhart X  chart with estimated 

parameters. The estimated standard deviations are given in Table 6.5 to give some 

information about the variability of 0ARL . All the estimated standard deviations for the MW 

chart are smaller than those of the Shewhart X  chart with estimated parameters, further 

supporting the statement that the in-control performance of the MW chart is better. 

 

Out-of-control performance 

 

 For the out-of-control case a higher order percentile, specifically the 95th percentile, is 

examined. Recall that we want the out-of-control ARL  to be small and, by the same token, 

small values of the 95th percentile are desirable. These two performance measures, the δARL  

and 95ρ , are examined for three distributions, namely, the Normal, Laplace and Gamma(2,2) 

distributions, respectively. The motivation for examining these three distributions is that we 

would like to examine a symmetric (Normal), asymmetric (Gamma(2,2)) and heavy-tailed 

(Laplace) distribution, respectively. The Laplace distribution is comparable to the Normal 

distribution, but it has heavier tails, while the Gamma(2,2) distribution is positively skewed. 
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Figure 6.2. The shapes of the three distributions under consideration. 

 

(i) The normal distribution 

 

For the Normal distribution we would expect the out-of-control performance of the 

Shewhart X  chart with estimated parameters to be better than that of the MW chart. The 

reason for this being that it’s typical for normal theory methods to outperform nonparametric 

methods when the normality assumption is met. A two-sided chart was applied in the case of 

the Normal distribution. The test sample size, n , was taken to equal 5, whereas the reference 

sample size, m , was taken to equal 100. The chart constants for both the MW and Shewhart 

X  chart are chosen such that the in-control average run length is approximately equal 

( 5000 ≈ARL ) for both charts. δARL  and the 95th percentiles of the distribution of δARL  

were computed, using these chart constants, for various values of δ , where δ  is the unknown 

shift parameter (recall that shift alternatives are denoted as δ−= xFxG ()( )). The results are 

shown below in Figure 6.3. 
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Figure 6.3. Comparison of the MW chart with the Shewhart X  chart for the Normal 

distribution. 

 

When comparing the MW chart with the Shewhart X  chart under Normal shift 

alternatives we find that the Shewhart X  chart is performing only slightly better than the MW 

chart, since the 95th percentiles for the Shewhart X  chart are smaller than the 95th percentiles 

for the MW chart. However, it should be noted that the differences are small and it appears to 

fade away when the shift is greater than one. A similar pattern holds for the δARL ’s. 

 

(ii) The Laplace distribution 

 

The Laplace distribution, also called the Double-Exponential distribution, is 

comparable to the Normal distribution, but it has heavier tails (see Figure 6.2). As a result, 

there are higher probabilities associated with extreme values when working with the Laplace 

distribution as opposed to using the Normal distribution. For the Laplace distribution we 

would expect the out-of-control performance of the MW chart to be better than that of the 

Shewhart X  chart. The reason for this being that it’s typical for nonparametric methods to 

outperform normal theory methods when the distribution in question is heavy-tailed (see, for 

example, Gibbons and Chakraborti (2003)). A two-sided chart was applied to the Laplace 

distribution. For consistency, 5=n  and 100=m  (the same values were used under Normal 

shift alternatives) and the chart constants for both the MW and Shewhart X  chart are chosen 
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such that the in-control average run length is approximately equal ( 5000 ≈ARL ) for both 

charts.  
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Figure 6.4. Comparison of the MW chart with the Shewhart X  chart for the Laplace 

distribution. 

 

When comparing the MW chart with the Shewhart X  chart under Laplace shift 

alternatives we find that the MW chart is performing much better than the Shewhart X  chart, 

since the 95th percentiles for the MW chart are smaller than the 95th percentiles for the 

Shewhart X  chart. It should be noted that these differences are reasonably large for all shifts, 

indicating that the MW chart is performing a great deal better than the Shewhart X  chart. 

 

(iii) The Gamma distribution 

 

From Figure 6.2 it can be seen that the Gamma(2,2) distribution is positively skewed. 

For the Gamma(2,2) distribution we would expect the out-of-control performance of the MW 

chart to be better than that of the Shewhart X  chart. An upper one-sided chart was applied to 

the Gamma(2,2) distribution. For consistency, 5=n  and 100=m  (the same values were used 

under Normal and Laplace shift alternatives) and the chart constants for both the MW and 

Shewhart X  chart are chosen such that the in-control average run length is approximately 

equal ( 5000 ≈ARL ) for both charts.  
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Figure 6.5. Comparison of the MW chart with the Shewhart X  chart for the Gamma 

distribution. 

 

When comparing the MW chart with the Shewhart X  chart under Gamma(2,2) shift 

alternatives we find that the MW chart is performing better than the Shewhart X  chart, since 

the 95th percentiles for the MW chart are smaller than the 95th percentiles for the Shewhart X  

chart. It should be noted that these differences are not as large as the differences obtained 

using the Laplace distribution. 

 

The graphs were also constructed for larger values of m , but since the graphs were very 

similar to the given figures, they we omitted. In conclusion we found that the MW chart 

performs better than the Shewhart X  chart with estimated parameters under heavy tailed and 

skewed distributions. 

 

6.1.9. Summary 

 

In Section 6.1 we examined a Shewhart-type chart based on the Mann-Whitney-

Wilcoxon statistic. We illustrated these procedures using the piston ring data from 

Montgomery (2001) to help the reader to understand the subject more thoroughly. One 

practical advantage of the nonparametric Shewhart-type Mann-Whitney control chart is that 

there is no need to assume a particular parametric distribution for the underlying process (see 

Section 1.4 for other advantages of nonparametric charts). 
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6.2. The tabular Phase I CUSUM control chart 

 

6.2.1. Introduction 

 

Zhou, Zou and Wang (2007) (hereafter ZZW) proposed a Phase I CUSUM control 

chart for individual observations based on the Mann-Whitney-Wilcoxon statistic. They 

compared their proposed control chart to the likelihood ratio test (LRT) chart of Sullivan and 

Woodall (1996) and the CUSUM LT chart of Koning and Does (2000). 

 

Suppose that a sample of size n , nXXX ,...,, 21 , is available with an unknown 

continuous cdf, ),( ixF µ  ni ,...,2,1= , where iµ  denotes the location parameter. In this set up, 

let iµ  denote the population mean of iX . An out-of-control condition is a shift in the location 

parameter to some different value. The problem of detecting a shift in a parameter of the 

process is similar to sequential change-point detection (see, for example, Hawkins and Zamba 

(2005)). Various authors have studied the change-point problem; see for example Hawkins 

(1977), Sullivan and Woodall (1996), Hawkins, Qiu and Kang (2003) and Hawkins and 

Zamba (2005). In a change-point model, all the observations up to the change-point have the 

same distribution, say ),( axF µ , while the remaining observations have the same distribution, 

say ),( bxF µ , i.e. 

�
�
�

++=
=

=
nttixF

tixF
X

b

a
i ,...,2,1for),(

,...,2,1for),(
µ
µ

 

where t, with nt <≤1 , is the change-point. If ba µµ =  the process is said to be in-control, 

whereas if ba µµ ≠  the process is declared to be out-of-control. ZZW give an estimate for the 

position of the change-point, τ̂ , as  |}max{|argˆ
1

t
nt

SMW
<<

=τ * (see Pettitt (1979)), where tSMW  

is defined in (6.21). One can also look for multiple shifts, especially if the dataset is large. 

This could be done by partitioning the data at the location of the change-point then repeating 

the process on each subset of observations. This continues until no evidence of additional 

change-points is given. For example, if there are two shifts we have 

                                                 
* Arg max stands for the argument of the maximum, that is, the value of the given argument for which the value 
of the given expression attains its maximum value. For example, arg max {f(x)} is the value of x for which f(x) 
has the largest value. 
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where 1τ  and 2τ  are the two change-points, respectively. ZZW lay emphasis on the fact that 

their proposed CUSUM Mann-Whitney chart is not intended to be used for detecting multiple 

shifts, but they still expect the chart to have good detecting performance if the mean shifts 

( aµ , bµ  and cµ ) are all in the same direction, i.e. aµ , bµ  and cµ  form either a decreasing or 

an increasing sequence.  

 

The Mann-Whitney statistic* is defined to be the number of ),( ji XX  pairs with 

ji XX >  where ti ,...,2,1=  and nttj ,...,2,1 ++= . This can be written as 

 � �
= +=

<=
t

i

n

tj
ijt XXIMW

1 1

)(  for 1,...,2,1 −= nt  (6.20) 

where )( ij XXI <  is the indicator function, i.e. 

�
�
�

≥
<

=<
ij

ij
ij XX

XX
XXI

if0
if1

)( . 

 

The expected value, variance and standard deviation of the Mann-Whitney statistic is 

easy to find by using the relationship 

 
2

)1( +−= tt
WMW tt   

where tW  is the well-known Wilcoxon rank-sum test statistic, that is, �
=

=
t

i
it RW

1

 and 

tRRR ,...,, 21  are the ranks of the t observations txxx ,...,, 21  in the complete sample of n 

observations. The expected value and variance of tW  is given by (see Gibbons and 

                                                 
* The tMW  statistic is directly related to the well-known Mann-Whitney U  test statistic (see Gibbons and 
Chakraborti (2003)) where the Mann-Whitney U  test statistic is defined as the number of times Y precedes X in 
the combined ordered arrangement of the two samples, mXXX ,...,, 21  and nYYY ,...,, 21 , into a single sequence 

of nmN +=  variables. Then the U  test statistic is defined as ��
= =

=
m

i

n

j
ijDU

1 1

 where 0,1=ijD  if ij XY < , 

ij XY >  ji,∀ . 
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Chakraborti (2003)) ( )
2

)1( += nt
WE t  and ( ) =tWvar  

12
)1)(( +− ntnt

. As a result, the expected 

value, variance and standard deviation of tMW  is given by 

 ( ) ( )
2
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)1( tnttt
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� +−= ntnttt
WMW tt , and  
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+−== ntnt
MWMWstdev tt .  

It follows that the standardized value of tMW  is given by 

 

12
)1)((

2
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)(
)(

+−

−−
=

−
=

ntnt

tnt
MW
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MWEMW

SMW
t

t

tt
t . (6.21) 

If all iX -observations ( ti ,...,2,1= ) are smaller than the jX -observations ( ,1+= tj  

nt ,...,2+ ), tMW  would be equal to zero. On the other hand, if all iX -observations are 

greater then the jX -observations, tMW  would equal )( tnt −× . Therefore we have that 

)(0 tntMWt −≤≤ . 

 

If the process is in-control, the distribution of tMW  is symmetric about its mean, 

2
)( tnt −

 for each t, and large values of tMW , that is, if a large number of iX -observations are 

greater than the jX -observations, would be indicative of a negative shift, whereas small 

values of tMW  would be indicative of a positive shift. If there are ties present, i.e. if any 

ji XX = , then recall that for a continuous random variable the probability of any particular 

value is zero; thus, 0)( == aXP  for any a . Since the distribution of the observations is 

assumed to be continuous, 0)0( ==− ji XXP . Theoretically, ties should occur with zero 

probability, but in practice ties do occur. In case of the occurrence of ties, a correction to the 

variance of tMW  can be made by multiplying the variance by the factor 
)1(

)1(
1 2
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where ig  denotes the frequency of the thi  value and r denotes the distinct number of values in 
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the total of n observations, respectively. Since the sum over all frequencies equal n we have 

that �
=

=
r

i
i ng

1

. Consequently, the variance of tMW  (which is also the variance of tW ) is 

given by 
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The charting statistic for the proposed CUSUM Mann-Whitney chart is obtained by 

replacing iy  by tSMW  in the equations for the classic standardized CUSUM chart (these 

equations are given in Section 2.3 numbers (2.35), (2.36) and (2.37)). 

 

The resulting upper one-sided CUSUM is given by 

 ],0max[ 1 kSMWSS iii −+= +
−

+     for ,...3,2,1=i  (6.22) 

while the resulting lower one-sided CUSUM is given by 

 ],0min[ 1 kSMWSS iii ++= −
−

−     for ,...3,2,1=i  (6.23) 

or 

 ],0max[
*

1

*
kSMWSS iii −−= −

−
−   for ,...3,2,1=i  (6.24) 

The two-sided CUSUM is constructed by running the upper and lower one-sided CUSUM 

charts simultaneously and signals at the first i  such that hS i ≥+  or hS i −≤− . The starting 

values, −
0S  and +

0S , are typically set equal to zero, that is, 00 =−S  and 00 =+S . 

 

6.2.2. Determination of chart constants 

 

ZZW take the reference value, k, to equal 2. They motivate their choice of k  by stating 

that smaller values of k lead to quicker detection of smaller shifts. Their simulation studies 

also support the decision of setting 2=k , since the simulation results show that the 

corresponding control chart has good performance. The decision interval, h, is chosen such 

that a desired FAP, denoted by α , is attained.  ZZW considered h for various combinations of 

α  and n . The table is given below for reference. 
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Table 6.6. Simulated h values for the CUSUM Mann-Whitney chart*. 

 αααα  
n 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.0075 
20 0.753 0.885 1.053 1.306 1.656 2.194 3.247 3.671 
30 1.267 1.490 1.788 2.187 2.719 3.615 5.531 6.371 
40 1.774 2.111 2.525 3.081 3.882 5.258 7.612 9.134 
50 2.362 2.779 3.329 4.102 5.194 6.988 10.236 11.993 
60 2.940 3.454 4.124 4.989 6.328 8.401 12.480 14.147 

 

From Table 6.6 we observe that h increases as n increases and α  decreases. As 

pointed out by Sullivan and Woodall (1996), it is not important for the preliminary 

application to find exact control limits that correspond to a specific FAP. Instead it is 

sufficient to use computationally convenient limits having approximately the desired 

performance. Consequently, ZZW derived a formula to approximate the decision interval h: 

 0248.11923.0log)5221.00905.0( +−+−= nnh α . (6.25) 

Using equation (6.25) to approximate the decision interval we obtain the following values for 
h. 
 
Table 6.7. Approximated h values for the CUSUM Mann-Whitney chart†. 

 αααα  
n 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.0075 
20 0.604 0.802 1.037 1.324 1.695 2.217 3.110 3.480 
30 1.087 1.425 1.825 2.314 2.945 3.834 5.354 5.985 
40 1.571 2.048 2.613 3.305 4.196 5.452 7.599 8.490 
50 2.055 2.672 3.401 4.295 5.446 7.069 9.844 10.995 
60 2.538 3.295 4.190 5.285 6.697 8.687 12.089 13.500 

 

Comparing the approximated h values with the simulated results in Table 6.6 it is clear 

that the approximated decision interval using equation (6.25) performs very well as they agree 

well with the values of Table 6.6. 

 

6.2.3. Performance comparison 

 

The performance of a control chart is usually judged in terms of certain characteristics 

associated with its run-length distribution. In a Phase I setting, the FAP, which is the 

probability of at least one false alarm out of many comparisons, is used for performance 

comparison as opposed to using the FAR, which is the probability of a single false alarm 

                                                 
* Table 6.6 appears in ZZW, page 5, Table 1. 
† The values in Table 6.7 were generated using Microsoft Excel. 
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involving only a single comparison. By using the FAP we take into account that the signaling 

events are dependent. ZZW looked at the FAP, the true signal probability (TSP) and the 

average true signal probability (ATSP) for performance comparison*. The TSP is the 

probability of a signal when a shift has occurred. The ATSP is defined as 

�
−

=
=

1

1

)(
n

k
kTSPkFATSP  where kTSP  denotes the TSP of a control chart when the shift occurs 

after the thk  observation and )(kF  denotes the distribution of the position of the shifts.  To 

ensure fair comparison between two charts, charts with the same FAP are considered and the 

chart with the larger TSP (or ATSP) is the preferred chart. In their paper, ZZW assumes that 

the position of the shift is uniformly distributed so that the position of the shift is equally 

likely at any point and, under this assumption, the CUSUM Mann-Whitney chart, the 

CUSUM chart for detecting the linear trend (CUSUM LT) chart (see Koning and Does 

(2000)) and the likelihood ratio test (LRT) chart (see Sullivan and Woodall (1996)) are 

compared. For the LRT and CUSUM LT charts the assumption of normality is necessary, 

whereas with the CUSUM Mann-Whitney chart no assumption about the underlying process 

distribution needs to be made. The performances of these charts are compared for five 

distributions, namely the Normal, Chi-square, Student t, Weibull and Lognormal, 

respectively. We would expect to find that the CUSUM Mann-Whitney chart performs better 

compared to the CUSUM LT and LRT charts when the distribution is skewed or heavy-tailed. 

 

(i)    The standard normal distribution 

 

For the standard normal distribution both a step shift and a linear trend shift are used 

to evaluate chart performance. Recall that charts with the same FAP ( 05.0= ) are considered 

to ensure fair comparison and that the chart with the larger ATSP is the preferred chart. 

 

                                                 
* The terms TSP and ATSP are fairly new and are introduced by Sullivan and Woodall (1996). 

 
 
 



 300 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1 2 3 4 5
Shift

A
TS

P

CUSUM MW

CUSUM LT

LRT

 
Figure 6.6. The ATSP values for a single step shift when the data is from a N(0,1) 

distribution. 

 

When comparing the CUSUM Mann-Whitney chart with the CUSUM LT chart we 

find that these charts have comparable performance. When comparing all three charts we find 

that the CUSUM Mann-Whitney chart has a slight disadvantage in detecting large shifts. 
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Figure 6.7. The ATSP values for a linear trend shift when the data is from a N(0,1) 

distribution. 

 

 
 
 



 301 

When comparing the CUSUM Mann-Whitney chart with the CUSUM LT chart we 

find that the CUSUM LT chart is performing slightly better than the CUSUM Mann-Whitney 

chart. When comparing all three charts we find that the CUSUM Mann-Whitney chart has a 

slight disadvantage in detecting large shifts. It is worth mentioning that even for normally 

distributed data the CUSUM Mann-Whitney chart is performing very well. The performance 

of the CUSUM Mann-Whitney chart could be improved by changing the reference value to 

some other value (recall that ZZW set the reference value equal to 2). 

 

(ii)    The t-distribution 

 

The t-distribution with degrees of freedom 2 is symmetric around zero and as the 

number of degrees of freedom increases, the difference between the t-distribution and the 

standard normal distribution becomes smaller and smaller. 
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Figure 6.8. The ATSP values for a single step shift when the data is from a t(2) distribution. 

  

Recall that charts with the same FAP ( 05.0= ) are considered to ensure fair 

comparison and that the chart with the larger ATSP is the preferred chart. From Figure 6.8 we 

can see that the LRT chart can not obtain the specified FAP of 0.05. Consequently, the LRT 

chart is not compared to the other charts under t(2) shift alternatives. When comparing the 

CUSUM Mann-Whitney chart with the CUSUM LT chart we find that the CUSUM Mann-

Whitney chart is performing better than the CUSUM LT chart, since the ATSP values for the 
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CUSUM Mann-Whitney chart are larger than that of the CUSUM LT chart. It should be noted 

that the differences are relatively small over all values of the shift. 

 

(iii)    The Chi-square distribution 

 

 The Chi-square distribution is highly skewed to the right and as a result we would 

expect the performance of the CUSUM Mann-Whitney chart to be better than that of the 

CUSUM LT and LRT charts (since they have the additional assumption of normality). 
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Figure 6.9. The ATSP values for a single step shift when the data is from a )2(2χ  

distribution. 

 

Similar to the previous comparison, we see that the LRT chart can not obtain the 

specified FAP of 0.05. Consequently, the LRT chart is not compared to the other charts under 

)2(2χ  shift alternatives. When comparing the CUSUM Mann-Whitney chart with the 

CUSUM LT chart we find that the CUSUM Mann-Whitney chart is performing better than 

the CUSUM LT chart, since the ATSP values for the CUSUM Mann-Whitney chart are larger 

than that of the CUSUM LT chart. It should be noted that the differences are larger than those 

under t(2) shift alternatives. 
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(iv)    The Weibull distribution 
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Figure 6.10. The ATSP values for a single step shift when the data is from a Weibull(1,1) 

distribution. 

 

Similar to the previous two comparisons, we see that the LRT chart can not obtain the 

specified FAP of 0.05. Consequently, the LRT chart is not compared to the other charts under 

Weibull(1,1) shift alternatives. When comparing the CUSUM Mann-Whitney chart with the 

CUSUM LT chart we find that the CUSUM Mann-Whitney chart is performing better than 

the CUSUM LT chart for small shift sizes, whereas, for large shift sizes the opposite is true, 

although to a very small extent. 
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(v)    The lognormal distribution 
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Figure 6.11. The ATSP values for a single step shift when the data is from a lognormal(0,1) 

distribution. 

 

Similar to the previous three comparisons, we see that the LRT chart can not obtain 

the specified FAP of 0.05. Consequently, the LRT chart is not compared to the other charts 

under lognormal(0,1) shift alternatives. When comparing the CUSUM Mann-Whitney chart 

with the CUSUM LT chart we find that the CUSUM Mann-Whitney chart is performing 

better than the CUSUM LT chart, since the ATSP values for the CUSUM Mann-Whitney 

chart are larger than that of the CUSUM LT chart.  
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Table 6.8. A summary of the performances of the CUSUM Mann-Whitney, CUSUM LT and 

LRT charts for five different distributions. 

Distribution Type of shift Preferred control chart* 
Normal(0,1) Linear trend shift For shifts < 3.5: 

1) CUSUM LT 
2) CUSUM MW 
3) LRT 
 
For shifts > 3.5: 
1) LRT 
2) CUSUM LT 
3) CUSUM MW 

Normal(0,1) Single step shift For shifts < 2.5: 
1) CUSUM MW or CUSUM LT (comparable performance) 
2) LRT 
 
For shifts > 2.5: 
1) LRT 
2) CUSUM LT or CUSUM MW (comparable performance) 

t(2) Single step shift 1) CUSUM MW 
2) CUSUM LT 

)2(2χ  Single step shift 1) CUSUM MW 
2) CUSUM LT 

Weibull(1,1) Single step shift For shifts < 3.0: 
1) CUSUM MW 
2) CUSUM LT 
 
For shifts > 3.0: 
1) CUSUM LT 
2) CUSUM MW 

Lognormal(0,1) Single step shift 1) CUSUM MW 
2) CUSUM LT 

 

Example 6.2 

A CUSUM Mann-Whitney control chart 

 

We illustrate the CUSUM Mann-Whitney control chart using a set of simulated data 

used by Sullivan and Woodall (1996; Table 2) and ZZW (2007; Table 2). This data set is ideal 

for use in this Phase I problem, since it is known to have a single step shift in the mean.  

There are 30 observations, i.e. n = 30, which are distributed as follows: iX ~ )1,0(N  for 15≤i  

and iX ~ )1,1(N  for 15>i  (a value of 1 was added to the last 15 observations causing the data 
                                                 
* The control charts are ranked from the most preferred to the least preferred. The LRT chart could not be 
compared to the CUSUM MW and CUSUM LT charts under t(2), )2(2χ , Weibull(1,1) and Lognormal(0,1) 
shift alternatives, since the LRT chart could not obtain the specified FAP of 0.05. 
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to exhibit a step shift in the middle of the sample). Clearly, there is a known change-point at 

15=t  where the mean has shifted from 0 to 1. The Mann-Whitney statistics ( tMW ), the 

corresponding expected values ( )( tMWE ), standard deviations ( )( tMWstdev ) and 

standardized values ( tSMW ), respectively, are given in Table 6.9. The CUSUM +
iS  and −

iS  

values are also given in Table 6.9 and illustrated in Figure 6.12. The starting values are set 

equal to zero, that is, 000 == −+ SS  (as recommended by Page (1954)). 

 

Table 6.9. Data and calculations for the CUSUM Mann-Whitney chart when 2=k .* 

i Xi tMW  )( tMWE  )( tMWstdev  tSMW  ++++
iS  −−−−

iS  
1 -0.69 6 14.5 8.655 -0.982 0.000 0.000 
2 0.56 20 28.0 12.028 -0.665 0.000 0.000 
3 -0.96 23 40.5 14.465 -1.210 0.000 0.000 
4 -0.11 29 52.0 16.391 -1.403 0.000 0.000 
5 -0.25 33 62.5 17.970 -1.642 0.000 0.000 
6 0.45 41 72.0 19.287 -1.607 0.000 0.000 
7 -0.26 42 80.5 20.394 -1.888 0.000 0.000 
8 0.68 54 88.0 21.323 -1.595 0.000 0.000 
9 0.22 57 94.5 22.096 -1.697 0.000 0.000 

10 -2.10 49 100.0 22.730 -2.244 0.000 -0.244 
11 0.65 56 104.5 23.236 -2.087 0.000 -0.331 
12 -1.49 47 108.0 23.622 -2.582 0.000 -0.913 
13 -2.49 35 110.5 23.894 -3.160 0.000 -2.073 
14 -1.11 25 112.0 24.055 -3.617 0.000 -3.690 
15 0.23 23 112.5 24.109 -3.712 0.000 -5.402 
16 2.16 35 112.0 24.055 -3.201 0.000 -6.603 
17 1.95 45 110.5 23.894 -2.741 0.000 -7.344 
18 1.54 52 108.0 23.622 -2.371 0.000 -7.715 
19 0.67 52 104.5 23.236 -2.259 0.000 -7.974 
20 1.09 54 100.0 22.730 -2.024 0.000 -7.998 
21 1.37 56 94.5 22.096 -1.742 0.000 -7.740 
22 0.69 55 88.0 21.323 -1.548 0.000 -7.288 
23 2.26 61 80.5 20.394 -0.956 0.000 -6.244 
24 1.86 63 72.0 19.287 -0.467 0.000 -4.711 
25 0.62 55 62.5 17.970 -0.417 0.000 -3.128 
26 -1.04 34 52.0 16.391 -1.098 0.000 -2.226 
27 2.30 37 40.5 14.465 -0.242 0.000 -0.468 
28 0.07 20 28.0 12.028 -0.665 0.000 0.000 
29 1.49 15 14.5 8.655 0.058 0.000 0.000 
30 0.52       
 

                                                 
* See SAS Program 9 in Appendix B for the calculation of the values in Table 6.9. This table also appears in 
ZZW, page 7, Table 2. 
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Table 6.9 also appears in ZZW, page 7, Table 2. It should be noted that the CUSUM 
−
iS  values that we obtained in Table 6.9 are different from those in ZZW, since they used 

equation (6.24) to calculate −
iS , whereas we used equation (6.23). 

 

As illustration, the expected value ( )( tMWE ), standard deviation ( )( tMWstdev ), 

standardized value ( tSMW ), CUSUM +
iS  and −

iS  values will be calculated for 1=t . 

( ) 5.14
2

)130(1
1 =−=MWE ,  655.8

12
)130)(130(1

)( =+−==tMWstdev , 

982.0
655.8

5.146
)(

)(
−=−=

−
=

t

tt
t MWstdev

MWEMW
SMW , 

0]2)982.0(0,0max[],0max[ 101 =−−+=−+= ++ kSMWSS ,  

0]2)982.0(0,0min[],0min[ 101 =+−+=++= −− kSMWSS . 
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Figure 6.12. The CUSUM Mann-Whitney chart with n = 30,  k = 2 and h = 1.788. 

 

For a sample size of 30 and a desired FAP of 0.05, the decision interval is taken to be 

1.788 (see Table 6.6). From Figure 6.12 we see that the process is out-of-control starting at 

sample number 13 using the CUSUM Mann-Whitney chart, whereas the LRT chart of 
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Sullivan and Woodall (1996) indicated that observation 15 is the most likely location of the 

shift. Hence, the CUSUM Mann-Whitney chart detects that the mean has shifted upwards.  

 

6.2.4. Summary 

 

ZZW found that the Phase I CUSUM Mann-Whitney chart has good performance 

compared to the CUSUM LT chart for all distributions, except for the Weibull distribution for 

large shifts. Their proposed nonparametric chart for preliminary analysis can be useful for 

quality practitioners in applications where not much is known or can be assumed about the 

process distribution. Although a lot has been accomplished in the last few years regarding the 

development of control charts based on the Mann-Whitney statistic, more remains to be done. 

In terms of research, work needs to be done on a Phase II CUSUM-type chart based on the 

Mann-Whitney statistic for individual observations and subgroups (recall that the control 

chart proposed by ZZW is a Phase I CUSUM-type chart for preliminary analysis of individual 

observations). Also recall that ZZW assumes that the position of the shift is uniformly 

distributed. One could, for future research, consider other distributions for the position of the 

shift. Furthermore, work needs to be done on Phase I and Phase II EWMA-type charts based 

on the Mann-Whitney statistic. Clearly, there are lots of opportunities for future research. 
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Chapter 7: Concluding remarks 
 

In this thesis, we mentioned some of the key contributions and ideas and a few of the 

more recent developments in the area of univariate nonparametric control charts. We 

considered the three main classes of control charts: the Shewhart, CUSUM and EWMA 

control charts and their refinements. The statistics used in nonparametric control charts are 

mostly signs, ranks and signed-ranks and related to nonparametric procedures, such as the 

Wilcoxon signed-rank test and the Mann-Whitney-Wilcoxon rank-sum test. We described the 

sign and signed-rank control charts under each of the three classes in Chapters 2 and 3, 

respectively. In Chapter 4 we only considered the Shewhart-type sign-like control chart, since 

the CUSUM- and EWMA-type control charts have not been developed for the sign-like case. 

In Chapter 5 we only considered the Shewhart-type signed-rank-like control chart, since the 

CUSUM- and EWMA-type control charts have not been developed for the signed-rank-like 

case. Finally, in Chapter 6 we only considered the Shewhart- and CUSUM-type Mann-

Whitney-Wilcoxon control charts, since the EWMA-type control chart has not been 

developed for the Mann-Whitney-Wilcoxon statistic. Clearly, there are lots of opportunities 

for future research. 

 

We considered decision problems under both Phase I and Phase II (see Section 1.5 for 

a distinction between the two phases). In all the sections of this thesis we considered Phase II 

process monitoring, except in Section 6.2 where a CUSUM-type control chart for the 

preliminary Phase I analysis of individual observations based on the Mann-Whitney two-

sample test is proposed. Although the field of preliminary Phase I analysis is interesting and 

the body of literature on Phase I control charts is growing, more research is necessary on 

Phase I nonparametric control charts in general. 

 

We only discussed univariate nonparametric control charts designed to track the 

location of a continuous process, since very few charts are available for scale. Therefore, 

future research needs to be done on monitoring the scale and simultaneously monitoring the 

location and the scale of a process. 

 

There has been other work on nonparametric control charts.  Among these, for 

example, Albers and Kallenberg (2004) studied conditions under which the nonparametric 
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charts become viable alternatives to their parametric counterparts. They consider Phase II 

charts for individual observations in case U based on empirical quantiles or order statistics. 

The basic problem is that for the very small FAR typically used in the industry, a very large 

reference sample size is usually necessary to set up the chart.  They discuss various remedies 

for this problem.   

 

Another area that has received some attention is control charts for variable sampling 

intervals (VSI). In a typical control charting environment, the time interval between two 

successive samples is fixed, and this called a fixed sampling interval (FSI) scheme. VSI 

schemes allow the user to vary the sampling interval between taking samples. This idea has 

intuitive appeal since when one or more charting statistics fall close to one of the control 

limits but not quite outside, it seems reasonable to sample more frequently, whereas when 

charting statistics plot closer to the centerline, no action is necessary and only a few samples 

might be sufficient. On the point of VSI control schemes see for example, Amin (1987), 

Reynolds et al (1990), Rendtel (1990), Saccucci et al (1992) and Amin and Hemasinha 

(1993). These researchers examined combining the VSI approach with the Shewhart, 

CUSUM and the EWMA control schemes, respectively. They demonstrated that the VSI 

control schemes are more efficient than the corresponding FSI control schemes. VSI control 

schemes use a long sampling interval between successive samples when the plotting statistic 

is close to target and a shorter sampling interval otherwise. Initially, the short sampling 

interval could be used for the first few samples to offer protection at start-up. Amin and 

Widmaier (1999) compared the Shewhart X  charts with sign control charts, under the FSI 

and VSI schemes, on the basis of ARL for various shift sizes and several underlying 

distributions like the normal distribution and distributions that are heavy-tailed and/or 

asymmetric like the double exponential and the gamma. It is seen that the nonparametric VSI 

sign charts are more efficient than the corresponding FSI sign charts. 

 

We hope this thesis leads to a wider acceptance of nonparametric control charts 

among practitioners and promotes further interest in the development of nonparametric 

control charts. 
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Appendix A: Theorems and proofs 
 

Theorem 1: 

 

The ARL of the two-sided chart can be expressed as a function of the average run 

lengths of the one-sided charts through the expression 

 
LU ARLARLARL

111 +=  (A1) 

where UARL  and LARL  denotes the average run lengths for the upper and lower one-sided 

charts, respectively. This result applies to both Shewhart- and CUSUM-type charts. A proof 

of expression (A1) is given by using the properties of generating functions. 

 

Proof to Theorem 1: 

 

Generating functions 

 

Let X  be a random variable whose possible values are restricted to the nonnegative 

integers ,...}2,1,0{  and write )( jXPc j == . The probability generating function (hereafter 

pgf) is defined as 

...)2()1()0()()( 210
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+=+=+=====Π ��
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=

sXPsXPsXPsjXPscs
j

j

j

j
jX  

where s  must be restricted to a region in which the power series is convergent. The power 

series always converges if  

 1≤s , that is, 11 ≤≤− s . (A2) 

An alternative definition of )(sXΠ  is 

 ( )X
X sEs =Π )( . (A3) 

 
Properties of generating functions 

 

Let 

          )(...)2()1(...21 jXPjXPjXPccq jjj >=++=++==++= ++  for ,...2,1,0=j  (A4) 

be the ‘tail’ probabilities. Then 
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Therefore the sequence }{ jq  for ,...2,1,0=j  is of importance, because it constitutes another 

probability distribution on the integers ,...2,1,0  with its pgf given by 
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which simplifies to 

 
s

s
sQ X

−
Π−

=
1

)(1
)(  for 11 <<− s . (A6) 

The condition 11 <<− s  is due to the convergence rule (A2), and the fact that expressions 

(A5) and (A6) will only hold for 1≠s . 

 

Signalling event 

   

Let ε  denote a signalling event. Then ε  is a recurrent event, because if ε  occurs on 

the thj  trial, we treat trial 1+j  as though it were the first trial. Let the random variable Y  

denote the number of the trial on which event ε  occurs for the first time. Let jq  denote the 

probability of no occurrences in the first j  trials of an event ε . Then 

)()trialsfirsttheinoccurnotdoes( jYPjPq j >== ε . If jY > , there have been no 

indications of a changed process in the first j  points. Let jc  denote the probability that an 

event ε  occurs for the first time on the thj  trial. Let jp  denote the probability that an event 

ε  occurs on the thj  trial. The set of initial conditions is: 

 
1)trials0firsttheinoccurnotdoes(0 == εPq  

00 =c  

10 =p  

(A7) 

(A8) 

(A9) 
 
 

Let )(),( sCsQ  and )(sP  denote the generating functions for the probabilities jj cq ,  

and jp , respectively. The pgf uniquely determines the corresponding probability distribution 
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and in turn the probability distribution on ,...2,1,0 , uniquely determines the pgf. Clearly, there 

is a 1-1 correspondence between the probability distributions and the pgf’s. 

 

Generating function )(sQ : 

...)( 3
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Applying initial condition (A7), we have that 

...1)( 3
3

2
21 ++++= sqsqsqsQ  

The generating function is helpful in obtaining moments of the distribution of Y . Particularly, 

               )(...)3()2()1(1...1)1( 321 YEYPYPYPqqqQ =+>+>+>+=++++=  (A10) 

where )(YE  denotes the average number of trials between consecutive occurrences of 

signalling events. 

 

Generating function )(sC : 
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Applying initial condition (A8), we have that 

...)( 3
3

2
21 +++= scscscsC   

Due to the fact that we only consider recurrent events which have finite recurrence times, we 

have that 

 1...)1( 321 =+++= cccC . (A11) 

 
Generating function )(sP :        
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Applying initial condition (A9), we have that 
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Corollary A1: 

The sp' can be determined in terms of the sc' : 

)(1
1

)(
sC

sP
−

=  

 

Proof: 

Note: In this proof the set of initial conditions holds (see (A7), (A8) and (A9)). 

The equation given below holds, since ε  is a recurrent event: 

jjjjjj pcpcpcpcpcp 01122110 ... +++++= −−−  

For :0=j  000 pcp =  

For :1=j   10011 pcpcp +=  

For :2=j  2011022 pcpcpcp ++=  

Continuing this way for ,...4,3=j  we have that 

+++=+++ )()(... 100100210 pcpcpcppp ...)( 201102 +++ pcpcpc  

                             ...)...)(( 210210 ++++++= cccppp  

Applying initial conditions (A8) and (A9) we have that 

                        ...)0...)(1(...1 212121 ++++++=+++ ccpppp                         (A12) 

Multiplying (A12) through by js  and summing over j  from one to infinity, we obtain 
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 (refer to expression (A11) for an explanation of why the constant appears in expression 

(A13)) . Re-writing expression (A13) we obtain 
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Corollary A2: 

The q’s can be determined in terms of the c’s: 

s
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sQ
−

−=
1
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)(   for  11 <<− s . 

 

Proof: 

By using equations (A5) and (A6), the q’s can be determined in terms of the c’s: 
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which simplifies to  
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From corollary A1 and corollary A2 we have 
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Therefore, we have that 
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which can be re-written as 
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Taking the limit of )()1( sPs−  as s  approaches unity and applying (A10) we have that 
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Let Uε  and Lε  denote the signalling events for the upper and lower one-sided charts, 

respectively. Let ULε  denote a signalling event of the two-sided chart. Let )(YEL , )(YEU  and 

)(YEUL  denote the average recurrence time of Lε , Uε  and ULε , respectively. We would like 
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to determine  )(YEUL  from )(YEL  and )(YEU . Either Lε  or Uε  (but not both) occurs on 

every trial on which ULε  occurs, and this leads to equation (A20) 

 jUjLjUL PPP ,,, +=  (A20) 

Multiplying (A20) through by js  and summing over j  from one to infinity, we obtain the 

generating functions:    

 1)()()( −+= sPsPsP ULUL  (A21) 

The constant appears, because probabilities sum to unity. Summing over j  from one to 

infinity over the probabilities on the left-hand side of equation (A20), must equal one. 

Summing over j  from one to infinity over the probabilities of the first term on the right-hand 

side of equation (A20), must equal one and summing over j  from one to infinity over the 

probabilities of the second term on the right-hand side of equation (A20), must equal one. 

Therefore, summing the two terms on the right-hand side equals two. The problem arises: The 

left-hand side of the equation equals one while the right-hand side of the same equation 

equals two. This problem is solved by subtracting one from the right-hand side of the 

equation. 

 

Multiplying (A21) through by )1( s−  and taking the limit as s  approaches unity, we 

have that )1(lim)()1(lim)()1(lim)()1(lim
1111

ssPssPssPs
sUsLsULs

−−−+−=−
→→→→

. From (A19) we 

have that 

            )11(
)(

1
)(

1
)(

1 −−+=
YEYEYE ULUL

 

which simplifies to 

 
)(

1
)(

1
)(

1
YEYEYE ULUL

+= . (A22) 
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Theorem 2: 
 

Fu, Spiring and Xie (2002) defined the moment generating function (hereafter mgf) as 

( ) 1)()1(1 1−−−+= QeIet tt ξφ  and used the mgf to obtain expressions for the first and second 

moments of the run length variable N . Fu and Lou (2003) defined the probability generating 

function (hereafter pgf) as ( ) 1)1(1)( 1−−−+= tQItt ξϕ  and used the pgf to obtain expressions 

for the first and second moments of the run length variable N . Although they used different 

methods, both were able to obtain the following expressions for the first and second moments 

of the run length variable N : 

( ) ( ) 11−−= QINE ξ   

( ) ( )( ) 122 −−+= QIQINE ξ  

where Q  is the matrix that contains all the transition probabilities of going from a non-

absorbing state to a non-absorbing state, I  is the identity matrix, )0,...,0,0,1(=ξ  is a row  

vector with 1 at the st1  element and zeros elsewhere, ( )1...11 =   is a column vector with 

all elements equal to unity (refer to the Section 2.3 for more detail about the construction and 

the dimensions of these matrices). 

 

In this appendix the derivation of the first and second moments of the run length 

variable N  will be done using both the mgf and the pgf. 

 

Proof to Theorem 2: 

 

A power series is defied as �
∞

=
=

0

)(
n

n
n xaxf . It is also referred to as the generating 

function. Generating functions are very useful combinatorial enumeration problems. In 

general we have that ...)1()1( 21 +++=− − xxxxx  for 1<x . Similarly, in this example we 

will use the fact that  ...)()( 21 +++=− − QQIQQIQ . In addition, generally we have that 

...)321(...32)1( 2322 +++=+++=− − xxxxxxxx  for 1<x . Similarly, in this example we 

will use the fact that ...)32()( 22 +++=− − QQIQQIQ . 
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Moment generating function 

(See page 373 of Fu, Spiring and Xie (2002)) 

 

The mgf is given by ( ) 1)()1(1 1−−−+= QeIet tt ξφ . It is well-known that if the mgf is 

differentiable at zero, then the thn  moment is given by ( )0)(nφ . Therefore, in order to find the 

first moment, we will have to calculate the first order derivative of the mgf in the point 0=t , 

that is, ( ) ( )0'φ=NE . Similarly, in order to find the second moment, we will have to calculate 

the second order derivative of the mgf in the point 0=t , that is, ( ) ( )0''2 φ=NE . 

 

The first order derivative: 

(Differentiation is done by using the well-known product rule). 

( ) ( ) ( )1)(11)(' 11 −− −−+−= QeI
dt
d

eQeIet tttt ξξφ  

At 0=t :  

( ) 1)(0' 1−−= QIξφ  

Therefore we have that ( ) ( ) 11−−= QINE ξ . 

 

The second order derivative: 

(Differentiation is done by using the well-known product rule). 

( ) ( ) ( ) ( ) ( )1)(11)(1)(1)('' 1
2

2
111 −−−− −−+−+−+−= QeI

dt
d

eQeI
dt
d

eQeI
dt
d

eQeIet tttttttt ξξξξφ

At 0=t : 

( ) ( ) ( )
0

1

0

11 1)(1)(1)(0''
=

−

=

−− −+−+−=
t

t

t

t QeI
dt
d

QeI
dt
d

QI ξξξφ  

( ) ( )
0

11 1)(21)(0''
=

−− −+−=
t

tQeI
dt
d

QI ξξφ   (A23) 

Focusing only on the term ( )
0

11)(
=

−−
t

tQeI
dt
d ξ  we obtain: 
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( )

1...)432(

1...)432(

1...)432(

1

1

1)(

32

432

0

443322

00

00

0

1

++++=

++++=

++++=

�
�

�
�
�

�=

��
�

�
��
�

�
�
�

�
�
�

�=

−

=

=

∞

=

=

∞

=

=

−

�

�

QQQIQ

QQQQ

QeQeQeQe

Qne

Qe
dt
d

QeI
dt
d

t

tttt

tn

nnt

tn

nnt

t

t

ξ

ξ

ξ

ξ

ξ

ξ

 

1)( 2−−= QIQξ . 

 

By substituting ( ) 1)(1)( 2

0

1 −

=

− −=− QIQQeI
dt
d

t

t ξξ  into expression (A23) we obtain 

( )
( )
( )1)()(2)(

1)(2)(

1)(21)(0''

111

21

21

−−−

−−

−−

−−+−=

−+−=

−+−=

QIQIQQI

QIQQI

QIQQI

ξ

ξ

ξξφ

 

( )( )1)(2)( 11 −− −+−= QIQIQIξ   (A24) 

( )1))(()( 11 −− −+−= QIQIQIξ   (A25) 

1))(( 2−−+= QIQIξ . 
 

Therefore we have that  

 

( ) ( )( ) 122 −−+= QIQINE ξ  

 

To get from expression (A24) to expression (A25) we used the following expansion 
1))(( −−+ QIQI  

...)(2

...2222

......

...))((

32

432

3232

32

+++++=
+++++=

++++++++=

+++++=

QQQIQI

QQQQI

QQQQQQI

QQQIQI

 

1)(2 −−+= QIQI . 
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Probability generating function 

(See page 73 of Fu and Lou (2003)) 

 

If N  is a discrete random variable taking values of non-negative integers ,...}2,1,0{ , 

then the pgf of N  is defined as: 

 ( ) ( )�
∞

=

===
0

)(
n

nn nNPxxExϕ  (A26) 

The pgf is given by ( ) 1)1(1)( 1−−−+= tQItt ξϕ . This is obtained by using the definition of 

the pgf given in expression (A26). 

 

( )

( ) ( )( )

111

11

11

1

)(

00

11

11

11

1

1

1

+−=

−=

−=

>−−>=

==

��

��

��

�

�

∞

=

∞

=

∞

=

∞

=

−−

∞

=

∞

=

−

∞

=

∞

=

n

nn

n

nn

n

nn

n

nn

n

nn

n

nn

n

n

n

n

QtQtt

QtQtt

QtQt

nNPnNPt

nNPtt

ξξ

ξξ

ξξ

ϕ

 

The scalar 1 is obtained from the fact that 1100 =Qt ξ . By factorizing we obtain 

( ) .1)1(1

1)1(1

1)1(1)(

1

0

0

−

∞

=

∞

=

−−+=

�
�

�
�
�

�−+=

�
�

�
�
�

�−+=

�

�

tQIt

Qtt

Qttt

n

nn

n

nn

ξ

ξ

ξϕ

 

It is well-known that if the factorial generating function exists in an interval around 1=t , 

then the thr  factorial moment is given by ( )
1

)( )()1()(
=

==
t

Xr

r
r

Xr t
dt
d

XE ϕϕ  where rX )(  is the 

falling factorial )1)...(2)(1()( +−−−= rxxxxx r . Therefore, in order to find the first factorial 

moment, we will have to calculate the first order derivative of the pgf in the point 1=t , that 

is, ( ) )1('ϕ=NE . This will give us the first moment of the run length variable N . Obtaining 

the second moment of the run length variable N  is more difficult. Firstly, we have to find the 

second factorial moment by calculating the second order derivative of the pgf in the point 
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1=t , that is, ( ) )1('')1( ϕ=−NNE . Using the fact that ( ) )()()1( 2 NENENNE −=−  we can 

obtain the second moment of the run length variable N . 

 

The first order derivative: 

(Differentiation is done by using the well-known product rule). 

( ) ( )( )1)1(1)(' 11 −− −−+−= tQI
dt
d

ttQIt ξξϕ  

At 1=t : 

( ) 1)1(' 1−−= QIξϕ  

Therefore we have that  

 ( ) ( ) 11−−= QINE ξ . (A27) 

 

The second order derivative: 

(Differentiation is done by using the well-known product rule). 

( )( ) ( )( ) ( )( )1)1(11)('' 1
2

2
11 −−− −−+−+−= tQI

dt
d

ttQI
dt
d

tQI
dt
d

t ξξξϕ  

( )( ) ( )( )1)1(12)('' 1
2

2
1 −− −−+−= tQI

dt
d

ttQI
dt
d

t ξξϕ    

At 1=t : 

( )( )

( )
( )1...322

1...32102

12

12

12

12)1(''

2

3210

0

10

1

10

1

1

+++=

++++=

�
�

�
�
�

�=

�
�

�
�
�

�=

��
�

�
��
�

�
�
�

�
�
�

�=

−=

�

�

�

∞

=

=

∞

=

−

=

∞

=

=

−

QQIQ

QQQQ

nQ

Qnt

Qt
dt
d

tQI
dt
d

n

n

tn

nn

tn

nn

t

ξ

ξ

ξ

ξ

ξ

ξϕ

 

( ) 12 2−−= QIQξ . 

 

Therefore we have that  

 ( ) ( ) 12)1( 2−−=− QIQNNE ξ . (A28) 
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The second moment is derived by using the fact that  

 ( ) )()()1( 2 NENENNE −=−  (A29) 

Expression (A29) can be re-written as 

 ( ))1()()( 2 −+= NNENENE  (A30) 

 

From (A27) and (A28) we know that ( ) ( ) 11−−= QINE ξ  and 

( ) ( ) 12)1( 2−−=− QIQNNE ξ . By substituting this into expression (A30) we obtain 

( ) ( ) 121)( 212 −− −+−= QIQQINE ξξ . During the derivation of )( 2NE  in the mgf section we 

have shown that ( ) ( ) 1))((121 221 −−− −+=−+− QIQIQIQQI ξξξ . Thus 

 1))(()( 22 −−+= QIQINE ξ . (A31) 

 
Finally, though expressions (A27) and (A31) we have ( ) ( ) 11−−= QINE ξ  and 

1))(()( 22 −−+= QIQINE ξ . 
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Theorem 3: 

 

In Section 6.1.5 we state that the saddlepoint is the solution to the equation µ=)(tm  

where )(tm  is the first order derivative of the cumulant generating function (cgf) denoted by 

)(tκ . Therefore, the saddlepoint is the solution to the equation µκ =)('t . 

 

Proof to Theorem 3: 

 

 For the development of saddlepoint methodology see Daniels (1954) for details on 

density approximations, Lugannani and Rice (1980) and Daniels (1987) for discussions on tail 

area approximations and Reid (1988) for a review on saddlepoint techniques. Saddlepoint 

approximations are constructed by performing various operations on the moment generating 

function (mgf) and the cgf. 

 

 Let X  be a random variable with a density function denoted by )(xf . Let )(tφ  

denote the mgf which is defined as �
∞

∞−

= dxxfet tx )()(φ . The cgf is just the logarithm of the 

mgf , i.e. ( ))(log)( tt φκ = . From )(tφ  we can obtain )(xf  by using the Fourier inversion 

formula as follows 

 dtedteitxf
i

i

txtitx
��
∞

∞−

−−
∞

∞−

== )(

2
1

)(
2
1

)( κ

π
φ

π
 (A32) 

where 1−=i . 

 

 By differentiating the integral in (A32) and setting the result equal to zero we obtain 

 xt =)('κ . (A33) 

The solution to (A33) is called the saddlepoint and denoted by t̂ . 

 

 Daniels (1954) used the exponential power series expansion to estimate the integral in 

(A32) and derived the following approximation for )(xf  

 xtte
t

xf ˆ)ˆ(
2
1

)ˆ(''2
1

)( −
��
�

�
��
�

�
≈ κ

πκ
 (A34) 
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Expression (A34) is referred to as the first-order saddlepoint density approximation where t̂  

is the unique solution to the saddlepoint equation xt =)('κ . 

 

 For a rigorous account of the underlying mathematical theory of saddlepoint methods, 

interested readers can refer to Jensen (1995). 
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Appendix B: Computer programs 
 
Mathcad program 1: 
 
This program calculates the ARL and the probability of a signal for the upper one-sided Shewhart sign chart. . These values 
are shown in Tables 2.5, 2.6 and 2.7 for n = 5, 10 and 15, respectively. 
 
 

Probsignalupper n p, a,( )

n a−

n

i

combin n i,( ) p
i⋅ 1 p−( )n i−
⋅�

=

�
�
�
�

�
�
�
�

:=  

ARLupper n p, a,( )
1

Probsignalupper n p, a,( )
:=  

n 10:=  
q 0.1 0.2, 0.9..:=  
a 0 1, n..:=  
Msignal

q 10⋅ a,
Probsignalupper n q, a,( ):=  

 
Mupper

q 10⋅ a,
ARLupper n q, a,( ):=

 
 
Take note: The output is given in Tables 2.5, 2.6 and 2.7, respectively.
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Mathcad program 2: 
 
This program calculates the ARL and the probability of a signal for the lower one-sided Shewhart sign chart. These values are 
shown in Tables 2.5, 2.6 and 2.7 for n = 5, 10 and 15, respectively. 
 

Probsig n p, a,( )

0

a

i

combin n i,( ) pi⋅ 1 p−( )n i−⋅�
=

:=  

ARLlower n p, a,( )
1

Probsig n p, a,( )
:=  

q 0.1 0.2, 0.9..:=  
n 10:=  
a 0 1, n..:=  
Msigq 10⋅ a, Probsig n q, a,( ):=  
 
Mlowerq 10⋅ a, ARLlower n q, a,( ):=  
 
Take note: The output is given in Tables 2.5, 2.6 and 2.7, respectively.
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Mathcad program 3: 
 
This program calculates the ARL’s for the upper- and lower one-sided and two-sided 
Shewhart sign charts with both warning and action limits.  
 
Upper one-sided chart: 

p0upper n p, w,( )

0

w n+ 2−( )

2

i

combin n i,( ) p
i⋅ 1 p−( )

n i−
�
=

:=

p1upper n p, w, a,( )

0

a n+ 2−( )

2

i

combin n i,( ) p
i⋅ 1 p−( )

n i−⋅�
=

�
�
�
�
�

�
�
�
�
� 0

w n+ 2−( )

2

i

combin n i,( ) p
i⋅ 1 p−( )

n i−⋅�
=

�
�
�
�
�

�
�
�
�
�

−:=

 
 

ARLupper n p, w, a, r,( )
1 p1upper n p, w, a,( )

r−

1 p1upper n p, w, a,( )− p0upper n p, w,( ) 1 p1upper n p, w, a,( )
r−( )⋅−�� ��

:=  

p 0.5:=   n 10:=  
a n p⋅ n..:=  
w n p⋅ n..:=  
RU1a w, ARLupper n p, w, a, 1,( ):=

 
Take note: The output is given in Table 2.10. 
 
Lower one-sided chart: 

p0lower n p, w,( ) 1

0

n w−( )

2

i

combin n i,( ) p
i⋅ 1 p−( )

n i−⋅�
=

−:=

 

p1lower n p, w, a,( )

0

n w−( )

2

i

combin n i,( ) p
i⋅ 1 p−( )

n i−⋅�
=

�
�
�
�
�

�
�
�
�
� 0

n a−( )

2

i

combin n i,( ) p
i⋅ 1 p−( )

n i−
�
=

�
�
�
�
�

�
�
�
�
�

−:=

 
 

ARLlower n p, w, a, r,( )
1 p1lower n p, w, a,( )

r−( )
1 p1lower n p, w, a,( )− p0lower n p, w,( ) 1 p1lower n p, w, a,( )

r−( )⋅−
:=  

RL1a w, ARLlower n p, w, a, 1,( ):=
 

Take note: The output is given in Table 2.11. 
 
Two-sided chart: 
ARLtwo n p, w, a, r,( )

ARLlower n p, w, a, r,( ) ARLupper n p, w, a, r,( )⋅
ARLlower n p, w, a, r,( ) ARLupper n p, w, a, r,( )+

:=
 

R1a w, ARLtwo n p, w, a, 1,( ):=
 

Take note: The output is given in Table 2.12.        
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SAS program 1:  
 
This program calculates the iSN  and iT  statistics shown in Table 2.3. 
 
proc iml; 
 
* Number of samples; 
nn=15;    
 
* Sample size; 
n=5;    
 
signmatrix=j(nn,n,0); 
timatrix=j(nn,n,0); 
 
* The known median; 
tv = 74;    
 
* The matrix containing the Montgomery (2001) Table 5.2 piston ring data; 
matrix = {  
74.012 74.015 74.030 73.986 74.000, 73.995 74.010 73.990 74.015 74.001, 
73.987 73.999 73.985 74.000 73.990, 74.008 74.010 74.003 73.991 74.006, 
74.003 74.000 74.001 73.986 73.997, 73.994 74.003 74.015 74.020 74.004, 
74.008 74.002 74.018 73.995 74.005, 74.001 74.004 73.990 73.996 73.998, 
74.015 74.000 74.016 74.025 74.000, 74.030 74.005 74.000 74.016 74.012, 
74.001 73.990 73.995 74.010 74.024, 74.015 74.020 74.024 74.005 74.019, 
74.035 74.010 74.012 74.015 74.026, 74.017 74.013 74.036 74.025 74.026, 
74.010 74.005 74.029 74.000 74.020}; 
 
* Calculating the SNi statistics; 
do k = 1 to nn; 
 do l = 1 to n; 
  if matrix[k,l]>tv then signmatrix[k,l]=1; 
  else if matrix[k,l]<tv then signmatrix[k,l]=-1; 
  else signmatrix[k,l]=0; 
  end; 
end; 
 
signvec=signmatrix[,+]; 
 
* Calculating the Ti statistics; 
do k = 1 to nn; 
 do l = 1 to n; 
  if matrix[k,l]>tv then timatrix[k,l]=1; 
  else timatrix[k,l]=0; 
 end; 
end; 
 
tivec=timatrix[,+]; 
si_ti=signvec||tivec; 
create newdata from si_ti[colname = {"Si" "Ti"}]; 
append from si_ti; 
 
proc print data=newdata; 
run; 
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SAS program 2: 
 
This program calculates the ARL, SDRL, 5th, 25th, 50th, 75th and 95th percentile values for 
the upper one-sided CUSUM sign chart. 
 
Take note: The programs for the lower one-sided and two-sided CUSUM sign charts are omitted, 
since they are very similar to this program and can easily be obtained by making minor 
alterations to this program.  
 
proc iml; 
 
* For n even, the reference value k is taken to be even; 
* For n odd, the reference value k is taken to be odd; 
* Restriction h <= n-k; 
 
* The reference value; 
k=1; 
 
* The decision interval; 
h=4; 
 
* The sample size; 
n=5; 
 
* The z-value will be used in the calculation of the pmf, P(N=z), and the cdf, 
P(N<=z);  
z=10000;   
 
* The following values will be used to calculate the 5th, 25th, 50th, 75th and 
95th percentiles, respectively; 
p5p=0.05;   
p25p=0.25;  
p50p=0.5;   
p75p=0.75;   
p95p=0.95;   
 
* Calculating the state space; 
SRn =do(-n,n,2)`; 
S=j(nrow(SRn),1,1); 
 
do i = 1 to nrow(SRn); 
 S[i,]=min(h,(max(0,SRn[i,]-k))); 
end; 
 
do i = 1 to nrow(S); 
 do j = 1 to nrow(S); 
  if i=j then S[i,]=S[i,];  
  else if S[i,]=S[j,] then S[j,]=999; 
 end; 
end; 
 
S=S[loc(S<999)]; 
 
* Defining the vector eta used in the formula for the ARL given by 
E(N)=eta*inv(I-Q)*one; 
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eta=j(1,nrow(S)-1,1); 
 
do i = 1 to nrow(S)-1; 
 if i = 1 then eta[1,i]=1; 
 else eta[1,i]=0; 
end; 
 
* Calculating the transition probability matrix; 
P = j( nrow(S) , nrow(S), 0);  
T = j(n+1,1,1); 
 
do x = 0 to n; 
 T[x+1,]=pdf('BINOM',x,0.5,n); 
end; 
 
* Calculating the first column of the transition matrix; 
do i = 1 to nrow(S)-1; 
 small_t = (k - S[i,] + n)/2; 
 P[i,1] = sum(T[1:(small_t + 1),]);  
end; 
 
* Calculating the middle columns of the transition matrix; 
do j = 2 to nrow(S)-1; 
 do i = 1 to nrow(S)-1; 
  small_t=ceil((S[j,] + k - S[i,] + n) / 2); 
  P[i,j]=T[small_t+1,]; 
 end; 
end; 
 
* Calculating the last column of the transition matrix; 
do i = 1 to nrow(S)-1; 
 P[i,nrow(S)] = 1 - sum ( P[i, 1:(nrow(S)-1)] ); 
end; 
 
P[nrow(S),nrow(S)]=1; 
 
* Defining the vector one used in the formula for the ARL given by 
E(N)=eta*inv(I-Q)*one; 
one = j(nrow(S)-1,1,1); 
 
* Defining the matrix Q used in the formula for the ARL given by 
E(N)=eta*inv(I-Q)*one; 
Q = P[1:nrow(S)-1,1:nrow(S)-1]; 
 
* Defining the identity matrix I used in the formula for the ARL given by 
E(N)=eta*inv(I-Q)*one; 
identity = I(nrow(S)-1); 
 
* Calculating the 5th, 25th, 50th, 75th and 95th percentiles; 
pmf=j(z,1,1); 
cdf=j(z,1,1); 
cdf_5th_p=j(z,1,1); 
cdf_25th_p=j(z,1,1); 
cdf_50th_p=j(z,1,1); 
cdf_75th_p=j(z,1,1); 
cdf_95th_p=j(z,1,1); 
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do i = 1 to z;  
 pmf[i,1] = eta * (Q**(i-1)) * (identity - Q) * one; 
 cdf[i,1]=sum(pmf[1:i,1]); 
end; 
 
index=j(z,1,1); 
 
do i = 2 to z; 
 index[i,]=index[i-1,]+1; 
end; 
 
* Calculating the 5th percentile; 
do i = 1 to z; 
 cdf_5th_p[i,]=cdf[i,]; 
 if cdf_5th_p[i,]>=p5p then cdf_5th_p[i,]=999; 
end; 
 
cdf_5th_p=cdf_5th_p[loc(cdf_5th_p<999)]; 
if cdf_5th_p[1,]=999 then percentile_p5p=1; 
else percentile_p5p=nrow(cdf_5th_p)+1; 
 
* Calculating the 25th percentile; 
do i = 1 to z; 
 cdf_25th_p[i,]=cdf[i,]; 
 if cdf_25th_p[i,]>=p25p then cdf_25th_p[i,]=999; 
end; 
 
cdf_25th_p=cdf_25th_p[loc(cdf_25th_p<999)]; 
if cdf_25th_p[1,]=999 then percentile_p25p=1; 
else percentile_p25p=nrow(cdf_25th_p)+1; 
 
* Calculating the 50th percentile; 
do i = 1 to z; 
 cdf_50th_p[i,]=cdf[i,]; 
 if cdf_50th_p[i,]>=p50p then cdf_50th_p[i,]=999; 
end; 
 
cdf_50th_p=cdf_50th_p[loc(cdf_50th_p<999)]; 
if cdf_50th_p[1,]=999 then percentile_p50p=1; 
else percentile_p50p=nrow(cdf_50th_p)+1; 
 
* Calculating the 75th percentile; 
do i = 1 to z; 
 cdf_75th_p[i,]=cdf[i,]; 
 if cdf_75th_p[i,]>=p75p then cdf_75th_p[i,]=999; 
end; 
 
cdf_75th_p=cdf_75th_p[loc(cdf_75th_p<999)]; 
if cdf_75th_p[1,]=999 then percentile_p75p=1; 
else percentile_p75p=nrow(cdf_75th_p)+1; 
 
* Calculating the 95th percentile; 
do i = 1 to z; 
 cdf_95th_p[i,]=cdf[i,]; 
 if cdf_95th_p[i,]>=p95p then cdf_95th_p[i,]=999; 
end; 
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cdf_95th_p=cdf_95th_p[loc(cdf_95th_p<999)]; 
if cdf_95th_p[1,]=999 then percentile_p95p=1; 
else percentile_p95p=nrow(cdf_95th_p)+1; 
 
* Calculating the average run length (ARL); 
ARL = eta * inv(identity-Q) * one; 
 
* Calculating the second moment; 
N2 = eta * (identity + Q) * (inv((identity-Q)**2)) * one; 
 
* Calculating the standard deviation; 
SDRL = sqrt (N2 - ((ARL)**2) ); 
 
* Calculating the two-sided ARL; 
ARL_two=(ARL*ARL)/(ARL+ARL); 
 
* Printing the output; 
print_cdf=index||cdf; 
print_pmf=index||pmf; 
 
print   k [label='Reference value'] 
        , h [label='Desicion interval'] 
   , n [label='Sample size'] 
        , S [label = 'State Space'] 
        , P [label='Transition probability matrix' format=.3] 
   , ARL [label='Average run length' format=.2] 
   , ARL_two [label = 'The ARL of the two-sided chart' format=.2] 
   , SDRL [label='Standard Deviation of the run length' format=.2] 
   , N2 [label='Second moment' format=.2] 
   , percentile_p5p [label='Fifth percentile'] 
   , percentile_p25p [label='25th percentile'] 
   , percentile_p50p [label='50th percentile'] 
   , percentile_p75p [label='75th percentile'] 
   , percentile_p95p [label='95th percentile']; 
run; 
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SAS program 3: 
 
This program calculates the sign test statistics ( iSN ), iT -statistics, upper CUSUM statistics 
( ++++

iS ) and lower CUSUM statistics ( −−−−
iS )  for the Montgomery (2001) piston ring data. 

 
proc iml; 
 
* Number of samples; 
nn=15;    
 
* Sample size; 
n=5;    
 
* The known median; 
tv = 74; 
 
signmatrix=j(nn,n,0); 
timatrix=j(nn,n,0); 
 
* A matrix containing the Montgomery (2001) Table 5.2 piston ring data; 
matrix =   
{74.012 74.015 74.030 73.986 74.000, 
73.995 74.010 73.990 74.015 74.001, 
73.987 73.999 73.985 74.000 73.990, 
74.008 74.010 74.003 73.991 74.006, 
74.003 74.000 74.001 73.986 73.997, 
73.994 74.003 74.015 74.020 74.004, 
74.008 74.002 74.018 73.995 74.005, 
74.001 74.004 73.990 73.996 73.998, 
74.015 74.000 74.016 74.025 74.000, 
74.030 74.005 74.000 74.016 74.012, 
74.001 73.990 73.995 74.010 74.024, 
74.015 74.020 74.024 74.005 74.019, 
74.035 74.010 74.012 74.015 74.026, 
74.017 74.013 74.036 74.025 74.026, 
74.010 74.005 74.029 74.000 74.020}; 
 
* Calculating the sign test statistics, SNi; 
do k = 1 to nn; 
 do l = 1 to n; 
  if matrix[k,l]>tv then signmatrix[k,l]=1; 
  else if matrix[k,l]<tv then signmatrix[k,l]=-1; 
  else signmatrix[k,l]=0; 
  end; 
end; 
 
signvec=signmatrix[,+]; 
 
* Calculating the Ti statistics; 
do k = 1 to nn; 
 do l = 1 to n; 
 if matrix[k,l]>tv then timatrix[k,l]=1; 
 else timatrix[k,l]=0; 
 end; 
end; 
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tivec=timatrix[,+]; 
 
* Calculating the CUSUM statistics; 
 
* Specifying the reference value; 
k=2; 
 
* The starting values are set equal to zero; 
SNpluszero=0; 
SNminuszero=0; 
 
SNplus=j(nn,1,0); 
SNminus=j(nn,1,0); 
 
do l = 2 to nn; 
 SNplus[1,]=max(0,SNpluszero+(signvec[1,])-k); 
 SNminus[1,]=min(0,SNminuszero+(signvec[1,])+k); 
 SNplus[l,]=max(0,SNplus[l-1,]+(signvec[l,])-k); 
 SNminus[l,]=min(0,SNminus[l-1,]+(signvec[l,])+k); 
end; 
 
Nplus=j(nn,1,0); 
Nminus=j(nn,1,0); 
 
do l = 1 to nn; 
 if SNplus[l,]=0 then Nplus[l,]=0; 
 else Nplus[l,]=Nplus[l-1,]+1; 
end; 
 
do l = 1 to nn; 
 if SNminus[l,]=0 then Nminus[l,]=0; 
 else Nminus[l,]=Nminus[l-1,]+1; 
end; 
 
* Printing the output; 
print signvec [label='The SNi statistics'], 
      tivec [label='The Ti statistics'], 
 SNplus [label='The upper CUSUM statistics'], 
 SNminus [label='The lower CUSUM statistics']; 
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SAS program 4: 
 
This program calculates the ARL, SDRL, 5th, 25th, 50th, 75th and 95th percentile values for 
the EWMA sign chart. 
 
proc iml; 
 
* Number of subintervals between UCL and LCL; 
NN=5; 
 
* Sample size;  
n=6;  
 
* p=0.5 when the process is in-control;  
p=0.5;  
 
* The EWMA parameter: the multiplier;  
L=2;  
 
* The EWMA parameter: the smoothing constant;  
lambda=1; 
 
* The z-value will be used in the calculation of the percentiles;   
z=10000;    
 
* Calculating the control limits; 
UCL = L * 2 * sqrt(n*p*(1-p)) * sqrt(lambda/(2-lambda)); 
LCL = -UCL; 
S=j(NN,1,0); 
 
* The interval between the UCL and LCL are divided into subintervals of width 
2*delta; 
delta = ((UCL-LCL)/NN)/2; 
S[1,1] = UCL - delta; 
 
do i = 2 to NN; 
 S[i,1]=S[i-1,1]-2*delta; 
end; 
 
Q_a=j(NN,NN,0); 
Q_b=j(NN,NN,0); 
Q=j(NN,NN,0); 
 
do i = 1 to NN; 
 do j = 1 to NN; 
 Q_a[i,j]=floor(((((S[j,]-delta) - (1-lambda)*S[i,])/lambda) + n)/2); 
 end; 
end; 
 
do i = 1 to NN; 
 do j = 1 to NN; 
 Q_b[i,j]=floor(((((S[j,]+delta) - (1-lambda)*S[i,])/lambda) + n)/2); 
 end; 
end; 
 
do i = 1 to NN; 
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 do j = 1 to NN; 
 Q[i,j]=cdf('BINOMIAL',(Q_b[i,j]),p,n)-cdf('BINOMIAL',(Q_a[i,j]),p,n); 
 end; 
end; 
 
eta=j(1,NN,1); 
do i = 1 to NN; 
 if i = 1 then eta[1,i]=1; 
 else eta[1,i]=0; 
end; 
 
* Defining the vector one used in the formula for the ARL given by 
E(N)=eta*inv(I-Q)*one; 
one=j(NN,1,1); 
 
* Defining the identity matrix I used in the formula for the ARL given by 
E(N)=eta*inv(I-Q)*one; 
identity = I(NN); 
 
* Calculating the 5th, 25th, 50th, 75th and 95th percentiles; 
p5p=0.05;   
p25p=0.25;   
p50p=0.5;   
p75p=0.75;   
p95p=0.95; 
pmf=j(z,1,1); 
cdf=j(z,1,1); 
cdf_5th_p=j(z,1,1); 
cdf_25th_p=j(z,1,1); 
cdf_50th_p=j(z,1,1); 
cdf_75th_p=j(z,1,1); 
cdf_95th_p=j(z,1,1); 
 
do i = 1 to z;  
 pmf[i,1] = eta * (Q**(i-1)) * (identity - Q) * one; 
 cdf[i,1]=sum(pmf[1:i,1]); 
end; 
 
index=j(z,1,1); 
 
do i = 2 to z; 

index[i,]=index[i-1,]+1; 
end; 
 
* Calculating the 5th percentile; 
do i = 1 to z; 
 cdf_5th_p[i,]=cdf[i,]; 
 if cdf_5th_p[i,]>=p5p then cdf_5th_p[i,]=999; 
end; 
cdf_5th_p=cdf_5th_p[loc(cdf_5th_p<999)]; 
if cdf_5th_p[1,]=999 then percentile_p5p=1; 
else percentile_p5p=nrow(cdf_5th_p)+1; 
 
* Calculating the 25th percentile; 
do i = 1 to z; 
 cdf_25th_p[i,]=cdf[i,]; 
 if cdf_25th_p[i,]>=p25p then cdf_25th_p[i,]=999; 
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end; 
cdf_25th_p=cdf_25th_p[loc(cdf_25th_p<999)]; 
if cdf_25th_p[1,]=999 then percentile_p25p=1; 
else percentile_p25p=nrow(cdf_25th_p)+1; 
 
* Calculating the 50th percentile; 
do i = 1 to z; 
 cdf_50th_p[i,]=cdf[i,]; 
 if cdf_50th_p[i,]>=p50p then cdf_50th_p[i,]=999; 
end; 
cdf_50th_p=cdf_50th_p[loc(cdf_50th_p<999)]; 
if cdf_50th_p[1,]=999 then percentile_p50p=1; 
else percentile_p50p=nrow(cdf_50th_p)+1; 
 
* Calculating the 75th percentile; 
do i = 1 to z; 
 cdf_75th_p[i,]=cdf[i,]; 
 if cdf_75th_p[i,]>=p75p then cdf_75th_p[i,]=999; 
end; 
cdf_75th_p=cdf_75th_p[loc(cdf_75th_p<999)]; 
if cdf_75th_p[1,]=999 then percentile_p75p=1; 
else percentile_p75p=nrow(cdf_75th_p)+1; 
 
* Calculating the 95th percentile; 
do i = 1 to z; 
 cdf_95th_p[i,]=cdf[i,]; 
 if cdf_95th_p[i,]>=p95p then cdf_95th_p[i,]=999; 
end; 
cdf_95th_p=cdf_95th_p[loc(cdf_95th_p<999)]; 
if cdf_95th_p[1,]=999 then percentile_p95p=1; 
else percentile_p95p=nrow(cdf_95th_p)+1; 
 
* Calculating the average run length (ARL); 
ARL = eta*ginv(identity-Q)*one; 
 
* Calculating the second moment; 
N2 = eta * (identity + Q) * (ginv((identity-Q)**2)) * one; 
 
* Calculating the standard deviation; 
SDRL = sqrt (N2 - ((ARL)**2) ); 
 
* Printing the output; 
print_cdf=index||cdf; 
print_pmf=index||pmf; 
 
print  UCL [label='Upper control limit'], 
       LCL [label='Lower control limit'], 
       delta, 
       Q, 
    ARL [label = 'Average run length' format=.2] 
       SDRL [label = 'Standard deviation of the run length' format=.2],  
    percentile_p5p [label='Fifth percentile'], 
    percentile_p25p [label='25th percentile'], 
    percentile_p50p [label='50th percentile'], 
    percentile_p75p [label='75th percentile'], 
    percentile_p95p [label='95th percentile']; 
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SAS program 5: 
 
This program calculates the signed-rank ( iSR ) statistics for the Shewhart-type signed-rank 
chart using the Montgomery (2001) piston ring data. 
 
proc iml; 
 
* Number of samples; 
nn=15;  
 
* Sample size;  
n=5; 
 
wsrmatrix = j(nn,n,0); 
sgnmatrix = j(nn,n,0); 
rank_abs_diff = j(nn,n,0); 
final_rank_abs_diff=j(nn,n,0); 
 
* The known median; 
tv=74; 
 
tvmatrix = j(nn,n,tv); 
 
* A matrix containing the Montgomery (2001) Table 5.2 piston ring data; 
obs = { 
74.012 74.015 74.030 73.986 74.000, 
73.995 74.010 73.990 74.015 74.001, 
73.987 73.999 73.985 74.000 73.990, 
74.008 74.010 74.003 73.991 74.006, 
74.003 74.000 74.001 73.986 73.997, 
73.994 74.003 74.015 74.020 74.004, 
74.008 74.002 74.018 73.995 74.005, 
74.001 74.004 73.990 73.996 73.998, 
74.015 74.000 74.016 74.025 74.000, 
74.030 74.005 74.000 74.016 74.012, 
74.001 73.990 73.995 74.010 74.024, 
74.015 74.020 74.024 74.005 74.019, 
74.035 74.010 74.012 74.015 74.026, 
74.017 74.013 74.036 74.025 74.026, 
74.010 74.005 74.029 74.000 74.020}; 
 
* Calculating the SRi statistics; 
diff=obs-tvmatrix; 
 
do k = 1 to nn; 
 do l = 1 to n; 
 if diff[k,l]>0 then sgnmatrix[k,l]=1; 
 else if diff[k,l]<0 then sgnmatrix[k,l]=-1; 
 else if diff[k,l]=0 then sgnmatrix[k,l]=0;  
 end; 
end; 
 
abs_diff=abs(diff); 
 
do i = 1 to nn; 
 rank_abs_diff[i,]=rank(abs_diff[i,]); 
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end; 
 
do i = 1 to nn; 
 do j = 1 to n; 
  do k = 1 to n; 
  if abs_diff[i,j]=abs_diff[i,k] then 
 
 final_rank_abs_diff[i,j]=(rank_abs_diff[i,j]+rank_abs_diff[i,k])/2; 
  end; 
 end; 
end; 
 
do i = 1 to nn; 
 do j = 1 to n; 
  do k = 1 to n; 
  if abs_diff[i,j]=abs_diff[i,k] then 
  final_rank_abs_diff[i,k]=final_rank_abs_diff[i,j]; 
  end; 
 end; 
end; 
 
 
do k = 1 to nn; 
 do l = 1 to n; 
  wsrmatrix[k,l]=sgnmatrix[k,l]*final_rank_abs_diff[k,l]; 
 end; 
end; 
 
SRi = wsrmatrix[,+]; 
 
* Printing the output; 
print SRi [label='The SRi statistics']; 
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SAS program 6: 
 
This program calculates the sFAR'  and sARL '0  for the two-sided Shewhart signed-rank 
chart and the two-sided Shewhart signed-rank-like chart, respectively. 
 
proc iml; 
 
*Number of simulations; 
numsim=10000; 
   
ARLmatrix=j(numsim,1,0); 
 
* Starting the simulation study; 
do ss = 1 to numsim; 
 
* The upper control limit; 
ucl = 10;   
ucl = ucl-1; 
 
* The lower control limit;  
lcl = -ucl; 
 
* Number of samples (must theoretically go to infinity; 
nn=10000;   
 
* Sample size; 
n=10;   
 
wsrmatrix = j(nn,n,0); 
sgnmatrix = j(nn,n,0); 
rank_abs_diff = j(nn,n,0); 
final_rank_abs_diff=j(nn,n,0); 
 
* The median of the standard normal distribution; 
tv=0; 
 
tvmatrix = j(nn,n,tv); 
obs = j(nn,n,0); 
 
* Genrating oservations from a standard normal distribution; 
call randgen(obs,'normal'); 
 
diff=obs-tvmatrix; 
 
do k = 1 to nn; 
 do l = 1 to n; 
  if diff[k,l]>0 then sgnmatrix[k,l]=1; 
  else if diff[k,l]<0 then sgnmatrix[k,l]=-1; 
  else if diff[k,l]=0 then sgnmatrix[k,l]=0;  
 end; 
end; 
 
abs_diff=abs(diff); 
 
do i = 1 to nn; 
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 rank_abs_diff[i,]=rank(abs_diff[i,]); 
end; 
 
do i = 1 to nn; 
 do j = 1 to n; 
  do k = 1 to n; 
   if abs_diff[i,j]=abs_diff[i,k] then 
  
 final_rank_abs_diff[i,j]=(rank_abs_diff[i,j]+rank_abs_diff[i,k])/2; 
  end; 
 end; 
end; 
 
do i = 1 to nn; 
 do j = 1 to n; 
  do k = 1 to n; 
   if abs_diff[i,j]=abs_diff[i,k] then 
   final_rank_abs_diff[i,k]=final_rank_abs_diff[i,j]; 
  end; 
 end; 
end; 
 
 
do k = 1 to nn; 
 do l = 1 to n; 
  wsrmatrix[k,l]=sgnmatrix[k,l]*final_rank_abs_diff[k,l]; 
 end; 
end; 
 
SRi = wsrmatrix[,+]; 
count = j(nn,1,0); 
 
do l = 1 to nn; 
 if SRi[l,]>=ucl then count[l,]=999; 
 if SRi[l,]<=lcl then count[l,]=999; 
end; 
 
do ll = 1 to nn; 
 if count[ll,]=999 then goto skip; 
end; 
 
skip: ARL = ll; 
ARLmatrix[ss,1]=ARL; 
end; 
 
* The simulated average run length (ARL); 
simulatedARL = ARLmatrix[+,]/nrow(ARLmatrix); 
 
* The simulated false alarm rate (FAR); 
FAR = 1/simulatedARL; 
 
ucl = ucl+1; 
 
print  n [label='Sample size'], 
       ucl [label = 'Upper control limit'], 
  simulatedARL [label = 'ARL' format=.3], 
  FAR [label = 'FAR' format=.3]; 
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SAS program 7: 
 
This program calculates the ARL, SDRL, 5th, 25th, 50th, 75th and 95th percentile values for 
the upper one-sided CUSUM signed-rank chart. 
 
Take note: The programs for the lower one-sided and two-sided CUSUM signed-rank charts are 
omitted, since they are very similar to this program and can easily be obtained by making minor 
alterations to this program.  
 
proc iml; 
 
* The reference value; 
k=2;    
 
* The decision interval; 
h=8;    
 
* The sample size;  
n=4;    
 
* The z-value will be used in the calculation of the pmf, P(N=z), and the cdf, 
P(N<=z);  
z=10000;  
 
* The following values will be used to calculate the 5th, 25th, 50th, 75th and 
95th percentiles, respectively; 
p5p=0.05;   
p25p=0.25;   
p50p=0.5;   
p75p=0.75;   
p95p=0.95;   
 
* Calculating the state space; 
SRn =do((-n*(n+1)/2),(n*(n+1)/2),2)`; 
S=j(nrow(SRn),1,1); 
 
do i = 1 to nrow(SRn); 
 S[i,]=min(h,(max(0,SRn[i,]-k))); 
end; 
 
do i = 1 to nrow(S); 
 do j = 1 to nrow(S); 
  if i=j then S[i,]=S[i,];  
  else if S[i,]=S[j,] then S[j,]=999; 
 end; 
end; 
 
S=S[loc(S<999)]; 
 
if h > (SRn[nrow(SRn),]-k) then print "Not possible"; 
 
* Defining the vector eta used in the formula for the ARL given by 
E(N)=eta*inv(I-Q)*one; 
eta=j(1,nrow(S)-1,1); 
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do i = 1 to nrow(S)-1; 
 if i = 1 then eta[1,i]=1; 
 else eta[1,i]=0; 
end; 
 
* Calculating the transition probability matrix; 
P = j( nrow(S) , nrow(S), 0);   
 
* Wilcoxon siged-rank probabilities for a sample size of 4; 
if n = 4 then do; 
 T4 = j((n*(n+1)/2)+1,1,1); 
 T4[1:3,]=1; 
 T4[4:8,]=2; 
 T4[9:11,]=1; 
 T = T4/(2**n); 
end; 
 
* Wilcoxon siged-rank probabilities for a sample size of 5; 
if n = 5 then do; 
 T5 = j((n*(n+1)/2)+1,1,1); 
 T5[1:3,]=1; 
 T5[4:5,]=2; 
 T5[6:11,]=3; 
 T5[12:13,]=2; 
 T5[14:16,]=1; 
 T = T5/(2**n); 
end; 
 
* Wilcoxon siged-rank probabilities for a sample size of 6; 
if n = 6 then do; 
 T6 = j((n*(n+1)/2)+1,1,1); 
 T6[1:3,]=1; 
 T6[4:5,]=2; 
 T6[6,]=3; 
 T6[7:9,]=4; 
 T6[10:13,]=5; 
 T6[14:16,]=4; 
 T6[17,]=3; 
 T6[18:19,]=2; 
 T6[20:22,]=1; 
 T = T6/(2**n); 
end; 
 
 
* Wilcoxon siged-rank probabilities for a sample size of 7; 
if n = 7 then do; 
 T7 = j((n*(n+1)/2)+1,1,1); 
 T7[1:3,]=1; 
 T7[4:5,]=2; 
 T7[6,]=3; 
 T7[7,]=4; 
 T7[8:9,]=5; 
 T7[10,]=6; 
 T7[11:12,]=7; 
 T7[13:17,]=8; 
 T7[18:19,]=7; 
 T7[20,]=6; 
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 T7[21:22,]=5; 
 T7[23,]=4; 
 T7[24,]=3; 
 T7[25:26,]=2; 
 T7[27:29,]=1; 
 T = T7/(2**n); 
end; 
 
* Wilcoxon siged-rank probabilities for a sample size of 8; 
if n = 8 then do; 
 T8 = j((n*(n+1)/2)+1,1,1); 
 T8[1:3,]=1; 
 T8[4:5,]=2; 
 T8[6,]=3; 
 T8[7,]=4; 
 T8[8,]=5; 
 T8[9,]=6; 
 T8[10,]=7; 
 T8[11,]=8; 
 T8[12,]=9; 
 T8[13,]=10; 
 T8[14,]=11; 
 T8[15,]=12; 
 T8[16:18,]=13; 
 T8[19,]=14; 
 T8[20:22,]=13; 
 T8[23,]=12; 
 T8[24,]=11; 
 T8[25,]=10; 
 T8[26,]=9; 
 T8[27,]=8; 
 T8[28,]=7; 
 T8[29,]=6; 
 T8[30,]=5; 
 T8[31,]=4; 
 T8[32,]=3; 
 T8[33:34,]=2; 
 T8[35:37,]=1; 
 T = T8/(2**n); 
end; 
 
* Wilcoxon siged-rank probabilities for a sample size of 9; 
if n = 9 then do; 
 T9 = j((n*(n+1)/2)+1,1,1); 
 T9[1:3,]=1; 
 T9[4:5,]=2; 
 T9[6,]=3; 
 T9[7,]=4; 
 T9[8,]=5; 
 T9[9,]=6; 
 T9[10,]=8; 
 T9[11,]=9; 
 T9[12,]=10; 
 T9[13,]=12; 
 T9[14,]=13; 
 T9[15,]=15; 
 T9[16,]=17; 
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 T9[17,]=18; 
 T9[18,]=19; 
 T9[19:20,]=21; 
 T9[21,]=22; 
 T9[22:25,]=23; 
 T9[26,]=22; 
 T9[27:28,]=21; 
 T9[29,]=19; 
 T9[30,]=18; 
 T9[31,]=17; 
 T9[32,]=15; 
 T9[33,]=13; 
 T9[34,]=12; 
 T9[35,]=10; 
 T9[36,]=9; 
 T9[37,]=8; 
 T9[38,]=6; 
 T9[39,]=5; 
 T9[40,]=4; 
 T9[41,]=3; 
 T9[42:43,]=2; 
 T9[44:46,]=1; 
 T = T9/(2**n); 
end; 
 
* Wilcoxon siged-rank probabilities for a sample size of 10; 
if n = 10 then do; 
 T10 = j((n*(n+1)/2)+1,1,1); 
 T10[1:3,]=1; 
 T10[4:5,]=2; 
 T10[6,]=3; 
 T10[7,]=4; 
 T10[8,]=5; 
 T10[9,]=6; 
 T10[10,]=8; 
 T10[11,]=10; 
 T10[12,]=11; 
 T10[13,]=13; 
 T10[14,]=15; 
 T10[15,]=17; 
 T10[16,]=20; 
 T10[17,]=22; 
 T10[18,]=24; 
 T10[19,]=27; 
 T10[20,]=29; 
 T10[21,]=31; 
 T10[22,]=33; 
 T10[23,]=35; 
 T10[24,]=36; 
 T10[25,]=38; 
 T10[26:27,]=39; 
 T10[28:29,]=40; 
 T10[30:31,]=39; 
 T10[32,]=38; 
 T10[33,]=36; 
 T10[34,]=35; 
 T10[35,]=33; 
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 T10[36,]=31; 
 T10[37,]=29; 
 T10[38,]=27; 
 T10[39,]=24; 
 T10[40,]=22; 
 T10[41,]=20; 
 T10[42,]=17; 
 T10[43,]=15; 
 T10[44,]=13; 
 T10[45,]=11; 
 T10[46,]=10; 
 T10[47,]=8; 
 T10[48,]=6; 
 T10[49,]=5; 
 T10[50,]=4; 
 T10[51,]=3; 
 T10[52:53,]=2; 
 T10[54:56,]=1; 
 T = T10/(2**n); 
end; 
 
* Calculating the first column of the transition matrix; 
do i = 1 to nrow(S)-1; 
 small_t = (k - S[i,] + (n*(n+1)/2) ) / 2; 
 P[i,1] = sum(T[1:(small_t + 1),]);  
end; 
 
* Calculating the middle columns of the transition matrix; 
do j = 2 to nrow(S)-1; 
 do i = 1 to nrow(S)-1; 
  small_t=(S[j,] + k - S[i,] + (n*(n+1)/2)) / 2; 
  P[i,j] = T[small_t + 1,]; 
 end; 
end; 
 
* Calculating the last column of the transition matrix; 
do i = 1 to nrow(S)-1; 
 small_t=((S[nrow(S),] + k - S[i,] + (n*(n+1)/2)) / 2)-1; 
 P[i,nrow(S)] = 1- sum(T[ 1:(small_t + 1),]); 
end; 
 
P[nrow(S),nrow(S)]=1; 
 
* Defining the vector one used in the formula for the ARL given by 
E(N)=eta*inv(I-Q)*one; 
one = j(nrow(S)-1,1,1); 
 
* Defining the matrix Q used in the formula for the ARL given by 
E(N)=eta*inv(I-Q)*one; 
Q = P[1:nrow(S)-1,1:nrow(S)-1]; 
 
* Defining the identity matrix I used in the formula for the ARL given by 
E(N)=eta*inv(I-Q)*one; 
identity = I(nrow(S)-1); 
 
* Calculating the 5th, 25th, 50th, 75th and 95th percentiles; 
pmf=j(z,1,1); 
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cdf=j(z,1,1); 
cdf_5th_p=j(z,1,1); 
cdf_25th_p=j(z,1,1); 
cdf_50th_p=j(z,1,1); 
cdf_75th_p=j(z,1,1); 
cdf_95th_p=j(z,1,1); 
 
do i = 1 to z;  
 pmf[i,1] = eta * (Q**(i-1)) * (identity - Q) * one; 
 cdf[i,1]=sum(pmf[1:i,1]); 
end; 
 
index=j(z,1,1); 
 
do i = 2 to z; 
 index[i,]=index[i-1,]+1; 
end; 
 
* Calculating the 5th percentile; 
do i = 1 to z; 
 cdf_5th_p[i,]=cdf[i,]; 
 if cdf_5th_p[i,]>=p5p then cdf_5th_p[i,]=999; 
end; 
 
cdf_5th_p=cdf_5th_p[loc(cdf_5th_p<999)]; 
 
if cdf_5th_p[1,]=999 then percentile_p5p=1; 
else percentile_p5p=nrow(cdf_5th_p)+1; 
 
* Calculating the 25th percentile; 
do i = 1 to z; 
 cdf_25th_p[i,]=cdf[i,]; 
 if cdf_25th_p[i,]>=p25p then cdf_25th_p[i,]=999; 
end; 
 
cdf_25th_p=cdf_25th_p[loc(cdf_25th_p<999)]; 
 
if cdf_25th_p[1,]=999 then percentile_p25p=1; 
else percentile_p25p=nrow(cdf_25th_p)+1; 
 
* Calculating the 50th percentile; 
do i = 1 to z; 
 cdf_50th_p[i,]=cdf[i,]; 
 if cdf_50th_p[i,]>=p50p then cdf_50th_p[i,]=999; 
end; 
 
cdf_50th_p=cdf_50th_p[loc(cdf_50th_p<999)]; 
 
if cdf_50th_p[1,]=999 then percentile_p50p=1; 
else percentile_p50p=nrow(cdf_50th_p)+1; 
 
* Calculating the 75th percentile; 
do i = 1 to z; 
 cdf_75th_p[i,]=cdf[i,]; 
 if cdf_75th_p[i,]>=p75p then cdf_75th_p[i,]=999; 
end; 
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cdf_75th_p=cdf_75th_p[loc(cdf_75th_p<999)]; 
 
if cdf_75th_p[1,]=999 then percentile_p75p=1; 
else percentile_p75p=nrow(cdf_75th_p)+1; 
 
* Calculating the 95th percentile; 
do i = 1 to z; 
 cdf_95th_p[i,]=cdf[i,]; 
 if cdf_95th_p[i,]>=p95p then cdf_95th_p[i,]=999; 
end; 
 
cdf_95th_p=cdf_95th_p[loc(cdf_95th_p<999)]; 
 
if cdf_95th_p[1,]=999 then percentile_p95p=1; 
else percentile_p95p=nrow(cdf_95th_p)+1; 
 
* Calculating the average run length (ARL); 
ARL = eta * inv(identity-Q) * one; 
 
* Calculating the second moment; 
N2 = eta * (identity + Q) * (inv((identity-Q)**2)) * one; 
 
* Calculating the standard deviation; 
SDRL = sqrt (N2 - ((ARL)**2) ); 
 
* Printing the output; 
print_cdf=index||cdf; 
print_pmf=index||pmf; 
 
print  k [label='Reference value'], 
  h [label='Desicion interval'], 
  n [label='Sample size'], 
  S [label = 'State Space'], 
  P [label='Transition probability matrix' format=fract.], 
  ARL [label='ARL' format=.2], 
  SDRL [label='SDRL' format=.2], 
  percentile_p5p [label='5th'], 
  percentile_p25p [label='25th'], 
  percentile_p50p [label='50th'], 
  percentile_p75p [label='75th'], 
  percentile_p95p [label='95th']; 
run; 
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SAS program 8: 
 
 
This program calculates the ARL, SDRL, 5th, 25th, 50th, 75th and 95th percentile values for 
the EWMA signed-rank chart. 
 
proc iml; 
 
* Number of subintervals between UCL and LCL; 
NN=5; 
 
* Sample size;  
n=10;  
 
* p=0.5 when the process is in-control;  
p=0.5;  
 
* The EWMA parameter: the multiplier;  
L=1;  
 
* The EWMA parameter: the smoothing constant;  
lambda=0.2; 
 
* The z-value will be used in the calculation of the percentiles;   
z=10000;    
 
* The in-control standard devation of the signed-rank statistic; 
stdev=sqrt ( n * (n+1) * (2*n+1) / 6); 
 
* Wilcoxon siged-rank probabilities for a sample size of 4; 
if n = 4 then do; 
 T4 = j((n*(n+1)/2)+1,1,1); 
 T4[1:3,]=1; 
 T4[4:8,]=2; 
 T4[9:11,]=1; 
 T = T4/(2**n); 
end; 
 
* Wilcoxon signed-rank probabilities for a sample size of 5; 
if n = 5 then do; 
 T5 = j((n*(n+1)/2)+1,1,1); 
 T5[1:3,]=1; 
 T5[4:5,]=2; 
 T5[6:11,]=3; 
 T5[12:13,]=2; 
 T5[14:16,]=1; 
 T = T5/(2**n); 
end; 
 
* Wilcoxon signed-rank probabilities for a sample size of 6; 
if n = 6 then do; 
 T6 = j((n*(n+1)/2)+1,1,1); 
 T6[1:3,]=1; 
 T6[4:5,]=2; 
 T6[6,]=3; 
 T6[7:9,]=4; 
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 T6[10:13,]=5; 
 T6[14:16,]=4; 
 T6[17,]=3; 
 T6[18:19,]=2; 
 T6[20:22,]=1; 
 T = T6/(2**n); 
end; 
 
 
* Wilcoxon signed-rank probabilities for a sample size of 7; 
if n = 7 then do; 
 T7 = j((n*(n+1)/2)+1,1,1); 
 T7[1:3,]=1; 
 T7[4:5,]=2; 
 T7[6,]=3; 
 T7[7,]=4; 
 T7[8:9,]=5; 
 T7[10,]=6; 
 T7[11:12,]=7; 
 T7[13:17,]=8; 
 T7[18:19,]=7; 
 T7[20,]=6; 
 T7[21:22,]=5; 
 T7[23,]=4; 
 T7[24,]=3; 
 T7[25:26,]=2; 
 T7[27:29,]=1; 
 T = T7/(2**n); 
end; 
 
* Wilcoxon signed-rank probabilities for a sample size of 8; 
if n = 8 then do; 
 T8 = j((n*(n+1)/2)+1,1,1); 
 T8[1:3,]=1; 
 T8[4:5,]=2; 
 T8[6,]=3; 
 T8[7,]=4; 
 T8[8,]=5; 
 T8[9,]=6; 
 T8[10,]=7; 
 T8[11,]=8; 
 T8[12,]=9; 
 T8[13,]=10; 
 T8[14,]=11; 
 T8[15,]=12; 
 T8[16:18,]=13; 
 T8[19,]=14; 
 T8[20:22,]=13; 
 T8[23,]=12; 
 T8[24,]=11; 
 T8[25,]=10; 
 T8[26,]=9; 
 T8[27,]=8; 
 T8[28,]=7; 
 T8[29,]=6; 
 T8[30,]=5; 
 T8[31,]=4; 
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 T8[32,]=3; 
 T8[33:34,]=2; 
 T8[35:37,]=1; 
 T = T8/(2**n); 
end; 
 
* Wilcoxon signed-rank probabilities for a sample size of 9; 
if n = 9 then do; 
 T9 = j((n*(n+1)/2)+1,1,1); 
 T9[1:3,]=1; 
 T9[4:5,]=2; 
 T9[6,]=3; 
 T9[7,]=4; 
 T9[8,]=5; 
 T9[9,]=6; 
 T9[10,]=8; 
 T9[11,]=9; 
 T9[12,]=10; 
 T9[13,]=12; 
 T9[14,]=13; 
 T9[15,]=15; 
 T9[16,]=17; 
 T9[17,]=18; 
 T9[18,]=19; 
 T9[19:20,]=21; 
 T9[21,]=22; 
 T9[22:25,]=23; 
 T9[26,]=22; 
 T9[27:28,]=21; 
 T9[29,]=19; 
 T9[30,]=18; 
 T9[31,]=17; 
 T9[32,]=15; 
 T9[33,]=13; 
 T9[34,]=12; 
 T9[35,]=10; 
 T9[36,]=9; 
 T9[37,]=8; 
 T9[38,]=6; 
 T9[39,]=5; 
 T9[40,]=4; 
 T9[41,]=3; 
 T9[42:43,]=2; 
 T9[44:46,]=1; 
 T = T9/(2**n); 
end; 
 
* Wilcoxon signed-rank probabilities for a sample size of 10; 
if n = 10 then do; 
 T10 = j((n*(n+1)/2)+1,1,1); 
 T10[1:3,]=1; 
 T10[4:5,]=2; 
 T10[6,]=3; 
 T10[7,]=4; 
 T10[8,]=5; 
 T10[9,]=6; 
 T10[10,]=8; 
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 T10[11,]=10; 
 T10[12,]=11; 
 T10[13,]=13; 
 T10[14,]=15; 
 T10[15,]=17; 
 T10[16,]=20; 
 T10[17,]=22; 
 T10[18,]=24; 
 T10[19,]=27; 
 T10[20,]=29; 
 T10[21,]=31; 
 T10[22,]=33; 
 T10[23,]=35; 
 T10[24,]=36; 
 T10[25,]=38; 
 T10[26:27,]=39; 
 T10[28:29,]=40; 
 T10[30:31,]=39; 
 T10[32,]=38; 
 T10[33,]=36; 
 T10[34,]=35; 
 T10[35,]=33; 
 T10[36,]=31; 
 T10[37,]=29; 
 T10[38,]=27; 
 T10[39,]=24; 
 T10[40,]=22; 
 T10[41,]=20; 
 T10[42,]=17; 
 T10[43,]=15; 
 T10[44,]=13; 
 T10[45,]=11; 
 T10[46,]=10; 
 T10[47,]=8; 
 T10[48,]=6; 
 T10[49,]=5; 
 T10[50,]=4; 
 T10[51,]=3; 
 T10[52:53,]=2; 
 T10[54:56,]=1; 
 T = T10/(2**n); 
end; 
 
* Calculating the control limits; 
UCL = L * stdev * sqrt(lambda/(2-lambda)); 
LCL = -UCL; 
 
S=j(NN,1,0); 
 
* The interval between the UCL and LCL are divided into subintervals of width 
2*delta; 
delta = ((UCL-LCL)/NN)/2; 
 
S[1,1] = UCL - delta; 
 
do i = 2 to NN; 
 S[i,1]=S[i-1,1]-2*delta; 
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end; 
 
Q_a=j(NN,NN,0); 
Q_b=j(NN,NN,0); 
Q=j(NN,NN,0); 
 
do i = 1 to NN; 
 do j = 1 to NN; 
 Q_a[i,j]=floor(((((S[j,]-delta) - (1-lambda)*S[i,])/lambda) + 
n*(n+1)/2)/2); 
 end; 
end; 
 
do i = 1 to NN; 
 do j = 1 to NN; 
 Q_b[i,j]=floor(((((S[j,]+delta) - (1-lambda)*S[i,])/lambda) + 
n*(n+1)/2)/2); 
 end; 
end; 
 
do i = 1 to NN; 
 do j = 1 to NN; 
 lower = Q_a[i,j]; 
 upper = Q_b[i,j]; 
 if lower < 0 then if lower*upper > 0 then Q[i,j]=0; 
 if lower > n*(n+1)/2 then lower_term = 1; 
 else if lower < 0 then lower_term = 0; 
 else lower_term = sum(T[1:(lower+1),]); 
 if upper > n*(n+1)/2 then upper_term = 1; 
 else if upper < 0 then upper_term = 0; 
 else upper_term = sum(T[1:(upper+1),]); 
 Q[i,j] = upper_term - lower_term; 
 end; 
end; 
 
* Defining the vector eta used in the formula for the ARL given by 
E(N)=eta*inv(I-Q)*one; 
eta=j(1,NN,1); 
do i = 1 to NN; 
 if i = 1 then eta[1,i]=1; 
 else eta[1,i]=0; 
end; 
 
* Defining the vector one used in the formula for the ARL given by 
E(N)=eta*inv(I-Q)*one; 
one=j(NN,1,1); 
 
* Defining the identity matrix I used in the formula for the ARL given by 
E(N)=eta*inv(I-Q)*one; 
identity = I(NN); 
 
* Calculating the 5th, 25th, 50th, 75th and 95th percentiles; 
p5p=0.05;   
p25p=0.25;   
p50p=0.5;   
p75p=0.75;   
p95p=0.95;  
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pmf=j(z,1,1); 
cdf=j(z,1,1); 
cdf_5th_p=j(z,1,1); 
cdf_25th_p=j(z,1,1); 
cdf_50th_p=j(z,1,1); 
cdf_75th_p=j(z,1,1); 
cdf_95th_p=j(z,1,1); 
 
do i = 1 to z;  
 pmf[i,1] = eta * (Q**(i-1)) * (identity - Q) * one; 
 cdf[i,1]=sum(pmf[1:i,1]); 
end; 
 
index=j(z,1,1); 
 
do i = 2 to z; 
index[i,]=index[i-1,]+1; 
end; 
 
* Calculating the 5th percentile; 
do i = 1 to z; 
 cdf_5th_p[i,]=cdf[i,]; 
 if cdf_5th_p[i,]>=p5p then cdf_5th_p[i,]=999; 
end; 
 
cdf_5th_p=cdf_5th_p[loc(cdf_5th_p<999)]; 
if cdf_5th_p[1,]=999 then percentile_p5p=1; 
else percentile_p5p=nrow(cdf_5th_p)+1; 
 
* Calculating the 25th percentile; 
do i = 1 to z; 
 cdf_25th_p[i,]=cdf[i,]; 
 if cdf_25th_p[i,]>=p25p then cdf_25th_p[i,]=999; 
end; 
 
cdf_25th_p=cdf_25th_p[loc(cdf_25th_p<999)]; 
if cdf_25th_p[1,]=999 then percentile_p25p=1; 
else percentile_p25p=nrow(cdf_25th_p)+1; 
 
* Calculating the 50th percentile; 
do i = 1 to z; 
 cdf_50th_p[i,]=cdf[i,]; 
 if cdf_50th_p[i,]>=p50p then cdf_50th_p[i,]=999; 
end; 
 
cdf_50th_p=cdf_50th_p[loc(cdf_50th_p<999)]; 
if cdf_50th_p[1,]=999 then percentile_p50p=1; 
else percentile_p50p=nrow(cdf_50th_p)+1; 
 
* Calculating the 75th percentile; 
do i = 1 to z; 
 cdf_75th_p[i,]=cdf[i,]; 
 if cdf_75th_p[i,]>=p75p then cdf_75th_p[i,]=999; 
end; 
 
cdf_75th_p=cdf_75th_p[loc(cdf_75th_p<999)]; 
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if cdf_75th_p[1,]=999 then percentile_p75p=1; 
else percentile_p75p=nrow(cdf_75th_p)+1; 
 
* Calculating the 95th percentile; 
do i = 1 to z; 
 cdf_95th_p[i,]=cdf[i,]; 
 if cdf_95th_p[i,]>=p95p then cdf_95th_p[i,]=999; 
end; 
 
cdf_95th_p=cdf_95th_p[loc(cdf_95th_p<999)]; 
if cdf_95th_p[1,]=999 then percentile_p95p=1; 
else percentile_p95p=nrow(cdf_95th_p)+1; 
 
* Calculating the average run length (ARL); 
ARL = eta*ginv(identity-Q)*one; 
 
* Calculating the second moment; 
N2 = eta * (identity + Q) * (ginv((identity-Q)**2)) * one; 
 
* Calculating the standard deviation; 
SDRL = sqrt (N2 - ((ARL)**2) ); 
 
* Printing the output; 
print_cdf=index||cdf; 
print_pmf=index||pmf; 
 
test = inv(identity - Q); 
 
print  test, 
  NN [label = 'Number of intervals between LCL and UCL'], 
  n [label = 'Sample size'], 
  L [label = 'L: EWMA parameter'], 
  lambda [label = 'lambda: EWMA parameter'], 
  UCL [label='Upper control limit'], 
       LCL [label='Lower control limit'], 
       delta, 
       Q [format=fract.], 
    ARL [label = 'Average run length' format=.2] 
       SDRL [label = 'Standard deviation of the run length' format=.2],  
    percentile_p5p [label='Fifth percentile'], 
    percentile_p25p [label='25th percentile'], 
    percentile_p50p [label='50th percentile'], 
    percentile_p75p [label='75th percentile'], 
    percentile_p95p [label='95th percentile']; 
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SAS program 9: 
 
This program calculates the values for the CUSUM Mann-Whitney chart shown in Table 
6.9. 
 
proc iml; 
 
* The data used by Sullivan and Woodall (1996) and Zhou, Zou and Wang (2007); 
x_obs={ 
-0.69, 0.56, -0.96, -0.11, -0.25, 0.45, -0.26, 0.68, 0.22, -2.10, 0.65, -1.49, 
-2.49, -1.11, 0.23, 2.16, 1.95, 1.54, 0.67, 1.09, 1.37, 0.69, 2.26, 1.86, 
0.62, -1.04, 2.30, 0.07, 1.49, 0.52}; 
 
* Reference value; 
k = 2; 
 
* Calculating the Mann-Whitney (MW) values; 
MW=j(nrow(x_obs)-1,1,.); 
 
do r = 1 to nrow(x_obs-1); 
 keep=0; 
  do i = 1 to r; 
   count = j(nrow(x_obs),1,.); 
    do j = r+1 to nrow(x_obs); 
     if x_obs[i,]>x_obs[j,] then count[j,]=1; 
     t_sum=count[+,]; 
    end; 
   keep = keep // t_sum; 
  end; 
 MW[r,] = keep[+,]; 
end; 
 
t = j(nrow(MW),1,.); 
 
do l = 1 to nrow(MW); 
 t[l,]=l; 
end; 
 
MW = t||MW; 
 
* Calculating the expected value of MWt, i.e. E(MWt); 
exp = j(nrow(MW),1,.); 
 
do l = 1 to nrow(MW); 
 exp[l,]=(MW[l,1]*((nrow(x_obs))-MW[l,1]))/2; 
end; 
 
* Calculating the standard deviation of MWt, i.e. stdev(MWt); 
stdev = j(nrow(MW),1,.); 
 
do l = 1 to nrow(MW); 
 stdev[l,]=sqrt((MW[l,1]*((nrow(x_obs))-MW[l,1])*(nrow(x_obs)+1))/12); 
end; 
 
* Calculating the standardized MWt values, i.e. SMWt; 
SMW = j(nrow(MW),1,.); 
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do l = 1 to nrow(MW); 
 SMW[l,]=(MW[l,2]-exp[l,])/stdev[l,]; 
end; 
 
* Starting values for CUSUM; 
S_plus = j (nrow(MW),1,.); 
S_plus[1,]=0-SMW[1,]-k; 
if S_plus[1,]<0 then S_plus[1,]=0; 
 
S_minus = j (nrow(MW),1,.); 
S_minus[1,]=0+SMW[1,]-k; 
if S_minus[1,]<0 then S_minus[1,]=0; 
 
* Calculating the CUSUM statistics; 
do l = 2 to nrow(S_plus); 
 S_plus[l,]=S_plus[l-1,]+SMW[l,]-k; 
 if S_plus[l,]<0 then S_plus[l,]=0; 
end; 
 
do l = 2 to nrow(S_minus); 
 S_minus[l,]=S_minus[l-1,]+SMW[l,]+k; 
 if S_minus[l,]>0 then S_minus[l,]=0; 
end; 
 
MW = MW[,2]; 
 
print  x_obs [label='Xi-values' format=.2], 
  MW [label='Mann-Whitney statistics'], 
  exp [label='Expected values of MW-statistics'], 
  stdev [label='Standard deviation values of the MW-statistics' 
format=.3], 
  SMW [label='Standarddized values for the MW-statistics' 
format=.3], 
  S_plus [label='Upper CUSUM statistics' format=.3], 
  S_minus [label='Lower CUSUM statistics' format=.3]; 
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SAS program 10: 
  

This program calculates the charting statistics for the Shewhart-type signed-rank-like 
chart. 
 
proc iml; 
 
* Number of samples; 
nn=15;  
 
* Sample size;  
n=5;   
 
wsrmatrix = j(nn,n,0); 
sgnmatrix = j(nn,n,0); 
rank_abs_diff = j(nn,n,0); 
final_rank_abs_diff=j(nn,n,0); 
 
* Median of the reference sample; 
tv=74.001; 
 
tvmatrix = j(nn,n,tv); 
 
* A matrix containing the Montgomery (2001) Table 5.2 piston ring data; 
obs = { 
74.012 74.015 74.030 73.986 74.000, 
73.995 74.010 73.990 74.015 74.001, 
73.987 73.999 73.985 74.000 73.990, 
74.008 74.010 74.003 73.991 74.006, 
74.003 74.000 74.001 73.986 73.997, 
73.994 74.003 74.015 74.020 74.004, 
74.008 74.002 74.018 73.995 74.005, 
74.001 74.004 73.990 73.996 73.998, 
74.015 74.000 74.016 74.025 74.000, 
74.030 74.005 74.000 74.016 74.012, 
74.001 73.990 73.995 74.010 74.024, 
74.015 74.020 74.024 74.005 74.019, 
74.035 74.010 74.012 74.015 74.026, 
74.017 74.013 74.036 74.025 74.026, 
74.010 74.005 74.029 74.000 74.020}; 
 
* Calculating the SRLi statistics; 
diff=obs-tvmatrix; 
 
do k = 1 to nn; 
 do l = 1 to n; 
 if diff[k,l]>0 then sgnmatrix[k,l]=1; 
 else if diff[k,l]<0 then sgnmatrix[k,l]=-1; 
 else if diff[k,l]=0 then sgnmatrix[k,l]=0;  
 end; 
end; 
 
abs_diff=abs(diff); 
 
do i = 1 to nn; 
 rank_abs_diff[i,]=rank(abs_diff[i,]); 
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end; 
 
do i = 1 to nn; 
 do j = 1 to n; 
  do k = 1 to n; 
   if abs_diff[i,j]=abs_diff[i,k] then 
  
 final_rank_abs_diff[i,j]=(rank_abs_diff[i,j]+rank_abs_diff[i,k])/2; 
  end; 
 end; 
end; 
 
do i = 1 to nn; 
 do j = 1 to n; 
  do k = 1 to n; 
   if abs_diff[i,j]=abs_diff[i,k] then 
   final_rank_abs_diff[i,k]=final_rank_abs_diff[i,j]; 
  end; 
 end; 
end; 
 
 
do k = 1 to nn; 
 do l = 1 to n; 
  wsrmatrix[k,l]=sgnmatrix[k,l]*final_rank_abs_diff[k,l]; 
 end; 
end; 
 
SRi = wsrmatrix[,+]; 
 
print SRi [label='Signed-rank-like statistics']; 
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Mathematica program 1: 
 

Chakraborti and Van de Wiel (2003) wrote a Mathematica program which deals with the 

computation of the upper and lower control limits of the Mann-Whitney control chart for either a 

specified in-control ARL or a specified thρ  percentile of conditional ARL (that is: that level of 

which one wants to be )%1(100 ρ−  sure that it is exceeded for his/her specific reference sample). 

In addition, it contains procedures for approximation of the 0ARL  and percentiles when control 

limits are given as well as procedures for computations under out-of-control situations. This 

Mathematica program can be reached using the website www.win.tue.nl/~markvdw. This 

program has user friendly parameters which I changed to suit my examples in Section 6.1.  
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