

VIGOUR OF FUNGICIDE-TREATED AND UNTREATED MAIZE SEED FOLLOWING STORAGE

BY

VELOSHINIE GOVENDER

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

PHILOSOPHIAE DOCTOR

IN THE FACULTY OF NATURAL AND AGRICULTURAL SCIENCES DEPARTMENT OF MICROBIOLOGY AND PLANT PATHOLOGY

UNIVERSITY OF PRETORIA PRETORIA

JULY 2008

© University of Pretoria

I, the undersigned, declare that these studies, except where acknowledged in the text, is my own work and has not been previously submitted in any other form to this or any other tertiary institution.

Veloshinie Govender

Vigour of fungicide- treated and untreated maize seed following storage by Veloshinie Govender

Supervisor:Prof. T.A.S. AvelingCo-supervisor:Dr. Q. KritzingerDepartment:Microbiology and Plant PathologyDegree:Philosophiae Doctor

ABSTRACT

An assessment of the effect that conventional storage structures, used by smallscale farmers in northern Kwa-Zulu Natal and southern Mozambique, had on germination and vigour of maize seeds was conducted. The survey confirmed that the methods of storing the seed decreased the quality of the maize seeds. Storing maize in the field was good as a short-term solution as initial germination was 100%. Following storage at suboptimum conditions, germination dropped to 25.3%. Commercially treated maize seeds were compared to the test samples collected. After storage, the commercially treated seeds maintained a germination percentage above 75.

Untreated maize seeds were treated with fungicides at the recommended dosages. Thereafter the seeds were subjected to germination and vigour tests according to methods outlined by the International Seed Testing Association. All treatments maintained percentage germination above 75. Apron[®] XL had the highest percentage germination of 83. This trend was also found following the cold test and greenhouse emergence. None of the treatments differed significantly from the control. In this study none of the treatments caused major imbibition damage as indicated by the percentage weight increase and the low leachate conductivity (1012-1271 μ Scm⁻¹g⁻¹).

The effect of accelerated ageing (AA, 2 and 4 days) and long-term storage (3 and 6 months) on germination and vigour of treated maize seeds was investigated. In the untreated control and treatments there was a gradual decrease in germination following ageing and storage of the seeds. Apron[®] XL failed to germinate after 3 months. The

decrease in germination was mirrored by the leachate conductivity readings. Thiram was the only treatment to maintain germination after 6 months storage. The seeds were planted in two greenhouse trials to assess the performance of the treatments *in vivo*. The first trial evaluated the emergence and second the emergence and control of *Fusarium graminearum*. Results from the first trial showed that following 2 d AA, seeds treated with Thiram had the highest percentage emergence (70.7) followed by Celest[®] XL (68) and the untreated control (62.7). Following inoculation, a similar trend was seen for the treatments and the untreated control. In relation to the percentage seedlings emerged, the control had the highest percentage diseased seedlings. Celest[®] XL had the lowest percentage diseased seedlings (10, 2 and 1) but failed to germinate after 6 months storage.

The ultrastructural changes in embryonic roots of the untreated control, Celest[®] XL and Apron[®] XL were investigated using transmission electron microscopy. These seeds were subjected to 48 hr rapid imbibition and 2 d AA. The most obvious difference between the untreated control, Apron[®] XL and Celest[®] XL was the number and position of the vacuoles. In contrast the lipid layer was still attached to the cell wall in the Apron[®] XL and Celest[®] XL treatments but in the untreated control they appeared more concentrated in the cytoplasm.

This study proved that Thiram was the best treatment among the fungicides tested. However, these results need to be confirmed using a larger range of maize seed lots.

Keywords: germination, emergence, fungicides, *Fusarium graminearum*, maize, storage, ultrastructure, vigour, *Zea mays*

ACKNOWLEDGEMENTS

I wish to put on record my gratitude to the following

* Prof Terry Aveling, as primary supervisor, for guidance, support, motivation and enthusiasm throughout the course of this study.

* Dr Quenton Kritzinger for invaluable input and support.

* The National Research Fund for financial assistance towards this study.

* The University of Pretoria for funding.

* Syngenta[®] Ltd (Pty) for the maize seeds and the chemicals used in this study.

* Dr Kloppers from Pannar for providing additional maize seeds.

* Dr Gert Marais and Pranita Dawlal (FABI) for providing the Fusarium culture.

* Pam Strauss, Ansie de Vries and the rest of the staff at the Seed Testing unit of Department of Agriculture, Directorate: Plant Production systems – Roodeplaat (Pretoria) for use of the facilities.

* A very big thank you goes to Chris van der Merwe and Alan Hall at the Laboratory for Microscopy and Micro-analysis for your enthusiasm and assistance.

* Marie Theron (Academic Information Service, University of Pretoria), Cathy Barnard (Administration, Faculty of Natural and Agricultural Sciences),

* Thank you to everyone at Plant Pathology Laboratories. Special mention goes to Daleen Muller, thank you for your friendliness and willingness to help.

* To my two best friends Leylani Grobler and Stacey Collignon, thank you for lending me your ears, for the support and most importantly for the laughs!!

* To my family, thank you for your unconditional love and support throughout my studies. To my two special angels: My parents, words cannot express my love and gratitude to you for all that you have done for me. Thank you for molding me into the person I am today and most importantly Thank you for believing in me.

Most importantly, Thank you God for the direction you have given me in my life and the strength to achieve my goals.

TABLE OF CONTENTS

CHAPTER ONE:	
GENERAL INTRODUCTION	1
1.1 Background and motivation of the study	1
1.2 Objectives of the study	3
1.3 Structure of the thesis	3
1.4 Literature cited	5
CHAPTER TWO:	
LITERATURE REVIEW	8
2.1 Introduction to maize (Zea mays L.)	8
2.1.1 Origin and biology of Zea mays L.	8
2.1.1.1 Africa	9
2.1.1.2 South Africa	10
2.1.2 Uses of maize	11
2.2 Diseases of maize	12
2.3 Chemical seed treatment to control maize diseases	18
2.3.1 Apron [®] XL	20
2.3.2 Apron [®] Star	21
2.3.3 Thiram	22
2.3.4 Celest [®] XL	23
2.4 Storage of grain	24
2.5 Aspects of seed quality and vigour	29
2.5.1 Moisture content	29
2.5.2 Germination	30
2.5.2.1 Environmental factors that affect germination	34
2.5.2.1.1 Water	34

2.5.2.1.2 Air	34
2.5.2.1.3 Temperature	34
2.5.2.1.4 Light	35
2.5.3 Vigour tests	36
2.5.3.1 Imbibition	37
2.5.3.2 Cold test	39
2.5.3.3 Conductivity	39
2.5.3.4 Tetrazolium test	40
2.5.3.5 Accelerated ageing	41
2.6 Ultrastructure of seeds	42
2.7 Literature cited	43

CHAPTER THREE:

THE EFFECT OF TRADITIONAL STORAGE METHODS ON GERMINATIONAND VIGOUR OF MAIZE (ZEA MAYS L.) FROM NORTHERN KWAZULU-NATAL AND SOUTHERN MOZAMBIQUE63

CHAPTER FOUR:

THE EFFECT OF FUNGICIDE SEED TREATMENTS ON GERMINATION AND	
VIGOUR OF MAIZE (ZEA MAYS L.) SEEDS	71
Abstract	71
4.1 Introduction	72
4.2 Materials and methods	73
4.2.1 Treatment of the seed	73
4.2.2 Moisture content	73
4.2.3 Standard germination test	74
4.2.4 Vigour tests	74
4.2.4.1 Imbibition	74

4.2.4.2 Conductivity	75
4.2.4.3 Tetrazolium test	75
4.2.4.4 Cold test	76
4.2.5 Greenhouse trial	76
4.2.6 Statistical analysis	76
4.3 Results	76
4.3.1 Moisture content	76
4.3.2 Standard germination test	77
4.3.3 Vigour test	77
4.3.3.1 Imbibition	77
4.3.3.2 Conductivity and tetrazolium test	79
4.3.3.3 Cold test	80
4.3.4 Greenhouse trial	80
4.4 Discussion	81
4.5 Literature cited	83

CHAPTER FIVE:

THE EFFECT OF ACCELERATED AGEING AND LONG-TERM STORAGE ON FUNGICIDE TREATED MAIZE (ZEA MAYS L.) SEED

86

Abstract	87
5.1 Introduction	88
5.2 Materials and methods	89
5.2.1 Treatment of the seeds	89
5.2.2 Moisture content	89
5.2.3 Accelerated ageing (AA) and long-term storage	90
5.2.4 Standard germination	90
5.2.4 Vigour tests	91
5.2.4.1 Imbibition	91

5.2.4.2 Conductivity test	91
5.2.4.3 Tetrazolium test	91
5.2.4.4 Cold test	92
5.2.5 Statistical analysis	92
5.3 Results	92
5.3.1 Standard germination	92
5.3.2 Vigour tests	93
5.3.2.1 Imbibition	93
5.3.2.2 Conductivity test	95
5.3.2.3 Tetrazolium test	96
5.3.2.4 Cold test	96
5.4 Discussion	97
5.5 Literature cited	100

CHAPTER SIX:

GREENHOUSE SEEDLING EMERGENCE FROM FUNGICIDE TREATED MAIZE SEED AND CONTROL OF *FUSARIUM GRAMINEARUM* SCHWABE 103

Abstract	103
6.1. Introduction	103
6.2. Materials and methods	105
6.2.1 Treatment of seeds	105
6.2.2 Greenhouse trial	105
6.2.2.1 Preparation of the inoculum	105
6.2.2.2 Inoculation of the pasteurised soil	105
6.2.3 Statistical analysis	106
6.4 Results	106
6.5 Discussion	108
6.6 Literature cited	110

CHAPTER SEVEN: ULTRASTRUCTURE OF FUNGICIDE TREATED MAIZE SEED 113

Abstract	113
7.1 Introduction	114
7.2 Materials and methods	116
7.2.1 Treatment of seeds	116
7.2.2 Preparation of the seeds	116
7.2.3 Transmission electron microscopy (TEM)	116
7.3 Results	116
7.4 Discussion	120
7.5 Literature cited	122

CHAPTER EIGHT:

GENERAL CONCLUSION	125
8.1 Literature cited	130