

MULCHING, PLANT POPULATION DENSITY AND INDIGENOUS KNOWLEDGE OF WILD GINGER (SIPHONOCHILUS AETHIOPICUS)

BY

MASHUDU RONNIE MASEVHE

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF M. INST. AGRAR: PLANT PRODUCTION (AGRONOMY)

DEPARTMENT OF PLANT PRODUCTION AND SOIL SCIENCE
FACULTY OF NATURAL AND AGRICULTURAL SCIENCES
UNIVERSITY OF PRETORIA
PRETORA

MAY, 2004

DECLARATION

I declare that this thesis, for the degree of M INST AGRAR (Agronomy): Plant Production, has never been submitted for any degree at any university. The research work reported is the result of my own original investigation, except where acknowledged.

Mashudu Ronnie Masevhe

24-05-04 Date

ACKNOWLEDGEMENTS

I wish to express my thanks to Dr P. Soundy, for his patience, guidance, and assistance in the research project and for his suggestions in the preparation of this thesis.

Thanks are conveyed to Drs M. van der Linde and F. H. J. Kanfer for helping with statistical analysis of the research project.

Financial support from National Research Foundation, and donation of planting materials from CSIR are gratefully acknowledged.

Everyone at the Hatfield Experimental Farm and the Farm workers are thanked for the assistance with field experiments.

Special thanks and appreciation are extended to my fellow students Winnie and Cedric, and my friends Khathutshelo, Itani and Tshikhudo for their constant assistance and support.

Thanks to my parents, Alpheus and Elinah, and my elder brother, Kenneth, and my younger brothers, Fungisani and Mmbulunge, and also my younger sisters, Nyadzani and Ndinanyi and not forgetting my fiancé Nonhlanhla for being there for me all the time. The final appreciation I am giving to the All Mighty God for what He has done for me during the time of my studies.

TABLE OF CONTENTS

	Pages
DECLARATION	i
ACKNOWLEDGEMENTS	ii
LIST OF TABLES	v
LIST OF FIGURES	vi
ABSTRACT	vii
GENERAL INTRODUCTION	1
CHAPTER	
1 LITERATURE REVIEW	5
1.1 RHIZOMES	5
1.1.1 Definition and structure	5
1.1.2 Growth pattern	6
1.2 MULCHING	7
1.2.1 Advantages of mulch	7
1.2.2 Disadvantages of mulch	8
1.2.3 Temperature effect	9
1.2.4 Weed control	12
1.3 SPACING	13
1.4 INDIGENOUS KNOWLEDGE	15
1.4.1 Indigenous knowledge as a phenomenon complex	15
1.4.2 Indigenous knowledge movement	15
1.4.3 Comparing traditional medicine with modern medicine	16
1.4.4 South African traditional healers	17
1.4.5 Plants and plant use	18
2 MULCHING AND SPACING AFFECTS GROWTH OF WILD	GINGER 19
2.1 INTRODUCTION	19
2.2 MATERIALS AND METHODS	20
2.3 RESULTS AND DISCUSSION	22

2.3.1 Soil temperature	22
2.3.2 Soil moisture content	25
2.3.3 Weeding	26
2.3.4 Initial fresh rhizome mass and circumference	28
2.3.5 Fresh rhizome mass	28
2.3.6 Rhizome circumference	29
2.3.7 Fresh enlarged root mass	31
2.3.8 Enlarged root length	31
2.4 SUMMARY	32
3 INDIGENOUS KNOWLEDGE ON WILD GINGER	33
3.1 INTRODUCTION	34
3.2 MATERIALS AND METHODS	34
3.3 RESULTS AND DISCUSSION	34
3.3.1 Respondents' profile	34
3.3.2 Concerning the plant	34
3.3.3 Domestication and propagation	35
3.3.4 Harvesting and post-harvest handling	36
3.3.5 Marketing	37
3.4 SUMMARY	38
GENERAL DISCUSSION AND CONCLUSIONS	39
GENERAL SUMMARY	41
LIST OF REFERENCES	42
APPENDIX TABLES	48
ANOVA TABLE	48
OUESTIONNAIDE SUDVEV	49

LIST OF TABLES

	Page
Table1.1 Soil temperature and tomato yield with straw or black plastic	
mulch.	7
Table 2.1 Gravimetric water content (cm ³) at two days	26
Table 2.2 Gravimetric water content (cm³) taken in soil depth of 15cm	
at three days in succession	27
Table 2.3a Weeds harvested on 31/01/2002	27
Table 2.3b Weeds harvested on 03/04/2002	28
Table 2.3c Combined data for the two sampling dates in Table 2.3a and	
2.3b	28
Table 2.4a Fresh rhizome mass as influenced by spacing	29
Table 2.4b Fresh rhizome mass (g) as influenced by mulching	29
Table 2.5a Rhizome circumference as influenced by spacing	30
Table 2.5b Rhizome circumference (cm) as influenced by mulching	30
Table 2.6a Fresh root mass as influenced by spacing	31
Table 2.6b Fresh root mass (g) as influenced by mulching	31
Table 2.7a Enlarged root length as influenced by spacing	32
Table 2.7b Enlarged root length (cm) as influenced by mulching	32

LIST OF FIGURES

	Page
Figure1 Mature plant of wild ginger	1
Figure 2 Mature rhizomes of wild ginger	2
Figure 1.1 Average monthly soil temperatures for six months of the	
year at different soil depths at College Station	10
Figure 1.2a Influence of straw mulch on air temperature at a depth of	
a 10 cm during an August hot spell in Bushland, TX	11
Figure 1.2b During a cold period in January the soil temperature was	
higher in the mulched than in the unmulched area	11
Figure 2.1a Soil temperature data taken at 5cm soil depth from day 1	
to day 33	23
Figure 2.1b Soil temperature data taken at 10cm soil depth from day 1	
to day 33	24
Figure 2.1c Soil temperature data taken at 5cm soil depth from day 34	
to day 71	24
Figure 2.1d Soil temperature data taken at 10cm soil depth from day 34	
to day 71	25
Figure 2.2 Yields of rhizome as affected by mulching and non-mulching	
in three levels of spacing	30

MULCHING, PLANT POPULATION DENSITY AND INDIGENOUS KNOWLEDGE OF WILD GINGER (SIPHONOCHILUS AETHIOPICUS)

by M. R. Masevhe

Supervisor: Dr P. Soundy Co-supervisor: Dr E. S. du Toit

Department: Plant Production and Soil Science Degree: M. Inst. Agrar: Plant Production (Agronomy)

Abstract

The benefits of mulching for moisture retention and weed control as well as the effect of spacing on yield and quality of wild ginger was investigated. A survey on indigenous knowledge of wild ginger was also conducted. The field experiment was conducted at Hatfield Experimental Farm, University of Pretoria and the questionnaire survey was done in Venda.

Treatments used in the field experiment were mulching or non-mulching in combination with three levels of spacing. Wheat straw mulch was applied at a thickness of about 6cm and rhizomes were spaced at 15, 30 and 45cm apart.

Mulching was effective in reducing the soil temperature, keeping the soil moisture content for a longer period, and suppressing weed growth. The main effects of mulching and spacing did not affect wild ginger growth, but interactions between mulching and spacing were significant. Plant spacing of 30cm with non-mulching was better than both 15cm and 45cm spacings. On the other hand, 15cm spacing with mulching was better than both 30cm and 45cm spacings. This experiment demonstrated that 30cm spacing is ideal if no mulch is used. However, when mulch is used, a spacing of 15cm is recommended.

Respondents interviewed were traditional healers (30%), sellers (29%) and indigenous knowledge bearers (41%). Also, most of the respondents indicated that they had gone

through formal education, so they were able to read and write. All of the respondents knew wild ginger as tshirungulu.

Results from the survey indicated that wild ginger is used mainly for stomach pains. It was encouraging to learn that people who use this plant feel that even home-grown wild ginger is as effective as the wild one for medicine. The plant is currently so scarce that some of the respondents were travelling as far as Zimbabwe to find it.

If continued use of this important medicinal plant is to be realized, users will need to be taught on how best to grow the plant and how to harvest the plant without destroying the mother tuber or rhizome. This will ensure sustainable use of wild ginger.

Keywords: Wild ginger, mulching, spacing, indigenous knowledge, questionnaire survey