
CHAPTER THREE

SPIKE TRAIN CLASSIFICATION

The previous chapter shows how a speech signal can be transformed into a multichannel or

multineural spike train. In this chapter we will address the problem of decoding the spike

train, i.e. how to infer or classify the spoken words encoded by the spike train.

A spike train can be decoded when the way in which spikes carry information is fully

understood. For example, does the specific time at which a spike occur carry any meaning,

or is the information contained in the average firing rate of a neuron? We first look at a few

of the coding schemes proposed for spike trains. After that we present a probabilistic model

for spike trains and we show how to use this model to infer the words that are encoded by a

spike train.

3.1 CODING SCHEMES

In order to decode a spike train, it is necessary to understand how information is encoded by

the spike train. We do not understand the neural code completely. However recent advances

66

CHAPTER THREE SPIKE TRAIN CLASSIFICATION

in the technology of neuroscience have made it possible to forma better picture of the neural

code.

The neural code represents information about the external world. Neurons very close to

the senses carry the most information about stimuli. Subsequent stages in the neural system

transform the information and discard irrelevant information. The purpose of processing

sensory information is to extract features in the stimulus relevant to behaviour.

Originally it was thought that information is encoded only in thefiring rate of neurons.

This led to the development of the very successful multi-layer perceptron. The numerical

value of a perceptron represents the firing rate of a neuron; the sigmoid activation function

corresponds to the limited range of firing rates that a real neuron can achieve. Spike train

models that are based on the firing rate view often make use of a Poisson model for which

the rate parameter is stimulus dependent.

Another view of the neural code, thetemporal codingview, is that the precise timing of

a spike also carries information in addition to the firing rate (Dayan and Abbott, 2001). It is

difficult to verify experimentally which coding scheme fits the neural code best. Figure 3.1

shows two time-varying stimuli and the response of a neuron to those stimuli. The neuron

is a stochastic model with the probability that a spike occur proportional to the firing rate.

In figure 3.1(a) there is no temporal pattern in the spikes that code the slowly varying time

stimulus. The information is coded in the firing rate of a neuron measured over a rather long

time frame. In figure 3.1(b) it appears as if there is a pattern in the spike train that may

contain additional information. However this is not the case, the patterns are the result of a

quickly varying stimulus. The firing rate of a quickly varying stimulus should be decoded

from the spike train by taking the average number of spikes in a short time frame. We see

that the difference between rate coding and temporal coding is more than a matter of time

scales. A code cannot be called a temporal code only because there are patterns in the spike

train that occur often.

Oram, Wiener, Lestienne and Richmond (1999) has proposed aspike count-matched

model. The model is based on thefiring rateprofile (firing rate as a function of time) and the

spike count(number of spikes in response to a stimulus). This model fits actual spike train

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING,
UNIVERSITY OF PRETORIA

67

CHAPTER THREE SPIKE TRAIN CLASSIFICATION

t [s]

T
ra

il
n

o
.

f
(t

)
[H

z]

0 0.5 1

0 0.5 1

0

5

10

15

0

20

40

(a)

t [s]
T

ra
il

n
o

.
f
(t

)
[H

z]

0 0.5 1

0 0.5 1

0

20

40

60

0

20

40

(b)

Figure 3.1: The response of a stochastic neuron to a time-varying stimulus is shown in each

figure. The experiment is repeated for 50 trials. (a) There is no pattern in the spike train of

the neuron in response to a slowly varying stimulus. (b) There is an obvious pattern in the

spike train of a neuron in response to the quickly varying stimulus, but this is not enough

reason to assume that it is a temporal code.

data from the lateral geniculate nucleus, the primary visual cortex (V1), and primary motor

cortex of a monkey. They show that the precise patterns in spike trains are directly related

to the firing rate modulation and the spike count distribution. It is therefore not a temporal

coding model. The precise timing of spikes does not carry information beyond the firing rate

in the three mentioned areas of the monkey brain.

There are also other coding schemes that fit neural data. Thetime-to-first-spikescheme

considers only the time from stimulus onset to the first spike. This scheme fits real data from

certain tasks very well; tasks that require a quick response allow only time for neurons in

the different processing stages to fire a single spike. For example, faces are recognized by

humans within 150ms (Thorpe, Fize and Marlot, 1996), just enough time for each stage to

fire a single spike. This scheme is just a special case of the spike count-matched model.

Another coding scheme issynchrony. The fact that certain neurons spike at almost the same

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING,
UNIVERSITY OF PRETORIA

68

CHAPTER THREE SPIKE TRAIN CLASSIFICATION

time carries information. Again this is a special case of the spike count-matched model that

is extended to include multiple neurons.

The spike count-matched model fitssingle neurondata from three areas of the monkey

brain. The model should be expanded and be tested on multineural spike trains. The discus-

sion between neuroscientists on the actual neural coding scheme is not yet over. More data

needs to be analyzed to find the true coding scheme. It seems as if different areas of the brain

may use different coding schemes.

3.2 CLASSIFICATION OF THE SPIKE TRAIN

Accurate classification of spike trains requires that patterns in the spike trains correlate well

with the words in the utterance. For example, if two different people say the same words,

we would ideally like the spike trains that code those utterances to be identical. This is

seldom possible because people speak at different rates, at a different pitch etc. Even if spike

the trains that correspond to the same word are not identical, it is still possible to classify

spike trains accurately. This is possible when the spike trains of the same word but different

utterances are similar enough, and when the spike trains of different words are dissimilar

enough.

A spike train can be classified by matching patterns in a spike train with templates. The

templates could correspond to a specific part of a word, for example a phoneme, a triphone,

a syllable or even a complete word. There are a few models that can find temporal patterns in

multichannel spike trains (Chi, Rauske and Margoliash, 2003; Kass and Ventura, 2001; Gat

and Tishby, 2001); they do not give the probability that a spike train fits a model.

Current speech recognition systems use a powerful probabilistic approach to classifica-

tion: the most likely sequence of words given the features is determined. There are well

established methods for finding the model parameters that will lead to good classification

for the probabilistic approach. We use the same classification approach as current automatic

speech recognition systems, but we have a different feature set.

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING,
UNIVERSITY OF PRETORIA

69

CHAPTER THREE SPIKE TRAIN CLASSIFICATION

The spike count-matched model with order statistics (Wiener and Richmond, 2003) is

well suited to this problem. With this model the probabilityp(ζi | m) that segmenti from

the spike trainζ fits a modelm can be calculated and is used to find the most likely sequence

of models. The model can easily be extended to include multichannel spike trains; this

extended model is the spike train model we use. We use supervised training of the models

and accordingly force them to correspond to words. This choice is discussed below in more

detail.

3.2.1 THE SPIKE TRAIN MODEL

A spike train is completely described by the timest at which spikes occur, the amplitudes

a of those spikes and the channelsc in which they occur. Theith spike is described by its

firing time ti, amplitudeai and channelci.

The probability that spike trainζ fits modelm is

p(ζ | m) = p(t, a, c | m). (3.1)

In section 2.6.2 we showed that the sparseness function assumes the activity of different

code elements to be independent. Therefor

p(t, a, c | m) =
∏

c

p(tc, ac, nc | m, c) (3.2)

with tc andac the respective subsets oft anda that contain only the spikes in channelc. nc

is the spike count of channelc.

In order to reduce the complexity of the model, we assume that the spike times and spike

amplitudes are independent of each other. It is reasonable to assume that the spike times are

independent. Figure 2.17 shows that there is a weak correlation between spike times, but the

correlation exists because it codes the same word. So

p(tc, ac, nc | m, c) = pt(tc | m, c, nc)pa(ac | m, c)Pn(nc | m, c) (3.3)

Herept is the spike time probability density function. It gives the probability that the times

at which spikes occur in the spike train fit the firing rate profile.pa is the spike amplitude

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING,
UNIVERSITY OF PRETORIA

70

CHAPTER THREE SPIKE TRAIN CLASSIFICATION

probability density function.Pn is the normalized spike count distribution. It gives the

probability thannc spikes will occur in a given channel.

The spike time probability density function is a function of the order statistics and the

firing rate profile (Wiener and Richmond, 2003)

pt(tc | m, c, nc) =
∏

h

pt(tc,h | m, c, nc, h) (3.4)

pt(tc,h | m, c, nc, h) =
nc!

(h− 1)!(nc − h)!
Ft(tc,h)

h−1ft(tc,h)[1− Ft(tc,h)]
nc−h (3.5)

with ft(t) the normalized spike density function andFt(t) is its cumulative probability den-

sity. pt(tc,h | m, c, nc, h) is the probability that for channelc of modelm, thehth spike in a

spike train occur at timetc,h.

The amplitudes of the spikes within a channel are also assumed to be independent so that

p(ζ | m) =
∏

c

[

Pn(nc | m, c)
∏

h

pt(tc,h | m, c, nc, h)
∏

h

pa(ac,h | m, c, h)

]

(3.6)

pa andft(t) are modelled with Gaussian mixture models (GMMs).pa has two components

andft(t) three.Pn is modelled with a discrete GMM having two components.

3.2.2 AN EXAMPLE OF SPIKE TRAIN MODELS

Figure 3.2(a)-(c) shows three simplified spike train models. The models do not use spike

amplitude information. One gets a good idea of how spike train models are able to classify

a spike train by comparing a few models. Consider for example modelsm = 1 andm = 3.

Their spike count distributions are similar except for channel 4. The probability that model

m = 3 does not contain a spike in channel 4 is much lower than the probability that model

m = 1 does not contain a spike in that channel. By just counting the number of spikes in

channel 4 of an unclassified spike train, we have a good indication whether that spike train

was generated by modelm = 1 or modelm = 3.

The number of spikes in channel 4 would not be a good way to classify spike trains

generated by modelsm = 2 andm = 3. The spike count distributions of these two models

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING,
UNIVERSITY OF PRETORIA

71

CHAPTER THREE SPIKE TRAIN CLASSIFICATION

are very similar for channel 4. In this case it will be better to use the spike times of spikes

in channel 3. By inspecting all three models we see that if a random spike train is generated

with equal probabilityP (m) = 1/3 by any of the models, then we will be able to predict

very accurately which model generated that spike train.

Figure 3.2(d) shows a spike train that is generated by modelm = 1. The spike train will

be correctly classified as it fits modelm = 1 the best.

3.2.3 FINDING THE MOST LIKELY SEQUENCE OF MODELS

Here we show how to determine the most likely sequence of models given an unknown spike

train. From the sequence of models we can easily determine the sequence of words as each

model corresponds to a word. The spike train models can be trained in an unsupervised

manner, in which case a model can represent any sound or sequence of sounds. Once the

models are trained, it is necessary to determine the correspondence between sounds and

models. However, supervised training is easier to conceptualize than unsupervised training.

For this study we force the models to correspond to words. Unfortunately this choice may

limit the classification performance.

Part of the problem of finding the most likely sequence is segmenting the spike train. The

classification problem is now to find the most likely sequence of modelsm∗ and segment

sizes∆t
∗

given a spike train, i.e.

m∗, ∆t
∗

= max
m,∆t

p(m, ∆t | ζ) (3.7)

We assume that each segment is independent of all others, so that using Bayes’ theorem we

have

p(ζ | m, ∆t) =
∏

i

p(ζi | mi, ∆ti) (3.8)

wherep(ζi | mi, ∆ti) is the probability that theith spike segmentζi is ∆ti long and fits

modelmi (equation 3.1). The joint probability is

p(m, ∆t) = p∆t(∆t | m)P (m) (3.9)

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING,
UNIVERSITY OF PRETORIA

72

CHAPTER THREE SPIKE TRAIN CLASSIFICATION

t [s]

C
h

an
n

el

n
0 2 40.1 0.2 0.3 0.4 0.5 0.6

1
3
5

1
3
5

(a) m=1

t [s]

C
h

an
n

el

n
0 2 40.1 0.2 0.3 0.4 0.5 0.6

1
3
5

1
3
5

(b) m=2

t [s]

C
h

an
n

el

n
0 2 40.1 0.2 0.3 0.4 0.5 0.6

1
3
5

1
3
5

(c) m=3

t [s]

C
h

an
n

el

n
0 2 40.1 0.2 0.3 0.4 0.5 0.6

1
3
5

1
3
5

(d)

Figure 3.2: The left column of (a) to (c) gives the normalized spike density functionft, while

the right column gives the spike count distributionPn. (d) shows a spike train that best fits

modelm = 1. In fact ln(p(ζ | m)) equals for models (a), (b) and (c) respectively−22.3,

−29.6 and−36.9.

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING,
UNIVERSITY OF PRETORIA

73

CHAPTER THREE SPIKE TRAIN CLASSIFICATION

with

p∆t(∆t | m) =
∏

i

p∆t(∆ti | mi) (3.10)

again because we assume the segments to be independent.p∆t(∆ti | mi) is the probability

that a spike train will have a length of∆ti given modelmi. It is modelled with a two-

component continuous GMM.P (m) is the language model, which for a data set consisting

of random digits and models corresponding to words is

P (m) =
∏

i

P (mi) (3.11)

If the models do not correspond to words, the language model would be slightly more

complex. Accurate language models can be designed for a specific data set (Rabiner and

Juang, 1993). Finally, the most likely model sequence and segment sizes are

m∗, ∆t
∗

= max
m,∆t

∏

i

p(ζi | mi, ∆ti)p∆t(∆ti | mi)P (mi) (3.12)

or

m∗, ∆t
∗

= min
m,∆t

∑

i

[− ln p(ζi | mi, ∆ti)− ln p∆t(∆ti | mi)− ln P (mi)] (3.13)

The above equation can be solved with dynamic programming (see for example (Cormen,

Leiserson, Rivest and Stein, 2001)), which is an efficient way to find the shortest path through

a lattice.

Our set of spike train models also includes a silence modelmsil. This model is fixed. It

has a spike count distribution

Pn(nc) =

1 if nc = 0

0 otherwise

for every channel. The time duration of the model is set as a uniform distributionp(∆t |
m = msil) = U(140ms, 1s). A silence period shorter than 140ms is probably part of a word

or a transition between words. It can therefore not be labelled “silence”. We select1s as the

upper bound as there is no silence longer than that in our data set.p(∆t | m = msil) could

also be trained instead of being preset but it would still be necessary to limit the shortest

duration that a silence can be.

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING,
UNIVERSITY OF PRETORIA

74

CHAPTER THREE SPIKE TRAIN CLASSIFICATION

Table 3.1: A summary of the probability density functions (pdf) used in spike train classifi-

cation. There are three spike train models for each word and there is one silence model.

Pdf Type No. of components

p(ζ | m) Spike train model 34

For each channel in a spike train model we have:

Pn Discrete GMM 2

ft(t) Continuous GMM 3

pa Continuous GMM 2

Associated with each spike train model there is:

p∆t Continuous GMM 2

A set of three models is assigned to correspond to each word in the dictionary before

training starts. We use more than one model per word because the spike trains for a given

word may not all be similar. It is not easy to determine the optimal number of models per

word class to use. Table 3.1 gives a summary of the probability density functions we use.

3.2.4 AN EXAMPLE OF SPIKE TRAIN CLASSIFICATION

In order to illustrate spike train segmentation and classification, we use the three models

given in figure 3.2 as well as a silence model. The illustration is simplified by not taking the

amplitude of spikes into account. Also for all three modelsp(∆t | m) are set as uniform

distributions, equal for all models; the prior probability of selecting the silence model and

the prior probabilities of each of three other models are equal, so thatp(m) = 0.25 with

m ∈ [1, 2, 3, msil].

Figure 3.3(a) shows a generated spike train that has to be classified. It is generated by

sampling two spike trains from modelm = 1, one spike train fromm = 2 and one from

m = 3. The spike trains are then concatenated in the orderm = [1, 3, 2, 1]. The spike train

is correctly classified; a period of silence is classified at the start of the spike train.

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING,
UNIVERSITY OF PRETORIA

75

CHAPTER THREE SPIKE TRAIN CLASSIFICATION

t [s]

C
h

an
n

el

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
1

3

5

(a)

t [s]

C
h

an
n

el

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
1

3

5

(b)

n n n

C
h

an
n

el

n
0 2 4 0 2 40 2 40 2 4

1

3

5

(c)

Figure 3.3: (a) shows a spike train that has to be segmented and classified. The spike train is

correctly classified asm = [1, 3, 2, 1]. The first part (t = [1, 8]) of the spike train is classified

as “silence”. (b) shows the segmentation as well as the normalized spike density function of

each selected model. (c) gives the spike count distribution of each selected model.

3.3 TRAINING

In the training process the parameters of the spike train models are adapted to fit the data.

We use expectation maximization (EM) to train the model. Firstly the expectation step finds

the most likely sequence of modelsm∗ and segment sizes∆t
∗

for the entire data set. The

previous section on the classification of spike trains addressed exactly this issue. As the

utterances are independent of each other,m∗
n and∆t

∗

n can be determined for thenth utterance

independently of all the other utterances in the data set.

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING,
UNIVERSITY OF PRETORIA

76

CHAPTER THREE SPIKE TRAIN CLASSIFICATION

The maximization step then adapts the model parameters to increase the likelihood ofm∗

and ∆t
∗
, or it maximizes the likelihood functionL(θ) with

L(θ) =
∏

n

p(m∗
n, ∆t

∗

n | ζn, θ) (3.14)

where the subscriptn refers to thenth utterance in the data set andθ refers to the model

parameters.

The problem is more readily solved by minimizing the negative log-likelihood function

θ
∗

= min
θ

−
∑

n

ln p(m∗
n, ∆t

∗

n | ζn, θ) (3.15)

This can efficiently be done by taking the derivative of the negative log-likelihood function

and finding the parameters for which the derivative is equal to zero. These derivatives are

available in most text books that discuss GMMs.

The expectation step and the maximization step are repeated one after the other until the

model parameters have converged.

3.3.1 UNSUPERVISED TRAINING

The data sets that are used for the training of speech recognition systems may be labelled.

Labeled data sets are usually expensive to gather because each utterance has to be labelled.

Unlabeled data sets on the other hand can very easily be gathered by recording speech from

radio, television, phone conversations etc.

When models are trained on unlabeled data or when the label information is not used,

the training procedure is unsupervised. Spike train models can be trained in an unsupervised

fashion. There is one conceptual difficulty when using unsupervised training. Each EM

iteration changes the data set because it changes∆t
∗
. If EM converges to the global mini-

mum, the fact that the data set changes each iteration would not influence the final solution.

However, EM only finds a local minimum that is dependent on the data set, and the chang-

ing data set means that the minimum may not be a good enough solution to get the desired

performance from the model.

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING,
UNIVERSITY OF PRETORIA

77

CHAPTER THREE SPIKE TRAIN CLASSIFICATION

We use supervised training so that we circumvent the problems of training with EM, and

it also allows us to force spike train models to correspond to words. However unsupervised

training of spike train models has one big advantage over supervised training: it would show

which speech units are statistically significant. It would be an important result if the speech

units that spike trains code compare well with speech units measured in the auditory cor-

tex. A spike train classifier trained in an unsupervised manner may perform better than one

trained in a supervised manner as it is free to choose its the speech units.

3.3.2 SUPERVISED TRAINING

A set of three models is assigned to correspond to each word in the dictionary before training

starts. We use more than one model per word because the spike trains for a given word may

not all be similar – it may be that the spike trains of a certain word class are grouped into

several clusters of similar spike trains. If this is the case, then the classification performance

will depend on the number of clusters that exist, and also whether these clusters are discov-

ered during training. It is not easy to determine the optimal number of models per word class

to use.

The expectation step uses a modified version of the standard dynamic programming al-

gorithm used during the Viterbi search (Ostendorf, Digilakis and Kimball, 1996). The mod-

ification is that our Viterbi lattice is not two dimensional; it has a third dimension, called

“number of words”. A three dimensional Viterbi lattice is set up for each spike train. The

three dimensions are “time”, “model number” and the “number of words” selected from

start of the sequence (see figure 3.4). Paths through the lattice always point in the increasing

“time” dimension. When the transition is toward a word model, it has to increase one level

along the “number of words” dimension. On the other hand, if the transition is toward the

silence model it does not change its “number of words” dimension.

The supervised algorithm makes some of the vertices and transitions invalid in a manner

consistent with the target word sequence and the target word boundary times. Figure 3.5

shows how the number of words that should be classified at specific times is bounded. From

the bounds the valid vertices in the lattice are determined. At a specific time nodes along

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING,
UNIVERSITY OF PRETORIA

78

CHAPTER THREE SPIKE TRAIN CLASSIFICATION

time

number of words

model number

sil

PSfrag
ta tb

m1

m2

m3

m4

m5

m6

w1

w2

Figure 3.4: From a vertex there are only two types of valid transitions to a given time instant.

There is the transition to the silence model, for which the number of words since the start

of the sequence do not increase; and there is the transition to all the models in the set that

correspond to the next word in the sequence.

the “number of words” dimension that fall outside the bounds are invalid. The target word

sequence on the other hand determines which transitions are valid: transitions from models

associated with wordwi to models associated with the following wordwi+1 are valid, as are

all transition to the silence modelmsil.

3.3.3 INITIALIZATION OF THE SPIKE TRAIN MODELS

The likelihood function has many local minima and EM finds one of them. The starting point

for EM has a great influence on the quality of the solution. The solution that EM finds is

much better when the starting point is in a region of a good solution, than when a random

starting point is used.

The very first iteration of EM uses the starting pointθ̄start to determine the most likely

model sequencem∗ and segment sizes∆t
∗
. It then adapts the model parameters to better fit

m∗ and∆t
∗
. We do not know what a good starting point should be, so we skip the first step

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING,
UNIVERSITY OF PRETORIA

79

CHAPTER THREE SPIKE TRAIN CLASSIFICATION

0 1 2 3

0 1 2 3

w1 w2 silsilsil w3

(a)

(b)

(c)

Figure 3.5: This figure shows how the number of words since the start of the sequence is

bounded. (b) The target sequence of words. (a) The minimum number of words that has

to be in the sequence at a specific time. This is determined by the word-end boundaries. A

word has to occur before the time of the last spike that can reconstruct part of that word.

This time cannot be later than the word-end boundary plus the temporal length of the longest

dictionary element (the elements ofΦ{6} spans380ms). (c) The maximum number of words

that can be in the sequence at a specific time is determined by the word-start boundary. A

word cannot occur before its word-start boundary.

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING,
UNIVERSITY OF PRETORIA

80

CHAPTER THREE SPIKE TRAIN CLASSIFICATION

of the first iteration of EM and manually setm∗ and∆t
∗
.∆t

∗
is set according to the data set

labels.m∗ is set by dividing all the samples in a word class evenly between the models of

that class. For example, the first occurrence of “three” in the data set is labelled asm = 7,

the second occurrence asm = 8, the third asm = 9, the fourth again asm = 7 etc. This

initialization works well, as all the models are forced to be in a region of good solutions.

3.4 IMPLEMENTATION DETAILS

There are two important details we implement for the classification of spike trains. Firstly

we force the spike train models to correspond to words in order to keep the classification

simple. Secondly we process the spike train before it is classified.

As mentioned earlier, the sparse code has many elements whose amplitudes are so small

that they contribute little to the reconstruction of the signal. We remove them by setting

their amplitudes equal to zero. Only those spikes that have amplitudes less than a preset

threshold are removed. We choose the threshold at 0.124 so that 40% of the spikes remain.

We tested the classification performance (see figure 3.6) against different threshold values

and two values ofλ. We useλ = 0.3 and choose the threshold as 0.124 so that only 40% of

the spikes remain. The removal of small valued spikes could also be done during the process

of dictionary training. We did not do that as we did not know beforehand which threshold

would be best.

This step resemblessparse code shrinkage(SCS) (Hyvärinen, 1999b). SCS is a post

processing step that applies to sparse codes calculated with ICA. ICA does not explicitly

model noise, the code elements therefore also reconstruct the noise. Very small code values

probably reconstruct noise but the shrinkage function removes these elements. A typical

shrinkage function is

h(a) = sign(a) max
(

0, |a| −
√

2σ2
)

(3.16)

whereσ2 is the variance of noise. Other shrinkage function can be derived based on assump-

tions about the noise and the prior probabilityp(a). SCS is a rigorous method to denoise an

ICA code.

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING,
UNIVERSITY OF PRETORIA

81

CHAPTER THREE SPIKE TRAIN CLASSIFICATION

Threshold

W
E

R

λ = 0.4

λ = 0.3

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22
0.18

0.2

0.22

0.24

0.26

0.28

0.3

Figure 3.6: The figure shows the classification performance (Word Error Rate) of the system

as a function of the threshold. Spikes with an amplitude less than the threshold are removed

from the code. Each circle on a line corresponds to certain percentage of spikes that remain

in the code. From the left most circle to the right the percentages are for each line: 60%,

50%, 40% and 30% respectively. The two lines are for different values ofλ.

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING,
UNIVERSITY OF PRETORIA

82

CHAPTER THREE SPIKE TRAIN CLASSIFICATION

The sparse coding framework we use model noise explicitly, it is contained inλ = 2σ2.

Although our post processing step and the shrinkage function of SCS appear to be similar,

they serve a different purpose. Our post processing step is performed because the sparseness

function is not ideal, whereas the shrinkage function removes noise.

The spike train includes information about the temporal scaling of dictionary elements.

Our motivation for using scaled dictionary elements is that some sounds may be scaled with-

out changing the meaning of the sound. The scaling information is therefore not that impor-

tant to a spike train classifier of words; what are important are the sounds that appear in the

signal and the order in which they appear. We keep the spike train classifier simple by not

including scaling information. It is still useful to have scaled versions of the dictionary ele-

ments, as this produces a sparse code that allows us to identify a particular sound irrespective

of its duration.

The scaling information is removed by grouping spikes of the same sound to-

gether. The dictionary consists of all the scaled versions of the unscaled dictionary

Φ =
[

Φ{0},Φ{1},Φ{2}, . . . ,Φ{6}

]

. We can split the codea in the same manner;

a =
[

a{0}, a{1}, a{2}, . . . , a{6}

]

wherea{s} refers to the sparse code associated withΦ{s}.

The compressed code is then

â =
6

∑

s=0

a{s} (3.17)

3.5 RESULTS RELATED TO SPIKE TRAIN CLASSIFICATION

In the EM training process the spike train models converged to a stable solution in fewer than

ten iterations. The performance on the test set (1000 utterances) is a word error rate (WER)

of 19%. Out of the 3222 words in the test set, there are 65 deletions, 178 insertions and 368

replacements. Table 3.2 shows the confusion matrix of the replacements. The majority of

confusions are predictable from phonetic similarities – for example, “one” and “nine” are

often confused because of their common terminal nasals and confusible initial phonemes.

Figure 3.7 shows the componentspt, pa andPn for the three models that code the word

“six” (they are m = 16, m = 17 and m = 18). From the plot we see thatPn(0) for

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING,
UNIVERSITY OF PRETORIA

83

CHAPTER THREE SPIKE TRAIN CLASSIFICATION

Table 3.2: The confusion matrix of classification of the test set. The diagonal entries are

words that are correctly classified; the off-diagonal entries are words that have been replaced

by incorrect words during classification.

True class

on
e

tw
o

th
re

e

fo
ur

fiv
e

si
x

se
ve

n

ei
gh

t

ni
ne

ze
ro

oh

R
ec

og
ni

ze
d

cl
as

s

one 240 2 2 14 4 0 0 9 12 1 8

two 0 266 5 2 0 1 5 7 3 3 1

three 2 9 283 1 0 0 0 13 0 1 0

four 7 4 1 260 5 1 0 0 0 0 3

five 2 3 2 11 230 1 3 1 8 2 19

six 1 3 1 0 1 288 2 0 0 0 0

seven 0 10 2 2 1 8 259 1 0 12 1

eight 4 5 9 0 3 3 0 251 5 1 2

nine 19 2 5 2 4 0 0 7 211 4 14

zero 0 5 2 1 1 0 1 0 1 280 1

oh 4 15 1 7 8 0 0 2 6 1 221

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING,
UNIVERSITY OF PRETORIA

84

CHAPTER THREE SPIKE TRAIN CLASSIFICATION

channel 2 of every model is very small. This shows that dictionary elementd = 2 is used

often in the reconstruction of “six”.m = 16 has a very similarpt to m = 18. There

is an observable difference between thePn of these two models, but the difference is not

significant. It appears that the EM-algorithm was trapped in a local minimum where these

two models are close together.

Figure 3.8 shows how often each model is used (P (m)) as well as the lengths of spike

trains that are coded by each model (p∆t(∆t | m)). We see fromp(∆t | 16) andp(∆t | 18)

that the models will mostly be selected when the time span∆t is rather long. The time

span is in fact much longer than it takes to say the word “six”. Inspection of the results

reveal that this is because these models are mostly selected when “six” is the last word in an

utterance, or when “six” is followed by a period of silence. If the models had been better

trained,p∆t(∆t | m) would have had a higher probability that the lengths correspond to the

time it actually takes to say “six”. The expectation step in the EM algorithm would then use

the silence modelmsil to take up the periods of silence following “six”. This suggests that

the EM algorithm became stuck in a non-optimal local extremum. We see fromP (16) and

P (18) in figure 3.8 that these models are not used often, which agrees with the fact that they

are mostly used at the end of utterances or when long periods of silence follows “six”.

A comparison between the performance of this sparse coding system and other systems

for continuous speech recognition gives an indication of the effectiveness of the sparse cod-

ing approach. We compared the performance of the current system to that of Hidden Markov

Model (HMM)-based speech recognition on the same spectrogram representations we use.

HMMs are typically used with features such as Mel-frequency cepstral coefficients, which

are approximately independent. Employing HMMs with features directly extracted from

spectrograms requires some care, since the features will tend to be correlated to a signifi-

cant degree. We were able to deal with this issue by using components with full covariance

matrices. Recognition accuracy was not affected to a significant degree when we used more

than one mixture component. The comparison could also be made with methods such as Dy-

namic Time Warping with full covariance matrices, but the complexities of developing such

a system for speaker-independent recognition were not considered justified for our rather

preliminary comparison.

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING,
UNIVERSITY OF PRETORIA

85

CHAPTER THREE SPIKE TRAIN CLASSIFICATION

The HMM system achieved a WER of 15% for models based on monophones. The mod-

els were single mixture components with full covariance matrices. Straightforward HMM-

based speech recognition with triphones achieves a 3% WER on the TIDIGITS dataset when

Mel Frequency Cepstral Coefficients (MFCCs) are used instead of the coarse spectrograms

we use. The WER of 15% for the HMM system is slightly better than the 19% WER that

sparse coding achieves. We return to these performance differences in the next chapter.

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING,
UNIVERSITY OF PRETORIA

86

CHAPTER THREE SPIKE TRAIN CLASSIFICATION

t[s]

C
h

an
n

el

t[s] t[s]
0.4 0.80.4 0.80.4 0.8

6

12

18

24

30

6

12

18

24

30

6

12

18

24

30

(a) pt

C
h

an
n

el

Amplitude Amplitude Amplitude
0.5 1 1.5 20.5 1 1.5 20.5 1 1.5 2

6

12

18

24

30

6

12

18

24

30

6

12

18

24

30

(b) pa

n

C
h

an
n

el

n n
0 2 4 6 80 2 4 6 80 2 4 6 8

6

12

18

24

30

6

12

18

24

30

6

12

18

24

30

(c) Pn

Figure 3.7: The plots shows the components of the three models that are associated with the

word ‘six’. From the left column to the right the models arem = 16, m = 17 andm = 18

respectively. Plots (a), (b) and (c) showpt, pa andPn for each respective model. For (a)

and (b) we show only those channels that are highly active, i.e. only the channels for which

Pn(0) ≤ 0.2

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING,
UNIVERSITY OF PRETORIA

87

CHAPTER THREE SPIKE TRAIN CLASSIFICATION

∆t [s] P (m)
0 0.10 0.2 0.4 0.6 0.8 1 1.2

m = 2

m = 8

m = 14

m = 20

m = 26

m = 32

one
two

three
four
five
six

seven
eight
nine

zero
oh

Figure 3.8: Theleft figure givesp∆t(∆t | m); theright figure givesP (m). There are 33 rows

in p∆t(∆t | m) and inP (m), each row corresponds to a model. For examplep∆t(∆t | 1)

andP (1) appear in the bottom row of each plot while modelsm = 7 to m = 9 are associated

with the word “three”.

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING,
UNIVERSITY OF PRETORIA

88

CHAPTER FOUR

DISCUSSION

We have shown how sparse coding can be used for speech recognition. The steps to classify

an unknown speech waveform are as follows:

1. The raw speech waveform is transformed in a frequency domain representation,

2. A sparse code that represents the signal is found by minimizing a cost function. The

cost function consists of two terms: a reconstruction error and a sparseness function.

The code that gives a low reconstruction error but that is also sparse is the code we

select to represent a signal.

3. The sparse code is classified by searching for the most likely sequence of spike train

models that fit the sparse code. Each spike train model is associated with a word from

the dataset, thereby giving us the classification of the sparse code.

We found that for a relative simple signal representation and simple dataset, the system

has a WER of 19%. This compares well with the performance of a HMM-based system

89

CHAPTER FOUR DISCUSSION

which achieves a WER of 15% on the same dataset using the same coarse signal representa-

tion.

4.1 SPARSE CODING

4.1.1 THE DICTIONARY

Neuroscientists would like to understand the neural code better. Research are being con-

ducted on several fronts, sparse coding being one of them. Thus far sparse coding is suc-

cessful at explaining the receptive fields of some neurons. Dictionaries for image patches

compare well with the receptive fields of simple cells in the visual cortex. It would be very

interesting to see whether dictionaries for spectrograms are also related to properties of cells

in the auditory pathway. However the dataset should then be natural sounds and not spoken

digits.

The trained dictionary has some elements that are on syllable level. This is encouraging

as the basic unit of speech is also believed to be on that level. It shows that there are at least

some agreement between the dictionary and the receptive fields of neurons in the auditory

pathway. It is necessary to investigate whether this property holds for more complex datasets.

The digit dataset we use has very short words, most of which are single syllable words. We

cannot conclusively say that sparse coding with a LGM yields a dictionary on the syllable

level.

Sparse coding with a LGM can only explain the receptive fields of a quarter of cells in

V1. The remaining cells have more complex receptive fields. The activity of complex cells

is also sparse, but the LGM is not complex enough to model these cells. We showed in figure

2.17 that the activity of code elements is not independent as we would like them to be. This

demonstrates that the LGM is limited in the order of statistical structures it can capture. A

more complex model could produce receptive fields of complex cells and thereby giving a

more powerful sparse code.

The size of the dictionary plays an important role in the properties of the dictionary

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING,
UNIVERSITY OF PRETORIA

90

CHAPTER FOUR DISCUSSION

elements and of the code. The code will be maximally sparse if the dictionary has as many

elements as there are basic features in the dataset. Normally we do not know how many

features there are in a dataset, this makes it difficult to determine the optimal dictionary size.

If the dictionary size is increased whileλ remains constant, the dictionary elements will code

more complex features. For a dictionary that has too many elements, the features will not

be general enough to capture the underlying structure in the signal. There will be very few

samples where each dictionary element is used, which in turn will reduce the classification

performance of the system.

We did not study the effect the size of the dictionary has on the type of features that the

dictionary elements code or on the classification performance. Here more work needs to be

done.

The dictionary training is stopped prematurely because the training takes a long time.

There is a small improvement in the error function from one iteration to the next when it

is stopped. Further training will reduce the error function more which should improve the

classification performance. This too needs to be investigated.

The elements are linearly scaled to account for the fact that some sounds may be streched

in time without changing the meaning of the sound. Phonemes however do not scale linearly.

The classification performance may improve if the scaling mechanism better resembles the

nonlinear scaling of actual phonemes. A more complex scaling mechanism, such as dynamic

time warping, would increase the computational cost of finding a sparse code even more. It

is necessary to study the effect of some nonlinear scaling mechanisms.

4.1.2 THE BALANCE BETWEEN RECONSTRUCTION ERROR AND

SPARSENESS

We need a method to tell us how big a dictionary should be given the dataset and the value

of λ. The number of phonemes and syllables that occur in a dataset should play an important

role in determining the size of the dictionary. It is reasonable to expect that a dictionary which

codes spoken digits will have to be smaller than a dictionary which codes conversational

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING,
UNIVERSITY OF PRETORIA

91

CHAPTER FOUR DISCUSSION

English. The value ofλ determines how well a signal will be reconstructed. Ifλ has a

low value, fine detail in the signal is reconstructed. In this case the elements of a too small

dictionary will be overused, that is they will have to be used in coding almost every signal,

which will not allow them to capture the underlying structure.

The effect ofλ on the performance also needs to be investigated. We found that for

a 32 element dictionary, the performance decreases forλ > 0.3, but we did not check the

performance forλ < 0.3. There should be a turning point for which a reduction inλ decrease

the classification performance.

4.1.3 CONSTRAINING THE DICTIONARY NORMS

The fact that we chose to constrain the norms of dictionary elements plays an important

role in the features that the dictionary code. Dictionary elements have to be constrained

because in the problem formulation the integral inp(x̄) =
∫

p(x̄ | ā)p(ā)dā (equation 2.15)

is estimated by a delta function. When the integral can be more accurately evaluated the

dictionary norms will not have to be constrained. The dictionary elements will then adapt

in such a way that the code elements follow the prescribed prior probabilityp(ā). We have

a good idea of what the prior probability should be for a true neural code where the code

elements are binary. It can be estimated from the average firing rate of the neuron. However

it is not clear what the prior probability for real valued code elements should be. It may even

be different for different neurons.

The problem of constraining the norms of dictionary elements is not unique to gradient

based algorithms. Codes that are determined with basis selection methods also suffer from

this problem. MP has to have some mechanism that controls the norms of dictionary elements

so that they stay competitive (Perrinet, 2004b). x

4.1.4 FINDING A SPARSE CODE

The problem of finding a sparse code is not yet satisfactorily solved. We use an iterative

optimization approach that is computationally expensive. Although this algorithm is sub-

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING,
UNIVERSITY OF PRETORIA

92

CHAPTER FOUR DISCUSSION

stantially faster than other gradient based algorithms, there is still a need for an even faster

algorithm. In order to find sparse codes in reasonable time, we use a sparseness function that

deviates significantly from the ideal sparseness function. Unfortunately with our sparseness

function the sparse code has many spikes with very small amplitudes. We found that by re-

moving 60% of the spikes the performance increases significantly. The spikes that are finally

removed put unnecessary strain on the algorithm while it searches for a sparse code. These

spike are included in every iteration even though they do not contribute to the solution. The

algorithm will execute much faster if there are 60% less spikes in the code.

It will be better if the sparseness function has a form that not only includes the code

element amplitudes but also the activity of code elements. This sparseness function will

produce a code that does not require the removal of many spikes to give good performance.

Such sparseness functions exist, but they cause the optimization problem to become non-

quadratic and computationally much more expensive. Future work should focus on how to

solve sparse codes efficiently, especially sparse codes of sparseness functions that include

the activity of code elements.

We used a final optimization step for MP which we termed MP+. This step simply

changes the values of the nonzero code elements to minimize the reconstruction error. It is a

step that can reduce the reconstruction error of any code without increasing itsl0 norm. The

classification performance of the system may improve if this step is also performed on the

SSQP codes. We did not do any investigations along this line.

Basis selection algorithms such as MP are generally computationally cheap. They also

use thel0 sparseness function which better fits the neural code than the sparseness function

used by gradient based algorithms. Be that as it may we found that MP does not give robust

codes. A small change in the signal leads to a big change in the code. Other basis selection

algorithms should be evaluated based on the requirement of robust codes and computational

efficiency.

The quadratic sparseness functionSquad is a much better function to use than the sim-

pler l1 norm. Squad codes have fewer nonzero code entries thanl1 norm codes for a given

reconstruction error.

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING,
UNIVERSITY OF PRETORIA

93

CHAPTER FOUR DISCUSSION

4.2 SPIKE TRAIN CLASSIFICATION

4.2.1 THE SPIKE TRAIN MODEL

The spike train models are able to decode a spike train successfully. We have forced the

spike train models to correspond to words, while most modern HMM-based speech recog-

nition systems model monophones or triphones. When it comes to discovering the basic

units of speech, unsupervised training of the spike train models can be very powerful. With

unsupervised training it is possible to discover those units of speech that are statistically

significant. Hopefully they will correlate with the basic units that the brain uses. Another

advantage of unsupervised training is that the number of models per class does not have to

be specified; only the number of spike train models. At some stage it is necessary to use

supervised training of the recognition part of the system. It may merely be to determine the

sounds that each model codes.

The spike train model actually finds higher-order correlations among code elements. It

uses these correlations to decode the spike train. A coding model that is more complex than

the LGM may be able to model these higher-order correlations. If this is the case, then the

spike train becomes very simple to decode; the activity of certain neurons may signal when

a certain word is present in the utterance. A spike train can then still be decoded with the

spike train model, but the model will be much simpler, and the result may be more accurate.

The classification of spike trains is done on trains that do not include the scaling of

dictionary elements in any way. We showed earlier that the performance could improve

when scaling information is used. This can be done by simply adding another dimension

to a spike train, so that a given spike is completely described by its scales, firing time t,

amplitudea and channelc.

4.2.2 EXPECTATION MAXIMIZATION

The EM algorithm finds a solution for the spike train models that is a local minimum. For

example the results show that two of the three models that correspond to the word “six” are

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING,
UNIVERSITY OF PRETORIA

94

CHAPTER FOUR DISCUSSION

very similar and both have unreasonable long time spans. Thesemodels could be used better,

but the EM algorithm is stuck. The classification performance can potentially increase if the

EM algorithm is guided more in its search for a minimum. The guidance can be user input

or some automatic process.

The problem that EM gets stuck in local minima is a property of the algorithm and not

of the dataset. Any improvements of the EM algorithm will also be useful here.

4.3 GENERAL REMARKS

For the input features used here, the performance of speech recognition based on sparse

coding is comparable to HMM-based speech recognition. These results are, however, not

competitive with those achievable using state-of-the-art features; incorporating such features

into our system would not have been feasible for computational reasons.

We did not check the performance of the system with noise maskers. There is good

reason to believe that sparse coding will perform well on noisy signals, as sparse coding can

also be used as a means to remove noise from a signal (Hyvarinen, 1999a; Shang, Huang,

Zheng and Sun, 2006). In other words, sparse coding captures the underlying structure of

the signal and thereby is not so susceptible to noise.

There are many areas of the sparse coding approach that need to be investigated in order

to determine whether these methods can be competitive with current state-of-the-art systems.

Most obviously, other feature sets such as spectrograms with a greater number of channels,

or even MFCCs should be investigated. It should be noted that we do not require the MFCC

coefficients to be sparse - as long as they are relatively stable in a particular acoustic context,

our coding algorithm will extract a sparse set of events that describe the non-sparse MFCC

coefficients. The training process however requires significantly more efficient training al-

gorithms when the size of the input representation increases.

The spike train model of Oramet al. (1999) with order statistics (Wiener and Rich-

mond, 2003) appears to be a useful model to use for spike train classification. The system’s

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING,
UNIVERSITY OF PRETORIA

95

CHAPTER FOUR DISCUSSION

performance is probably capped by the sparse coding process and not by the spike train

classifier.

It will be interesting to use the same approach for image recognition as we use here

for speech recognition. We have a more intuitive understanding of vision than we have of

speech. It will be easier to interpret the dictionary elements as well as the spike train models.

The results obtained in our investigation suggest that the further study of these issues will

be a worthwhile endeavor.

4.4 SUMMARY

This thesis shows that sparse coding can be used to do continuous speech recognition. It

highlights some factors that currently limit the use of sparse coding for pattern recognition.

One such factor is the computational effort required to find a sparse code. We propose the

SSQP algorithm which it is much faster than popular gradient based algorithms. The thesis

further showed that useful spectro-temporal features can be extracted from speech when the

LGM dictionary is trained. This is an important point as most other speech recognition

systems use across-frequency features. We have also showed that the spike train model

with order statistics can successfully decode spike trains of variable length. This initial

investigation emphasizes the areas that need further study before sparse coding will be more

widely used.

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING,
UNIVERSITY OF PRETORIA

96

	Front
	Chapters 1-2
	CHAPTER 3
	3.1 CODING SCHEMES
	3.2 CLASSIFICATION OF THE SPIKE TRAIN
	3.3 TRAINING
	3.4 IMPLEMENTATION DETAILS
	3.5 RESULTS RELATED TO SPIKE TRAIN CLASSIFICATION

	CHAPTER 4
	4.1 SPARSE CODING
	4.2 SPIKE TRAIN CLASSIFICATION
	4.3 GENERAL REMARKS
	4.4 SUMMARY

	References

