
CHAPTER ONE

INTRODUCTION

The brain needs to form an internal representation of the outside world to interact with it and

does so by representing or coding information in the spatio-temporal activities of neurons.

Neurons are complex computational units. They communicate mainly with electrical pulses

called spikes, but they also make use of chemical communication. A neuron can be viewed

as a temporal binary element; it is either silent or it fires a spike. This is a rather simple

view of a neuron (Aur, Connolly and Jog, 2006) but it captures the main means of neural

communication (Rieke, Warland, de Ruyter van Steveninck and Bialek, 1996). Figure 1.1

shows the activity pattern of some neurons in the visual cortex; it reveals a pattern in the

response of neurons to a repeating stimulus.

1.1 THE NEURAL CODE

The neural code is the “language” of the brain. It contains information about stimuli, it

contains the commands the brain sends to muscles, it contains thought etc. Researchers have
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Figure 1.1: Here the activity of 100 neurons in the visual cortex are shown in response to a

simple repeating black-white stimulus. Each dot signals a spike. The stimulus is white for

300ms, indicated by the dark bars at the bottom, and black for 700ms. (This data is part of a

sample file distributed with the software program CORTIVIS).
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(a) Dense coding. (b) Sparse coding. (c) Local coding.

Figure 1.2: In dense coding (a) many of the available neurons are active in the representation

of a stimulus, whereas in local coding (c) only one neuron is active in the representation.

Sparse coding (b) is a scheme somewhere between dense coding and local coding.

not been able to read the neural code or understand exactly how the brain process information

(Bair, 1999; Eggemont, 1998; Theunissen, 2003). This remains an active area of research and

experimental work adds to our understanding of the neural code.

It is useful to take a simple view of a neuron in order to compare the neural code with

common computational codes. Such a comparison helps us to understand certain aspects of

the neural code. Figure 1.2 illustrates some coding schemes for binary elements. Information

can be represented by adense code(figure 1.2(a)). For such a code few neurons are required

to code many different stimuli but the neurons will be very active. Many of the available

neurons will participate in the representation. A particular neuron therefore does not convey

that much information about the stimulus, instead the information is distributed among the

neurons. A code can also be alocal code(figure 1.2(c)). In this case there are many neurons

available but only one participates in coding a specific stimulus. Both of these extremes

are biologically implausible. The local code will require too many neurons to code all the

possible stimuli. Even though there are billions of neurons in the brain, there are still too few

so that each neuron can code one and only one stimulus. A dense code is also implausible as

the neurons will have to be too active.

Generally the lower level sensory neurons are more active than higher level neurons.

At the highest level neurons fire on average once every second. The brain adopts a coding

scheme somewhere between local coding and dense coding, which is calledsparse cod-

ing(figure 1.2(b)) (Földiák and Young, 1995; Vinje and Gallant, 2000). The optimal level of
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Figure 1.3: The figure shows two spike trains that code the same stimulus. Spike train (b) has

a population activity that is more sparse than spike train (a) eventhough it has more spike.

This is because population sparseness depends on the number of neurons that participate in

a representation and not on the number of spike per representation.

sparseness may be different for various areas in the brain.

1.1.1 SPARSE CODING

Sparse coding is a general principle that is employed in most areas of the brain (Beloozerova,

Sirota and Swadlow, 2003; DeWeese, Wehr and Zador, 2003; Laurent, 2002; Vinje and Gal-

lant, 2000; Vinje and Gallant, 2002). There are two forms of sparseness namely,population

sparsenessandlifetime sparseness. Population sparseness refers to the fact that only asmall

subsetof neurons is active in coding a stimulus, whereaslifetime sparsenessrefers to a par-

ticular neuron being seldom active over a long time period (Willmore and Tolhurst, 2001)

(see figures 1.3 and 1.4). Both forms of sparseness are present in the brain and they are not

identical. For example, each neuron in a group may have a good lifetime sparseness (not very

active over long time spans), but the population sparseness will be poor if all the neurons are

active at the same time. Whenever we refer to sparseness, it includes lifetime sparseness and

population sparseness.

In a sparse code a small subset of neurons participate in coding a particular stimulus.

Sparse coding has several advantages over other types of coding. A sparse code can also

store more patterns in associative memory than either a dense code (Földiák, 1998; Rolls
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Figure 1.4: The activity of two neurons over a long time period in which several stimuli

occured. The lifetime activity of neuron 1 is more sparse than neuron 2 because it fires fewer

spikes.

and Treves, 1990) or a local code (1-of-N representation). Sparse coding makes structure

in the input more explicit (Olshausen and Field, 2004), it is then easier for other areas in

the cortex that receive the sparse code to perform computations on it. Furthermore, evidence

suggests that the representation is efficient in an information sense (Vinje and Gallant, 2002),

i.e. it contains as much information about the outside world as possible, given the physical

constraints of the brain.

1.1.2 EVIDENCE FOR SPARSE CODING

Vinje and Gallant (2000) and Vinje and Gallant (2002) found that neurons in V1 (a large

and important visual cortical area) respond sparsely to natural stimuli. Interestingly their

responses are more dense for unnatural stimuli. This shows that the neural code is adapted

to represent natural stimuli in a sparse manner. Sparse coding has also been observed in the

auditory cortex (DeWeeseet al., 2003), the olfactory system (Laurent, 2002) and the motor

cortex (Beloozerovaet al., 2003).

Computational studies have shown that sparse coding leads to receptive fields that re-

semble the actual receptive fields, again proving that the brain makes use of sparse coding.

For most of the studies alinear generative modelis used. The model linearly adds sym-

bols or dictionary elements together in order to reconstruct a stimulus. The code gives the

coefficients with which the dictionary elements have to be scaled before they are added to
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Figure 1.5: The dictionary elements as calculated with SPARSENET (Olshausen and Field,

1996b; Olshausen, 1996). The elements resemble the Gabor filter-like receptive fields of

some neurons in V1.

reconstruct the signal. The dictionary is adapted to represent a dataset with sparse codes.

Olshausen and Field (1996a) found that for image patches from natural scenes, the adapted

dictionary elements are Gabor filter-like receptive fields (figure 1.5). Receptive fields that

look similar are found in simple cells of V1. A simple cell responds to an edge that is ori-

entated in the preferred direction of the cell, and is located in a specific area in the receptive

field. Simple cells make up about a quarter of the cells in V1 while the remainder of the cells

are complex. Complex cells also respond to specifically orientated edges, but the edge can

be anywhere in the receptive field. Other complex cells respond to specifically orientated

edges that move in a certain direction.

The receptive fields of more complex cells cannot yet be explained by the linear genera-

tive model. However a more complex model together with sparse coding shows some corre-

lation between the receptive fields of complex cells and the dictionary elements (Hyvärinen

and Hoyer, 2001). Sigman, Cecchi, Gilbert and Magnasco (2001) used a complex model to

explain some properties of complex visual cells.

Less work has been done on senses other than sight. Lewicki (2002) found that when a

linear generative model codes natural sounds in the time domain, the elements of the trained
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dictionary have similar tuning properties to auditory nerve fibres.

1.1.3 OVERCOMPLETE CODES

There are 3500 inner hair cells in the human cochlea. Roughly ten auditory nerve fibres con-

nect to each inner hair cell so that 30 000 nerve fibres extend from the cochlea. Information

gathered by the hair cells goes through several stages of processing. The last three stages are

the inferior colliculus which has around 392 000 neurons, the medial geniculate body which

has 570 000 neurons and the auditory cortex which has about 100 000 000 neurons. There is

a great expansion of neurons from the senses to the cortex.

All the sound information about a stimulus is gathered by the hair cells. The amount

of information about a stimulus cannot increase from one processing stage to the next. It

is however possible that additional information, such as visual clues, may add information

about a sound stimulus, but this only appears to happen from the auditory cortex and upwards

(Kayser, Petkov, Augath and Logothetis, 2007). Given that the amount of information cannot

increase, what advantage is there to having such an expanded representation in higher stages

of processing?

Imagine a system similar to the brain that should be able to code anN dimensional

randomsignal, but it can use anNd > N dimensional code. When the dimensionality of

the code is more than the dimensionality of the signal the code isovercomplete. The code

will always containN active code elements, except if by chance the signal corresponds

to a feature that a particular element code for. There is not much advantage in having an

overcomplete representation when random signals are coded. However natural stimuli are

not random, it has statistical structure. In fact we can only recognize stimuli if it is similar to

stimuli we have experienced before.

Consider a code that has as many code elements as the fundamental features that can

generate a structured signal. This code can be optimally sparse when each code element

corresponds to one of the features. The representation will be sparse as it will have only

as many active elements as there are fundamental features in the signal. In this case the
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dictionary has to be overcomplete if the number of features is more than the dimensionality

of the signal.

The great expansion of the neural representation from lower to higher levels allows neu-

rons to code for very specific features. For example, simple cells in the early visual cortex

have Gabor filter-like receptive fields - their responses are broadly tuned. Higher up, in the

primary visual cortex neurons respond to more complex features, such as edges, lines, or

gratings. In even higher visual areas like V4, neurons respond to more complex features

such as faces and hands (Földiák, 1998). There even exist “grandmother” cells (Quirago,

Reddy, Kreiman, Koch and Fried, 2005). These neurons are so finely tuned that they only

respond to very specific stimuli, such as the thought or sight of the proverbial grandmother.

This shows that some neurons in the higher levels of the brain use the one extreme form of

sparse coding, namely local coding.

1.2 SPARSE CODING FOR PATTERN RECOGNITION

Sparse overcomplete coding should perform well as a means to pattern recognition because

it can capture the underlying structure in the signal. It is a powerful method to extract statis-

tically significant features from a signal.

Most of the published work on sparse coding focuses on the properties of the adapted

dictionary, algorithms that can find sparse codes or on models that are more complex than

the linear generative model. There are some studies that have used sparse coding to create

a feature set for sound or speech recognition tasks. The studies follow the same general

approach: first a sound signal is encoded into a spike train, then the recognition task is

performed by decoding the spike train. Cho and Choi (2005) perform sound classification

with spikes. They classify a sound as belonging to one of ten classes, which include male

speech, foot steps and flute sounds. Näger, Storck and Deco (2002) show that transitions

between vowels can be classified by learning the delays between spikes. Kwon and Lee

(2004) use independent component analysis (ICA) to extract features from speech in order

to do phoneme recognition. ICA is an algorithm that provides a sparse representation of a

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING,
UNIVERSITY OF PRETORIA

8

 
 
 



CHAPTER ONE INTRODUCTION

signal. Some studies illustrate isolated digit recognition (Loiselle, Rouat, Pressnitzer and

Thorpe, 2005; Mercier and Séguier, 2002; Verstraeten, Schrauwen, Stroobandt and Campen-

hout, 2005) while Holmberg, Gelbart, Ramacher and Hemmert (2005) demonstrate isolated

letter recognition. All of these studies consider only isolated samples.

Very few studies have used sparse coding on practical image recognition problems.

Sun, Zhou, Ma and Wang (2001) applied sparse coding to face recognition. Sparse cod-

ing achieved a recognition rate of 95% compared to 89% for Fisherface (a popular face

recognition method).

All of the work mentioned above use inputs that are already segmented. In other words,

it is not necessary to first divide the input into segments before it can be classified. However

in this study we use sparse coding to docontinuous speech recognition. The classification

algorithm should be able to segment the signal.

The aims of the study are discussed in the last section of this chapter, but first we give an

overview of the speech recognition problem and briefly discuss current speech recognition

systems.

1.3 SPEECH RECOGNITION IN GENERAL

Automatic speech recognition (ASR) is a convenient interface between man and machine,

because speech is such a natural way for people to convey information. It can also allow

people that are unfamiliar with some technologies or some disabled people to make use of

modern technology.

An ASR system can be categorized as speaker-dependent or speaker-independent; as

an isolated word recognizer or a continuous speech recognizer; as working with a limited

vocabulary or a large vocabulary. The most versatile ASR task would be to do speaker-

independent, continuous speech recognition with a large vocabulary. This is also the most

difficult ASR task, and the performance of computers on this task does not yet come close to

that of humans. But other types of ASR systems have successfully been applied to everyday
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ASR problems.

Persons with certain disabilities, such as quadriplegics, may find limited vocabulary, iso-

lated word recognition systems very useful. With such a system they could give commands to

a television set, a motorized bed etc. Some cars also use a similar system to allow the driver

access to functions that are usually situated on the steering wheel, to operate the navigation

system or the car stereo.

Speaker-independent continuous speech recognition with limited vocabulary is often

used in switchboard applications, where a caller gives the name of the person he would

like to speak to, and his call is automatically forwarded to that person. Other systems allow

a caller to book movies, make hotel or flight reservations.

Dictation systems employ state-of-the-art technology continuous speech recognition.

These systems can produce documents much faster than many people can type, once it is

trained on a specific user, and if the user learns to speak a bit slower and clearer. A dicta-

tion software program is distributed as a speaker-independent system, but the accuracy of an

off-the-shelf system is not good enough for the system to be useful. The user has to train

the system for one or two hours before the recognition accuracy increases to a useful level.

After the system has been trained that much, it is not really speaker-independent anymore.

Unfortunately the performance of a truly speaker-independent ASR system, are not yet

good enough to be used in everyday applications. These systems are very susceptible to

noise, even office background noises can cause their performance to degrade considerably.

There is therefore a need for ASR to move closer to human-like speech recognition.

1.4 CURRENT SPEECH RECOGNITION SYSTEMS

The most common ASR systems use across-frequency features to recognize speech. A sig-

nal is divided into small, usually 20ms, segments and some type of frequency analysis of

each segment yields the feature set. The most widely used feature set is the Mel Frequency

Cepstrum Coefficients (MFCC) and time derivatives thereof (Rabiner and Juang, 1993).
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State 1 State 3State 2
p1(x̄)

p11(x̄)

p12(x̄)

p22(x̄)

p23(x̄)

p33(x̄)

p3(x̄)

Figure 1.6: An acoustic unit is modeled with a three state Hidden Markov model. The

probability of transition from one state to the next is a function of the feature vectorx̄.

The features serve as inputs to models of acoustic units, which can be words, phonemes,

triphones etc. An acoustic unit model is usually a 3 or 5 state Hidden Markov Model (HMM)

(see figure 1.6). The probability of transition from one state to another is determined by the

feature vector for a particular segment. By concatenating the unit models, bigger units can

be modelled, and eventually sentences. A language model ensures that the acoustic units are

concatenated in a language consistent manner. A very basic language model would give the

probability of a specific acoustic unit following another specific acoustic unit.

Continuous ASR aims to recognize sentences given a sequence of feature vectors. It is

possible to find the most likely sequence of acoustic units, by finding the sequence of models

that best fit the feature vectors and the language model. Once the sequence of acoustic units

is determined, a post processor combines the units into sentences.

This approach to ASR does not contain much prior knowledge of speech, as information

on the human communication process is limited. It rather makes use of a large amounts

of data to self discover relevant patterns in speech within the framework of an HMM. This

approach should work very well, provided there is enough information and provided the

HMM framework can model speech decoding adequately. Later in this chapter we will show

that there is an alternative speech decoding model that fit speech data better than the HMM

approach.
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1.4.1 SOME PROBLEMS WITH CURRENT SYSTEMS

There are a few reasons why the performance of current systems does not compare to that of

humans. These reasons relate to the feature set, the acoustic units and the HMM framework.

Temporal dynamics play an important role in human speech recognition. It has been

found that the relevant information for speech recognition lies in the modulation range of 1 to

15Hz (Hermansky, 1998). That is because the vocal tract cannot change faster than 15Hz, and

information outside this range can therefore not contain anything relevant to speech recog-

nition. Perceptual experiments (Allen, 1994; Kral, 2000; Moller, 1999; Shannon, Zeng, Ka-

math, Wygonski and Ekelid, 1995) have further showed that temporal information in speech

is much more important than spectral information.

Current systems use an across-frequency feature set where each segment is assumed to

be stationary and independent of neighbouring segments. This assumption does not take the

temporal dynamics of speech into account at all. The problem is solved in part by augmenting

the basic feature set with its time derivatives. Temporal dynamics are modelled with the

HMM.

Across-frequency features in a short time segment is susceptible to noise, because it is

difficult to separate noise from signal over a short time interval. This is one of the main

reasons why current ASR systems fail in noisy environments, even when humans do not find

it a difficult task.

Another problem with current ASR systems lies with the acoustic units. These units are

very basic, and smaller units have been used more successfully that larger units. This is in

contrast to human perception of speech, where the basic unit is probably on the syllable level

(Nguyen and Hawkins, 2003).

A further shortcoming of current ASR systems is in the way the most likely sequence is

found. Longer sounds will carry more weight than shorter sounds, because there is a cost

associated with each time segment. The most likely sequence may end up not to be the best

choice.
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Finally the HMM framework may not be well suited to model speech. This notion is

supported by the fact that huge amounts of data is required to train such a system, which

even after training, performs poorly in conditions that are not very close to that under which

the training set was gathered.

It’s reasonable to assume that the best speech decoder is the auditory cortex. We should

therefore look to include aspects of the cortex in ASR systems in order to improve them.

1.5 SPARSE CODING FOR SPEECH RECOGNITION

Psychological studies have showed that mammalian auditory cortical neurons respond to

spectro-temporal sound patterns (deCharms, Blake and Merzenich, 1998; Shamma, 2001),

that is patterns across-frequencyandacross-time.

There are some models that use across-time processing (Hermansky and Sharma, 1999;

Hermansky and Morgan, 1994; Ikbal, Magimai.-Doss, Misra and Bourlard, 2004), and others

that use spectro-temporal features (Kleinschmidt, 2002; Klein, König and Körding, 2003;

Kwon and Lee, 2004). These models do not achieve the same recognition results as state-of-

the-art ASR systems in relative noise free environments, but they have performed better than

HMMs in noisy environments.

Sparse coding with an overcomplete dictionary can give a code whose features are mean-

ingful spectro-temporal sound patterns. The linear generative model (LGM) easily fit into a

sparse coding scheme. The model reconstructs a signal of a preset length using a dictionary

x̄ = Φā (1.1)

The signal̄x is encoded by a set of coefficientsā, one for each dictionary element inΦ (the

columns inΦ contain the dictionary elements).

Principle Component Analysis (PCA) can be seen as a generative model. PCA chooses

a dictionary such that the elements are all orthogonal, and such that the elements point in the

directions ordered from the largest to the lowest variance of a given set of signals. Another

choice of dictionary is given by Independent Component Analysis (ICA). ICA tries to find
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dictionary elements that will result in a code whose coefficients are independent of each

other for a given set of signals. Both PCA and ICA use a complete dictionary, i.e. for an

N dimensional signal vector,Φ is anN × N sized matrix. As already mentioned there

are various advantages to having an overcomplete dictionary, whereΦ is anN × Nd sized

matrix, andNd > N .

For an overcomplete dictionary the code cannot be uniquely determined. It is then pos-

sible to search for a sparse code from all the possible codes. The sparse code of a LGM is a

pulse like structure, similar to the spike structure by which biological neurons communicate.

Patterns in this structure can be related to specific events in the signal, such as spoken words.

Another benefit of encoding a signal with a pulse structure is that the decoding algorithms

are not such a strong function of time as the decoding algorithm in current ASR systems is.

1.5.1 AIMS OF THIS STUDY

Theprimary aimof this study is to use overcomplete sparse coding for pattern recognition,

in particular continuous speech recognition. This study will serve as an initial investigation

into sparse coding for real-world pattern recognition problems. It will show what aspects of

the implementation of sparse coding are important and also what the shortcomings of current

methods are. It will further highlight the factors that limit the use of sparse coding for pattern

recognition.

We use the LGM to select codes that can represent a signal. The dimensionality of the

code is very high, especially as the code is overcomplete. The current algorithms that find

sparse codes of such high dimensional problems are either computationally expensive or they

yield a code that is not well suited for pattern recognition. We therefore need to develop an

algorithm that satisfies both requirements.

A secondary aimis to see what improvements sparse coding can bring to current speech

recognition systems. Overall sparse coding via a generative model seems to be a better model

for speech recognition than MFCC coefficients and HMMs, because:
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• it uses spectro-temporal features,

• it does not prescribe which acoustic units should be used, but the dictionary is free to

choose any unit,

• it combines the basic units into sentences by using an algorithm that is not a linear

function of time, and

• the properties of the model correlate well with that of the auditory cortex, making it

biologically more plausible.

This study will show whether these benefits actually improve speech recognition perfor-

mance, and whether there is merit in doing further investigation along these lines.

In chapter 2 we show how a signal can be represented by a sparse code. The sparse code

resembles a spike train (the spatio-temporal activities of neurons). Chapter 3 discuss our

method for decoding the sparse code; the chapter shows how to determine the words that are

coded by the spike train.
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CHAPTER TWO

SPARSE CODING

As mentioned earlier, we would like to use the idea of sparse coding in a speech recognition

system. This requires that a stimulus or signal be transformed into a sparse code, and that

patterns in the sparse code be associated with spoken words. In this chapter we will first look

at ways to find a sparse code that will represent a signal. We then look at the implementation

issues that arise when sparse coding is applied to speech recognition. Finally, we give the

results of sparse coding for speech. The next chapter will discuss the pattern recognition

problem.

2.1 THE LINEAR GENERATIVE MODEL

Signals are often represented as a linear sum of elementary signals; for example, with the

Fourier transform a signal is represented as a linear combination of sinusoids. Such a repre-

sentation may have favourable properties. It may, for example, highlight important elements
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or objects that are present in the signal, or it may distinguishbetween components that be-

have in characteristic fashion.

We want to transform a speech signal into a sparse representation. Thus far the most

successful approach is to use a linear generative model (LGM) (Lewicki and Sejnowksi,

1999; Lewicki, 2002):

x = Φa + ǫ (2.1)

generally,x is theN dimensional signal,a theNd dimensional representation or code,Φ the

N × Nd transformation matrix andǫ is anN dimensional additive noise term.̄xR = Φa is

the reconstructed signal. The elementsai in the code reveal which objects (the columns in

Φ) are present in the signal.

A representation of the above form is only helpful if the dictionary elements capture in

some way the structure of the signal. A random dictionary would not be nearly as useful as

a dictionary of sinusoids if one is looking for the frequency content of a signal.

The type of model in equation 2.1 is also successfully applied in blind source separa-

tion (Lee, Lewicki, Girlami and Sejnowski, 1999), in image denoising, image compression

(Lewicki and Olshausen, 1999; Lewicki and Sejnowski, 2000; Kreutz-Delgado, Murray, Rao,

Engan, Lee and Sejnowksi, 2003) and digital water marking (Bounkong, Toch, Saad and

Lowe, 2003). The transformΦ is named differently depending on the area of application.

It can be called a basis matrix, mixing matrix, or dictionary. The columns inΦ are called

synthesis functions, basis functions, words or dictionary elements. We will use the term

dictionary to refer toΦ and dictionary elements to the refer to the columns inΦ.

As we are interested in speech recognition, we will use the generative model to do feature

extraction. There is a lot of structure in speech, as in all natural stimuli. If the dictionary

elements reflect this structure, then the code will reveal the basic elements that make up a

particular signal.

The dictionary determines the features that will be extracted and also the properties of

the code. Depending on the application, the best choice of a dictionary may not be a pre-

determined set such as sinusoids or wavelets, but may be data dependent. For example, in
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image compression, Fourier bases which are data independent achieve a 5.34 bits/pixel cod-

ing efficiency, while a data dependent dictionary such as ICA achieves a significantly better

coding efficiency of 4.71 bits/pixel (Lewicki and Olshausen, 1999).

If the number of dictionary elements equals the signal dimension (N = Nd), we speak

of a completedictionary. Anovercompletecode (Nd > N) has several advantages over a

complete code. It is more stable in the presence of signal noise (Kreutz-Delgadoet al., 2003),

small changed in the signal does not cause great disturbances in the code; it can give a sparse

representation of the signal; and the code can be more efficient in an information sense

(Kreutz-Delgadoet al., 2003; Lewicki and Olshausen, 1999).

However if the dictionary is overcomplete, then the code may not be uniquely deter-

mined, because there are many different codes that can represent the same signal. In this

case a sparseness function can be used to choose the best codeā∗ from among the viable

codes. The fact that the code cannot uniquely be determined from the signal signifies that

the code is not linearly dependent on the signal. The sparse code forx̄3 = x̄1 + x̄2 does not

have to be simply the sum of the sparse codes forx̄1 andx̄2.

Section 2.4 will look at the code selection problem in more detail. It can generally

be stated as an optimization problem that is a function of the reconstruction errorR(ā) =

‖x−Φa‖2 and the sparseness functionS(ā) (S is small for sparse codes). For example the

codea∗ to represent a signalx is

a∗ = min
a

S(a) such that R(ā) ≤ ǫ (2.2)

with ǫ the noise level. Another way of formulating the optimization problem is

a∗ = min
a

R(ā) + λS(ā) (2.3)

whereλ sets the balance between reconstruction and sparseness.

The sparseness function plays an important role in the code that will be selected to rep-

resent a signal. In section 2.3 we turn our attention to the sparseness functionS.
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CHAPTER TWO SPARSE CODING

2.1.1 NEURAL REPRESENTATION AND THE CODE

A nonzero code element corresponds to a spike in the neural code. There is a discrepancy

between the neural code and the code of a LGM. A neural spike is a binary event whereas

a code element can take on any real value. We can interpret positive real values as some

number that is related to the number of neurons that fire spikes simultaneously. The brain

appears to be redundant in this manner: more than one neuron can code the same information,

which helps the brain to deal with physical damage. Negative real values are more difficult

to interpret (although they can be viewed as inhibitory spikes). We choose to rather constrain

the code elements to be nonnegativeai ≥ 0.

It has not yet been shown that a nonnegative sparse code is in some way better than a

sparse code that includes negative terms, but it is easier to interpret physiologically, and, as

we will show later, it provides a lower bound to a possible nonconvex minimization problem.

2.2 SPARSE CODING OF LETTERS

Here we give a simple application of sparse coding of letters to illustrate the LGM and sparse

codes. The dataset appears in figure 2.1. It has 26 samples, one for each letter of the alphabet.

Noise can be added to the samples to create a more realistic dataset, but for the purpose of

illustration we consider only the noiseless case.

The dimensionality of the dataset is the number of pixels per letter, which is 15. We

use an overcomplete dictionary of 20 elements to reconstruct the letters. The code will

be maximally sparse if the dictionary has at least as many elements as there are letters. The

elements of the optimal dictionary will then be exactly the dataset. However an overcomplete

code will still be sparse even if it is not maximally sparse.

The dictionary is adapted to the data and appears figure 2.2. It contains dictionary ele-

ments that fit some letters almost exactly, such as elements 1, 5, 11 and 12; some elements

are very similar to letters of the alphabet such as 2, 7, 8 and others; element 10 is not like

any letter in the dataset. Inspection of the results reveals that element 10 is used, with very
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CHAPTER TWO SPARSE CODING

Figure 2.1: The letters that make up the dataset we use to illustrate sparse coding.

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

Figure 2.2: The overcomplete dictionary that is adapted to thedata. Some dictionary el-

ements have negative components (white represents a value of -0.05 and black represents

0.4).

small code values, in coding the letters “A” and “G”.

Figure 2.3 shows two different codes based on the dictionary in figure 2.2, that both

reconstruct the letter “E” perfectly. The reconstruction is simply a sum of scaled dictionary

elements, where the scaling factor for each element is given by the code. The codes make

significant use of dictionary elements 7 and 14. These two elements are similar to the letters

“F” and “L”; their combination in turn is similar to the letter “E”. The code in figure 2.3(b) is

sparser than the code in figure 2.3(a) as it has fewer nonzero code elements. This illustrates

the point that for an overcomplete dictionary there are many codes to represent a signal. In
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CHAPTER TWO SPARSE CODING

Dictionary element

a

2 4 6 8 10 12 14 16 18 20-1
0
1
2

(a) A dense code.

Dictionary element

a

2 4 6 8 10 12 14 16 18 20-1
0
1
2

(b) A sparse code.

Figure 2.3: The figure shows two codes that perfectly reconstruct the letter “E”. However,

the code in (b) is sparser than the code in (a) because it has fewer nonzero code elements.

such a case a sparseness function can be used to select a sparse code.

2.3 MEASURES OF SPARSENESS

The neural code is sparse, it has both population sparseness and lifetime sparseness. We

would like to measure and quantify sparseness, so that a single code can be selected to

represent a signal with the LGM.

The neural code is also efficient in an information sense. This implies that the activities

of two neurons cannot be correlated, otherwise there will be reduncies in the code. It follows

then that the activities of any two neurons should beindependent.

2.3.1 POPULATION SPARSENESS

At first we will address the measurement of population sparseness. Let the population sparse-

ness function be

Spop(n) = S(a(n)) (2.4)

with a(n) the code for stimulusn.

The values of the code elements have to be independent which implies that the sparseness

function should be permutation invariant i.e. the sparseness value should not be dependent

on the order of the individual components. A sufficient condition for a function to be permu-
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CHAPTER TWO SPARSE CODING

a

p(
a
) Normal

-3 -2 -1 0 1 2 3
0

0.25

0.5

Figure 2.4: Code element values that follow a normal distribution are not considered sparse.

Generally a code will be sparse if the probability that a code element value is close to zero is

high. The chain (p(a) = 0.5 exp(−|a|)) and dashed (p(a) = 0.25 exp(−|a|0.5)) lines display

probability distributions of code element values that are sparse.

tation invariant is separability

S(a(n)) =
∑

i

S(a
(n)
i ) (2.5)

Suppose a neuron is represented by a code elementai that only take on a binary value,

then an appropriate sparseness function would be thel0 norm,S(a) =
∑

i |ai|0 where00 =

0. This norm simply counts the number of active or nonzero elements used to represent a

stimulus. Thel0 norm will be small for if the code for that stimulus is sparse.

Sometimes a neuron is represented by a real-valued code elementai, such as a perceptron

or a code element in a LGM. Now thel0 norm may not be appropriate anymore. A sparse-

ness function for a real-valued code may not only consider the fact that a code element is

nonzero, but also the exact value of that code element. For real-valued codes the probability

distributionp(a) of the values that code elements assume can indicate the sparseness of that

code. The code will be sparse when the probability that an element value is zero or small is

much larger than the probability that an element value is large. Section 2.3.3 lists the require-

ments for a sparseness function to ensure a sparse code. Figure 2.4 shows as an illustration a

few probability distributions for which only the normal distribution is not consistent with a

sparse code.
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CHAPTER TWO SPARSE CODING

Interestingly in literature thel0 norm is sometimes assumed to be the best measure for

sparseness even though the code may be real valued (Field, 1994; Kreutz-Delgadoet al.,

2003; Wipf and Rao, 2006).

We will show in section 2.4.2 how a sparseness function for a real-valued code can be

derived from a probability distribution of code element values.

2.3.2 LIFETIME SPARSENESS

A neuron that is seldom active in the representation of a dataset has high lifetime sparseness.

The lifetime sparseness function should not be dependent on the order in which stimuli are

coded, which implies that the lifetime sparseness function is a permutation invariant function.

For the sake of simplicity let the lifetime sparseness function and the population sparseness

function use the same sparseness function. Now the lifetime sparseness function of code

elementi for all stimuli in the dataset is

Slife(i) =
∑

n

S(a
(n)
i ) (2.6)

In this case the total population sparseness function for all stimuli in a dataset equals the

total lifetime sparseness function of all code elements over the same dataset.

∑

n

Spop(n) =
∑

n

[

∑

i

S(a
(n)
i )

]

=
∑

i

[

∑

n

S(a
(n)
i )

]

=
∑

i

Slife(i) (2.7)

There is an important property that arises when lifetime sparseness and population

sparseness use the same sparseness function: by selecting the most sparse population code

for asinglegiven stimulus, we are also selecting the code that will yield the greatest lifetime

sparseness over theentiredataset.

2.3.3 HOW TO ENSURE SPARSENESS

The sparseness function should have certain properties for it to produce a sparse code. It is

generally believed that when the probability distribution of a code element value is peaked at
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CHAPTER TWO SPARSE CODING

zero and is heavy-tailed, then that code element is consistentwith a sparse code (Olshausen

and Field, 1997; Lewicki and Olshausen, 1999; Olshausen and Field, 2004). Probability

distributions in the form of

p(ā) ∝
∑

i

e−S(ai) (2.8)

are often used to describe the distribution of sparse codes. Several sparseness functions have

been proposed (Olshausen and Field, 1997; Lewicki and Olshausen, 1999; Lewicki, 2002):

S(a) = β ln(1 + a2), S(a) = − exp−a2
, S(a) = |a|q with 0 < q < 2, and others.

Kreutz-Delgadoet al. (2003) have derived sufficient conditions for functions to be valid

measures of sparseness, i.e. functions that promote sparseness. The conditions are:

• The function should be permutation invariant. A function is permutation invariant if

its value is independent of the order of its components.

• S(|a|+∆a) < S(|a|)+S(∆a), i.e. the cost of increasing the amplitude of an existing

spike by∆a > 0 should be less than the cost of adding a new spike with that same

amplitude to the code.

This implies thatS(a) = |a|q is a valid sparseness functions only for0 < q ≤ 1. The second

condition is not satisfied for1 < q < 2, therefore the general belief that all supergaussian

functions (0 < q < 2) enforce sparseness is not well-grounded.

We use the sparseness function

S(a) = a− β

2
a2 (2.9)

within the bounds0 ≤ a ≤ 1/β. The lower bound ensures that components are positive

while the upper bound is needed to satisfy the second condition above. Figure 2.5 gives a

contour plot of equation 2.9 for a two component code. It shows that the sparseness function

is lower for points closer to the axes, i.e. sparser codes.
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a1

a
2

0 2 4 6 8 10
0

2

4

6

8

10

Figure 2.5: A countour plot ofS(ā) =
∑

i ai− 0.1
2

ai
2, S([0, 0]) = 0 andS([10, 10]) = 10. It

shows that the sparseness function is smaller for sparse codes. For example,S([5, 0]) = 3.75

while S([2.5, 2.5]) = 4.375.

2.4 FINDING A SPARSE CODE

A sparse code should be one that represents a signal well, but that is also sparse. Sparse codes

are usually found in one of two ways: by viewing the LGM in a probabilistic framework

and finding the most likely code, or by explicitly stating the problem as a mathematical

optimization problem. The following sections expand on both approaches.

2.4.1 EXPLICITLY STATING THE MATHEMATICAL OPTIMIZATION

PROBLEM

The sparse codea∗ that represents a signal is given in equation 2.2

a∗ = min
a

S(a) such that R(ā) ≤ ǫ

where the reconstruction error isR(ā) = ‖x −Φa‖2. It is useful to state the sparse coding

problem in this way when the sparseness function is nondifferentiable.

Consider a sparse coding problem based on thel0-norm. The problem of minimizingl0

while ensuring that reconstruction error is small enough isNP -hard and is a combinatorial
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CHAPTER TWO SPARSE CODING

problem. A class of algorithms that attempt to solve this problem is termedbasis selection.

Of the many basis selection algorithms,matching pursuit(MP) is one of the most basic.

According to (Mallet and Zhang, 1993) matching pursuit

. . . decomposes any signal into a linear expansion of waveforms that are selected

from a redundant dictionary of functions. These waveforms are chosen in order

to best match the signal structures.

MP is an iterative algorithm that adds one element at a time to the code, until the recon-

struction error falls below a predetermined threshold. The element that is added to the code

during thekth iteration is

a
(k)
i = max

i

(x̄− x̄
(k−1)
R )T · Φi

‖Φi‖2
(2.10)

x̄
(k−1)
R = Φā(k−1) is the reconstruction at iterationk−1. MP therefore adds during each iter-

ation that single element to code that will most reduce the norm of the residue
∥

∥

∥
x̄− x̄

(k−1)
R

∥

∥

∥
.

Even though MP does not explicitly consider sparseness, it still yields a sparse solution be-

cause the algorithm is stopped before it can perfectly reconstruct the signal.

If we view R(ā) = ‖x − Φa‖2 as a cost function that needs to be minimized, then MP

minimizes the cost function by moving the solution along one dimension at a time.

MP is generally faster thangradient basedalgorithms (Perrinet, 2004a). However we

show in section 2.7.2.1 that codes from pure MP are not suitable for pattern recognition

problems, as small changes in the signal cause big changes in the code.

2.4.2 A PROBABILISTIC APPROACH

We have mentioned that the sparseness of real-valued code elements can conveniently be

measured according to the probability distribution of the code element valuesp(ā). In this

section we view the LGM in a probabilistic framework in order to find a sparse code.

For the case of no noise (ǫ = 0) and with a Laplacian prior for the code elements, there

are methods that can find the code efficiently by maximizing sparseness while constraining
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CHAPTER TWO SPARSE CODING

the solution so that̄x = Φā (Chen, Donoho and Saunders, 1998). Approaches to finding

the code of a model that includes nonzero noise (ǫ > 0), are independent factor analysis

(Attias, 1999), an expectation maximization algorithm (Girolami, 2001) and the FOCUSS

algorithm (Kreutz-Delgadoet al., 2003). These approaches can only solve problems that

can be cast into the form of equation 2.1. More general approaches that also apply to other

forms of equation 2.1 (for example time-dependent generative models) are gradient based

algorithms (Olshausen, 2002).

Barlow’s hypothesis states that we should be looking for the most efficient codes to rep-

resent stimuli. An efficient codēa is one that requires few bits to encode the source output

x̄. According to Shannon’s source coding theorem, a source cannot be coded with fewer bits

than its entropyH

L ≥ H(X) =

∫

ptrue(x̄) ln
1

ptrue(x̄)
dx̄ (2.11)

L is the average number of bits needed to encode the source, it is termed the average code

length.ptrue(x̄) is the actual probability distribution of the data. We do not know the actual

probability distribution, instead it is modelled with a distributionp(x̄), where some param-

eters of the distribution can be changed to better fit the data. The morep(x̄) deviates from

ptrue(x̄), the less efficient the code becomes

L ≥
∫

ptrue(x̄) ln
1

p(x̄)
dx̄ (2.12)

≥
∫

ptrue(x̄) ln
1

ptrue(x̄)
dx̄ +

∫

ptrue(x̄) ln
ptrue(x̄)

p(x̄)
dx̄ (2.13)

The second term on the right-hand side is theKullback-Leibler divergence(KL). It mea-

sures how closely the probability distribution of signals from a model approximates the true

distribution. Codes that minimize this term will be efficient.

Minimizing KL corresponds to maximizing〈ln p(x̄)〉 since

〈ln p(x̄)〉 =

∫

ptrue(x̄) ln p(x̄)dx̄ (2.14)

differs fromKL by a quantity that does not depend onp(x̄). p(x̄) is found by marginalizing

overā:

p(x̄) =

∫

p(x̄ | ā)p(ā)dā (2.15)

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING,
UNIVERSITY OF PRETORIA

27

 
 
 



CHAPTER TWO SPARSE CODING

We need to specify the probability distributions ofp(x̄ | ā) and p(ā). If we assume additive

normally distributed noise on the signals, then the noise term in

x̄ = Φā + ǭ (2.16)

is a random vector with entries that are sampled fromN (0, σ2
n). Now it is possible to specify:

p(x̄ | ā) ∝ exp(−‖x̄−Φā‖2
2σ2

n

) (2.17)

The choice ofp(ā) is limited by the fact that̄a needs to be sparse. We assume that the

components of̄a are independent and that they follow the given distribution:

p(ā) =
∏

i

p(ai) ∝
∏

i

exp(−S(ai)) (2.18)

S(ai) should be a suitable sparseness function.

p(x̄) is found by integrating over all possiblēa (see equation 2.15). It is generally in-

tractable to evaluate this integral exactly. If there is no noise and if the dictionary is com-

plete, the integral can be evaluated, which then leads to the ICA algorithm (Olshausen and

Field, 1997; Cardoso, 1997). There are however several ways to approximate the integral.

One is to sample a number of points from the posteriorp(ā | x̄) ∝ p(x̄ | ā)p(ā), and to ap-

proximate the integral by a sum at these points. Another is to approximate the terms inside

the integral with a normal distribution centred on the maximum posterior modeā∗ (Lewicki

and Olshausen, 1999; Lewicki and Sejnowski, 2000):

ā∗ = max
ā

p(ā | x̄) (2.19)

after which the integral in equation 2.15 becomes analytically solvable.

Alternatively, the integral can be approximated by just sampling at the maximum poste-

rior mode (Olshausen and Field, 1997). This last approximation neglects the volume under

the integral, and assumes that the term in the integral is a delta function. We will use this

approximation for its simplicity although it has two significant drawbacks. Firstly, the ac-

tual problem we solve is only an approximation to the true problem we would like to solve.

Secondly, it is shown in section 2.5 that the optimal dictionary will be one for which the

dictionary elements have norms that approach infinity.
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The optimization problem in equation 2.19 can be simplified. Byusing Bayes’ theorem

together with the fact thatp(x̄) is not a function of̄a we have

ā∗ = max
ā

ln p(ā | x̄) (2.20)

= max
ā

ln
p(x̄ | ā)p(ā)

p(x̄)
(2.21)

= max
ā

ln p(x̄ | ā)p(ā) (2.22)

Maximizingp(ā | x̄) is equivalent to maximizingln p(ā | x̄) since the logarithm is a mono-

tonic function.

The sparse codēa∗ is the solution to the minimization problem

E(ā | x̄) =
1

2σ2
n

‖x̄−Φā‖2 +
∑

i

g(|ai|) (2.23)

where we have made use of equations 2.17 and 2.18.E can also be written as

E(ā | x̄) = ‖x̄−Φā‖2 + λS(ā) (2.24)

with λ = 2σ2
n.

The cost function is a combination of a reconstruction term and a penalty term. The

penalty term ensures that a sparse solution will be selected, and the reconstruction term

ensures that the code will give a good representation of the signal. These two terms are

opposing forces: a very sparse code cannot usually give a good representation, and vice

versa.λ is a critical parameter that sets the balance between sparseness and reconstruction

error.

The minimum of equation 2.24 can be found with agradient basedapproach. The gra-

dient of the error function with respect to the code is

∂E

∂ā
= −2ΦT (x̄−Φā) + λS ′(ā) (2.25)

MP and the gradient based approach are related; both approaches minimize the same cost

function whenλ = 0. However MP will find a sparse solution as it only adds one element

at a time to the code, whereas the gradient based approach will not find a sparse solution as

it can employ every code element in order to minimize the cost function. The penalty term

λS(ā) is therefore crucial to ensure a sparse solution for the gradient based approach.
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2.4.2.1 SETTING THE RECONSTRUCTION ERROR-SPARSENESS BALANCE

λ is related to the noise present in the model. This noise is general, it incorporates any noise

source: either noise in the signal and/or noise in the representation. There are various ways

to choose the optimal value ofλ and thereby set the noise level (Rao, Engan, Cotter, Palmer

and Kreutz-Delgado, 2003). In a signal representation problem,λ is chosen so as to ensure a

minimum signal-to-noise ratio (SNR). This approach is termedquality-of-fit; λ is simply set

according to a prescribed SNR.

In a compression problem, the number of nonzero entries in the code is predetermined.

For a given signalλ is then set such that the code has the preset number of nonzero entries.

With this methodλ has to be determined iteratively for each signal.

The L-curvemethod is another approach. Hereλ is to set to some value that gives the

best trade-off between the reconstruction error and sparseness. A plot of the reconstruction

error versus the sparseness term for different values ofλ is shaped like an “L”. The L-

curve theory states that the best choice forλ is the one that corresponds to the corner of

the “L”. The graph does not always have a definite corner, so it is proposed that the point

of maximum curvature corresponds to the corner. This approach requires the model to be

evaluated at various values ofλ, making it impractical in most cases.

Ideally we would like to select that value forλ which will give the best performance of

the entire system, in our case the best classification performance. This would require the

entire system to be trained with several values ofλ, which is not viable as the training of the

entire system takes very long. Instead we use a different approach:λ should be chosen so that

the reconstructed signal captures speech features that are important for speech recognition.

Making λ too small will require the code to capture features that are irrelevant to speech

recognition, while not all the important speech features will be captured whenλ is too big.

A proper value forλ can be estimated by visual inspection of several reconstructed signals

at various values ofλ.
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2.5 FINDING THE OPTIMAL DICTIONARY

The dictionary has to capture the underlying statistical structure of the data for the code to

be efficient. The optimal dictionary for a given dataset is difficult to find, but it is possible

to find a good dictionary by using an iterative approach. This process is called dictionary

training.

The following two sections show how to train a dictionary. The first section does so for

codes that are selected by means of basis selection, the following section for codes that are

selected in a probabilistic framework.

2.5.1 TRAINING A DICTIONARY FOR CODES FROM BASIS SELECTION

Here we derive a procedure that iteratively adapts the dictionary to make the codes that

represent a set of stimuli more and more sparse.

The best code to represent a stimulus is the sparsest code that yields a reconstruction error

less than a prescribed noise level. Generally, the sparser a code is the worse it reconstructs a

signal. This means that the optimal code from equation 2.2 will have a reconstruction error

that equals the prescribed noise level i.e. the constraint will be active.

Suppose the dictionary is adapted for a given signal and given code so that the recon-

struction error is reduced. The adapted dictionary will allow a sparser code to be selected

than the initial one, because the reconstruction error is smaller than the prescribed noise

level; the code will have room to become sparser until the reconstruction error again equals

the prescribed noise level.

This suggests asequentialprocedure to adapt the dictionary. A change in the dictionary

∆Φ
(n) is determined for each signalx̄(n) and associated codēa(n), one at a time. The dictio-

nary is adapted with the term∆Φ
(n) before the algorithm moves on to the next signalx̄(n+1)

in the stimulus set

Φ
(n+1) = Φ

(n) + ∆Φ
(n) (2.26)
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The change in the dictionary∆Φ
(n) should reduce the reconstruction errorR = ‖x̄(n) −

Φ
(n)ā(n)‖2. The direction in which to change the dictionary is then

∆Φ
(n) = −η

∂R

∂Φ
(2.27)

with η a learning parameter. The update formula is now

∆Φ
(n) = −η

[

x̄(n) −Φ
(n)ā(n)

]

ā(n)T (2.28)

whereā(n)T is the transpose of̄a(n).

The sequential update rule is difficult to perform in parallel, as a singleā(n) is determined

for an update of the dictionary. It would be easier to parallelize abatchversion of the update

equation. In the batch version all the codes for the stimulus set is first determined for a given

dictionary, only then is the dictionary updated.

For very small values ofη, the batch version of the update formula approximates the

sequential version. The batch update version can compactly be written as

∆Φ = −2η(X −ΦA)AT (2.29)

where thenth stimulus is thenth column in matrixX, and the code that represents stimulus

n is thenth column of matrixA. This update formula is also used by Perrinet (2004b) to

train dictionaries on codes from MP. Perrinet (2004b) notes that it is necessary to introduce

a mechanism to ensure that the choice of any one dictionary element is not favoured above

any other element. One way to achieve this requirement is to set the norms of all dictionary

elements equal to a preset value.

2.5.2 TRAINING A DICTIONARY IN A PROBABILISTIC FRAMEWORK

The same arguments used in the previous section to find the optimal code can be used to find

the optimal dictionary. In the previous section we were only interested in finding the optimal

code, accordingly we use the notationp(x̄). However, the probability distribution of signals

arising from the model is also function of the dictionary. It follows that the Kullback-Leibler

divergence is a function of the dictionary

KL(Φ) =

∫

x̄

ptrue(x̄) ln
ptrue(x̄)

p(x̄ | Φ)
dx̄ (2.30)
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The optimal dictionary is then

Φ
∗ = max

Φ

〈ln p(x̄ | Φ)〉 (2.31)

We approximateln p(x̄ | Φ) by sampling at its maximum posterior (see the discussion lead-

ing to equation 2.19)

Φ
∗ = min

Φ

〈min
ā

E(ā | x̄,Φ)〉 (2.32)

The optimal dictionary is found by integrating over all possible signals. If the distribution of

the data set reflects the true distribution we try to model, then

〈min
ā

E(ā | x̄,Φ)〉 ≈
∑

n

min
ā

E(ā(n) | x̄(n),Φ) (2.33)

Training of the dictionary is an iterative process that involves two steps: firstly the op-

timal codes for the stimulus set is found (solveminā E(ā | x̄,Φ)), then the dictionary is

adapted. Training can stop when there is not much change in the dictionary from one itera-

tion to the next.

The dictionary can be adapted by a gradient based method. The cost function isET =
∑

n E(ā∗(n) | x̄(n),Φ), for which the gradient with respect to the dictionary is

∂ET

∂Φ
=

∑

n

∂E(ā∗(n) | x̄(n),Φ)

∂Φ
(2.34)

=
∑

n

2(x̄(n) −Φā∗(n))ā∗(n)T (2.35)

This can be compactly written as

∂ET

∂Φ
= 2(X −ΦA)AT (2.36)

which is in the same form as equation 2.29.

We mentioned previously that this approximation leads to an optimal dictionary that has

dictionary elements whose norm approach infinity. To see this consider that the optimal

dictionary will be one that maximize〈ln p(x̄ | Φ)〉. The termp(x̄ | Φ) is approximated by

the peak̄a∗ of p(x̄ | ā,Φ)p(ā). The maximum possible value thatp(x̄ | ā,Φ)p(ā) can reach

will be a product of the maximum value ofp(x̄ | ā,Φ) and the maximum value ofp(ā). If the

dictionary elements have norms that approach infinity, then theā that maximizep(x̄ | ā,Φ)
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CHAPTER TWO SPARSE CODING

will be close to the all zero vector, but the priorp(ā) also has its peak at the all zero vector.

therefore the optimal dictionary is the one for which the dictionary elements have norms that

approach infinity.

The trivial solution to the optimal dictionary does not exist if the norm of the dictionary

elements is constrained. The constraint can be enforced strictly by fixing the norm of each

dictionary element to a specific value (Kreutz-Delgadoet al., 2003), or it can be a soft con-

straint by adapting the norm of each dictionary element so the code element associated with

that dictionary element has a prescribed variance.

Olshausen and Field (1997) use the soft constraint. They scale the norm of each dic-

tionary elementli after each iteration according toli,new = li,old

[

〈a2
i 〉

σ2
goal

]α

with 0 < α < 1.

Whenα is set too small, it will take a long time for the dictionary norms to converge. On the

other hand ifα is set too large, some dictionary elements may never learn useful structure.

This will happen because the training algorithm only adapts elements to the extend that they

are used by the code. If it so happens that a particular element is not used often early in the

training process, it will initially have a small variance. This in turn will reduce its norm. An

element with a small norm requires a relative large code value to make a significant contri-

bution to reconstructing the signal. An element with a small norm is therefore less likely to

be selected for a code since the sparseness function for large code values will penalize it.

As it is not selected often its variance reduces even further. This leads to a point where the

element is never selected as it did not learn any structure and it has a very small norm. We

therefore choose to use the hard constraint as it avoids the problem of settingα.

The hard- and soft constraint approaches to bounding the dictionary norms will yield

suboptimal dictionaries. A dictionary that is closer to the optimal dictionary can be found

when the termp(x̄ | Φ) is not approximated by the peakā∗ of p(x̄ | ā,Φ)p(ā), but when the

volume of the integral around the peak is estimated (Lewicki and Olshausen, 1999; Lewicki

and Sejnowski, 2000). The volume estimation is unfortunately expensive to compute.
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CHAPTER TWO SPARSE CODING

2.6 SPARSE CODING FOR SPEECH RECOGNITION

Speech recognition systems, which includes the brain, forms multichannel representations of

raw speech waveforms. They can also handle signals of variable length. The sparse coding

model discussed so far finds a sparse code only for a single channel signal of fixed length.

In this section the simple LGM model is expanded to take multichannel signals of variable

length as input.

2.6.1 SPEECH REPRESENTATION

We use the TIDIGITS (Leonard and Doddington, 1993) data set of continuous spoken digits

by male and female speakers. The utterances are of variable length, consisting of a variable

number of random digits. There are 11 different spoken digits, one for each number from

“one” to “nine”, a “zero” and an “oh”. We choose this data set because it is a rather simple

set: it has a limited vocabulary and simple language model (since the probability that a

certain word follows any other word is approximately equal for all the words).

The label data supplied with TIDIGITS is limited to orthographic transcriptions. That

is, the digit sequence of each utterance is given, but the start- and endpoints of each digit

in the waveform are not specified. We estimated these points by doing forced alignment

with the HVite tool that is part of theHidden Markov Model Toolkit(HTK) (University of

Cambridge, 2006). During forced alignment, HVite aligns a transcription with a waveform.

The automatic forced alignment is accurate as HTK is able to model the data well: it is able

to recognize almost all words in the test set correctly (WER1=3%).

It is time consuming to train sparse coding models. We therefore use a reduced data set so

that the system can be trained in reasonable time. (With the reduced set, the entire system is

trained in a week on sixteen Pentium 4 PCs working in parallel). The training set suggested

for the TIDIGITS data set has 8623 utterances and contains 28329 words. Our training set is

made up of every second sample of the suggested data set. The reduced set contains at least

2000 samples of every word, and is therefore sufficient for this initial investigation.

1Word Error Rate (WER)= #deletions+#insertions+#replacements
number of words 100%
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CHAPTER TWO SPARSE CODING

The simplest way to represent a raw speech signal is as a time waveform. However, time

domain representations of speech are not as natural as frequency domain representations, as

is evidenced by the fact that the auditory pathway uses a frequency domain representation.

Even so, sparse coding of the time waveform of speech signals has shown some correspon-

dence with physiological data (Lewicki, 2002). The auditory pathway forms a complex

nonlinear representation of auditory stimuli. The representation produces phenomena like

forward masking and two-tone suppression. There are models that provide frequency do-

main representations that to some extent agree with physiological measurements along the

auditory pathway (Hermansky and Morgan, 1994; Wang and Shamma, 1995); however, for

this study we choose to use a simpler spectrogram representation. The spectrogram we use

is constructed by first dividing the raw signal into segments. The segments span 25.6ms (512

points with a sampling frequency of 20kHz). A new segment starts every 20ms or every 400

points, which gives an overlap between adjacent segments of 5.6ms. Each segment is then

windowed with a Hanning window before the log magnitude of the Fast Fourier Transform

for that segment is calculated. The magnitude is chosen because the human ear is insensitive

to phase information; the log of the magnitude is used because our perception of sound in-

tensity is often approximated by the logarithm although we actually perceive sound intensity

on a cube-root scale (Hermansky, 1990).

Humans do not perceive the content of a signal on a linear frequency scale. We there-

fore use a Mel-spaced filter-bank to incorporate this nonlinearity. Each filter is a trian-

gular bandpass filter whose centre frequencies are linearly spaced on a Mel-scale. Cur-

rent automatic speech recognition systems use up to 32 filters, but we use only 8 filters

for computational reasons. A small number of filters is preferred because too many fil-

ters put significant computational strain on the algorithms, and accurate temporal informa-

tion is apparently more important than accurate spectral information for speech recognition

(Allen, 1994; Kral, 2000; Moller, 1999; Shannonet al., 1995). The outputs of the filters

(with centre frequencies as given in figure 2.6) are then scaled so that the variance of each

filter output over the data set is one.

We use a linear generative model to find the sparse code of a spectrogram. This model

works best if important speech features have large values in the representation and if si-
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CHAPTER TWO SPARSE CODING

lences have values equal to zero. From inspection it seems for this particular data set and

the spectrogram transform described above, that values below 15dB do not carry important

speech features. We therefore subtract 15dBfrom the spectrogram after filtering and set any

negative value equal to zero.

Figure 2.6 gives the signal representation for the utterance “one one one three eight eight

one”. The spectrogram representationx is anNc×Nt matrix withNc the number of channels

or filters andNt the number of segments. It serves as input to the linear generative model.

t [s]
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(b)

Figure 2.6: (a) The speech waveform for the utterance “one one one three eight eight one”,

and (b) its spectrogram representation. The gray scale indicates the signal amplitude [dB].
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CHAPTER TWO SPARSE CODING

2.6.2 TEMPORAL LINEAR GENERATIVE MODEL

The linear generative model applies to signals of a fixed length. Speech signals of variable

length can be modelled with a LGM if the signal is segmented into fixed length segments.

The code for each segment is then solved independently of other segments and the code for

the complete signal is constructed by concatenating the codes from various segments to yield

a temporal code. Such a code will have redundancies because the correlation between the

code elements of neighbouring segments will be high, making the code less efficient.

A better way to model signals of variable length is to explicitly model the temporal code

(Olshausen, 2002; Smith and Lewicki, 2005). The LGM now becomes a temporal linear

generative model (TLGM). The reconstructed signal (in our case a spectrogram)xR is a

convolution of the codea with the dictionaryΦ. An element at timet in channelc of the

reconstructed spectrogram is found with:

xRc,t =

Nd
∑

d=1

Nt
∑

T=1

Φ
{d}
c,∆t ad,T (2.37)

For convenience we use the integer indext to correspond to a segment in the spectrogram.

The indext is related to actual time by multiplyingt with 20ms. Nt is the number of

segments in the spectrogram that is being reconstructed.d is an index to a dictionary element;

there areNd = 32 × 7 = 224 dictionary elements in our dictionary (we will explain why

this number is chosen below).Φ{d} is anNc × ∆Φ matrix representing thedth dictionary

element;Φ{d}
c,∆t refers to the element inΦ{d} located in channelc at time∆t. Nc is the

number of channels in the signal, for the spectrogram used hereNc = 8. ∆t = ∆Φ −
T + t where∆Φ is the temporal width of a dictionary element. The width is taken as

260ms (or 13 segments), as evidence points to auditory memory being around250ms in

duration (Hermansky, 1998; Huggins, 1975; Massaro, 1972). WhenT is smaller than the

temporal width of a dictionary element, the first∆Φ− T columns of the dictionary element

are truncated.a is therefore anNd ×Nt matrix. We will refer toai,j as a code element.

We now also extend the sparseness function to take a matrixa as an argument

S(a) =
∑

d

∑

T

S(ad,T ) (2.38)
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CHAPTER TWO SPARSE CODING

This sparseness function assumes that the activity of any two code elements is independent.

It assumes that the activity of a channel is independent over time, and that the activity of

different channels is independent. The assumptions fit the requirements of an efficient code.

2.6.3 FINDING THE SPARSE CODE OF A TLGM

For most practical problems the dimensionality of an LGM is small enough so that a sparse

code can be found quickly. However the dimensionality of a TLGM is too large to find a

sparse code in reasonable time. For example, a code of 40 dictionary elements that represents

a1s spectrogram of20ms segments would yield a40× 50 = 2000 dimensional problem. A

pure gradient based algorithm would take too long to converge to a sparse code. We need a

more efficient way to find the sparse code.

The error function is a quadratic function of the code when the sparseness function is a

quadratic function of the code. We can choose the sparseness function to be quadratic

S(a) = a− β

2
a2 (2.39)

with β > 0. This is a valid sparseness function for0 ≤ a ≤ 1/β. The lower bound is

consistent with a neural code that cannot have negative spikes; it is also required for this par-

ticular sparseness function to be valid (the sparseness function is negative for negative code

elements). The upper bound is the point wherea maximizes the sparseness function. The

sparseness function decreases for values beyond this point, which does not fit a sparseness

function. We found in our application that the upper constraint is never active forβ = 0.1

and therefore does not play an important role in the code selection. We use a bound con-

strained quadratic programming algorithm called MINQ (Neumaier, 1998) to minimize the

error function; it is much more efficient than a pure gradient based algorithm.

Consider again the2000 dimensional problem. The Hessian matrix that is used in the

quadratic programming algorithm would be a2000× 2000 matrix which is too big for effi-

cient solution. Here follows an algorithm that does not require the entire Hessian.

We expect very few nonzero components in the solution, because we are looking for

a sparse code. It is therefore not necessary to include all the components in a search for

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING,
UNIVERSITY OF PRETORIA

39

 
 
 



CHAPTER TWO SPARSE CODING

the solution. In fact, it is only necessary to include those components that are likely to be

nonzero. If it is possible to know these components beforehand, it will greatly reduce the

dimensionality of the optimization problem.

However it is difficult to know which components will be nonzero, so we make use of

an iterative process that chooses a small subset of components (sizeNset) to be optimized in

each iteration. The subset is determined by selecting theNset most “promising” components

from a set of candidate components. A candidate component is either nonzero in the current

iteration, or it has a negative gradient with respect to the error functionE. This criterion

does not selectall the components that could reduce the error function, because the error

function is nonconvex, but it does select a few of them. The components that are included

in the subset are theNset candidate components with the largest gradient magnitude. The

process of selecting components and optimizing them iterates until the reduction in the error

function falls below a preset threshold. We used a threshold of10−4 and select subset of size

Nset = 200 during each iteration. We refer to this algorithm as subset selection and quadratic

programming (SSQP). Its pseudo code appears in algorithm 1.

Fan, Chen and Lin (2005) describe a similar approach for support vector machines. Their

algorithm selects a subset of two elements at a time, however the subset may be larger than

two elements (Liao, Lin and Lin, 2002). Blumensath and Davies (2006) have also used

a subset selection approach to find the sparse code of a high dimensional problem. An

important difference between SSQP and their work is that SSQP performs several iterations

of subset selection, whereas their approach selects the subset only once. We could not use

such a selection criterion, as a reasonable subset would be too large to quickly calculate the

Hessian matrix (sizeNset ×Nset) required by quadratic programming.

SSQP is a gradient based algorithm which attempts to find the minimum of the quadratic

error functionE(a). E is possibly a nonconvex function. This implies that there may be

several local minima. We expect that most of the code elements in the optimal solution will

be zero as we are looking for a sparse code. It is therefore sensible to start the optimization

with an initial guess where all the code elements are equal to zero instead of a random guess,

since such a starting point is expected to be close to the optimal solution. Other large scale
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Algorithm 1 SSQP: Subset selection and quadratic programming
Input: astart andΦ

Output: afinal

q ← 0

αq ← astart

repeat

sactive ←
{

[i, j] | αq[i,j] > 0
}

sneg ←
{

[i, j] | ∂E
∂αq[i,j]

< 0
}

scandidate ← sactive ∪ sneg

sortscandidate in descending order of
∣

∣

∣

∂E
∂αq[i,j]

∣

∣

∣

suse ← {scandidate [k] | k = 1, 2, 3, . . .Nset}
αuse ← {αq[i,j] | [i, j] ∈ suse}
αnew ← minαuse

E(αq,Φ) {using quadratic programming}
αq+1 ← αq but with thesuse components replaced byαnew

q ← q + 1

until E(αq,Φ)-E(αq−1,Φ) < 10−4

afinal ← αq
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CHAPTER TWO SPARSE CODING

optimization techniques may also be used to find sparse codes (atypical problem has around

30 000 variables).

2.6.4 THE DICTIONARY

We stated earlier that there are certain benefits to using an overcomplete dictionary. How

many dictionary elements constitute a complete dictionary of the TLGM? This question is

equivalent to finding the minimum number of dictionary elements required to reconstruct

a signal perfectly. Each dictionary element spans across all the channels, and the code can

select dictionary elements to be used at any time. Therefore a signalx of sizeNc×Nt can be

perfectly reconstructed with a minimum ofNc dictionary elements. However we constrain

the code elements to be nonnegative, so the minimum dictionary size to reconstruct any

signal perfectly is2×Nc.

The dictionary elements of a trained dictionary could model phonemes, which are the

smallest meaningful acoustic units, or it can model syllables, or even complete words. The

dictionary training process is unsupervised, which means that a particular dictionary element

may learn any unit of speech. In fact it would be interesting to see what type of features the

trained dictionary elements model. There are 20 phonemes in the speech that make up the

data set, 11 syllables and 11 words. It is difficult to find the best dictionary size. The

dictionary should at least be complete so that the code can successfully represent a signal,

and the size of the dictionary may be related to the basic speech units that make up the data

set. We use a two times overcomplete dictionary, so there are 32 dictionary elements. This

dictionary is large enough to capture at least all the phonemes present in the data set.

In speech there are certain features which can be stretched over time without changing

the meaning of the speech. To reflect this in the model, time scaled versions of the basic dic-

tionary elements are constructed. We construct six scaled versions of each basic dictionary

element and append them to the dictionary. The dictionary now containsNd = 32×7 = 224

elements.
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A dictionary elementΦ{d} is scaled over time with a scaling matrixM s

Φ
{d}
{s} = Φ

{d}M s (2.40)

whereΦ
{d}
{s} is the scaled version of basic dictionary elementd. s ∈ 0, 1, 2, . . .6 where

s = 0 represents the unscaled dictionary element that spans260ms, s = 1 corresponds to

the dictionary element that is scaled to span280ms, etc. M s is determined in such a way

that that thejth column ofΦ{d}
{s} (which spans20ms) is

[

Φ
{d}
{s}

]〈j〉

=
1

0.02

∫ 0.02·j

0.02·(j−1)

Φ
{d}
{0}(τ

0.26

0.26 + 0.02s
)dτ (2.41)

Φ
{d}
{s} is a matrix where each column is used to reconstruct a20ms segment of a spectrogram.

We castΦ{d}
{s} into the continuous time domain by lettingΦ{d}

{s}(τ) =
[

Φ
{d}
{s}

]〈i〉

∀ τ ∈
[0.02(i− 1), 0.02i]. Figure 2.7 illustrates how a dictionary element is stretched.

The dictionary that includes the scaled elements is

Φ =
[

Φ{0},Φ{1},Φ{2}, . . . ,Φ{6}

]

(2.42)

Φ{0} is the basic dictionary which has 32 elements;Φ therefore has32× 7 = 224 elements.

The dictionary may be scaled in many other ways, for example linear interpolation of the

basic dictionary should also work.

2.6.5 TRAINING THE DICTIONARY

The code will be more efficient if the dictionary is trained to reflect the regularities of the

data. We use a gradient based training approach. First the sparse codes are determined for

a given dictionary, then the dictionary is optimized for the given codes. The optimization

is done by means of gradient descent with a line search. The derivative of the total error

functionET with respect to the dictionary is used as a search direction. A golden section

method then finds the minimum of the error function along the search direction. The pseudo

code for the training of dictionary elements appears in algorithm 2.

During the training process the norm of the dictionary elements tend to grow without

bounds. We address this by forcing all dictionary elements to have a norm of one. Every
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Figure 2.7: An unscaled dictionary elementΦ
{d}
{0} is aNc × ∆Φ matrix. A row in the dic-

tionary element corresponds to a channel in the spectrogram. This figure illustrates how a

row of an unscaled dictionary element is scaled to320ms. φ{s} refers to a row of thedth

dictionary elementΦ{d}
{s}. The top plot shows a row of an unscaled dictionary element. The

middleplot shows an intermediate step where the row is stretched to span320ms; φ
′

{3} still

has only 13 entries. Thebottomplot shows thatφ{3} is created by resampling fromφ
′

{3}. For

example, the ninth entry which represents the interval160ms to 180ms, is the time averaged

integral ofφ
′

{3} over that same interval. Every row of a dictionary element is stretched in the

same way.
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dictionary element of the initial dictionary is randomized.Φ
{d}
{s} is a randomNc×∆Φ matrix

with entries sampled from a standard uniform distributionU(0, 1). We choose to use a distri-

bution that will not give negative values. The motivation is that the dictionary elements are

used to build up a representation that does not have any negative terms. Initially the elements

does not have any structure so it will be unlikely to find a reasonable signal reconstruction

by using elements that also have negative terms.

Algorithm 2 Training the dictionary
k ← 0

initialize Φ0 as a random dictionary

normalize every dictionary element ofΦ0

repeat

for all n do

a
(n)
k+1 ← SSQP (a

(n)
k ,Φk)

end for

Ak+1 ←
{

a
(n)
k+1 | n = 1, 2, 3, . . .Ns

}

δk+1 ← minδ ET (Ak+1,Φk + δ ∂ET

∂Φk
) {using a golden section search}

Φk+1 ← Φk + δk+1
∂ET

∂Φk

normalize every dictionary element ofΦk+1

k ← k + 1

until Φ has converged

It is computationally very expensive to train the dictionary.The reasons are that it is

necessary to find the sparse code of every utterance at each iteration. The SSQP algorithm

can take a long time to converge, especially if the starting point is far from the final solution.

For example, when we want to find the sparse code to the utterance “one one one three

eight eight one”, we use a trained dictionary and set the starting point as the all-zero code

astart ← 0 in the SSQP algorithm. This utterance is2.6s long; it takes 121 iterations of

SSQP to find the sparse code which has 172 nonzero elements. On an Intel Core2 1.86GHz

PC it takes88s for SSQP to converge.

To speed up the training process, we set the starting point of each training iteration as the

solution to the previous training iterationastart ← ak. In this case it usually takes less than
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five SSQP iterations to find the sparse code. It is only for the first iteration that we set the

starting point asastart ← 0.

2.7 RESULTS

2.7.1 TRAINING THE DICTIONARY

It is computationally expensive to train the dictionary. The most expensive step is to find the

sparse code of each utterance. We performed the coding step in parallel on sixteen Pentium

4 PCs. The code for each utterance can be found independently of the other utterances which

makes it easy to parallelize the coding step.

To further speed up the training process, we start with a bigger value ofλ than the one we

would like to use; the biggerλ, the fewer nonzero elements are in the code and the quicker

it is solved.

Initially the dictionary does not have any structure that corresponds to the data set. Dur-

ing the first few iterations the dictionary only has to be train on a few samples from the data

set in order to learn some structure.

For the first 50 iterations we train the dictionary withλ = 0.4 and only on 1-in-5 samples

of the data set. Thereafter we useλ = 0.3. For iterations 51 to 180 we train the dictionary

on 1-in-5 samples. For iterations 181 to 245 we train it on 1-in-2 samples and from iteration

246 onwards on the entire data set (remember that our data set is not the entire TIDIGITS

data set).

Figure 2.8 shows the performance of the training process on theentire data set, even

though at times it is trained on a smaller data set. The error function is still decreasing at

iteration 490 when the training is stopped. Further training should reduce the error function

even more, but it appears if the improvement would not be significant. We also checked

training progress against a validation set, and the cost function of the validation set is also

still decreasing at iteration 490 (the validation results are not shown).
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Iteration number

E

50 100 150 200 250 300 350 400 450 500
2.72

2.74
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2.78

2.8

2.82×104

Figure 2.8: The history of the error function for theentiredata set is shown in this figure.

Refer to the text for more information on the training process.

2.7.2 PERFORMANCE OF CODE SELECTION ALGORITHMS

We tested the performance of three code selection algorithms using the trained dictionary:

MP, SSQP and L-BFGS. L-BFGS is a limited memory BFGS algorithm (Byrd, Lu, Nocedal

and Zhu, 1995). It is considered to be an efficient optimization algorithm for large-scale

problems. The results are summarized in table 2.1.

MP is stopped when the value of the code element that is added to the code is less than

0.009. SSQP is stopped when the reduction in error function from one iteration to the next

is less than10−4 and L-BFGS stops when the norm of the gradient is less than10−5.

Of all the algorithms MP converges in the shortest time, but the solution is not nearly

optimal. SSQP converges much faster than L-BFGS and the code it finds has the same error

function value.

Notice that the value of the sparseness function for MP is more than that of SSQP, even

though the MP code has fewer nonzero elements. This is a result of the sparseness function

that we use; it is only a function of the code element value and not of the fact that an element
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Table 2.1: The performance of three different sparse code selection algorithms. The input

signal is “one one one three eight eight one”; the dictionary is trained with SSQP.

Algorithma E(a) R(a) S(a) No. of nonzero elements Timeb

Matching pursuit (MP)c 25.399 13.907 38.305 80 17.7s

SSQP 12.268 1.890 34.594 162 34.4s

L-BFGS 12.268 1.860 34.700 164 320.9s

aAl l the codes are MATLAB 7 scripts.
bCPU time on an Intel Core2 1.86GHz PC.
cThe MP algorithm does not make use of the sparseness function. The results forE(a) andS(a) are only

given for comparison with other algorithms.

is zero or not.

The performance of an algorithm depends on the dictionary. The performance of MP will

improve significantly when a MP-trained dictionary is used. However the results of L-BFGS

should not change even if the dictionary is trained with L-BFGS. The reason is that L-BFGS

finds very similar solution to SSQP as both algorithms are gradient based.

Table 2.2 gives the results to the same experiment as in table 2.1, but now the dictionary

is trained on codes from MP. MP in the first row of the table is stopped when the code value

that is added to the code is less than0.008. This value is far too small, it allows the code

to add elements that does not contribute significantly to the representation of the signal. It

is better to stop MP when the SNR of the reconstructed signal falls below a predetermined

threshold. MP∗ is stopped as soon as the reconstruction error falls below that of the SSQP

algorithm. We see that MP∗ finds a code that reconstructs the signal just as well as SSQP, but

it requires about half the number of nonzero code elements and finds the code in a fraction

of the time it takes SSQP to converge.

The performance of L-BFGS for the MP-trained dictionary is again similar to the perfor-

mance of SSQP. This emphasize the fact that these two algorithms are alike in their solutions,

the only important difference is in the time it takes the algorithms to converge.
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A comparison of tables 2.1 and 2.2 makes it clear that an algorithm performs much better

with a dictionary trained by itself. We cannot use these results to determine which class

of algorithm is better: basis selection or gradient based. One reason is that there are better

basis selection algorithms than MP, such asorthogonal matching pursuit(Davis, Mallat and

Avellaneda, 1997) andoptimized orthogonal matching pursuit(Rebollo-Neira and Lowe,

2002). Another reason is that the application of the code is important. The code may be used

as a means of signal compression or as a feature for pattern recognition.

Table 2.2: The same experiments as in table 2.1 but here the dictionary is trained on codes

from MP.

Algorithm E(a) R(a) S(a) No. of nonzero elements Time

MPa 24.086 1.767 74.395 400 44.4s

MP∗ 18.925 3.948 49.926 69 5.6s

SSQP 15.3082 3.988 37.735 108 42.2s

L-BFGS 15.0248 4.003 36.739 116 442.3s

aThe MP algorithm does not make use of the sparseness function. The results forE(a) andS(a) are only

given for comparison with other algorithms.

2.7.2.1 MP FOR PATTERN RECOGNITION

Matching pursuit is not a suitable algorithm to use when the sparse code it finds is a feature

for pattern recognition. Robust pattern recognition requires that the feature representation

does not change much if the input does not change much. Figure 2.9 shows the spectro-

grams of two utterances of “one six five seven”. There is not much difference between the

spectrograms. The figure also shows the sparse code that MP finds for each utterance using

the MP-dictionary; as well as the SSQP codes for each utterance using the SSQP-dictionary.

The MP codes for the two similar utterances are dissimilar, while the two SSQP codes are

similar. We found that this property of the MP codes also applies when MP codes are based

on the SSQP-dictionary. When MP makes a poor selection of a code element in the first few
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iterations, it cannot correct that mistake. This may be the primary reason that MP does not

select robust codes.

2.7.3 PERFORMANCE OF SPARSENESS FUNCTIONS

Here we compare the performance of four sparseness functions for three different code se-

lection algorithms. The sparseness functions2 arel0, l0.5, l1 andSquad(a) = a − 0.05a2. We

base the performance on the signal-to-noise ratio (SNR) of the reconstructed signal and on

the sparseness of the code.

The code selection algorithms we use are MP, MP+ and SSQP. MP+ is the same as MP,

except that it adds a final optimization step. A simple optimization can be performed on

any given code that will not increase thel0 norm while it may decrease the reconstruction

error, or in the worst case leave the reconstruction error unchanged. It is the optimization

of the values of the nonzero code elements. The values are changed so as to minimize the

reconstruction error. MP+ uses this final optimization step.

We train a dictionary for each of the algorithms. MP and MP+ are implicitly trained on

the l0 norm as a sparseness function, SSQP is trained withSquad as a sparseness function.

The results appear in figure 2.10. Different points in the graphs are obtained by varyingλ

in the case of SSQP and the stopping threshold in the case of MP and MP+. The points for

which the dictionaries are trained are shown in each plot; SSQP is trained withλ = 0.4; MP

and MP+ with a threshold of 0.1. It is important to note that the SSQP dictionary we use

to obtain figure 2.10 is not the dictionary we finally use to do speech recognition. Our final

dictionary is trained withλ = 0.3. The exact value ofλ is not important for the results of

figure 2.10 but rather the trends in the figure.

MP+ performs best when the algorithms are compared using thel0 norm, as can be

expected. On the other hand, SSQP withSquad performs best when the comparison is based

onSquad.

There is little difference between figures 2.10(c) and (d). The reason is that most of the

2lp(a) = |a|p. lp is a valid sparseness function for0 ≤ p ≤ 1.
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Figure 2.9: (a) The spectrograms of two utterances of “one six five seven”. Black represents

1dB. (b) The compressed MP code for each utterance using the MP-trained dictionary.

A code is compressed by adding the code elements associated with a particular dictionary

element together irrespective of the scaling of that code element. The codes are compressed

for better visualization. Black represents a code element value of 4.5. (c) The compressed

SSQP code for each utterance using the SSQP-trained dictionary. Black represents a value

of 1.2.
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Figure 2.10: The four plots show the results for MP codes (thin dashed line), MP+ codes

(thin continuous line), SSQP codes obtained withSquad as sparseness function (thick con-

tinuous line) and SSQP codes obtained withl1 as sparseness function (thin chain line). The

SSQP results are obtained with a dictionary trained on SSQP codes with theSquad sparseness

function, while MP and MP+ use dictionaries optimized for each respective algorithm. The

lines for MP and MP+ in plots (c) and (d) are almost coincident. Thex-axis is an average

sparseness value per second, they-axis is the SNR of the reconstructed signal for the dataset.

A marker indicate that point on the plot where the stopping threshold orλ is the same as was

used during training of the dictionary (circle for MP, diamond for MP+, square for SSQP).
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code element values for MP and SSQP lie in that range whereSquad and l1 are very close

together.Squad andl1 have almost identical functional plots in this range (a < 2). It would

seem at first that there is not any benefit to using the computationally more expensiveSquad

when l1 yields almost the same results. However from figure 2.10(a) we see that codes

calculated withSquad has far fewer nonzero components than codes calculated withl0 for the

same SNR. This property of theSquad sparseness function is very desirable. Remember that

ideally we want to usel0 as a sparseness function, but cannot as MP yields codes that are not

suited to pattern recognition.Squad is a better sparseness function thanl1 in this respect.

2.7.4 THE TRAINED DICTIONARY

The basic dictionariesΦ{0} that are trained with MP and SSQP are shown in figures 2.12

and 2.11. Each dictionary has dictionary elements whose structure reveal complex features

that span across frequency and time to varying degrees. It is clear that some elements are

strongly localized in frequency and others more localized in time; several seem to encode

specific transitions of frequency content as a function of time.

We see that the SSQP dictionary has more dictionary elements that code complex fea-

tures. For example elements 12 to 16 and others of the MP dictionary are similar and are

not as complex as element 2 for example. This is in contrast to the image dictionaries pub-

lished by Perrinet (2004a) who used MP and Olshausen and Field (1996b) who use a gradient

based approach. Comparing the MP image dictionary with the gradient based image dictio-

nary shows that the MP dictionary has elements that are less localized in space and higher

portion of elements that are high-frequency Gabors. We found that the gradient based ap-

proach has more localized elements than MP. The difference may be due to the different type

of dataset we use.

We can use histograms of phoneme occurrences to form an idea of the sounds coded

by the elements. A histogram is created for each phonemep and each dictionary element

d. The bins of the histogram span over time where each bin is20ms wide. We associate a

time periodtb with each bin; it is a period that precedes a spike associated with dictionary

elementd. The number of entries in binb of histogram(p, d) is the number of times phoneme
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Figure 2.11: This figure shows the dictionary elements of the basic dictionaryΦ{0} trained

with MP. Each element is split into positive and negative parts for better visualization. A

column of a dictionary element spans20ms; a complete dictionary element therefore spans

260ms. Each row in a dictionary element correlates with a channel in the spectrogram (see

figure 2.6). Thus, the bottom row of a dictionary element represents signal content at367Hz

and the top row7321Hz. The dictionary elements have a norm of 1. White represents values

of 0 and black0.2. Elements are numbered from left-to-right and from top-to-bottom.
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Figure 2.12: This figure shows the 32 dictionary elements of thebasic dictionaryΦ{0}

trained with SSQP. Each element is split into positive and negative parts for better visu-

alization. A column of a dictionary element spans20ms; a complete dictionary element

therefore spans260ms. Each row in a dictionary element correlates with a channel in the

spectrogram (see figure 2.6). Thus, the bottom row of a dictionary element represents sig-

nal content at367Hz and the top row7321Hz. The dictionary elements have a norm of 1.

White represents values of0 and black0.2. Elements are numbered from left-to-right and

from top-to-bottom.
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p precedes a spike of dictionary elementd during tb for the entire data set. In other words,

the histogram shows how often and at what times a phoneme occurs before a spike. In the

TLGM a spike in the code means that a dictionary element is used to reconstruct a part of the

spectrogram thatprecedesthe spike. (Note that we ignore the fact that time-scaled versions

of a dictionary element may in fact have been used; all the scaled versions are grouped

together and are viewed as a single dictionary element).

Figure 2.13 shows the histograms of phoneme occurrences for four dictionary elements.

From figure 2.13(a) is appears that dictionary elementd = 2 is used in coding the “ih-k-s”

sound in “six”. It also seems that it is used to code “ey-t” which occurs in “eight”. It is not

possible to conclude from this histogram alone that elementd = 2 actually codes the “ih”

sound. The reason is that in our limited dictionary the “ih” sound always precedes the “k-s”

sound. Ifd = 2 codes only the “k-s” sound the histogram would still show that the “ih”

sound often precedes a spike associated withd = 2. However, by taking a closer look at the

dictionary element itself, we see that it has a period of silence between80ms and140ms

before the spike occurs. This corresponds to the closure between the “ih” and “k” sounds.

therefore it does seem that elementd = 2 codes the “ih” sound or at least a part of it. There

are certain implications tod = 2 having a large negative part. Our spectrogram transform

has only positive parts, which means thatd = 2 cannot be used on its own. It has to be used

with other dictionary elements.

Figure 2.13(b) shows a dictionary element that codes a sound with a rising frequency.

We see from the histogram that the entire word “three” often precedes a spike fromd = 12.

The plot of the dictionary element itself shows that it contains information to code the word

“three”. The “th” fits the left part of the dictionary element; it shows a broad distribution of

energy across most of the frequencies. The right part of the dictionary element fits the rising

centre-of-mass (in frequency) of the sound in “iy”.

Dictionary elementd = 25 (figure 2.13(c)) does not code a particular sound, but is rather

used as a constant offset. Lastly figure 2.13(d) shows thatd = 31 is a dictionary element

with a very complex structure. The histogram shows that it is mostly used during the coding

of “ey” in “eight”.

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING,
UNIVERSITY OF PRETORIA

56

 
 
 



CHAPTER TWO SPARSE CODING

There is good reason to believe that the basic unit of speech is on the syllable level

(Nguyen and Hawkins, 2003). The dictionary elements are in good agreement with this,

at least some of them (for exampled = 2) are on syllable level. Dictionary elements are

not used in isolation, they are used in conjunction with other elements. It is complicated

to say which acoustic unit a particular dictionary element codes as it depends on the other

dictionary elements that are used in with it. We see for example from figure 2.13(a) that

d = 2 is used in coding both the words “six” and “eight” although the words does not share

a phoneme.

2.7.5 THE CODE ELEMENTS

Figure 2.14 gives the histogram of all the spikes for the entire dataset. It does not show

the code elements that did not spike. Only 0.0042% of the code elements are active. The

distribution agrees with that of a sparse code where most of the code elements are zero. A

great percentage of the code elements have values close to zero. This is unwanted feature is

caused by the prescribed prior probability that has a peak for values close to zero. The figure

shows the shape of the prescribed prior probabilityp(a) ∝ e−(a−0.05a2) ∀ 0 ≤ a ≤ 10. The

shape of the histogram does not follow that of the prior. Two important reasons for this are

that the dictionary elements are constrained to have a norm of one and that the underlying

distribution of the data may not fit the prescribed prior. The shape of the histrogram shows

that the computed codes are more sparse than the prior prescribes. This is not a problem as

we are looking for sparse codes.

Actual data agrees much better with the prior when the optimization problem is formu-

lated so that a constraint on the dictionary elements is not necessary (Girolami, 2001). Such

a formulation unfortunately makes it computationally even more expensive to find a sparse

code. Another reason for the difference between the data and the prior is that the prior only

applies to a dictionary where every dictionary element is trained. In our dictionary only

the basic unscaled dictionary elements are trained, not the scaled versions. The sparseness

function is not chosen for its shape but the fact that it makes the error function quadratic,

therefore the exact shape of the spike histogram is not that important to our application.
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Figure 2.13: The top row of each plot gives the positive and negative parts of the dictionary

element. The bottom row of each plot depicts the phonemes’ correlation with the given

elements: it is a histogram plot that shows which phonemes preceded the spike associated

with that particular model, and at what times the phoneme occurred. We considered only

spikes with an amplitude of more than 0.124; smaller spikes are not that significant. The

histogram plot shows only the ten phonemes that occurred most for each dictionary element.

The histograms are scaled so that black represents 2000 entries in a bin.
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Figure 2.14: The histogram of spike values for the training set. It is gathered from the codes

for the complete dictionary (includes all the scaled dictionary elements). The dashed line

gives the shape of the probability density functionp(a) ∝ e−S(a). The histogram should

ideally follow the shape ofp(a).

It is interesting to look at the amplitudes that spikes assume for a particular dictionary

element. Figure 2.15 shows histograms of the spike amplitudes for various dictionary ele-

ments. We see that the dictionary elements are not used equally often;d = 31 is used less

often than any of the other dictionary elements that are shown. This may be due to the com-

plex and irregular structure ofd = 31, we do not expect such a structure in speech.d = 25

is used often but has a small average spike value. The spike value indicates the contribution

that a dictionary element makes to reconstruct a signal. The fact thatd = 25 has a smaller

average spike value than the other dictionary elements suggests that it too does not capture

significant structure in the speech.

Figure 2.16 shows the frequency with which a given dictionary element is used, as well

as the frequency with which a given scale is used. Dictionary elementd = 15 is seldom

used. This element seems to serve a similar purpose asd = 25 which is to provide an

offset. Howeverd = 15 has significant low frequency content which may be the reason

its usage is different fromd = 25. The figure also shows that the maximum scaling (s =

6) of dictionary elements are used more often than any other scaling. This is because the

sparseness function promotes sparse codes; it is “cheaper” to increase the amplitude of a
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Figure 2.15: The histograms of spike amplitudes for four of the dictionary elements are

given. These are compiled from the sparse codes of the training set. Only nonzero spikes

are included in the histograms. The histograms show that most of the spikes have very small

amplitudes. We explain in the text that such spikes are not desirable. It also shows that the

dictionary elements are not used equally often;d = 25 is used more often than any of the

other three dictionary elements.
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Figure 2.16: Thetop leftplot consist of 32 histograms, each histogram is a row in the plot.

A histogram shows how often a particular scale is used for the given unscaled dictionary

element. Thebottom lefthistogram shows the frequency with which a particular scale is

used, independent of the unscaled dictionary element. Thetop right histogram gives the

frequency with which a particular unscaled dictionary element is used, independent of scale.

spike in order to reconstruct a code than to use an additional spike. A code can consist

of fewer nonzero entries if the dictionary elements span over long time periods than if the

dictionary elements are temporally short.

Not all dictionary elements are most often used at the maximum scale. For example

d = 12 is also often used unscaled. The reason for this is explained by the fact thatd = 12

codes the entire word “three” (see figure 2.13(b).43% of the occurences of “three” in the

dataset are shorter than280ms (the time span of an unscaled dictionary element). It makes

sense that the unscaled version ofd = 12 is used so often.

A code is efficient when the code elements are independent. Figure 2.17 shows the
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Figure 2.17: The probability that a spike at timeti precedes or follows a spike of dictionary

elementd = 2 that occurs att2. Thex-axis is the time relative to thed = 2 spike,∆t =

ti − t2. The entry at(d = 2, ∆t = 0) is 1, but is removed to give a better range to the shades

in the plot. The plot is constructed for spikes with an amplitude larger than 0.124 andonly

for spikes from thes = 6 scale (dictionary elements that span380ms).

correlation between spikes fromd = 2 with other spikes. There is overall little correlation

between spikes. A weak correlation exist betweend = 2 and itself around∆t = ±20ms.

This shows that one spike sometimes immediately follows another. One would not expect

this to occur as often as it does. We closely inspected some of the codes that have two

consecutived = 2, s = 6 spikes, but could not find a solution for those particular codes that

does not have the two consecutive spikes. Different starting points and different gradient

based algorithms all yielded codes that have the two spikes. It therefore seems that the

occurrence of two consecutive spikes is not an artefact of the optimization but rather a feature

of the code.

Figure 2.17 also shows a weak correlation betweend = 2, d = 13 andd = 29. This

correlation exist because the combination of these dictionary elements are part of the recon-

struction of the word “six”. This pattern can in fact be used to recognize the word “six” from

a code.
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2.7.6 THE IMPORTANCE OF SCALING DICTIONARY ELEMENTS

We use scaled versions of dictionary elements because in speech certain features may be

stretched over time without changing its meaning. Therefore we do not expect useful infor-

mation for speech recognition to be contained in the particular scaled version of a dictionary

element that is used, i.e. we expect a spike associated withΦ
{d}
{s} to signal the same event as

a spike associated withΦ{d}
{s′ 6=s}.

Figures 2.18 and 2.19 shows whether there are any information useful for speech recogni-

tion contained in the scaling itself. These figures are constructed similarly to the histograms

of phoneme occurrences in figure 2.13; they show how often a word precedes a spike. The

difference is that here we correlate activity with words and not phonemes, we also create a

different plot for each scale.

Figure 2.18 confirms thatd = 2 is used most often to code “six” and “eight”. We see for a

particular scale that there is very little difference between the histograms of “six” and “eight”.

This means that scaling cannot be used to distinguish whether the spike signals a “six” or an

“eight”. The plot fors = 6 does show that scaling can be used to distinguish “two” from

either “six” or “eight”. We see that “two” is mostly used at thes = 6 scale. A classification

system that uses the scaling information will classify “two” more accurately as it will use

the information that a spike associated withd = 2 ands = 0, 1, 2, . . . 5 probably does not

signal a “two”. It appears that in most cases scaling does not contain useful information,

although scaling may be useful in other cases. Figure 2.19 leads us to a similar conclusion.

It shows that a spike associated withd = 12 most probably signals a “three”, independent of

the scaling. However fors = 6 the spike may also signal an “eight”.

Figures 2.18 and 2.19 suggest that scaling can be a good feature to use in speech recog-

nition, although scaling adds very little information about the spikes.
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Figure 2.18: The correlation between words and spikes ofd = 2. The intensity of an entry

in the plot shows how often a particular word precedes a spike at a particular time. Each

plot is constructed for a different scale. We only considered significant spikes (spikes with

an amplitude larger than 0.124).
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Figure 2.19: The same as figure 2.18, but ford = 12.
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