

Proteomic analysis of the biofilm and biofilm-associated phenotypes of *Pseudomonas aeruginosa* cultured in batch

by

BRIDGITTA STEYN

Submitted in partial fulfillment of the requirements for the degree Philosophiae Doctor in the Faculty of Natural and Agricultural Sciences University of Pretoria Pretoria

August 2005

© University of Pretoria

ACKNOWLEDGEMENTS

Hereby I wish to express my sincere thanks and appreciation to:

Prof J Theron, for picking up the ball and running with it. Thank you for all the hard work and giving me a chance...

Prof VS Brözel, for getting me started and keeping me interested. You taught me so much...

National Research Foundation and University of Pretoria, for financial assistance.

Dr MC Oosthuizen, for her help in the laboratory, especially with establishing the 2D PAGE procedure, but more for her moral support and special friendship.

To my fellow students and friends, for their help, support, understanding, and just for being there, especially Julian, Boet and Aida.

Allan Hall, for helping with the glass wool photographs.

Everyone at **Stimuplant**, for their support and encouragement and for being so patient with me.

To my mother, for all her love, support, understanding, patience and so much more...

To my Heavenly Father, with whom everything is possible!

Dedicated to my father and brother

I wish that the two of you were still here... I miss you and love you always...

DECLARATION

I declare that the thesis, which I hereby submit for the degree, Philosophiae Doctor (Microbiology) at the University of Pretoria, is my own work and has not previously been submitted by me for a degree at another University.

Signed:

Date:

Proteomic analysis of the biofilm and biofilm-associated phenotypes of

Pseudomonas aeruginosa cultured in batch

by

BRIDGITTA STEYN

Supervisor:	Prof. J. Theron Department of Microbiology and Plant Pathology University of Pretoria
Co-supervisor:	Prof. V.S. Brözel Department of Biology and Microbiology South Dakota State University

for the degree PhD

Pseudomonas aeruginosa is one of the most studied biofilm-forming organisms and has emerged as a model organism in the study of surface- and biofilm-induced gene expression. The transition from a planktonic to a biofilm mode of growth results in diverse changes in gene expression, which causes the attaching cells to become phenotypically and metabolically distinct from their planktonic counterparts. In this study, a proteomic approach was used to study differences in protein profiles obtained from 18-h old *P. aeruginosa* PAO1 (DSM 1707) planktonic, surface influenced planktonic (SIP) and biofilm populations grown in batch in the absence or presence of a glass wool substratum.

Glass wool as an attachment substratum not only supported growth of biofilms, but it also allowed for the separation of the biofilm biomass from the surrounding surface influenced planktonic (SIP) cells for further characterisation. Comparative analysis of the respective proteomes indicated striking differences in the protein patterns of planktonic, biofilm and SIP cells and several uniquely expressed proteins were seen on the 2-DE protein maps of the respective populations. Whereas a general down-regulation of protein expression was seen in the biofilm cells, in SIP cells, expression of the proteins was generally up-regulated. The results confirmed that the biofilm population differs from the planktonic population and indicated that the SIP population is not merely a mixture of planktonic and biofilm cells but rather a unique phenotype.

Several differentially expressed protein spots were selected and identified using a combination of N-terminal protein sequencing and peptide mass fingerprinting. The proteins comprised mostly of outer membrane or membrane-associated proteins. Based on these analyses, a mutant *P. aeruginosa* strain, deficient in outer membrane protein OprG, was generated and its ability to form biofilms on a glass wool substratum was compared with that of the wild-type *P. aeruginosa* strain. The mutant strain was attachment-proficient but biofilm-deficient, suggesting that OprG plays a role in *P. aeruginosa* biofilm development under the culturing conditions used in this study.

TABLE OF CONTENTS

ACK	NOWLEDG	EMENTS	i
DECI	LARATION		ii
SUM	MARY		iii
LIST	OF ABBRE	VIATIONS	X
LIST	OF FIGURE	ES	xii
LIST	OF TABLES	8	xiv
RESE	CARCH CON	IMUNICATIONS	XV
CHAI	PTER ONE:	LITERATURE REVIEW	1
1.1	GENERAL	INTRODUCTION	1
1.2	BIOFILM F	ORMATION BY P. aeruginosa	3
1.2.1	Steps in b	ofilm development	3
	1.2.1.1	Reversible attachment	3
	1.2.1.2	Irreversible attachment	5
	1.2.1.3	Biofilm maturation	6
	1.2.1.4	Detachment	7
1.3	STRUCTU	RAL COMPONENTS AND CELL-TO-CELL SIGNALLING	
	MOLECUL	ES REQUIRED FOR BIOFILM FORMATION	8
1.3.1	Importanc	e of flagella, pili and adhesins	9
1.3.2	Importanc	e of membrane proteins	10
1.3.3	Importance of extracellular polysaccharides		11
1.3.4	Importance of quorum sensing		13
1.4	REGULAT	ION OF BIOFILM FORMATION	15
1.4.1	Two-comp	ponent signal transduction pathways	16
1.4.2	Factors re	gulating carbon metabolism	18
1.4.3	Phase-dep	endent regulators	19
1.4.4	Quorum s	ensing	19
1.5	THE BIOFI	LM PHENOTYPE	20
1.5.1	Phenotypi	c differentiation during biofilm development	21
1 5 0	, ,• •		01

	1.5.2.1	Mechanisms of biofilm resistance	21
	1.5.2.2	Persister cells, phenotypic variants and mutant cells	22
1.6	THE STUD	Y OF BACTERIAL BIOFILMS	24
1.6.1	Culturing	systems	24
1.6.2	Approach	es to studying biofilm-specific gene expression	25
	1.6.2.1	Reporter gene-based approaches	26
	1.6.2.2	Proteomic approaches	26
	1.6.2.3	Transcriptomic approaches	28
1.7	AIMS OF 7	THIS INVESTIGATION	29
1.8	REFEREN	CES	31
CHAI	PTER TWO	ESTABLISHMENT OF TWO-DIMENSIONAL GEL ELECTROPHORESIS FOR DETERMINATION OF THE <i>P. aeruginosa</i> PROTEOMES	50
2.1	INTRODU	CTION	50
2.2	MATERIA	LS AND METHODS	52
2.2.1	Bacterial strain and culture conditions		52
2.2.2	Whole-ce	Il protein extractions	52
	2.2.2.1	Sample preparation method 1 (SP 1)	52
	2.2.2.2	Sample preparation method 2 (SP 2)	53
	2.2.2.3	Sample preparation method 3 (SP 3)	53
2.2.3	Two-dime	ensional polyacrylamide gel electrophoresis (2-DE)	53
	2.2.3.1	Preparation of the ampholyte-containing tube gels for	
		iso-electric focusing	53
	2.2.3.2	First-dimension iso-electric focusing (IEF)	53
	2.2.3.3	Second-dimension protein separation (SDS-PAGE)	54
2.2.4	Visualisat	ion of proteins on 2-DE gels	54
	2.2.4.1	Coomassie R250 staining (S 1)	54
	2.2.4.2	Silver diamine staining (S 2)	54
		2.2.4.2.1 Preparation of silver diamine staining and	
		spot development solutions	54
		2.2.4.2.2 Staining method	55
2.3	RESULTS	AND DISCUSSION	55
2.3.1	Sample pr	reparation	55

	2.3.1.1	Cell lysis	56
	2.3.1.2	Protein solubilisation	56
2.3.2	First-dim	ension IEF	58
2.3.3	Second-d	limension SDS-PAGE	59
2.3.4	Staining of	of 2-D PAGE gels	60
2.4	CONCLUI	DING REMARKS	61
2.5	REFEREN	ICES	63

CHAPTER THREE: THE USE OF GLASS WOOL AS AN ATTACHMENT SURFACE FOR STUDYING PHENOTYPIC CHANGES IN *Pseudomonas aeruginosa* BIOFILMS BY TWO-DIMENSIONAL GEL ELECTROPHORESIS

71

3.1	INTRODU	JCTION	71
3.2	MATERIA	ALS AND METHODS	73
3.2.1	Bacterial	strain and medium	73
3.2.2	Microsco	ppy and analytical procedures	73
3.2.3	Extractio	on of whole-cell proteins	74
	3.2.3.1	Planktonic biomass	74
	3.2.3.2	Biofilm biomass	74
	3.2.3.3	Surface influenced planktonic (SIP) biomass	74
3.2.4	Concentr	ration of protein samples	74
3.2.5	Two-dimensional gel electrophoresis		75
3.2.6	Image an	alysis	75
3.3	RESULTS		76
3.3.1	Biofilm development on glass wool		76
3.3.2	2-DE ma	ps	76
3.3.3	Comparis	son of the proteome profiles	79
3.4	DISCUSS	ION	85
3.5	REFEREN	ICES	87

CHAPTER FOUR:PROTEOME COMPARISON OF Pseudomonas aeruginosa
PLANKTONIC, SURAFCE INFLUENCED PLANKTONIC
AND BIOFILM POPULATIONS BASED UPON COMPOSITE
TWO-DIMENSIONAL GEL ELECTROPHORESIS91

4.1	INTRODUC	ΓΙΟΝ	91
4.2	MATERIAL	S AND METHODS	93
4.2.1	Bacterial str	rain and medium	93
4.2.2	Collection of	of biomass	93
4.2.3	Extraction of	of whole-cell proteins through differential solubilisation	94
4.2.4	Concentrati	on of protein samples	94
4.2.5	Two-dimen	sional gel electrophoresis	96
4.2.6	Image analy	/sis	96
4.2.7	Protein sequ	uencing and identification	97
	4.2.7.1	N-terminal amino acid sequencing and protein identification	97
	4.2.7.2	Peptide mass fingerprinting and protein identification	97
4.3	RESULTS		98
4.3.1	"Composite	e map" creation of <i>P. aeruginosa</i> planktonic, SIP and biofilm	
	populations		98
4.3.2	Proteome p	rofile analysis	99
4.3.3	Identity of a	differentially expressed proteins	103
	4.3.3.1	Outer membrane proteins	105
	4.3.3.2	Probable outer membrane proteins	108
	4.3.3.3	Cytoplasmic proteins	109
4.4	DISCUSSION		110
4.5	ACKNOWL	EDGEMENTS	116
4.6	REFERENCES		116
CHAI	PTER FIVE:	CONSTRUCTION AND CHARACTERISATION OF AN OprG-DEFICIENT MUTANT STRAIN OF <i>Pseudomonas</i> <i>aeruginosa</i> PAO1 (DSM 1707)	126
5.1	INTRODUC	ΓΙΟΝ	126
5.2	MATERIAL	S AND METHODS	127
5.2.1	Bacterial str	rains, plasmids and culture conditions	127
5.2.2	Genomic D	NA isolation	128
5.2.3	DNA ampli	fication	129

	5.2.3.1	Oligonucleotide primers	129	
	5.2.3.2	Polymerase chain reaction (PCR) amplification of DNA fragments	129	
5.2.4	Agarose g	gel electrophoresis	129	
5.2.5	Purification	Purification of DNA fragments from agarose gels 1		
5.2.6	Nucleotid	e sequencing and sequence analysis	131	
5.2.7	Restriction	Restriction endonuclease digestions 1		
5.2.8	Cloning o	f DNA fragments into plasmid vectors	132	
5.2.9	Transform	nation of competent E. coli cells	132	
5.2.10	Extraction	and purification of plasmid DNA	133	
5.2.11	Construct	ion of allelic exchange vector	133	
	5.2.11.1	Construction of recombinant plasmid pGEM-OprG	133	
	5.2.11.2	Construction of allelic exchange vector pGori-OprG-Gent	134	
5.2.12	Generatio	n of mutant P. aeruginosa PAO1 (DSM 1707) strains	134	
5.2.13	Character	isation of mutant P. aeruginosa PAO1 (DSM 1707) strains	136	
	5.2.13.1	Oligonucleotide primers	136	
	5.2.13.2	PCR amplification	136	
5.2.14	Batch assa	ays of the P. aeruginosa DSMOprG mutant strain	136	
	5.2.14.1	Determination of bacterial growth curves	136	
	5.2.14.2	Biofilm formation	137	
5.3	RESULTS		138	
5.3.1	Construction of allelic exchange vector pGori-OprG-Gent 13			
	5.3.1.1	Construction of plasmid pGEM-OprG	138	
	5.3.1.2	Construction of the allelic exchange vector pGori-OprG-Gent	138	
5.3.2	Engineeri	ng of an OprG-deficient P. aeruginosa PAO1 (DSM 1707) strain	142	
	5.3.2.1	Generation of mutant strains	142	
	5.3.2.2	PCR analysis of <i>P. aeruginosa</i> mutant strain DSMOprG	142	
5.3.3	Character	isation of the DSMOprG mutant strain	144	
	5.3.3.1	Growth curves	144	
	5.3.3.2	Biofilm development on glass wool	144	
5.4	DISCUSSI	ON	146	
5.5	ACKNOW	LEDGEMENTS	151	
5.6	REFEREN	CES	151	

CHAPTER SIX:	CONCLUDING REMARKS	157
CHAI LEK SIA.	CONCLUDING NEWAKKS	137

LIST OF ABBREVIATIONS

%	percentage
°C	degrees Celsius
μg	microgram
μl	microlitre
μm	micrometre
2-DE	two-dimensional gel electrophoresis
А	ampere
AHL	acylated homoserine lactone
Amp ^r	ampicillin resistance
bp	base pair
ca.	approximately
cfu	colony forming units
CH ₃ CN	acetonitrile
CHAPS	3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate
cm	centimetre
cm ²	square centimetre
CTAB	cetyltrimethylammonium bromide
DMSO	dimethyl sulfoxide
dNTP	deoxyribonucleoside-5'-triphosphate
DTE	dithioerythritol
DTT	dithiothreitol
e.g.	for example
EPS	exopolysaccharides
Fig.	figure
$\times g$	centrifugal force
Gm ^r	gentamicin resistance
h	hour
IEF	iso-electric focusing
IPG	immobilized pH gradient
IPTG	isopropyl β-D-thiogalactoside
kb	kilobase pairs
kDa	kilodalton
L	litre

LB broth	Luria-Bertani broth
LPS	lipopolysaccharide
М	molar
MALDI-TOF	Matrix-assisted laser desorption ionization time-of-flight
min	minute
ml	millilitre
mM	millimolar
Mr	molecular mass
MSGY	modified mineral salts medium with glucose and yeast extract
NH ₄ HCO ₃	ammonium bicarbonate
nm	nanometer
OD	optical density
OMP	outer membrane proteins
ORF	open reading frame
PAGE	polyacrylamide gel electrophoresis
PCR	polymerase chain reaction
pI	isoelectric point
pmol	picomole
PMSF	phenylmethylsulphonyl fluoride
PVDF	Immobilon-P polyvinylidene difluoride
rpm	revolutions per minute
S	second
SB3-10	N-decyl-N,N-dimethyl-3-ammonio-1-propane sulfonate
SDS	sodium dodecyl sulphate
SIP	surface influenced planktonic
TBP	tributyl phosphine
TCA	trichloroacetic acid
TEMED	N,N,N',N'-tetramethyl-ethylenediamine
U	units
UHQ	ultra high quality
V	volts
v/v	volume per volume
Vh	Volt-hours
W	Watt
w/v	weight per volume
X-gal	5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside

LIST OF FIGURES

Fig. 1.1	Model of biofilm development.	4
Fig. 2.1	Flow-diagram depicting the 2-DE gels obtained using different sample preparation methods, iso-electric focusing conditions, post-equilibration treatments of the IEF tube gels and staining methods.	62
Fig. 3.1	Development of <i>P. aeruginosa</i> biofilm on glass wool over time.	77
Fig. 3.2	2-DE of whole-cell proteins of an 18 h planktonic <i>P. aeruginosa</i> PAO1 culture without glass wool.	80
Fig. 3.3	2-DE of whole-cell proteins of an 18 h biofilm <i>P. aeruginosa</i> PAO1 culture grown on glass wool as attachment surface.	81
Fig. 3.4	2-DE of whole-cell proteins of an 18 h SIP P. aeruginosa PAO1 culture.	83
Fig. 4.1	Schematic illustration of the differential extraction procedure that was performed on whole-cell protein samples from <i>P. aeruginosa</i> planktonic, SIP and biofilm populations.	95
Fig. 4.2	Sequential extraction of proteins from an 18 h planktonic <i>P. aeruginosa</i> PAO1 culture grown without glass wool.	100
Fig. 4.3	Sequential extraction of proteins from an 18 h surface influenced planktonic (SIP) <i>P. aeruginosa</i> PAO1 culture.	101
Fig. 4.4	Sequential extraction of proteins from an 18 h biofilm <i>P. aeruginosa</i> PAO1 culture grown on glass wool as attachment substratum.	102
Fig. 5.1	Diagrammatic representation of the cloning strategy used to construct the allelic exchange vector pGori-OprG-Gent.	135

Fig. 5.2	Agarose gel electrophoretic analysis of the amplicon obtained by PCR amplification using <i>P. aeruginosa</i> chromosomal DNA as template and primers FOR4067 and	
	REV4068.	139
Fig. 5.3a	Plasmid map of the recombinant allelic exchange vector pGori-OprG-Gent.	141
Fig. 5.3b	Agarose gel electrophoretic analysis of the recombinant plasmid pGori-OprG-Gent.	141
Fig. 5.4a	Schematic presentation of specific primer annealing positions and direction of amplification in the mutant DSMOprG strain.	143
Fig. 5.4b	Agarose gel electrophoretic analysis of the amplification products obtained following PCR analysis of DSMOprG and <i>P. aeruginosa</i> PAO1 (DSM 1707).	143
Fig. 5.5	Growth curves of wild-type <i>P. aeruginosa</i> PAO1 (DSM 1707) and mutant DSMOprG strain in MSGY broth.	145
Fig. 5.6	Biofilm development of <i>P. aeruginosa</i> wild-type and mutant strains on glass wool over time.	147
Fig. 5.7	Propensity of DSMOprG cells to occur as a biofilm.	148

LIST OF TABLES

Table 3.1	Biomass parameters of planktonic, SIP and biofilm cultures of <i>Pseudomonas</i>	
	aeruginosa grown at 37°C for 18 h in MSGY broth	78
Table 3.2	Comparative analysis of 41 proteins selected from 2-DE profiles of	
	18 h planktonic, SIP and biofilm cells of Pseudomonas aeruginosa	84
Table 4.1	Protein expression in Pseudomonas aeruginosa planktonic, SIP and biofilm cells	
	following 18 h of culturing in the absence and presence of glass wool	104
Table 4.2	Summary of the proteins identified through N-terminal sequencing from 2-DE gels	
	of <i>P. aeruginosa</i> planktonic, SIP and biofilm protein extracts	111
Table 4.3	Summary of the proteins identified through MALDI-TOF-MS from 2-DE gels	
	of <i>P. aeruginosa</i> planktonic, SIP and biofilm protein extracts	112
Table 5.1	Bacterial strains, plasmids and oligonucleotide primers used in this study	130

RESEARCH COMMUNICATIONS

Papers published:

- 1. **Steyn, B.**, Oosthuizen, M.C., MacDonald, R., Theron, J. and Brözel, V.S. (2001). The use of glass wool as an attachment surface for studying phenotypic changes in *Pseudomonas aeruginosa* biofilms by two-dimensional gel electrophoresis. Proteomics 1: 871-879.
- 2. Oosthuizen, M.C., **Steyn, B.**, Lindsay, D., Brözel V.S. and von Holy, A. (2001). Novel method for the proteomic investigation of a dairy-associated *Bacillus cereus* biofilm. FEMS Microbiol. Lett. 194: 47-51.
- 3. Oosthuizen, M.C., **Steyn, B.**, Theron, J., Cosette, P., Lindsay, D., von Holy, A. and Brözel, V.S. (2002). Proteomic analysis reveals differential protein expression by *Bacillus cereus* during biofilm formation. Appl. Environ. Microbiol. 68: 2770-2780.

Conference contributions:

National conferences:

- 1. **Steyn, B.**, Oosthuizen, M.C., Theron, J. and Brözel, V.S. Determination of the proteome of *Pseudomonas aeruginosa* growing planktonically and as a biofilm. BioY2K Conference, January 2000, Grahamstown, South Africa.
- 2. **Steyn, B.**, Oosthuizen, M.C., Theron, J., von Holy, A. and Brözel, V.S. Establishment of twodimensional gel electrophoresis for the determination of bacterial proteomes. BioY2K Conference, January 2000, Grahamstown, South Africa.
- 3. Oosthuizen, M.C., **Steyn, B.**, Lindsay, D., Brözel, V.S. and von Holy, A. Determination of the proteome of a dairy-associated *Bacillus* growing planktonically and as a biofilm. BioY2K Conference, January 2000, Grahamstown, South Africa.

International conferences:

- 1. **Steyn, B.**, Oosthuizen, M.C., Cosette, P., Jouenne, T., Theron, J. and Brözel, V.S. Determination of the proteome of *Pseudomonas aeruginosa* growing planktonically and as a biofilm. Biofilms 2000 Conference, July 2000, Big Sky, Montana, USA.
- 2. Oosthuizen, M.C., **Steyn, B.**, Lindsay, D., Brözel, V.S. and von Holy, A. Proteome analysis of a dairy-associated *Bacillus cereus* growing planktonically and as a biofilm. Biofilms 2000 Conference, July 2000, Big Sky, Montana, USA.
- 3. **Steyn, B.**, Oosthuizen, M.C., Theron, J. and Brözel, V.S. Analysis of two surface-influenced phenotypes of *Pseudomonas aeruginosa* by two-dimensional gel electrophoresis. Pseudomonas 2001, September 2001, Brussels, Belgium.
- 4. Oosthuizen, M.C., **Steyn, B.**, Brözel, V.S., Lindsay, D. and von Holy, A. Dairy-associated *Bacillus cereus* growing as a biofilm has a distinct proteome. 88th Annual Meeting of the International Association for Food Protection, August 2001, Minneapolis, Minnesota, USA.