APPENDIX

FIGURE 8.1	Monthly meteorological data for Hatfield showing rainfall (mm) and
	mean minimum temperatures, 1999.
FIGURE 8.2	Monthly meteorological data for Hatfield showing rainfall (mm) and
	mean minimum temperatures, 2000.
TABLE 8.1	Growth habit classification and description of Phaseolus as defined by
	CIAT.
TABLE 8. 2A	ANOVA of the effect of plant density on seed yield per plant of dry
	bean cvs Teebus & Kranskop (Experiment 1).
TABLE 8. 2B	ANOVA of the effect of plant density on seed yield per square metre
	of dry bean cvs Teebus & Kranskop (Experiment 1).
TABLE 8. 2C	ANOVA of the effect of plant density on number of pods per plant of
	dry bean cvs Teebus & Kranskop (Experiment 1).
TABLE 8. 2D	ANOVA of the effect of plant density on number of seeds per pod of
	dry bean cvs Teebus & Kranskop (Experiment 1)
TABLE 8. 2E	ANOVA of the effect of plant density on hundred seed mass of dry
	bean cvs Teebus & Kranskop (Experiment 1)
TABLE 8, 3A	ANOVA of the effect of plant density on seed yield per plant of dry
	bean cv Kranskop (Experiment 2).
TABLE 8. 3B	ANOVA of the effect of plant density on seed yield per square metre
	of dry bean cv Kranskop (Experiment 2).
TABLE 8. 3C	ANOVA of the effect of plant density on number of pods per plant of
	dry bean cv Kranskop (Experiment 2).
TABLE 8. 3D	ANOVA of the effect of plant density on number of seeds per pod of
	dry bean cv Kranskop (Experiment 2).
TABLE 8. 3E	ANOVA of the effect of plant density on hundred seed mass of dry
	bean cv Kranskop (Experiment 2).
TABLE 8. 4A	ANOVA of the effect of row, intra-row and plant density on seed yield
	per plant of two dry bean cultivars (Field experiment).
TABLE 8. 4B	ANOVA of the effect of row, intra-row and plant density on seed yield
	per square metre of two dry bean cultivars (Field experiment).
TABLE 8. 4C	ANOVA of the effect of row, intra-row and plant density on pods per
	plant of two dry bean cultivars (Field experiment).

TABLE 8, 4D ANOVA of the effect of row, intra-row and plant density on number of seeds per of two dry bean cultivars (Field experiment). ANOVA of the effect of row, intra-row and plant density on hundred TABLE 8, 4E seed mass of two dry bean cultivars (Field experiment). TABLE 8. 4F ANOVA of the effect of row, intra-row and plant density on harvest index of two dry bean cultivars (Field experiment). TABLE 8. 5A ANOVA of the effect of nitrate / ammonium ratio and concentration on fresh biomass of dry bean cy Kranskop (Experiment 1). TABLE 8.5B ANOVA of the effect of nitrate / ammonium ratio and concentration on leaf area of dry bean cv Kranskop (Experiment 1). TABLE 8.5C ANOVA of the effect of nitrate / ammonium ratio and concentration on dry biomass of dry bean cv Kranskop (Experiment 1). TABLE 8. 5D ANOVA of the effect of nitrate / ammonium ratio and concentration on shoot dry weight of dry bean cv Kranskop (Experiment 1). TABLE 8. 5E ANOVA of the effect of nitrate / ammonium ratio and concentration on root dry weight of dry bean cy Kranskop (Experiment 1). ANOVA of the effect of nitrate / ammonium ratio and concentration TABLE 8. 5F on number of pods per plant of dry bean cy Kranskop (Experiment 1). ANOVA of the effect of nitrate / ammonium ratio and concentration TABLE 8.5G on number of seeds per pod of dry bean cv Kranskop (Experiment 1). TABLE 8. 5H ANOVA of the effect of nitrate / ammonium ratio and concentration on hundred seed mass of dry bean cv Kranskop (Experiment 1). TABLE 8. 51 ANOVA of the effect of nitrate / ammonium ratio and concentration on seed yield per plant of dry bean cv Kranskop (Experiment 1). ANOVA of the effect of nitrate / ammonium ratio and concentration TABLE 8. 5J on harvest index of dry bean cv Kranskop (Experiment 1). ANOVA of the effect of nitrate / ammonium ratio and concentration TABLE 8. 6A on fresh biomass of dry bean cultivar Kranskop 40 DAE (Expt 2). TABLE 8. 6B ANOVA of the effect of nitrate / ammonium ratio and concentration on leaf area of dry bean cultivar Kranskop 40 DAE (Experiment 2). TABLE 8. 6C ANOVA of the effect of nitrate / ammonium ratio and concentration on dry biomass of dry bean cultivar Kranskop 40 DAE (Experiment 2).

TABLE 8. 6D	ANOVA of the effect of nitrate / ammonium ratio and concentration	
	on shoot dry weight of dry bean cultivar Kranskop 40 DAE (Expt 2).	
TABLE 8. 6E	ANOVA of the effect of nitrate / ammonium ratio and concentration	
	on root dry weight of dry bean cultivar Kranskop 40 DAE (Expt 2).	
TABLE 8. 6F	ANOVA of the effect of nitrate / ammonium ratio and concentration	
	on seed mass of dry bean cultivar Kranskop at maturity (Expt 2).	
TABLE 8. 6G	ANOVA of the effect of nitrate / ammonium ratio and concentration	
	on pods per plant of dry bean cultivar Kranskop at maturity (Expt 2).	
TABLE 8, 6H	ANOVA of the effect of nitrate / ammonium ratio and concentration	
	on number of seeds per pod of dry bean cultivar Kranskop (Expt 2).	
TABLE 8, 6I	ANOVA of the effect of nitrate / ammonium ratio and concentration	
	on 100 seed mass of dry bean cultivar Kranskop at maturity (Expt 2).	
TABLE 8. 6J	ANOVA of the effect of nitrate / ammonium ratio and concentration	
	on harvest index of dry bean cultivar Kranskop at maturity (Expet 2).	
TABLE 8. 7A	ANOVA of the effect of cultivar and growth regulator on seed mass	
	per plant of dry bean.	
TABLE 8, 7B	ANOVA of the effect of cultivar and growth regulator on number of	
	pods per plant of dry bean.	
TABLE 8.7C	ANOVA of the effect of cultivar and growth regulator on number of	
	seeds per pod of dry bean.	
TABLE 8. 7D	ANOVA of the effect of cultivar and growth regulator on hundred	
	seed mass of dry bean.	
TABLE 8. 7E	ANOVA of the effect of cultivar and growth regulator on harvest	
	index of dry bean.	

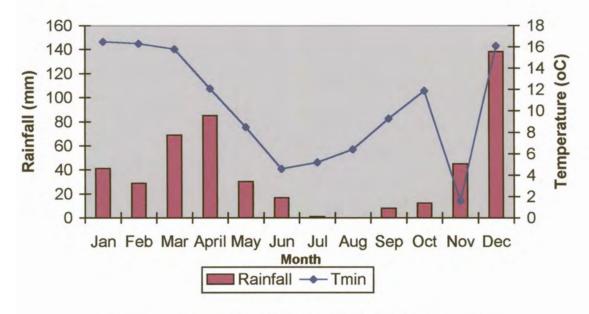
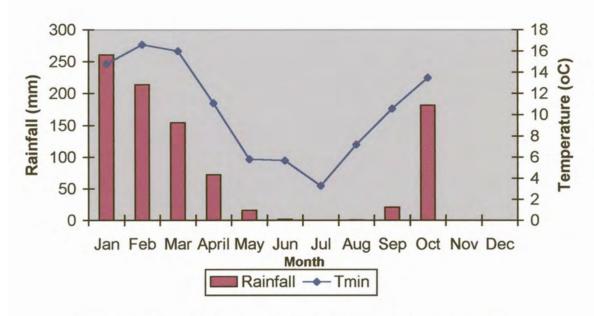



Figure 8.1 Monthly meteorological data for Hatfield showing raifall (mm) and mean minimum temperatures, 1999.

Figure 8.2 Monthly meteorological data for Hatfield showing raifall (mm) and mean minimum temperatures, 2000.

Table 8 1 Growth habit classification and description of Phaseolus as defined by CIAT

GROWTH HABIT	DESCRIPTION				
Туре І	Determinate habit; reproductive terminals on main stem and no further node production on main stem after flowering.				
Type II	Indeterminate habit (vegetative terminal on main stem); further node production on main stem after flowering; erect branches borne on lower nodes; erect plant with extremely variable guide development.				
Туре Ша	Indeterminate habit; moderate node production on main stem after flowering; prostrate canopy with variable number of branches borne on lower nodes; main stem guide development extremely variable but generally showing poor climbing ability.				
Type IIIb	Indeterminate habit, considerable node production on main stem after flowering; heavily branched with variable number of facultatively climbing branches borne on lower nodes; guide development variable; plants generally show moderate climbing tendency on supports with resulting cone-shaped canopy.				
Type IVa	Indeterminate habit; heavy node production on main stem after flowering; branches not well developed compared to main stem development; moderate climbing ability on supports, with fruit load carried relatively uniformly along length of the plant.				
Type IVb	Indeterminate habit, extreme node production after flowering; branches very poorly developed; strong climbing tendencies on supports, with fruit load borne on the upper node of main stem.				

Table 8. 2A ANOVA of the effect of plant density on seed yield per plant of dry bean cvs Teebus & Kranskop (Experiment 1)

Source	df	SS	MS	F- Value
Total	15	32.2		
Cultivar (C)	1	7.3	7.3	3.85ns
Density (D)	1	1.6	1.6	0.85ns
CxD	1	0.7	0.7	0.35ns
Error	12	22.7		

^{*, **, =} significantly different from zero at P≤0.05, P≤0.01 respectively ns = not significant

Table 8. 2B ANOVA of the effect of plant density on seed yield per square metre of dry

bean cvs Teebus & Kranskop (Experiment 1)

Source	df	SS	MS	F- Value
Total	15	58538.7		
Cultivar (C)	T	8192.5	8192.5	4.35ns
Density (D)	1	27600.0	27600.0	14.65**
CxD	1	145.3	145.3	0.08ns
Error	12	22600,9		

^{*, **, =} significantly different from zero at P≤0.05, P≤0.01 respectively ns = not significant

Table 8. 2C ANOVA of the effect of plant density on number of pods per plant of dry bean

cvs Teebus & Kranskop (Experiment 1)

010 x 000 00 00 xxxxx	mirob (mirborn			
Source	df	SS	MS	F- Value
Total	15	100.4		
Cultivar (C)	1	75.1	75.1	39.88**
Density (D)	1	2.2	2.2	1.19ns
CxD	1	0.4	0.4	0.23ns
Error	12	22.6		

^{*, **, =} significantly different from zero at P≤0.05, P≤0.01 respectively ns = not significant

Table 8. 2D ANOVA of the effect of plant density on number of seeds per pod of dry bean

cvs Teebus & Kranskop (Experiment 1)

Source	df	SS	MS	F- Value
Total	15	1.2		
Cultivar (C)	1	0.3	0.3	6.40*
Density (D)	1	0.021	0.021	0.44ns
CxD	1	0.2	0.2	5.09*
Error	12	0.6	0.05	

^{*, **, =} significantly different from zero at P≤0.05, P≤0.01 respectively ns = not significant

Table 8. 2E ANOVA of the effect of plant density on hundred seed mass of dry bean cvs

Teebus & Kranskop (Experiment 1)

Source	de	SS	MS	F- Value
	U1	THE PERSON NAMED IN COLUMN 1	1013	1'- value
Total	15	4635.6		
Cultivar (C)	1	4544 1	45.1	704.34**
Density (D)	1	14.0	14.0	2.17ns
CxD	1	0.04	0.04	0.01ns
Error	12	77.4		

^{*, **, =} significantly different from zero at P≤0.05, P≤0.01 respectively ns = not significant

Table 8. 3A ANOVA of the effect of plant density on seed yield per plant of dry bean cv

Kranskop (Experiment 2)

Source	df	SS	MS	F- Value
Total	11	256.4		
Density	2	179.9	89.9	10.58
Error	9	76.5	8.5	

^{*, **, =} significantly different from zero at P≤0.05, P≤0.01 respectively ns = not significant

Table 8. 3B ANOVA of the effect of plant density on seed yield per square metre of dry

bean cv Kranskop (Experiment 2)

Source	df	SS	MS	F- Value
Total	11	14.0		
Density	2	7.5	3.8	5.24
Error	9	6.4	0.7	

^{*, **, =} significantly different from zero at $P \le 0.05$, $P \le 0.01$ respectively ns = not significant

Table 8. 3C ANOVA of the effect of plant density on number of pods per plant of dry bean

cv Kranskop (Experiment 2)

Source	df	SS	MS	F- Value
Total	11	49.6		
Density	2	39.3	19.7	17.18
Density Error	9	10.3	1.1	

^{*, **, =} significantly different from zero at P≤0.05, P≤0.01 respectively ns = not significant

Table 8. 3D ANOVA of the effect of plant density on number of seeds per pod of dry bean

cv Kranskop (Experiment 2)

Source	df	SS	MS	F- Value
Total	11	0.2		
Density	2	0.1	0.05	4.84
Error	9	0.1	0.01	

^{*, **, =} significantly different from zero at P≤0.05, P≤0.01 respectively ns = not significant

Table 8. 3E ANOVA of the effect of plant density on hundred seed mass of dry bean cv

Kranskop (Experiment 2)

Source	df	SS	MS	F- Value
Total	11	38.1		
Density	2	34.8	17.4	46.90
Error	9	3.3	0.4	

^{*, **, =} significantly different from zero at $P \le 0.05$, $P \le 0.01$ respectively ns = not significant

Table 8. 4A ANOVA of the effect of row, intra-row and plant density on seed yield per plant

of two dry bean cultivars (Field experiment)

Source	df	SS	MS	F-value
Total	159	3591.3		
C	1	0.8	0.8	0.06ns
1	3	413.8	137.9	10.37**
CxI	3	394.0	131.4	9.88**
R	4	598.1	149.5	11,24**
CxR	4	98.0	24.5	1.84ns
RxI	12	178.1	14.8	1.12ns
CxRxI	12	312.8	26.1	1.96*
Error	120	1595.8	13.3	

^{*, **, =} significantly different from zero at P≤0.05, P≤0.01 respectively ns = not significant

Table 8. 4B ANOVA of the effect of row, intra-row and plant density on seed yield per

square metre of two dry bean cultivars (Field experiment)

Source	df	SS	MS	F-value
Total	159	441358.3		
C	1	5226.0	5226.0	4.81*
I	3	56324.1	18774.7	17.27**
CxI	3	21141.1	7047.0	6.48**
R	4	161474.3	40368.6	37.13**
CxR	4	19380.5	4845.1	4.46**
RxI	12	25428.5	2119.0	1.95*
CxRxI	12	21927.3	1827.3	1.68ns
Error	120	130456.6	1087.1	

^{*, **, =} significantly different from zero at P≤0.05, P≤0.01 respectively ns = not significant

Table 8. 4C ANOVA of the effect of row, intra-row and plant density on pods per plant of

two dry bean cultivars (Field experiment)

Source	df	SS	MS	F-value
Total	159	997.8		
C	1	33,3	33.3	13.20**
I	3	161.2	53.7	21.30**
CxI	3	120.0	40.0	15.86**
R	4	125.5	31.4	12.43**
CxR	4	35.9	9.0	3,56**
RxI	12	100.2	8.4	3.31**
CxRxI	12	118.9	9.9	3.93**
Error	120	302.8	2.5	

^{*, **, =} significantly different from zero at P≤0.05, P≤0.01 respectively ns = not significant

Table 8. 4D ANOVA of the effect of row, intra-row and plant density on number of seeds

per of two dry bean cultivars (Field experiment)

Source	df	SS	MS	F-value
Total	159	47.9		
C	1	11.8	11.8	54.58**
1	3	2.1	0.7	3.23*
CxI	3	0.5	0.2	0.81ns
R	4	0.8	0.2	0.88ns
$C \times R$	4	0.5	0.1	0.62ns
RxI	12	2.6	0.2	1.01ns
CxRxI	12	3.7	0.3	1.42ns
Error	120	25.9	0.2	

^{*, **, =} significantly different from zero at P≤0.05, P≤0.01 respectively ns = not significant

Table 8. 4E ANOVA of the effect of row, intra-row and plant density on hundred seed mass

of two dry bean cultivars (Field experiment)

Source	df	SS	MS	F-value
Total	159	27386.7		
C	1	24163.6	24163.6	1170.86**
1	3	96.2	32.1	1.55ns
Cxl	3	112.6	37.5	1.82ns
R	4	118.6	29.6	1.44ns
CxR	4	197.6	49.4	2.39ns
RxI	12	44.3	3.7	0.18ns
CxRxI	12	177.3	14.8	0.72ns
Error	120	2476.5	20.6	

^{*, **, =} significantly different from zero at P≤0.05, P≤0.01 respectively ns = not significant

Table 8. 4F ANOVA of the effect of row, intra-row and plant density on harvest index of two dry bean cultivars (Field experiment)

Source	df	SS	MS	F-value
Total	159	1284.7		
C	1	434.7	434.7	118.12**
1	3	27.0	9.0	2.44ns
CxI	3	46.4	15.5	4.21**
R	4	136.5	34.1	9.27**
CxR	4	90.7	22.7	6.17**
RxI	12	87.8	7.3	1.98*
CxRxI	12	19.8	1.6	0.43ns
Error	120	441.8	3,68	

^{*, **, =} significantly different from zero at P≤0.05, P≤0.01 respectively ns = not significant

Table 8. 5A ANOVA of the effect of nitrate / ammonium ratio and concentration on fresh

biomass of dry bean cv Kranskop (Experiment 1)

Source	df	SS	MS	F- Value
Total	11	2781.9		
Ratio (R)	1	1615.6	1615.6	12.06**
Concentration (C)	1	94.9	94.9	0.71ns
RxC	1	0.003	0.003	0.00ns
Error	8	1071.4	133.9	

^{*, **, =} significantly different from zero at P≤0.05, P≤0.01 respectively ns = not significant

Table 8. 5B ANOVA of the effect of nitrate / ammonium ratio and concentration on leaf area of dry bean cy Kranskop (Experiment 1)

Source	df	SS	MS	F- Value
Total	11	257441.9		
Ratio (R)	1	127759.5	127759.5	13.79**
Concentration (C)	1	17065.3	17065.3	1.84ns
RxC	1	38498.2	38498.2	4.16ns
Error	8	74118.9	9264.9	

^{*, **, =} significantly different from zero at $P \le 0.05$, $P \le 0.01$ respectively ns = not significant

Table 8. 5C ANOVA of the effect of nitrate / ammonium ratio and concentration on dry

biomass of dry bean cv Kranskop (Experiment 1)

Source	df	SS	MS	F- Value
Total	11	43.5		
Ratio (R)	1	25.1	25.1	12.61**
Concentration (C)	1	2.3	2.3	1.14ns
RxC	1	0.1	0.1	0.06ns
Error	8	16.0	2.0	

^{*, **, =} significantly different from zero at P \le 0.05, P \le 0.01 respectively ns = not significant

Table 8. 5D ANOVA of the effect of nitrate / ammonium ratio and concentration on shoot dry weight of dry bean cv Kranskop (Experiment 1)

Source	df	SS	MS	F- Value
Total	11	42.7		
Ratio (R)	1	22.7	22.7	10.27*
Concentration (C)	1	2.0	2.0	0.92ns
RxC	1	0.2	0.2	0.08ns
Error	8	17.7	2.2	

^{*, **, =} significantly different from zero at P \le 0.05. P \le 0.01 respectively ns = not significant

Table 8. 5E ANOVA of the effect of nitrate / ammonium ratio and concentration on root dry

weight of dry bean cv Kranskop (Experiment 1)

Source	df	SS	MS	F- Value
Total	11	0.3		
Ratio (R)	1	0.1	0.06	1.81ns
Concentration (C)	1	0.002	0.002	0.09ns
RxC	1	0.008	0.01	0.25ns
Error	8	0.26	0.03	

^{*. **, =} significantly different from zero at P≤0.05, P≤0.01 respectively ns = not significant

Table 8. 5F ANOVA of the effect of nitrate / ammonium ratio and concentration on number

of pods per plant of dry bean cy Kranskop (Experiment 1)

Source	df	SS	MS	F- Value
Total	11	38.9		
Ratio (R)	1	0.8	0.8	0.22ns
Concentration (C)	1	4.1	4.1	1.20ns
RxC	1	6.8	6.8	1.98ns
Error	8	27.3	3.4	

^{*, **, =} significantly different from zero at P<0.05, P<0.01 respectively ns = not significant

Table 8. 5G ANOVA of the effect of nitrate / ammonium ratio and concentration on number

of seeds per pod of dry bean cy Kranskop (Experiment 1)

Source	df	SS	MS	F- Value
Total	11	1,2		
Ratio (R)	1	0.003	0.003	0.02ns
Concentration (C)	1	0.003	0.003	0.02ns
RxC	1	0.08	0.1	0.61ns
Error	8	1.1	0.1	

^{*, **, =} significantly different from zero at P<0.05, P<0.01 respectively ns = not significant

Table 8. 5H ANOVA of the effect of nitrate / ammonium ratio and concentration on hundred

seed mass of dry bean cv Kranskop (Experiment 1)

Source	df	SS	MS	F- Value
Total	11	424.8		
Ratio (R)	1	88.6	88.6	2.16ns
Concentration (C)	1.	2.8	2.8	0.07ns
RxC	1	5.3	5.3	0.13ns
Error	8	328.1	41.0	

^{*, **, =} significantly different from zero at P≤0.05, P≤0.01 respectively ns = not significant

Table 8. 51 ANOVA of the effect of nitrate / ammonium ratio and concentration on seed

yield per plant of dry bean cv Kranskop (Experiment 1)

Source	df	SS	MS	F- Value
Total	11	910.8		
Ratio (R)	1	122.9	122.9	2.57ns
Concentration (C)	1	229.9	229.9	4.81ns
RxC	1	175.9	175.9	3.68ns
Error	8	382.2	47.8	

^{*, **, =} significantly different from zero at P≤0.05, P≤0.01 respectively ns = not significant

Table 8. 5J ANOVA of the effect of nitrate / ammonium ratio and concentration on harvest

index of dry bean cy Kranskop (Experiment 1)

Source	df	SS	MS	F- Value
Total	11	16.8		
Ratio (R)	1	4.7	4.7	3.19ns
Concentration (C)	1	0.2	0.2	0.13ns
RxC	1	0.2	0.2	0.13ns
Error	8	11.7	1.5	

^{*, **, =} significantly different from zero at P≤0.05, P≤0.01 respectively ns = not significant

Table 8. 6A ANOVA of the effect of nitrate / ammonium ratio and concentration on fresh

biomass of dry bean cultivar Kranskop 40 DAE (Experiment 2)

Source	df	SS	MS	F- Value
Total	26	3180.8		
Ratio (R)	2	244.3	122.2	1.49ns
Concentration (C)	2	1201.5	600,8	7.30**
RxC	4	254.2	63.6	0.77ns
Error	18	1480.7	82.3	

^{*, **, =} significantly different from zero at P≤0.05, P≤0.01 respectively ns = not significant

Table 8. 6B ANOVA of the effect of nitrate / ammonium ratio and concentration on leaf area of dry bean cultivar Kranskop 40 DAE (Experiment 2)

Source	df	SS	MS	F- Value
Total	26	2376514.1		7.00
Ratio (R)	2	382753.8	191376.9	4.86*
Concentration (C)	2	1041375.8	520687.9	13.22*
RxC	4	243649.6	60912.4	1.55ns
Error	18	708734.8	39374.1	

^{*, **, =} significantly different from zero at P≤0.05, P≤0.01 respectively ns = not significant

Table 8. 6C ANOVA of the effect of nitrate / ammonium ratio and concentration on dry biomass of dry bean cultivar Kranskop 40 DAE (Experiment 2)

Source	df	SS	MS	F- Value
Total	26	279.0		
Ratio (R)	2	22.7	11.4	1.53ns
Concentration (C)	2	94.8	47.4	6.38**
RxC	4	27.6	6.9	0.93ns
Error	18	133.8	7.4	

^{*, **, =} significantly different from zero at P≤0.05, P≤0.01 respectively ns = not significant

Table 8. 6D ANOVA of the effect of nitrate / ammonium ratio and concentration on shoot

dry weight of dry bean cultivar Kranskop 40 DAE (Experiment 2)

Source	df	SS	MS	F- Value
Total	26	58.5		
Ratio (R)	2	5.6	2.8	2.07ns
Concentration (C)	2	20.3	10.2	7.45**
RxC	4	7.9	2.0	1.45ns
Error	18	24.6	1.4	

^{*, **, =} significantly different from zero at P≤0.05, P≤0.01 respectively ns = not significant

Table 8. 6E ANOVA of the effect of nitrate / ammonium ratio and concentration on root dry weight of dry bean cultivar Kranskop 40 DAE (Experiment 2)

Source	df	SS	MS	F- Value
Total	26	5.9		
Ratio (R)	2	0.3	0.2	0.65ns
Concentration (C)	2	0.4	0.2	0.71ns
RxC	4	0.4	0.1	0.38ns
Error	18	4.8	0.3	

^{*, **, =} significantly different from zero at P \le 0.05, P \le 0.01 respectively ns = not significant

Table 8. 6F ANOVA of the effect of nitrate / ammonium ratio and concentration on seed mass per plant of dry bean cultivar Kranskop at maturity (Experiment 2)

Source	df	SS	MS	F- Value
Total	35	2206.3		
Ratio (R)	2	1340.6	670.3	44.74**
Concentration (C)	2	3.1	1.6	0.10ns
RxC	4	458.3	114.6	7.65**
Error	27	404.5	15.0	

^{*, **, =} significantly different from zero at P \le 0.05, P \le 0.01 respectively ns = not significant

Table 8. 6G ANOVA of the effect of nitrate / ammonium ratio and concentration on number of pods per plant of dry bean cultivar Kranskop at maturity (Experiment 2)

Source	df	SS	MS	F- Value
Total	35	351.0		
Ratio (R)	2	142.1	72.0	28.95**
Concentration (C)	2	2.4	1.2	0.49ns
RxC	4	140.3	35.1	14.29**
Error	27	66.2	2.4	

^{*, **, =} significantly different from zero at P \le 0.05, P \le 0.01 respectively ns = not significant

Table 8. 6H ANOVA of the effect of nitrate / ammonium ratio and concentration on number of seeds per pod of dry bean cultivar Kranskop at maturity (Experiment 2)

Source	df	SS	MS	F- Value
Total	35	8.2		
Ratio (R)	2	0.8	0.40	1.55ns
Concentration (C)	2	0.03	0.01	0.05ns
RxC	4	0.32	0.08	0.30ns
Error	27	7.06	0.26	

^{*, **, =} significantly different from zero at P≤0.05, P≤0.01 respectively ns = not significant

Table 8. 6I ANOVA of the effect of nitrate / ammonium ratio and concentration on hundred

seed mass of dry bean cultivar Kranskop at maturity (Experiment 2)
Source df SS MS

Source	df	SS	MS	F- Value
Total	35	6074.2	T14.8	7.77
Ratio (R)	2	1969.6	984.8	12.35**
Concentration (C)	2	470.1	235.0	2.95ns
RxC	4	1482.1	370,5	4.65**
Error	27	2152.4	79.7	

^{*, **, =} significantly different from zero at P \le 0.05, P \le 0.01 respectively ns = not significant

Table 8. 6J ANOVA of the effect of nitrate / ammonium ratio and concentration on harvest index of dry bean cultivar Kranskop at maturity (Experiment 2)

Source	df	SS	MS	F- Value
Total	35	2130.6		
Ratio (R)	2	553.4	276.7	6.79**
Concentration (C)	2	105.2	52.6	1.29ns
RxC	4	372.6	93.1	2,29ns
Error	27	1099.4	40.7	

^{*, **, =} significantly different from zero at P≤0.05, P≤0.01 respectively ns = not significant

Table 8. 7A ANOVA of the effect of cultivar and growth regulator on seed mass per plant of dry bean

df SS Source MS F- Value Total 17 239.6 Cultivar (C) 1 87.6 87.6 7.32* Growth regulator (GR) 2 4.1 2.1 0,17ns 2 CxGR 4.4 2.2 0.18ns 12 143.5 12.0 Error

Table 8. 7B ANOVA of the effect of cultivar and growth regulator on number of pods per

plant of dry bean

piditi of dry obdit				
Source	df	SS	MS	F- Value
Total	17	273.1		
Cultivar (C)	1	186.9	186.9	42.05**
Growth regulator (GR)	2	11.1	5.6	1.25ns
C x GR	2	21.8	10.9	2.45ns
Error	12	53.3	4.4	

^{*, **, =} significantly different from zero at P≤0.05, P≤0.01 respectively ns = not significant

Table 8. 7C ANOVA of the effect of cultivar and growth regulator on number of seeds per

pod of dry bean

Source	df	SS	MS	F- Value
Total	17	7.4		
Cultivar (C)	1	4.3	4.3	19.31**
Growth regulator (GR)	2	0.3	0.1	0.61ns
C x GR	2	0.2	0.1	0.44ns
Error	12	2.7	0.2	

^{*, **, =} significantly different from zero at P \le 0.05, P \le 0.01 respectively ns = not significant

Table 8. 7D ANOVA of the effect of cultivar and growth regulator on hundred seed mass of dry bean

dry beam				
Source	df	SS	MS	F- Value
Total	17	3005.8		
Cultivar (C)	1	2518.1	2518.1	82.88**
Growth regulator (GR)	2	50.3	25.2	0.83ns
CxGR	2	72.7	36.4	1.20ns
Error	12	364.6		

^{*, **, =} significantly different from zero at P≤0.05, P≤0.01 respectively ns = not significant

^{*, **, =} significantly different from zero at P≤0.05, P≤0.01 respectively ns = not significant

Table 8. 7E ANOVA of the effect of cultivar and growth regulator on harvest index of dry

CCUII				
Source	df	SS	MS	F- Value
Total	17	1951.8		
Cultivar (C)	1	26.9	26.9	0.61ns
Growth regulator (GR)	2	1042.1	521.0	11.88**
C x GR	2	356.5	178.2	4.06*
Error	12			

^{*, **, =} significantly different from zero at P≤0.05, P≤0.01 respectively ns = not significant

