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CHAPTER 1 

INTRODUCTION 

 

1.1 INTRODUCTION AND BACKGROUND 

 

Modern technology has provided tools that significantly increased the efficiency with 

which information can be gathered as well as the number of measurements and 

attributes available for analysis. Most analytical tools that have been developed over 

the years, depend on complete datasets, and often on measurements made at regular 

intervals. The question that arises is what to do when technology fails and the 

researcher is left with an incomplete dataset. 

 

Over the years, several techniques have been developed in fields such as mathematics, 

statistics, engineering and actuarial and natural sciences to provide for incompleteness 

of data. Governments, universities, institutes and businesses have invested significant 

resources into building models or developing field-specific techniques that will either 

work around the incompleteness, or interpolate the missing values. 

 

This dissertation focuses on incomplete datasets in the geosciences. The term 

‘geoscience’ represents the broad spectrum of physical earth sciences, such as the 

geological, meteorological, planetary, hydrological and environmental sciences.  The 

types of data investigated, using geostatistical tools, are either spatially (location) or 

spatial-temporal (location-time) dependent.  

 

1.2 WHAT IS GEOSTATISTICS? 

 

Geostatistics is commonly defined as the study of natural phenomena that are spatially 

or spatial-temporal correlated by means of numerical tools (Deutsch, 2002; Isaaks 

and Srivastava, 1989). Instead of assuming that data are independently and  

identically distributed, and follows a particular population distribution (Krige, 1951), 

in geostatistics the data are considered as a vector of spatial or spatial-temporal 
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correlated measurements. The main goal of geostatistics is to combine the quantifiable 

uncertainty structure with the existing data in order to interpolate or simulate the 

spatial distribution of the phenomena being studied (Zhang, 2007). 

 

A South African mining engineer, D.G. Krige, (Krige, 1951) first introduced the 

above concepts for the process of determining true ore-grade distributions from 

sample-based ore grades. However, it was G. Matheron (Matheron, 1963) who 

provided the first mathematical formulation of geostatistics and kriging. Matheron 

was also the first person to use the term kriging, which refers to the optimal 

interpolation or simulation of measurements at unsampled locations, in honour of 

Krige’s contribution. Other researchers who made the first significant contributions to 

the field of spatial variation were B. Matern (Matern, 1986 – English  version) in the 

early 1960s and A.N. Kolmogorov in 1941 (Kolmogorov, 1941).  

 

Geostatistics was initially only applied in the mining and petroleum industries, but 

were found to be a strong interpolation and simulation tool in several additional 

environmental fields, such a geohydrology, hydrology, meteorology and climatology. 

 

1.3 LAYOUT OF THE STUDY 

 

The aim of this dissertation is to demonstrate the application, advantages and 

disadvantages of the most commonly used interpolation technique on a simulated 

dataset that exhibits spatial and temporal dependencies using geostatistics. This 

includes defining the descriptive statistics, moments and the interpolation 

methodology for stationary univariate and multivariate spatial and spatial-temporal 

data. 

 

Chapter 2 provides insight into the spatial descriptive statistics, which describes any 

possible correlation that may exist between the different locations where 

measurements were made. These techniques rely heavily on mapping tools that can 

highlight any outliers or anomalies. The spatial variation in the data is represented 

visually and numerically through the spatial and spatial-temporal moments. 

Additional data dependencies that are investigated include stationarity of the data, 
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possible anisotropic behaviour, ergodicity and procedures for irregularly spaced 

measurements.   

  

In Chapter 3 the variation in the data is defined by means of fitting models to the 

moments (variogram and covariance) of the data. Since the fitted models must adhere 

to pre-defined conditions, specific models are defined. Attention is given to the 

difficulties surrounding spatial-temporal modelling and the techniques to overcome 

them. These models are subsequently used in the interpolation and simulation 

processes to represent the inherent variation in the data.   

 

Chapters 4 to 7 discuss the most commonly used interpolation technique in 

geostatistics, namely kriging. The four chapters respectively provide the background, 

methodology and examples of the spatial univariate, spatial multivariate, spatial-

temporal univariate and spatial-temporal multivariate cases. Chapter 8 applies the 

methodologies defined in Chapters 4 to 7 to a practical dataset, and Chapter 9 

concludes with a short discussion on the advantages and disadvantages of the different 

interpolation tools discussed, as well as suggestions for future research. 

 

Supplementary information provided in the appendices is categorized according to 

theory and programs. Appendix A contains the supplementary theory. Appendix B 

contains the programs used in the examples.  
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CHAPTER 2 

SPATIAL DESCRIPTIVE STATISTICS 

 

2.1 INTRODUCTION 

 

The first step in geostatistical analysis is the investigation of the distributional 

properties of the data which enables the researcher to make an informed decision on 

which analytical tools will best suit the data and render the required output. Chapter 2 

will provide a brief overview of the organizing, graphical and summary tools, as well 

as additional tools that are used to describe the spatial characteristics. 

 

Textbooks by Cressie (1993), Journel and Huijbregts (1978), Isaaks and Srivastava 

(1989), and the more recent publication of Webster and Oliver (2007) are excellent 

reference material on spatial descriptive statistics. These measures are designed to 

provide the researcher with an understanding of what influence the additional spatial 

dependency has on the data.  

 

In Section 2.2, a theoretical univariate and multivariate spatial and spatial-temporal 

variable set and interpolation models are defined, according to which a bivariate 

spatial-temporal dataset was simulated (Section 2.3). The data were allocated to the 

four categories of univariate spatial, bivariate spatial, univariate spatial-temporal and 

bivariate spatial-temporal dependent data. The simulated dataset was subjected to a 

series of descriptive statistics in Section 2.4 in order to assess the location, spread, 

shape and dependencies of the underlying probability distributions. The moments 

(variance, covariance and correlation) form the foundation for optimal interpolation 

and stochastic simulation in geostatistics. These moments are defined in Section 2.5. 

Spatial properties that influence how the moments are modelled in Chapter 3 are 

introduced in Section 2.6. Chapter 2 concludes in Section 2.7 with a brief description 

of the available computer software, resources and journals that can be utilized for both 

the descriptive statistics and modelling techniques. 
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2.2 GENERAL NOTATION 

 

A broad spectrum of interpolation methods exist that can be utilized for statistical 

interpolation. Over the years, several techniques have been developed to cater for the 

different types of missing structures in data. In earth studies, such as hydrology, one 

or more attributes are typically observed over a period of time at a number of 

locations. Data can be missing for a number of reasons, e.g. equipment failure. The 

applicability and availability of methods for the statistical analysis of this information 

are restricted by discontinuities in the sequence of measurements.  

 

The different missing data structures are (a) missing completely at random (MCAR), 

(b) missing at random (MAR), and (c) data that have a non-random missing structure 

(MANR). Normally the structure plays a crucial role in determining the interpolation 

technique to be used. Several of the interpolation methodologies defined in 

geostatistics do not depend on this structure, which makes it ideally suited to 

univariate and multivariate, spatial and spatial-temporal data.  

 

To define the methodology of the identified interpolation techniques a general 

stochastic variable set is defined, based on spatial data as well as spatial-temporal 

data. The main purpose of the model is to utilize the behaviour of the observed data to 

estimate unobserved measurements. 

  

It is important to note that there is a fundamental difference between the co-ordinate 

axes of spatial and spatial-temporal data (Weyl, 1952; Reichenbach, 1958; Journel, 

1986; Kyriakidis and Journel, 1999). The spatial axis is characterized by the state of 

co-existence, which often contains several dimensions and directions. The order in 

which the measurements appear at each location plays no significant role. The 

temporal axis is, however, characterized as a state of successive existence where the 

non-reversible ordering of data into past, present and future measurements in one 

dimension is of great significance (Kyriakidis and Journal, 1999). For this reason two 

general models are defined for univariate and multivariate analysis. 
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Suppose the spatial co-ordinate is defined as the x  (latitude) and y  (longitude) co-

ordinates of the α th spatial location ),( ααα yxu = . The set of n  locations available 

for analysis is then defined as 

 

},...,2,1,|{ nDuu
d =ℜ⊆∈ ααα  (2.1) 

 

where D  is a subset of the d - dimensional real Euclidean space. The two-

dimensional case is investigated in this study.  

 

The four main problem types that will be reviewed in this study are the combinations 

between univariate and multivariate data that do or do not take possible time 

dependency into account. Table 2-1 indicates which method will be discussed with 

each combination. 

 

Table 2-1: Possible combinations of spatial and spatial-temporal analysis. 

 Univariate data Multivariate data 

Time dependencies not 

taken into account 

I. Spatial ordinary kriging. 

     (Chapter 4) 

II. Spatial ordinary co-   

     kriging. (Chapter 5) 

Utilize time 

dependencies 

III. Spatial-temporal ordinary  

      kriging. (Chapter 6) 

IV. Spatial-temporal ordinary  

      co-kriging. (Chapter 7) 

 

Basic notation used in this dissertation for the univariate and multivariate cases with 

and without time dependencies is introduced below. 

 

Univariate Spatial Case 

 

Let random variable )( αuZ  represent the single measurement of an attribute at 

location αu . Then  

 

)(),...,(),( 21 nuZuZuZ  (2.2) 

 

is the set of dependent stochastic variables measured at n  locations. 
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Multivariate Spatial Case 

 

Most environmental datasets consist of several measured attributes, such as the 

copper, lead and zinc contents in soil-analysis measurements. The stochastic spatial 

case defined in (2.2) is expanded to allow an attribute correlation structure to increase 

the prediction capability of the model. 

  

Suppose that a total of K  attributes are measured and that the primary attribute of 

interest is always represented by 1=k  while the remaining 1−K  attributes are 

secondary.  

 

Let  

 

))(),...,(),(()( 21 αααα uZuZuZuZ K=  (2.3) 

 

represent the random vector of K  attributes measured at the location αu , 

.,...,2,1 n=α  It follows that the set of the primary random stochastic attribute is 

expressed as  

 

)(),...,(),( 12111 nuZuZuZ  (2.4) 

 

and the set of the secondary random stochastic attribute is expressed as  

 

)(),...,(),( 22212 nuZuZuZ . (2.5) 

 

By definition, the methodology of co-kriging (Chapter 6) allows for the possibility 

that not all the attributes were measured at each of the locations as seen in Figure 2-1. 

Both attributes are available at locations 1u  and 2u , but the primary attribute is 

missing at location 3u . 

 

The multivariate spatial model is commonly used to predict the missing attribute with 

the help of the information contained in the primary and secondary attributes at 

neighbouring locations. 
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Figure 2-1: Example of attribute sampling. 

 

Univariate Spatial-Temporal Case 

 

In the case of the spatial-temporal stochastic process, the finite time domain 1ℜ⊆ℑ  

is introduced to interact with the spatial domain d
D ℜ⊆  (Kyriakidis and Journel, 

1999). The spatial-temporal random variable is defined from (2.2) to include the 

instant in time when the measurement was made. Let ),(),...,2,(),1,( TuZuZuZ ααα  

represent a discrete, equally spaced time series of observations of an attribute 

Z observed at location αu . The set of stochastic random variables measured at n  

locations and time instant t is given as  

 

),(),...,,(),,( 21 tuZtuZtuZ n  (2.6) 

 

where Tt ,...,2,1= . Time can be expressed in any unit, e.g. years, months, days, 

minutes or seconds. This variable can therefore take any series of outcomes at any 

spatial location Du ∈  and any time point ℑ∈t . In a complete dataset, the total 

number of measurements is nT . 

 

Multivariate Spatial-Temporal Case 

 

Suppose that K  attributes are measured at n  locations at time points Tt ,...,2,1= . Let 
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)),(,),,(),,((),( 21 tuZtuZtuZtuZ K αααα ⋅⋅⋅=  (2.7) 

 

be the observation vector of the K  attributes at location αu  and the time point t. 

 

Interpolation Estimates 

 

A typical univariate spatial interpolation function that interpolates the single missing 

measurement at location 0u  is defined as  

 

))(),...,(),(()(ˆ
210 nuZuZuZfuZ =  (2.8a) 

 

and the multivariate spatial interpolation function is defined as  

 

))(),...,(),(()(ˆ
210 nuZuZuZfuZ =  (2.8b) 

 

The univariate spatial-temporal interpolation function is defined as the function that 

interpolates the single missing measurement at location 0u  and time point 0t  

  

)),(),...,1,(),...,,(),...,1,(),,(),...1,((),(ˆ
221100 TuZuZTuZuZTuZuZftuZ nn=

 

(2.8c) 

 

and the multivariate equivalent of (2.8c) is expressed as 

 

)),(),...,1,(),...,,(),...,1,(),,(),...1,((),(ˆ
221100 TuZuZTuZuZTuZuZftuZ nn=

 

(2.8d) 

 

2.3 SIMULATION OF BIVARIATE SPATIAL-TEMPORAL DATA 

 

For illustration and concept clarification purposes a bivariate spatial-temporal dataset 

was simulated using the statistical tool SAS 9.2. A total of 100  spatially dependent 2-

dimensional )4(VMA  time series of 30  observations each were generated from the 

multivariate normal distribution with mean 

 

]100...100['
)16000(

=
×

µ  
 

 

and covariance matrix Σ   

 

ATR Σ⊗=Σ
× )60006000(

 (2.9) 
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where 

 

||||

100100
][ ji uu

ij eR
−−

×
=

δ
 (2.10) 

 

is the ij
th element of a correlation matrix where the strength of the correlation is 

directly related to the proximity of the location with 
50

1
−=δ  and  

 

22 )()(|||| jijiji yyxxuu −+−=−   

 

It is assumed that the bivariate time series are generated by a vector moving average 

model of order 4 : 

 

44332211)( −−−− +++++= ttttt aaaaaty θθθθµ  (2.11) 

 

with error terms ,...2,1, =ta t  as independent ),0( aN Σ  vectors with 

 









=Σ

9.05.0

5.00.1
A   

 

The bivariate covariance matrix of the )4(VMA  time series is defined as  

 























ΓΓ

ΓΓΓ

ΓΓΓ

ΓΓΓΓ

=Σ

)0()30(

......

...)0()1()2(

...)'2()0()1(

)'30(...)'2()'1()0(

AT  (2.12) 

 

which is a Toeplitz matrix with the auto- and cross-covariances defined as  

 

∑∑∑∑ ++++Σ=Γ
ααααα θθθθθθθθ '

44
'
33

'
22

'
11)0(  

∑∑∑∑ +++=Γ
αααα

θθθθθθθ '
34

'
23

'
121)1(  

∑∑ ++Σ=Γ
ααα θθθθθ '

24
'
132)2(  

∑+Σ=Γ
αα θθθ '

143)3(  

αθ Σ=Γ 4)4(  

(2.13) 
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0)30(...)6()5( =Γ==Γ=Γ  

 

The covariance matrix is assumed to be constant over the grid, with the spatial 

correlation dependent on the distance between the locations. The locations are defined 

as a fixed grid as depicted in Figure 2-2.  

 

 

Figure 2-2: Grid of selected sampling locations. 

 

A single vector, generated from the 6000 -dimensional ),( ΣµN  distribution, defined 

the complete bivariate spatial-temporal database. The final complete bivariate, spatial-

temporal dataset ( COMST − ) and the complete bivariate spatial dataset named 

( COMS − ) are used to illustrate the different concepts of geostatistics and kriging. 

The dataset COMS −  is a subset of COMST −  and was derived by taking the first 

time measurements from all attributes and locations. This subset is used to illustrate 

the spatial descriptive statistics discussed in Sections 2.4 and 2.5. The simulation 

program is available in Appendix B.1. 

 

Figure 2-3a depicts the 30  time measurements of the two attributes for location 

)10,10(1 =u  in a time series format. Figure 2-3b provides the surface plot of the 

primary attribute over all the locations. 
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Figure 2-3a: Estimated time series data at location )10,10(1 =u  for 1Z  )(−  and  

                      2Z  )(−−  

 

 

Figure 2-3b: Surface plot of the primary attribute generated 

 

Since the purpose of this study is to demonstrate the efficiency of kriging as an 

interpolation technique, the datasets used for Chapters 4 to 7 will be subsets of 

COMS −  and COMST − , with a percentage of missing observations in the primary 

attribute.  

 

The rest of Chapter 2 is devoted to the understanding of the distribution and variation 

of spatial data, as well as computer software and resources that can be utilized in 

geostatistics. 
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2.4 DATA EXPLORATION 

 

The aim of the data exploration is to develop a comprehensive understanding of the 

data and all possible underlying structures that may influence the behaviour of the 

given dataset. Descriptive statistics in geostatistics can be classified into non-spatial 

and spatial data exploration, each developed to best illustrate certain aspects of the 

data. 

 

Non-Spatial Exploratory Methods 

 

Non-spatial exploration organizes and visually represents univariate data, ignoring 

spatial dependencies. Frequency tables, histograms and cumulative histograms allow 

the researcher to visually inspect portions of the data above and below certain 

thresholds, and some preliminary conclusions on the location, spread and shape of the 

distributions can be made.  

 

Non-spatial univariate and multivariate descriptive statistics that measure the location, 

spread and shape are assumed to be known and will therefore only be mentioned in 

Example 2-1. For more in-depth discussion, the reader may refer to Cressie (1993), 

Isaaks and Srivastava (1989), or any introductory literature on statistics.  

 

Example 2-1 

 

Example 2-1 provides an illustration of plotting and calculating non-spatial 

descriptive statistics for the attribute sets 1Z  and 2Z  as provided by COMS − . The 

SAS program for this example is provided in Appendix B.2. The graphs were plotted 

using Matlab and Excel. 

 

The histogram and normal probability plots (Figure 2-4) indicate that the 

measurements for both attributes are approximately normally distributed. This is 

supported by an analysis provided in Tables 2-2 and 2-3.  
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Table 2-2: Descriptive statistics of the primary variable 1Z . 

Statistic Value Statistic Value 

Min 97.75 P10 99.77 

Max 105.21 P90 104.00 

Mean 101.87 P95 104.29 

Median 101.91 P99 105.07 

Variance 2.58 Range 7.47 

Standard deviation 1.61 Inter-quartile range 2.32 

Coefficient of variation 1.58 Skewness -0.24 

Q1 100.70 Kurtosis -0.37 

Q3 103.02   

 

Table 2-3: Descriptive statistics of the secondary variable 2Z . 

Statistic Value Statistic Value 

Min 95.56 P10 97.78 

Max 103.75 P90 102.52 

Mean 99.90 P95 103.34 

Median 99.76 P99 103.65 

Variance 3.30 Range 8.19 

Standard deviation 1.82 Inter-quartile range 2.26 

Coefficient of variation 1.82 Skewness 0.21 

Q1 98.80 Kurtosis -0.30 

Q3 101.06   

 

The correlation between 1Z  and 2Z  was determined by the Pearson correlation 

formula as 39.0−  and the negative relationship is confirmed by Figure 2-5. 

The Q-Q-plot of the two attributes indicates that the underlying distributions are fairly 

similar, but there is a difference between the location and spread, as seen from Table 

2-2 and Table 2-3. 

 

 

 

 
 
 



                                        
 

 15 

 

 

Figure 2-4: Histogram and normality plots for 1Z  (top) and 2Z  (bottom). 

 

 

Figure 2-5: Scatter plot representing the correlation between the two attributes. 

 

 

Figure 2-6: Q-Q plot of the primary variable 1Z  and secondary variable 2Z . 

 

 

As described in Chapter 1, it is necessary to take into account the fact that, in certain 

study fields, data belong to and depends on a specific location in space. Spatial 
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features, such as the location of extreme measurements, overall trend and degree of 

continuity are often of considerable interest and are being taken into account by the 

spatial methods. 

 

Spatial Exploratory Methods 

 

Spatial data exploration does not consist of a fixed set of techniques used to inspect 

data, as in the case of non-spatial exploration. In the past, basic analysis was done 

mainly in terms of the distribution (location, spread and shape) and variation 

(moments) of the data (Cressie, 1991; Journel and Huijbregts, 1978). Isaaks and 

Srivastava (1989) attempted to identify a set of existing spatial visualization 

techniques which will afford the researcher the opportunity to visualize spatial 

dependence and to identify possible anomalies.  

 

The different spatial exploration techniques discussed by Isaaks and Srivastava 

(1989) were chosen to help identify different aspects of the simulated data. Extreme 

values (outliers) and measurement mistakes can be detected using data postings and 

symbol maps. Possible patterns in spatial dependencies are illustrated using contour 

maps, proportional effect graphs and the h-scatter and cross h-scatter plots. Moving 

window statistics and spatial continuity graphs are techniques to illustrate the spatial 

continuity of the data.  

 

The rest of the section discusses each of these techniques in terms of the univariate 

and bivariate (where applicable) data structures, utilizing the bivariate dataset 

simulated in Section 2.3.  

 

Data Postings 

 

A visual technique, named data postings, is a very simplistic tool to identify obvious 

trends and errors in specific locations (Isaaks and Srivastava, 1989, p40). Erroneous 

measurements are also often revealed in these data postings maps. Each location is 

plotted along with the corresponding measurement on a map. Figure 2.8 depicts the 

primary measurements (above the dot) and the secondary measurements (below the 
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dot). A single high measurement surrounded by low measurements and vice versa 

warrants re-checking of the data.  

 

One disadvantage of the data postings map is that it is only effective for a small 

number of locations and, at most, two attributes. Data postings maps for larger 

datasets are impractical and difficult to interpret. The map can also only effectively 

demonstrate spatially dependency, effectively ignoring any potential time 

dependencies that may exist.  

 

Example 2-2 

 

Data postings maps for the simulated dataset COMS −  were created to illustrate the 

univariate (Figure 2-7) and the bivariate (Figure 2-8) simulated data. The data 

postings maps were done in Excel. 

 

Closer inspection of the primary attribute in Figure 2-7 illustrates that the lower 

measurements are associated with the smaller x -co-ordinate. Closer inspection also 

does not reveal any combinations of lower and higher variables or any other 

discrepancies in the data.  

 

Although not considered an anomaly, in the bivariate case it seems that the the lower 

y - co-ordinates for 60=x  and 80=x  have primary and secondary attribute 

measurements that are relatively small compared with the rest of the combinations in 

the dataset. Subsequent analysis will illustrate if this will have a measurable effect on 

the data. 
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Figure 2-7: Location of the lowest primary measurements in black (solid line) and the  

                   highest measurements in red (dashed line).  

 

 

Figure 2-8: Data postings map of the primary (above the dot) and the secondary  

                   measurements (below the dot) at each of the 100 measured locations. 
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Contour Maps 

 

Contour maps are used to identify overall trends and to become familiar with two-

dimensional univariate data (Isaaks and Srivastava, 1989, p41). These maps 

demonstrate the relationships between three variables on a two-dimensional plane. An 

attribute ( 1Z  or 2Z ) is plotted against the two dimensional location co-ordinates ( x  

and y ) by using a pattern of coloured contour lines. These lines connect locations 

with the same attribute at regular intervals and are either coloured or labelled with the 

associated measurements. Since the maps are used to identify trends, care should be 

taken not to include too many (over-crowded) or too few (loss of information) 

intervals. 

 

The interpretation of contour maps consists of viewing the levels in the map (Diablo 

Valley College). Measurements directly on either side of the contour line are 

respectively higher and lower than the measurements on the contour line itself. This 

effectively divides the map into different regions. The measurements along the 

contour lines do not vary across the line.  

 

The rate of variation is the highest in a direction perpendicular to a specific contour 

line (Diablo Valley College). The gradient is defined as the amount by which these 

measurements vary across each unit of distance in a direction perpendicular to the 

contour line. That is, the gradient measures how rapidly measurements vary from 

place –to place (spatial location). If more contour lines are packed in one unit of 

distance, the differences in measurements are larger and so is the gradient. 

 

One disadvantage is that a regular sampled grid is needed for accurate contour maps, 

although most statistical tools can build contour maps by automatically interpolating 

the missing grid measurements using simplistic methods, such as spline interpolation.  

 

In Example 2-3 the contour maps for the primary and secondary variables are 

constructed using the GCONTOUR procedure from SAS (Figures 2-9 and 2-10).  
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Example 2-3 

 

The contour plots for the primary ( 1Z ) and secondary variables ( 2Z ) were created by 

using the SAS procedure GCONTOUR on the measurements in COMS − . 

 

The contour maps do not provide conclusive proof of possible trends in the data. This 

is indicative of a fixed mean and variance across the grid, according to which the data 

were simulated. The program is available in Appendix B.3. 

 

 

Figure 2-9: Contour map representing the primary attribute 1Z . 

 

 

Figure 2-10: Contour maps representing the primary attribute 2Z . 
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Symbol Maps 

 

Symbol maps are useful when the number of locations to plot become too large for 

data postings and contour maps, since the sheer number of measurements may mask 

interesting local details in the univariate datasets (Isaaks and Srivastava, 1989, p43 – 

46). These maps are similar to data postings maps, with each location replaced by a 

symbol that denotes the class to which the measurement belongs. These symbols are 

chosen to convey the relative ordering by their visual density (Figure 2-11).  

 

Greyscale- and indicator maps are by-products of symbol maps (Isaaks and 

Srivastava, 1989, p44). Instead of using symbols, blocks are used for greyscale maps. 

Black and white blocks are used in the indicator maps to represent the number of 

measurements on the grid that are above and below a certain threshold. A series of 

indicator maps provides a good view of the spatial features in the data, but is 

computationally more intensive and ignores possible temporal dependencies. 

 

Example 2-4 

 

The symbol, greyscale and indicator maps were created for the generated primary 

variable in the dataset COMS − . Some visible trends are that the data follow a 

natural trend from low to high values in both a vertical and diagonal directions. 

 

 

Figure 2-11: Symbol map of the primary attribute ( 1Z ). 
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Figure 2-12: Greyscale map of the primary attribute ( 1Z ). 

 

 

Figure 2-13: Series of indicator maps for 1Z . The black blocks indicate all  

                      measurements that are 50.98>  )(a , 81.100>  )(b , 35.102>  )(c  and  

                      89.103>  )(d .   

 

These maps proved to be more effective and convenient to use than data postings and 

contour maps in extracting high-level information. Approximate constant variability 

over the grid, including the maximum and minimum values, are clearly visible in the 

greyscale map. All maps were created in Excel.  
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Moving Window Statistics 

 

Additional anomalies in a cleaned, univariate spatial dataset can be of great interest as 

they may have significant practical implications (Isaaks and Srivastava, 1989, p46; 

Goovaerts, 1997). These anomalies could, for example, be the unexpected increase or 

dropping-off in high-grade gold deposits along a certain sampling line, which will 

have a serious effect on the cost –to company of a gold mine. 

 

Data postings, contour and symbol maps are useful tools to identify areas where the 

average value of the variability appears to be anomalous (non-stationary in space). 

Moving window statistics are applied to investigate these anomalies 

(heteroscedasticity) in the average and variance when comparing smaller regions 

within the grid.  

 

The first step in moving window statistics is to divide the entire region into several 

local neighbourhoods that are of equal size. Rectangular windows are computationally 

efficient and therefore most popular. The average spacing between the locations, as 

well as the overall dimensions of the data determine the size of the window. Each 

window must ideally contain enough information to calculate accurate summary 

statistics, including the local mean, standard deviation, correlation and tests for 

normality for each window. These statistics are used to identify local anomalies. 

 

To avoid difficulties that may arise from determining a window size that is neither too 

small nor too large, the literature (Isaaks and Srivastava, 1989, p47) suggests 

overlapping windows of adjacent neighbourhoods. This practice is especially useful 

for small or irregularly-spaced grids. The reliability of the results of the moving 

window statistics depends on the number of locations in each window. 

 

Example 2-5 

 

For the moving window analysis, two separate analyses were carried out on the same 

data. The first analysis was based on 9  windows, which were identified by creating 

44×  overlapping blocks, as seen in Figure 2-14. The next window was identified by 

moving the window three grid points to the right, or up. The second analysis was 
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performed on four equal non-overlapping windows of size 55 × .  

 

The statistics for each window of the two groups were calculated by using the 

UNIVARIATE procedure from SAS and are provided in Table 2-4 and Table 2.5.  

 

No definite trend is visible for the standard deviation. The distributions for all the 

windows are normal, except in window 1 for 1Z  in the first analysis and window 4  

for 2Z . As expected, the windows with more observations have more stable means 

and standard deviations than those with fewer observations.  

 

 

Figure 2-14: The moving window group 1 is represented by the black )(− ,  

                     blue )( ⋅⋅⋅  and green )( ⋅⋅−⋅⋅  blocks and group by orange )(−−  windows. 

 

There is a noticeable difference between the global mean and standard deviations for 

1Z  and 2Z , as calculated in Example 2-1. These discrepancies and the positive 

correlation of the fourth non-overlapping window can be attributed to unreliable 

window statistics since only 100  locations are available.  

 

The Kolmogorov-Smirnov statistic for each window is also calculated here to 

determine if any of the windows deviate from the general normal character of the 

complete dataset. In Table 2-4 and 2-5, the first windows of the primary attribute are 
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not normally distributed. This is, however, attributed to the small number of 

observations available for calculation. 

 

The code for this example is available in Appendix B.4. 

 

Table 2-4: Summary statistics of the 9  overlapping windows. 

Window MEAN STD DEV 

Kolmogorov-

Smirnoff p-value Corr 

  1Z  2Z  1Z  2Z  1Z  2Z   

1 100.57 102.01 1.27 1.29 0.147 >0.150 -0.60 

2 101.79 101.67 0.78 1.59 >0.150 >0.150 -0.46 

3 102.46 100.60 0.83 1.20 >0.150 >0.150 -0.44 

4 100.75 99.68 0.87 1.38 >0.150 >0.150 -0.05 

5 102.12 98.42 1.19 1.33 >0.150 >0.150 -0.22 

6 102.76 98.30 0.92 1.33 >0.150 >0.150 -0.24 

7 100.38 99.73 1.17 0.88 >0.150 >0.150 -0.22 

8 102.76 98.85 1.26 1.01 >0.150 >0.150 -0.18 

9 104.03 98.89 0.66 1.02 >0.150 >0.150 -0.01 

    

Table 2-5: Summary statistics of the 4  non-overlapping windows. 

Window MEAN STD DEV 

Kolmogorov-

Smirnoff p-value Corr 

 1Z  2Z  1Z  2Z  1Z  2Z   

1 100.77 101.32 1.13 1.98 0.097 >0.150 -0.48 

2 102.41 100.37 0.76 1.60 >0.150 >0.150 -0.40 

3 100.72 99.33 1.42 1.01 >0.150 >0.150 -0.43 

4 103.57 98.57 0.91 1.27 >0.150 0.144 0.44 
… 

 

Proportional Effect Graph 

 

Anomalies may be of interest, as indicated above, but widely fluctuating 

measurements can have a detrimental effect on the accuracy of any derived estimates. 

However, they do not have any influence on which interpolation method is to be used. 

Fluctuations can be described by the following four different relationships that could 

exist between the local average and local variability, as defined by the moving 

window statistics (Isaaks and Srivastava, 1989, p49; Stein et al., 1999).  
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• Both local mean and variability are constant 

• A trend exists in local mean but the variability remains constant 

• Local mean remains constant but a trend exists in variability 

• Both the local trend and variability exhibit a trend. 

 

Constant variability is preferred since the estimates in each window are equally good 

or bad. Since this is unfortunately rarely the case, the next preferred relationship is 

where a trend exists in both the local mean and variability. If a relationship exists 

between these trends, the data becomes more predictable. A scatter plot between the 

local means for the select windows, overlaid by the standard deviations for the same 

window selection will illustrate any relationship that may exist. This relationship is 

referred to as the proportional effect (Isaaks and Srivastava, 1989). 

 

Univariate and multivariate normally distributed data usually have no proportional 

effect as the variances are roughly constant. The lognormal distribution, however, 

presents a linear relationship, since the local variances increases with the local mean 

in positively skewed distributions (Goovaerts, 1997). 

 

Example 2-6 

 

The proportional effect of the windows identified in the first group of Example 2-5 

can be seen in Figure 2-15 and Figure 2-16.  

 

Figure 2-15: Proportional effect of 1Z .       Figure 2-16: Proportional effect of 2Z . 
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Table 2-6: Variability interval of mean and standard deviation of 1Z  and 2Z . 

(Max-Min) 1Z  2Z  

Mean 3.65 3.71 

Standard deviation 0.61 0.71 

 

Even though these figures give the appearance of great variability, Table 2-4 and 

Table 2.6 confirm that the ranges of the means and standard deviations are not large. 

It will therefore be assumed that they are fairly constant. 

 

 

Spatial Continuity Graph 

 

Univariate spatial continuity is present in the data when the measurements from 

neighbouring locations are similar (Isaaks and Srivastava, 1989, p50). The closer the 

locations are to one another, the more similar the values of the measurements are and 

vice versa. Data postings and contour maps are particularly effective in exhibiting this 

property. If the maps indicate that low measurements are associated in space with 

other low measurements, and high measurements are associated with high 

measurements, spatial continuity is confirmed. Anomalies are presented by the 

combination of high and low measurements.  

 

Example 2-7 

 

Figure 2-17 depicts the spatial continuity of the primary ( 1Z ) and secondary ( 2Z ) 

attributes, based on the 9 windows group. The mean-standard deviation scatter plots 

for 1Z  and 2Z  seem to have no specific trend, therefore no assumptions can be made 

on the type of discontinuity. 

 

When taking into consideration the information provided by the moving window 

statistics, proportional effect and spatial continuity, it appears that there is a lot of 

unexpected variability in the data. It is important to keep in mind that only 100  

locations were sampled, leaving the researcher with a limited number of windows to 

select. The number of measurements in each window can be considered too small, 
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therefore unstable results.       

 

 

Figure 2-17: Scatter plot mean against the standard deviation of the primary (a) and  

                      the secondary attributes (b).                                                                                               

 

 

Additional tools that describe the spatial continuity are the h-scatter plot for univariate 

data and the cross h-scatter plot for multivariate data.                                                     

 

h-Scatter Plot 

 

The h-scatter plot, where all the possible pairs ( N ) of measurements, for which 

locations are separated by a certain lag distance ( |||| sh ) in a particular direction, is 

presented on a scatter plot (Isaaks and Srivastava, 1989, p52; Goovaerts, 1997, p25). 

The h-scatter plot is represented by plotting the )( αuZ  measurements on the x -axis 

and the )( shuZ +α  measurements on the y -axis, for all pairs of locations located in 

a specific direction and separated by a specific distance. The shape of the cloud in the 

scatter plot provides insight into the spatial continuity over a particular distance and 

direction. The closer the points lie to the 45º line, the more similar the neighbouring 

measurements are. Several h-scatter plots for different lag distances and directions are 

needed to provide a comprehensive view of the data and aid the researcher in 

identifing possible anisotropic (Section 2.6) behaviour in the data. An example of the 

h-scatterplots for the simulated data is provided in Example 2-8.  
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Example 2-8 

 

Figure 2-18 presents three possible combinations in which data can be paired for the 

h-scatter plot for the simulated data. The pairings can be done in any direction and for 

any distance. If there are measurements missing, then any pairing that contains the 

missing point is disregarded, as seen in Figure 2-19. 

 

 

Figure 2-18: Graphical representation of the different directions and lag distances  

                      that can be of interest. Horizontal (a), vertical (b) and diagonal (c) are  

                      three possible options (Clark, 1979). 

 

 

Figure 2-19: Horizontal pairing of locations at m10  when locations are missing. 

 

The h-scatter plots for the simulated dataset COMS −  were created for the horizontal 

direction (left to right) and vertical (bottom to top) at m10  to m50  apart in intervals 
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of m10 . The third group consists of diagonal pairings (bottom left to top right) at 

m14.14  to m71.70  apart in intervals of m14.14 . 

 

The h-scatter plots for 1Z , direction horizontal left to right at intervals of m10  is 

presented in Figures 2-20a to 2-20c. As expected, a strong relationship exists at 

distance m10 , with the relationship decreasing as the lag distance increases. The h-

scatter plots for vertical and diagonal measurements exhibit a similar pattern. A 

similar trend was observed for the secondary attribute 2Z . The simulated data (as 

expected) are therefore not sensitive to direction (isotropic), as seen in Figure 2-20d. 

 

The SAS code is available in Appendix B.5. 

 

 

Figure 2-20a: Horizontal, left to right, m10  )(a  and m20  )(b apart for 1Z .     

 

 

Figure 2-20b: Horizontal, left to right, m30  )(c  and m40  )(d apart for 1Z .      
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Figure 2-20c: Horizontal, left to right, m50  )(e  apart for 1Z .      

 

 

 Figure 2-20d: h-scatterplot of 1Z  for m10  in the horizontal (blue diamond), vertical  

                         (pink square) and diagonal (red triangle) directions.      

 

 

Cross h-Scatter Plot 

 

The cross h-scatter plot is an extension of the h-scatter plot described above. Instead 

of pairing the measurements from one attribute, the pairs between two attributes are 

used (Isaaks and Srivastava, 1989, p60). The x -axis is represented by )(1 αuZ , 

which are the measurements of the primary attribute, and the y -axis by 

)(2 shuZ +α , which are the measurements of the secondary attributes. The cross h-

scatter plot is used to describe the relationship between multivariate data, based on the 

distance between the locations of the measured values.  
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Example 2-9 

 

The horizontal cross h-scatter plot between the primary and secondary attributes at 

distances of m0  and m10  is depicted in Figure 2-21a and 2-21b. The negative 

correlation between the primary and secondary attributes within each location is 

visible in Figure 2-21a, and the same as the correlation plot (Figure 2-5) from 

Example 2-1.  

 

As with the h-scatter plots, the relationship decreases as the distance between the 

points increases. The vertical and diagonal plots, as well as the secondary attribute 

follow the same trend. 

 

 

Figure 2-21a: In location, m0  apart for 1Z  and 2Z . 

       

 

Figure 2-21b: Horizontal, left-right m10  apart for 1Z  and 2Z . 

 

The SAS code is available in Appendix B.6. 
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Once the researcher has a better understanding of the data, the univariate (variogram, 

covariance and correlation) and multivariate (cross-variogram, cross-covariance and 

cross-correlation) moments can be investigated. 

 

2.5 MOMENTS IN GEOSTATISTICS 

 

In geostatistics, the variance, covariance and correlation structure of the data are 

presented in terms of variograms. The kriging methodology uses these structures by 

means of building a variogram, covariance or correlation model that graphically 

describes the structures and correlation. All three tools are used to numerically 

characterize the relationship between the measurements in terms of the distance and 

direction between all the locations. In multivariate analysis the cross-variogram, 

cross-covariance and cross-correlation models are used to describe the underlying 

spatial dependencies between several attributes. 

 

Since the variogram and covariance are the functions that are primarily utilized, these 

two will be discussed alongside each other to better illustrate the relationship between 

them. The section begins with a comprehensive description of the spatial univariate 

and multivariate variograms, covariance and correlation functions. These definitions 

are then used to derive the spatial-temporal univariate and multivariate moments. 

 

Spatial Moments 

 

The spatial moments are defined in terms of the variogram, cross-variogram, 

covariance, cross-covariance, correlation and the cross-correlation. These moments 

are used to describe the dissimilarity between measurements that are separated by a 

lag distance.  

 

Univariate Spatial Variogram 

 

The variogram can be defined as the graphical representation of the variance of the 

data. It is a function of the distance between measurements that describe the spatial 

continuity and structure of the data, as well as the direction. (Journel and Huijbreghts, 
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1978; Isaaks and Srivastava, 1989; Cressie, 1993; Goovaerts, 1997; Clark and 

Harper, 2000; Webster and Oliver, 2007). 

 

If )]([ αuZE  is constant for all Du ∈α , the theoretical variogram model is defined as 
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The theoretical variogram was defined by the “intrinsic hypothesis” of Matheron 

(Matheron, 1962; Gilgen, 2006), which is defined by (2.40) and (2.14). This 

hypothesis allows for the calculation of a variogram without having several 

realizations of the same data pair (Deutsch and Journel, 1998 p13). A single, 

experimental variogram estimate )(ˆ2 shγ  is defined as the mean-square of the 

difference between the attribute at all grid points that are separated by a vector 
sh . 

 

The experimental variogram estimates over all locations and lag distances are 

expressed as (Matheron, 1962) 
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where }|),{( shuuuuA =−= βαβα  and 
AN  is the number of elements in A . For a 

total of n  locations there exist 
2

)1( −
=

nn
N  pairs of locations. For the rest of the 

study, the experimental semi-variogram γ̂  will be referred to only as the semi-

variogram.  

 

Once the scatter plot of estimates is obtained, it is necessary to select a semi-

variogram model. Mathematical models are used to describe the semi-variograms; 

experimental semi-variograms are used to estimate these models. The relationship 

between the variogram model and the experimental variogram is the same as the 

relationship between a probability function and a histogram.  
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Example 2-10 

 

The individual semi-variograms for 1Z  and 2Z  were developed to follow the same 

structure as that of the h-scatter plots defined in Section 2.4. Because of the small 

number of locations, only 5 point semi-variograms in each direction (horizontal, 

vertical and diagonal) were calculated.  

 

 

Figure 2-22a: Horizontal semi-variogram )(ˆ
shγ  for 1Z  in )(a  and 2Z  in )(b .     

 

 
Figure 2-22b: Vertical semi-variogram )(ˆ

shγ  for 1Z  in )(c  and 2Z  in )(d .     

 

 

Figure 2-22c: Diagonal semi-variogram )(ˆ
shγ  for 1Z  in )(e  and 2Z  in )( f . The lag  

                        distance is measured as multiples of m14.14 .      

        
.The horizontal semi-variogram scatter plots, for both attributes, increase to a specific 

asymptote. The vertical and diagonal variogram scatter plots increase monotonically.  
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These variograms exhibit anisotropic (Section 2.6) behaviour, since the semi-

variograms do not follow the same trend. The SAS code is available in Appendix B.7. 

 

 

Typically, the semi-variogram scatter plot and, ultimately, the model takes on a 

monotonically increasing shape as the distance increases. This shape can be 

characterized by specific parameters, namely the range, sill and the nugget effect, as 

seen in Figure 2-23 (Cressie, 1993; Webster and Olivier 2007; Goovaerts, 1997). 

 

 

Figure 2-23: Graphical view of the different data dependencies that can be present in  

                      the variogram. 

 

The range ( q ) indicates the maximum distance, within which data pairs are still 

significantly correlated and therefore significant in the estimation processes. The sill 

)( tc  is the value of the semi-variogram at its asymptote. The sill represents the 

distance at which the inclusion of information beyond this point adds little or no 

additional information to the semi-variogram. It is thus the upper bound value attained 

by the variogram.  

 

The nugget effect represents the randomness at very small lag distances in the data. It 

could be the result of using a limited dataset and is that part of the variance that is 

unusable for interpolation purposes. 

 

The partial sill is defined as ec  and is the difference between the total sill )( tc  and the 

nugget effect )( 0c . 
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The characteristics of the semi-variogram plots and models can provide the following 

additional information, as indicated by Christakos (1992). 

 

• The investigation of the semi-variogram variation in different directions 

provides information about the anisotropy structure of the random process 

(Section 2.6) 

• The semi-variogram also indicates the neighbourhoods of influence from any 

given location  

• The behaviour of the semi-variogram at large distances provides information 

about the stationarity (Section 2.6) of the data. Asymptotic behaviour is a 

strong indication of stationarity 

• The behaviour of the semi-variogram close to and at the origin indicates the 

degree of short-scale variability in the process. Three types of behaviour can 

be observed at the origin, namely the nugget effect, linear or parabolic 

tendencies. The nugget effect represents the discontinuity that is a result of 

erratic behaviour or noise in the data. A linear form is indicative of no 

discontinuity at the origin. The semi-variogram does not present erratic 

behaviour, but can abruptly change at small distances. Parabolic behaviour is 

indicative of very regular and smooth spatial variation as it is twice 

differentiable at the origin (Gómez-Hernández, 1996). 

• Potential periodicities or anomalies in the spatial process can also be identified 

by the behaviour of the range of the semi-variogram. 

 

Univariate Spatial Covariance 

 

The population covariance (Isaaks and Srivastava, 1989; Cressie, 1993; Webster and 

Olivier, 2007; Goovaerts, 1997) is defined as 
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and the sample covariance function as 
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with   
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with }|),{( shuuuuA =−= βαβα . The ordered set of covariances calculated at 

different lags is known as the experimental covariance (or co-variogram) function. 

The scatter plots for the covariance and correlation are plotted in the same fashion as 

the univariate variogram. 

 

Univariate Spatial Correlation 

 

The population correlation (Isaaks and Srivastava, 1989; Cressie, 1993; Webster and 

Olivier, 2007; Goovaerts, 1997) is defined as 
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The experimental correlation (correlogram) defined as the ordered set of correlation 

coefficients calculated at different lags, is expressed as 
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with }|),{( shuuuuA =−= βαβα . 

 

Multivariate Spatial Cross -Variogram 

 

The cross-variogram (Isaaks and Srivastava, 1989; Cressie, 1993; Webster and 

Olivier, 2007; Goovaerts, 1997) is based on the same methodology as the variogram 

defined in the univariate case. The cross-variogram presents the correlation between 

the primary and secondary attributes at different lag distances. The cross-variogram 

model is also described by the nugget, range and sill parameters.  

 

The theoretical cross-variogram function between the attributes k  and 'k  in sh  is 

defined as the element in row k  and 'k  of the covariance matrix. 

 

     ( ) ( )[ ])()(,)()(cov)(2 ''' skkskkskk huZuZhuZuZh +−+−= ααααγ  

                     ))]()())(()([( '' skkskk huZuZhuZuZE +−+−= αααα  
(2.20) 

 

since [ ] 0)()( =+− skk huZuZE αα  in the isotropic case. The experimental cross 

variogram is defined as 
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where A  is defined as }|),{( shuuuuA =−= βαβα . The cross semi-variogram 

(cross variogram) can be expressed in terms of the matrix where the diagonal 

elements of the matrix represent the univariate semi-variograms and the off-diagonal 

elements represent the cross semi-variograms. 
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For illustration purposes, (2.21) is expressed in terms of the bivariate case ( 2=K ).  
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Example 2-11 

 

The cross semi-variograms (Figures 2-24a-c) are determined using the simulated 

bivariate spatial dataset COMS −  and (2.21a). The SAS code is available in 

Appendix B.8. 

 

 

Figure 2-24a: Cross semi-variogram in the horizontal direction γ̂  for 1Z  and 2Z .  

      

 

Figure 2-24b: Cross semi-variogram in the vertical direction γ̂  for 1Z  and 2Z . 

 

 

Figure 2-24c: Cross semi-variogram in the diagonal direction γ̂  for 1Z  and 2Z . 
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All three of the cross semi-variograms decrease monotonically, reflecting the negative 

correlation in the data. However, in the horizontal direction an anomaly at the lag 

distance m40  is identified. Closer inspection indicated a reverse in the sign of the 

correlation between the primary and secondary attributes when moving in a horizontal 

direction for the locations in the bottom right corner of the grid. This tendency was 

also identified during the moving windows statistics (Table 2.5). Given that the value 

at lag distance m50  follows the general decreasing trend, it was not regarded as an 

anomaly in the data. 

 

 

Multivariate Spatial Cross-Covariance 

 

The cross-covariance (2.23) and cross-correlation (2.25) measure the statistical 

tendency, as well as the direction- and location-dependent correlation between 

attributes. The population cross-covariance (Isaaks and Srivastava, 1989; Cressie, 

1993; Webster and Olivier, 2007; Goovaerts, 1997) between attributes k  and 'k  in 

sh  is expressed as 

  

( ))(),(cov)( '' skkskk huZuZhC += αα  (2.22) 

 

resulting in a sample cross-covariance of  
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where A  is defined as }|),{( shuuuuA =−= βαβα  and the cross-covariance as 
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 The means are defined as 
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and 
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∑ +=−
A

sk
A

huz
N

m )(
1

'1 α  (2.23b) 

 

for all combinations of k  and 'k  and }|),{( shuuuuA =−= βαβα .  

 

The cross-covariances in the bivariate case is defined as  
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and 
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A
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A new characteristic introduced by the cross-covariance is that of asymmetry, where 

 

[ ] [ ]})(}{)({})(}{)({ 11121211 −+−+ −+−≠−+− mhuZmuZEmhuZmuZE ss αααα
 

(2.23d) 

 

such that )()( 1212 ss hchc −≠  and )()( 2112 ss hchc ≠  but )()( 2112 ss hchc −= .  

 

It cannot be assumed that the value of the second attribute lagging the primary 

attribute is the same as the values of the primary attribute lagging the second attribute. 

For example, if irrigation flooding is always from the same end of a field, the salts in 

the soil might be distributed differently according to the direction of the water flow 

(Webster and Oliver, 2007). 

 

Multivariate Spatial Cross-Correlation 

 

The population cross-correlation (Isaaks and Srivastava, 1989; Cressie, 1993; 

Webster and Olivier, 2007; Goovaerts, 1997) between attributes k  and 'k  in sh  is 

defined as 
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and sample cross-correlation as  
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The bivariate function is expressed as 
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and 
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The cross-correlation matrix for k  attributes is defined as 
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Spatial-Temporal Moments 

 

The spatial-temporal moments are based on a similar underlying structure as the 

spatial moments, except that the time component must be taken into account. As 

mentioned in Section 2.2, the order in which measurements are observed in time plays 

an important role in optimal interpolation and simulation. To graphically represent 

these moments is fairly easy; however, the modelling proves to be complicated and is 

discussed in detail in Chapter 3. 

 

Univariate Spatial-Temporal Variogram 

 

The univariate spatial-temporal variogram, covariance and correlogram are based on 

the same structures as their spatial counterparts when the temporal factor is included. 

The variance in the data is described by the graphical representation of the variogram 

as a function of the spatial lag distances ( sh ) and the temporal lag distances ( th ). The 

spatial and temporal distances respectively describe the spatial and temporal 
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continuity between the measurements (Rouhani and Wackernagel, 1990; De Cesare et 

al., 1996; Kyriakidis and Journel, 1999).  

 

The theoretical variogram is defined as  

 
 

)],(),(var[),(2 tsts hthuZtuZhh ++−= ταταγ  

                   ])),(),([( 2
ts hthuZtuZE ++−= τατα  

(2.26) 

 

with the variogram estimate at lag distance sh  and time lag th  as 

 

∑ ++−=
B

ts
B

ts hthuztuz
N

hh
2)],(),([

1
),(ˆ2 ταταγ Tn ,...1,..,1 , ==∀ τα  (2.27) 

 

where ss huututuB =−= βαβτα |)],(),,{[(  and }|| ts htt =− τ  and BN  is the 

number of elements in the set B .  

 

The graphical representation of the semi-variogram will now be in terms of ),( ts hh , 

and not only sh  and is therefore a three-dimensional plot. The definitions of the 

range, sills and nugget effect as defined in Figure 2-23 remain unchanged. 

 

Example 2-12 

 

The spatial-temporal semi-variograms for the simulated dataset COMST −  were 

calculated per attribute in the three directions utilized in the previous examples. The 

addition of the temporal lag to the variogram renders a three-dimensional plot that 

clearly illustrates its effects.  

 

The temporal lag effect has a substantial effect on the variogram and can therefore not 

be ignored in case studies where time information is available. The complexity that 

will be encountered to determine an empirical model is also evident from Figures 2-

25a to 2-25c. 

 

The isotropic behaviour of the data is apparent, as Figures 2-25a to 2-25c indicate that 

the spatial-temporal data follow that same trend in all three directions.  
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Figure 2-25a: Spatial-temporal semi-variogram in the horizontal direction for  

                        1Z  in )(a  and for 2Z  in )(b . 

 

 

Figure 2-25b: Spatial-temporal semi-variogram in the vertical direction for 1Z  in )(a  

                        and for 2Z  in )(b . 

 

 

Figure 2-25c: Spatial-temporal semi-variogram in the diagonal direction for 1Z           

                        in )(a  and for 2Z  in )(b . 
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Normally the semi-variograms are plotted using scatter points. It is, however, difficult 

to accurately assess a three-dimensional semi-variogram by using only scatter points. 

The spatial-temporal semi-variogram and cross semi-variogram (Example 2-13) are 

visually represented by a surface plot. The SAS code to determine the directional 

spatial-temporal semi-variograms is available in Appendix B.9. 

 

 

Univariate Spatial-Temporal Covariance 

 

The spatial-temporal population covariance (Rouhani and Wackernagel, 1990; De 

Cesare et al., 1996; Kyriakidis and Journel, 1999) is expressed as 

 

),( ts hhC  

)),(),,(cov( ts hthuZtuZ ++= τατα  

))],((),())(,((),([( tsts hthuZEhthuZtuZEtuZE ++−++−= τατατατα  

(2.28) 

 

with the sample spatial-temporal covariance function is defined as  
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where B  is defined as ss huututuB =−= βαβτα |)],(),,{[(  and }|| ts htt =− τ . 

 

Univariate Spatial-Temporal Correlation 

 

The population spatial-temporal correlation coefficient is given as 

 

 
 
 



                                        
 

 47 
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The correlogram is defined as  
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where B  is defined as ss huututuB =−= βαβτα |)],(),,{[(  and }|| ts htt =− τ . 

 

Multivariate Spatial-Temporal Cross-Variogram 

 

The spatial-temporal cross-variogram (Rouhani and Wackernagel 1990; De Cesare et 

al., 1996; Kyriakidis and Journel, 1999) combines the spatial cross-variogram (2.21) 

with the spatial-temporal structure. 

 

The theoretical cross variogram for the space-time structure for all locations and time 

points is defined as 

 

),(2 ' tskk hhγ  
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(2.32) 

 

and the experimental cross semi-variogram as 
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where B  is defined as ss huututuB =−= βαβτα |)],(),,{[(  and }|| ts htt =− τ . 

 

Example 2-13 

 

The spatial-temporal cross semi-variograms for 1Z  and 2Z  were calculated in the 

same manner as the spatial-temporal semi-variograms (Example 2-12). 

 

Similar to semi-variograms in Example 2-12, the cross semi-variograms are similar in 

all three directions.  

 

Appendix B.10 provides the SAS code for the directional spatial-temporal cross semi-

variograms. 

 

 

Figure 2-26: Horizontal spatial-temporal cross semi-variogram for 21ZZ  and  

                      12ZZ . 

 

 

Multivariate Spatial-Temporal Cross-Covariance 

 

The population cross-covariance is defined as 

 

( )),(),,(cov),( '' tskktskk hthuZtuZhhC ++= τατα  

{ }{ }[ ])),((),((),((),(( ' tsktskkk hthuZEhthuZtuZEtuZE ++−++−= τατατατα
 

(2.34) 

 

with the sample cross-covariance defined as 
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∑ −+ −++−=
B

tskk
B

ts mhthuzmtuz
N

hhc ]),(][),([
1

),( 1'1 τατα  (2.35) 

 

with 

 

∑=+
BB

tuz
N

m ),(
1

1 τα  (2.35a) 

 

and  

 

∑ ++=−
B

ts
B

hthuz
N

m ),(
1

1 τα  (2.35b) 

 

where B  is defined as ss huututuB =−= βαβτα |)],(),,{[(  and }|| ts htt =− τ . 

 

For the two attributes, (2.35) reduces to  
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A new characteristic introduced by the cross-covariance is that of asymmetry.  
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and therefore ),(),( 1212 tsts hhChhC −−≠  and ),(),( 2112 tsts hhChhC ≠ . 

  

Multivariate Spatial-Temporal Cross-Correlation 

 

The correlogram between attributes k  and 'k  is defined as 
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with the notation for the sample correlation as 
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The spatial-temporal cross-correlation for two attributes is represented as 
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where B  is defined as ss huututuB =−= βαβτα |)],(),,{[(  and }|| ts htt =− τ . 

 

The next step in the interpolation process is to fit an empirical model to the scatter 

plot of the variogram. To fit a model that will adhere to the requirements of the 

kriging models, certain spatial and spatial-temporal data properties must be defined 

and tested for. Section 2.6 describes these properties and their connection with the 

interpolation methodology. 

 

2.6 DATA PROPERTIES 

 

The main data properties that require consideration in the modelling of the statistics 

described in Section 2.5 are stationarity, anisotropy, ergodicity and irregularly spaced 

measurements. These properties allow the researcher to select appropriate models that 

accurately describe the spatial and spatial-temporal dependence structure in such a 

way that a best linear unbiased estimate (BLUE) of the missing data is achieved.  

 

Stationarity 

 

Stationarity is a set of assumptions based on the distribution of the data, which allows 

the researcher to estimate model parameters according to a standard set of properties 

(Cressie, 1991; Goovaerts, 1997; Isaaks and Srivastava, 1989). In kriging, 
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stationarity is one of the primary factors required to determine a unique set of kriging 

parameters.  

 

The three types of spatial stationarity that are identified in the kriging methodology 

are strict, second-order and intrinsic stationarity. A random function is considered 

strictly stationary if the distribution’s spatial law is invariant under translation. The 

joint distributions of the random variables )(),...,( 1 nuZuZ  are identical to the joint 

distributions of )(),...,( 1 sns huZhuZ ++  for all sh . 

 

Second-order stationarity is applicable if only the first two moments, the mean and 

covariance, are invariant to the spatial position of the data. The mean is required to be 

constant regardless of the position of αu  

 

)()]([ αα µ uuZE =  

                           αµ u∀=  
(2.39a) 

 

and the covariance between observations at two locations αu  and shu +α  should 

only depend on the length of lag and not on the position αu . 

 

( )( )[ ])()()()())(),(cov( sss huhuZuuZEhuZuZ +−+−=+ αααααα µµ  

                 ( )( )[ ]µµ αα −+−= )()( shuZuZE  

                                              )( shC=  

(2.39b) 

 

Intrinsic stationarity is considered when the variance may be unlimited and it follows 

from the ‘intrinsic hypothesis’ of Matheron (1962) that the two conditions for 

intrinsic stationarity to be valid are  

 

DuhuZuZE s ∈∀=+− ααα 0)]()([  (2.40) 

 

and 

 

[ ] ( )[ ] DuhuZhuZEuZhuZ sss ∈∀=−+=−+ ααααα γ )(2)()()()(var
2

 (2.14) 

 

and is only dependent on the spatial lag. This hypothesis releases the researcher from 

the strict conditions of second-order stationarity. Data where the variance increases as 
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the spatial lag increases until the population variance is reached, can now also be 

analyzed. Second-order stationarity implicitly implies intrinsic stationary, but the 

reverse is not true.  

 

The relationship between the variogram and the covariance functions, based on 

intrinsic stationarity, is depicted in Figure 2-27 and defined by (2.41). 

 

 

Figure 2-27: Relationship between covariance and semi-variogram. 

 

)()0()( ss hCCh −=γ  (2.41) 

 

Equation (2.41) is derived as follows (Banerjee et al., 2004): 
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Some properties of the covariance function in the second-order stationary field are 

(Schabenberger and Gotway, 2000) 

 

• 0)0( ≥C  

• )()( ss hChC −=  i.e. the covariance is an even function 
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• )0(|)(| ChC s ≤  

• )0()( →shC  as +∞→sh  

• [ ] )](),(cov[)(),(cov)( sss huZuZhuZuZhC +=+= ββαα
 

 

Similarly, the following properties hold for the variogram (Schabenberger and 

Gotway, ,2000) 

 

• 0)0( =γ  

• 0)()( ≥−= ss hh γγ  

• )0()( Ch s →γ  as +∞→sh . 

 

The main difference between the variogram, covariance and correlogram is that the 

variogram and covariance standardize the local means, and the correlogram 

standardizes both the local mean and variation of the data. The covariance and 

correlogram are less likely to be influenced by erratic measurements. If there is a 

significant difference between the three models, it may indicate that the data are not 

stationary. 

 

Spatial-temporal stationarity is defined in a similar fashion in terms of strict, second-

order and intrinsic stationarity. Strict stationarity within ℑ×D  is defined as the 

random variables having the same multivariate cumulative distribution function 

regardless ℑ×∈ Dhh ts ),(  (Kyriakidis and Journel, 1999). 
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                  Duu n ∈∀ ,...,1  and ℑ∈t . 

(2.42) 

 

Second-order stationarity is then defined in terms of the ℑ×D  with dependence only 

on the spatial and temporal lags  

 

µτα =)),(( tuZE   ℑ×∈∀ Dtu ),( τα  (2.43a) 

 

 
 
 



                                        
 

 54 

and 

  

)]),()(),([(),;,( µµ τατατατα −++−=++ tsts hthuZtuZEhthutuC  

                                              ),( ts hhC=   ℑ×∈∀ Dtu ),( τα  
(2.43b) 

 

Intrinsic stationary as defined through (2.40) and (2.14) is re-defined as  

 

0)],(),([ =++− ts hthuZtuZE τατα    

                           shtu ,, τα∀ , Dhuh st ∈+∋ α  and  ℑ∈+ thtτ  
(2.44a) 

 

The second condition that must be satisfied is  

 

[ ]),(),(var),(2 ταταγ tuZhthuZhh tsts −++=  

                   ( )[ ].),(),(
2

τατα tuZhthuZE ts −++=  
(2.44b) 

 

Example 2-14 

 

Compared with time series analysis, there is no universally applied test that can be 

used to determine whether the spatial dataset is stationary or not. The most commonly 

used method is the non-mathematical inspection of the data and the variograms.  

 

Another method is to plot the attributes on the grid and visually inspect for trends. As 

seen from Figure 2-3b, it seems that a decreasing trend exists for the primary attribute. 

To err on the side of caution, it will be assumed that the data are not stationary. The 

nature of non-stationarity will determine the method to be used to obtain stationary 

residuals. In this case, the data were found to be trend-stationary in the spatial 

dimension. The trend was obtained by fitting a regression model and the residuals by 

subtracting the trend.  

 

 

One of the primary constraints for the application of interpolation and simulation is 

the stationarity of the datasets. For both intrinsic and second-order stationarity, the 

mean of the data should be constant. As most real-time measurements do not comply 

with the stationarity conditions, several transformation methods were introduced. 
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Webster and Oliver (2007, p61–63) defined a support as the volume of a “particular 

size, shape and orientation”. Measurements are to be taken out of these finite 

volumes. The variogram is therefore a function of the support, in that the “larger the 

support is the more variation each measurement encompasses, and the less there is in 

the intervening space to appear in the variogram”. This eventually has a decreasing 

effect on the sill, resulting in a smooth, decreasing, and upward-concave line close to 

the origin, which represents the drift or trend. If the trend is removed, the data consist 

of second-order stationary residuals to which interpolation techniques can be applied. 

This is also known as quasi-stationarity. 

 

In practice non-stationary data is a common occurrence. To overcome this hurdle, a 

trend is extracted, resulting in stationary or non-stationary residuals (Journel and 

Huijbregts, 1978). For the rest of this study, the residuals will be assumed as 

stationary. 

  

Let )( αuZ  be the random variable that can be split into a trend and residual 

components (Goovaerts, 1997) 

 

)()()( ααα uRumuZ += .  (2.45a) 

 

where )( αum  is the trend and )( αuR  is the residual component. The residual 

component is, by definition, modelled as a stationary random variable with a mean of 

zero 

 

DuuRE ∈∀= αα 0)]([    

 

and a covariance )( sR hC  
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The trend represents the constant variation in the data and the residual component is 

the small-scale fluctuations around that trend.  
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When considering spatial residual kriging, the assumption of intrinsic stationarity 

describes the spatial dependence given by the variogram as 

 

{ } ])()([)(ˆ2
2

ααγ uRhuREh ssR −+=  (2.45b) 

 
which is equivalent to (2.14) for a constant mean. It is therefore possible to replace the 

original data series with the residual values in each of the variogram equations 

discussed in the preceding sections without any loss of generality.  

 

Several methods have been developed to de-trend a dataset. Regression analysis is 

often used in the spatial case, using the linear and quadratic models. The most basic 

trend models for spatial-temporal measurements is to utilize deterministic functions 

(Kyriakidis and Journel, 1999), which includes the polynomial Fourier and mixed 

forms as provided by Dimitrakopoulos and Luo (1997). Another, much simpler 

method is the moving-average estimation method (Brockwell and Davies, 1987), 

where both a deterministic and seasonal component can be identified and removed.  

 

One disadvantage of using residuals is that they are dependent on the identified trend 

and can therefore introduce additional bias to the data.  

 

Example 2-15 

 

The spatial-temporal dataset ( COMST − ) is stationary compared with the spatial 

dataset COMS −  (Example 2.14).  

 

Table 2.7: Regression output for using 1Z  and 2Z .  

Attribute  jβ  SSE Pr>F 2
R  

1Z  Intercept 98.76752 0.28277 <0.0001 

 x  0.01453 0.00341 <0.0001 

 y  0.04187 0.00341 <0.0001 

0.6351 

2Z  Intercept 102.96153 0.39934 <0.0001 

 x  -0.03689 0.00482 <0.0001 

 y  -0.01880 0.00482 <0.0001 

0.4324 
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The spatial dataset was de-trended by fitting a regression line, using the REG 

procedure in SAS (Appendix B.11). The sum of squared residuals ( SSE ) for each of 

the coefficients is small and the 0:0 =jH β  is rejected for all the coefficients. The 

coefficient of determination 2
R  is also acceptable.   

 

The semi-variograms for the different directions were plotted (Figures 2-30a to 2-30c 

in Example 2-16) using the residual values. An asymptote is now reached in all 

directions for the primary and secondary semi-variograms. These residuals are 

stationary and will be used in any additional interpolation or simulation analysis. 

… 

 

Anisotropy 

 

The second spatial data property to be considered is that of anisotropy (Cressie 1991; 

Isaaks and Srivastava, 1989). If the variance of )( αuZ  depends on the spatial 

direction, the data are anisotropic. The measurements along a specific spatial direction 

may be highly correlated, while other directions have little or no correlation. If the 

spatial data are isotropic, where only the distances plays a role, the variograms in the 

different directions are reduced to a single variogram. If the observed measurements 

are defined as a second-order stationary series, then the covariance function )( αuC  is 

defined isotropic if [ ])()( shuZuZC +− αα  is only a function of  

||)()(|| shuZuZ +− αα  (Gaetan and Guyon, 2009). 

 

Several forms of anisotropy exist. Geometric anisotropy is defined in terms of a 

variogram (Figure 2-23) that have different ranges )(q  for different spatial directions. 

If the sill tc  depends on the spatial direction, the anisotropy is classified as zonal. 

Either geometric- or zonal anisotropy, or both types can be present.  

 

To accurately assess whether anisotropy is present in a dataset, variograms in different 

directions should be calculated. Goovaerts (1997) suggests that at least 1+d  

directional semi-variograms be calculated for a dataset in dℜ . If the semi-variograms 

exhibit the same characteristics, it can be safely assumed that the data are isotropic; 
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data are homogeneous in all possible directions. The isotropic variogram depends 

only on the length of the spatial lag. 

 

For geometric anisotropic data, the ranges )(q  of the different directional variograms 

can be plotted according to the respective directions by means of a rose diagram. This 

provides a graphical representation of the major and minor axes that influence the 

data. Figure 2-28 is an example of a rose diagram (Isaaks and Srivastava, 1989). 

 

For two-dimensional datasets, only one major and one minor axis are expected. The 

major axis is identified by the directional semi-variogram with the maximum range. 

The largest sill, as a measure of variability, is perpendicular to the major axis. 

Conversely, the directional semi-variogram with the minimum range represents the 

minor axis.  

 

Geometric anisotropy is included in the semi-variogram by means of a simple linear 

transformation of the rectangular co-ordinates and is best illustrated with a Spherical 

variogram in Figure 2-29 (Webster and Oliver, 2007) and the range that describes an 

ellipse in the plane of the spatial lag. From Figure 2-29, A  is the range of the major 

axis (maximum diameter of the ellipse) and B  the range of the minor axis and is 

perpendicular to the first. If it is assumed that θ  is the angle of the direction of the 

major axis and ϑ  is the direction of the lag, the equation for transformation is 

expressed as 

 

{ } 212222 )(sin)(cos)( θϑθϑϑ −+−=Ω BA  (2.46) 

 

 with Ω  defined as the anisotropy and ϑ  the direction of the spatial lag. The function 

)(ϑΩ  will replace q  in the basic semi-variogram models defined later in Section 3.3. 

 

A large range in a specific direction indicates strong covariance, even at large lag 

distances, whereas the converse is true for small values of q . If this occurs, the same 

model cannot be used for all directions. 

 

Zonal anisotropy is present in a dataset when the sill ( tc ) differs in different 

directions. Nested variograms (Section 3.3) and geometric anisotropy are used to 
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approximate zonal anisotropy as no direct transformations exist (Goovaerts, 1997, 

p93). A nested variogram is defined as a variogram model that consists of two or 

more basic variogram models that are valid for specific intervals of the lag distances.  

 

 

Figure 2-28: The ranges of 9 directional semi-variograms were plotted in their                       

                      respective directions. An ellipse )(−−  can be fitted, and highlights the  

                      major )(−  and the minor )( ⋅⋅⋅ geometric anisotropic axes. 

 

 

Figure 2-29: A representation of geometric anisotropy. The ellipse describes the  

                      ranges of the Spherical variogram in 2ℜ .  

 

Anisotropy for spatial-temporal models is best explained in terms of zonal anisotropy. 

Owing to the complexity surrounding the fitting of a spatial-temporal variogram 

model, anisotropy will be discussed under the heading of permissible models in 

Chapter 3. 
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Example 2-16 

 

In this example, the residuals of the simulated dataset COMS −  are tested for 

anisotropy by inspecting the three directions of o0  (horizontal), o90  (vertical) and 

o45  (diagonally), as investigated in Example 2-10. 

 

 

Figure 2-30a: Horizontal de-trended semi-variogram for 1Z  and 2Z . 

 

 

Figure 2-30b: Vertical de-trended semi-variogram for 1Z  and 2Z . 

 

 

Figure 2-30c: Diagonal de-trended semi-variogram for 1Z  and 2Z . 

 

The variograms depicted in Figures 2-22a to 2-22c indicated that the raw data are 

anisotropic. The residuals determined in Example 2-15 were used to calculated the 
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residual semi-variogram estimates and were plotted in Figures 2-30a to 2-30c.  

 

The ranges for 1Z  is m20  in the horizontal direction and m30  in both the vertical and 

diagonal directions. The second attribute 2Z  exhibits isotropic behaviour, with ranges 

of m40  in all three directions.  The first attribute is assumed to be isotropic since the 

difference in the ranges is only m10 . One omnidirectional variogram will be 

calculated for both 1Z  and 2Z  in Example 2-17. It appears that the anisotropic 

behaviour is connected to the trend of the data. 

 

 

Ergodicity 

 

Ergodicity flows from the stationarity assumptions. Along with the constant mean and 

the assumption of intrinsic stationarity, ergodicity is needed to estimate the semi-

variogram. Simply put, if you have a random variable )( αuZ  with a constant sample 

mean of Z , the hypothesis of ergodicity assumes that [ ])( αuZEZ = . This allows 

spatial averages to be used as the expectation in the total space of data and is 

applicable to the second-order stationary subset (Cressie, 1991).  

 

The assumption of ergodicity provides the platform from which the joint probability 

law of several subsets can be utilized. Prediction equations, based on the estimated 

covariance and mean squared errors of prediction can proceed on a consistent basis 

that provides a prediction algorithm with statistically optimal properties.  

 

Spatial-temporal ergodicity is extended for the random variable ),( τα tuZ , with a 

constant sample mean of Z . Assume that the constant sample mean can be expressed 

as [ ]),( τα tuZEZ = . This allows spatial-temporal averages to be used as the 

expectation in the total spatial-temporal structure and is applicable to the second-order 

stationary subset. As with spatial ergodicity, spatial-temporal ergodicity provides the 

platform from which the joint probability law of several subsets can be utilized. 
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Irregular Spaced Measurements 

 

In practise, measurements are rarely made at exactly equidistant locations similar to 

the simulated data in this study. If the researcher strictly adheres to the formulae for 

variogram and covariances, the number of pairs available for computation is minimal.  

 

To overcome these obstacles, tolerances in both distance and direction can be built 

into the variogram and covariance functions (Goovaerts, 1997; Isaaks and 

Srivastava, 1989). Figure 2-31 represents how a tolerance of m1±  in distance and 

o20±  in direction is added. Any pair that falls into the shaded area will be included 

in the calculation of the semi-variogram of mh s 5= . 

An omnidirectional variogram is defined when the directional tolerance is large 

enough that the direction becomes unimportant. This variogram provides the 

researcher with a basis on which he can concentrate when choosing the distance 

parameters that produce the clearest structure.  

 

The directional variogram is created by calculating the semi-variogram estimates at 

all the different distances and directions identified by the angle and distance tolerance 

process. All the estimates are then plotted in a single graph and modelled 

accordingly. 

 

 

Figure 2-31: Graphical representation of how magnitude and directional tolerance  

                      can be included in the semi-variogram model (Isaaks and Srivastava,     

                      1989).  
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Messy omnidirectional variograms can also indicate an underlying structural problem 

that should be addressed before continuing with the analysis. Once this variogram is 

well-behaved, investigations in terms of anisotropy can continue. 

 

Example 2-17  

 

Figures 2-32 (a-c) represent the omnidirectional residual semi-variograms for the 

primary and secondary datasets, as well as the cross of primary with the secondary 

and vice versa. The cross semi-variograms of 21ZZ  and 12ZZ  are identical, but it 

appears that the some of the strength of the correlation between the variables were lost 

in the de-trending of the data. The fact that the cross semi-variogram value at m50  

does not follow the general trend is attributed to the positive correlation between the 

primary and secondary attribute as discussed in Example 2-11. Since the data were 

sampled on a regular grid, no tolerances for distance were built into the semi-

variogram estimates. 

 

The code is available in Appendix B.12. 

 

 

 

Figure 2-32: Residual omnidirectional spatial semi-variograms for 1Z  in (a), 

                      2Z  in (b), 21ZZ  and 12ZZ  in (c). 

… 
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2.7 SOFTWARE AND RESOURCES 

 

Over the years several scientists have developed commercial and open-source 

programs and graphical user interface (GUI) applications to aid researchers with 

spatial and spatial-temporal analysis.  

 

The most commonly used open-source software for building variograms and 

interpolation through kriging are the FORTRAN-based programs, such as the 

comprehensive GSLIB toolbox (Geostatistical Software Library) and the FORTRAN 

77 code, developed by De Cesare et al. (2002) for univariate spatial-temporal kriging. 

 

Other open-source programs are the DOS-based GEO-EAS (http://igwmc.mines.edu/ 

zipfiles/geo-eas.htm) and the R language programs (https://stat.ethz.ch/pipermail/ r-

help/2003-January/028762.html). Gstat (http://www.gstat.org/) was code developed 

for multivariable geostatistical modelling, prediction and simulation that can interface 

with other open-source programs, such as R or the S-Plus library. 

Well-known commercial statistical software that can be used includes Matlab and 

SAS. The official toolbox that is available from Matlab was developed by Caroline 

Lafleur and Yves Gratton from the INRS-Ocanologiea of the Universit du Qubec 

Rimouski. Another toolbox that also runs in Matlab is EasyKrig, which was 

developed by Dezhang Chu and is available at ftp://globec.whoi.edu/pub/software/ 

kriging/easy_krig.  

 

GEOSTATS is a GUI application in Matlab developed by Luke Spadavecchia, from 

the School of Geosciences at the University of Edinburgh. This application caters for 

the two-dimensional Inverse Distance Weighting function, space-time statistics that 

utilize the product-sum covariance model and the option of space-time simulation. 

 

SAS procedures which can be used are the VARIOGRAM and KRIG2D procedures. 

The VARIOGRAM procedure is used to calculate the spatial continuity two-

dimensional functions, and KRIG2D performs the spatial ordinary kriging. 

 

Some of the other geostatistical software tools that are available from Rockware, are 

the ArcGIS Geostatistical Analyst Tool (http://www.rockware.com/product/featureCa 
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tegories.php?id=193), GS+ (http://www.rockware.com/product/overview.php?Id= 98) 

and Surfer (http://www.rockware.com/product/featureCategories.php?id=129& parent 

=592).   

 

Compared with the commercial applications, open-source programs are freely 

available from the Internet and are used at the researcher’s own risk, without any 

technical support. 

 

For the purposes of this study, existing SAS procedures were used and IML routines 

were developed to cater for all four options. The code were written to best explain the 

theory and are not for commercial use. 

 

Websites such as Matlab newsgroup, Math Forum, ai-geostats and R-sig-geo are four 

of the more commonly used platforms for communications partaining geostatistics 

between people working in different fields. Questions regarding theory and open-

source software can be posted and answered on this platform. 

Several academic institutions have research institutions dedicated to the development 

of theoretical methodologies, focusing specifically on space and time distributions of 

the earth sciences. In 1968 Georges Matheron, who is known as the founder of 

geostatistics, established the Centre de Geóstatistique et de Morphologie 

Mathématique. This centre was integrated into the Centre de Geósciences Mines Paris 

Tech, which is a “research organization which deals specifically with earth sciences 

and the environment”. Another well-known centre is the GFZ German Research 

Centre for Geosciences, with the primary goal of research on all aspects of the earth 

system. The Geostatistics/Geomathematics programme at the University of Stanford 

consists of several departments dedicated to “the development and statistical 

validation of numerical models to characterize the distribution in time and space of 

earth science phenomena”. Students at the centre were thanked by C. Deutsch and A. 

Journel for their insight into the book GSLIB Geostatistical Software Library and 

User’s Guide (Deutsch and Journel, 1998). 

 

Since geostatistics is applied to a wide range of study fields, related publications are 

spread between the leading journals in each of these fields. Two journals primarily 

referenced are Mathematical Geosciences (formerly Mathematical Geology), which 
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“publishes original, high-quality, interdisciplinary papers focusing on quantitative 

methods and studies of the Earth, its natural resources and the environment”. This 

journal is the official, international journal of the International Association for 

Mathematical Geology (IAMG) and is published on a quarterly basis by Springer 

Verlag. The second journal is Geoderma by Elsevier and is “a global journal of soil 

science” which “welcomes interdisciplinary work focussing on dynamic soil 

processes and their occurrence in space and time”. 
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CHAPTER 3 

MOMENT MODELLING 

 

3.1 INTRODUCTION 

Chapter 2 provided an overview of the moments that could be utilized to provide 

additional information on the relationships between data that were measured in space 

and time.  

 

To proceed to the next level of interpolation and stochastic simulation, an empirical 

model is fitted to the variogram. Methods of modelling of the spatial moments defined 

in Section 2.5 are available in textbooks by Cressie (1993), Journel and Huijbregts 

(1978), Isaaks and Srivastava (1989), Goovaerts (1997), and the more recent 

publication of Webster and Oliver (2007). Articles by Rodriguez-Iturbe and Meija 

(1974), De Cesare et al. (1996), Dimitrakopoulos and Luo (1993), Rouhani and Hall 

(1989), Kyriakidis and Journal (1999), De Cesare et al. (2001a, 2001b, 2002) and De 

Iaco et al. (2001) are reference material for the more complicated procedures 

necessary for modelling the spatial-temporal moments. 

 

The functional form selected is critical in the estimation of the model parameters and 

the creation of a permissible model. Stationarity, anisotropy and ergodicity, as defined 

in Section 2.6, play an integral role to ensure that the fitted models faithfully adhere to 

the underlying data structures. Two additional model conditions required are the semi- 

positive and conditionally semi-negative definite conditions for the covariance and 

variograms respectively, as defined in Section 3.2. 

 

Chapter 3 consists of defining the necessary model conditions to ensure best linear 

unbiased estimators (Section 3.2), permissible spatial models (Section 3.3) and 

permissible spatial-temporal models (Section 3.4). 
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3.2 MODEL CONDITION 

 

The principle concern of the model condition is to ensure that the model chosen is 

permissible (valid). The variogram must adhere to the requirement of conditionally 

negative semi-definiteness, and the covariance to the positive semi-definite condition.  

 

If the data are stationary, the variogram and the covariance models are 

interchangeable, as illustrated by the relationship between the variogram and the 

covariance function (Figure 2-27 and (2.41)). The model fitting procedures, which are 

primarily discussed in terms of the semi-variogram, can therefore also be followed 

when working with the covariance function. 

 

Positive Semi-Definite Condition for Covariance Functions 

 

A function can only be used as a covariance model under the second-order stationarity 

assumption if the function complies with the positive semi-definite condition 

(Wackernagel, 1995). A function is positive semi-definite if the inequality (3.2) holds 

for any data set of )()...,(),( 21 nuZuZuZ  where λ  is any vector of weights 

),...,,( 21 nλλλ . The proof is available in the Appendix A.1. 

 

∑∑
= =

≥−
n n

uuC

1 1'
'' 0)(

α α
αααα λλ  (3.2) 

 

Conditional Negative Definite Condition for Variogram Functions 

 

The variogram is defined only under intrinsic stationarity, where the stationarity of the 

variance is not required. This allows the fitting of variogram models that comply with 

the conditionally negative definite condition (Wackernagel, 1995) of 
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1 1'
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for all ℜ∈⋅⋅⋅= ),,2,1( nαλα  and  
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0
1

=∑
=

n

α
αλ . (3.3a) 

 

Under the intrinsic stationarity definition, the covariance function does not exist as the 

variance isn’t restricted to be invariant under translation. The only linear 

combinations of )( αuZ  that have a finite variance, is when the sum of the weights are 

equal to zero. The derivation of (3.3) is available in Appendix A.2. 

 

The easiest method to model a variogram or covariance function is to refer to the 

graphical representation of the calculated )( shγ  or )( shC  values. The stationarity, 

anisotropy, ergodicity, definite conditions, sill, range and nugget effects should be 

taken into account when deciding which model to fit to the data. 

 

Spatial-Temporal Model Condition 

 

Similar to the spatial case, the spatial-temporal variogram must adhere to the 

requirement of conditionally negative semi-definiteness, and the covariance to the 

positive definite condition (Wackernagel, 1995; Ma, 2003). 

 

That is, the chosen covariance model must satisfy 

 

∑∑
= =

≥−−
nT nT

ttuuC

1 1'
''' 0),(

α α
αααααα λλ  (3.4a) 

 

where nT  represents the total number of spatial-temporal combinations. 

 

The semi-variogram as (Ma, 2003) 

 

∑∑
= =

≤−−
nT nT

ttuu

1 1'
''' 0),(

α α
αααααα γλλ . (3.4b) 

 

The proof of (3.4a) and (3.4b) is similar to the proof for (3.2) and (3.3). 
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3.3 SPATIAL PERMISSIBLE MODELS 

 

In the literature, models are primarily defined for isotropic data (Cressie, 1993; 

Goovaerts, 1997; Isaaks and Srivastava, 1989; Webster and Oliver, 2007). An 

additional factor (2.46) can be introduced to the isotropic models to accurately 

describe anisotropic data. 

 

Isotropic Models 

 

Several functional forms (basic semi-variogram models) to model the semi-variogram 

estimates have been proposed and classified into two distinct groups. The range )(q , 

sill )( tc , partial sill )( ec  and the nugget effect )( 0c , as defined in Figure 2-23, are 

used to define the permissible models. All the models must also be valid for dℜ  

where 1≥d , as defined in Section 2.2. Figure 3-1 represents a few of the most 

commonly used isotropic models defined in Table 3-1 and Table 3-2. 

 

 

Figure 3-1: Graphical representation of models without nugget effects. 

 

The Exponential (3.5a), Spherical (3.5b), Linear (3.5c) and the Rational quadratic 

(3.5d) models are examples of bounded models that have a linear behaviour at the 

origin and a sill ec . Table 3-1 provides the empirical formulas of these models, as 

well as the formula of the Gaussian model (3.5e), which exhibits parabolic behaviour 

at the origin.  
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The isotropic permissible models are expressed as a function of |||||||| 'αα uuh s −= . 

 

Table 3-1: Bounded isotropic models with a linear behaviour at the origin. 
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











=

≠















−−

+=

0||||0

0||||
||||

exp1

)( 0

s

s
s

e

s

h

h
q

h
c

chγ  (3.5a) 

Spherical 
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Linear model that 

is valid for 0≥lb  
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Rational quadratic 
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Gaussian 
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The second group of isotropic models that have been developed in the literature are 

the unbounded models; in other words, models without a sill (Table 3-2). In these 

cases the random function is intrinsic without a covariance or a finite a-priori 

variance. 
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Table 3-2: Unbounded isotropic models. 

Models in θ|| h  θγ ||||)( ss hh =  with )2,0(∈θ  (3.5f) 

Linear 
||||)( ss hh ωγ =  with ω  the slope at the 

origin and 0|||| >sh . 
(3.5g) 

Logarithmic ||)log(||)( ss hh =γ  (3.5h) 

Power 

βωγ ||||)( ss hh =  were 

21;0|||| <<≥ βsh  
(3.5i) 

 

The last group of models is those that exhibit specific properties (Table 3-3). Two 

examples of these models are the hole-effect and the nugget-effect models. The hole-

effect models are non-monotonic increasing that usually displays periodic tendencies. 

When an apparent discontinuity is visible at the origin, it can be interpreted as a 

transition structure reaching its sill at 0c  for a very small range. This transition 

structure is built into the nugget-effect models.  

 

Table 3-3: Special models. 

Hole-effect 
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Pure nugget-effect 
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Figure 3-2 illustrates how certain models fit better to the data than others. Given the 

γ̂  estimates, either the Spherical or Exponential model can be fitted. The model 

selected depends on which model provides the best linear unbiased estimates during 

the interpolation or simulation process of kriging (Chapters 4 to 7). 
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Figure 3-2: Graphical representation of how the Exponential (middle, pink line),  

                    Spherical (bottom, red line) and the Linear (top, green line) models were  

                    fitted to arbitrary semi-variogram values. 

 

The semi-variogram models defined by (3.5a-k) are developed by means of the 

covariance functions and equation (2.41). If, for example, the covariance function is 

defined as  
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and substituted into equation (2.41), the Exponential semi-variogram is defined as  
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This function adheres to the four main requirements ( 0)0( =γ , )()( ss hh −= γγ , 

0)( ≥shγ  and conditional negative semi-definiteness) for a variogram to be 

permissible. 

 

Model Fitting 

 

The determination of an empirical model to represent the variance or covariance 

structure of a given dataset, is a critical step in the kriging process. In geostatistics, the 

visual fitting of a semi-variogram model by trail-and-error is the most commonly used 
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method; providing the researcher with the freedom to include his/her field-specific 

knowledge. The disadvantages of this method are that the process can be time 

consuming, and statistically developed models - that may provide a better fit - is 

ignored. 

 

The fitting of a model by means of automatic procedures, such as maximum 

likelihood or least squares methods, is preferred by some statisticians for a number of 

different reasons: (a) provides statistically sound model-fitting procedures for the 

selection of parameters and models, (b) provides a more objective modelling 

procedure where different researchers can obtain the same results, and (c) when 

numerous variograms are to be modelled on a regular basis (Pardo-Igúzquiza, 1999; 

Jian et al., 1996). Complications in automatic modelling include: (a) not all the 

models selected are permissible, which is required for the unique solution of kriging 

systems, (b) the sum of numerous permissible models (nested models) can be fitted- 

creating numerous models to select from, (c) models that are non-linear with respect 

to the parameters, and (d) correlated errors that may not be normally distributed. 

 

The least squares methods are preferred over the maximum likelihood techniques 

since these methods rely heavily on the Gaussian distributional assumption, provides 

biased estimates and calculates the parameters directly from the raw data (Cressie, 

1991, Jian et al., 1996). From the three different weighting schemes in the least 

squares family (ordinary, weighted and general), the weighted least squares method is 

more commonly used, as it is an instantaneous, iterative and transparent fitting 

method that automatically assigns more weight to those lags closer to the interpolation 

location, as well as smaller weights to lag distances with a smaller number of pairs 

available for calculation (Cressie, 1985).  

 

The recommended method of semi-variogram model fitting is a combination of the 

visual (initial guess of parameters and possible models) and the automatic fitting 

(weighted least squares), providing a statistically sound model which can incorporate 

field-specific knowledge. 
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Anisotropic models 

 

For the isotropic models defined above, it was assumed that the direction in which the 

data are distributed was of no significance. When this direction becomes significant, it 

must be incorporated into the lag vector and semi-variogram estimation.  

 

Geometric anisotropic behaviour, as discussed in Section 2.6, can be incorporated into 

the empirical formulas defined in (3.5a-k) by replacing the range q  with the 

transformation function )(ϑΩ  (2.46) in the basic semi-variogram models (Webster 

and Oliver, 2007). 

 

For example, if the Spherical model must be adjusted for anisotropy then )(ϑΩ  is 

substituted into the isotropic formula resulting in the anisotropic model 
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Nested models 

 

Real-time measurements can rarely be completely described by the smooth and 

simplistic models described above. Rather, a mixture of these models (nested) will 

provide a more realistic model to estimate the variance of differences. The models 

consist of additional parameters that render them more flexible. 

  

Care should be taken with nested models to ensure that the new model is truly 

permissible. Linear models of regionalization and co-regionalization (co-kriging), as 

discussed by Goovaerts (1993), consist of splitting the random function of the 

attribute into several uncorrelated random functions. Each of the new random 

functions has a different variogram of covariance function and is combined into a 

permissible linear semi-variogram or covariance model (Wackernagel, 1995).  
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Example 3-1 

 

Example 3-1 describes how a model can be fitted to the semi-variograms )ˆ(γ derived. 

All the spatial models will be fitted visually on the omnidirectional semi-variograms 

of the residuals, as discussed in Example 2-17. This was done due to the small 

number of data points available for model fitting in this example. It is, however, 

recommended that a combination of visual and least squares fitting be used with 

larger datasets. 

 

The forms of the residual omnidirectional semi-variogram are depicted in Figure 3-3. 

The model fitting was done by hand, using the equations from Table 3-1. Other 

methods of model fitting include regionalization (Goovaerts, 1993). Table 3-4 and 

Figures 3-4a and 3-4b represent the final models fitted to the semi-variogram. 

 

 

 

Figure 3-3:Omnidirectional residual semi-variograms for the 1Z  in (a), 2Z  in (b)  

                   and 1221 ZZZZ =  in (c). 

 

A nested model was fitted to the cross semi-variogram of 21ZZ  and 12ZZ  (which are 

identical) and consists of a Spherical model for lag distances less or equal to m10  and 

a linear model for larger distances. This model was tested and proven to fulfil 
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condition (3.4b). The last cross semi-variogram estimate was ignored, as it does not 

correspond to the general trend.  

 
As seen from Figure 3-4b, the Spherical model was fitted to the second attribute. 

However, because of the definition of model (3.5b), the model does not follow the 

scatter plot for distances larger than the range. This can have a negative influence on 

the results of the co-kriging system in Chapter 5 (Example 5-1). 

 
Table 3-4: Fitted omnidirectional semi-variogram models. 

 1Z  2Z  21ZZ = 12ZZ  

Total sill ( tc ) 1.00 2.40 0.04  

Partial sill ( ec ) 1.00 2.40 0.04 0.002649 

Nugget effect ( 0c ) 0.00 0.00 0.00 -0.06 

Range ( q ) 30 50 10  

Type of model Spherical Spherical 
Nested: Spherical( 10≤q ) and 

Unbounded linear ( 10>q ) 

 

 

Figure 3-4a: The spherical model was fitted on the omnidirectional residuals for 1Z . 

 

 

Figure 3-4b: Models fitted on the omnidirectional residuals for 2Z  in (b), 21ZZ  and  

                      12ZZ  in (c). 
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The program that develops the semi-variogram estimate is provided in Appendix B.12, 

and the program that proves that the nested mode for the cross semi-variogram fulfils 

condition (3.4b) is available in Appendix B.13. 

 

 

Notes 

• In the case of multivariate interpolation and stochastic modelling, the two 

additional conditions that co-kriging must satisfy are that permissible models 

should be available for all the primary and secondary attributes, and that a 

permissible model exits between the primary and secondary attributes 

• The basic variogram models defined in this section can also be fitted to the 

cross-variogram estimates. Alternatively, the linear model of co-

regionalization method can be applied (Goovaerts, 1993). 

 

3.4 SPATIAL-TEMPORAL PERMISSIBLE MODELS 

 

Because of the complexity surrounding spatial-temporal data, the spatial models 

cannot be applied directly to the data. The variogram definition (2.27) and the model 

conditions give the appearance of straight-forward calculation that is misleading. 

Theoretical and practical problems exist that must be addressed before a permissible 

spatial-temporal model can be fitted. The problems are: 

 

a. Qualitative differences between space and time. 

b. Possible presence of spatial non-stationarity and temporal periodicity. 

c. Spatial and temporal scales that are physically non-comparable. 

d. Space-time datasets usually consist of a few spatial locations, each with a  

    long time series. 

e. Data must be second-order stationary to fit the existing permissible spatial- 

    temporal models. 

 

Several techniques have been introduced to take these structural problems into 

account and can be classified into two groups; separable and non-separable models, 

each with its advantages and disadvantages. 
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To illustrate existing permissible spatial-temporal models, assume that ),( τα tuZ  is a 

second-order stationary, spatial-temporal random variable with an expected value, 

covariance and variogram expressed as in (3.6a) to (3.6c) respectively. 

 

[ ] 0),( =τα tuZE  (3.6a) 

 

[ ]),(),,(cov),( τατα tuZhthuZhhC tstsst ++=  (3.6b) 

 

[ ]),(),(var
2

1
),( ταταγ tuZhthuZhh tstsst −++=  (3.6c) 

 

Because of the second-order stationarity, all three statistics depend on the lag vector 

),( ts hh  and not on the location or time point. The covariance function (3.6b) also 

adheres to the semi-positive definite condition of (3.4a) (Christakos, 1984). 

 

Separable Models 

 

Separable models are characterized by the decomposition of the second-order 

stationary variable into its pure spatial ( )( ss hC ) and pure temporal ( )( tt hC ) 

components (Rodriguez-Iturbe and Meija, 1974; De Cesare et al., 1996). These 

components are reassembled in different combinations. The spatial and temporal 

zonal anisotropic factors are thus respectively included in the pure spatial and pure 

temporal covariances.  

 

Some of the models introduced are the metric, linear, product and product-sum model.  

 

1. The metric model (Dimitrakopoulos and Luo, 1993) 

 

)||||(),( 2222
tstsst hbhaChhC +=  (3.7) 

 

where the coefficients ℜ∈ba, . The disadvantage of this model is that it is assumed 

that the spatial and temporal covariance structures are described by the same 

covariance model. A second disadvantage is that the covariance model is only defined 

in terms of distance and anisotropic factors. Only the ranges have an influence on the 

final covariance structure. 
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2. The linear model (Rouhani and Hall, 1989)  

The linear combination of the pure spatial and temporal covariances is referred to as 

the linear model. 

 

)()(),( ttsstsst hChChhC +=  (3.8) 

 

where 

 

))(),(cov()( sss huZuZhC += αα  (3.9a) 

 

and 

 

))(),(cov()( ttt htZtZhC += ττ  (3.9b) 

 

The linear model is prone to singularity, which hinders optimal prediction (Myers and 

Journel, 1990). If this method is used, additional tests should be performed to ensure 

that the model yields the required non-singular dataset. 

 

3. The product model (Rodriguez-Iturbe and Mejia, 1974) 

The product-model is defined in terms of the pure spatial (3.9a) and pure temporal 

(3.9b) covariances as 

 

)()(),( ttsstsst hChChhC κ=  (3.10a) 

 

The spatial-temporal variogram ),( tsst hhγ  is written in terms of the pure spatial 

( )( ss hγ ) and pure temporal ( )( tt hγ ) semi-variograms as  

 

[ ])()()()0()()0(),( ttssttsssttsst hhhChChh γγγγκγ −+=  (3.10b)  

 

where  

 

• stγ  is the spatial-temporal variogram 

• tγ  is the temporal variogram 

• sγ  is the spatial variogram 

• tC  is the temporal covariance  

• sC  is the spatial covariance. 
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The parameter κ  is determined as 

 

)0()0(

)0,0(

ts

st

CC

C
=κ  (3.10c)  

 

where )0,0(stC  is defined as the spatial-temporal sill. The product spatial-temporal 

semi-variogram (3.10b) is derived by expanding (2.41) in terms of spatial-temporal, 

pure spatial and pure temporal components. 

 

),()0,0(),( tsststtsst hhCChh −=γ  (3.11a)  

 

)()0()( sssss hCCh −=γ  (3.11b)  

 

)()0()( ttttt hCCh −=γ  (3.11c)  

 

The metric, linear and product model assume that the spatial and temporal covariance 

structures always have the same shape. No allowance is made for the possibility that 

the structures may change over time. Another disadvantage is that no provision is 

made for interaction between the variability in space and time.  

 

Non-Separable Models 

 

Non-separable models are specifically constructed to take into the account the 

interaction between the spatial and temporal characteristics of the data. Statistical 

methods, such as Fourier transform pairs in dℜ  are used (Cressie and Huang, 1999). 

The models are then restricted to a small class of functions for which the closed form 

solution to the d -variate Fourier integral is known.  

 

The non-separable models proposed by Cressie and Huang (1999) and Gneiting 

(2001) are complex and difficult to implement compared with the separable models. 

The separable models are, in turn, too simplistic to correctly capture the relationship 

between the spatial and temporal dependencies. A generalized straight-forward non-

separable model was introduced by De Cesare et al., (2001a, 2001b) and is known as 

the product-sum model. 
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The product-sum model (De Cesare et al., 2001a, 2001b, 2002, De Iaco et al.,  

2001) is the linear combination of arbitrarily complex and interacting covariance 

structures (including anisotropy) in the space-time structure. This model is considered 

non-separable (De Iaco et al., 2001) and is most popular since a set of more flexible 

models are available and an arbitrary space-time metric is not required.  

 

The product-sum model is defined as  

 

)()()()(),( 321 ttssttsstsst hCkhCkhChCkhhC ++=  (3.12a)  

 

or equivalently 

 

)()()()]0([)()]0([),( 11312 ttssttsssttsst hhkhCkkhCkkhh γγγγγ −+++=  (3.12b)  

 

where sC  and tC  are the pure spatial and temporal covariance functions and sγ  and 

tγ  are the pure spatial and temporal semi-variograms. The function )0,0(stC  is the 

global sill of stγ , )0(sC  is the sill of sγ  and )0(tC  is the sill of tγ . By definition  

 

0)0()0()0,0( === tsst γγγ  (3.13)  

 

is true as the second-order stationarity assumption is sufficient to ensure that the semi-

variograms are asymptotically bounded and therefore have sills (De Cesare et al., 

2001a, 2001b, De Iaco et al., 2001). It is sufficient that 01 >k , 02 ≥k  and 03 ≥k  to 

ensure positive definiteness (Appendix A.4, Theorem 1).  

 

It follows that  

 

)()())0(()0,( 12 ssssstsst hkhCkkh γγγ =+=  (3.13a)  

 

and 

 

)()())0((),0( 13 tttttstst hkhCkkh γγγ =+=  (3.13b)  

 

where sk  and tk  are respectively perceived as the coefficients of proportionality 

between the spatial-temporal semi-variograms ( )0,( sst hγ  and ),0( tst hγ ) and the pure 

spatial and pure temporal semi-variogram models (De Iaco et al., 2001). The 

coefficients are defined as  
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)0(12 ts Ckkk +=  (3.14a)  

 

and 

 

)0(13 st Ckkk +=  (3.14b)  

 

The coefficients of 1k , 2k  and 3k  are derived in Appendix A.3 and are defined as  

 

)0()0(

)0,0()0()0(
1

ts

stttss

CC

CCkCk
k

−+
=  (3.15a)  

 

)0(

)0()0,0(
2

s

ttst

C

CkC
k

−
=  (3.15b)  

 

)0(

)0()0,0(
3

t

ssst

C

CkC
k

−
=  (3.15c)  

 

If 01 >k , 02 ≥k  and 03 ≥k (Theorem1, Corollary 1 and 2 in Appendix A.4), the 

positive-definiteness is assured for any class of covariance models as it is related to 

the sill values. 

 

A single coefficient k  can be defined (Appendix A.3) by combining (3.13a) and 

(3.13b), (3.14a) and (3.14b) and the global sill   

 

)0()0()0()0()0,0( 321 tstsst CkCkCCkC ++=  (3.16)  

 

as 

 

ts kk

k
k 1=  (3.17)  

 

 

The spatial-temporal semi-variogram can be re-defined (Appendix A.4, Theorem 2) in 

terms of the newly defined coefficient k  as 

 

),0()0,(),0()0,(),( tstssttstssttsst hhkhhhh γγγγγ −+=  (3.18)  
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Some interesting results exhibited by the product-sum model are that the semi-

variograms do not have the same sill. 

  

),()0,0(),( tsststtsst hhCChh −=γ  (3.19a)  

 

)0,()0,0()0,( sststsst hCCh −=γ  (3.19b)  

 

),0()0,0(),0( tststtst hCCh −=γ  (3.19c)  

 

 

Theorem 2 (Appendix A.4) shows that the asymptotic behaviour of ),( tsst hhγ , 

)0,( sst hγ  and ),0( tst hγ  as defined in Appendix A.3, does not allow the semi-

variograms to reach the same sill. For the practical application of the product-sum 

model , refer to De Iaco et al. (2001). 

 

The product-sum model is preferred to the separable and non-separable models 

because of the simplicity of the calculations and that a measure of the spatial-temporal 

interaction is included.  

 

De Iaco et al.,. (2003) introduced the linear model of co-regionalization for spatial-

temporal data. Similar to the linear models of regionalization and co-regionalization, 

this method is an alternative for fitting permissible models and can be applied to the 

univariate and multivariate datasets. 

 

The product-sum model will be used to illustrate the model fitting process for the 

residuals of the simulated dataset COMST _ . 

 

Example 3-2 

 

Example 3-2 follows the process of fitting product-sum spatial-temporal models to the 

primary, secondary and cross omnidirectional semi-variograms, using (3.12b). 

 

The first step in creating the semi-variogram scatterplots for )0,( sst hγ  and ),0( tst hγ , 

as depicted in Figure 3.5 and Figure 3-6, is to de-trend the data according to Example 

 
 
 



                                        
 

 85 

2-14. The isotropic bounded models defined in Table 3-1 were fitted to the semi-

variogram scatterplot and the parameters of the selected models are defined in Table 

3-5. Figures 3-5 and 3-6 represent the fitted models in Table 3-5. The whole program 

(excluding the graphs) is available in Appendix B.14. 

 

Figures 3-5 to 3-7 were used to determine )0(ssCk , )0(ttCk  and )0,0(stC  

respectively, and subsequently the coefficient k  (3.17) as provided in Table 3-6. 

 

In this example the parameter values were visually identified and manually adjusted 

to obtain a relatively good fit. This method was followed due to the small number of 

data points available for modelling. It is, however, recommended to use the 

combination of visual and least squares model fitting as described in Section 3.3. 

 

Table 3-5: Chosen bounded isotropic models for )0,( sst hγ  and ),0( tst hγ . 

  
tc  ec  q  Model 

)0,( sst hγ  1Z  1.00 1.00 50 Spherical 

 2Z  1.00 1.00 50 Spherical 

 1221 ZZZZ =  -0.20 -0.20 41 Gaussian 

),0( tst hγ  1Z  1.27 1.27 5 Exponential 

 2Z  1.70 1.70 8 Spherical 

 1221 ZZZZ =  -0.17 -0.17 10 Spherical 

 

Table 3-6: Values of )0,0(stC  and the coefficient k . 

 1Z  2Z  21ZZ  12ZZ  

)0(ssCk  1.00 1.00 -0.20 -0.20 

)0(ttCk  1.27 1.70 -0.17 -0.17 

)0,0(stC  1.32 1.85 -0.37 -0.37 

k  0.74 0.50 0.03 0.03 
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Figure 3-5: Omnidirectional semi-variograms for 1Z  in (a), 2Z  in (b), 21ZZ  and  

                    12ZZ  in (c) for )0,( shγ . 

 

 

 

Figure 3-6: Omnidirectional semi-variograms for 1Z in (a), 2Z  in (b) and 21ZZ  and  

                    12ZZ  in (c) for ),0( thγ . 
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Figure 3-7: Omnidirectional spatial-temporal semi-variograms for 1Z  in (a), 2Z  in  

                    (b) and 1221 ZZZZ =  (c) for ),( ts hhγ . 

 

The final product-sum model as per (3.18) for the primary attribute is 
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The product-sum model for the secondary attribute assumes four possible options 

depending on the distance in space and time and is represented as )(),(,2 ahh tsst =γ  
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or )(b  or )(c  or )(d  where 
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Finally, the product-sum model for the cross semi-variogram is expressed as  
 

)(),(),( ,21,12 ahhhh tssttsst == γγ  or )(b  
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CHAPTER 4 

UNIVARIATE SPATIAL INTERPOLATION 

 

The first methodology investigated for pure univariate spatial interpolation (CASE I 

in Table 2-1) is spatial ordinary kriging )( OKS − . This chapter provides background 

information (Section 4.1) and defines the general ordinary kriging methodology 

(Section 4.2).  

 

4.1 INTRODUCTION 

 

In geostatistics, kriging is one of the tools that best capitalize on the underlying spatial 

correlation structure resulting from the distance between neighbouring locations. 

Kriging can be applied to univariate, as well as multivariate spatial data to estimate 

measurements at unsampled locations. The underlying mechanism is similar to that of 

the Inverse Distance Weighting )(IDW  function (Shephard, 1968) in that data points 

in closer proximity to missing values will be assigned a larger weight than those of the 

data points farther away. The main difference between the two techniques is that 

IDW  primarily makes use of the Euclidean distance between the neighbouring 

locations to determine the weights, whereas kriging uses spatial dependent weights to 

describe the modelled degree and type of spatial dependence between the 

neighbouring locations.  

 

The geostatistical algorithms defined as ‘kriging’ are based on empirical techniques 

developed by a South African mining engineer, D.G Krige, for the process of 

determining true ore-grade distributions from sample-based ore grades (Krige, 1951). 

Over the years, several scientists, with the help of previously developed optimal linear 

prediction techniques, have expanded and refined those formulas into the kriging 

techniques used today. 

 

The development of spatial statistics through kriging is mainly accredited to Georges 

Matheron and the “Centre de Géostatistique et de Morphologie Mathématique” 

established by him. Other key literature sources of kriging techniques are those of 
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Journel and Huijbregts (1978), Cressie (1991), Goovaerts (1997), Clark and Harper 

(2000), and Nielsen and Wendroth (2003). Webster and Oliver (2007, p6) provide a 

brief history on the development of variance analysis, as early as 1911, into the 

functional form of kriging used today.  

  

Kriging forms part of the least square error family in that the method minimizes the 

mean squared error of a continuous model that was fitted to the stochastic spatial 

variation. The variation is used to generate a set of weighting factors that minimizes 

the error and provides a best linear unbiased estimate (BLUE).  

 

Even though most texts refer to kriging as a non-parametric method, the underlying 

connection with the least square error family can result in unstable kriging estimates 

when a serious departure from normality exists in the data (Webster and Oliver, 

2007). Subsequent inference and interpretation become less reliable. It is therefore 

recommended that normal or normalized data be used when using kriging for 

interpolation or simulation of data. 

 

Spatial kriging utilizes the general spatial notation as defined by (2.2). Several 

different types of kriging methods, based on different model assumptions and 

available information, are defined and classified into linear and non-linear models. 

Table 4-1 distinguishes between the linear and non-linear methodologies and provides 

the core assumptions for each of the kriging techniques defined.  

 

Kriging methodology primarily utilizes the variogram and covariance functions 

interchangeably. This chapter provides the tools necessary to build a successful 

kriging system, as defined in Section 4.2. The fitted variogram models from Chapter 

3 will be used in the kriging process to create a set of weights that will be used to 

determine a best linear unbiased estimator (BLUE) for the missing values. 
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Table 4-1: Main kriging methodologies 

Group Type Assumption 

Simple Least complex, but with strict model assumptions. 

Assumes a known constant trend: 0))(( =uZE  

Ordinary Most robust and commonly used. 

Assumes a known constant trend: µ=))(( uZE  

Universal 

 

Kriging on a linear model with variable mean. Also 

known as kriging with external drift. 

Factorial Useful when several scales of variation exist (nested 

variation). 

Lognormal Ordinary kriging of the logarithmic transformations 

of non-normal and distinctly positively skewed data. 

Linear Kriging 

Co-kriging Ordinary kriging of data consisting of more than one 

attribute. 

Indicator Kriging of binary data. 

Disjunctive Used in the determination of the likelihood or 

probability of true values exceeding a specified 

threshold. 

Probability Similar to indicator kriging, but utilizes co-kriging 

methodology. 

Non-linear Kriging 

Bayesian Prior drift information used in universal kriging. 

 

4.2 SPATIAL ORDINARY KRIGING )( OKS −  

 

Kriging is the inference on missing values widely known as ‘optimal prediction’ or 

‘optimal interpolation’. The aim is to provide a solution for the problem of 

interpolating missing values that is based on a continuous model of the stochastic 

spatial variation.  

 

Ordinary kriging is the most robust and the most frequently used kriging method. It 

uses a single attribute, which can be distributed in one, two or three dimensions. The 
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kriging methodology for this study will be defined in two dimensions by using the 

stochastic model definitions (2.2) and (2.8a).  

 

Chapters 2 and 3 provided methods to describe the statistical variation of the data by 

means of descriptive statistics and the modelling of the moments. Kriging 

incorporates the models of the moments to generate a set of weighting factors that 

provides a minimum interpolation error (Journel and Huijbreghts, 1978; Isaaks and 

Srivastava, 1989; Cressie, 1993). This set of weighting factors depends on the 

distance between locations, the spatial dependency between the data and the accuracy 

of the developed permissible variogram (covariance). A BLUE system is achieved 

when the estimation variance is minimized.  

 

The ordinary kriging methodology is based on the following assumptions: 

 

• Mean is unknown and constant µµ == )())(( uuZE  

• Variogram is known 

• Covariance is known 

• Weights are conditioned to sum to one to ensure unbiased estimators 

• Intrinsic stationarity of the data are required. 

 

If these requirements are met the spatial ordinary kriging estimator is given as 
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α
ααλ  (4.1) 

 

where 

 

∑
=

=
n

1

1
α

αλ  (4.2) 

 

with n  as the number of locations sampled. To ensure that (4.1) is a best linear 

unbiased estimate, the weights αλ  must sum to one (Appendix A.5). The spatial 

ordinary kriging estimate )(ˆ
0uZ  is a linear weighted average of all the available 

measurements.  
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To ensure that (4.1) is a best linear unbiased estimator the expected error (4.4a) must 

be equal to zero and the estimation variance (4.4c) must be minimized. 

 

Suppose that the data is second-order stationary. Let the estimation error be  

 

)()(ˆ
00 uZuZ −  (4.3) 

 

)(ˆ
0uZ  is an unbiased linear estimate if  
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and  
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(4.4b) 

 

is minimized subjected to (4.2) (Gilgen, 2006). The estimation variance is written 

using the semi-variogram notation  by utilizing (2.41)   
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(4.4c) 

 

To minimize (4.4c) for the model (4.1), the weights are subjected to the condition 

(4.2), hold true for the variogram as defined in (2.15) and utilize Lagrange multipliers 

(Appendix A.6). At the location 0u , the variance to be minimized is 
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where ϕ  is the Lagrange multiplier to ensure the condition (4.2) is met and results in 
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To adhere to the minimizing condition, (4.6) is differentiated with regard to αλ  and 

ϕ , and set equal to zero. This yields (4.7) 
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The spatial ordinary kriging system (Goovaerts, 1997) in terms of the variogram is 

expressed from (4.7) as 
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 (4.8) 

 

The weights 'αλ  are substituted back into equation (4.1) and the spatial ordinary 

kriging estimate for location 0u  is calculated. 

 

Equation (4.8) can be rewritten into the matrix format 
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where ijγ  is the semi-variogram between the th
i  and th

j  locations, or as  

 

0
γλ =Γ . (4.10) 

 

The weighting vector is then solved by 
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0

1γλ −Γ= . 

 

This can be expanded to 
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and 
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Results (4.10a) and (4.10b) were obtained by means of matrix partitioning of (4.10) 

into the following blocks. 
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The OKS −  system can also be expressed in terms of the covariance. Since the 

variogram and covariance are interchangeable, only intrinsic stationarity is required. 

The relationship between the variogram and the covariance (2.41) is used for this 

purpose.  

 

The OKS −  system of (4.8), expressed in terms of covariances (Goovaerts, 1997) 

becomes  
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The only difference between (4.8) and (4.12) is the use of the covariance functions, as 

well as the change in the sign of the Lagrange multiplier (Goovaerts, 1997).   
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The OKS −  system can also be written in terms of the correlation (correlogram) by 

utilizing the relationship between the covariance and the correlogram. The spatial 

ordinary kriging system expressed in terms of the correlogram is defined in (4.13). 

The choice of which system to use in terms of the variogram, covariance and 

correlogram depends on the researcher and which of the tools best describes the data. 
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Kriging can utilize the concept of predefined neighbourhoods that are selected based 

on the number of locations, as well as the distance of the locations from the target 

location similar to IDW  (Shepard, 1968). This is especially useful in cases where the 

data are stationary only for certain neighbourhoods, but not for the whole dataset. 

Neighbourhood kriging is ordinary kriging where a specific neighbourhood is 

identified for which the variogram and kriging systems are established (Switzer, 

2002). 

 

In Section 2.6, the non-stationary data were split into trend and stationary residuals in 

order to comply with the stationary assumption needed for unbiased estimation. 

Kriging applied to residuals is called ‘residual kriging’ (Goovaerts, 1997).  

The original data series is replaced with the residual values in each of the kriging 

equations discussed in the preceding sections without any loss of generality. The final 

interpolated value will then be the sum of the trend and the estimated residual by 

adapting equation (4.1). 
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α
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One disadvantage of residual kriging is that the residuals are dependent on the 

identified trend and can therefore introduce additional bias to the data. Kriging with a 

trend model can also be investigated to identify the best predictor since the trend is 

included in the kriging system constraints (Goovaerts, 1997, p143). 
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Example 4-1 

 

Example 4-1 is based on the dataset COMS −  used in Chapters 2 and 3. De-trended 

data from Example 2-15 and the subsequent omnidirectional semi-variograms defined 

in Example 2-17 and Example 3-1 will be used to illustrate the OKS − .  

 

In order to illustrate the interpolation power of OKS − , 15 locations (15%) were 

randomly selected using the SURVEYSELECT procedure in SAS. The locations 

selected are provided in Table 4-2.  

 

Table 4-2: Randomly selected missing locations. 

u11=(20,10) u14=(20,40) u17=(20,70) u18=(20,80) u22=(30,20) 

u23=(30,30) u25=(30,50) u36=(40,60) u38=(40,80) u59=(60,90) 

u60=(60,100) u69=(70,90) u80=(80,100) u90=(90,100) u100=(100,100) 

 

The identified locations are removed from the primary data in the complete de-

trended dataset to create the set COMMDS − . This dataset will be used for the 

kriging system. 

 

The residual omnidirectional semi-variogram model for the semi-variogram of 1Z , 

defined in Example 3-1 is 

 

)
27000

||||
5.0

60

||||3
()(

3














−= ss

s

hh
hγ  

 
In practice, this model will be estimated from the incomplete dataset.The next step is 

to determine the equations for the OKS −  system that ensure unbiased weights, and 

to interpolate the missing values in the primary dataset. 

 

The interpolate value for location 11u  can be expressed by using (4.14) and (4.2) as 

∑
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1
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1
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αλ  respectively.  The OKS −  system (4.9) 

is expanded as follows for the missing location  
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∑
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−=−−
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An example of the expansion where 1=α  is given as  
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(1) )()(...)()( 11185185212111 uuuuuuuu −=−−++−+− γϕγλγλγλ  

 

An equation as above is created for each of the 85 sampled locations. 

 

(2) )()(...)()( 11285285222121 uuuuuuuu −=−−++−+− γϕγλγλγλ  

(3) )()(...)()( 11385385232131 uuuuuuuu −=−−++−+− γϕγλγλγλ  

… … 

(85) )()(...)()( 11858518528521851 uuuuuuuu −=−−++−+− γϕγλγλγλ  

(86) 1... 8521 =+++ λλλ  

 

These equations can be solved simultaneously to determine 8521 ,...,, λλλ  and ϕ , 

using (4.10a) and (4.10b). It is important to note that for each measurement that must 

be interpolated, a new set of weights and Lagrange multipliers must be calculated. 

The weights are also only calculated for those locations were there are no missing 

measurements. 

 

The interpolated values, as well as the estimation variance (4.4c) for the missing 

primary measurements at the locations defined above are provided in Table 4-3. The 

difference between the original and interpolated measurements highlights the fact that 

bias is introduced bacause of a semi-variogram model that does not fit perfectly due to 

random and undefined random variation. The interpolated value is also affected by the 

number of neighboring locations that are also missing. The introduced bias is also 

reflected in the large estimation variance.  

 

The researcher can decide at this point that he or she is comfortable with the results, 

or try to determine a different variogram that could perform better. The SAS code is 
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available in Appendix B.15. 

 

Table 4-3: Interpolated measurements. 

Location Original  

1Z  

Univariate 

estimate 1Z  

Univariate

)(ˆ 0
2

uσ  

u11=(20,10) 99.24 99.09 0.45 

u14=(20,40) 100.65 100.77 0.39 

u17=(20,70) 102.20 102.22 0.43 

u18=(20,80) 102.69 102.18 0.43 

u22=(30,20) 101.02 101.27 0.42 

u23=(30,30) 101.24 101.15 0.41 

u25=(30,50) 101.90 101.64 0.38 

u36=(40,60) 103.08 102.80 0.38 

u38=(40,80) 101.65 101.85 0.38 

u59=(60,90) 102.63 102.18 0.46 

u60=(60,100) 101.54 102.49 0.49 

u69=(70,90) 104.02 103.40 0.43 

u80=(80,100) 104.10 103.09 0.54 

u90=(90,100) 103.33 102.96 0.65 

u100=(100,100) 103.82 102.60 0.67 

 

 

 
 
 



                                        
 

 100 

CHAPTER 5 

MULTIVARIATE SPATIAL INTERPOLATION 

 

Chapter 4 provided a detailed discussion on how to interpolate spatially correlated 

data when measurements from only one attribute are available. An alternative method 

is the multivariate form of spatial co-kriging (CASE II in Table 2.1). Chapter 5 

presents the background and the methodology used for the interpolation of 

multivariate spatially correlated data.  

 

5.1 INTRODUCTION 

 

Co-kriging originated from mining applications (Cressie, 1993; Journel and 

Huijbregts, 1978) and has since been utilized in soil sciences, biogeography, 

climatology and general environmental studies. The co-kriging methodology assumes 

that available attributes are correlated. The tools that incorporate the correlation 

structure between the different attributes into the spatial variation are the cross-

variogram and cross-covariance functions (Section 2.5). 

 

Matheron (1971), Journel and Huijbreghts (1978), Myers (1984), as well as 

Aboufirassi and Marino (1984) introduced the basic theory of co-kriging. Data sets 

very often contain the primary attribute under investigation, as well as additional 

information in the form of secondary attributes. These attributes can be spatially 

correlated to a certain degree and could possibly aid the interpolation or simulation of 

the primary attribute. Intuitively, it seems that the cross-correlated information 

between the primary and secondary attributes should help to improve the estimate and 

reduce the estimation error. Co-kriging was developed to derive estimates that exploit 

any possible correlated relationships.  

 

The usefulness of secondary attributes in co-kriging depends on the completeness of 

the primary attribute and the strength of the correlation between the attributes. More 

emphasis is placed on additional secondary information if the percentage of missing 
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measurements in the primary attribute is very high compared with the percentage of 

missing measurements of the secondary attributes. 

 

A good example, given in Cressie (1991), is mineral exploration to determine the 

feasibility of opening a copper mine. Ore samples are taken at nuuu ,...,, 21  locations 

and assessed. These samples contain certain percentages of copper, lead, zinc and 

negligible trace amounts of other minerals. In this example, copper is the primary 

attribute and the lead and zinc the secondary attributes. The spatial intra- and cross-

correlation between the copper, lead and zinc can be used in co-kriging to interpolate 

any possible missing copper measurements.  

 

Co-kriging incorporates more information and must adhere to stricter model 

assumptions to ensure a minimized interpolation error. The researcher must therefore 

prove that the correlation between the attributes exists and is strong enough to warrant 

this calculation-intensive method. 

 

5.2 SPATIAL ORDINARY CO-KRIGING ( OCKS − ) 

 

Co-kriging can be seen as a powerful extension of ordinary kriging. The system must 

satisfy the same constraints (minimization of the estimation error, providing an 

unbiased estimator that is true to the measurements) along with the additional 

constraints of permissible variogram (covariance) and cross-variogram (cross-

covariance) models as stated in Sections 2.5 and 2.6, as well as Chapter 3. For the 

remaining part of the study, ordinary co-kriging will be referred to as co-kriging. 

  

Similar to the spatial ordinary kriging predictor, the co-kriging predictor for )( 01 uZ  

is defined as a linear combination of all the available attributes at all the measured 

location points. The estimator is defined, based on the variable set (2.3) and the 

interpolation function (2.8b), when the primary and secondary means are assumed to 

be constant.  
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The estimator for the primary attribute (Journel and Huijbreghts, 1978; Isaaks and 

Srivastava, 1989; Goovaerts, 1997) at position 0u  is 
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Equation (5.1) can be adjusted for the case where the secondary attributes were not 

measured at the same locations as the primary attribute as 
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where kα  and kn  represent the measured location of the k
th attribute, and the total 

number of locations measured for the k
th attribute. The value 

kkαλ  represents the 

weighting coefficient for the k
th attribute at the location of k

th attribute. 

  

For a dataset that consists of two attributes the interpolation value is defined as  
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(5.1a) 

 

The necessary and sufficient coefficients needed to ensure that the linear predictor is 

unbiased are 
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for the primary attribute and 
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for the secondary attributes. The constraints in (5.2a) and (5.2b) are enforced to 

prevent weights that can lead to unexpected results and minimal secondary influence 

from the secondary attributes.  

 

The reason for the constraints defined in (5.2a) and (5.2b) can be illustrated by means 

of the primary and a single secondary attribute. The expected value of (5.1a) yields 

the equation 
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(5.3) 

 

Equation (5.3) illustrates that to ensure an unbiased estimator for the primary 

attribute, the sum of the weights must equal one (5.2a) and the sum of the weights for 

the secondary attributes must equal zero (5.2b). 

 

The best linear unbiased estimator is then determined by minimizing the estimation 

variance  
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which is subjected to (5.2a) and (5.2b). This spatial co-kriging variance (minimum 

mean squared prediction error) can be extended, without assuming stationarity, to  
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where ),( 01 kak uuC  is the covariance of the primary attribute and the th
k  attribute. 

Note that the problem is similar to the spatial ordinary kriging methodology, except 

that the additional constraint of (5.2b) requires that more Lagrange multipliers 

),,,( 21 Kϕϕϕ ⋅⋅⋅  be included in the co-kriging system. 
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The spatial ordinary co-kriging system, expanded in terms of covariance matrices, is 

shown in (5.6). Linear algebra is used to solve the 2+∑ kn  equations and 2+∑ kn  

variables defined by the system in (5.6) (Journel and Huijbreghts, 1978; Isaaks and 

Srivastava, 1989; Goovaerts, 1997). 
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(5.6) 

 

To obtain a better understanding of the equations, we look at the case where there is 

only two attributes )2( =K (Goovaerts, 1997). 
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 (5.6a) 

 

If the series adheres to the second-order stationarity assumption then 

 

))(),(cov()( '''' αααα uZuZuuC kkkk =−  (5.7) 

 

can be re-written as defined in (2.39b). 

 

Equation (5.6) can also be written in terms of the cross-variograms (Webster and 

Oliver, 2007)  
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(5.8) 

 

In most instances, the true mean is unknown, intrinsic stationarity is implied and (5.8) 

is the most commonly used system (Cressie, 1993). 

 

The matrix notation for the above equations can be written as 

 

bG =λ  (5.9) 

 

where G , λ  and b  are defined as 
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])(...)()(['
02'02'01'' αααααααααααααα γγγ uuuuuub

nkkkkkkkk
−−−=  (5.10f) 

 

The weights can then be solved by 

 

bG
1−=λ . (5.11) 

 

The estimation variance (5.5) can also be written in matrix format as  

 

λσ ')( 0
2

buk = . (5.12) 

 

Co-kriging can also be performed in terms of residuals (similar to Section 4.2) by de-

trending each data series for the different attributes. 

 

Example 5-1 

 

The objective of Example 5-1 is to demonstrate how the OCKS −  system is 

practically applied. 

 

From Example 2-1 it is known that a negative correlation of 0.39 exists between the 

primary and secondary attributes. 

 

The four residual omnidirectional semi-variograms fitted in Example 3-1 were used. 
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The interpolated value will be determined using (5.1a) where 851 =n  and 1002 =n . 

The weights and Lagrange multipliers are determined by using (5.11) with the 

respective matrices defined as 
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Table 5-1 provides the original measurements compared with the interpolated values. 

Compared with the interpolated measurements from Example 4-1, this particular co-

kriging does not present substantially better estimates.  

 

Table 5-1: Interpolated measurements 

Location Original  

1Z   

Univariate 

Estimate 1Z  

Univariate 

)(ˆ 0
2

uσ  

Bivariate 

Estimate 1Z  

Bivariate  

)(ˆ 0
2

uσ  

u11=(20,10) 99.24 99.09 0.45 99.28 0.45 

u14=(20,40) 100.65 100.77 0.39 100.66 0.38 

u17=(20,70) 102.20 102.22 0.43 102.16 0.42 

u18=(20,80) 102.69 102.18 0.43 102.17 0.42 

u22=(30,20) 101.02 101.27 0.42 101.35 0.41 

u23=(30,30) 101.24 101.15 0.41 101.20 0.41 

u25=(30,50) 101.90 101.64 0.38 101.56 0.38 

u36=(40,60) 103.08 102.80 0.38 102.96 0.37 

u38=(40,80) 101.65 101.85 0.38 101.83 0.37 

u59=(60,90) 102.63 102.18 0.46 101.99 0.46 

u60=(60,100) 101.54 102.49 0.49 102.48 0.48 

u69=(70,90) 104.02 103.40 0.43 103.39 0.42 

u80=(80,100) 104.10 103.09 0.54 102.89 0.54 

u90=(90,100) 103.33 102.96 0.65 102.50 0.65 

u100=(100,100) 103.82 102.60 0.67 102.14 0.68 
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Co-kriging did not increase the predictability of the estimates for this particular case 

study. The OKS −  will be preferred to OCKS − , since the same results are obtained 

with less computational effort. 

 

The SAS code is available in Appendix B.16. 
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CHAPTER 6 

UNIVARIATE SPATIAL-TEMPORAL INTERPOLATION 

 

Chapters 4 and 5 described two interpolation techniques that utilize only the spatial 

correlation between the sampled locations. Chapter 6 follows the same structure as the 

previous two, beginning with background information, as well as a discussion on the 

methodology where temporal correlation is introduced to the ordinary kriging 

structure (CASE III from Table 2-1).  

 

6.1 INTRODUCTION 

 

Over the years, geostatistical spatial-temporal models have been developed and 

applied to spatial-temporal distributions, and specific stochastic spatial-temporal and 

smooth interpolated functions have been developed for attribute maps. Kyriakidis and 

Journel (1999) provide a detailed discussion and references of these models. 

 

Standard time series models assume that the data were sampled over a regular time 

grid and that the temporal lag operator ( th ) is utilized to model the difference 

between the current and previous measurements along this specific time axis (Weyl, 

1952; Reichenbach, 1958; Journel, 1986; Kyriakidis and Journel, 1999). This time 

lag operator, however, cannot easily be generalized to a spatial domain, which is very 

often sampled over an irregular grid. A spatial dependence factor can therefore not be 

included (Cressie, 1993, p450). Specific spatial time series models can be applied but 

is only relevant for a specific location.   

 

Geostatistics provides a tool to analyze the space and time dependences 

simultaneously and is based on the spatial kriging techniques that were developed 

independently in the fields of geology, forestry and meteorology. Chapters 4 and 5 

provide detailed discussions of types of spatial interpolation, namely spatial ordinary 

kriging ( OKS − ) and spatial ordinary co-kriging ( OCKS − ). 
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Both these methods proved to be effective interpolation and prediction tools, but it 

became apparent that certain fields of study measurements over time cannot be 

adequately described by spatial correlations only. Several fields of study consist of 

measurements made over time at different locations and where historical events can 

play a significant role. An example of this is deforestation that could alter rainfall 

patterns. Examples of fields of study where the dynamic processes involve spatial and 

temporal correlation are the environmental sciences, climate prediction, meteorology, 

hydrology and reservoir engineering. 

 

The spatial-temporal variable set and interpolation function defined in Section 2.2 by 

(2.6), (2.7), (2.8c) and (2.8d) allows the researcher to view the data in terms of the 

TD ×  space-time framework. As previously indicated (Section 2.2), there is a 

fundamental difference between the spatial and the time co-ordinate axes. The spatial 

axis is characterized by the state of co-existence, often containing several dimensions 

and directions. The order of the data plays no significant role. The temporal axis is, 

however, characterized as a state of successive existence where the non-reversible 

ordering of data into past, present and future measurements in one dimension, is of 

great significance (Weyl, 1952; Reichenbach, 1958; Journel, 1986; Kyriakidis and 

Journel, 1999). 

 

Section 6.2 will combine the spatial-temporal moments (Section 2.5) and their 

modelling structure, defined in Section 3.4, with the kriging systems, defined in 

Chapter 4, to create a spatial-temporal kriging system that adheres to the BLUE 

conditions of kriging. 

 

6.2 SPATIAL-TEMPORAL KRIGING ( OKST − ) 

 

After a permissible variogram has been fitted to the data, the interpolation or 

simulation by means of spatial-temporal kriging can be executed. The kriging system 

and equations are, by definition, an extension of the spatial ordinary kriging system.  

 

The underlying methodology of spatial-temporal kriging is the same as that of spatial 

ordinary kriging. All the assumptions and model restrictions for spatial ordinary 
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kriging are therefore also applicable to the spatial-temporal model. The kriging 

system equations in Section 4.2 are adjusted to compensate for the temporal 

dependency. 

 

For notational purposes, assume that the spatial-temporal random variable ),( τα tuZ  

is stationary. The measurement to be interpolated at a specific location and time is 

defined in (2.8c).  

 

The spatial-temporal ordinary kriging estimator is given as 

 

∑ ∑
= =

=
T n

tuZtuZ

1 1
00 ),(),(ˆ

τ α
ταατλ  (6.1) 

 

where T  and n  represent the number of time instances and the number of spatial 

locations respectively (Rouhani and Wackernagel, 1990; Kyriakidis and Journel, 

1999). As with spatial kriging, the estimator is subjected to the constraint  
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If, for example, there are three locations )3( =n  with four time )4( =T  points, then 

equation (6.1) will reduce to  
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The covariance (variogram) is therefore taken into account at each location and each 

time point. The OKST −  system will be expressed only in terms of the covariance 

function for illustration purposes. 

 

To ensure that (6.1) is a best linear unbiased estimate (BLUE), the weights ατλ  must 

sum to one (6.2). The expected error (6.3) must be equal to zero and the estimation 

variance (6.4) must be minimized (Christakos and Hristopulos, 1998; Lui and Koike, 

2007). 
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0)],(),(ˆ[ 0000 =− tuZtuZE  (6.3) 
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Similar to Section 4.2, the BLUE conditions are adhered to if the spatial-temporal 

kriging system is expressed as 
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and is known as the spatial-temporal kriging system. 

 

The matrix of the spatial-temporal kriging system can, under intrinsic stationarity, be 

expressed in terms of the semi-variograms  (Christakos and Hristopulos, 1998; Lui 

and Koike, 2007). 

  

The spatial-temporal ordinary kriging system is defined under the assumption that the 

spatial-temporal random variable ),( τα tuZ  is stationary. However, in almost all 

studies that involve time as a parameter, a trend or seasonal component can be 

identified that renders the stationarity assumption invalid. As discussed in Section 2.6 

and (4.14), this problem is circumvented by removing the trend and utilizing the 

residual kriging methodology. 
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Example 6-1 

 

In Example 6-1, the spatial-temporal ordinary kriging system was tested on variable 

1Z  from a randomly selected subset of COMST − . Similar to Example 4-1, 15% of 

the 3000 observations were randomly selected with the SAS procedure 

SURVEYSELECT and are considered to be missing. A sample of the 450 space-time 

locations will be provided in this example to demonstrate the efficiency of the 

investigated kriging system. 

 

Table 6-1: Sample of 20 out of the 450 randomly selected space-time locations (ut) 

ut777=[(30,60),27] ut779=[(30,60),29] ut780=[(30,60),30] ut782=[(30,70),2] 

ut783=[(30,70),3] ut1328=[(50,50),8] ut1330=[(50,50),10] ut1331=[(50,50),11] 

ut1332=[(50,50),12] ut1333=[(50,50),13] ut1973=[(70,60),23] ut1974=[(70,60)24,] 

ut1975=[(70,60),25] ut1976=[(70,60),26] ut1980=[(70,60),30] ut1986=[(70,70),6] 

ut1988=[(70,70),8] ut1989=[(70,70),9] ut1991=[(70,70),11] ut1993=[(70,70),13] 

 

The residual product-sum spatial-temporal model ),(,1 tsst hhγ  as per Example 3-2 is 

used. 

 

The spatial-temporal kriging system can be expanded in a similar way, as explained in 

Example 4-1, but for the purpose of this example the unbiased weights and Lagrange 

multipliers were calculated using matrix multiplication. 

 

Table 6-2 provides the original and interpolated measurements along with the 

estimation variance. The interpolated values are very close to the original 

measurements, which are reflected in the small variance. All 450 interpolated 

measurements follow the same trend as the sample. The SAS code is available in 

Appendix B.17. 
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Table 6-2: Interpolated values of the sample of missing locations 

Location Original  

1Z  

Univariate 

estimate 1Z  

Univariate  

)(ˆ 0
2

uσ  

ut777=[(30,60),27] 100.63 99.91 0.10 

ut779=[(30,60),29] 100.67 101.63 0.11 

ut780=[(30,60),30] 101.11 100.31 0.07 

ut782=[(30,70),2] 99.33 99.99 0.09 

ut783=[(30,70),3] 99.32 98.08 0.07 

ut1328=[(50,50),8] 105.84 105.55 0.05 

ut1330=[(50,50),10] 97.44 97.27 0.06 

ut1331=[(50,50),11] 100.90 100.68 0.05 

ut1332=[(50,50),12] 99.98 100.81 0.06 

ut1333=[(50,50),13] 100.34 100.86 0.07 

ut1973=[(70,60),23] 102.60 101.20 0.09 

ut1974=[(70,60)24,] 102.87 102.54 0.06 

ut1975=[(70,60),25] 101.46 100.63 0.05 

ut1976=[(70,60),26] 100.42 99.16 0.05 

ut1980=[(70,60),30] 99.41 99.10 0.05 

ut1986=[(70,70),6] 99.05 98.55 0.05 

ut1988=[(70,70),8] 105.88 105.51 0.05 

ut1989=[(70,70),9] 99.68 100.16 0.05 

ut1991=[(70,70),11] 99.03 98.85 0.05 

ut1993=[(70,70),13] 97.63 98.09 0.05 
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CHAPTER 7 

MULTIVARIATE SPATIAL-TEMPORAL 

INTERPOLATION 

 

The last interpolation technique discussed in this study is the spatial-temporal co-

kriging model (CASE IV from Table 2-1). The model defined in this chapter 

combines the spatial-temporal structure with co-kriging, which is the multivariate 

ordinary kriging system. The formulas and kriging systems from Chapter 6 will be 

expanded to incorporate dependent secondary attributes. 

 

7.1 INTRODUCTION 

 

As discussed in Chapter 6, various studies consist of spatial-temporal correlated data 

that are observed at several locations over a specific time period. In Chapter 7 the 

univariate spatial-temporal model is extended to the multivariate form to increase the 

predictability of the kriging estimator by including additional spatial-temporal 

information.  

 

The first attempt to construct spatial-temporal multivariate kriging systems can be 

found in Rouhani and Wackernagel (1990), where attention was given to long time 

series data collected at a few spatial locations. Goovaerts and Sonnet (1993) 

considered data as realizations of regionalized variables (set of observed Z ) at each 

observed time instance. This was followed by Christakos and Hristopulos (1998) that 

introduced a vectorial spatial-temporal random field, and Kyriakidis and Journel 

(1999) who provided a detailed discussion on spatial-temporal data, with some 

reference to spatial-temporal simple co-kriging.   

 

In 2002, De Iaco et al. (2002) used principal component analysis to determine a 

space-time function for total air pollution index through the dual from of kriging 

(radial basis functions). De Iaco et al. (2005) extends the existing multivariate 

geostatistical techniques to incorporate both the spatial and temporal information. The 
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paper also points out that the generalized product-sum model (3.12a and 3.12b) can be 

utilized and provides more flexibility to the kriging system. 

 

For the modelling of the spatial-temporal multivariate moments, the separable and 

non-separable models discussed in Section 3.4 can also be applied to the spatial-

temporal cross-variograms and cross-covariances. The product-sum model (3.12a) 

and (3.12b) complements the spatial-temporal co-kriging system, since the temporal 

dependency is automatically incorporated into the variogram (covariance) and cross-

variogram (cross-covariance).  

 

7.2 SPATIAL-TEMPORAL ORDINARY CO-KRIGING )( OCKST −  
 

For illustration purposes, it is assumed that the second-order stationary variable is 

defined according to (2.7). As in Chapters 4 to 6, an unbiased estimator (Rouhani and 

Hall, 1989; Rouhani and Wackernagel, 1990; Kyriakidis and Journel, 1999; 

Christakos and Hristopulos, 1998; De Iaco et al., 2005; Lui and Koike, 2007) of the 

primary attribute at location 0u  and time point 0t  that minimizes the variance is 

defined as  
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were kτ  and kα  indicate the time point and location number of the k
th attribute. 

 

The constraints (7.2a) and (7.2b) ensure an unbiased estimator. 
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The conditions (7.2a) and (7.2b) must be adhered to in order to ensure that the 

estimator (7.1) is unbiased (7.3) and has a minimum mean-squared prediction error 

(7.4) – Rouhani and Wackernagel (1990), Kyriakidis and Journel (1999), Christakos 

and Hristopulos (1998) and Lui and Koike (2007). 
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For two attributes (7.1) reduces to  
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with  
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The parameters in (7.5) are defined as 

 

• 1T , 2T  the number of temporal measurements collected for 1Z  and 2Z  

• 1n , 2n  the number of spatial measurements collected for 1Z  and 2Z  

• 1τ , 2τ  represent the temporal parameter for 1Z  and 2Z  

• 1α , 2α  represent the spatial parameter for 1Z  and 2Z . 

 

The spatial-temporal co-kriging system (Rouhani and Wackernagel, 1990; Kyriakidis 

and Journel, 1999; Christakos and Hristopulos, 1998; Lui and Koike, 2007) is then 

defined as 
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(7.6) 

 

The auto- and cross-covariances in the spatial-temporal co-kriging system (7.6) can be 

replaced with the auto- and cross semi-variograms (Rouhani and Wackernagel, 1990; 

Kyriakidis and Journel, 1999; Christakos and Hristopulos, 1998; Lui and Koike, 

2007).  

 

Example 7-1 

 

Example 7-1 attempts to establish the spatial-temporal cokriging system, based on the 

residual product-sum semi-variogram models defined in Example 3-2. The 450 

missing observations, as defined in Example 6-1 were investigated.  

 

At certain missing locations ( 19731332 , uu  and 1980u ) the interpolated values differ 

significantly from the original values. For this case study, OKST −  performs better 

than the OCKST −  methodology. Factors that introduced the additional bias include 
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the small negative correlation between attributes, analysis with residuals, poor cross 

semi-variogram model fitting and the inherent bias introduced by the product-sum 

model. Information from the secondary attribute is also not fully utilized since a small 

percentage of the primary information is missing. The OKST −  system is preferred 

over the OCKST −  system for this set of data. 

 

Table 7-1: Interpolated values of the sample of missing locations (ut) 

Location Original  

1Z  

Univariate 

estimate 

1Z  

Univariate 

)(ˆ 0
2

uσ  

Bivariate 

estimate 

2Z  

Bivariate 

)(ˆ 0
2

uσ  

ut777=[(30,60),27] 100.63 99.91 0.10 101.35 0.06 

ut779=[(30,60),29] 100.67 101.63 0.11 70.52 0.08 

ut780=[(30,60),30] 101.11 100.31 0.07 87.76 0.12 

ut782=[(30,70),2] 99.33 99.99 0.09 94.22 0.06 

ut783=[(30,70),3] 99.32 98.08 0.07 93.83 0.07 

ut1328=[(50,50),8] 105.84 105.55 0.05 112.29 0.03 

ut1330=[(50,50),10] 97.44 97.27 0.06 92.62 0.07 

ut1331=[(50,50),11] 100.90 100.68 0.05 96.47 0.10 

ut1332=[(50,50),12] 99.98 100.81 0.06 109.49 0.10 

ut1333=[(50,50),13] 100.34 100.86 0.07 90.25 0.06 

ut1973=[(70,60),23] 102.60 101.20 0.09 111.73 0.07 

ut1974=[(70,60)24,] 102.87 102.54 0.06 98.25 0.10 

ut1975=[(70,60),25] 101.46 100.63 0.05 96.63 0.13 

ut1976=[(70,60),26] 100.42 99.16 0.05 94.59 0.12 

ut1980=[(70,60),30] 99.41 99.10 0.05 110.21 0.08 

ut1986=[(70,70),6] 99.05 98.55 0.05 98.66 0.06 

ut1988=[(70,70),8] 105.88 105.51 0.05 93.96 0.06 

ut1989=[(70,70),9] 99.68 100.16 0.05 100.06 0.05 

ut1991=[(70,70),11] 99.03 98.85 0.05 102.38 0.04 

ut1993=[(70,70),13] 97.63 98.09 0.05 105.80 0.05 
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CHAPTER 8 

PRACTICAL APPLICATION 

 

Chapter 8 provides a practical application of spatial and spatial-temporal kriging. The 

data investigated are three-dimensional (latitude, longitude and elevation), with the 

two attributes primarily spatially dependent on the elevation. The purpose of this 

chapter is to illustrate how spatial kriging and cokriging compare with their spatial-

temporal counterparts when analysing a dataset that exhibits both space and time 

dependencies.  

 

8.1 DATA 

 

To illustrate the practical application of univariate and multivariate spatial and spatial-

temporal kriging, a meteorological dataset was identified and analysed. A set of 23 

meteorological stations was selected from a set of 112 stations situated across Central 

Oregon (USA) for the time period 1 January 2000 to 31 December 2004. The data 

were extracted from the dataset created by Luke Spadevecchia (Spadevecchia and 

Williams, 2009) as part of his PhD thesis on investigating and quantifying error in 

spatial implementations of ecosystem models. Spatial-temporal models were 

developed for the average daily temperatures and daily precipitation measurements. 

The main focus of the thesis, however,was to investigate any possible interpolation 

bias that is introduced owing to additional spatial factors. 

 

The study area consists of the 23 stations that fall within an area of 100 ×100 km in 

the Central Cascades region of Oregon, USA (Figure 8-1). All analyses will be 

performed on the daily maximum ( maxT ) and minimum ( minT ) temperatures, in 

degree Celsius, at each station. The data, expressed as SI units, were downloaded 

from the website (http://www.geos.ed.ac.uk/homes/s0198247/). The station 

coordinates were provided in DMS, Decimal Degree and UTM zone 10 metres 

(WGS84 datum).  
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Figure 8-1: Location of the meteorological stations used in the study. The rectangular  

                    outline indicates the 100×100km detailed region of interest.   

                    (Spadevecchia and Williams, 2009).  

 

UTM (Universal Transverse Mercator System) coordinates provide constant distance 

relationships in terms of the x -coordinate (Eastings) and the y -coordinate 

(Northings). Distances between the stations are calculated using the standard 

Euclidean distance formula for Cartesian coordinate systems and these coordinates are 

therefore used in the analysis of the data. All stations falling in the Easting interval 

[562.6186, 659.6186] and the Northing interval [4903.722, 4988.722] were extracted 

and analysed. For the purpose of this study, elevation is introduced as the z -

coordinate. 

 

8.2 ANALYSES 

 

In this section, the data preparation, non-spatial and spatial exploratory methods, 

variogram analysis and interpolation, using the four kriging methodologies, will be 

investigated. The stations to be investigated are indicated in Table 8-1.  
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Table 8-1: The 23 meteorological stations in Central Oregon to be investigated. 

SID Latitude 

(Degrees) 

Longitude 

(Degrees) 

Easting       

(km) 

Northing        

(km) 

2 44.68 -121.15 646.88 4949.07 

7 44.30 -122.03 577.11 4905.65 

33 44.63 -121.13 648.06 4943.91 

34 44.67 -121.15 646.65 4947.59 

35 44.60 -121.95 583.33 4939.05 

43 44.73 -121.23 639.89 4954.85 

51 44.43 -121.97 582.24 4920.52 

54 44.30 -121.55 615.67 4906.22 

64 44.72 -122.01 578.78 4952.54 

72 44.32 -121.62 610.38 4907.88 

77 44.52 -121.49 649.83 4923.61 

78 44.96 -121.49 619.17 4979.15 

82 44.63 -121.61 610.20 4942.51 

84 44.93 -121.19 642.67 4976.27 

90 45.03 -121.93 584.49 4986.56 

102 45.04 -121.67 604.51 4988.22 

105 44.58 -121.97 582.03 4937.18 

106 44.43 -121.93 584.89 4920.56 

107 44.42 -121.87 590.23 4918.78 

108 44.38 -122.17 566.38 4914.79 

109 44.62 -122.05 575.37 4940.81 

111 44.44 -121.57 614.06 4921.43 

112 44.45 -121.56 614.79 4923.14 

 

Data Preparation 

 

The analysis route followed in Examples 4-1 to 7-1 was initially considered. A single 

day was identified for the spatial analyses over the 23 stations; ignoring the rest of the 

available data. These results were to be compared with the spatial-temporal results 

which included all the available information. 
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Closer inspection revealed that 23 observations over a 100100 ×  grid are not enough 

to illustrate the underlying statistical and spatial properties. Results from the spatial 

and non-spatial exploratory analyses are as follows: 

 

• Spatial exploratory analysis indicated that the data are not normally distributed 

and there exists a correlation of less than 5% between the two attributes 

• Erroneous contour maps are produced owing to the large sections that have to 

be interpolated 

• Symbol, greyscale and indicator maps are too sparsely populated to make 

deductions in terms of trends in the data 

• There is not enough information to warrant moving window statistics or the 

development of spatial continuity graphs 

• The h-scatter plots, variograms and the test for stationarity gave the 

impression that these observations occurr at random 

 

If no additional data were available, it would be recommended to either obtain 

supplementary information by performing additional sampling to obtain a better 

populated grid, or to use alternative interpolation techniques. 

   

Since the spatial analysis of a single time series as described above proved to be 

impractical, and more information is available, the researcher decided to include much 

of the given information in the geostatistical analyses and variogram development. 

Generic variograms were subsequently developed and used in the interpolation of a 

missing station measurement when considering a single time series. For this study, 

station 34 will be interpolated individually for each of the 31 days in July 2002. 

 

Referring to Spadevecchia and Williams (2009), analyses of the 112 meteorological 

stations indicated that the elevation best describes the large-scale spatial pattern of the 

temperature variables maxT  and minT . Spadevecchia and Williams (2009) provided a 

detailed description of this relationship as well as the seasonal-trend models (Table 8-

2) that are not only highly significant but also adequately describe the behaviour of 

the data. Figure 8-2 provides a graphical description of the average observed and 

detrended temperature by day of the year.  
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Table 8-2: Temporal trends of the meteorological attributes (Spadevecchia and  

                  Williams, 2009). 

minT  maxT  
Month 

Intercept Elevation Intercept Elevation 

January 2.3 -0.005 8.8 -0.004 

February 2.4 -0.005 11.4 -0.005 

March 3.6 -0.005 13.8 -0.004 

April 5.0 -0.005 17 -0.004 

May 7.6 -0.004 20.2 -0.003 

June 10.3 -0.004 24.4 -0.002 

July 12.0 -0.003 28.1 -0.001 

August 11.9 -0.003 28 -0.001 

September 10.1 -0.004 24.8 -0.002 

October 7.0 -0.005 18.3 -0.003 

November 3.4 -0.005 11.6 -0.004 

December 2.8 -0.005 8.6 -0.004 

 

 

 

Figure 8-2: Average observed (red) and detrended (blue) temperatures by day of the  

                    year for the 23 stations: (a) for maxT  and (b) for minT . 

 

 

Non-Spatial Exploratory Methods 

 

The daily maximum temperature ( maxT ) is chosen as the primary attribute ( 1Z ) and 

the daily minimum temperature ( minT ) as the secondary attribute ( 2Z ) for the purpose 
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of this example. The Kolmogorov-Smirnoff statistics, as well as Figure 8-3 confirm 

the normality of both the detrended attributes. Table 8-3 provides the non-spatial 

statistical breakdown of the two detrended attributes. A positive correlation (Figure 8-

4) of %18.37  exists between the two attributes. The Q-Q plot (Figure 8-5) indicates 

that the underlying distributions of the primary and secondary variables are similar; in 

this case Gaussian.  

 

 

Figure 8-3: Histogram and normality plots for the primary attribute maxT  (top) and  

                    the secondary attribute minT  (bottom).  

 

 

 

 

 

 

 

 

 
 

Figure 8-4: Scatter plot representing the       Figure 8-5: Q-Q plot of the primary ( 1Z )  

                   correlation between the attributes.                and secondary attributes ( 2Z ). 
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Table 8-3: Non-spatial exploratory statistics of primary and secondary attributes. 

Statistic 1Z  2Z  

Mean 0.09 -0.007 

Standard deviation 5.56 4.039 

Maximum 23.66 21.94 

Minimum -20.06 -22.48 

Kolmogorov-Smirnoff p-value <0.010 <0.010 

 

Spatial Exploratory Methods 

 

The second step is to investigate the spatial properties of the given dataset. All the 

observed data are considered in the spatial analyses since the time-series aspect forms 

a critical part of the data structure. However, owing to the numerous measurements at 

each station, techniques such as data postings, contour maps and symbol maps 

became impossible to plot and were therefore ignored. The spatial techniques of 

moving windows statistics and spatial continuity graphs were also ignored as there are 

only 23 stations within the grid investigated; any sub-setting of so few stations would 

lead to erroneous results. 

 

h-Scatter Plots 

 

The h-scatter and cross h-scatter plots were created by using categorized distance and 

direction matrices. The distances and angles between the stations were calculated and 

categorized, e.g. distances that fall in the interval 0[ km 1, km )  were assigned to group 

1. A total of 100 distance groups and 4 angle groups were created. These groups were 

used to identify any possible anisotropy via the h-scatter plots as well as in the 

creation of the variograms. 
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Figure 8-6: h-scatter plot of 1Z  at the lag distance group 36 and angle groups 1 (a),  

                   2 (b), 3 (c)  and 4 (d). 

 

 

 

Figure 8-7: h-scatter plot of the cross attribute at the lag distance group 36 at angle  

                   group 1 (a), 2 (b), 3 (c)  and 4 (d). 
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Figure 8-8: h-scatter plot of 1Z  at the lag distance groups 1 (a), 2 (b) and 50 (c). 

 

The h-scatter plots for the primary and secondary attributes, as well as and the cross 

h-scatter plots were plotted per lag and angle. These graphs exhibit the same trend in 

each of the four directions, indicating that the data are isotropic. Figure 8-6 is an 

example of the primary h-scatter plots at distance group 36 for the four different 

angles. The same pattern is exhibited by all the distance and angle groups for the 

primary, secondary and cross attributes (Figure 8-7). Figure 8-8 represents the 

decreasing pattern followed by the primary, secondary and cross attributes at 

increasing distances when the angle between stations is not included. 

 

Variograms 

 

Stationarity is the last data property to be investigated to ensure optimal interpolation 

through the use of variograms. Intrinsic stationarity was confirmed by applying (2.40) 

to both the primary and secondary attributes. The approach followed in Example 2-14 

was used to confirm second-order stationarity, yielding a graph of the variogram and 

covariance (Figure 8-9). The two models follow the same trend in opposite directions 

- confirming second-order stationarity of the primary and secondary data. 
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Figure 8-9: Semi-variance (top) and covariance (bottom) of selected data. 

 

The omnidirectional semi-variograms were subsequently developed for the univariate 

and multivariate spatial analysis, as well as the semi-variograms needed for the 

product-sum methodology for spatial-temporal kriging and cokriging. Each model 

was calculated by using the weighted least squares (WLS ) methodology, by means of 

the NLIN procedure in SAS, with suggested initial parameters (as identified from the 

semi-variogram graphs) and the standard error (defined as γσ 2=  in Houlding, 

2000) as the weights. These weights provide the best linear unbiased estimates of the 

parameters. 

 

Spatial Semi-Variogram 

 

The spatial univariate and multivariate semi-variogram models were developed by 

calculating the semi-variogram points for both the detrended attributes (Figure 8-10). 

The three models are provided in Table 8-4, as well as the p-value of the F-test for 

lack of regression model fit.  

 

As seen from Table 8-4, at least the models for 1Z  and 2Z  are valid for a confidence 

limit of 10%, however crossZ  is not. The Rational quadratic model for the cross semi-

variogram provided the best results compared with the Gaussian, Exponential and 

Spherical models, and was therefore chosen, since the semi-variogram points have 

outliers that influence the fit of the model (Figure 8-10c). The models provided in 

Table 8-4 will be used in the spatial kriging and cokriging procedures, keeping in 

mind that this poor model fit for crossZ  could lead to questionable cokriging results. 
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Figure 8-10: Semi-variogram scatter plot and fitted model for 1Z  (a), 2Z  (b) and  

                     crossZ  (c). 

 

Table 8-4: Estimated model parameters calculated using WLS . 

Attribute max1 TZ =  min2 TZ =  crossZ  

Model type Gaussian Spherical Rational quadratic 

0c  26.3143 15.6492 22.7199 

ec  4.3393 1.0123 4.3671 

q  6.2081 43.6717 8.7091 

Model fit (Pr<F) 0.0377 0.0921 0.2086 

 

Spatial-Temporal Semi-Variogram 

 

The product-sum model (3.18) was utilized to determine the semi-variogram for both 

the univariate and multivariate spatial-temporal analyses. The semi-variogram points 

and models for  )0||,(|| shγ  are provided in Figure 8-11, with the resulting model 

parameters in Table 8-5. The cross semi-variogram model )0||,(|| shγ  should be 

rejected based on the lack-of fit test at a significance level of 10%. However, visual 
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inspection indicates that the model follows the same general trend of the data, except 

for a few outliers. Therefore the model will be used, keeping in mind the less than 

favourable statistical fit. 

 

The pure temporal semi-variogram scatter plots and models were calculated and 

plotted, as seen in Figure 8-12 for the primary, secondary and cross attributes, with all 

three models (Table 8-6) accepted based on a 10% level of significance. The 

parameter k  (3.17) was calculated for 1Z , 2Z  and crossZ  as 12.0 , 17.0  and 01.0  

respectively. 

 

Table 8-5: Estimated parameters for )0||,(|| sst hγ . 

Attribute max1 TZ =  min2 TZ =  crossZ  

Model type Exponential Exponential Spherical 

0c  0.3334 -1.6169 14.6706 

ec  11.8809 9.2893 0.9566 

q  31.7101 3.9734 47.1138 

Model fit (Pr<F) <0.0001 <0.0001 0.3031 

 

Table 8-6: Estimated parameters for ),0( tst hγ . 

Attribute max1 TZ =  min2 TZ =  crossZ  

Model type Exponential Exponential Exponential 

0c  -1.7695 1.3081 15.132 

ec  30.2834 12.1552 9.4246 

q  2.221 2.8133 2.4106 

Model fit (Pr<F) <0.0001 <0.0001 <0.0001 
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Figure 8-11: )0||,(|| shγ  and fitted model for 1Z  (a), 2Z  (b) and crossZ  (c). 

 

 

 

Figure 8-12: ),0( tst hγ  fitted model for 1Z  (a), 2Z  (b) and crossZ  (c). 
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Kriging 

 

The final step in the analytical process is the interpolation of selected missing 

values based on the methodologies as discussed in Chapters 4 to 7.  

 

Spatial Kriging 

 

The spatial semi-variograms, as proved in Table 8-4, were used to interpolate the 

maximum temperature ( 1max ZT = ) at station 34 for the 31 days of July 2002, by 

means of univariate and multivariate kriging. As seen from Examples 4-1 and 5-1, any 

form of spatial kriging can only provide a single interpolated value per location 

regardless of the possible number of observed measurements. Therefore, station 34 

was interpolated for each of the 31 days using the developed general semi-variograms 

and observed measurements for each specific day. Table 8-7 provides the calculated 

interpolated and variance values, as per spatial kriging and cokriging, as well as the 

observed daily maximum temperature. 

 

The kriging and cokriging processes provided conflicting interpolated measurements, 

with both methodologies having very high interpolation variances. The univariate 

estimates differ from the observed measurements by ‘n range of ±  7˚C. The cokriging 

estimates are completely wrong. Closer inspection to the cokriging estimates indicated 

that all the requirements for optimal interpolation are met (e.g. stationarity, weight 

restrictions etc). Future investigations into the cause for this severe deviation from the 

observed measurements in the multivariate case are recommended.  

 

Based on the results in Table 8-7, it can therefore be assumed that spatial kriging is 

not the best interpolation tool to be used in this scenario. The next step is to determine 

whether the introduction of the time component could improve the accuracy of the 

interpolated values. 
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Table 8-7: Interpolated values using the spatial kriging methodologies. 

Day Original 1Z  Univ. est 1Z  Univ. )(ˆ
02 uσ  Multiv. est. 1Z  Multiv. )(ˆ

02 uσ  

1 25.56 25.78 26.54 -239.79 29.09 

2 26.67 30.03 26.54 -218.96 29.09 

3 30.56 24.82 26.54 -163.34 29.09 

4 24.44 22.71 26.54 -155.26 29.09 

5 22.22 26.55 26.54 -142.63 29.09 

6 27.22 30.98 26.54 -341.58 29.09 

7 31.67 32.06 26.54 -333.96 29.09 

8 32.22 25.23 26.54 -98.62 29.09 

9 25.56 31.91 26.54 -137.44 29.09 

10 32.22 37.11 26.54 -91.47 29.09 

11 38.33 38.82 26.54 -81.50 29.09 

12 40 40.00 26.54 -288.68 29.09 

13 41.11 37.81 26.54 -369.78 29.09 

14 37.22 29.30 26.54 -184.96 29.09 

15 28.89 32.39 26.54 -70.70 29.09 

16 33.33 33.22 26.54 -208.32 29.09 

17 33.89 32.33 26.54 -159.85 29.09 

18 33.89 31.69 26.54 -103.89 29.09 

19 32.78 27.53 26.54 -146.25 29.09 

20 29.44 32.29 26.54 -263.47 29.09 

21 32.22 33.41 26.54 -324.25 29.09 

22 33.33 34.51 26.54 -274.29 29.09 

23 34.01 33.85 26.54 -132.95 29.09 

24 33.89 34.80 26.54 -84.85 29.09 

25 35.56 31.43 26.54 -75.56 29.09 

26 31.11 28.17 26.54 -59.01 29.09 

27 31.11 28.33 26.54 -218.73 29.09 

28 29.44 29.45 26.54 -350.78 29.09 

29 30 31.41 26.54 -156.30 29.09 

30 32.78 31.26 26.54 -0.40 29.09 

31 31.67 26.89 26.54 18.50 29.09 
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Spatial-Temporal Kriging 

 

To illustrate the effectiveness of the spatial-temporal kriging methodology, the month 

of July 2002 of station 34 was selected to be interpolated (i.e. 31 days), using the 

product-sum variograms as defined in Tables 8-5 and 8-6. Owing to operating system 

restrictions (Chapter 9) only the information of the stations that fall within a 30 km 

radius of station 34, as well as data six months prior and after the missing month was 

used. The information from stations 43, 84, 34, 3, 33 and 77 for the period 1 January 

2002 to 31 January 2003 was used.  

 

The kriging results for both the kriging and cokriging methodologies are provided in 

Table 8-8. Figure 8-13 shows that the interpolated values for both the univariate and 

multivariate methodologies have the same pattern. This pattern mirrors that of the 

observed values with an apparent lag of one day. Since both the kriging and cokriging 

methodologies can be used, it is proposed that the univariate methodology be used as 

it requires less computation. 

 

Spatial-temporal kriging and cokriging proved its effectiveness and suitability based 

on the temperature dataset as described in Section 8.1. The time-dependency factor 

must, therefore, be included to provide a meaningful result that is comparable to 

neighbouring measurements in both space and time. 

 

 

Figure 8-13: Univariate (red) and multivariate (green) interpolated values compared  

                      with observed values (blue). 
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Table 8-8: Interpolated values using the spatial-temporal kriging methodologies. 

Day Original 1Z  Univ. est 1Z  Univ. )(ˆ
02 uσ  Multiv. est. 1Z  Multiv. )(ˆ

02 uσ  

1 25.56 25.72 0.43 25.72 0.43 

2 26.67 29.98 1.16 30.00 1.16 

3 30.56 25.17 1.46 25.18 1.46 

4 24.44 22.71 1.59 22.72 1.59 

5 22.22 26.70 1.64 26.71 1.64 

6 27.22 30.94 1.66 30.95 1.66 

7 31.67 31.98 1.67 31.99 1.67 

8 32.22 25.40 1.68 25.40 1.68 

9 25.56 31.98 1.68 31.99 1.68 

10 32.22 37.35 1.68 37.37 1.68 

11 38.33 39.05 1.68 39.07 1.68 

12 40 39.96 1.68 39.98 1.68 

13 41.11 37.67 1.68 37.67 1.68 

14 37.22 29.57 1.68 29.58 1.68 

15 28.89 32.40 1.68 32.42 1.68 

16 33.33 33.34 1.68 33.35 1.68 

17 33.89 32.54 1.68 32.55 1.68 

18 33.89 31.88 1.68 31.90 1.69 

19 32.78 27.84 1.68 27.85 1.68 

20 29.44 31.98 1.68 32.00 1.68 

21 32.22 33.29 1.68 33.30 1.68 

21 32.22 33.29 1.68 33.30 1.68 

22 33.33 34.56 1.68 34.57 1.68 

23 34.01 1.68 34.01 1.68  

24 33.89 34.61 1.68 34.63 1.68 

25 35.56 31.46 1.67 31.47 1.67 

26 31.11 28.17 1.66 28.18 1.66 

27 31.11 28.25 1.64 28.26 1.64 

28 29.44 29.07 1.59 29.08 1.59 

29 30 31.01 1.46 31.01 1.46 

30 32.78 30.55 1.16 30.55 1.16 

31 31.67 26.01 0.43 26.01 0.43 
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CHAPTER 9 

CONCLUSION 

 

Chapters 2 to 8 discussed the theory of geostatistics and kriging as an interpolation 

tool. The effectiveness, advantages and disadvantages of the methodology were 

illustrated through the use of examples, and are summarized below. 

 

Advantages 

 

The examples from Chapters 2 and 3 illustrated the different techniques that 

geostatistics uses in order to describe spatially and spatial-temporal dependent data. 

The additional descriptive statistics, such as the different spatial maps and modelling 

of the moments provide the researcher with the necessary information of the 

underlying data structures, thus enabling him/her to choose the best interpolation or 

simulation technique.   

 

The kriging methodology relies on the data measurements and a continuous model of 

the variation, which take lag effects into account (variogram) and not simply an 

arbitrary distance between the locations, as in the case of IDW . The effect of missing 

measurements in neighbouring locations has a smaller influence on the final 

interpolated value.    

 

The models of the moments account for possible anisotropy, nugget effects and short 

ranges that can have a significant effect on the variance structure of the data. A major 

advantage of kriging is the requirement of optimal interpolation by minimizing the 

variance of the estimation error, thus ensuring that the best possible estimate is 

obtained. 

 

In theory, the introduction of highly correlated secondary attributes can greatly 

enhance the interpolation power of kriging by means of co-kriging. In Examples 6-1 

and 7-1 the correlation between the attributes was not strong enough, resulting in the 

secondary attribute not providing additional value to the estimation process. The 
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multivariate spatial-temporal practical example in Chapter 8 also provided results 

equivalent to the univariate kriging methodology. Information from the secondary 

attribute is also not fully utilized since small percentages of the primary information 

in each example are missing. 

  

Spatial-temporal ordinary kriging and co-kriging have all the advantages and 

disadvantages of ordinary kriging and co-kriging. An additional advantage is the 

inclusion of the temporal and the spatial-temporal dependence to the variance 

structure, allowing the variance to change over time. 

 

Disadvantages 

 

As with any form of data analysis, geostatistics depends heavily on the quantity and 

quality of the data. Too few measurements can produce a skewed perception of the 

data and can lead to incorrect assumptions. If the data are highly skewed or only a few 

measurements are available, the kriging systems become more complex and the 

results unstable.  

 

To ensure unique solutions for the kriging systems, the underlying restrictions of 

stationarity, conditional weights and minimized estimation variance must be strictly 

adhered to. This may require additional transformations that can introduce additional 

bias to the data. 

 

Additional disadvantages of kriging and co-kriging include the degree of subjectivity 

introduced by employing user-defined spatial-lag measurements, as well as the 

selection of appropriate and permissible models for the variograms. These selections 

make kriging a more time-consuming technique compared with less complex 

interpolation tools, such as IDW . Therefore it is essential that the data and underlying 

methodology is understood. 

 

Spatial-temporal geostatistics is inherently more complex because of the inclusion of 

the temporal dependence structure. The most difficult part of this kriging 

methodology is the fitting of spatial-temporal variograms (Section 3.4), making it 

more labour intensive.  

 
 
 



                                        
 

 139 

Challenges in Geostatistics 

 

Real-time data often require complex transformations in terms of normality, 

stationarity, anisotropy or irregularly spaced measurements. Additional field-specific 

knowledge, such as, for instance, the existence of a dam wall between two river-flow 

gauging stations is necessary to ensure realistic estimates. To illustrate the different 

concepts of descriptive statistics, moment modelling and interpolation of missing 

measurements, a spatial-temporal dataset that would require the least number of 

transformations was generated (Section 2.3).  

 

The development of geostatistics was driven by the need to address the complex 

problems in the mining sector. Even though the original methodologies were 

developed by D.G Krige, a mining engineer, and G. Matheron, who was proficient in 

mathematics, physics and probability theory, a wide variety of notations exists in the 

literature. One of the challenges in drafting this dissertation was to remove some of 

the confusion in the notation by combining the different styles and to define a 

standard notation for the core of univariate and multivariate spatial and spatial-

temporal kriging systems.   

 

Extensive research has been done over the years on the modelling of variograms 

(covariance) for spatial stationary, isotropic and non-isotropic data, as well as the 

modelling of spatial-temporal variation. Recent advances have been made to create 

kriging methodologies for non-stationary data, such as defining a non-stationary 

covariance structure (e.g. Paciorek and Schervish, 2006). More in-depth studies to 

define kriging structures that do not require any stationarity assumptions are needed in 

both the spatial and spatial-temporal dependency structures. 

 

The different methodologies used in geostatistics were and are being developed 

mainly by mathematicians and statisticians, but are primarily used by natural 

scientists, some of whom do not have the necessary background to correctly interpret 

and apply the theory. In many instances the available software (Section 2.7) is used as 

a ‘black box’ where data are analyzed without a clear understanding of the underlying 

methodology. A definite need exists for the intensive training of mathematicians, 

statisticians, physicists and other natural scientists in geostatistics and, especially, 
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kriging since it is becoming a popular interpolation technique in both the natural and 

financial sciences. 

 

Operating system restrictions proved to be problematic during the spatial-temporal 

analyses of the practical dataset (Chapter 8). Initially all the information stored in the 

23 stations over the four years was used, however both the SAS, Matlab and Fortran 

applications consistently ran out of memory when dealing with large square matrices 

(arrays). Although these systems do allow for additional memory to be assigned to the 

matrix (array) calculations, there exists a limit on the total workspace that can be 

assigned (e.g. http://www.mathworks.com/support/tech-notes/1100/1100.html). This 

problem forced the researcher, in this case, to reduce the total number of observations 

used in the final analyses. Further study is necessary to identify methodologies to 

overcome this problem. 

 

Final remarks 

 

In this dissertation the concept of geostatistics was defined and discussed in terms of 

the principle descriptive statistics, interpolation techniques and the advantages and 

disadvantages. Based on the results from this introductory theoretical study and 

practical applications on a simulated dataset, it can be concluded that geostatistics 

and, especially, kriging can be a very powerful tool when it is used in conjunction 

with experience and a comprehensive understanding of the methodology and data. 
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APPENDIX A.1 

SEMI-POSITIVE DEFINITE CONDITION FOR THE COVARIANCE 

FUNCTION 

(Wackernagel, 1995) 
 

 

A function is positive semi-definite if the inequality (3.2) holds for any second-order 

stationarity set of )(),...,(),( 21 nuZuZuZ  with µα =))(( uZE  Du ∈∀ α  where λ  is 

any vector of arbitrary weights ),...,,( 21 nλλλ  
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Assume L  is the linear combination of the observed values and the associated 

weights. 
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Since a variance can only be equal to zero or larger than zero results in (3.2) to be 

true.  
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APPENDIX A.2 

CONDITIONAL NEGATIVE CONDITION FOR THE VARIOGRAM 

(Wackernagel, 1995) 
 
The model to be fitted to the variogram must comply with the conditional negative 

definite condition defined as 
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when intrinsic stationarity is applicable.  

 

The semi-variogram, under instrinsic stationarity, can be expressed as 
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and can be re-written as 
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The first two terms are equal to zero as a result of condition (3.3a). This results in  
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Applying the intrinsic stationarity condition to (A.2-3) 
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APPENDIX A.3 

 DERIVE PRODUCT-SUM MODEL COEFFICIENTS 

(De Iaco et al., 2001) 
 
 

Assuming that the property exhibited in (3.13) holds, it follows that  

 

)()()]0([)0,( 12 ssssstsst hkhCkkh γγγ =+=  (3.13a) 

 

and 

 

)()()]0([),0( 13 tttttstst hkhCkkh γγγ =+=  (3.13b) 

 

with sk  and tk  defined as the proportionality coefficients between )0,( sst hγ  and 

),0( tst hγ , and the spatial and temporal semi-variograms )( ss hγ  and )( tt hγ  

respectively. 

 

The coefficients 21, kk  and 3k  can be written in terms of the sills and the parameters 

sk  and tk , which allows the practitioner to model )( ss hγ  and )( tt hγ  in terms of 

)0,( sst hγ  and ),0( tst hγ . The parameters sk  and tk  can be combined into a single 

parameter k  (3.17). 

 

Combining  
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and  
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with  
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obtained from (3.13a), allows 21, kk  and 3k  to be solved in terms of the covariance 

sill values as seen in (3.15a), (3.15b) and (3.15c).  
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If 01 >k , 02 ≥k  and 03 ≥k  (Theorem1, Corollary 1 and 2 in Appendix A.4) the 

positive-definiteness is assured for any class of covariance models as it is related to 

the sill values. 

 

Finally a single parameter is derived using Theorem 2 (Appendix A.4). 
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The process of estimating )0,( sst hγ  and ),0( tst hγ  yields the estimates for )0(ssCk  

and )0(tt Ck , requiring that ultimately only k  needs to be estimated. Theorem 2, 

Corollary 1 and 2 (Appendix A.4) provide the necessary and sufficient conditions to 

ensure permissibility of stγ . 
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APPENDIX A.4 

 SEPARABLE MODEL THEOREMS  

(De Iaco et al., 2001) 
 
 

Theorem 1 

 For the following models assumptions  

 

• ),( τα tuZ  is a second-order stationary spatial-temporal random field 

• The spatial-temporal covariance is continuous in the space-time structure and 

represented by equation (3.12a) 

• The semi-variogram is defined as in (3.18) 

• The parameter k  is defined by equation (3.17). 

 

Then 0,0,0 321 ≥≥> kkk  if, and only if, k  holds to the following inequality 
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Proof  

 

Given the assumptions, it follows that 

 

0)0(12 >+= ts Ckkk  (3.14a) 

 

0)0(13 >+= st Ckkk  (3.14b) 

 

resulting in 0>k . The assumption satisfies the following inequalities 
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If  
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then the last two equalities are satisfied simultaneously. 

 

For 
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and 
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to be true, k  is defined to be less than or equal to  
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then 
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is a permissible variogram derived from a permissible covariance model i.e. 

 

 
 
 



                                        
 

 156 

)),0()0,((

)),(),0()0,((

ts

tsts

hsillhsill

hhsillhsillhsill
k

γγ

γγγ −+
=  

≡  

)()()()(),( 321 ttssttssts hCkhCkhChCkhhC ++=  

 

 

Therefore the bounds on k  along with the inequalities 
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and { })0();0(max)0,0( ttss CkCkC ≥  implies 0,0 21 ≥> kk  and 03 ≥k . 

 

Corollary 1 

 If either )0,( shγ  or ),0( thγ  is unbounded, then there exists no k  that satisfies  
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such that  

 

),0()0,(),0()0,(),( tstssttstssttsst hhkhhhh γγγγγ −+=  (3.17) 

 

is a valid, permissible spatial-temporal semi-variogram. 

 

Proof  
 

This follows from Theorem 1. 

 

Corollary 2 

 If either )0,( shγ  or ),0( thγ  is unbounded, then (3.12b) is not a valid model for any 

choice of 1k , 2k  and 3k . 

 

Proof 
 

This is implied by Corollary 1.  
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Theorem 2 

Let ),( τα tuZ  represent the second-order stationary spatial-temporal random variable, 

with the continuous spatial-temporal covariance stC  expressed  as in (3.12a). By 

utilizing equations (3.13a) and (3.13b), the following equations are true. 
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Proof  
 

Proof of (A.4-2) 

(A.4-2) is derived by substituting the continuity of stC  
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into the equation that defines the relationship between the semi-variogram and 

covariance (3.19a). 

 

Proof of (A.4-3) 

Using the implicit relation of the product-sum model 
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It follows that  
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By applying (3.15c) yields 
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Proof of (A.4-4) 

Equation A.4-4 is proven in a similar fashion by noting that  

 

[ ] )0()()0(),0( 213 sttstst CkhCCkkhC ++=   

 

and applying (3.15b) 
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Equations (3.12b), (3.13a) and (3.13b) are used to simplify ),( tsst hhγ  to 

 

),0()0,(),0()0,(),( tstssttstssttsst hhkhhhh γγγγγ −+=  (3.18) 

 

where (3.15a) leads to  
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APPENDIX A.5 

ORDINARY KRIGING WEIGHTING CONDITION 

(Isaaks and Srivastava, 1989) 

 

The estimated value of the missing observation is defined by (4.1). The difference 

between the estimate and the true value is expressed as  

 

)()(ˆ)(
~

000 uZuZuR −=  (A.5-1) 

 

Substituting (4.1) into (A.5-1) yields  

 

∑ =
−=

n
a uZuZuR

1 00 )()()(
~

α αλ  (A.5-2) 

 

Equation (A.5-2) is completely expressed in terms of the original 1+n  random 

variables. By taking the expected value, equation (A.5-2) changes to  

 

])()([)](
~
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n

uZuZEuRE
α ααλ  

                     )]([)]([ 01
uZEuZE

n
−=∑ =α ααλ  

(A.5-3) 

 

with )](
~

[ 0uRE  also known as the bias. As the data are assumed to be stationarity, 

(A.5-3) can be expressed as  
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~
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n
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 (A.5-4) 

 

To ensure an unbiased estimator, the bias is set to zero, which yields the condition of 

(4.2). 
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APPENDIX A.6 

LAGRANGE MULTIPLIER 

 

Lagrange multipliers are useful when the researcher wants to determine the minimum 

or maximum of a function ),,( zyxf  that is subject to the constraint kzyxg =),,( . 

This constraint can be an equation that describes the boundary of the region. To better 

explain the multiplier, we revert to general notation. 

 

Translated to the kriging equations, αλ  is chosen such that the mean square error is 

minimized under the constraint that 1=∑ αλ . 

 

The general problem can be expressed as 

 

)(min αλf for n,...,1=α  (A.6-1) 

 

That is subjected to certain constraints  

 

kk bg =)( αλ  for pk ,..,1=  (A.6-2) 

 

Equations (A.6-1) and (A.6-2) represent a constrained optimization problem that can 

be solved with the aid of Lagrange multipliers. 

 

The steps to determine the Lagrange multipliers are 

 

1. The Lagrangian is defined in terms of the weights and the multipliers (A.6-3) 
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),,,,,,,,(
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   The constant 2 is used for convenience. 

 

2. The derivatives of L  with respect to nλλλ ,...,, 21  and pϕϕϕ ,...,, 21   are taken and  
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     set to zero, as seen in equations (A.6-4) and (A.6-5) 

 

02...2 1
1 =

∂

∂
++

∂

∂
+

∂

∂

i

p
p

ii

ggf

λ
ϕ

λ
ϕ

λ
  with ni ,...,2,1=  (A.6-4) 

 

kk bg =  with pk ,...,2,1=  (A.6-5) 

 

3. The pn ×  equations defined in (A.6-4) and (A.6-5) are solved. 

 

The method of Lagrange multipliers therefore achieve the objective of ordinary 

kriging as set out in equations 4.8, 4.12 and 4.13. 

 

More general examples on the functionality of the Lagrange multiplier can be found 

on the website http://tutorial.math.lamar.edu/Classes/CalcIII/LagrangeMultipliers. 

aspx 
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APPENDIX B.1 

 SIMULATED DATA 

DEFINE THE 100x100 GRID 

DATA lib.grid; 

INPUT i x y @@; 

CARDS; 

1 10 10  2 10 20  3 10 30  4 10 40 

. . .  

97 100 70  98 100 80  99 100 90  100 100  100; 

RUN;   

 

PROC IML; 

USE grid; 

READ all INTO x; xmat=x[,2:3]; 

 

START eucdist(xmat,rowname,DMAT); 

m=nrow(xmat); 

DMAT=j(m,m,0); 

 

DO j=1 TO m BY 1; 

DO k=1 TO m BY 1; 

DMAT[k,j] =((xmat[k,]-xmat[j,])*(xmat[k,]-xmat[j,])`)##0.5; 

END; 

END; 

FINISH eucdist; 

CALL eucdist(xmat,rowname,DMAT); 

 

rmat=exp((-1/50)*dmat); 

GENERATING SIGMA MATRICES FOR THE VMA(4) TIME SERIES 

sigmaA={ 1.0  0.5, 0.5   0.9}; 

theta1={ 0.9 -0.1,-0.1  -0.4}; theta2={ 0.4  0.0, 0.9   0.4}; 

theta3={ 0.6  0.3, 0.6  -0.1}; theta4={-0.6 -0.7,-0.75  0.6}; 

teta=theta1//theta2//theta3//theta4; 

gamma0=sigmaA + theta1*sigmaA*theta1` + theta2*sigmaA*theta2` +  

       theta3*sigmaA*theta3` + theta4*sigmaA*theta4`; 

gamma1=theta1*sigmaA + theta2*sigmaA*theta1` + theta3*sigmaA*theta2`   

       + theta4*sigmaA*theta3`; 

gamma2=theta2*sigmaA + theta3*sigmaA*theta1` + theta4*sigmaA*theta2`; 

gamma3=theta3*sigmaA + theta4*sigmaA*theta1`; 

 

gamma4=theta4*sigmaA; 

THE REST OF THE SIGMA’S ARE EQUAL TO ZERO 

gammaL ={0 0,0 0};                                                               

gamma_mat= 

gamma0||gamma1||gamma2||gamma3||gamma4||(gammaL`*j(25*2,2,1)`);  

 

2n x 2n TOEPLITZ MATRIX 

 sigmaAT=toeplitz(gamma_mat); 

 sigma=rmat@sigmaAT; 

 

GENERATE X~N(mean, sigmaATS) 

 z=rannor(j(nrow(sigma),1,0)); 

 v=half(sigma); 

 xvec=v`*z+100; 

CREATE lib.rmat   FROM rmat;   APPEND FROM rmat;  

CREATE lib.sigmaAT  FROM sigmaAT;  APPEND FROM sigmaAT;  

CREATE lib.sigma     FROM sigma;      APPEND FROM sigma; 

CREATE lib.Xvec   FROM Xvec;   APPEND FROM Xvec; 
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QUIT; 

 

PROC IML; 

USE lib.xvec ; READ all INTO xvec; 

USE grid;      READ all INTO xmat;  

 

time={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24, 

      25,26,27,28,29,30};  

t1=j(nrow(time),1,1); 

 

SPLIT DATA INTO THE STATION 

OBS 1 TO 30 IS STATION1 (ATT1) AND OBS 31-60 IS THE STATION (ATT2) 

JOIN TIME OBSERVATIONS, COORDINATES AND STATION NAME 

e.g. 

tS1A1= 

time||Xvec[1:30,]||(xmat[1,1]*t1)||(xmat[1,2]*t1)||(xmat[1,3]*t1); 

 

CREATE tS1A1 FROM tS1A1; APPEND FROM tS1A1; 

QUIT; 

 

%MACRO rename(station,att); 

data lib.ts&station.a&att; 

set  ts&station.a&att; 

time=col1; 

z&att.=col2; 

station=col3; 

x=col4 ; 

y=col5; 

drop col1-col5; 

run; 

%MEND; 

e.g. 

%rename(1,1);%rename(1,2);%rename(2,1);%rename(2,2);%rename(3,1); 

 

DATA lib.st_comz1; 

SET  

lib.ts1a1 lib.ts2a1 lib.ts3a1 lib.ts4a1 lib.ts5a1 lib.ts6a1 lib.ts7a1    

. . . 

lib.ts98a1  lib.ts99a1 lib.ts100a1; 

RUN; 

 

DATA lib.st_comz2; 

SET  

lib.ts1a2 lib.ts2a2 lib.ts3a2 lib.ts4a2 lib.ts5a2 lib.ts6a2 lib.ts7a2    

. . . 

lib.ts98a2 lib.ts99a2 lib.ts100a2; 

RUN; 

  

PROC SORT DATA = lib.st_comz1; BY time station; RUN; 

PROC SORT DATA = lib.st_comz2; BY time station; RUN; 

 

SPATIAL-TEMPORAL DATA SET OF 100 LOCATIONS AND 30 TIME OBSERVATIONS 

DATA lib.ST_COM; 

MERGE lib.st_comz1 lib.st_comz2; 

BY time station; 

RUN; 

SPATIAL-TEMPORAL DATA SET OF 100 LOCATIONS AND 1 TIME OBSERVATIONS 

DATA lib.S_COM; 

SET lib.ST_COM; 

IF time=1; 

RUN; 

 
 
 



                                        
 

 165 

APPENDIX B.2 

EXAMPLE 2-1 

DESCRIPTIVE STATISTICS – SPATIAL DATA  

HISTOGRAM & CORRELATION 

PROC UNIVARIATE DATA = orig.S_COM;  

HISTOGRAM/NORMAL; 

VAR z1;  

OUTPUT OUT = lib.s_com_z1       

CV=COEFVAR  

KURTOSIS=KURTOSIS   

MAX=MAX  

MEAN=MEAN  

MIN=MIN  

MODE=MODE  

N=NUMBEROBS  

RANGE=RANGE  

SKEWNESS=SKEWNESS  

STD=STD  

VAR=VAR  

Q1=Q1  

MEDIAN=MEDIAN  

Q3=Q3  

QRANGE=QRANGE  

STD_QRANGE=STD_QRANGE  

P10=P10 P90=P90 P95=P95 P99=P99  

NORMAL=NORMALTEST;   

RUN; 

THE SAME PROCEDURE IS FOLLOWED FOR Z2 

 

DETERMINE THE CORRELATION BETWEEN Z1&Z2 

ODS GRAPHICS ON; 

PROC CORR DATA=orig.s_com nomiss plots=matrix(histogram); 

VAR z1 z2; 

RUN; 

ODS GRAPHICS OFF; 
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APPENDIX B.3 

EXAMPLE 2-3 

CONTOUR MAPPING  

PROC SQL; 

CREATE TABLE create TABLE s_com 

AS SELECT y,x,z1 

FROM lib.s_com; 

QUIT; 

 

PROC GCONTOUR DATA = lib.s_com; 

PLOT y*x=z1/LEVELS=97.74 TO 105.22 BY 0.5 SMOOTH; 

run; 

 

PROC GCONTOUR DATA = lib.s_com; 

PLOT y*x=z2/LEVELS=95.55 TO 103.75 BY 0.5 SMOOTH; 

run; 
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APPENDIX B.4 

EXAMPLE 2-5 

DESCRIPTIVE STATISTICS – SPATIAL DATA  

MOVING WINDOWS STATISTICS 

  

DUMP OUT SPECIFIC WINDOWS 

 

DATA lib.window1 lib.window2 lib.window3 lib.window4 lib.window5   

     lib.window6 lib.window7 lib.window8 lib.window9; 

SET  orig.s_com; 

IF station in (1,2,3,4,11,12,13,14,21,22,23,24,31,32,33,34)THEN 

OUTPUT lib.window1; 

IF station in (4,5,6,7,14,15,16,17,24,25,26,27,34,35,36,37) THEN 

OUTPUT lib.window2; 

IF station in (7,8,9,10,17,18,19,20,27,28,29,30,37,38,39,40) THEN 

OUTPUT lib.window3; 

IF station in (31,32,33,34, 41,42,43,44, 51,52,53,54,61,62,63,64) 

THEN OUTPUT lib.window4; 

IF station in (34,35,36,37,44,45,46,47,54,55,56,57,64,65,66,67) THEN 

OUTPUT lib.window5; 

IF station in (37,38,39,40,47,48,49,50, 57,58,59,60,67,68,69,70) THEN 

OUTPUT lib.window6; 

IF station in (61,62,63,64,71,72,73,74,81,82,83,84,91,92,93,94) THEN 

OUTPUT lib.window7; 

IF station in (64,65,66,67, 74,75,76,77,84,85,86,87, 94,95,96,97) 

THEN OUTPUT lib.window8; 

IF station in (67,68,69,70,77,78,79,80,87,88,89,90,97,98,99,100) THEN 

OUTPUT lib.window9; 

RUN; 

 

SUMMARY STATISTICS OF THE MOVING WINDOWS 

%MACRO mws2(window,in,var);  

proc univariate data = lib.&window normaltest; 

histogram/normal; 

var &var; 

output out=sum_&in.&var MEAN=MEAN STD=STD; 

run; 

 

data  sum_&in.&var._2; 

set sum_&in.&var; 

format att $4.; 

att="&in"; 

mean=MEAN; 

std=STD; 

keep  att mean std; 

run; 

%MEND; 

 

%mws2(window1,w1,z1);%mws2(window2,w2,z1);%mws2(window3,w3,z1); 

%mws2(window4,w4,z1);%mws2(window5,w5,z1);%mws2(window6,w6,z1); 

%mws2(window7,w7,z1);%mws2(window8,w8,z1);%mws2(window9,w9,z1);  

 

DATA window_z1; 

SET sum_w1z1_2 sum_w2z1_2  sum_w3z1_2  sum_w4z1_2  sum_w5z1_2  

    sum_w6z1_2    sum_w7z1_2  sum_w8z1_2  sum_w9z1_2;   

RUN; 

  

PROC SQL;  

CREATE TABLE lib.window_z1  
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AS SELECT att, mean, std  

FROM window_z1;  

QUIT; 

 

SUMMARY STATISTICS  

%MACRO mws(name,out) ; 

ODS GRAPHICS ON; 

   PROC CORR DATA=lib.&name out=&out 

                        nomiss  

                        plots=matrix(histogram); 

      VAR z1 z2; 

   RUN; 

ODS GRAPHICS OFF; 

%MEND; 

 

%mws(window1,ws1);%mws(window2,ws2);%mws(window3,ws3); 

%mws(window4,ws4);%mws(window5,ws5);%mws(window6,ws6); 

%mws(window7,ws7);%mws(window8,ws8);%mws(window9,ws9); 

 

THE EXACT SAME CODE IS USED FOR Z2 

 

The SAME PROCEDURES ARE FOLLOWED FOR THE 4 GROUP MOVING WINDOWS  

 
 
 



                                        
 

 169 

APPENDIX B.5 

EXAMPLE 2-8 

H-SCATTER PLOT – Z1 

%MACRO z(station, att); 

data ts&station.a&att; 

set orig.ts&station.a&att; 

IF time=1; 

col&station=z&att; 

KEEP time col&station; 

RUN; 

%MEND; 

 

CREATE DATA SETS PER STATION PER ATTRIBUTE 

 

%z(1,1);%z(1,2); 

%z(2,1);%z(2,2); 

. . .  

%z(100,1);%z(100,2); 

 

%MACRO hscatter(s1,s2,col1,col2,m,d); 

data &s1._&s2._&m._&d; 

merge &s1  &s2; 

by time; 

run; 

 

data &s1._&s2._&m._&d; 

set &s1._&s2._&m._&d; 

c1=COL&col1; 

c2=COL&col2; 

drop COL&col1 COL&col2; 

run;  

%MEND; 

 

CREATE TABLES THATCONTAINS THE DATA FOR EACH DIRECTION AND LAG 

DISTANCES (0m TO 50m APART)  

i.e. In the horizontal distance at 10 meters apart, create the table 

that contain the observation for:  

station 1 vs station 11 

station 2 vs station 21 

station 3 vs station 31 

station 4 vs station 41 etc.  

e.g  

Z1 – HORIZONTAL 10M 

%hscatter(ts1a1,ts11a1,1,11,10,0); 

%hscatter(ts11a1,ts21a1,11,21,10,0); 

. . . 

%hscatter(ts80a1,ts90a1,80,90,10,0); 

%hscatter(ts90a1,ts100a1,90,100,10,0); 

 

DATA lib.H10mz1;SET 

ts1a1_ts11a1_10_0  ts11a1_ts21a1_10_0  

. . .  

ts80a1_ts90a1_10_0  ts90a1_ts100a1_10_0   

;RUN; 

 

 

TO 

Z1 – DIAGONAL 50M 
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%hscatter(ts5a1,ts60a1,5,60,50,45); 

%hscatter(ts4a1,ts59a1,4,59,50,45); 

. . .  

%hscatter(ts42a1,ts97a1,42,97,50,45); 

%hscatter(ts41a1,ts96a1,41,96,50,45); 

 

DATA lib.D50mz1;SET 

ts5a1_ts60a1_50_45  ts4a1_ts59a1_50_45  

. . . 

ts42a1_ts97a1_50_45  ts41a1_ts96a1_50_45   

;RUN; 

 

IDENTICAL CODE FOR Z2 
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APPENDIX B.6 

EXAMPLE 2-9 

CROSS H-SCATTERPLOTS 

%MACRO z(station, att); 

data ts&station.a&att; 

set orig.ts&station.a&att; 

IF time=1; 

col&station=z&att; 

KEEP time col&station; 

RUN; 

%MEND; 

CREATE DATA SETS PER STATION PER ATTRIBUTE 

%z(1,1);%z(1,2); 

. . .  

%z(100,1);%z(100,2); 

 

%MACRO hscatter(s1,s2,col1,col2,m,d); 

data &s1._&s2._&m._&d; 

merge &s1  &s2; 

by time; 

run; 

 

data &s1._&s2._&m._&d; 

set &s1._&s2._&m._&d; 

c1=COL&col1; 

c2=COL&col2; 

drop COL&col1 COL&col2; 

run;  

%MEND; 

THE SAME PROCEDURE IS FOLLOWED AS WITH Z1 EXCEPT THAT ATTRIBUTE 1 

FROM Z1 IS COMPARED TO ATTRIBUTE 2 FROM Z2 AND VISA VERSA 

e.g. 

Z1Z2 – HORIZONTAL 10M  

%hscatter(ts1a1,ts11a2,1,11,10,0); 

%hscatter(ts11a1,ts21a2,11,21,10,0); 

. . .  

%hscatter(ts80a1,ts90a2,80,90,10,0); 

%hscatter(ts90a1,ts100a2,90,100,10,0); 

 

data lib.H10mz1z2;set 

ts1a1_ts11a2_10_0  ts11a1_ts21a2_10_0  

. . .  

ts80a1_ts90a2_10_0  ts90a1_ts100a2_10_0   

;run; 

 

TO 

 

Z1Z2 – DIAGONAL 50M 

 

IDENTICAL CODE FOR Z2Z1 (CHANGE a1 AND a2 AROUND)  
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APPENDIX B.7 

EXAMPLE 2-10 

%MACRO z(station, att); 

data ts&station.a&att; 

set orig.ds_com; 

time=1; 

if station=&station; 

col&station._&att=dz&att; 

KEEP time col&station._&att ; 

RUN; 

%MEND; 

%z(1,1);%z(1,2); 

. . .  

%z(100,1);%z(100,2); 

 

CREATE DATA SETS PER STATION PER ATTRIBUTE 

 

%MACRO hscatter(a,b,m,d); 

data stat&a._stat&b._&m._&d._a1; 

merge ts&a.a1   

      ts&b.a1; 

by time; 

run; 

 

data stat&a._stat&b._&m._&d._a1; 

set stat&a._stat&b._&m._&d._a1; 

c1c2=(COL&a._1-COL&b._1)*(COL&a._1-COL&b._1); 

drop  COL&a._1 COL&b._1 ; 

run;  

%MEND; 

DUMP THE DATA OUT IN THE CORRECT FORMAT FOR VARIOGRAM ESTIMATES 

 

0M 

%hscatter(1,1,0,0); %hscatter(2,2,0,0); 

. . .  

%hscatter(99,99,0,0); %hscatter(100,100,0,0); 

 

DATA lib.h0a1; SET 

stat1_stat1_0_0_a1    stat2_stat2_0_0_a1     

. . .  

stat99_stat99_0_0_a1  stat100_stat100_0_0_a1  

;RUN; 

 

HORIZONTAL STEP 1 

%hscatter(1,11,10,0); %hscatter(11,1,10,0); 

. . .  

%hscatter(90,100,10,0); %hscatter(100,90,10,0); 

DATA lib.h10a1; SET 

stat1_stat11_10_0_a1   stat11_stat1_10_0_a1    

. . .  

stat90_stat100_10_0_a1 stat100_stat90_10_0_a1    

;RUN; 

 

DIAGONAL STEP 5 

%hscatter(1,56,50,45); %hscatter(56,1,50,45); 

. . .  

%hscatter(45,100,50,45);%hscatter(100,45,50,45); 
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DATA lib.d50a1; SET 

stat1_stat56_50_45_a1   stat56_stat1_50_45_a1   

. . .  

stat45_stat100_50_45_a1 stat100_stat45_50_45_a1    

;RUN; 

 

READ DATA INTO IML 

PROC IML; 

USE lib.h10a1;  READ all INTO h10a1;  

USE lib.h20a1;  READ all INTO h20a1; 

. . .  

USE lib.d50a1;  READ all INTO d50a1; 

 

DETERMINE THE GAMMA VALUES 

HORIZONTAL 

gh0a1=0;  

h10a1_sum=sum(h10a1[,2]); 

. . .  

h50a1_sum=sum(h50a1[,2]);  

 

h10a1_n=nrow(h10a1);  

. . .  

h50a1_n=nrow(h50a1);  

 

gh10a1=h10a1_sum/(2*h10a1_n);  

. . .  

gh50a1=h50a1_sum/(2*h50a1_n);  

VERTICAL 

gv0a1=0;  

v10a1_sum=sum(v10a1[,2]);  

. . .  

v50a1_sum=sum(v50a1[,2]);  

 

v10a1_n=nrow(v10a1);  

. . .  

v50a1_n=nrow(v50a1);  

 

gv10a1=v10a1_sum/(2*v10a1_n);  

. . .  

gv50a1=v50a1_sum/(2*v50a1_n);  

DIAGONAL 

gd0a1=0;  

d10a1_sum=sum(d10a1[,2]); d10a1_n=nrow(d10a1);  

. . .  

d50a1_sum=sum(d50a1[,2]); d50a1_n=nrow(d50a1);  

 

gd10a1=d10a1_sum/(2*d10a1_n);  

. . .  

gd50a1=d50a1_sum/(2*d50a1_n);  

 

A1=(gh0a1//. .//gh50a1)||(gv0a1//. .//gv50a1)||(gd0a1//..//gd50a1); 

A2=(gh0a2//. .//gh50a2)||(gv0a2//. .//gv50a2)||(gd0a2//..//gd50a2); 

A1A2=(gh0a1a2//..gh50a1a2)||(gv0a1a2//..gv50a1a2)||(gd0a1a2//..gd50a1

a2); 

A2A1=(gh0a2a1//..gh50a2a1)||(gv0a2a1//..gv50a2a1)||(gd0a2a1//..gd50a2

a1); 

CREATE lib.A1_DIR FROM A1; APPEND FROM A1; 

QUIT; 
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APPENDIX B.8 

EXAMPLE 2-11 

%MACRO z(station, att); 

data ts&station.a&att; 

set orig.ds_com; 

time=1; 

if station=&station; 

col&station._&att=dz&att; 

KEEP time col&station._&att ; 

RUN; 

%MEND; 

%z(1,1);%z(1,2); 

. . .  

%z(100,1);%z(100,2); 

 

%MACRO hscatter(a,b,m,d); 

data stat&a._stat&b._&m._&d._a1a2; 

merge ts&a.a1  ts&a.a2 ts&b.a1   ts&b.a2; 

by time; 

run; 

 

data stat&a._stat&b._&m._&d._a1a2; 

set stat&a._stat&b._&m._&d._a1a2; 

c1c2=(COL&a._1-COL&b._1)*(COL&a._2-COL&b._2); 

drop  COL&a._1 COL&b._1 COL&a._2 COL&b._2; 

run;%MEND; 

THE MACRO STATEMENTS ARE THE SAME AS APPENDIX B.7. 

PROC IML; 

USE lib.h0a1a2;  READ all INTO h0a1a2;  

USE lib.h10a1a2;  READ all INTO h10a1a2;  

. . . 

USE lib.d40a2a1;  READ all INTO d40a2a1; 

USE lib.d50a2a1;  READ all INTO d50a2a1; 

 

gh0a1a2=0;  

h10a1a2_sum=sum(h10a1a2[,2]);  

h10a1a2_n=nrow(h10a1a2);  

gh10a1a2=h10a1a2_sum/(2*h10a1a2_n);  

 

TO 

 

d50a1a2_sum=sum(d50a1a2[,2]);  

d50a1a2_n=nrow(d50a1a2);  

gd50a1a2=d50a1a2_sum/(2*d50a1a2_n);  

 

CODE FOR Z2Z1 IS SIMILAR 

A1  =(gh0a1//..//gh50a1)||(gv0a1//..//gv50a1)||(gd0a1//..//gd50a1); 

A2  =(gh0a2//..//gh50a2)||(gv0a2//..//gv50a2)||(gd0a2//..//gd50a2); 

A1A2=(gh0a1a2//.//gh50a1a2)||(gv0a1a2//.//gv50a1a2)||  

     (gd0a1a2//.//gd50a1a2); 

A2A1=(gh0a2a1//..//gh50a2a1)||(gv0a2a1//..//gv50a2a1)||(gd0a2a1//..// 

      gd50a2a1); 

CREATE lib.A1_DIR FROM A1; APPEND FROM A1;  

. . .  

CREATE lib.A2A1_DIR   FROM A2A1;  APPEND FROM A2A1; 

QUIT; 
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APPENDIX B.9 

EXAMPLE 2-12 

%MACRO z(station, att); 

data ts&station.a&att; 

set orig.comz&att; 

if station=&station; 

col&station._&att=z&att; 

KEEP time col&station._&att ; 

RUN; 

%MEND; 

%z(1,1);%z(1,2); 

. . .  

%z(100,1);%z(100,2); 

 

%MACRO hscatter(a,b,m,d); 

data stat&a._stat&b._&m._&d._a1; 

merge ts&a.a1        ts&b.a1; 

by time; 

run; 

 

data stat&a._stat&b._&m._&d._a1; 

set stat&a._stat&b._&m._&d._a1; 

 

l0=(COL&a._1-COL&b._1)*(COL&a._1-COL&b._1); 

l1=(COL&a._1-lag1(COL&b._1))*(COL&a._1-lag1(COL&b._1)); 

. . .  

l15=(COL&a._1-lag15(COL&b._1))*(COL&a._1-lag15(COL&b._1)); 

drop  COL&a._1 COL&b._1 ; 

run;  

%MEND; 

THE MACRO STATEMENTS ARE THE SAME AS APPENDIX B.7. 

PROC IML; 

USE lib.h0a1;   READ all INTO h0a1;  

. . .  

USE lib.d50a1;  READ all INTO d50a1; 

 

*0m; 

*t0; sum_0t0=sum(h0a1[,2]); n_0t0=-0*(nrow(h0a1)/30)+nrow(h0a1); 

*t1; sum_0t1=sum(h0a1[,3]); n_0t1=-1*(nrow(h0a1)/30)+nrow(h0a1); 

. . .  

*t15;sum_0t15=sum(h0a1[,17]);n_0t15=-15*(nrow(h0a1)/30)+nrow(h0a1);  

 

g0t0 =sum_0t0/(2*n_0t0);    g0t1 =sum_0t1/(2*n_0t1); 

. . .  

g0t14=sum_0t14/(2*n_0t14);  g0t15=sum_0t15/(2*n_0t15);   

 

G0Ta1=g0t0//. . . //g0t15; 

THE SAME CODE IS APPLICABLE FOR : 

Horizontal, Vertical and Diagonal at 10m, 20m, 30m, 40m, 50m,  

A1horizontal= G0Ta1||Gh10Ta1||Gh20Ta1||Gh30Ta1||Gh40Ta1||Gh50Ta1; 

A1vertical  = G0Ta1||Gv10Ta1||Gv20Ta1||Gv30Ta1||Gv40Ta1||Gv50Ta1; 

A1diagonal  = G0Ta1||Gd10Ta1||Gd20Ta1||Gd30Ta1||Gd40Ta1||Gd50Ta1; 

CREATE lib.A1_HOR FROM A1horizontal; APPEND FROM A1horizontal; 

CREATE lib.A1_VER FROM A1horizontal; APPEND FROM A1horizontal; 

CREATE lib.A1_DIA FROM A1horizontal; APPEND FROM A1horizontal; 

QUIT; 
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APPENDIX B.10 

EXAMPLE 2-13 

%MACRO z(station, att); 

data ts&station.a&att; 

set orig.comz&att; 

if station=&station; 

col&station._&att=z&att; 

KEEP time col&station._&att ; 

RUN; 

%MEND; 

 

%z(1,1); %z(1,2); 

… 

%z(100,1);%z(100,2); 

 

%MACRO hscatter(a,b,m,d); 

data stat&a._stat&b._&m._&d._a1a2; 

merge ts&a.a1   

      ts&a.a2 

      ts&b.a1 

      ts&b.a2; 

by time; 

run; 

 

data stat&a._stat&b._&m._&d._a1a2; 

set stat&a._stat&b._&m._&d._a1a2; 

l0=(COL&a._1-COL&b._1)*(COL&a._2-COL&b._2); 

l1=(COL&a._1-lag1(COL&b._1))*(COL&a._2-lag1(COL&b._2)); 

l2=(COL&a._1-lag2(COL&b._1))*(COL&a._2-lag2(COL&b._2)); 

l3=(COL&a._1-lag3(COL&b._1))*(COL&a._2-lag3(COL&b._2)); 

l4=(COL&a._1-lag4(COL&b._1))*(COL&a._2-lag4(COL&b._2)); 

l5=(COL&a._1-lag5(COL&b._1))*(COL&a._2-lag5(COL&b._2)); 

l6=(COL&a._1-lag6(COL&b._1))*(COL&a._2-lag6(COL&b._2)); 

l7=(COL&a._1-lag7(COL&b._1))*(COL&a._2-lag7(COL&b._2)); 

l8=(COL&a._1-lag8(COL&b._1))*(COL&a._2-lag8(COL&b._2)); 

l9=(COL&a._1-lag9(COL&b._1))*(COL&a._2-lag9(COL&b._2)); 

l10=(COL&a._1-lag10(COL&b._1))*(COL&a._2-lag10(COL&b._2)); 

l11=(COL&a._1-lag11(COL&b._1))*(COL&a._2-lag11(COL&b._2)); 

l12=(COL&a._1-lag12(COL&b._1))*(COL&a._2-lag12(COL&b._2)); 

l13=(COL&a._1-lag13(COL&b._1))*(COL&a._2-lag13(COL&b._2)); 

l14=(COL&a._1-lag14(COL&b._1))*(COL&a._2-lag14(COL&b._2)); 

l15=(COL&a._1-lag15(COL&b._1))*(COL&a._2-lag15(COL&b._2)); 

 

drop  COL&a._1 COL&b._1 COL&a._2 COL&b._2; 

run;  

%MEND; 

THE MACRO STATEMENTS ARE THE SAME AS APPENDIX B.7. 

THE IML PROCEDURE IS SIMILAR TO THE IML STATEMENT FOR APPENDIX B.9. 
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APPENDIX B.11 

EXAMPLE 2-15 

DETRENDING SPATIAL DATA 

proc sql; 

create table s_comz1 

as select station,x,y,z1 

from orig.s_com; 

quit; 

 

proc reg data=s_comz1; 

model z1 = x y /selection=stepwise; 

output out=gmoutz1 predicted=predz1 residual=Residualz1; 

run; 

quit; 

 

proc sql; 

create table s_comz2 

as select station,x,y,z2 

from orig.s_com; 

quit; 

 

proc reg data=s_comz2; 

model z2 = x y /selection=stepwise; 

output out=gmoutz2 predicted=predz2 residual=Residualz2; 

run; 

quit; 

 

data lib.ds_comz1; 

set  s_comz1; 

tz1=  98.76752+0.01453*x+0.04187*y; 

dz1=z1-tz1; 

run; 

 

data lib.ds_comz2; 

set  s_comz2; 

tz2=  102.96153-0.03689*x-0.01880*y; 

dz2=z2-tz2; 

run; 

 

proc sort data = lib.ds_comz2; by station x y; run; 

proc sort data = lib.ds_comz1; by station x y; run; 

 

data lib.ds_com; 

merge lib.ds_comz1 lib.ds_comz2; 

by station  x y; 

run; 

 

DETRENDING SPATIAL-TEMPORAL DATA 

PROC SQL; 

CREATE TABLE st_comz1 

AS SELECT station, time, z1 

FROM orig.st_comz1; 

QUIT; 

proc sort data = st_comz1; by station time; run; 

 

ASSIGN ARBITRARY DATES FOR DETRENDING PURPOSES 

 

data  st_comz1; 

set st_comz1; 
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format date date9.; 

     if time = 1  then date = '01SEP2009'd; 

else if time = 2  then date = '02SEP2009'd; 

. . .  

else if time = 30 then date = '30SEP2009'd; 

run; 

 

proc timeseries data=st_comz1 outdecomp=decomp1 ; 

by station; 

decomp TCC/mode=add ; 

id date interval=day accumulate=total; 

var z1; 

run; 

 

data decomp1; 

set decomp1; 

keep station  date tcc; 

proc sort;  by station date;  run; 

 

proc sort data =  st_comz1;  by station date;  run; 

 

data st_comz1; 

merge st_comz1 decomp1; 

by station date; 

run; 

 

data lib.comz1; 

set st_comz1; 

if tcc ne . then z = tcc; 

else z=z1; 

tz1=z1-z; 

run; 

 

PROC SQL; 

CREATE TABLE st_comz2 

AS SELECT station, time, z2 

FROM orig.st_comz2; 

QUIT; 

 

 

DE-TREND Z2 IN THE SAME MANNER 
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APPENDIX B.12 

EXAMPLE 2-17 

THE CODE USED IN APPENDIX B.7 AND APPENDIX B.8 IS APPLIED TO THE DE-

TRENDED SPATIAL DATA. 

 

CODE FOR OMNIDIRECTIONAL SEMI-VARIOGRAM 

PROC IML; 

USE lib.h10a1;  READ all INTO h10a1;  

. . .  

USE lib.d50a1;  READ all INTO d50a1; 

 

M10a1=h10a1//v10a1//d10a1;  

. . .  

M50a1=h50a1//v50a1//d50a1; 

 

M10a1_sum=sum(M10a1[,2]);           

. . .  

M50a1_sum=sum(M50a1[,2]);  

 

M10a1_n=nrow(M10a1);         

. . .  

M50a1_n=nrow(M50a1); 

  

g_M10a1=M10a1_sum/(2*M10a1_n);  

. . .  

g_M50a1=M50a1_sum/(2*M50a1_n);  

 

A1=0//g_M10a1//g_M20a1//g_M30a1//g_M40a1//g_M50a1; 

A2=0//g_M10a2//g_M20a2//g_M30a2//g_M40a2//g_M50a2; 

 

CREATE lib.A1_OMN FROM A1; APPEND FROM A1; 

QUIT; 
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APPENDIX B.13 

EXAMPLE 3-1 

DATA grid; 

INPUT i x y @@; 

CARDS; 

1  10 10  

2  10 20  

. . .  

99  100 90 

100 100 100   

;RUN;   

 

PROC IML; 

USE grid; READ all INTO x; xmat=x[,2:3]; 

 

START eucdist(xmat,rowname,DMAT); 

m=nrow(xmat); 

DMAT=j(m,m,0); 

 

DO j=1 TO m BY 1; 

DO k=1 TO m BY 1; 

DMAT[k,j] =((xmat[k,]-xmat[j,])*(xmat[k,]-xmat[j,])`)##0.5; 

END; 

END; 

 

FINISH eucdist; 

CALL eucdist(xmat,rowname,DMAT); 

 

DETERMINE THE VARIOGRAM MATRIX USING DMAT 

START rho(dmat,rowname,rhoMAT); 

m=nrow(dmat); 

rhoMAT=j(m,m,0); 

 

DO j=1 TO m BY 1; 

DO k=1 TO m BY 1; 

if dmat[j,k]<=10 THEN  

rhoMAT[k,j]=-0.04*((3*dmat[j,k])/20)+0.02 

*(dmat[j,k]*dmat[j,k]*dmat[j,k])/1000; 

ELSE  rhoMAT[k,j] =-0.06+0.002649*dmat[j,k]; 

END; 

END; 

 

FINISH rho; 

CALL rho(dmat,rowname,rhoMAT); 

g=inv(rhoMAT) ; 

g1=eigval(rhoMAT); 

 

sum1=g1*g1`; 

sum2=rhoMAT*sum1`; 

 

 

sum3=sum(sum2); 

QUIT; 
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APPENDIX B.14 

EXAMPLE 3-2 

*GAMMA(Hs,0); 

%MACRO z(station, att); 

data ts&station.a&att; 

set orig.comz&att; 

if station=&station; 

col&station._&att=z; 

KEEP time col&station._&att ; 

RUN; 

%MEND; 

%z(1,1); %z(1,2);   

... 

%z(100,1);%z(100,2); 

 

 

%MACRO hscatter(a,b,m,d); 

data stat&a._stat&b._&m._&d._a1; 

merge ts&a.a1   

      ts&b.a1; 

by time; 

run; 

 

data stat&a._stat&b._&m._&d._a1; 

set stat&a._stat&b._&m._&d._a1; 

c1c2=(COL&a._1-COL&b._1)*(COL&a._1-COL&b._1); 

drop  COL&a._1 COL&b._1 ; 

run;  

%MEND; 

THE MACRO STATEMENTS ARE THE SAME AS APPENDIX B.7. 

 

PROC IML; 

Z1 

USE lib.h10a1;  READ all INTO h10a1;  

USE lib.h20a1;  READ all INTO h20a1; 

. . .  

USE lib.d40a1;  READ all INTO d40a1; 

USE lib.d50a1;  READ all INTO d50a1; 

 

M10a1=h10a1//v10a1//d10a1; 

. . .  

M50a1=h50a1//v50a1//d50a1; 

 

M10a1_sum=sum(M10a1[,2]);  

. . . 

M50a1_sum=sum(M50a1[,2]);  

 

M10a1_n=nrow(M10a1);  

. . .  

M50a1_n=nrow(M50a1);  

 

g_M10a1=M10a1_sum/(2*M10a1_n);  

. . .  

g_M50a1=M50a1_sum/(2*M50a1_n);  

THE SAME CODE IS USED FOR Z2, Z1Z2 & Z2Z1 

A1   =0//g_M10a1//g_M20a1//g_M30a1//g_M40a1//g_M50a1; 

A2   =0//g_M10a2//g_M20a2//g_M30a2//g_M40a2//g_M50a2; 

A1A2 =0//g_M10a1a2//g_M20a1a2//g_M30a1a2//g_M40a1a2//g_M50a1a2; 
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A2A1 =0//g_M10a2a1//g_M20a2a1//g_M30a2a1//g_M40a2a1//g_M50a2a1; 

CREATE lib.A1_OMN  FROM A1;  APPEND FROM A1; 

CREATE lib.A2_OMN   FROM A2;  APPEND FROM A2; 

CREATE lib.A1A2_OMN    FROM A1A2;  APPEND FROM A1A2; 

CREATE lib.A2A1_OMN    FROM A2A1;  APPEND FROM A2A1; 

QUIT; 

 

GAMMA(0,Ht) 

 

%MACRO hscatter(a,b,m,d); 

data stat&a._stat&b._&m._&d._a1; 

merge ts&a.a1   

      ts&b.a1; 

by time; 

run; 

 

data stat&a._stat&b._&m._&d._a1; 

set stat&a._stat&b._&m._&d._a1; 

 

l0=(COL&a._1-COL&b._1)*(COL&a._1-COL&b._1); 

l1=(COL&a._1-lag1(COL&b._1))*(COL&a._1-lag1(COL&b._1)); 

. . .  

l15=(COL&a._1-lag15(COL&b._1))*(COL&a._1-lag15(COL&b._1)); 

drop  COL&a._1 COL&b._1 ; 

run;  

%MEND; 

%hscatter(1,1,0,0); 

. . .  

%hscatter(99,99,0,0); 

%hscatter(100,100,0,0); 

 

DATA lib.h0a1; SET 

stat1_stat1_0_0_a1    stat2_stat2_0_0_a1     

. . .  

stat99_stat99_0_0_a1  stat100_stat100_0_0_a1 ; 

RUN; 

 

PROC IML; 

USE lib.h0a1;  READ all INTO h0a1;  

*0m; 

*t0; sum_0t0=sum(h0a1[,2])  ; n_0t0=-0*(nrow(h0a1)/30)  +nrow(h0a1); 

*t1; sum_0t1=sum(h0a1[,3])  ; n_0t1=-1*(nrow(h0a1)/30)  +nrow(h0a1); 

. . . 

*t14;sum_0t14=sum(h0a1[,16]);n_0t14=-14*(nrow(h0a1)/30)+nrow(h0a1);  

*t15;sum_0t15=sum(h0a1[,17]);n_0t15=-15*(nrow(h0a1)/30)+nrow(h0a1);  

 

g0t0 =sum_0t0 /(2*n_0t0);  g0t1 =sum_0t1 /(2*n_0t1);   

. . .  

g0t14=sum_0t14/(2*n_0t14);   g0t15=sum_0t15/(2*n_0t15);   

 

G0Ta1=g0t0//. . . //g0t15; 

CREATE lib.A1_H0  FROM G0Ta1; APPEND FROM G0Ta1; 

QUIT; 

 

SAME PROCEDURE FOR HOA2, H0A1A2 AND H0A2A1 
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APPENDIX B.15 

EXAMPLE 4-1 

SELECT 15% RANDOM MISSING STATIONS 

DATA locations; 

INPUT i x y @@; 

CARDS; 

1 10 10   

2 10 20   

... 

99 100 90   

100 100 100   

;RUN;   

 

PROC SURVEYSELECT DATA=locations  METHOD = srs  

OUT = Ms_com 

N = 15 

SEED = 0; 

ID i; 

RUN; 

 

DATA lib.missingloc; 

INPUT i x y @@; 

CARDS; 

11 20 10  14 20 40  17  20 70   

18 20 80  22 30 20   23 30 30  

25 30 50  36 40 60 38 40 80  

59 60 90  60  60 100  69 70 90  

80 80 100 90 90 100 100 100 100  

;RUN; 

 

DATA lib.MS_COM; 

SET orig.ds_com; 

IF station in (11,14,17,18,22,23,25,36,38,59,60,69,80,90,100) THEN 

DELETE; 

run; 

 

DATA z1; 

SET orig.ds_comz1; 

IF station in (11,14,17,18,22,23,25,36,38,59,60,69,80,90,100) THEN 

DELETE; 

KEEP station x y z1 tz1 dz1; 

RUN; 

 

DATA lib.grid; 

INPUT i x y @@; 

CARDS; 

1 10 10   

2 10 20   

... 

99 100 90   

100 100 100   

;RUN;   

quit; 

 

PROC IML; 

USE lib.grid; READ all INTO x; xmat=x[,2:3]; 

 

START eucdist(xmat,rowname,DMAT); 

m=nrow(xmat); 
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DMAT=j(m,m,0); 

DO j=1 TO m BY 1; 

DO k=1 TO m BY 1; 

DMAT[k,j] =((xmat[k,]-xmat[j,])*(xmat[k,]-xmat[j,])`)##0.5; 

END; 

END; 

FINISH eucdist; 

 

CALL eucdist(xmat,rowname,DMAT); 

 

DETERMINE THE VARIOGRAM MATRIX USING DMAT 

START rho(dmat,rowname,rhoMAT); 

m=nrow(dmat); 

rhoMAT=j(m,m,0); 

DO j=1 TO m BY 1; 

DO k=1 TO m BY 1; 

IF dmat[j,k]<=30 then  

rhoMAT[k,j] = 1*(((3*dmat[j,k])/60) 

-0.5*((dmat[j,k]*dmat[j,k]*dmat[j,k])/27000)); 

ELSE  rhoMAT[k,j] = 1; 

END; 

END; 

FINISH rho; 

 

CALL rho(dmat,rowname,rhoMAT); 

 

m1     = rhoMAT[,1:10]||. . . ||rhoMAT[,91:99]; 

rhoMATm= m1[1:10,]//. . . //m1[91:99,]; 

matrix = rhoMAT[1:10,]//. . . //rhoMAT[91:99,]; 

 

CALCULATE LAMDA AND PHI 

START par(dmat,rhoMATm,rhoMAT,col,rowname,gam0,lamda1,lamda,phi); 

m=nrow(rhoMATm);  

lamda1=j(m,1,0); 

lamda=j(m,1,0); 

phi=j(1,1,0); 

gam0=j(m,1,0); 

one=j(1,m,1); 

onep =one`; 

gam0 = 

rhoMAT[1:10,col]//. . . //rhoMAT[91:99,col]; 

 

lamda1= 

gam0+onep*((1-(one*inv(rhoMATm)*gam0))/(one*inv(rhoMATm)*gam0)); 

lamda =lamda1`*inv(rhoMATm); 

phi=-1*(1-one*inv(rhoMATm)*gam0)/(one*inv(rhoMATm)*onep); 

FINISH par; 

 

CALL par(dmat,rhoMATm,rhoMAT,11,rowname ,gam0,lamda1,lamda11,phi11); 

CALL par(dmat,rhoMATm,rhoMAT,14,rowname ,gam0,lamda1,lamda14 ,phi14); 

. . .  

CALL par(dmat,rhoMATm,rhoMAT,90,rowname ,gam0,lamda1,amda90 ,phi90); 

CALL 

par(dmat,rhoMATm,rhoMAT,100,rowname,gam0,lamda1,lamda100,phi100); 

 

LAMDA = lamda11//. . . //lamda100; 

PHI   = phi11//. . . //phi100; 

 

TEST LAMDA 

sum11 =sum(lamda11`); sum14 =sum(lamda14`);   

. . .  
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sum90 =sum(lamda90`);  sum100=sum(lamda100`);  

 

sum=sum11//. . . //sum100; 

 

DETERMINE THE INTERPOLATED VALUE 

USE z1;     READ all INTO z1;     

START system(z1,lamda,phi,row,rowname,LR); 

LR = lamda*(z1[,6]+z1[,5]);  

FINISH system; 

 

CALL system(z1,lamda11 ,phi11,11,rowname,LR11);  

CALL system(z1,lamda14 ,phi14,14,rowname,LR14); 

. . . 

CALL system(z1,lamda90 ,phi90,90,rowname,LR90); 

CALL system(z1,lamda100,phi100,100,rowname,LR100); 

 

INT = LR11//. . . //LR100; 

 

CALCULATE THE ESTIMATED KRIGING VARIANCE 

START var(matrix,lamda,rhoMAT,gam0,col,rowname,sigma); 

gam0=matrix[,col]; 

sigma=gam0`*lamda`; 

FINISH var; 

 

CALL var(matrix,lamda11, rhoMAT,gam0,11,rowname,sigma_11 ); 

CALL var(matrix,lamda14, rhoMAT,gam0,14,rowname,sigma_14 ); 

. . . 

CALL var(matrix,lamda90, rhoMAT,gam0,90,rowname,sigma_90 ); 

CALL var(matrix,lamda100,rhoMAT,gam0,100,rowname,sigma_100); 

 

sigma=sigma_11//. . . //sigma_100; 

CREATE lib.rhoMAT       FROM rhoMAT;   APPEND FROM rhoMAT; 

CREATE lib.Interpolated FROM INT;      APPEND FROM INT; 

CREATE lib.lamda   FROM lamda;  APPEND FROM lamda; 

CREATE lib.phi     FROM phi;    APPEND FROM phi; 

CREATE lib.sigma   FROM sigma;  APPEND FROM sigma; 

QUIT; 
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APPENDIX B.16 

EXAMPLE 5-1 

DATA z1a; 

SET orig.ds_comz1; 

IF station in (11,14,17,18,22,23,25,36,38,59,60,69,80,90,100) THEN 

DELETE; 

KEEP station x y z1 tz1 dz1; 

RUN; 

 

DATA z2a; 

SET orig.ds_comz2; 

KEEP station x y z2 tz2 dz2; 

RUN; 

PROC SQL; 

CREATE TABLE z1 AS SELECT 

station,x,y,z1,tz1,dz1 

FROM z1a; 

QUIT; 

PROC SQL; 

CREATE TABLE z2 AS SELECT 

station,x,y,z2,tz2,dz2 

FROM z2a; 

QUIT; 

 

DATA lib.grid; 

INPUT i x y @@; 

CARDS; 

1 10 10   

2 10 20  

... 

99 100 90   

100 100 100   

;RUN;   

 

PROC IML; 

USE lib.grid; READ all INTO x; xmat=x[,2:3]; 

 

START eucdist(xmat,rowname,DMAT); 

m=nrow(xmat); 

DMAT=j(m,m,0); 

 

DO j=1 TO m BY 1; 

DO k=1 TO m BY 1; 

DMAT[k,j] =((xmat[k,]-xmat[j,])*(xmat[k,]-xmat[j,])`)##0.5; 

END; 

END;  

FINISH eucdist; 

CALL eucdist(xmat,rowname,DMAT); 

 

DETERMINE THE Z1 VARIOGRAM MATRIX USING DMAT 

START rho1(dmat,rowname,rho1MAT); 

m=nrow(dmat); 

rho1MAT=j(m,m,0); 

 

DO j=1 TO m BY 1; 

DO k=1 TO m BY 1; 

IF dmat[j,k]<=30 THEN  

rho1MAT[k,j] = 1*(((3*dmat[j,k])/60) 

-0.5*((dmat[j,k]*dmat[j,k]*dmat[j,k])/27000)); 
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ELSE  rho1MAT[k,j] = 1; 

END; 

END;  

FINISH rho1; 

CALL rho1(dmat,rowname,rho1MAT); 

 

m1 =  rho1MAT[,1:10]||. . . ||rho1MAT[,91:99]; 

 

rho11 is a 85*85 matrix 

rho11= m1[1:10,]//. . . //m1[91:99,]; 

 

DETERMINE THE Z2 VARIOGRAM MATRIX BY USING DMAT 

START rho2(dmat,rowname,rho2MAT); 

m=nrow(dmat); 

rho2MAT=j(m,m,0); 

 

DO j=1 TO m BY 1; 

DO k=1 TO m BY 1; 

IF dmat[j,k]<=50 THEN  

rho2MAT[k,j] = 2.6*(((3*dmat[j,k])/100) 

-0.5*((dmat[j,k]*dmat[j,k]*dmat[j,k])/125000)); 

ELSE  rho2MAT[k,j] = 2.6; 

END; 

END;  

FINISH rho2; 

 

CALL rho2(dmat,rowname,rho2MAT); 

rho22 is a 100*100 matrix 

rho22     =  rho2MAT; 

 

DETERMINE THE Z1Z2 VARIOGRAM MATRIX USING DMAT 

START rho12(dmat,rowname,rho12MAT); 

m=nrow(dmat); 

n=ncol(dmat); 

rho12MAT=j(m,n,0); 

 

DO j=1 TO m BY 1; 

DO k=1 TO n BY 1; 

IF dmat[j,k]<=10 THEN  

rho12MAT[k,j]=-0.04*((3*dmat[j,k])/20) 

              +0.02*(dmat[j,k]*dmat[j,k]*dmat[j,k])/1000; 

ELSE  

rho12MAT[k,j] =-0.06+0.002649*dmat[j,k]; 

END;   

END;  

FINISH rho12; 

 

CALL rho12(dmat,rowname,rho12MAT); 

rho12 is a 85*100 matrix 

rho12=rho12MAT[1:10,]//. . . //rho12MAT[91:99,]; 

 

DETERMINE THE Z2Z1 VARIOGRAM MATRIX USING DMAT 

 

START rho21(dmat,rowname,rho21MAT); 

m=nrow(dmat); 

n=ncol(dmat); 

rho21MAT=j(m,n,0); 

 

DO j=1 TO m BY 1; 

DO k=1 TO n BY 1; 

IF dmat[j,k]<=10 THEN  
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rho21MAT[k,j]=-0.04*((3*dmat[j,k])/20) 

              +0.02*(dmat[j,k]*dmat[j,k]*dmat[j,k])/1000; 

ELSE rho21MAT[k,j] =-0.06+0.002649*dmat[j,k]; 

END;   

END;  

FINISH rho21; 

 

CALL rho21(dmat,rowname,rho21MAT); 

rho21 is a 100*85 matrix 

rho21=rho21MAT[,1:10]||. . . ||rho21MAT[,91:99]; 

 

DEFINE G 

RHO=(rho11||rho12)//(rho21||rho22); 

 

ONE11=j(nrow(rho11),1,1); 

ONE22=j(nrow(rho22),1,1); 

ZERO11=j(nrow(rho11),1,0); 

ZERO22=j(nrow(rho22),1,0); 

 

NUL=j(1,2,0); 

 

A1=ONE11//ZERO22; 

A2=ZERO11//ONE22; 

 

G=(RHO||A1||A2)//(ONE11`||ZERO22`||NUL)//(ZERO11`||ONE22`||NUL);      

 

DEFINE B 

E=j(1,1,1); 

N=j(1,1,0); 

 

REMOVE THOSE THAT ARE MISSING 

B11=rho1MAT[1:10,11]//. . . .//rho12MAT[,11]//E//N; 

B14=rho1MAT[1:10,14]//. . . //rho12MAT[,14]//E//N; 

. . .  

B90 =rho1MAT[1:10,90]//. . . //rho12MAT[,90] //E//N; 

B100=rho1MAT[1:10,100]//. . . //rho12MAT[,100] //E//N; 

 

CALCULATE LAMDA AND PHI 

START par(G,rowname,B,lamda); 

m=nrow(B); 

lamda=j(m,1,0);  

lamda = inv(G)*B; 

FINISH par; 

 

CALL par(G,rowname,B11 ,lamda11);  CALL par(G,rowname,B14 ,lamda14); 

. . .  

CALL par(G,rowname,B90 ,lamda90);  CALL par(G,rowname,B100,lamda100); 

 

LAMDA1=lamda11[1:85,]||. . . ||lamda100[1:85,]; 

LAMDA2=lamda11[86:185,]||. . . ||lamda100[86:185,]; 

PHI1  =lamda11[186,]||. . . ||lamda100[186,]; 

PHI2  =lamda11[187,]||. . . ||lamda100[187,]; 

 

TEST LAMDA 

sum11_1 =sum(lamda11[1:85,]);  SUM11_2   =sum(lamda11[86:185,]); 

. . .  

sum100_1=sum(lamda100[1:85,]); SUM100_2  =sum(lamda100[86:185,]); 

 

sum1=sum11_1//. . . //sum100_1; 

sum2=sum11_2//. . . //sum100_2; 
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DETERMINE THE INTERPOLATED VALUE 

USE z1;     READ all INTO z1;           

USE z2;     READ all INTO z2;     

 

START system(z1,z2,lamdaz1,lamdaz2,rowname,LR); 

LR = lamdaz1`*(z1[,6]+z1[,5]) + lamdaz2`*(z2[,6]+z2[,5]) ; 

FINISH system; 

 

CALL system(z1,z2,lamda11[1:85,] ,lamda11[86:185,],rowname,LR11);   

CALL system(z1,z2,lamda14[1:85,] ,lamda14[86:185,],rowname,LR14); 

. . .  

CALL system(z1,z2,lamda90[1:85,] ,lamda90[86:185,],rowname,LR90); 

CALL system(z1,z2,lamda100[1:85,],lamda100[86:185,],rowname,LR100); 

 

INT =LR11//LR14//LR17//LR18//LR22//LR23//LR25//LR36//LR38//LR59//LR60 

     //LR69//LR80//LR90//LR100; 

 

CALCULATE THE ESTIMATED KRIGING VARIANCE 

START var(B,lamda,rowname,sigma); 

sigma=B`*lamda; 

FINISH var; 

 

CALL var(B11 ,lamda11 ,rowname,sigma_11 );  

CALL var(B14 ,lamda14 ,rowname,sigma_14 ); 

. . . 

CALL var(B90 ,lamda90 ,rowname,sigma_90 ); 

CALL var(B100,lamda100,rowname,sigma_100); 

 

sigma= 

sigma_11//sigma_14//sigma_17//sigma_18//sigma_22//sigma_23//sigma_25/

/sigma_36//sigma_38//sigma_59//sigma_60//sigma_69//sigma_80//sigma_90

//sigma_100; 

 

CREATE lib.rho11       FROM rho11;  APPEND FROM rho11; 

CREATE lib.rho12       FROM rho12;  APPEND FROM rho12; 

CREATE lib.rho21       FROM rho21;  APPEND FROM rho21; 

CREATE lib.rho22      FROM rho22;  APPEND FROM rho22; 

CREATE lib.Interpolated FROM INT;    APPEND FROM INT; 

CREATE lib.lamda1     FROM lamda1; APPEND FROM lamda1; 

CREATE lib.lamda2    FROM lamda2; APPEND FROM lamda2; 

CREATE lib.phi1     FROM phi1;   APPEND FROM phi1; 

CREATE lib.phi2     FROM phi2;   APPEND FROM phi2; 

CREATE lib.sigma     FROM sigma;  APPEND FROM sigma; 

QUIT; 
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APPENDIX B.17 

EXAMPLE 6-1 

OPTION COMPRESS = yes; 

 

proc sort data = orig.st_com; by x y time; run; 

 

DATA locations; 

INPUT i x y t @@; 

CARDS; 

1 10 10 1  

2 10 10 2  

3 10 10 3  

.. 

30 10 10 30  

31 10 20 1  

... 

3000 100 100 30 

;RUN;   

 

PROC SURVEYSELECT DATA=locations   

METHOD = srs  

OUT = Ms_com 

N = 450 

SEED = 0; 

ID i; 

RUN; 

 

DATA lib.missingloc; 

set MS_com; 

RUN; 

 

EDELETE THE RANDOMLY SELECTED VALUES FROM THE STATION 

DATA z1; 

SET lib.comz1; 

     if x=10 and y=10 and time=3 then delete; 

else if x=10 and y=10 and time=4 then delete; 

. . .  

else if x=100 and y=100 and time=21 then delete; 

else if x=100 and y=100 and time=29 then delete; 

KEEP station x y time z1 muz1 dz1; 

RUN; 

 

DATA lib.spacegrid; 

INPUT   i x y  @@; 

CARDS; 

1 10 10 

2 10 10  

3 10 10  

.. 

3000 100 100 

;RUN; 

PROC SORT DATA = lib.spacegrid; 

BY i; 

RUN; 

 

DATA lib.timegrid; 

INPUT i time @@; 

CARDS; 

1 1  
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... 

29 29  

30 30  

... 

3000 30 

;RUN; 

PROC SORT DATA = lib.timegrid; 

BY i; 

RUN; 

 

PROC IML; 

USE lib.spacegrid;   READ all INTO x;  xmat=x[,2:3]; 

USE lib.timegrid;    READ all INTO y;  timemat=y[,2];  

 

SPACE DISTANCE MATRIX BETWEEN STATIONS 

START eucdist1(xmat,rowname,DMAT); 

m=nrow(xmat); 

DMAT=j(m,m,0); 

 

DO j=1 TO m BY 1; 

DO k=1 TO m BY 1; 

DMAT[k,j] =((xmat[k,]-xmat[j,])*(xmat[k,]-xmat[j,])`)##0.5; 

END; 

END; 

 

FINISH eucdist1; 

CALL eucdist1(xmat,rowname,DMAT); 

 

TIME DISTANCE MATRIX BETWEEN STATIONS 

START eucdist2(timemat,rowname,TMAT); 

m=nrow(timemat); 

TMAT=j(m,m,0); 

 

DO j=1 TO m BY 1; 

DO k=1 TO m BY 1; 

TMAT[k,j] =((timemat[k,]-timemat[j,])*(timemat[k,]-

timemat[j,])`)##0.5; 

END; 

END; 

 

FINISH eucdist2; 

CALL eucdist2(timemat,rowname,TMAT); 

 

DETERMINE THE VARIOGRAM MATRIX USING DMAT 

START rho(dmat,tmat,rowname,rhoMAT); 

m=nrow(dmat); 

rhoMAT=j(m,m,0); 

 

DO j=1 TO m BY 1;             

DO k=1 TO m BY 1;             

IF dmat[j,k] <= 50 THEN  

rhoMAT[k,j] = 1*(((3*dmat[j,k])/100) 

            - 0.5*((dmat[j,k]*dmat[j,k]*dmat[j,k])/125000)) 

            + 1.27*(1-exp(-(tmat[j,k])/5))  

            - 0.74*(1*(((3*dmat[j,k])/100) 

            - 0.5*((dmat[j,k]*dmat[j,k]*dmat[j,k])/125000))) 

            *(1.27*(1-exp(-(tmat[j,k])/5))); 

ELSE  

rhoMAT[k,j] = 1 

            + 1.27*(1-exp(-(tmat[j,k])/5))  

            - 0.74*(1)*(1.27*(1-exp(-(tmat[j,k])/5))); 
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END; 

END; 

 

FINISH rho; 

CALL rho(dmat,tmat,rowname,rhoMAT); 

 

REMOVE THE ROWS AND COLUMNS THAT ARE MISSING 

m1= rhoMAT[,1:2]||rhoMAT[,5:7]||rhoMAT[,9:14]||rhoMAT[,16:18]|| 

. . . 

rhoMAT[,2979]||rhoMAT[,2981:2990]||rhoMAT[,2992:2998]||rhoMAT[,3000]; 

 

rhoMATm=m1[1:2,]//m1[5:7,]//m1[9:14,]//m1[16:18,]//m1[20:31,]// 

. . .  

m1[2967:2977,]//m1[2979,]//m1[2981:2990,]//m1[2992:2998,]//m1[3000,]; 

 

matrix=rhoMAT[1:2,]//rhoMAT[5:7,]//rhoMAT[9:14,]//rhoMAT[16:18,]// 

. . .  

rhoMAT[2979,]//rhoMAT[2981:2990,]//rhoMAT[2992:2998,]//rhoMAT[3000,]; 

 

rhoMATmI=inv(rhoMATm); 

 

CREATE lib.rhoMATmI   FROM rhoMATmI;    APPEND FROM rhoMATmI; 

CREATE lib.matrix     FROM matrix;      APPEND FROM matrix; 

CREATE lib.rhoMAT     FROM rhoMAT;      APPEND FROM rhoMAT; 

CREATE lib.rhoMATm    FROM rhoMATm;     APPEND FROM rhoMATm; 

QUIT; 

 

PROC IML; 

USE lib.rhoMATmI; READ all INTO rhoMATmI; 

USE lib.matrix;     READ all INTO matrix; 

USE lib.rhoMAT;     READ all INTO rhoMAT; 

 

CALCULATE LAMDA AND PHI ONLY FOR THE SELECTED STATIONS IN THE EXAMPLE 

START par2(rhoMATmI,matrix,col,rowname,gam0,lamda1,lamda,phi); 

m=nrow(rhoMATmI);  

 

lamda1 =j(m,1,0); 

lamda  =j(m,1,0); 

phi    =j(1,1,0); 

gam0   =j(m,1,0); 

one    =j(1,m,1); 

onep =one`; 

gam0  =matrix[,col]; 

lamda1=gam0+onep*((1-(one*rhoMATmI*gam0))/(one*rhoMATmI*gam0)); 

lamda =lamda1`*rhoMATmI; 

phi=-1*(1-(one*rhoMATmI*gam0))/(one*rhoMATmI*onep); 

FINISH par2; 

 

CALL par2(rhoMATmI,matrix,777,rowname,gam0,lamda1,lamda777,phi777); 

. . . 

CALL 

par2(rhoMATmI,matrix,1993,rowname,gam0,lamda1,lamda1993,phi1993); 

 

lamda=lamda777//. . . //lamda1993; 

phi=phi777//. . . //phi1993; 

 

DETERMINE THE INTERPOLATED VALUE 

USE z1;     READ all INTO z1; 

 

START system(z1,lamda,phi,row,rowname,LR); 

LR = lamda*(z1[,6]+z1[,7]);  
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FINISH system; 

 

CALL system(z1,lamda777,phi777,777,rowname,LR777); 

CALL system(z1,lamda779,phi779,779,rowname,LR779); 

CALL system(z1,lamda780,phi780,780,rowname,LR780); 

. . .  

CALL system(z1,lamda1991,phi1991,1991,rowname,LR1991); 

CALL system(z1,lamda1993,phi1993,1993,rowname,LR1993); 

 

INT=  

LR777//. . . //LR1993; 

 

CALCULATE THE ESTIMATED KRIGING VARIANCE 

START var3(lamda,matrix,gam0,col,rowname,sigma); 

gam0 =matrix[,col]; 

sigma=gam0`*lamda`; 

FINISH var3; 

 

CALL var3(lamda777,matrix,gam0,777,rowname,sigma_777); 

CALL var3(lamda779,matrix,gam0,779,rowname,sigma_779); 

. . . 

CALL var3(lamda1991,matrix,gam0,1991,rowname,sigma_1991); 

CALL var3(lamda1993,matrix,gam0,1993,rowname,sigma_1993); 

 

SIGMA_1=  

sigma_777//. . . //sigma_1993; 

 

CREATE lib.Interpolated FROM INT;     APPEND FROM INT; 

CREATE lib.lamda     FROM lamda;   APPEND FROM lamda; 

CREATE lib.phi     FROM phi;     APPEND FROM phi; 

CREATE lib.sigma     FROM sigma;   APPEND FROM sigma; 

 

QUIT; 
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APPENDIX B.18 

EXAMPLE 7-1 

USE Z1 AND Z2 DETERMINE IN APPENDIX B.17 

PROC IML; 

USE lib.spacegrid;  READ all INTO x;     xmat=x[,2:3]; 

USE lib.timegrid;   READ all INTO y;     timemat=y[,2];  

 

SPACE DISTANCE MATRIX BETWEEN STATIONS 

START eucdist1(xmat,rowname,DMAT); 

m=nrow(xmat); 

DMAT=j(m,m,0); 

 

DO j=1 TO m BY 1; 

DO k=1 TO m BY 1; 

DMAT[k,j] =((xmat[k,]-xmat[j,])*(xmat[k,]-xmat[j,])`)##0.5; 

END; 

END; 

FINISH eucdist1; 

CALL eucdist1(xmat,rowname,DMAT); 

 

TIME DISTANCE MATRIX BETWEEN STATIONS 

START eucdist2(timemat,rowname,TMAT); 

m=nrow(timemat); 

TMAT=j(m,m,0); 

 

DO j=1 TO m BY 1; 

DO k=1 TO m BY 1; 

TMAT[k,j]  

        =((timemat[k,]-timemat[j,])*(timemat[k,]-timemat[j,])`)##0.5; 

END; 

END; 

FINISH eucdist2; 

CALL eucdist2(timemat,rowname,TMAT); 

 

DETERMINE THE Z1 VARIOGRAM USING DMAT & TMAT 

START rho1(dmat,tmat,rowname,rho1MAT); 

m=nrow(dmat); 

rho1MAT=j(m,m,0); 

 

DO j=1 TO m BY 1;            

DO k=1 TO m BY 1; 

IF dmat[j,k] <= 50 THEN  

rho1MAT[k,j] = 1*(((3*dmat[j,k])/100)- 

               0.5*((dmat[j,k]*dmat[j,k]*dmat[j,k])/125000)) 

             + 1.27*(1-exp(-(tmat[j,k])/5))  

             - 0.74*(1*(((3*dmat[j,k])/100) 

             - 0.5*((dmat[j,k]*dmat[j,k]*dmat[j,k])/125000))) 

             * (1.27*(1-exp(-(tmat[j,k])/5))); 

ELSE  

rho1MAT[k,j] = 1 

             + 1.27*(1-exp(-(tmat[j,k])/5))  

             - 0.74*(1)*(1.27*(1-exp(-(tmat[j,k])/5))); 

END; 

END; 

FINISH rho1; 

CALL rho1(dmat,tmat,rowname,rho1MAT); 

 

REMOVE THE COLUMNS THAT ARE MISSING 
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m1=rho1MAT[,1:2]||rho1MAT[,5:7]||rho1MAT[,9:14]||rho1MAT[,16:18]|| 

. . .  

rho1MAT[,2981:2990]||rho1MAT[,2992:2998]||rho1MAT[,3000]; 

 

Rho11 IS A 2550 x 2550 MATRIX   

rho11=m1[1:2,]//m1[5:7,]//m1[9:14,]//m1[16:18,]//m1[20:31,]//m1[33,] 

. . . 

m1[2967:2977,]//m1[2979,]//m1[2981:2990,]//m1[2992:2998,]//m1[3000,]; 

 

CREATE lib.rho11        FROM rho11;     APPEND FROM rho11; 

CREATE lib.rho1MAT       FROM rho1MAT;   APPEND FROM rho1MAT; 

 

DETERMINE THE Z2 VARIOGRAM MATRIX USING DMAT & TMAT 

START rho2(dmat,tmat,rowname,rho2MAT); 

m=nrow(dmat); 

rho2MAT=j(m,m,0); 

 

DO j=1 TO m BY 1;             

DO k=1 TO m BY 1;   

 

IF DMAT[k,j]<=50 & TMAT[j,k] <=5 then  

rho2MAT[k,j] = 1*(((3*dmat[j,k])/100)- 

               0.5*((dmat[j,k]*dmat[j,k]*dmat[j,k])/125000)) 

              +1.70*(((3*dmat[j,k])/16)- 

               0.5*((tmat[j,k]*tmat[j,k]*tmat[j,k])/512)) 

              -0.50*(1*(((3*dmat[j,k])/100)- 

               0.5*((dmat[j,k]*dmat[j,k]*dmat[j,k])/125000))) 

               *(1.70*(((3*dmat[j,k])/16)-  

               0.5*((tmat[j,k]*tmat[j,k]*tmat[j,k])/512))); 

 

ELSE IF DMAT[k,j]>50 & TMAT[j,k] <=5  then 

rho2MAT[k,j] = 1 

            + 1.70*(((3*dmat[j,k])/16)- 

              0.5*((tmat[j,k]*tmat[j,k]*tmat[j,k])/512)) 

            - 0.50*(1)*(1.70*(((3*dmat[j,k])/16)- 

              0.5*((tmat[j,k]*tmat[j,k]*tmat[j,k])/512))); 

 

ELSE IF DMAT[k,j]<=50 & TMAT[j,k]>5 then 

rho2MAT[k,j] = 1*(((3*dmat[j,k])/100)- 

               0.5*((dmat[j,k]*dmat[j,k]*dmat[j,k])/125000)) 

             + 1.70 

             - 0.50*(1*(((3*dmat[j,k])/100)- 

               0.5*((dmat[j,k]*dmat[j,k]*dmat[j,k])/125000)))*(1.70); 

 

ELSE IF DMAT[k,j]>50 & TMAT[j,k]>5  then 

rho2MAT[k,j] = 1 

            + 1.70 

            - 0.50*(1)*(1.70); 

 

END; 

END; 

FINISH rho2; 

CALL rho2(dmat,tmat,rowname,rho2MAT); 

 

rho22 IS A 3000*3000 MATRIX  

rho22     =  rho2MAT; 

CREATE lib.rho22        FROM rho22;    APPEND FROM rho22; 

 

DETERMINE THE Z1Z2 SEMI-VARIOGRAM MATRIX BY USING DMAT & TMAT 

START rho12(dmat,tmat,rowname,rho12MAT); 

m=nrow(dmat); 
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n=ncol(dmat); 

rho12MAT=j(m,n,0); 

 

DO j=1 TO m BY 1; 

DO k=1 TO n BY 1; 

IF TMAT[j,k] <=10 then  

rho12MAT[k,j] = -0.20*(1-exp((dmat[j,k]*dmat[j,k])/1681)) 

                -0.17*(((3*dmat[j,k])/20) 

                -0.5*((tmat[j,k]*tmat[j,k]*tmat[j,k])/1000)) 

      -0.03*( -0.20*(1-exp((dmat[j,k]*dmat[j,k])/1681)))* 

                (-0.17*(((3*dmat[j,k])/20)0.5*(tmat[j,k]**3)/1000))); 

ELSE  

rho12MAT[k,j] = -0.20*(1-exp((dmat[j,k]*dmat[j,k])/1681)) 

                -0.17 

                -0.03*(-0.20*(1-exp((dmat[j,k]*dmat[j,k])/1681))) 

                *(- 0.17); 

END;   

END;  

FINISH rho12; 

CALL rho12(dmat,tmat,rowname,rho12MAT); 

/* rho12 IS A 2250*3000 MATRIX */ 

rho12  =     

rho12MAT[1:2,]//rho12MAT[5:7,]//rho12MAT[9:14,]//rho12MAT[16:18,]// 

. . .  

rho12MAT[2981:2990,]//rho12MAT[2992:2998,]//rho12MAT[3000,]; 

 

CREATE lib.rho12MAT      FROM rho12MAT; APPEND FROM rho12MAT; 

CREATE lib.rho12        FROM rho12;    APPEND FROM rho12; 

 

DETERMINE THE Z2Z1 SEMI-VARIOGRAM MATRIX BY USING DMAT & TMAT 

START rho21(dmat,tmat,rowname,rho21MAT); 

m=nrow(dmat); 

n=ncol(dmat); 

rho21MAT=j(m,n,0); 

 

DO j=1 TO m BY 1; 

DO k=1 TO n BY 1; 

IF TMAT[j,k] <=10 THEN  

rho21MAT[k,j] = - 0.20*(1-exp((dmat[j,k]*dmat[j,k])/1681)) 

                - 0.17*(((3*dmat[j,k])/20)- 

                  0.5*((tmat[j,k]*tmat[j,k]*tmat[j,k])/1000)) 

           - 0.03*( -0.20*(1- 

                  exp((dmat[j,k]*dmat[j,k])/1681))) 

                *(- 0.17*(((3*dmat[j,k])/20)- 

                  0.5*((tmat[j,k]*tmat[j,k]*tmat[j,k])/1000))); 

ELSE  

rho21MAT[k,j] = -0.20*(1-exp((dmat[j,k]*dmat[j,k])/1681)) 

                - 0.17 

           - 0.03*(-0.20*(1-exp((dmat[j,k]*dmat[j,k])/1681))) 

                *(- 0.17) ; 

END;   

END;  

FINISH rho21; 

 

CALL rho21(dmat,tmat,rowname,rho21MAT); 

 

rho21 IS A 3000*2550 MATRIX 

rho21= 

rho21MAT[,1:2]||rho21MAT[,5:7]||rho21MAT[,9:14]||rho21MAT[,16:18]|| 

. . .  

rho21MAT[,2981:2990]||rho21MAT[,2992:2998]||rho21MAT[,3000]; 
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CREATE lib.rho21        FROM rho21;    APPEND FROM rho21; 

 

DEFINE G 

RHO=(rho11||rho12)//(rho21||rho22); 

ONE11=j(nrow(rho11),1,1); 

ONE22=j(nrow(rho22),1,1); 

ZERO11=j(nrow(rho11),1,0); 

ZERO22=j(nrow(rho22),1,0); 

 

NUL=j(1,2,0); 

 

A1=ONE11//ZERO22; 

A2=ZERO11//ONE22; 

 

A4=ONE11`||ZERO22`||NUL ; 

A5=ZERO11`||ONE22`||NUL ; 

 

A3=A1||A2; 

A6=A4//A5; 

 

G1=RHO||A3; 

G=G1//A6; 

Ginv=inv(G); 

 

CREATE lib.RHO  FROM RHO;    APPEND FROM RHO; 

CREATE lib.G1   FROM G1;     APPEND FROM G1; 

CREATE lib.Ginv FROM Ginv;  APPEND FROM Ginv; 

CREATE lib.G    FROM G;  APPEND FROM G; 

 

DEFINE B; 

START Bcol(rho12MAT,rho1MAT,col,rowname,Bcol); 

m=2550+3000+2; 

n=1; 

Bcol=j(m,n,0); 

E=j(1,1,1); 

N=j(1,1,0); 

Bcol=rho1MAT[1:2,col]//rho1MAT[5:7,col]//rho1MAT[9:14,col]// 

. . .  

rho1MAT[2992:2998,col]//rho1MAT[3000,col]//rho12MAT[,col]//E//N; 

FINISH Bcol; 

 

CALL Bcol(rho12MAT,rho1MAT,777,rowname,B777);   

. . . 

CALL Bcol(rho12MAT,rho1MAT,1993,rowname,B1993);  

 

B=B777||. . . ||B1993; 

 

CALCULATE LAMDA AND PHI 

USE lib.Ginv; READ all INTO Ginv;    

  

START par(Ginv,rowname,B,lamda); 

m=nrow(B); 

lamda=j(m,1,0);  

lamda = Ginv*B; 

FINISH par; 

 

CALL par(Ginv,rowname,B777,lamda777); 

. . . 

CALL par(Ginv,rowname,B1993,lamda1993); 

 

LAMDA_1=lamda777[1:2550,]||. . . ||lamda1993[1:2550,]; 
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LAMDA_2=lamda777[2551:5550,]||. . .||lamda1993[2551:5550,]; 

PHI_1  =lamda777[5551,]||. . .||lamda1993[5551,]; 

PHI_2  =lamda777[5552,]||. . .||lamda1993[5552,]; 

 

CREATE lib.lamda_1     FROM lamda_1; APPEND FROM lamda_1; 

CREATE lib.lamda_2     FROM lamda_2; APPEND FROM lamda_2; 

CREATE lib.phi_1       FROM phi_1;   APPEND FROM phi_1; 

CREATE lib.phi_2       FROM phi_2;   APPEND FROM phi_2; 

 

DETERMINE THE INTERPOLATED VALUE 

USE z1;     READ all INTO z1; 

USE z2;     READ all INTO z2; 

 

START system2(z1,z2,lamdaz1,lamdaz2,rowname,LR); 

LR = lamdaz1`*(z1[,6]+z1[,7]) + lamdaz2`*(z2[,6]+z2[,7]) ; 

FINISH system2; 

  

CALL 

system2(z1,z2,lamda777[1:2550,],lamda777[2551:5550,],rowname,LR777); 

. . .  

CALL 

system2(z1,z2,lamda1993[1:2550,],lamda1993[2551:5550,],rowname,LR1993

);  

 

INT = LR777//. . . //LR1993; 

 

CALCULATE THE ESTIMATED KRIGING VARIANCE 

START var(B,lamda,rowname,sigma); 

sigma=B`*lamda; 

FINISH var; 

 

CALL var(B777,lamda777,rowname,sigma_777); 

. . . 

CALL var(B1993,lamda1993,rowname,sigma_1993); 

 

sigma=sigma_777//. . . //sigma_1993; 

 

CREATE lib.Interpolated FROM INT;   APPEND FROM INT; 

CREATE lib.sigma     FROM sigma; APPEND FROM sigma; 

CREATE lib.B      FROM B;     APPEND FROM B; 

QUIT; 
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SUMMARY 

 

INTERPOLATION IN STATIONARY SPATIAL AND SPATIAL-
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by 
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In the early 1950s the study on how to determine true ore-grade distributions in the 

mining sector, sparked the development of a series of statistical tools that specifically 

allows for spatial and subsequently spatial-temporal dependence. These statistics are 

commonly referred to as geostatistics, and has since been incorporated in several 

fields of study characterized by this dependence. 

 

Basic descriptive statistics and mapping tools for geostatistics are defined and 

illustrated by means of a simulated dataset. The moments are modelled according to 

predefined conditions and model structures to describe the spatial and spatial-

temporal variance in the data. These variograms and covariance structures are 

subsequently utilized in the least square procedure, namely kriging. At present, 

kriging is most commonly used in geostatistics for the interpolation and simulation of 

spatial or spatial-temporal data. The univariate and multivariate spatial and spatial-

temporal kriging techniques are tested on the simulated dataset, to demonstrate how 

interpolation weights are determined according to the lag distances and underlying 

variance structure. The strength, weaknesses and inherent complexities of the 

methodologies are highlighted. 

 

 

 
 
 




