

Behavioural ecology and population genetics of the African wild cat, *Felis silvestris* Forster 1870, in the southern Kalahari

by

Marna Herbst

Submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy (Zoology)
in the Faculty of Natural and Agricultural Sciences
University of Pretoria
Pretoria

August 2009

To my parents and my brother, for their love and support

Radio collared African wild cat, *Felis silvestris* in the Kgalagadi Transfrontier Park

Behavioural ecology and population genetics of the African wild cat, *Felis silvestris*Forster 1870, in the southern Kalahari

Marna Herbst

Supervisors: Prof. M.G.L. Mills

Tony and Lisette Lewis Foundation

Prof. P. Bloomer

Head Department of Genetics

Molecular Ecology and Evolution Program

University of Pretoria

Submitted for the degree of Doctor of Philosophy (Zoology) in the Faculty of Natural and Agricultural Sciences

Summary

The motivation for this study was to increase our knowledge on the natural history of the African wild cat and to investigate the genetic status of the Kalahari population. Hybridisation with the domestic cat is a global threat to the genetic integrity of the species. The Kalahari population was selected due to the isolation of the area and the slight possibility of contact with domestic cats. Radio telemetry and direct visual observations (1,538 hours) of eight habituated African wild cats (five male and three female) were used to address the feeding habits, foraging behaviour, spatial organisation and reproduction in wild cats. Throughout the study small skin biopsies were collected from both African wild cats and domestic cats from surrounding communities in order to address the potential of hybridisation and population genetic structure.

The Kalahari ecosystem not only experience annual dry and wet seasons but also longer lean and abundant periods that in turn influence rodent abundances and hence prey availability for the cats. This plays an important role in nearly all aspects of African wild cat behavioural ecology. The feeding habits of the African wild cat were discussed in the view of the optimal foraging theory. The lean season were characterised by a high species richness and high dietary diversity. African wild cats adapt their diet and foraging behaviour to seasonal prey abundances and availability. Male African wild cats were significantly larger than female cats and both sexes predominantly fed on smaller rodents, although there were

differences is diet composition with males hunting larger mammals and females favouring birds and reptiles.

Despite sexual dimorphism male and female cats show little differences in time budgets and both exhibit a two peak activity period with a strong seasonal shift from predominantly nocturnal during the hotter seasons to more diurnal activity in the colder seasons. The major factors influencing activity patterns and habitat use appears to be prey abundances and temperature extremes.

As predicted male African wild cats had significantly larger annual home ranges than female cats (MCP 95%, $\circlearrowleft = 7.7 \pm 3.5 \text{ km}^2$ and $\circlearrowleft = 3.5 \pm 1.0 \text{ km}^2$). Female cats shows extensive overlap of home ranges, however the core areas were mostly exclusive while male-male overlap were limited and show no overlap of core areas. There were no differences in seasonal ranges between male and female cats and thus reproduction seems to be aseasonal and depending on food availability. Urine spray marking in males were prominent with territorial behaviour and aggression observed, while female spray marking seems to be related to their reproductive status.

In our study we report the genetic variation and admixture analysis of 57 wild living African wild cats and 46 domestic cats using 18 microsatellite loci. Bayesian cluster analysis support the classification of African wild cats and domestic cats as two distinct entities and identified four cryptic hybrids among the wild cats. Although all hybrids were outside or on the periphery of the KTP, suggesting that levels of introgression are low, this is still a concern to the genetic integrity of African wild cats as a species.

ίV

Acknowledgements

I would like to express my sincere appreciation to my supervisors, Prof. Gus Mills and Prof. Paulette Bloomer, for all their encouragement, advice and guidance during my project. Especially Gus who visited and guided me while doing fieldwork and shared his Kalahari expertise and helped interpreted behavioural aspects of the wild cats. A special thanks to Paulette who skilfully directed me in understanding the different genetic perspectives as well as her support during my fieldwork. It was a privilege to conduct this project under the guidance of two supervisors who both share my fondness for the Kalahari.

I am most grateful to South African National Parks and Department of Wildlife and National Parks in Botswana for permission to work in the Kgalagadi Transfrontier Park. To all the SANParks staff in the KTP who supported the project and the Technical Department who assisted with numerous vehicle repairs. A special thanks to the Section Ranger, Nardus du Plessis and Christine du Plessis for all their assistance and true Kalahari hospitality.

I thank the SANParks veterinarians who assisted in the darting operations of the wild cats, Dr Peter Buss and Dr Danny Govender for working throughout the night in Kalahari temperature extremes. Martin Haupt, Paul Odendaal, Dr Lindie Jansen van Rensburg and Nicola Read are thanked for their assistance during the darting operations. The volunteers assisting with rodent surveys, Dr Marietjie Oosthuizen, Cassie Hughes, Jane Walker and Claire Warner are thanked for all the long hours and hard work in the field.

The project was initiated and supported by the Carnivore Conservation Group of the Endangered Wildlife Trust. In particular Pat Fletcher who dealt with numerous administrative issues and urgent requests from the Kalahari. I am grateful to all our sponsors, the Elizabeth Wakeman Henderson Charitable Foundation, the Skukuza Marathon Club, the Wildlife Conservation Society for the Kaplan Award, the National Research Foundation, the Wilderness Foundation, Maxiprest Tyres and the Eco Challenge for keeping me funded and equipped in the field.

Many thanks to the Mammal Research Institute under Prof. Elissa Cameron and the MRI Development Fund for making it possible for me to attend the Felid Biology and Conservation Conference in Oxford during 2007. Thanks to the Molecular Ecology and Evolution Program's students (MEEP'ers) for all their support and assistance while I was writing up in Pretoria.

A special thanks to all the people assisting with proof reading and positive critique during the write up, Dr Lindie Jansen van Rensburg, Dr Marie Warren, Dr Marietjie Oosthuizen, Dr Sam Ferreira and Paul Odendaal. Phozisa Mamfengu and Sandra MacFadyen, thanks for all the help with GIS images and analyses. Thanks to all my SANParks colleagues, who supported and encouraged me when the writing up became a part time endeavour.

Most importantly, I thank my parents for their unconditional support, encouragement and for believing in me when I followed my heart to the Kalahari. Their patience when stress levels were high and their understanding kept me going. I could not have finished this without your prayers and love.

To the Kalahari and the African wild cats – it was though but a remarkable journey! Words can not do justice to describe my experiences in the Kalahari.

God is in the details

~ Unknown ~

TABLE OF CONTENTS

Summa	ıry	iii
Acknow	vledgements	V
TABLE C	OF CONTENTS	vii
LIST OF	FIGURES	xi
LIST OF	TABLES	XV
Снарте	R 1 GENERAL INTRODUCTION	1
1. The	e African wild cat, Felis silvestris (Forster, 1780) and synonym Felis silvestris cat	ra
(De	esmarest, 1822): an overview	1
1.1	Phylogenetic relations and taxonomic classification	1
1.2	Geographical range	3
1.3	Domestication of wild cats	3
1.4	Conservation status of the African wild cat	4
2. Thi	s study: The African Wild Cat Project	4
2.1	The study site	6
2.2	Rationale	9
2.3	Objective	9
2.4	Key questions	10
2.5	The broader scientific framework of this study	10
2.6	Overview of thesis	12
3. Re	ferences	13
Снарте	R 2 THE FEEDING HABITS OF THE AFRICAN WILD CAT (FELIS SILVESTRIS CAFRA), A	
FAC	CULTATIVE TROPHIC SPECIALIST, IN THE SOUTHERN KALAHARI (KGALAGADI	
TR	ANSFRONTIER PARK, SOUTH AFRICA/BOTSWANA	19
1. Ab:	stractstract	19
2. Intr	oduction	19
3. Ma	terials and methods	21
3.1	Study area	21
3.2	Climate and rainfall	21
3.3	Data collection	23
3.4	Scat analysis	26
3.5	Statistical analysis	26
4. Re	sults	
4.1	Overall diet and prey composition	26

4	4.2	Seasonal variation in the diet	28
4	4.3	Influence of changes in prey availability in the diet	31
4	4.4	Sexual differences in body size and diet of African wild cats	31
5.	Disc	ussion	35
6.	Refe	erences	37
Сн	IAPTER	3 FORAGING BEHAVIOUR AND HABITAT USE OF THE AFRICAN WILD CAT, FELIS	
	SILV	ESTRIS CAFRA IN THE KGALAGADI TRANSFRONTIER PARK	43
1.	Abst	tract	43
2.	Intro	duction	43
3.	Mate	erial and Methods	45
;	3.1	Study area	45
;	3.2	Climate and rainfall	47
;	3.3	Data collection	49
;	3.4	Definition of terms	50
(3.5	Data analysis	51
4.	Res	ults	52
4	4.1.1	Feeding and foraging behaviour	52
4	4.1.2	Descriptions of hunting behaviour	53
4	4.2.1	Activity periods and distances travelled	56
4	4.2.2	Time budgets	59
4	4.2.3	Consumption rate	61
4	4.3	Habitat utilisation	61
4	4.4	Social and other behaviours	64
5.	Disc	ussion	64
6.	Refe	erences	67
Сн	IAPTER	4 ASPECTS OF THE SOCIAL ORGANISATION OF THE AFRICAN WILD CAT, FELIS	
	SILV	ESTRIS CAFRA IN THE SOUTHERN KALAHARI: FACTORS AFFECTING HOME RANGE SIZ	ZE AND
	MOV	EMENT PATTERNS, AND A BASIC DESCRIPTION OF SCENT MARKING BEHAVIOUR AND	
	REPI	RODUCTIVE BIOLOGY	74
1.	Abst	tract	74
2.	Intro	duction	74
3.	Mate	erials and Methods	77
(3.1	Study area	77
;	3.2	Data collection	78
(3.3	Data analysis	81

4.	Res	ults	82
4	.1	Study population	82
4	.2	Annual and seasonal home range sizes	82
4	.3	Social organisation and spatial system	82
4	.4	Scent marking behaviour	86
4	.5	Breeding system and social interactions in the African wild cat	92
5.	Disc	eussion	97
6.	Refe	erences	101
Сн	APTER	8 5 MICROSATELLITES REVEAL PATTERNS OF RELATEDNESS IN A LOCAL AFRICAN	1 WILD
	CAT	(FELIS SILVESTRIS CAFRA) POPULATION FROM THE SOUTHERN KALAHARI, WITH L	IMITED
	EVID	ENCE OF HYBRIDISATION WITH THE DOMESTIC CAT (F. S. CATUS)	112
1.	Abs	tract	112
2.	Intro	oduction	112
3.	Mate	erials and Methods	115
3	3.1	Sample collection and DNA extraction	115
3	3.2	Analyses of genetic variation	119
3	3.3	Population structure and admixture analyses using Bayesian cluster analyse	sis and
		Principal Component Analysis	119
3	3.4	Relatedness estimates within the African wild cat population	120
4.	Res	ults	120
4	.1	Genetic diversity in wild and domestic cats	120
4	.2	Admixture analyses and identification of hybrid individuals	123
4	.3	Genetic diversity within the African wild cat population	125
4	.4	Relatedness between Kgalagadi Transfrontier Park African wild cats	125
5.	Disc	cussion	128
6.	Refe	erences	129
Сн	APTEF	R 6 SYNTHESIS	136
Ref	ferend	ces	139
APF	PENDI	X 1 TECHNIQUES USED IN THE STUDY OF AFRICAN WILD CAT, FELIS SILVESTRIS	<i>CAFRA</i> , IN
	THE	KGALAGADI TRANSFRONTIER PARK (SOUTH AFRICA/BOTSWANA)	140
APF		X 2 PREY ITEMS CAPTURED BY AFRICAN WILD CATS IN THE KGALAGADI TRANSFI	
	Par	К	154

APPENDIX 3 THE NUMBER OF HOURS OF OBSERVATIONS ON EIGHT AFRICAN WILD CATS (MALE =
5, FEMALE = 3) FOR EACH HOUR OF THE DAY IN EACH SEASON IN THE KGALAGADI
Transfrontier Park from April 2003 to December 2006 (HW = hot-wet, CD = cold
DRY, HD = HOT-DRY)
APPENDIX 4 THE ALLELIC FREQUENCIES AT 18 POLYMORPHIC MICROSATELLITES AMONG AFRICA
WILD CATS (AWC), KALAHARI DOMESTIC CAT POPULATION (KDC) AND A REFERENCE
COLLECTION OF DOMESTIC CATS (DCREF)15
APPENDIX 5 Chapter 26: BLACK-FOOTED CATS (FELIS NIGRIPES) AND AFRICAN WILD CATS (FELI
SILVESTRIS): A COMPARISON OF TWO SMALL FELIDS FROM SOUTH AFRICAN ARID LANDS16

LIST OF FIGURES

Chapter 1		
Figure 1.1	The geographical distribution of the African wild cat on the African continent (data from Stuart & Stuart as presented in Wilson & Reeder, 2005)	2
Figure 1.2	Satellite image of the study site indicating the different habitats	7
Figure 1.3a	Monthly averages of the minimum (\circ) and maximum (\bullet) temperatures	
	(°C) at the Twee Rivieren rest camp for the years 2003 to 2006	7
Figure 1.3b	Average hourly changes in temperature in the hot-wet (HW), cold-dry	
	(CD) and hot-dry (HD) seasons calculated from the nearest weather	
	station in Upington	8
Chapter 2		
Figure 2.1	Map of the study area in the Kgalagadi Transfrontier Park indicating the different habitat types	22
Figure 2.2	Total counts for small rodents, reptiles and birds on transect lines in all	
	habitats pooled together for each season (HD = hot-dry, HW = hot-wet,	
	CD = cold-dry) in the KTP from 2003 to 2006	29
Figure 2.3	The relationship between percentage frequency of small mammals	
	consumed by African wild cats, rainfall and the relative abundance of	
	small mammals estimated from rodent trapping from the hot-wet season	
	2004 to the hot-dry season 2006	32
Figure 2.4	Annual and seasonal changes in the proportions of small mammals,	
	insects, reptiles and birds in the diet of African wild cats in the KTP based	
	on visual observations (CD = cold-dry, HD = hot-dry, HW = hot-wet)	33
Chapter 3		
Figure 3.1	Map of the study area in the Kgalagadi Transfrontier Park indicating the	
	different habitat types	46
Figure 3.2a	Monthly averages of the minimum (○) and maximum (●) temperatures	
	(°C) at the Twee Rivieren rest camp for the years 2003 to 2006	48
Figure 3.2b	Average hourly changes in temperature in the hot-wet (HW), cold-dry	
	(CD) and hot-dry (HD) seasons calculated from the nearest weather	
	station in Upington	49

Figure 3.3	Daily activity schedules of male and female African wild cats in the (a)	
	cold-dry, (b) hot-dry and (c) hot-wet seasons. Data were calculated as	
	the mean percentage of observation time that individual African wild cats	
	were active for each hour of the day. The two arrows indicate sunrise and	
- : 0.4	sunset for midpoints of the season	56
Figure 3.4	The distance travelled (m) and the percentage active per each hour of	
	observation for male and female African wild cats during the study in the	
	KTP. Observation periods = 8 hours or more (males: $n = 42$ observation	
	periods; females: $n = 49$ observation periods)	58
Figure 3.5	Percentage activity of a single African wild cat female over a twenty four	
	hour period, indicating the change from the lean period (•) (cold-dry	
	2003 to hot-wet 2004) in comparison to the abundant period (o) (cold-dry	
	2004 to hot-wet 2006)	59
Figure 3.6	Overall time budget of African wild cats calculated from the first	
	continuous eight hours of an observation period of habituated individuals	
	(\emptyset = 53 observation periods, $♀$ = 54 observation periods) in the KTP	60
Figure 3.7	The percentage time that male, female and both sexes combined spent	
	active in the different habitats in the KTP. The percentage that each	
	habitat comprised in the study site is included	62
Figure 3.8	The percentage of prey caught in each of the habitats for male and	
	female African wild cats (data pooled)	63
Chapter 4		
Figure 4.1	Map of the study area in the Kgalagadi Transfrontier Park	79
Figure 4.2	Core home range outlines (50% Kernel analyses) and 100% MCPs of	
	three radio collared African wild cat females during 2004 in the Kgalagadi	
	Transfrontier Park. The outline represents overall study site	85
Figure 4.3	Core home range outlines (50% Kernel analyses) and annual 100%	
Ū	MCPs of five radio collared African wild cat males during 2006 in the	
	Kgalagadi Transfrontier Park. Broken line show the home range of a sub-	
	adult male cat and solid lines represent adult African wild cats. The	
	outline represents the overall study site	87
Figure 4.4	Resident home ranges of adult male cats VLO1662 and VLO1665 during	
	2006. The urine spray marks of VLO1665 as a roaming sub-adult cat	
	from 2005 and 2006 are indicated by (•) and the capture position with a	
	cross (X)	88

Figure 4.5	100% MCP home ranges calculated for African wild cats tracked during 2004 and 2005 on a 1 km ² grid. The outline represents the overall study site, with males indicated by the solid lines and females indicated with broken lines. The cross (X) represents the den of an uncollared female in the study site	89
Figure 4.6	Two examples of the daily tracks, of five male African wild cats in relation to their 100% MCP home range boundaries. Tracks were generated from continuous visual observations where GPS points were taken at five	
Figure 4.7	minute intervals Two examples of daily tracks, of three female African wild cats in relation to their 100% MCP home range boundaries. Tracks were generated from continuous visual observations where GPS points were taken at five	90
Figure 4.8	minute intervals	91
Figure 4.9	indicated and the outline represents the study site	93
Chapter 5		
Figure 5.1	(a) Map of South Africa with locations of all samples collected, DC = domestic cat populations, AWC = African wild cat population (b and c) the core study site, indicating 38 African wild cats that were sampled and analised for relatedness and population structure from March 2003 to	117
	December 2006	117
Figure 5.2	(a) Probability of the data LnK and, (b) ΔK against the number of K clusters in the wild and domestic cat populations	123
Figure 5.3	Individual assignment of domestic cats (DC1 and DC2) and wild living African wild cats (AWC) in the southern Kalahari performed using Structure 2.2 with $K=2$. Each individual is represented as a vertical bar partitioned into $K=2$ segments indicating the estimated membership to the two clusters. The horizontal black lines indicate values of individual	
	proportion of membership $q \ge 0.80$	124

Figure 5.4	PCA of all three populations, African wild cats (AWC, solid triangle ▲),	
	Kalahari domestic cats (DC1, open square $\ \square$) and reference collection of	
	domestic cats (DC2, solid circles •). The four hybrids are indicated with	
	crosses	124
Figure 5.5	PCA of African wild cats without hybrids (solid circles ●), indicating	
	samples collected outside the Transfrontier Park (open circle \circ); related	
	individuals from the main study site in the KTP are also indicated	
	(crosses X)	125
Figure 5.6	Relatedness values for known relationships among African wild cats in	
	the Kalahari study site with the standard deviation included	126

LIST OF TABLES

Chapter 1 Table 1.1 Monthly rainfall (mm), mean minimum and maximum temperatures (°C) at the Twee Rivieren weather station, KTP summarized into seasonal totals for January 2003 to December 2006 (Seasons: HW = hot-wet; CD = colddry; HD = hot-dry) Chapter 2 Table 2.1 Time periods and total hours of direct observation of individual habituated cats for the duration of the study (Seasons and year indicated: CD = colddry, HD = hot-dry, HW = hot-wet and n = observation periods) 24 Table 2.2 Frequency of occurrence of the main food categories in the scats of African wild cats (scat: n = 52) 28 Table 2.3 Seasonal differences in the niche breadth (Levin's niche breadth) and species richness of the diet of African wild cat (male and female pooled) in the KTP 30 Table 2.4 Seasonal differences in diet, expressed as percentage presence and percentage biomass contributed by each prey category to the overall diet of African wild cats in the KTP (CD = cold-dry, HD = hot-dry, HW = hotwet) from direct observations 30 Table 2.5 Mean and standard deviation (SD) of standard body measurements of male and female African wild cats in the KTP. Total body length (head body length + tail), Hf s/u (hind foot) Table 2.6 Sexual differences in the diet of African wild cats from direct observations (five male and three female) in the KTP expressed as the percentage frequency and percentage biomass contributed by each prey category to the overall diet and ranked accordingly (n = total food items). The niche breadth index and species richness of male and female diets are indicated..... 34 Table 2.7 Seasonal differences in diversity (Levin's niche breadth index) and species richness of the diet of male and female African wild cats separately (HW = hot-wet, CD = cold-dry, HD = hot-dry)..... 35

Chapter 3

Table 3.1	Number of hunting attempts, the number and percentage of successful hunting attempts on prey species from direct observations of five male	
	(657 hours), three female (881 hours) African wild cats and the percentage	
	successful hunting attempts pooled for both sexes in the KTP	53
Table 3.2	Seasonal changes in the average time that an activity period begins and	
	end for African wild cat and its correlation (r _s) with sunset and sunrise in	
	the KTP	58
Table 3.3	A comparison of activities during the first eight hours of an activity period	
	of male $(n = 53)$ and female $(n = 54)$ cats expressed as the proportion and	
	percentages of each activity	60
Table 3.4	The average seasonal consumption rate of male and female African wild	
	cats from continuous $8+$ hours of observation periods (n) and expressed	
	as the mean \pm SD biomass of food eaten per kilometre and the average \pm	
	SD distances travelled during the observation periods	61
Table 3.5	The percentage prey caught in the different habitats by habituated male	
	and female African wild cats in the KTP (observation periods $\c = 137, \c =$	
	155	63
Chapter 4		
Table 4.1	Individual African wild cats (3♀ and 5♂) used for home range analysis	
	showing the seasons that each individual was radio tracked and the	
	number of hours of observations on habituated individuals from March	
	2003 until December 2005. Black blocks indicate adult cats and grey	
	blocks indicate periods that cats were classified as sub-adult	80
Table 4.2	Mean annual and seasonal home range (km²) calculations for all African	
	wild cats (AWC) (5♂ and 3♀), showing 100% and 95% Minimum Convex	
	Polygon (MCP) and 50% Kernel analyses. The overall mean and standard	
	deviation (SD) are included	83
Table 4.3	Annual Minimum Convex Polygon (MCP) home range areas (km²) for	
	eight African wild cats (5♂ and 3♀)	84
Table 4.4	Nearest Neighbour Analysis for four adult male African wild cats to test for	
	spatial randomness of spray marking activity in home ranges and	
	indicating the percentage of spray marking observed in the core areas of	
	their home ranges. R = nearest neighbour index, n = spray marking	

Table 4.5	Descriptions of interactions between wild cats from direct observation in	
	the Kalahari from May 2003 to December 2006. The season, the sex of	
	the cats, the duration of the interaction (min), the distance (m) between the	
	cats and any additional information are included. $\mathcal{Q} = \text{female}$, $\mathcal{O} = \text{male}$	
	and U = Unknown sex	95
Table 4.6	Home range estimates of male and female wild cats (Felis silvestris) and	
	feral domestic cats (Felis silvestris catus) indicating the study area, study	
	duration, method of calculation and reference cited. Where possible,	
	averages where calculated from estimates given in the literature	99
Chapter 5		
Table 5.1	Population data of genetic markers in the cat parentage and identification	
	panel (C. Harper pers. comm.). PIC = polymorphism information content,	
	Chr. = chromosome	118
Table 5.2	Microsatellite loci that showed linkage disequilibrium and their locations on	
	specific chromosomes	121
Table 5.3	Summary of diversity indices for each locus-population combination,	
	observed (H_{O}) and expected (H_{E}) heterozygosities, (Na) number of alleles,	
	(Ne) effective number of alleles, the fixation index (F), the inbreeding	
	coefficient (F_{IS}) and the coefficient of genetic differentiation (F_{ST}) between	
	wild (AWC) and domestic populations (DC)	122
Table 5.4	Analysis of MOlecular VAriance (AMOVA) for wild - and domestic cat	
	groups computed using GenAlEx (d.f., degrees of freedom; SS, sum of	
	squares; MS, mean squares; Est. Var., estimated variance)	123
Table 5.5	Relatedness values (R) and the expected relationships according to	
	Queller and Goodnight (1989)	127