

The geology of the Mozambique belt and the Zimbabwe craton around Manica, Western Mozambique.

By

Antonio dos Santos Tcheco Manhica

Submitted in partial fulfilment of the requirements for the degree **Magister Scientia** in the Faculty of Science University of Pretoria Pretoria August 1998

1998

I Hereby certify that this thesis is my own work except where specifically acknowledged and that this thesis has not been submitted elsewhere for the purposes of being awarded a degree.

Antonio Dos Savos TELLEW MANSLICS

Acknowledgments

Various institutions and organizations have given support of one form or other for the realization of this project for the MSc. degree. Among these, some merit special mention.

Anglo American Prospecting Service (AAPS) funded all field expenses including subsistence and gave logistical support by means of transport and field material and equipment as required. In addition, they provided the necessary funds for accommodation and subsistence while in Pretoria. For all this support I whish to extend my sincere gratitude to this organization and, in particular, to Mr. Roy Corrans, Consultant Geologist and Director of the New Mining Business of which AAPS is part, and to Mr. Steve Marsh, then Head of AAPS, Clayville Office.

To fulfill the requirements for candidateship to this Msc. degree, I completed my Bsc. (Hons). at the Department of Geology, University of Pretoria, with full financial support from the Council for Geoscience in Pretoria. This support was extended to the first year of my MSc. studies. For this I fell in debt with this institution and, in particular, with Dr. Frick, the Director of the Council for Geoscience.

Major and trace elements analyses as well as microprobe and X-Ray Diffraction investigations were done at the laboratories of the Department of Geology of the University of Pretoria with the expenses covered by the department. For this reason I thank the Department and, in particular, Prof. de Waal, in his capacity as Head of the Department, for permitting this. Mrs M. Loubser, the analyst in the X-Ray fluorescence section, Mrs. S. Verryn who performed the XRD analyses and the late Mr. A.V. Atanasov who assisted in the microprobe analyses are thanked for their help.

I thank the Minister of Mineral Resources and Energy of Mozambique for allowing me to take a study leave, the National Director of Geology for the continued multidisciplinary support and the Provincial Director of Mineral Resources and Energy in Manica, Mr. Abdurremane Materia Machon, for the extremely useful logistic support while in the province.

I wish to express my unmeasurable gratitudes to Prof. Geoff Grantham who, not only gave the necessary academic guidance in his capacity as supervisor, but also made sure that all other necessary conditions were there for normal progress of the study. His comments into my various versions of the thesis, helped to bring the thesis to a level of acceptability not only technically but also in terms of language. I thank him, in addition, for financial support from his FRD grant which contributed to the radiogenic isotope studies, the rare earth element analyses and subsistence during 1998.

Prof. Snyman is thanked for his assistance in his capacity as co-supervisor and for the comments and suggestions made in the thesis.

Finally, my achievements would not have been possible if I did not enjoy support and encouragement from my family. So to you Paula, Danilo and Gisela I dedicate this thesis.

THE GEOLOGY OF THE MOZAMBIQUE BELT AND THE ZIMBABWE CRATON AROUND MANICA, WESTERN MOZAMBIQUE

Table of contents

Acknowledgements	iii
Table of contents	iv
List of figures	viii
List of tables	xiii
List of appendices	xiv
Abstract	xv
Uittreksel	xvi
1. INTRODUCTION	1
1.1. Introduction	1
1.2. Regional geological setting	1
1.3. Previous geological work	2
2. LITHOSTRTIGRAPHY	5
2.1. Introduction	5
2.2. Field distribution and age relationship of lithostratigraphic units	8
3. MANICA GREENSTONE BELT	10
3.1. Introduction	10
3.2. Field description	10
3.2.1. Macequece Formation	10
3.2.2. M'Beza/Vengo Formation	12
3.3. Petrography	13
3.4. Chemistry	18
3.5. Interpretation of metamorphism and chemistry	20
3.5.1. Metamorphism	21
3.5.2. Chemistry	23
4. ARCHAEAN TO EARLY PROTEROZOIC GRANITOID GNEISSES OF THE ZIMBABWE	
CRATON	26
4.1. Introduction	26
4.2. Field description	26
4.2.1. Vumba Granite Gneiss	26
4.2.2. Messica Granite Gneiss	27
4.3. Petrography	28
4.4. Chemistry	33

4.4.1. Introduction	33
4.4.2. Major element chemistry	34
4.4.3. Trace element chemistry	37
4.4.4. Radiogenic isotope chemistry	41
4.4.5. Discussion and conclusions	43
5. FRONTIER FORMATION	44
5.1. Introduction	44
5.2. Field description	44
5.3. Petrography	45
5.4. Interpretation	47
6. VANDUZI MIGMATITE GNEISS	48
6.1. Introduction	48
6.2. Field Description	48
6.3. Petrography	49
6.4. Interpretation of petrography	50
6.5. Leucosome development history	51
6.6. Melt P-T conditions	52
7. CHIMOIO GRANODIORITIC GNEISS	54
7.1. Introduction	54
7.2. Field description	54
7.3. Petrography	55
7.3.1. Interpretation of Petrography	58
7.4. Chemistry	59
7.4.1. Major element chemistry	59
7.4.2. Trace element chemistry	64
7.4.3. REE chemistry	64
7.4.4. Radiogenic Rb/Sr isotope chemistry	64
7.5. Discussion	65
8. NHANSIPFE GRANITIC ORTHOGNEISS	66
8.1. Introduction	66
8.2. Field description	66
8.3. Petrography	70
8.3.1. Interpretation of petrography	
8.4. Chemistry	
8.4.1. Introduction	75
8.4.2. Major element chemistry	75
8.4.3. Trace element chemistry	77
8.4.4. REE chemistry	77

8.4.5. Radiogenic Rb/Sr chemistry	80
8.4.6. Discussion and interpretation of chemistry	80
9. MAFIC INTRUSIONS	84
9.1. Introduction	
9.2. Field description	84
9.3. Petrography	85
9.3.1 Interpretation of petrography	88
9.4. Chemistry	90
9.4.1. Interpretation of chemistry	93
10. TCHINHADZANDZE GRANODIORITE GNEISS	96
10.1. Introduction	
10.2. Field description	96
10.3. Petrography	96
10.4. Chemistry	99
10.4.1. Major element chemistry	
10.4.2. Trace element chemistry	103
10.5. Discussion and conclusions	103
11. STRUCTURAL GEOLOGY	106
11.1. Introduction	106
11.2. Description of structures	106
11.2.1. Domain 1	106
11.2.2. Domain 2	108
11.2.3. Domain 3	108
11.2.4. Domain 4	111
11.3. Conclusions	113
12. METAMORPHIC HISTORY	115
12.1. Introduction	115
12.2. Metamorphism	115
12.2.1. Low grade terrain	115
12.2.2. Medium to high grade terrain	116
12.3. Thermobarometry	116
12.3.1. Introduction	116
12.3.2. Thermometry	120
12.3.3. Barometry	121
12.3.4. Discussion of petrographic and thermobarometric results	122
12.4. Thermochronology	122
12.4.1. Introduction	122
12.4.2. Discussion of results	123

12.5. Metamorphic history	- 125
13. SUMMARY OF CONCLUSIONS	- 126
13.1. Lithologies	- 126
13.2. Deformation	- 127
13.3. Metamorphism	- 128
13.4. Isotope chemistry	- 129
13.5. Summary of the geology of the study area and comparison with Antarctica	- 131
13.6. Proposed geological model	- 134
References	- 136

List of Figures

List of Figures Page no	•
1.1. Location of the study area shown in the context of the regional geological structure of	
Southern Africa	2
2.1. Major lithological units within the study area	6
2.2. Sampling locality map	5
3.1. Pinkish quartz-sericite schist intercalated with dark brown banded iron formation	11
3.2. Folding in the andalusite chloritoid schist	12
3.3. Sub - to idioblastic opaque minerals associated with fine grained chlorite and talc	14
3.4. Chlorite and carbonate wrapping around and invadind opaque minerals	14
3.5. Medium grained carbonate, antigorite and fine grained idiomorphic opaque minerals filling cracks -	15
3.6. Medium grained idiomorphic chloritoid grain exhibitting hour glass zonning in a matrix of fuchsite	16
3.7. Al ₂ O ₃ , FeO and CaO versus MgO variation diagram	19
3.8. Variation diagram plotting Cr, Ni and V versus MgO	19
3.9. ACF diagram of mineralogy and chemistry of ultramafic and pelitic rocks	20
3.10. Isobaric reaction curves depicting phase relationships in mafic to ultramafic rocks	21
3.11. Low temperature phase relationship in mafic to ultramafic rocks at isobaric pressure of 2k bar	22
3.12. Phase relationships in metamorphism of pelitic rocks presented in a P-T diagram	23
3.13. Irvine and Baragar (1971) tholeiitic versus calc-alkaline series discriminant diagram of the	
Macequece Formation	24
3.14. Jensen (1976) discriminant diagram for the fields of komatiites, tholeiites and calc-alkaline rocks	s of
the Macequece Formation	-24
3.15. Le Maitre (1989) discriminant diagram for various types of basalts of the Macequece Formation	25
4.1. Fine grained amphibolitic enclaves in the Vumba Granite Gneiss	-27
4.2. Quartz, microcline, plagioclase, biotite, muscovite and titanite in the Vumba Granite Gneiss	28
4.3. Feldspar phenocrysts (with biotite wrapped around), microcline and fine grains of quartz in the	
Messica Granite Gneiss	-29
4.4. Finer quartz grains exhibiting polygonal texture in the Vumba Granite Gneiss	31
4.5. Biotite occurring at quartz grains boundaries in the Messica Granite Gneiss	32
4.6. Varition diagram plotting Na_2O and K_2O versus SiO_2 of Messica and Vumba granite Gneisses	35
4.7. Variation diagram plotting FeO, MgO and CaO of Messica and Vumba granite Gneisses	35
4.8. Alumina-saturation Index of Vumba and Messica Granite Gneiss	36
4.9. Streckeisen (1976) QAP plot of Vumba and Messica granitoids	- 36
4.10. Irvine and Baragar (1971) calc-alkaline versus tholeiite discriminant diagram plot of Vumba and	t
Messica granitoids	39
4.11. Jensen (1976) cationic diagram plot of Vumba and Messica granitoids	39
4.12. Plot of Vumba and Messica granitoids data in the Pearce et al. (1984) discriminant diagram	40
4.13. Chondrite normalized REE abundance variation diagram of Vumba and Messica granitoids data -	40
4.14. Rb/Sr isotope data diagram of Messica granitoids	42

5.1. Very resistant quartzite ridge in the Frontier Formation	44
5.2. Biotite flakes and sillimanite needles wrapping around garnet grain in the Garuzo schist	46
5.3. AFM diagram of the Frontier Formation around Garuzo	46
5.4. P-T conditions relevant to the Frontier Formation	47
6.1. Folding in the leucosome bands of the two stages, stromatic gneiss near Vanduzi	48
6.2. First stage stromatic migmatite and second generation stictolithic migmatite near Matsinho	49
6.3. Plot of the Vanduzi migmatite Gneiss mineralogical assemblage in the ACF diagram	51
6.4. Nomenclature of stromatic migmatite	51
6.5. Granite solidus representing partial melting during the formation of Vanduzi Migmatite Gneiss	52
7.1. Sub-horizontal foliation concordant to fine layering in the Chimoio Granodioritic Gneiss	54
7.2. Boudinage in the deformed migmatitic gneiss in the Chimoio Granodioritic Gneiss	55
7.3. Green hornblende, brownish laths of biotite, plagioclase, apatite and felsic inclusions	
in hornblende in the Chimoio Granodiorite Gneiss	56
7.4. Myrmeckitic intergrowths in the gneisses of Chimoio Granodiorite Gneiss	57
7.5. Equilibrium mineral assemblage of Chimoio Granodiorite Gneiss shown in an ACF diagram	58
7.6. Normative Anorthite-Albite-Orthoclase ternary diagram of Chimoio Granodiorite Gneiss	60
7.7. Shand's aluminum saturation Index diagram of Chimoio Granodiorite Gneiss	60
7.8. Irvine and Baragar (1971) discriminant diagram for the tholeiites and calc-alkaline fields of the	
Chimoio Granodiorite Gneiss	61
7.9. Streckeisen (1976) AQP ternary diagram of the Chimoio Granodiorite Gneiss	61
7.10. Ba-Rb-Sr El Bouseily and El Sokkary (1975) discriminant diagram of the Chimoio Granodiorite	
Gneiss	62
7.11. Pearce et al. (1984) discriminant diagram for the fields of Within-Plate, Syn-Collisional and	
Volcanic-Arc and Orogenic granitoids of Chimoio Granodiorite Gneiss	62
7.12. Pearce et al. (1984) discriminant diagram for the fields of Within-Plate, Syn-Collisional	·
Volcanic-Arc and Orogenic granitoids of Chimoio Granodiorite Gneiss	63
7.13. Chondrite normalized REE abundance variation diagram of Chimoio Granodiorite Gneiss	63
7.14. Diagram of isotopic data of Chimoio Granodiorite Gneiss	65
8.1. Quartz feldspatic partial melt bands in the Nhansipfe gneisses	66
8.2. Pegmatitic veins forming intercalated bands in the Nhansipfe gneisses	67
8.3. S_1 and S_2 foliations in the megacrystic gneiss near Mombeza	67
8.4. Infolding in the deformation induced fine grained gneiss in the megacrystic gneiss in Matsinho	68
8.5. Folded felsic bands offset by subvertical faults in the Nhansipfe gneiss	68
8.6. Feldspar stretching in the megacrystic gneiss near Chibata	69
8.7. Mafic enclaves mesoboudins in the megacrystic gneiss near Chibata	69
8.8. Myrmeckitic intergrowths in the Nhansipfe gneisses	72
8.9. Biotite flakes forming planar foliation in the Nhansipfe gneisses	72
8.10. Hornblende mantled xenoblastic and cracked garnet and idioblastic garnet grains along	

plagioclase cracks from the Nhansipfe Granitic orthogneiss	73
8.11. ACF diagram plotting mineral and chemistry of the Nhansipfe Granitic Orthogneiss	73
8.12. Harker diagram of MgO. CaO and total iron versus SiO ₂ from Nhansipfe Granitic Orthogneiss	76
8.13. Harker variation diagram of TiO ₂ , P_2O_4 and K_2O versus SiO ₂ and of isothermal curves	
drawn on the basis of TiO ₂ of the Nhansipfe Granitic Orthogneiss	76
8.14. Saturation surface thermometry diagram utilizing $P_{2}O_{2}$ and Zr contents and solubility calibration	ns
from Harrison and Watson (1984) and Watson and Harrison (1983) of the Nhansinfe	110
Grapitic Orthogneiss	78
8 15 Ba-Sr-Rb El Bouseily and El Sokkary (1975) discriminant diagram of the Nhansinfe	10
Granitic Orthogneiss	78
8 16 Pearce <i>et al.</i> (1984) discriminant diagram for the fields of Within-Plates. Syn-Collisional	10
Volcanic-Arc and Orogenic Granitoids of the Nhansinfe Granitic Orthogneiss	79
8 17 Chondrite normalized REE abundance variation diagram of the Nhansinfe Granitic Orthogneiss	- 79
8 18 Diagram plotting isotope data of the Nhansinfe Granitic Orthogneiss	81
8.19. Whalen <i>et al.</i> (1987) discriminant diagram for anorogenic and orogenic granites of the	01
Nhansinfe Granitic Orthogneiss	81
8 20 Whaten et al. (1987) Zriversus Ga/Al discriminant diagram of the	01
Nhansinfe Granitic Orthogneiss	82
8 21 Eby (1992) discriminant diagram for the A1 and A2 granites of the	02
Nhansinfe Granitic Orthogneiss	82
9.1. Patches of partial mets in amphibolite intruding a megacrystic granite	- 85
9.2 Mineralogy of matic rocks with igneous rocks	- 86
9.3. Granoblastic texture in the metamorphic rocks from matic ptrusions	- 86
9.4. Idioblastic fine-grained garnet associated with plagioclase and amphibole from matic intrusions	- 00
87	
9.5. Xenoblastic grains of garnet with inclusions of plagioclase in matic ptrusions	88
9.6 ACE diagrams of the chemistry and the mineralogical assemblages of the matic intrusions	89
9.7 Chemographies representing the metamorphism in the matic matrusions	- 89
9.8 Eq. and TiO, versus MgO variation diagram of matic intrusions	- 03 Q1
9.9, CoO vorsus MgO variation diagram of matic intrusions	- 91
9.9. Cao versus wyo variation diagram of main infrusions	- 91
9.10. Variation diagram plotting of and N versus wyo of main initiations	- 92
9.12. Dist of the mate intrusione chemistry in the Janson (1076) discriminant diagram for the fields	- 92
s. 12. Flot of the mail mutusions chemistry in the senseri (1970) discriminant diagram of the fields t	רט ע
0.12 Plot of the matic intrusions chemistry the Javine and Pareger (1071) discriminant discrements	- 93
the folde of elkeline and out elkeline reaks	04
0.14 Dist of the mate intrusions chemistry in Invine and Persons (1071) discriminant discuss for	- 94
the folde of the lotter and cole of the folde of the lotter and baragar (1971) discriminant diagram for	04
the neids of tholentes and carc-arkaine	94

9.15. MORB normalized trace elements abundance variation diagram of the mafic intrusions	95
9.16. Chondrite normalized trace elements abundance variation diagram of the Mafic Intrusions	95
10.1. Inequigranular medium grained texture in the Tchinhadzandze Granodiorite Gneiss	
97	
10.2. Preferred orientation of biotite and hornblende in the Tchinhadzandze Granodiorite Gneiss	97
10.3. Albite-Anorthite-Orthoclase discriminant diagram of the Tchinhadzandze Granodiorite Gneiss	100
10.4. Shand's alumina-saturation Index (1947) diagram of the Tchinhadzandze Granodiorite Gneiss	· 100
10.5. AI_2O_3 and Fe_2O_3 versus SiO_2 variation diagram of the Tchinhadzandze Granodiorite Gneiss	101
10.6. MgO, CaO and FeO versus SiO $_2$ variation diagram of the Tchinhadzandze Granodiorite	
Gneiss	-101
10.7. Na2O and K2O versus SiO2 variation diagram of the Tchinhadzandze Granodiorite Gneiss	102
10.8. Plot of chemistry of the Tchinhadzandze Granodiorite Gneiss in the Irvine and	
Baragar (1971) discriminant diagram for the tholeiite and calc-alkaline fields	-102
10.9. Chondrite normalized trace elements abundance variation diagram of the Tchinhadzandze	
Granodiorite Gneiss	104
10.10. Chondrite normalized REE abundance variation diagram of the Tchinhadzandze	
Granodiorite Gneiss	104
10.11. Ba-Rb-Sr El Bouseily and El Sokkary (1975) discriminant digram of the Tchinhadzandze	
Granodiorite Gneiss	105
10.12. Pearce et al. (1984) tectonic discriminant diagram of the Tchinhadzandze	
Granodiorite Gneiss	105
11.1. Map showing planar fabric directions and the subdivision of the study area in 4 domains and	
subdomains I and II	106
11.2. Stereonets of the Manica Greenstone Belt	· 107
11.3. Stereonets of the Vumba Granite Gneiss	107
11.4. Stereonets of the M'Beza / Vengo Formation	108
11.5. Stereonets of the Messica Granite Gneiss	109
11.6. Stereonets of the Frontier Formation	109
11.7. Stereonets of the Vanduzi Migmatite Gneiss	· 110
11.8. Stereonets of planar fabrics in the Nhansipfe Granitic Orthogneiss	110
11.9. Stereonets of linear fabrics in the Nhansipfe Granitic Orthogneiss	112
11.10. Stereonets of the Chimoio Grnodioritic Gneiss	· 112
11.11. Stereonets of the Tchinhadzandze Granodiorite Gneiss	. 113
12.1. Thermobarometry results of the Mafic Intrusions and inclusions from Garuzo-Chibata area,	
within the Mozambique Metamorphic Province	- 119
12.2. Thermobarometry results of the Mafic Intrusions and inclusions from Mombeza area,	
within the Mozambique Metamorphic Province	- 119

12.A. Cumulative Ar versus age diagram of Vumba Granitoids	124
12.B. Cumulative Ar versus age diagram of Vumba Granitoids	124
12.C. Cumulative Ar versus age diagram of Messica Granitoids	124
12.D. Cumulative Ar versus age diagram of Chimoio granitoids	- 124
12.E. Cumulative Ar versus age diagram of Nhansipfe granitoids	124
12.F. Cumulative Ar versus age diagram of Frontier Formation quartzite	124
13.1. Metamorphic blocks separated by steep zones which defines shear zones	129
13.2. Diagram of initial ⁸⁷ Sr/ ⁹⁶ Sr ratios versus age of some lithological units	130
13.3. Temperature-time diagram for the mineralogical Ar/Ar and whole rock Rb/Sr data of some	
granitoids and metasediments in the study area	131
13.4. Temperature-time diagram for the various mineralogical and whole rock Rb/Sr data of some	rocks
from H.U. Sverdrupfjella	131

List of Tables Pa	ge no.
2.1. Stratigraphic framework of the study area	7
3.1. Mineralogy of talc-chlorite schists and carbonate antigorite hornfels	13
3.2. Mineralogy of quartz-sericite and chloritoid-andalusite schists	16
3.3. Mineralogy of M'Beza/Vengo Formation	17
3.4. Chemical composition of the mafic to ultramafic rocks of the Macequece Formation	18
4.1. Mineralogical composition of Vumba Granite Gneiss	29
4.2. Mineralogical composition of Messica Granite Gneiss	30
4.3. Major element chemistry and CIPW normative compositions and classifications of Vumba	and
Messica granitoids	33
4.4. Trace element compositions of the Messica and Vumba granitoids	37
4.5. Radiogenic isotope data of Messica and Southern Vumba granitoids	41
4.6. Radiogenic isotope data of Northern Vumba granitoids	41
5.1. Mineralogical assemblage of Frontier Formation	45
6.1. Mineralogical assemblage of the Vanduzi Migmatite Gneiss	50
7.1. Mineral assemblage of the Chimoio Granodioritic Gneiss	56
7.2. Major and trace elements composition of the Chimoio Granodioritic Gneiss	59
7.3. REE composition of the Chimoio Granodioritic Gneiss	64
7.4. Radiogenic isotope composition of Chimoio Granodioritic Gneiss	64
8.1. Modal proportions of minerals in the gneisses	71
8.2. Major and trace elements of Nhansipfe Granitic Orthogneiss	75
8.3. Rare earth elements composition of Nhansipfe Granitic Orthogneiss	77
8.4. Rb/Sr radiogenic isotope data of gneisses from Nhansipfe locality	80
9.1. Mineralogical assemblage of the mafic intrusions	85
9.2. Major and trace elements compositions of themafic intrusions	90
10.1. Mineralogical assemblage of Tchinhadzandze Granodiorite Gneiss	96
10.2. Major and trace elements composition of Tchinhadzandze Granodiorite Gneiss	99
10.3. REE composition of Tchinhadzandze Granodiorite Gneiss	103
12.1. Summary of analytical data used in the thermobarometry of the mafic intrusions and	
inclusions within the Mozambique Metamorphic Province	117
12.2. Thermobarometry data from the the mafic intrusions and inclusions within the	
Mozambique Metamorphic Province	120
12.3. Thermochronological data from various lithological units	125
13.1. Summary and comparison of the geology of the study area and Antarctica	132

List of appendices

- 1. Table showing samples per lithological unit, locality and coordinates of samples used in geochronology, geothermobarometry and thermochronology
- 2. Table of microprobe analyses of minerals used in the thermobarometry
- 3. Description of analytical techniques

THE GEOLOGY OF THE MOZAMBIQUE BELT AND THE ZIMBABWE CRATON AROUND MANICA, WESTERN MOZAMBIQUE.

Abstract

The study area comprises the Archaean Manica Greenstone Belt and the Vumba Granite Gneiss, the Proterozoic Messica Granite Gneiss of the Zimbabwe Craton, the possibly allochthonous metasedimentary sequence of the Frontier Formation, the granitoids of the Mozambique Metamorphic Province, which are subdivided into Vanduzi Migmatite Gneiss, the Chimoio Granodiorite Gneiss, the Nhansipfe Granitic Orthogneiss and the Pan-African Tchinhadzandze Granodiorite Gneiss. The rock sequences in the two provinces are cut by mafic intrusions.

The greenstone belt comprises mafic to ultramafic and pelitic schists and serpentinites of the Macequece Formation and metasediments of the M'Beza/Vengo Formation. The mafic to ultramafic schists and the serpentinites have chemical signatures of komatiites. The Vumba Granite Gneiss comprises the northern and southern Vumba granitoids dated at 3885±255 Ma, and 2527±632 Ma respectively. They vary from metaluminous to peraluminous, have normative QAP compositions of granodiorites and monzogranites and chemical signatures of mantle fractionates and volcanic-arc granitoids. The Early Proterozoic Messica Granite Gneiss is 2348±267 Ma old, is metaluminous and has QAP compositions of monzogranites and chemical signatures suggesting a crustal source and a volcanic-arc environment. The Frontier Formation comprises quartzite and pelitic schists. The Vanduzi Migmatite Gneiss comprises stromatic and stictolithic types. Two mineral assemblages are distinguished as they contain either garnet or hornblende. The Mid-Proterozoic Chimoio Granodioritic Gneiss is 1236±201 Ma old. It is granodioritic and metaluminous with a chemical signature of volcanic-arc granitoids. The Late Proterozoic Nhansipfe Granitic Orthogneiss is dated at 981±83 Ma and varies from metaluminous to peraluminous. The Rb, Nb and Y contents are typical of within-plate granitoids, whereas Ga, Zr, Al, Ce and Y are typical of A-type granitoids. The age of the mafic intrusions falls between ~500 and ~1100 Ma. The rocks typically contain plagioclase, hornblende and clinopyroxene with or without garnet and orthopyroxene. The chemistry of the rocks is typical of sub-alkaline tholeiites. The Tchinhadzandze Granodiorite Gneiss may be part of a Pan-African event which lasted till ~450-~500 Ma. The normative feldspar compositions and Rb, Ba and Sr contents are typical of granodiorites. It is metaluminous and has Rb, Y and Nb contents typical of volcanicarc granitoids.

The planar fabrics in the Archaean granite-greenstone belt are characterized by E-W to SW-NE strikes and steep dips to N and S and to NW and SE. The mineral lineations and fold axes plunge 60° and 30° respectively towards the E. Within the Mozambique belt, around the central part and in the extreme east of the study area, the planar fabrics have essentially N-S strikes and steep dips to E and W in contrast with complex deformation observed in the migmatites and megacrystic granitoids.

The study area can be subdivided into three metamorphic blocks, namely, one of low-grade greenschist facies, one of medium-grade amphibolite facies and a third block of high-grade metamorphism.

Uittreksel

Die studiegebied behels die Argeïese Manica Groensteengordel en die Vumba Granietgneis, die Proterosoiëse Messica Graniet Gneis van die Zimbabwe-kraton, die moontlik allochtone metasedimentêre opeenvolging van die Frontier Formasie, die granitoïede van die Mosambiek Metamorfe Provinsie wat onderverdeel word in die Vanduzi Migmatiet Gneis, die Chimoio Granodioriet Gneis, die Nhansipfe Granitiese Ortogneis en die Pan-Afrikaanse Tchinhadzandze Granodioriet Gneis. Die gesteente-opeenvolgings in die twee provinsies word gesny deur mafiese indringings.

Die groensteengordel bestaan uit mafiese tot ultramafiese en pelitiese skiste en serpentiniete van die Macequece Formasie en metasedimente van die M'Beza/Vengo Formasie. Die mafiese tot ultramafiese skiste en die serpentiniete het chemiese kenmerke van komatiïete. Die Vumba Graniet Gneis bestaan uit die noordelike en suidelike Vumba granitoïede wat op 3885±225 Ma en 2527±632 Ma onderskeidelik gedateer is. Hulle varieer van metalumineus tot peralumineus, het normatiewe QAP samestellings van granodioriete en monsograniete en chemiese kenmerke van mantelfraksionate en vulkaniese-boog granitoïede. Die Vroeg-Proterosoïese Messica Graniet Gneis is 2348±267 Ma oud, is metalumineus, het QAP samestellings van monsograniete en chemiese kenmerke wat op korsoorsprong en vulkaniese-boog granitoïede dui. Die Frontier Formasie bestaan uit kwartsiet en pelitiese skis. Die Vanduzi Migmatiet Gneis behels stromatiese en stiktolitiese tipes. Twee mineraalversamelings word onderskei deurdat hulle óf granaat óf horingblende bevat. Die Middel-Proterosoïese Chimoio Granodioriet Gneis is 1236±201Ma oud. Dit is metalumineus en is tipies granodiorities met die chemiese kenmerke van vulkaniese-boog granitoïede. Die Laat-Proterosoïese Nhansipfe Granitiese Ortogneis is gedateer op 981±83 Ma en wissel van metalumineus tot peralumineus. Die Rb-, Nb- en Y-inhoud is tipies van intraplaat granitoïde, en die Ga-, Zr-, Al-, Ce- en Y-inhoud is tipies van A-tipe granitoïede. Die ouderdom van die mafiese intrussies lê tussen ~500 en ~1100Ma. Die gesteentes bevat tipies plagioklaas, horingblende en klinopirokseen met of sonder granaat en ortopirokseen. Die chemie van die gesteentes is tipies van subalkaliese tholeiïete. Die Tchinhadzandze Granodioriet Gneis is moontlik deel van 'n Pan-Afrikaanse gebeurtenis wat tot ~450-~500 Ma geduur het. Die normatiewe veldspaat-samestellings en die Rb-, Ba- en Sr-inhoud is tipies van granodioriet. Dit is metalumineus en het Rb-, Y- en Nb-inhoude tipies van vulkaniese-boog granitoïede.

Die vlakkige maaksels in die Argeïese graniet-groensteengordel word gekenmerk deur O-W tot SW-NO strekkings en steil hellings na N en S en na NW en SO. Die mineraallineasies en plooi-asse duik 60° en 30° onderskeidelik na die Ooste. In die Mosambiekgordel, naby die middel en in die ooste van die studiegebied, strek die vlakkige maaksels in wese N-S en hel steil na die Ooste en Weste, in teenstelling met die komplekse vervorming wat in die migmatiete en megakristiese granitoïede gesien word.

Die studiegebied kan in drie metamorfe terreine onderverdeel word, naamlik een van laegraadse groenskisfasies, een van mediumgraadse amfibolietfasies en 'n derde van hoëgraadse metamorfose.