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Experts in a field regularly apply a defined set of rules or procedures to carry out a problem-

solving task or analysis on a given problem. Often the problem can be represented as a 

computer model, be it mathematical, chemical, or physics based, and so on. It would certainly 

be advantageous for a domain expert who is not proficient in software development to express 

solutions to problems in a domain-specific notation that can be executed as a program. Many 

new ideas aim to make software development easier and shift the development role closer to 

the end-user. One such means of development is the use of a small, intuitive programming 

language called a Domain-Specific Language (DSL.) 

 

This dissertation examines a generic approach to constructing a Virtual Machine (VM) to 

provide the runtime semantics for a particular DSL. It proposes a generic, object-oriented 

framework, called a VM Framework, in which to build a VM by subtyping abstract instruction 

and environment classes that are part of the VM Framework. The subtyped classes constitute 

an environment and an interface called an instruction set architecture and the instructions can 

access and operate on the environment in a deterministic way to provide the runtime 

semantics of a DSL program. Both instruction classes and environment classes encapsulate 

functionality of an existing domain, represented programmatically as a namespace construct. 

The namespace is home to related classes that provide the various concepts inherent of a 

domain. These are concepts understood by a domain expert and in this dissertation it is shown 

how they are exposed as DSL constructs. 

 

With the use of compiler writing tools, a compiler can be created for a DSL that generates an 

appropriate instruction sequence that can be executed by the VM. The grammar of the DSL is 

shown to feature constructs that allow a domain expert to express concepts of the underlying 

domain in an intuitive manner. The dissertation details how a VM is configured for a specific 

set of instructions and an environment. Instruction sets and environments can be extended 

creating VMs with additional semantics for DSLs that are similar, or contain subsets of 

semantics of other DSLs. The languages are intended to be intuitive and it is shown using 

examples how a specific DSL program is mapped to an instruction sequence with the 
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instruction set architecture and environment in mind. Comparative performance in relation to 

other DSL implementations, including a hard-coded approach of a VM and an interpreted 

approach are also provided. The VM Framework is proven to be most effective in rapidly 

prototyping a DSL for a particular problem domain. The dissertation also provides examples of 

DSLs such as a real-valued expression language and a scene description language that uses a 

ray-tracer for rendering geometric objects onto a canvas. It is shown how the scene 

description language is an extension to the real-valued expression language in terms of their 

underlying VMs. All DSL grammars are provided. 

 

Keyterms: domain expert, domain-specific language, virtual machine, instruction set 

architecture, environment, language prototyping, generic framework, syntax, semantics, 

comparative performance. 
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Abstract 

 

Software engineering professionals are frequently faced with the challenges of applying good 

design principles in an environment that is often lacking in consistency and discipline. Those 

experienced in industry will argue that it is mostly due to processes that are not always 

followed and problems that are rather demanding on the developer’s knowledge gained from 

experience and general expertise. Also, developers with a lesser degree of experience who are 

required to improve upon, or implement a new set of requirements specified by system level 

designers are faced with steep learning curves. While system designers play very little role in 

the actual implementation of systems, it is up to the developers to wade through copious 

amounts of source code and documentation, first understanding a system’s behaviour, before 

any further coding can commence. 

  

It is not just software practitioners, but also end-users like experts in a particular scientific or 

engineering domain who experience similar problems. These experts are not necessarily 

versed in software design, yet may still require a scientific means to express solutions in a 

particular problem domain, and it would certainly be to their advantage if they did not concern 

themselves with the seemingly limitless amount of complexities in software. 

 

Many new ideas aim to make software development easier and shift the development role 

closer to the end-user. This dissertation investigates a software development strategy, which 

entails the design of a Domain-Specific Language (DSL) that is tailored towards a particular 

problem domain, and a Virtual Machine (VM) to support execution of a program written in the 

DSL. Since DSLs have the characteristic of being highly end-user oriented, they are favourable 

to experts who have a thorough understanding of their problem domain since they provide an 

elegant means to express their solutions easily. Different techniques to support DSLs are 

examined, namely an interpreter, a hard-coded VM, and a VM Framework. The VM Framework 

is proven to be most effective in rapidly prototyping a DSL for a particular problem domain. 

 

Throughout this dissertation, example DSLs are used to illustrate some of the concepts that 

are discussed. For each DSL example some details are shown, such as their grammars and 

results of executing a program written in the DSL. The DSL grammars and example programs 

are all included in the appendix. The implementation of the interpreters, hard-coded VMs and 

VMs based on the VM Framework for each DSL are all included on the accompanying CD. 
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1 Introduction 

1 Introduction 

 

 

 

 

 

 

 

Programming languages were invented to make machines easier to use [Set97], but the word 

invented should perhaps be elaborated on slightly. Scientists and others regularly reuse sound 

pieces of functionality in defining a concept or a solution to a problem, whether it is an 

iterative algorithm, an inductive proof or a mathematical formula. One of the first industrially 

accepted programming languages was Fortran [Bac81, Wex81], widely embraced by the 

scientific and engineering community since it allowed formulas to be written in the traditional 

mathematical sense, instead of coding them directly at the machine level. These formula 

expressions were automatically translated into machine level instructions. Over the years, 

other recurring concepts have been encapsulated, either in the form of a library or a language, 

producing languages aimed at the next generation of developers. Good examples of both 

include the OpenGL API, a graphical library that is highly portable and available for most 

Windows and UNIX platforms, and the Prolog language, which does a successful job of 

encapsulating first-order predicate logic into concise formalisms that support logical inference. 

 

The most logical next step would be a software development process that facilitates or aids 

encapsulating commonly recurring functionality into a language, and, over time, lets the 

language evolve toward a more mature state. This is essentially what this dissertation is all 

about: the provision of a platform or framework, that will support the development of Domain-

Specific Languages (DSLs) and that will easily accommodate the natural tendency for them to 

evolve over time. 

 

This chapter begins by identifying the programming language and development environment 

used for the experimentation of DSL development. The notion of a DSL is examined in some 

detail in Section 1.2, while Section 1.3 proposes the criteria that will be used in this study for 
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1.1 Development Language 

evaluating DSL development methods. Related work is mentioned in Section 1.4, and the 

matters are summarized in Section 1.5. Chapter 2 illustrates DSLs in the context of some 

development environments. Chapters 3 to 6 examine the different techniques to provide 

runtime semantics of a DSL-program: Chapter 3 looks at interpreters, Chapter 4 looks at hard-

coded Virtual Machines (VMs) and Chapters 5 and 6 present a framework-oriented approach. 

The framework, referred to as the VM Framework, provides ease of creation and modification 

of various software building blocks for the semantics of some DSL definition. It also allows for 

the creation of a compiler for a defined DSL that is targeted towards these semantics. Chapter 

7 provides some comparative results between DSL development techniques, i.e. interpreters, 

hard-coded VMs and the VM Framework. Chapter 8 provides some work yet to be explored and 

follows with a conclusion to this dissertation. 

 

1.1 Development Language 

 

This study is centered not merely on the design of DSLs. It also represents a quest for an 

effective approach to support DSL development and DSL modifications in a particular software 

environment. Of course, any existing imperative programming language can be used for DSL 

development, but to further justify the usefulness of DSLs, the illustrating language should 

also be mature enough to allow a developer to build language constructs quickly and easily. 

Constructs simply refer to any syntactical features offered by the language itself, such as loops 

or use-defined declarations of functions or types, and are often identified by the occurrence of 

keywords of the language. To that end, the illustrating platform chosen is the Microsoft .NET 

platform, and the illustrating language used is the C# language. An excellent introduction to 

C# is provided in [Lib02]. This is not to say that other platforms could have been used with 

equal success in this study. A somewhat desirable characteristic of the .NET platform is the 

exposure of the language compiler itself in the form of an Application Programming Interface 

(API). This makes language and compiler development a fairly streamlined task. 

 

Central to the .NET platform is the Common Language Runtime (CLR) system. Any language 

compiling to the CLR can invoke other modules compiled with a different programming 

language. Thus, later chapters that discuss building software for instruction extensions, and 

environment extensions are not necessarily restricted to C#, but may also include Visual Basic 

.NET, C++ .NET, and more domain oriented languages such as the .NET variant of COBOL. 
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1.2 A Look at Domain-Specific Languages 

1.2 A Look at Domain-Specific Languages 

 

Before attempting to justify what is meant by language in DSLs, a justification on what is 

meant by domains should be fairly appropriate at this stage, since the DSL designer needs to 

keep a clear picture of the domain in mind, before attempting to expose it as a language. The 

DSL designer also needs to perform a thorough analysis of the domain to identify the features 

of the domain, and the dependencies among them [vDeu01a]. While it is also possible to 

describe the definition of a domain both pragmatically and scientifically, the DSL designer is 

more interested in defining domain concepts that map to sequences of instructions in a 

conventional programming language. Ultimately, the DSL designer would like to quickly and 

easily build up a prototypical language for end-users, just as much as end-users would like to 

quickly and easily get started using a DSL to solve their problems in their respective domain. 

In this dissertation, the actual DSL-program source code, written in the language of the DSL, is 

referred to as the DSL-program. The definition of a DSL that follows is taken from [vDeu98c]. 

 

 DSL : A Domain-Specific Language (DSL) is a programming

language or executable specification language that offers, through

appropriate notations and abstractions, expressive power focused

on, and usually restricted to a particular domain. 

 

DSL-program : A program, written in the language of the DSL,

i.e.  the actual DSL program source code. 

 

 

There is a natural choice between using an industrial language, and resorting to using a DSL. 

In this dissertation, through some examples and empirical experimentation with DSLs and the 

design of the underlying execution mechanisms, the text will attempt to expose their 

usefulness in a scientific context, as well as their use as a software-engineering tool. While 

industry always has a myriad of complexities in software design and maintenance, industrial 

strength languages will always be part of the software engineering process. There is no reason 

why the two disciplines cannot be merged together and used in harmony to form a more 

effective means of software design. 

 

1.2.1 The Concept of a Domain in a DSL Context 

 

Simply put, a domain is characterized by a set of related concepts, which need to be 

understood, before they can be applied to real world problems. For example, Chemistry is a 

domain in which the concepts of elements, compounds, and their respective reactions, are 
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1.2 A Look at Domain-Specific Languages 

among those that are to be understood by chemists if they are to be considered experts in the 

domain. An example of a DSL for dealing with financial concepts, specifically financial products, 

is the DSL RISLA, described in [Arn95, vDeu97]. This notion of a domain is reflected in the 

Shlaer-Mellor design methodology [Mon95, Shl92, Shl96]. In keeping with a more pragmatic 

mindset, developers who regularly exercise the UML [Ale01, Bjö02, Gur03], would normally 

group related classes in packages, and again in [vDeu97] a discussion on an object-oriented 

frameworks is provided, which is analogous to this concept of a domain. Developers who are 

more favorable to the Shlaer-Mellor design methodology, group all related classes within an 

explicit domain. The Shlaer-Mellor design approach evolved out of UML in an attempt to 

solidify some of the rules or policies of UML, which either didn’t exist or were still not well 

understood by many developers. It can be said that Shlaer-Mellor is a summarized variant of 

UML, that boasts a fair amount more user friendliness than UML and that is well suited for 

asynchronous systems. While asynchronous systems are beyond the scope of this dissertation, 

what will be of use is Shlaer-Mellor’s definition of a domain. 

 

 Domain : A domain is a set of classes, all connected via 

relationships of some multiplicity. No two domains use the 

same classes, ie. Classes do not overlap between domains. A

domain can be dependant on, or make use of services of 

other domains. 
 

 

In essence then, a domain, from a developer’s perspective, is simply a home where related 

concepts can live happily together. The C# namespace construct groups together related 

classes, interfaces and enumerations. The C# namespace is well aligned to the concept of a 

Shlaer-Mellor domain. Later in this dissertation, when the possibility of constructing DSLs for 

various domains will be explored, each domain will be associated programmatically with a C# 

namespace and thus will represent the domain of the DSL. 

 

1.2.2 The Concept of a Language in a DSL Context 

 

Delving into the language side of DSLs, this is where the end-user requirements start to play a 

role. Before embarking on designing a DSL it is important to first note, and understand, two 

separate concerns centered on the design of a DSL. They are the syntax, and the semantics of 

the language. One obvious requirement of a DSL is that the syntax of such a language should 

be simple and intuitive. The main driving point behind end-user software is to relieve a 

developer or expert from the burden of developing around existing software that either he or 

she has little knowledge about or is cumbersome and shouldn’t concern the individual at all 

[vDeu98a, vDeu98c]. Very often a DSL’s simple constructs map to a large amount of 
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1.2 A Look at Domain-Specific Languages 

underlying processing. This mapping determines the meaning or semantics of the DSL’s 

constructs. Many DSL-compilers merely generate code and therefore provide the semantics in 

a high-level language. In such instances, the intention is that the generated code again be 

compiled along with other existing code, a library, or a software framework, for a complete 

application to be produced [Cza99, vDeu01b]. 

 

In contrast, in the current work, a VM was incorporated as a means of executing a variety of 

DSL-programs. The VM exposes an existing namespace as a set of instructions and an 

environment, and once a particular DSL has been defined along with a corresponding compiler, 

then a program written in that DSL can be translated into a sequence of instructions that the 

VM can execute. For this dissertation, any reference of a VM created using the VM Framework 

shall be called a VM instance since it amounts to an object instance from a programmatic 

viewpoint. A more detailed description of how this is accomplished, as well as the finer details 

of VMs, will be discussed in Chapters 4 to 6. It will be seen that this will support solutions to 

the problem of effectively designing and implementing DSLs in such a way that an expert can 

later reconfigure them. Effective DSL design is therefore not seen as a once-off activity. 

Instead two distinct development roles are investigated: that of designing the original form of 

the DSL; and later, the domain expert role of redefining the language. 

 

1.2.3 The Language Syntax 

 

As mentioned before, the syntax needs to be intuitive. Syntax design should take place in the 

context of a few consultations with an expert, because the design shouldn’t be taken for 

granted. Though the use of a specific construct might seem fairly obvious to a DSL designer, it 

may be too cumbersome or verbose for the expert. Language syntax should also be designed 

with the aim of reducing programmatic errors and to have increased programmatic error 

detection. This implies keeping the syntax concise and doing away with elements of syntax 

that cause unnecessary confusion in the readability of a program. Thus syntax design needs to 

be loosely coupled from the semantics and may well be reworked a few times before the end-

user is wholly satisfied. The syntax design of the DSL, in this dissertation, is kept simple, and, 

in fact, doesn’t need to be anymore complicated. The requirement here is to derive a very 

simplistic compiler capable of translating a DSL source into a target machine language. A lexer 

generator, and parser generator are needed that are able to generate C# code. The two tools, 

which can provide this functionality, were chosen for the .NET environment. They are aptly 

named LexerGenerator (LG) and ParserGenerator (PG) [Cro03]. It is important also to note 

that static semantic checks, such as static type checking, are a concern of the compiler and 

any static semantic checking routines would need to be implemented in the compiler. 
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1.2 A Look at Domain-Specific Languages 

1.2.4 The Language Semantics 

 

Runtime semantics, as opposed to static semantics, refer to the noticeable effect of executing 

a DSL-program. At the formal level there are different methods to specify the language 

semantics. They include informal semantics, attribute grammars, operational semantics, 

denotational semantics and natural semantics [Set97]. 

 

For the VM Framework described later in Chapters 5 and 6, specification of the semantics is a 

combination of informal semantics and operational semantics. Since the VM Framework 

already deals with compiled C# code, the semantics are more illustrative at the operational 

level. All semantics is encapsulated in instructions and executed by the VM instance. 

 

Instructions that are executed can update an environment that is registered with the VM 

instance. The environment referred to here is not the conventional environment that contains a 

mapping of variables to values. Rather it is a custom data structure whose internals are known 

only by the instructions themselves, and not to the VM instance itself. However, it is also 

possible to include a separate environment in the compiler if the language is to cater for local 

variables. 

 

As will be seen, it is the obligation of the DSL designer to extend the VM Framework with an 

instruction set and a related environment, and to further configure the VM instance using a 

separate configuration file that links each instruction to the environment. The configuration 

allows the DSL designer to reuse instructions with different environments, and to extend 

environments to have additional functionality. Each instruction and environment is stored as a 

.NET Dynamically Linked Library (DLL) on disk. The instruction DLLs and environments are 

loaded at runtime depending on the VM instance’s configuration. 

 

Tying the two concepts of syntax and semantics together is the challenge behind rapidly 

prototyping DSLs, and it is in the VM Framework presented in this dissertation that the 

approach is simplified. The internal structure of the VM Framework shall unfold in later 

chapters. 

 

To place DSLs in their context, this dissertation shall assume the design and implementation of 

DSLs in a software-engineering context. The terms developer, practitioner or domain expert 

will sometimes be used interchangeably, but they simply refer to the end-user of the DSL who 

is eager to make use of the resultant DSL built by the DSL designer. Thus development moves 

away from programming in the small, to programming in the large. The aim is not to restrict a 

detailed discussion on DSL design purely for a single use, i.e. building a product for an end-

user [Arn95], but also to allow developers in industry to embrace some of the techniques 
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discussed and apply them to real world software engineering practices. In the latter case, the 

DSL that results is not targeted to a specific end-user, but also to be reapplied back into a 

developer’s own working environment, whether they be designing software for embedded 

systems, databases, visual applications, mathematical modeling applications, and any other 

domain inherent in a particular field. Most of these applications are based on well-defined 

concepts, and so they can indeed benefit from DSLs, and in so doing improve the developer’s 

software development practice. 

 

1.3 Criteria for Evaluation 

 

To make any significant comparison between the various DSL development techniques, a 

certain set of criteria is needed. Three useful criteria are identified and defined in this section; 

they are scalability, performance and modularity. They correspond to important properties that 

go hand in hand with good software design. Another somewhat important property associated 

with languages is portability. However this dissertation assumes a .NET development context, 

and therefore it only makes sense to consider all platforms that support the .NET environment. 

The three previously mentioned properties are studied further at the DSL level. 

 

1.3.1 Scalability 

 

Scalability describes the readiness for a system to grow, without significant loss in efficiency 

and effectiveness. In the context of DSL design, such growth could include new constructs that 

are added to the language itself, as well as new functional code that is added to the underlying 

namespace, such as new functions, classes etc. It is often difficult to focus on building scalable 

software in the time allocated to a given project. Even when developers do manage to build 

scalable software, it is often at a performance cost, so there tends to be a tradeoff between 

scalability and performance. 

 

1.3.2 Performance 

 

Performance can either refer to the formally derived polynomial or non-polynomial complexity 

of a computation or algorithm or simply the time elapsed for a computation or algorithm to 

complete. Throughout the dissertation, when a measure for performance is required, a simple 

time elapsed will be checked at corresponding points of execution. 
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1.3.3 Modularity 

 

Modularity will be described in terms of the DSL itself. This refers to the interpreter, the hard-

coded VM and a VM instance created from within the context of the VM Framework. One can 

ask how reusable is the interpreter or the VM? Supposing a DSL is developed, and the 

environment defined for the DSL has a certain set of inputs and outputs. It may be a desirable 

property to be able to treat the VM as a component, just like a UML object, and to allow it to 

interact with other components of a bigger system. 

 

Quite often, in object-oriented languages, it is considered good practice to design and to build 

classes as reusable entities. Thus in object-oriented languages, use of constructs such as 

abstract classes and polymorphism are encouraged to add extra degrees of reusability. Many 

times though, it is not easy or even possible for that matter to design all classes to be 

reusable, because many class have very specific functionality or behaviour and are perhaps 

only suited in a single context. 

 

In the Shlaer-Mellor context it is the namespaces, and not the classes within the namespaces, 

that are considered the reusable entities. Ideally, a domain can be used over and again in 

various contexts without changing the code or classes found inside the namespace, but only 

making alterations to the namespace’s so-called bridge, discussed in more detail on Chapter 3. 

 

1.4 Related Work 

 

There is an interest in building languages rapidly, and consequently there is a need for rapid 

prototyping of language syntax and semantics, and more so, the ease and efficiency at which 

this can be achieved in an industrial environment. High-level languages such as C#, C++ or 

Java have a standard syntax, and are not prototypical languages as such. Though powerful in 

their nature, the need to build DSLs is driven by a necessity to have smaller languages that 

are more expressive. Environments such as the ASF+SDF MetaEnvironment [vdBra01] allow a 

user to freely alter a prototypical language’s syntax, and provide semantic rules for the 

language, and in so doing allow a rapid form of language prototyping, well suited for building 

DSLs. However, the mapping from syntax to semantics in the case of the MetaEnvironment is 

at a more formal level, and equations are used to define the mapping. The usefulness of DSLs 

is further explored in Aspect Oriented Programming (AOP) [Irw97, Kic96], and consequentially, 

their affiliation to aspect weavers. They don’t rely on a VM. Rather, they fuse a set of DSL-

programs together and generate code in a target language, such as Java. 
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1.5 Summary 

 

This chapter provided an overview of DSLs and briefly discussed the Shlaer-Mellor 

programming methodology, since it forms a good basis onto which DSLs can be 

conceptualized, i.e. a custom DSL built on top of an existing domain or a domain that is yet to 

be designed. The domain in the context of an expert is analogous to the knowledge in which he 

or she is proficient, and which he or she wishes to describe in a syntactic, communicative 

manner. Used in the context of a DSL, the domain is associated programmatically to a 

namespace where all the concepts, in the form of modules (functions, classes etc) are housed. 

Also, DSLs were discussed in terms of their syntax, and in terms of the semantics. The 

semantics forms the link between the syntax and the underlying namespace. Three criteria for 

evaluating a DSL were described and will be used throughout this dissertation; they are 

scalability, performance and modularity. Later, in Chapters 3, 4 and 5, as three different types 

of DSL techniques are described, these criteria will provide us with some measure of how 

suitable each of the different types of techniques are, especially when a DSL is required to be 

altered to suite new requirements. 
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2 Development Environments for Domains 

 

 

 

 

 

 

 

Most state-of-the-art software development suites that are available at present enable a fairly 

streamlined means in which to develop software, especially in a Windows environment, using 

Rapid Application Development (RAD) techniques. Aspects of these RAD techniques have been 

encapsulated and made available to developers in specialized software known as Computer-

Aided Software Engineering (CASE) tools [Pre97, Whi98]. A concept associated with the notion 

of CASE tools is that of Integrated Development Environments (IDEs). This refers to the visual 

appearance or layout of the CASE tool. The layout impacts the usability of the CASE tool, as 

well as the tool’s ability to expose its intended software engineering features in a practical 

manner that simplify software development further. CASE tools have been used with great 

success in industry. These tools have also been widely adopted because of the ease that they 

offer in building subcomponents of applications. The IDE of a tool, however, refers more to the 

development environment exposed to the developer, as opposed to other aspects of a CASE 

tool that support aspects such as design, documentation etc. IDEs are usually unique to CASE 

tools. They offer a variety of features, mainly visual in nature, to build parts of a system that 

seem to warrant a more interactive approach to its construction. The rest of the chapter 

touches on CASE tools, as there is much room for incorporating the forthcoming concepts, 

particularly DSLs and VMs, into CASE tools to further improve their interactive approach to 

software development. The chapter starts by briefly introducing some existing CASE software, 

and Section 2.2 identifies some key areas as suitable candidates for incorporating DSLs and 

VMs. Section 2.3 provides the summary. 
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2.1 CASE Tools of Today 

 

It is important to note that CASE is not necessarily a systems engineering methodology. 

Rather it is the application of software technology to support the inner processes, strategies 

and disciplines of various such methodologies. The definition of CASE, adopted from [Whi98], 

is provided below. The use of a VM in the context of such technologies is provided in the next 

section. 

 

 CASE : CASE is the application of information technology to

systems development activities, techniques and

methodologies. CASE tools are programs that automate or

support one or more phases of a system’s development life

cycle. The technology is intended to accelerate the process of 

developing systems and to improve the quality of the resulting

system. 
 

 

Most CASE tools enable rapid ways to build visual components such as Windows Frames or 

database table layouts. Some go so far as to visualize the design-time structure of a program 

or application. Development environments such as BridgePoint and Artisan allow a high-level 

view of an application under development using Shlaer-Mellor or UML diagrams. For example, 

they might represent graphically an active object’s state machine using appropriate UML 

symbols instead of the corresponding source code for that object, though it is natural to 

enquire how the programmatic representation appears. Once a program has been developed 

fully, or perhaps even at early stages of development, it is possible to run the program within 

a simulated context with a fixed set of inputs and verify the correctness of the program’s logic 

through repeated testing using a predefined set of test cases. It is mainly the industrial 

strength languages, such as Delphi, C++ and Java, that have had vendors create IDEs that 

expose the language in a RAD fashion, resulting in CASE tools such Borland Delphi, Borland 

C++Builder, Borland JBuilder, and Microsoft’s Visual C++. 

 

2.2 A VM as Part of the CASE Software 

 

Presented in this chapter is the concept of a CASE tool into which a VM can be used. The 

chapter illustrates the conceptual use of a VM to build an IDE. Such an IDE is generic with 

regard to the type of DSL required by an end-user, and the semantics of the DSL. Thus, it is a 

CASE tool that provides an IDE having the following property: the IDE allows one to invoke a 

VM that will run a DSL-program, where the DSL’s syntax and semantics have also been 
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provided by facilities within the IDE. Indeed, the facilities for writing the DSL-program are also 

part of the IDE. In this sense, (i.e. of being able to define and support many DSLs) the IDE is 

generic, and in the same sense, the associated VM is generic. This implies that the tool itself 

will be in two separate instances or parts, each part being used at different stages of software 

development. 

 

The first part will allow a developer to custom build a DSL, with syntax and semantics, and 

allow linking into a namespace written in a platform such as the .NET CLR. The second part will 

allow the developer to write programs using the DSL that has been specifically customized for 

his or her particular need. 

 

The VM Framework presented in this dissertation will not cater for every feature mentioned 

above, such as visualizing components in design-time or runtime or translation of a high-level 

language to a low-level language such as C or assembler. A VM instance of the VM Framework 

will instead, form the core component responsible for executing a DSL-program within a 

simulated environment. The VM is generic, as will be discussed in Chapter 5, in that the 

language is customizable to suite a wide range of end-user domains. 

 

2.2.1 Languages in a DSL-Supporting IDE 

 

Figure 1 demonstrates a hypothetical IDE that does not feature any specific development 

language of a software application, but rather illustrates five key areas where a particular 

language can be a used. Such an IDE does not exist in industry, though certain IDEs that are 

in existence today do expose one or more of the mentioned areas with a language of some 

kind, and examples are mentioned in this and the next section. To simplify the illustration, the 

notion of having a real-valued functional expression language as a development language is 

shown. One of the areas is indeed the syntax definition (grammar) of the development 

language, and thus the grammar definition in Figure 1 is the grammar of such a functional 

language. Furthermore, it should be understood that not all of these five languages are used at 

the same instance, but instead some are used before the design of an application, some are 

used during the design of an application, and some are used for testing and post-development. 

The way to understand this hypothetical IDE would be to ask what five key areas of building a 

software application could be useful if they were to be exposed as a language. In so doing, 

could they provide a means to configure the IDE to develop the required software application 

in an optimal fashion, depending on the type of application to be built? Naturally, at least one 

language is required – the development language itself, but the aim is to be able to configure 

more of the IDE’s development facilities. The five key areas are described in more detail below. 
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Integrated 

Development 
Environment 

DLL, 
EXE, 
Binary 

 
double %fun.name% (double %params[0].name%\ 
                   %for i=1..params.count-1% 
                   ,double %params[i].name%\ 
                   %next%) 
{ 
   %for l in locals% 
   double %l.name%; 
   %next% 
   return %fun.exp%; 
} 

 
class Add 
{ 
   public Add (DExp env) 
   { 
      this.env = env; 
   } 
 
   public void Execute () 
   { 
      double d1,d2;       
      d2 = env.stack.pop (); 
      d1 = env.stack.pop ();  
      env.stack.push(d1+d2); 
   } 
} 

 
exp : exp PLUS term 
exp : exp MINUS term 
exp : term 
 
term : term TIMES fact
term : term DIV fact 
term : fact 
 
fact : LPAR exp RPAR 
fact : NUM 

 
call MyFunc (30) 

Translation rules to 
target 
language/binary 

 
let 
   fun MyFunc (x) =  
   let 
      n = x 
   in 
      9 + sum(i) 1..n (2*i) 
   end 
in 
   MyFunc (10) 
end 

Grammar describing 
development 
language 

Components, written in some 
language, eg C#, providing 
the language semantics 

The actual software 
currently under 
development 

Test scenarios or 
use cases 

 

Figure 1. High-level view of a DSL-supported IDE. 

 

The grammar describes the syntax of the language, usually in a standard form such as Backus-

Naur Form (BNF). In Figure 1 above, the top left-hand box illustrates the first language of a 

DSL-supporting IDE: the language indicating the BNF which defines the syntax of some DSL – 

in this case, a DSL that has arithmetic operators as part of its syntax. Grammar is typically not 

changeable by a user, especially in industrial strength languages, like C++, as it would be 

senseless to allow the actual syntax to be altered. However, in such environments as in the 

ASF+SDF MetaEnvironment, in addition to the target application currently under development, 

it is also the language that is a concern to the developer. Thus the DSL is rapidly prototyped. 

In the case of the MetaEnvironment, it is necessary to provide a means for a language 

designer to let language syntax evolve until it suites a particular need, as is the intention with 

prototyping a DSL. The present study has a similar objective. 

 

The semantics of a particular development language is usually encapsulated in the compiler 

provided by a traditional IDE. The sequence of machine code instructions generated by the 

compiler represents the semantics of the program written in the development language. The 

sequence of instructions generated by the compiler is also not changeable in standard 

compilers since it is implemented as part of the compiler’s internal translation pipeline. The 
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compiler is responsible for generating machine code instructions for a target machine type, 

such as a Pentium processor. Without making too many direct low-level references to the 

actual instruction set of the target machine at the hardware level, it is sufficient to state more 

simply that the semantics of a program amounts to the actual observable behaviour of an 

executing program. This does not necessarily mean that one can observe the behaviour as the 

program is being executed. Rather it means one expects some useable result from executing 

the program, be it a once off execution, or execution that is continuous until some condition is 

met. Moving away from a traditional IDE towards its hypothetical counterpart, the semantics 

for the development language is allowed to be configurable. It is possible to use any existing 

development language to build a set of semantics for a particular DSL development language, 

and in Figure 1 above C# is used. The top middle box in Figure 1 shows how the semantics of 

real-valued addition is encapsulated in an external C# library class called Add. The Add class 

will form an instruction of the instruction set that a VM instance will ultimately be able to 

interpret, and thus defines runtime behaviour for the developing DSL. Having a set of classes 

in this way and having them supported by the IDE means they need to comply to some specific 

interface and this interface is indeed what is prescribed by the VM Framework discussed later. 

 

The development language itself, briefly mentioned before, is the language exposed to the 

end-user – i.e. in the present study, it is the DSL exposed to the domain expert. This is 

typically the primary tool of the application developer, and is what the designer will make use 

of to develop the required application. As mentioned, even in the case where there are 

features of an IDE that allow a user to develop interactively (such as a feature for designing 

GUIs, or features such as those found in BridgePoint that provide a notation to describe state 

machines for active objects) there will still be a fair amount of underlying code that is 

generated automatically by these features, targeted to the development language. Some well 

known such examples of development languages (including any generated code from the 

abovementioned features) are C#, C++, Java, Delphi. In Figure 1, the top right-hand box 

illustrates some functional language that is being used as a development language. 

 

Some environments include some kind of test scenario language that is used to simulate 

various conditions on an application. This enables earlier testing of the application being 

developed. An example of such testing on embedded devices is given in [Oli95]. Essentially the 

language allows the definition of a sequence of inputs or events to occur within a simulated 

context. These inputs may either occur in some predefined order or as a random sequence of 

events. Such events include interrupts, messages that are generated from external devices, 

data from a LAN or other communication mechanism or information from sensors attached to 

the device being programmed with the software. These types of inputs are especially useful in 

embedded systems, where it may not necessarily be practical to test the software on a target 

platform. An example of such an environment is the BridgePoint IDE that allows an application 

to be isolated and executed in a simulated context, and responds to inputs described by a 
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particular type of test case scenario. These inputs can be programmed to occur at certain 

times or to occur in some sequence inside a loop. This allows for rapid testing of an 

application. Though this allows for rapid elimination of logic errors in the application, it will not 

expose any errors that are ascribable to some specific characteristic of the target embedded 

platform. Such a scenario language is represented as input to the IDE in Figure 1 in the middle 

left-hand side. 

 

The last language that warrants elaboration describes the translation of a program written in 

the development language (a DSL-program) into some other target representation, such as an 

imperative language like C. Such a translation language is merely a set of textual rules that 

specify how one construct represented in the development language manifests as a 

corresponding construct for some other target language. The actual semantics of the original 

DSL-program source needs to be retained after it has been translated into the target 

representation, thus the mapping between the two different representations need to be clearly 

understood, so the translation rules can be specified without any ambiguity. For example, a 

summation construct in a real-valued expression language would ideally translate to a for-

loop of some segment of code that represents the expression being summed. In the above 

example in Figure 1, the translation rules are described in the form of an archetype, which is 

essentially a representation of a textual source code target, in this case, a straightforward C 

function, with placeholders for names of functions, parameter lists, locals, etc. This is an 

approach taken by the BridgePoint CASE tool. When the translation occurs, the placeholders 

are replaced with names defined within the DSL-program source code. In the above example, 

when a C-function is to be produced, the name of the C-function is derived from the name of a 

function declared within the DSL-program, and is queried by the occurrence of %fun.name%, 

and is valid for whatever function is currently under translation. Any occurrence of %fun.exp% 

will generate the translated form of the expression defined by function (declared using the fun 

keyword) in the DSL-program. This will in turn invoke other specified rules for translating real-

valued expressions such as addition, multiplication, summation and so on. 

 

2.2.2 A DSL Development IDE 

 

As mentioned, not all IDEs make use of each of the languages described above. Some may not 

be relevant to the particular IDE or they might simply not be provided as a feature of the IDE. 

The table below relates a few language IDEs, and includes the VM framework proposed in this 

dissertation. Though the VM Framework is not an IDE in itself, it has a vital role in the design 

of a VM (resulting in a VM instance) that can be used in some DSL-supported IDE. This role of 

the VM Framework in such a context will be discussed shortly in this section, and it is this idea 

of a DSL-supported IDE to which the remaining three IDEs are compared. The table indicates 
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whether the IDE or DSL-supported IDE (based on the VM Framework) facilitates the particular 

language in any way, as far as the developer’s point of view is concerned. 

 

 Delphi/C++ 

Builder 

ASF+SDF BridgePoint DSL-supported 

IDE 

Grammar     

Semantics     

Development     

Scenario     

Translation     

Table 1. Comparing IDEs and their use of language types. 

 

Borland’s Delphi and C++Builder are fundamentally identical in terms of features provided by 

the tool, the development language is really the only difference. In both cases, the 

development language is the only means to build an application, with a few visual tools to aid 

in designing GUIs and database sources. The ASF+SDF MetaEnvironment additionally allows 

the formal definition of a development language’s grammar, as well as semantic rule mappings 

from a provided grammar. The semantics, however, is not checked on the table. The reason is 

that the semantics in the context of the table refers to observable behaviour, rather than 

formal denotational semantics specified by the ASF+SDF MetaEnvironment compilation 

equations. This is where the power of the VM Framework will become apparent. It has a more 

practical application of specifying semantics in that it will allow the use of externally defined 

library classes to provide a rich set of functional runtime behaviour. A grammar definition will 

make the invocation of these semantics a simple matter of mapping a construct into a 

sequence of instructions. This will be discussed with reference to Figure 2 shortly. BridgePoint 

supports the specification of translation rules from its development language (an intuitive 

query-like language) to a target language. Often C is used as the target language as 

BridgePoint is well suited to embedded hardware systems. Building a scenario language into a 

DSL-supported IDE will not be difficult. The task would entail the execution of a DSL-program, 

having the VM instance execute the sequence of instructions. Invocation of the DSL-program 

can be done with some specific parameters that are used for testing purposes, and also, it may 

even be useful to build debug instructions as part of the instruction set. Such instructions could 

print values to a console, or provide immediate program termination. To simplify the intention 

of this section, it is worth mentioning that the generation of the VM and DSL-compiler together 

(shown as two blue opaque boxes in Figure 2) is intended to be an automated process. This 

automation is still speculative at this point, however the VM Framework that has been written 

for this dissertation enables a user of the VM Framework to manually craft such a VM 

component, while using suitable compiler writing tools to (almost completely) automate the 

task of building a DSL-compiler. Such tools will automate the generation of the front-end 
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processes, such as the lexer and parser, but the user still needs to supply the correct logic for 

translation of a DSL-program into a sequence of instructions. This translation specification 

forms part this example. 

 
 

 
DSL Design 

IDE 

Packaged IS 
(EXE) 
 

 
Design-time 

IDE 

 
DSL 

Compiler 
VM 

 
exp : exp:e1 PLUS term:t1,  exp1 
exp : term:t1,              exp2 
 
term : term:t1 TIMES fact:f1, term1 
term : NUM:n,                 term2 
 
translate exp1 
{ 
    translate exp1.e1 
    translate exp1.t1 
    emit "Add" 
} 
... 
translate term2 
{ 
    emit “Push $0”, term2.n 
} 

Grammar describing DSL, 
and translation rules 
(compiler generator) 

 
let 
   fun MyFunc (x) =  
   let 
      n = x 
   in 
      9 + sum(i) 1..n (2*i) 
   end 
in 
   MyFunc (10) 
end 

The actual software 
currently under 
development 

 
call MyFunc (30) 

Test scenarios or 
use cases 

DSL 
Compiler 

VM 

IS 

Domain 

Environments 

Instructions 

Components, written in some 
language, eg C#, providing 
the language semantics 

Exported DSL Compiler and VM 

Use the exported DSL compiler 
and VM to develop a solution 
expressed in the DSL 

Develop a DSL for a specific 
problem domain 

 

Figure 2. Generic VM used in the context of a DSL IDE. 

 

This dissertation is centered on a framework that aids in developing DSLs. It is aimed at 

producing a software system by means of which the syntax and semantics of some DSL can be 

defined. The software should then generate a compiler that translates this DSL code to an 

executable Instruction Sequence (IS in Figure 2). The software should also be capable of 

producing a VM that can read in this sequence of instructions, and then translate them into 

some low-level language that can be executed on the platform on which the overall system is 

running. Here, the overall flow of activity in developing and running DSL code in such an 

environment is discussed with reference to Figure 2 above. 
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A VM Framework has been built and will more formally be described in later chapters. A 

product of this Framework will be a VM instance and will serve as the underlying execution 

mechanism of a CASE tool. A VM instance will be based on some custom built namespace 

during the design of a DSL. Figure 2 illustrates the two views of such a CASE tool, and the flow 

of information to arrive at the resultant application under development. 

 

The first view in the upper half of the Figure 2, illustrates how the VM Framework supports the 

design of a particular DSL. From this perspective, the software constitutes a DSL design IDE. 

The upper left-hand box shows that the VM Framework relies on a language to build a DSL 

grammar. This language can also specify translation rules to generate sequences of 

instructions from syntactically correct DSL constructs, and consequently it defines the rules to 

produce a sequence of instructions for some complete DSL-program. The box on the top right 

of Figure 2 indicates that the DSL-Design IDE also requires instructions, environments and 

domains. These are third-party components or libraries written in any conventional 

development language and are imported into the DSL-Design IDE. The domains are simply 

namespaces that exist as legacy code, or are written specifically for some DSL. The ray-tracer 

namespace, described in Chapter 3, is one such example of a domain that will be exposed as a 

DSL. The DSL-Design IDE will then generate a DSL-compiler and a VM from the provided 

specification. 

 

The second view below the dotted line in Figure 2 is of the Development IDE, so-called 

because it is used to support the design and implementation of systems to be written in the 

DSL defined in the first view. It imports the DSL-compiler generated in the first view into the 

Design-time IDE, to allow the developer to freely design software in the specified DSL. Any 

time that the program is to be executed within the Design-time IDE, the DSL-compiler is 

invoked to generate a compiled sequence of instructions, which is then executed by the VM 

instance that had been generated for this DSL. 

 

To have the compiled program execute outside of the Design-time IDE, either the VM instance 

can be packaged and provided as a library that is invoked when the program is executed, or a 

platform specific executable can be generated, that inherently embeds the program along with 

the VM instance required to execute the instructions, into the executable. It is more favourable 

to have the VM instance packaged as a separate library, as it may be invoked 

programmatically as part of a larger piece of software. 
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2.3 Summary 

 

This chapter identified five different languages used either in the development of a language, 

or in the configuration of an IDE. It includes the actual language used by a developer. The five 

languages are supportive of each the following: the syntax, underlying semantics, end-user 

development, test scenarios, and translations to target languages. The syntax of a DSL is 

usually coded in a format similar to BNF, and in the context of an IDE that supports DSL 

design, it can allow for the translation of certain constructs to a sequence of instructions. The 

underlying semantics refers to the implementation of behaviour that is representative of the 

constructs expressed in the DSL. The VM Framework allows a set of instructions and 

environments to be subclasses of certain classes of the VM Framework. These subclasses 

embody (encapsulate) the semantics of the DSL that has been defined. 

 

The DSL will ultimately be used by the end-user of the DSL to express solutions elegantly and 

concisely within their problem domain. Test scenarios define external behaviour, that 

essentially run an instance of the end-user’s program. Such a test scenario provides 

parameterized data to the executing instance for testing purposes. Asynchronous systems can 

often be in one of a large number of states. Having these scenarios to generate events into the 

executing instance can greatly aid in verifying the correctness of such systems and eliminate 

any unforeseen deadlock or starvation situations which are prone to arise in asynchronous 

systems. Finally, translations simply map the DSL-program into a target language such as C or 

Java. 

 

The chapter also suggests an idea in which a VM Framework will be of particular use, that is, to 

fit within the context of an IDE featuring two views of a developer’s interests – that of the 

design issues of a DSL, and an end-user view that makes use of the DSL. 

 

The dissertation does not take the notion of embedding the VM framework within an IDE any 

further. Rather, it focuses on describing the design and implementation of a VM Framework for 

DSLs. This framework has been developed in C#. It facilitates the construction of a VM and a 

compiler from the given syntax specification, which can then be packaged and exported to 

provide the runtime behaviour of a program written in the DSL.  

 

It should be noted that the notion of developing a VM Framework evolved out of a number of 

preliminary experiments aimed at providing an environment to support the use of DSLs. It will 

be of interest to discuss the most important of these experiments and to indicate how and 

why, in each case, an alternative suggested itself. The next chapter discusses the first of these 

experiments. 
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3 Domain-Specific Languages and Interpretation 

 

 

 

 

 

 

 

This chapter begins the historical account of an investigation into various ways of supporting 

DSL development. The first DSL development approach to consider is that of using an 

interpreter. Two questions can be asked in regard to this interpreter-based technique. First, 

how much effort is involved in building an interpreter for a particular DSL, in the event that the 

DSL has some formal specification in terms of syntax and the required functionality to be 

exposed to the expert? Second, is the development process for designing an interpreter 

streamlined enough to scale up the DSL in the event of an ever-growing domain? Later, similar 

questions will be raised in having a VM as the mechanism responsible for providing observable 

semantics from a DSL-program being executed. 

 

It will be shown that difficulties arise when scalability starts to become an issue. It is likely to 

be the case that at some future stage, an end-user needs further amendments to a DSL that 

has already been provided. Scalability is a very real part of software design, and it should be 

incorporated into the design process. On the negative side, scalability often comes at a 

performance cost, but in a prototyping environment, developers and designers alike are willing 

to make that sacrifice. Because scalability was perceived from the outset as an important 

matter, it was decided to rely on the Shlaer-Mellor software development methodology, which 

is well suited to support the development of scalable systems. 

 

Sections 3.1 and 3.2 make the distinction between translation and interpretation, and sections 

3.3 and 3.4 provide more information of the Shlaer-Mellor methodology, and relate it to the 

DSL problem domain. Sections 3.5 and 3.6 provide an overview of the interpreter approach, 

and rely on a ray-tracer DSL for rendering geometric shapes as an illustrative DSL example. 

Section 3.7 demonstrates the scaling up of the DSL in terms of syntax and semantics. Finally 

Section 3.8 briefly discusses modularity of the DSL and Section 3.9 provides the summary. 
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3.1 DSL Translation 

 

Most industrial strength DSLs currently available, use (source) code generation techniques 

[Cza99, vDeu01b, Kic96]. Certain areas of concern can be isolated, for example, concurrency, 

and appropriate DSLs can be designed for expressing concurrency-related issues with primitive 

concurrency constructs. A process could, for example, be one such construct expressed in 

terms of its constituent states as well as constructs that enquire on the correctness of such 

declared processes [Mag99]. After expressing a set of concurrent processes along with a set of 

formal verification tests in a DSL-program, the user can execute the DSL-program with an 

interpreter to determine the correctness of the concurrent system. The output of executing this 

type of DSL-program on an interpreter will simply be a set of possible state transitions that 

lead to incorrect behaviour or deadlock situations, if at all. This feedback on the correctness of 

the prototyped concurrent system might prompt for the design of the system to be revisited. 

Once the logic of the system has been determined to be suitably correct, then conventional 

programming language source code can be generated using a separate tool to perform the 

translation of the DSL-program, or this may be a feature of the interpreter itself. The 

generated source code can either be in the form of a skeleton framework where further 

functional code can be added or as a separate component (namespace, package or class, 

depending on the target language) that is generated and compiled in alongside existing 

functional code. Essentially the tool translates the DSL-program into a language, such as C, 

which can further be compiled and ready to run on a native processor, such as an embedded 

system. In this way it is easier to verify the concurrency of the system before it gets further 

engineered with functional code and debugged on the target system as a C program. 

 

3.2 DSL Interpretation 

 

In contrast to DSL translation, DSLs can also be interpreted. In this case, the DSL is a directly 

executable programming language, and in this context the DSL forms a scientific tool for a 

domain expert. Often with interpretation, the semantic analysis forms part of the same code 

that is already responsible for parsing the actual DSL source. When a certain construct is being 

parsed and ready to be reduced, there is enough information gathered by the parser at that 

point to make a function call, and that is the very function that interprets the currently parsed 

construct. 
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3.3 Shlaer-Mellor Domains 

 

When discussing software construction at the language or compiler level, there is an obvious 

assumption that there is some core-underlying principle, which does not change throughout 

the development life cycle. This is the rationale of the language. Modules that do not change 

are readily reusable, and for the most part, it is often the class that forms a piece of reusable 

code. To drive the idea of a reusable rationale, that is configurable at the language level, the 

Shlaer-Mellor software construction method has been adopted as it serves as a good base onto 

which to build DSLs. Like most object oriented analysis methods, Shlaer-Mellor encourages the 

formation of information models to depict static relationships between classes, as well as to 

depict any dynamic behaviour associated with relevant classes. A fundamental difference 

between Shlaer-Mellor and other methods is the separation of subject matters into separate 

domains as was discussed in Section 1.2.1. 

 

Most systems are the result of a collaboration to address overlapping concerns. The concerns 

could relate to, for example, graphical user interfaces (GUIs), databases, concurrency, 

mathematical models and so on. Building a domain for each area of concern allows developers 

to specialize, in parallel, on each different subject matter. This is called horizontal partitioning. 

This opposes vertical partitioning where a developer needs to understand most of the 

concerns, as the design is decomposed recursively. 

 

3.4 Configuring Shlaer-Mellor Domains with Bridges 

 

Domains exist as separate reusable frameworks available to project teams that have similar 

requirements. Thus it is the domain itself that is the main reusable component, and not the 

classes within the domains. Although classes that have been designed with reusability in mind, 

and can quite freely be used in more than one domain, classes are usually very specific to its 

particular domain, and thus limited to one domain. Often it is not possible to build a domain 

that’s absolutely cast in stone and reuse it amongst other systems and so some level of 

configurability is required for each domain. 

 

In Shlaer-Mellor, configuring domains is done via bridges. Bridges form the links between 

domains. They connect the domains in a logical network resulting in the final system. They 

contain any glue code necessary for the communication between domains to be possible. 

Bridges do not normally consist of object-oriented code, rather it is mainly procedural function 

calls. Domains can be reused in different systems with different contexts and the intention is to 

alter the bridge to allow the domain to fit within the context of a different system. 

 

 33 



3.5 View of the Interpretation Approach 

The configuration language of a bridge is the same language used to build the domains 

themselves. Pursuing the Shlaer-Mellor idea further, this dissertation involves using C# as the 

development language for the domains, and then exposing any configurable functionality, as 

was done with Shlaer-Mellor bridges, as a DSL. This invariably makes configuring a domain 

much easier if a suitable DSL does exist. It may still be necessary though, to apply an 

intermediate step to renovate the domain to improve efficiency and reuse of the existing code 

[vDeu98b]. Another intermediate step may require the rewriting of a large number of 

procedural legacy methods or functions, into suitable classes for an object-oriented language 

[vDeu99]. This idea of configuring a domain has proved to form a useful basis for the design 

and construction of DSLs for domain experts. 

 

3.5 View of the Interpretation Approach 

 

In the view of the interpretation approach, no compilation or translation to an intermediate 

language is performed and therefore no executable file is generated. A simple illustration of 

such a view is shown Figure 3. In most interpreted languages it is possible to encounter a 

syntax error midway through program execution. 

 

In the illustrating software for this chapter, a syntax error will be caught before any 

interpretation takes place because the parser generator used, PG (see Section 1.2.3), 

generates code that always builds an Abstract Syntax Tree (AST) from all of the code, before 

the AST is traversed and interpreted. An AST is a tree data structure representing a program 

that has been parsed. This representation is irrespective of such parts of the grammar like 

semicolons and braces (the concrete syntax), and is simply an abstract representation linking 

all the constituent constructs that make up the program. Since nodes in an AST represent 

constructs they may contain additional information pertinent to that construct. For example, a 

node may represent a while-loop construct and contain information as to the condition upon 

which to exit the while-loop. This information could indeed be a node representing another 

construct, such as a boolean expression. 
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3.6 The Ray-Tracer DSL 

 

scene 
{ 
   sphere 0.5 
   { 
      translate 3 3 0
      specular 0 0 1 
   } 
} 

Statically 
Interpret DSL 

Source DSL 

 

Figure 3. Conceptual view of the Interpretation Approach. 

 

Apart from the actual underlying ray-tracer domain that will be used to illustrate the 

interpretation approach below, there are only three user-defined components, namely the 

program’s main entry point, a grammar definition for the parser’s input and a keyword 

definition for the lexer’s input. The three components are listed in the following table. They are 

all found on the accompanying CD. 

 

Source File Description 

rtc.lexer The keyword definition for the ray-tracer lexer’s input, used by LG 

rtc.parser The grammar definition for the ray-tracer parser’s input, used by PG 

rt.cs File containing the program entry point for the interpreter. Home to 

functions that translate nodes of the AST after the DSL-program has been 

parsed. 

Table 2. Components for the Ray-Tracer Interpreter. 

 

3.6 The Ray-Tracer DSL 

 

One of the DSL examples used throughout this dissertation to illustrate some of the concepts is 

a simple graphical scene description language, called Ray-Tracer, otherwise referred to as the 

RT DSL. The language has been devised, and the ray-tracing software upon which it relies has 

been written, specifically for the purpose of this present study. The underlying mechanism 

uses a recursive ray-tracer to render scenes of geometric objects with various forms of 

lighting. Later, when scalability and modularity are improved in the DSL design, other example 

languages, with their corresponding namespaces will be shown. 
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3.6 The Ray-Tracer DSL 

The RT language serves as a good example since it is fairly illustrative in more than one sense. 

Also, ray tracing in general is a fairly well understood technique, and its domain is well defined 

and almost obligates a DSL to be wrapped around it. The primitive objects used in ray-tracers 

are usually defined by mathematical equations, like spheres, planes, and cones, so ray 

interceptions can be calculated on the objects. By adjusting some of the coefficients of the 

equations, the size and shape of the primitive objects can be altered. Already, it is easy to 

start realizing some of the concepts that form part of the ray-tracer namespace: rays, vectors, 

geometric objects and scenes etc. For a more detailed and mathematical account of ray-

tracers and ray casting equations see [Wat00]. 

 

3.6.1 The RT Namespace 

 

At this point it is appropriate to start fleshing out a real instance of a domain, or rather from a 

programmatic viewpoint, a namespace. As mentioned above some of the concepts that 

developers encounter in a ray-tracer are realized as classes within the RT namespace and 

shown in Figure 4. 

 

 

Bitmap 

Scene 
 
 
render() 
ShootRay() 

RObject
 
intersect:bool 

Ray 
 
x1,y1,z1:double 
x2,y2,z2:double 
 
reflect() 
refract() 

Quadric 
 
a11,a12,a13:double 
a22,a23,a33:double 
b1,b2,b3:double 
c:double 
tx,ty,tz:double 

vector3 
 
x,y,z:double 
 
normalize() 
cross() 
dot() 

renders

COP 

VUP

ambient

recursive 
shoot ray 

renders 
onto 
canvas 

RT 

1

1 1

1 1..*

1 

2 + a22y2 + a33z2q(x,y,z) = a11x  + 
                2a23yz + 2a13xz +2a12xy +
                b1x + b2y + b3z + c = 0 

 

Figure 4. Information Model of the RT namespace. 
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3.6 The Ray-Tracer DSL 

The following list of source files is given along with a brief description of each file and its 

purpose. Later extensions to the language can be compared with this list to show fewer files 

being modified and correspondingly, less coding needed. 

 

Source File Description 

vector3.cs A simple 3-space vector including typical vector operators like 

cross products, dot products and some primitive reflection 

operators. Also includes functions to normalize and calculate the 

magnitude. 

Ray.cs A higher level to the vector class describing a single ray in space. 

Includes functionality to generate reflected rays, refracted rays 

and pass-through rays. Also include functionality to mitigate 

rounding errors. 

RGBStruct.cs Structure representing the red, green and blue components of a 

single pixel colour. 

RObject.cs An abstract class forming the base class of ray-tracer primitive 

object. Thus there can be a generic list of RObjects and the 

intersection test is dynamically bound depending on the type of 

object intersected by a ray. 

Scene.cs Simple scene class encapsulating all the described objects. 

Includes a list of RObject instances that form the scene to be 

rendered. Once all the objects are in place, then a scene can be 

rendered to a bitmap image file. 

Quadric.cs Class encapsulating the mathematics for the intersection of a ray 

on a generic quadric object (sphere, cone, plane) and its 

coefficients, and is defined by the following equation: 

q(x,y,z) = a11x2 + a22y2 + a33z2 + 

2a23yz + 2a13xz +2a12xy + 

b1x + b2y + b3z + c = 0 

Table 3. Source files for the RT namespace. 

 

A primitive declaration in the RT DSL implies that a primitive geometric object is being 

declared (a quadric, such as a sphere, a cone or a plane). As shown in Figure 8, element2 is 

the name of the node on the AST representing a primitive declaration, and as such will be 

representing internally by a class called element2 that lives in the parser’s namespace since it 

is auto-generated code from PG. Note that in the figure, element2 refers to the second 

element node. The name of the node, element2 in this case, is not shown alongside the 

second occurrence of element to due space constraints, however the complete grammars are 

all found on the CD. Figures 5 and 6 shows example code that performs the interpretation of 
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an element2 node on the AST. The first block shows the code responsible for determining the 

types associated with each node, while the second block shows the code performing actual 

interpretation of an identified node. Translating this primitive declaration implies first 

translating the primitive itself by calling trans_prim(). This function determines the type 

associated with the prim node, as it could be a prim1 node representing a sphere or a prim2 

node representing a plane, and translates the primitive accordingly by creating a quadric 

object, and adjusts the necessary coefficients for the quadric. Then the primitive’s list of 

properties is translated in a similar fashion, by first calling trans_prim_prop_list() which 

translates each property in the list, determining the type associated with each property. In 

Figure 6 only translation of the specular property of a primitive object is shown. Finally the 

primitive object is added to the scene’s objects list. 

 

 public static void trans_element2 (RtcParser.element2 node) 
{ 
  trans_prim (node.p); 
  trans_prim_prop_list (node.ppl); 
  scene.addObject (robject); 
}  
 
public static void trans_prim (RtcParser.prim node) 
{ 
  if (node is RtcParser.prim1) 
  { 
    trans_prim1 ((RtcParser.prim1) node); 
  } 
  else if (node is RtcParser.prim2) 
  { 
    trans_prim2 ((RtcParser.prim2) node); 
  } 
}  
  
public static void trans_prim_prop_list (RtcParser.prim_prop_list node) 
{ 
  if (node is RtcParser.prim_prop_list1) 
  { 
    trans_prim_prop_list1 ((RtcParser.prim_prop_list1) node); 
  } 
} 
  
public static void trans_prim_prop_list1 (RtcParser.prim_prop_list1 node) 
{ 
  if (node.ppl != null) trans_prim_prop_list (node.ppl); 
  if (node.pp != null) trans_prim_prop (node.pp); 
} 
  
public static void trans_prim_prop (RtcParser.prim_prop node) 
{ 
  if (node is RtcParser.prim_prop1) 
  { 
    trans_prim_prop1 ((RtcParser.prim_prop1) node); 
  } 
  else if (node is RtcParser.prim_prop2) 
  { 
    trans_prim_prop2 ((RtcParser.prim_prop2) node); 
  } 
 
  ...   
  else if (node is RtcParser.prim_prop6) 
  { 
    trans_prim_prop6 ((RtcParser.prim_prop6) node); 
  } 
} 

 

Figure 5. Determining the type associated with an AST node. 
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 public static void trans_prim1 (RtcParser.prim1 node) 
{ 
  robject = new Quadric (); 
  robject.alterCoeff_a11 (1.0 / (node.d1 * node.d1)); 
  robject.alterCoeff_a22 (1.0 / (node.d1 * node.d1)); 
  robject.alterCoeff_a33 (1.0 / (node.d1 * node.d1)); 
  robject.alterCoeff_c (-1.0); 
} 
 
public static void trans_prim2 (RtcParser.prim2 node) 
{ 
  robject = new Quadric (); 
  robject.alterCoeff_b1 (node.d1); 
  robject.alterCoeff_b2 (node.d2); 
  robject.alterCoeff_b3 (node.d3); 
  robject.alterCoeff_c (node.d4); 
} 
  
public static void trans_prim_prop2 (RtcParser.prim_prop2 node) 
{ 
  robject.alterSpecular (node.d1, node.d2, node.d3); 
} 

 

Figure 6. Actual interpretations of the AST nodes. 

 

3.6.2 The RT Language 

 

The RT scene description DSL is a simple declarative language. Once a primitive object is 

declared, for example, a sphere, it is automatically allocated in memory. Once all primitives 

have been declared, the ray-tracer will render the scene as a bitmap. The object used for the 

bitmap is the .NET class System.Drawing.Bitmap, which, once instantiated can be either 

rendered onto a canvas or saved to disk. 

 

Primitives are defined by specifying their geometry and chromatic characteristics. All primitives 

reside in a scene declaration. A scene is defined to have a window width and height, and a set 

of other characteristics, such as the camera position, light position and so on. The lexer’s input 

consists of regular expression definitions that are given in a format supported by LG, and the 

parser’s input are grammar definitions in a variation of Backus-Naur Form (BNF) that is 

supported by PG. 
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 %lexer 
%token                   DOUBLE {public double val;} 
"{"                      %LBRACE 
"}"                      %RBRACE 
"scene"                  %SCENE 
"window"                 %WINDOW 
"light"                  %LIGHT 
"cop"                    %COP 
"lookat"                 %LOOKAT 
"viewup"                 %VIEWUP 
"geometry"               %GEOM 
"specular"               %SPECULAR 
"diffuse"                %DIFFUSE 
"reflective"             %REFLECTIVE 
"refractive"             %REFRACTIVE 
"sphere"                 %SPHERE 
"plane"                  %PLANE 
"translate"              %TRANSLATE 
[-+]?[0-9]+(\.[0-9]+)?   %DOUBLE {val = Double.Parse (yytext);} 
[ \n\r\f\t]              ; 
"(*"                     {yybegin ("COMMENT");} 
<COMMENT>"*)"            {yybegin ("YYINITIAL");} 
<COMMENT>.               ; 
<COMMENT>\n              ; 

 

Figure 7. Lexer input for RT. 

 
Integer and double tokens have been combined into a single DOUBLE token that matches any 

signed or unsigned integer or double. Internally it is represented as a double C# primitive 

type. Also, the regular expressions recognized by the lexer provide for Pascal-like comments in 

the DSL. 

 

 scene_desc : SCENE LBRACE element_list RBRACE 
  
element_list : 
element_list : element_list element 
 
element : scene_prop 
element : prim LBRACE prim_prop_list RBRACE 
 
scene_prop : WINDOW DOUBLE DOUBLE 
scene_prop : LIGHT DOUBLE DOUBLE DOUBLE 
scene_prop : COP DOUBLE DOUBLE DOUBLE 
scene_prop : LOOKAT DOUBLE DOUBLE DOUBLE 
scene_prop : VIEWUP DOUBLE DOUBLE DOUBLE 
scene_prop : AMBIENT DOUBLE DOUBLE DOUBLE 
 
prim_prop_list : 
prim_prop_list : prim_prop_list prim_prop 
 
prim_prop : GEOM DOUBLE DOUBLE DOUBLE DOUBLE 
prim_prop : SPECULAR DOUBLE DOUBLE DOUBLE 
prim_prop : DIFFUSE DOUBLE DOUBLE DOUBLE 
prim_prop : REFLECTIVE DOUBLE DOUBLE DOUBLE 
prim_prop : REFRACTIVE DOUBLE DOUBLE DOUBLE 
prim_prop : TRANSLATE DOUBLE DOUBLE DOUBLE 
 
prim : SPHERE DOUBLE 

 

Figure 8. Parser input for RT. 

 

Figure 9 is an example of how the RT DSL can be used to describe a scene. This will be the 

running example used throughout the dissertation in reference to using RT as a DSL. The 

example will also be used for the performance measurements. 
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 (* Render a red, a blue and a green sphere, and an orange plane. *) 
scene 
{  
 (* Define the settings for the scene. *) 
 window 300.0 200.0  
 light -3.5 0.5 2.0  
 cop 0.0 2.5 1.0  
 lookat 0.0 0.0 0.0  
 viewup 0.0 0.0 1.0   
  
 sphere 0.5 
 { 
  translate 1.0 0.0 0.0 
  specular 0.7 0.0 0.0 
  diffuse 0.7 0.0 0.0 
  reflective 0.1 0.1 0.1   
 } 
  
 sphere 0.5 
 { 
  translate 0.0 -1.0 0.2 
  specular 0.0 0.7 0.0 
  diffuse 0.0 0.7 0.0 
  reflective 0.2 0.3 0.2   
 } 
  
 sphere 0.5 
 { 
  translate -1.0 -0.5 0.0 
  specular 0.0 0.0 0.7 
  diffuse 0.0 0.0 0.7 
  reflective 0.1 0.1 0.1   
 } 
  
 plane -0.1 0.0 1.0 1.0 
 { 
  specular 0.0 0.0 0.0 
  diffuse 1.0 0.5 0.0 
  reflective 0.25 0.25 0.25   
 } 
} 

 

Figure 9. Example scene described in RT. 

 

The language is fairly intuitive, and nowhere does the end-user of the language require any 

knowledge of the underlying mechanics of ray-tracers, neither at the implementation level nor 

at the mathematical level. The end-user’s only concern is modeling a scene, and this end-user 

requirement is what the RT DSL has exposed. 
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Figure 10. Result of rendering the scene defined in RT. 

 

The end result of interpreting the example RT program is a bitmap image on disk of the 

described model, shown in Figure 10. 

 

3.7 Scaling up the RT DSL for the Interpreter Approach 

 

This section explores the implications of scaling up the RT DSL. Suppose that the user of the 

DSL would like to be able to alter the ambient light within the scene being rendered. The user 

would like the ability to adjust the red, green and blue colour components of the scene. A new 

ambient construct needs to be added to the language syntax. The Scene class within the RT 

domain already provides this functionality, so no additional code is needed in the namespace 

to facilitate the semantics of ambient light. The difficulty will come in the interpretation of the 

AST node representing the ambient component once the construct has been parsed. 

 

3.7.1 Adding a Construct to an Interpreter 

 

Adding an ambient construct to an interpreter implies modifying the way the interpreter 

translates nodes on the AST. It is desirable to devise a means to retain such modifications in a 

small, isolated region throughout the DSL pipeline, thus minimizing chances of introducing new 

bugs into the software that ultimately processes the DSL-program. First off, the grammar 

needs altering to add the ambient construct to the language itself, and hence the lexer also 

needs a minor modification to accept a new keyword ambient. The code that performs the 
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translations of the AST nodes also need to be modified and here one needs to add the 

necessary code to provide the correct interpretation of such a construct. 

 

3.7.2 Components Requiring Alteration 

 

It is trivial to amend the new keyword ambient to the existing keyword set. It is simply a 

matter of appending its regular expression to the RT DSL’s lexer definition as highlighted in the 

Figure 11. 

 

 %lexer 
%namespace RtcLexer 
 
%token                   DOUBLE {public double val;} 
"{"                      %LBRACE 
"}"                      %RBRACE 
"scene"                  %SCENE 
... 
"viewup"                 %VIEWUP 
"ambient"                %AMBIENT 
"geometry"               %GEOM 
... 

 

Figure 11. Appending the lexer definition for keyword ambient. 

 

The grammar should now support the addition of the ambient construct itself, highlighted in 

bold below, as well as the AST representation structure of the ambient node after it has been 

parsed, also highlighted in bold below. The new node is called scene_prop6(). 

 

 ... 
%node scene_prop6 : scene_prop 
{ 
 public double d1, d2, d3; 
 public scene_prop6 (double d1,double d2,double d3) 
              {this.d1=d1;this.d2=d2;this.d3=d3;} 
} 
... 
 
element : scene_prop 
element : prim:p LBRACE prim_prop_list:ppl RBRACE 
 
scene_prop : WINDOW DOUBLE:d1 DOUBLE:d2 
scene_prop : LIGHT DOUBLE:d1 DOUBLE:d2 DOUBLE:d3 
scene_prop : COP DOUBLE:d1 DOUBLE:d2 DOUBLE:d3 
scene_prop : LOOKAT DOUBLE:d1 DOUBLE:d2 DOUBLE:d3 
scene_prop : VIEWUP DOUBLE:d1 DOUBLE:d2 DOUBLE:d3 
scene_prop : AMBIENT DOUBLE:d1 DOUBLE:d2 DOUBLE:d3 
             %scene_prop6 (d1.val,d2.val,d3.val); 
 
prim_prop_list : 
prim_prop_list : prim_prop_list:ppl prim_prop:pp 
... 
  

 

Figure 12. Altering the grammar definition for the new ambient construct. 
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The modification to the code that traverses the AST and performs the interpretation does have 

a certain degree of risk, as these modifications need to be carefully integrated so as not to 

alter the semantics of any existing constructs. In the listing shown below, the translation of a 

scene property, trans_scene_prop() needs adjustment to call the translation of  the ambient 

property by invoking trans_scene_prop6(), and in so doing providing the necessary 

interpretation of adjusting the ambience of the scene. 

 

 public class rtc 
{ 
   public static void Main (string [] argv) 
   { 
      ...  
   } 
 
   ... 
 
   public static void trans_scene_prop (RtcParser.scene_prop node) 
   { 
      if (node is RtcParser.scene_prop1) 
      { 
         trans_scene_prop1 ((RtcParser.scene_prop1) node); 
      } 
      ... 
      else if (node is RtcParser.scene_prop6) 
      { 
         trans_scene_prop6 ((RtcParser.scene_prop6) node); 
      } 
   } 
 
   ... 
   public static void trans_scene_prop6 (RtcParser.scene_prop6 node) 
   { 
      scene.alterAmbient (node.d1, node.d2, node.d3);  // ambient 
      scene.setupAxes (); 
   } 
 
   ... 
   public static Scene scene; 
   public static RObject robject; 
   public static Bitmap bitmap; 
   public static string filename; 
} 

 

Figure 13. Altering the functions for the new ambient construct. 

 

3.8 Modularity 

 

In the interpretation approach to DSLs, issues of parsing and issues of semantics form part of 

the same piece of software. Thus it is not easy to reuse, say, just the semantic component of 

the language, for example, if no syntax is required for a particular solution. Ideally, one would 

like to approach the Shlaer-Mellor route, in that there be a clear separation between the issues 

of the semantics for the namespaces rationale or the functionality that the namespace 

provides, and the issues of allowing an end-user the ability of configuring the components (or 

classes) of the namespace to provide a resultant system that is better suited to their 

requirement. It is not necessarily the case that the configurable portion of the system be in the 

 44 



3.9 Summary 

form of a DSL, though that is the main focus of this dissertation, and as mentioned above, in 

the case of a developer using a Shlaer-Mellor architecture, the configuration language is 

usually the same language used to build the components or classes of the namespace itself. 

 

3.9 Summary 

 

In this chapter an interpreter for a ray-tracer DSL is examined. Interpreters are easy to build 

and if the required DSL is small enough, and if the end-user foresees minimal modifications to 

the DSL’s construct or underlying namespace, then the DSL interpreter is a simple enough 

solution. However as far as the language scalability is concerned, an interpreter poses 

problems. This was illustrated in this chapter by showing the required modifications to add an 

ambient construct to the RT DSL. 

 

Since the semantics are interpreted directly from the nodes of the AST, it was not an easy task 

to alter the code that traverses the AST. Though the generation of a parser is automated, the 

code that forms the translation rules of each node is not, and regeneration of a parser 

potentially requires rearranging segments of code. 

 

In this chapter the RT DSL was introduced. It shall serve as the example language throughout 

the dissertation, and is further used to illustrate how it forms an extension to a much simpler 

expression language later in Chapter 5. The RT namespace has a well-defined set of classes, 

including a Quadric class, with the responsibility of providing the mathematics to render any 

quadric (a sphere, a plane or a cone) onto a canvas. 
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4 Domain-Specific Virtual Machines 

 

 

 

 

 

 

 

This chapter heads into the realm of VMs as the core mechanism responsible for providing the 

runtime execution of a DSL-program. It should be noted here that it is possible to build a 

complete taxonomy of VMs, each with varying objectives and implementations and differing 

contextual uses. The idea of a VM is not new, and conceptually rather simple. Interests in VMs 

are mainly invested in their ability to offer a high degree of flexibility in larger systems. This 

flexibility characteristic will be important later when portability of DSLs is discussed. 

 

Virtual Machines are used often in computing to solve problems, but they are usually 

transparent to an end-user because they essentially consist of software running inside other 

programs or other operating systems. The concept of VMs has proven to be a powerful tool in 

shaping computations, and due to their popularity they provide another option from which to 

investigate the prototyping of DSLs. 

 

Section 4.1 discusses some of the reasons for using VMs instead of code generation techniques 

to provide the semantics. Section 4.2 and 4.3 describe VMs from two different perspectives, 

and Section 4.4 describes the VM approach when applied to a DSL. Section 4.5 provides the 

details on scaling up a VM in the face of a new instruction and it’s corresponding modularity is 

discussed in Section 4.6. This chapter concludes with a summary. 

 

4.1 VM vs. Code Generator 

 

There are two paths that a language designer can follow in building the software that 

processes a source program written in the designed source language. In the first case, a 

translator can be designed that will translate the source program directly into a program in 
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some target language. This is the code generation approach, and it essentially comes down to 

representing source programs in a different language. In the second case, a compiler can be 

designed that translates the source program into an instruction sequence, where the 

instructions are part of some instruction set. In some instances the instructions can only be 

natively executed on the platform. However in other instances the instructions are platform-

independent. In the platform-independent case, a VM is used to interpret each instruction in 

the instruction sequence that the compiler generated on the platform on which the VM is 

running. The compiler in this case is platform independent, but a platform dependent VM is 

needed to execute the instructions that the compiler generates. The advantage of this is that 

multiple compilers can generate instructions for the same VM. 

 

Why would a language designer opt to use a VM at all? Although code generation is certainly 

useful [vDeu01b, Cza99a], a more modular and more flexible means to create the software 

responsible for executing a DSL-program is sought. Allowing a user to build a language that 

requires additional work to target another language (or perhaps even to target a specific 

architecture built in that language) further complicates the software engineering process, as 

the user needs to think about the DSL, and the target language, and the complexities of 

matching the two together. A VM in this regard is thus more suitable because the user needs 

to only be concerned with the DSL, its syntax and semantics, and the raw execution of its 

constructs in the form of an instruction sequence that execute. 

 

When scalability of DSLs is a concern, designing a suitable set of instructions may prove to be 

a more modular approach than designing a translator, since designing a finite set of 

instructions and any data structures that these instructions may modify, could lend itself to a 

more modular design. This current study aims to pursue this approach in building the software 

that will be responsible for providing the runtime semantics of DSLs. Language designers could 

potentially ask how easy it is for them to build or scale up a VM for a particular DSL. Will it be 

a simple case of adding constructs to the language that translate to instructions that already 

exist as part of the VM’s instruction set, or will new instructions need to be added? How easy 

will is the task of adding new instructions to an existing VM? 

 

4.2 Virtual Machine Instruction Set Architecture 

 

The VM executes a sequence of instructions (i.e. a compiled program) and each instruction, as 

it is executed, performs some atomic operation. The word atomic simply means that the 

instruction represents an elementary operation that cannot be broken down any further in 

terms of the instruction set. As instructions are executed, the VM’s internal data structures are 

continuously modified according to these operations, for example, one instruction may push a 

real value onto a stack, while another may pop off the top two values and push their sum back 
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on. The instructions thus access the VM’s internal data structures in different ways. Naturally, 

a correct sequence of these instructions will leave the VM’s data structures in predictable, 

consistent states and it is possible to verify the correctness of a sequence of instructions if the 

behaviour of each instruction is understood. This notion of executing the sequence of 

instructions is called a process, and there is a notion that the VM performing the execution of 

the instructions can understand or identify these instructions. In other words, the VM supports 

the instruction specification or the Instruction Set Architecture (ISA). Attempting to execute an 

instruction that is not part of the ISA will result in an error condition or graceful program 

termination if the VM is able to trap unrecognizable instructions. Figure 14 below is a simple 

illustration of this concept. It is also shown that part of the ISA contains a more privileged set 

of instructions that are used by an operating system while user instructions are used by typical 

application software. 

 

 

Machine 

Application 
Software 

Operating 
System 

System ISA User ISA 

 

Figure 14. Instruction Set Architectures – System ISA and User ISA. 

 

4.3 System Virtual Machines versus Process Virtual Machines 

 

As mentioned before, though there exists a detailed hierarchy of VMs, it suffices at this point 

to classify two broad types of VMs at the top of this hierarchy: process VMs, and system VMs, 

[Smi05], each offering two different levels of support to the software running on top of them. 

As will later be seen, a software program created by a DSL will be regarded as a process and 

will slot comfortably into a process VM type of architecture. Here, both process- and system-

VMs will briefly be discussed to understand the differences. 

 

System VMs, simply put, exist to support Operating Systems (OSs), and hence are required to 

provide a full system environment for a particular OS to run on, that is, an environment with 

hardware resources, networking IO, and related subcomponents. Virtualizing software, by 

which is meant the software that constitutes the system VM itself, sits between an existing 

machine (machine, in an abstract sense, since the machine itself can be virtualized), and an 

OS, as depicted in Figure 15. In a hosted system VM, the virtualizing software is installed as a 

typical application running on an OS. VMware is one well-known example, and it provides an 

ISA that is identical to the one of the system onto which it was installed. In contrast, in a 
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codesigned system VM the ISA differs from that of the underlying system, in essence providing 

such flexibility to run, for example, a Windows OS on a non IA-32 machine. 

 

 Application 
Software 

Operating 
System 

Hardware 

Virtualizing Software 

ISA 

 

Figure 15. A System VM. Virtualizing software between hardware and OS. 

 

Process VMs are of more interest to language designers because a process VM hides even 

system calls into the OS. It thus relieves the programmer from even thinking about the details 

of a specific OS. Instead, it allows the programmer to just be aware that one does indeed 

exist, and that it has features typical of an OS, such as GUIs and threads. 

 

Emulation is one use of process VMs. In this case, the virtualizing software allows a program 

that has been compiled for some ISA to run on another ISA – i.e. the virtualizing software 

emulates the second ISA. Internally, the process VM performs per-instruction translation of the 

original sequence of instructions so that the process results in the same intended behaviour. 

An example is the Digital FX!32 system. Windows programs are intended to run on PCs based 

on 32 bit Intel Architecture (x86 or IA32) microprocessors, such as a Pentium processor. Using 

the Digital FX!32 system these programs are able to run on PCs featuring Alpha 

microprocessors which are a non-Intel based platforms. Furthermore, it is not uncommon to 

have profiling software embedded in process VMs, collecting statistical information about a 

program’s runtime behaviour, and thereby allowing a programmer to identify sections of code 

that are called frequently and perhaps warrant an optimization effort. 

 

For a developer though, portability is still a major concern, and so it is useful to have a process 

VM that does not necessarily reflect a real platform as such, but rather reflects the features of 

a high-level language. In particular, having a VM that reflects features of a DSL would be 

useful, and even more so a process VM that takes on a more active approach and allows these 

features to be scalable and configurable by a language designer. These types of process VMs 

are known as high-level language VMs (HLL VMs), illustrated in Figure 16. The .NET CLR and 

the Java VM are both examples of such HLL VMs and, incidentally, both use a stack based ISA. 

Operands, of whatever type they may be, are implied by their position in the stack, thus 

resulting in executable binaries of a much smaller footprint. 
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Figure 16. A Process VM. Virtualizing software supports an individual process. 

 

For completeness sake, the summarized VM hierarchy of the afore-mentioned VM types is 

shown in Figure 17 below. The classification is taken from [Smi05]. Also, it will be the 

assumption that some form of hardware does indeed exist lower down the various layers of 

abstraction, so it is not important to stress that part of the system. The interest is at the level 

of the HLL VM’s ISA, and more to the point, that there will be some kind of useful ISA for the 

designer of the DSL VM. The terminology will change slightly as the view of the different 

approaches change, but will be clearly defined as the approaches are discussed. 

 

 Process VMs System VMs 

Same ISA Different ISA Same ISA 

Emulators HLL VMs Hosted VMs Codesigned  VMs 

Different ISA 

 

Figure 17. Broad classification of VMs. 

 

4.4 View of the Virtual Machine Approach 

 

In the proceeding sections the discussion centered around VMs that facilitate an ISA for a DSL. 

This type of HLL VM shall be named a DSL VM. Such a process VM runs as a program written in 

a high-level object oriented language, in this case C# on the .NET platform. The ISA provided 

by the DSL VM will undoubtedly be much smaller than that of the underlying HLL VM in which 

it was written, in terms of the sheer number of instructions, though this does not necessarily 

have to be the case, depending on the level of complexity or flexibility that the DSL provides 

(or will provide in future iterations). 
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 DSL VM : A concrete instance of a HLL VM, providing an ISA

capable of supporting the semantics of some DSL, i.e. the

semantics of a single instruction or combination of some sequence

of instructions, will facilitate the semantics of the DSL, and thus

will reflect the application domain for which the DSL was

designed. 
 

 

As defined in Chapter 1, a DSL-program is simply the source code of a program written in the 

language of the DSL. To take that definition a step further, it is necessary here to define the 

compiled state of that program, referred to as the DSL-compiled program, The DSL-compiled 

program will be executed by the DSL VM. 

 

 DSL-compiled program : The DSL-program, once it has been 

compiled into a suitable ordered sequence of instructions ready to

be executed on a DSL VM. 
 

 

The position of the DSL VM relative to the all-important HLL VM on which it itself executes, and 

of course the DSL-programs written by the domain expert, is clearly shown in Figure 18. 
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DSL 
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      specular 0 0 1 
   } 
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Figure 18. The DSL VM relative to the HLL VM on which it was written. 
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The same RT DSL previously introduced will be used to illustrate aspects of the design of the 

VM approach. In this approach, a set of instructions has been hard coded in the VM. A DSL-

compiler first translates the RT DSL-program (a scene description) into an ordered list of 

instructions that is understood by the RT VM, shown in Figure 19. It is relevant to note at this 

point that a DSL-compiler is required for each DSL. There will be a DSL-compiler that will 

translate a program written in RT into a sequence of instructions that will be executed by the 

RT VM. Similarly there will be a DSL-compiler that will translate each of the other example 

DSL-programs into a sequence of instructions targeted to the relevant DSL VM. The theme of 

the next section will make note of some pitfalls in using this typical VM approach, with 

particular attention to making further additions to the RT DSL. 
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Figure 19. Conceptual view of the VM Approach. 

 

Since the VM needs to interpret instruction sequence opcodes and operands, a separate parser 

and lexer is needed in the VM itself to read the DSL-compiled program. Figures 20 and 21 give 

the regular expression definition and grammar definition of the lexer and parser. 

 

 %lexer 
%token                   DOUBLE {public double val;} 
"PUSH"                   %PUSH 
"SPHERE"                 %SPHERE 
"PLANE"                  %PLANE 
"WIN"                    %WIN 
"LIGHT"                  %LIGHT 
"COP"                    %COP 
"LOOK"                   %LOOK 
"VUP"                    %VUP 
"AMB"                    %AMB 
"GEOM"                   %GEOM 
"SPEC"                   %SPEC 
"DIFF"                   %DIFF 
"REFL"                   %REFL 
"REFR"                   %REFR 
"AXES"                   %AXES 
"REN"                    %REN 
[-+]?[0-9]+(\.[0-9]+)?   %DOUBLE {val = Double.Parse (yytext);} 
[ \n\r\f\t]              ; 

 

Figure 20. Lexer definition for the RT VM. 
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At the outset, it can be seen that the grammar for the parser is very basic, as it simply 

matches any one of a set of predefined opcodes defined as keywords in the lexer definition. In 

the next chapter this grammar will be revisited, as this basic grammar will not be sufficient. It 

does not make provision for labels or for branching instructions, and only the Push instruction 

supports an operand. 

 

 asm_list : 
asm_list : asm_list asm 
 
asm : PUSH DOUBLE 
asm : SPHERE 
asm : PLANE 
asm : WIN 
asm : LIGHT 
asm : COP 
asm : LOOK 
asm : VUP 
asm : AMB 
asm : GEOM 
asm : SPEC 
asm : DIFF 
asm : REFL 
asm : REFR 
asm : AXES 
asm : REN 

 

Figure 21. Parser definition for the RT VM. 

 

4.5 Scaling up the RT DSL for the VM Approach 

 

As before, an attempt is made to scale up the RT DSL by adding an ambient construct. 

Because the process that parses the DSL-program (the DSL-compiler) is now separate from 

the process performing the logic to provide the semantics (the RT VM), the modifications are 

needed in both the VM and the compiler. The compiler’s lexer will need to incorporate a new 

keyword ambient as before, and the grammar for the compiler’s parser needs to be altered to 

produce a valid node on the AST. This amounts to the same difficulty as that involved in 

amending the interpreter described in Chapter 3. 

 

However, this additional AST node will be handled differently by the DSL-compiler. Instead of 

providing new functions to be called by an interpreter and changing the main program of the 

interpreter to make these function calls (as was illustrated in Section 3.7.2), the DSL-compiler 

now has to generate a sequence of instructions that alter the ambient lighting of the scene. 

The VM will thereafter execute these instructions to adjust the ambient lighting in the scene. 

 

A new instruction needs to be added to the instruction set, so a modification is needed to the 

VM. The lexer and parser for the VM needs to match on the new instruction, and the VM needs 

to have a function that provides the implementation for executing the new instruction. These 
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modifications will be shown in the next section. In Chapter 6, a more efficient means of 

appending a new instruction to the VM will be discussed and compared to the one mentioned 

shortly. 

 

4.5.1 Adding a Construct to a VM 

 

The changes to be made to the DSL-compiler that has just been mentioned are fairly trivial: 

one merely has to ensure that the lexer and grammar cater for the new ambient construct. 

Given the set of instructions, it is necessary also to modify the VM to include a new instruction, 

Ambient, with no operands. There is less risk in modifying the VM, than modifying the DSL-

compiler, as the VM only requires one additional function to interpret the new instruction, 

whereas the interpreter approach needs an additional function that will be called during the 

traversal of the AST. Adding these functions is a less trivial task in the case of the interpreter 

approach, as it involves changes to the logic of the interpreter code itself. 

 

4.5.2 Components Requiring Alteration 

 

The alterations to the RT-compiler are similar to the alterations made to the interpreter front-

end outlined in Section 3.7.2, insofar as the lexer is concerned. The RT-compiler’s parser 

though, needs to handle the ambient node on the AST differently. The translation of the 

ambient node on the AST is required to generate a sequence of instructions that will alter the 

ambient light within the scene that is to be rendered. The translation of this node is handled by 

a new the function scene_prop6(), shown in bold in Figure 22. The sequence of instructions 

that are generated for the ambient construct is shown in the body of this function. 
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 ... 
%node scene_prop6 : scene_prop 
{ 
 public double d1, d2, d3; 
 public scene_prop6 (double d1,double d2,double d3) 
              {this.d1=d1;this.d2=d2;this.d3=d3;} 
 public override void translate (StreamWriter asmFile) 
 { 
  asmFile.WriteLine ("Push\t{0}", d1); 
  asmFile.WriteLine ("Push\t{0}", d2); 
  asmFile.WriteLine ("Push\t{0}", d3); 
  asmFile.WriteLine ("Ambient"); 
  asmFile.WriteLine ("Axes\n"); 

} 
} 
 
... 
 
element : scene_prop 
element : prim:p LBRACE prim_prop_list:ppl RBRACE 
 
scene_prop : WINDOW DOUBLE:d1 DOUBLE:d2 
scene_prop : LIGHT DOUBLE:d1 DOUBLE:d2 DOUBLE:d3 
scene_prop : COP DOUBLE:d1 DOUBLE:d2 DOUBLE:d3 
scene_prop : LOOKAT DOUBLE:d1 DOUBLE:d2 DOUBLE:d3 
scene_prop : VIEWUP DOUBLE:d1 DOUBLE:d2 DOUBLE:d3 
scene_prop : AMBIENT DOUBLE:d1 DOUBLE:d2 DOUBLE:d3 
             %scene_prop6 (d1.val,d2.val,d3.val); 
 
prim_prop_list : 
prim_prop_list : prim_prop_list:ppl prim_prop:pp 
... 

 

Figure 22. Altering the grammar for the new ambient construct. 

 

One of the instructions to be emitted by the compiler is the Ambient instruction which is to be 

newly defined in the VM as a function call. The red, green and blue component operands to the 

Ambient opcode are pushed on the stack prior to its execution. The Push instruction already 

exists as part of the RT VM’s instruction set. Furthermore, the VM’s lexer and parser need to 

match on the new Ambient instruction. The modifications are highlighted in bold in Figures 23 

and 24 below. 

 

 %token                   DOUBLE {public double val;} 
... 
"Window"                 %WIN 
"Light"                  %LIGHT 
"COP"                    %COP 
"LookAt"                 %LOOK 
"VUP"                    %VUP 
"Ambient"                %AMB 
... 

 

Figure 23. Adding the Ambient instruction to the VM’s lexer definition. 

 

The parser definition simply matches on the keyword Ambient, and calls the appropriate 

translation rule. In this case it calls the function RT_AMB(), defined in the RTMachine class in 

the RTVM namespace. 
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 ... 
%node asm9_amb : asm 
{ 
 public override void interpret (RTVM.RTMachine rtm) 
 { 
  rtm.RT_AMB (); 
 } 
} 
 
... 
 
asm_list :                     %asm_list1 (null, null); 
asm_list : asm_list:al asm:a   %asm_list1 (al, a); 
 
asm : PUSH DOUBLE:d            %asm1_push (d.val); 
asm : SPHERE                   %asm2_sphere (); 
asm : PLANE                    %asm3_plane (); 
asm : WIN                      %asm4_win (); 
asm : LIGHT                    %asm5_light (); 
asm : COP                      %asm6_cop (); 
asm : LOOK                     %asm7_look (); 
asm : VUP                      %asm8_vup (); 
asm : AMB                      %asm9_amb (); 
asm : GEOM                     %asm10_geom (); 
... 

 

Figure 24. Parsing the new Ambient instruction. 

 

The definition for RT_AMB() is to simply pop the three red, green and blue component 

operands off the stack in reverse order, and apply them to the scene, as shown in Figure 25. 

 

 public class RTMachine 
{ 
 public RTMachine (int rd, int stackSize) 
 { 
  rtstack = new RTStack (stackSize); 
  scene = new Scene (); 
  render_depth = rd; 
 } 
  
 ... 
  
 // Alter the current ambient colour vector. 
 public void RT_AMB () 
 { 
  double amb = (double) rtstack.pop (); 
  double amg = (double) rtstack.pop (); 
  double amr = (double) rtstack.pop (); 
  scene.alterAmbient (amr, amg, amb); 
 } 
  
 ... 
 private asm_list ast; 
 public RTStack rtstack; 
 public Scene scene; 
 public int render_depth; 
} 

 

Figure 25. The semantics for the new Ambient instruction in function RT_AMB(). 
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4.6 Modularity 

 

The VM approach makes far better use of modularity. The VM is not a compiler but simply 

interprets instructions, so issues of syntax are handled by separate compiler software. The VM 

approach is closer to that of the Shlaer-Mellor method in that issues of semantics are exposed 

in the form of an instruction set. A sequence of instructions or a DSL-compiled program thus 

dictates a specific runtime execution of the domain, and these instructions are simply executed 

by the VM itself. 

 

However, a developer would still like to be able to use the VM as a reusable component of a 

much larger system, but the VM has shortfalls for being used in this context. For example, 

suppose the images generated by the RT DSL are to be rendered immediately onto a visible 

canvas, instead of writing the images out to a file. Though possible, it is cumbersome to 

integrate this type of modification into the instruction set. 

 

4.7 Summary 

 

In this chapter, VMs are examined as the core functional mechanics used to provide the 

operational semantics of a DSL-program, or more specifically, of the DSL-compiled program 

produced by the DSL-compiler. A VM hierarchy was discussed in this chapter, with descriptions 

of the two main classes of VMs, namely process VMs and system VMs. One of the classes, 

namely the class of HLL VMs, was identified as being particularly relevant in the context of this 

study. This class of VM includes what has been termed the DSL VM, which runs as a single 

process program on another underlying HLL VM. (It may be noted that multi-process DSL VMs 

are indeed a possibility but the complexity of concurrent processes are beyond the scope of 

this dissertation.) The underlying HLL VM may be a Java VM or in this case, the .NET CLR. 

 

The DSL-compiled program is in the form of a sequence of instructions and their operands. The 

VM loads the compiled program and begins execution from the first instruction. The 

implementation of the VM is built on top of the existing namespace (the domain) and the 

namespace is exposed via the instruction set. Thus, execution of these instructions implies 

some calls into the namespace. Logical interpretation of a DSL-program is done in two steps – 

first the DSL source needs to be compiled into a DSL-compiled program. For this a compiler is 

needed and a set of translation rules that map the DSL syntax into segments of instruction 

sequences. Then the instructions are then executed by the VM. A separate parser is needed to 

load the compiled program into memory before execution. 
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4.7 Summary 

Scaling up the DSL, as in the case of adding an ambient construct to the RT DSL, requires 

modification on both the compiler and the VM. The VM needs to be modified to support a new 

instruction to change ambient values; the compiler needs to be modified to parse the new 

ambient construct, and to generate the necessary sequence of instructions, including the 

generation of the Ambient instruction as part of the sequence. 
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5 Domain-Specific Virtual Machines: A More General 

Approach 

 

 

 

 

 

 

 

This chapter introduces the abstract VM architecture into the design of DSLs. It is abstract, in 

the sense that there are no instructions, and a VM instance cannot execute any given DSL-

compiled program until it has been configured. It will appear to a developer as a VM with an 

empty instruction set and no environment. This will give the developer complete freedom in 

designing an instruction set and an environment appropriate for a particular namespace. For 

further VM design architectures, see [Jac96, Rie01]. 

 

Once a computation or program execution has completed, an instance of a result data type can 

be retrieved if necessary. This retrieval of a result makes the VM Framework versatile from a 

modularity perspective, as the result type can be user-defined. The instantiated VM object will 

feature methods that allow configuration of the VM itself. It will also feature appropriate 

methods to parse and load a DSL-compiled program, to execute a loaded program and to 

retrieve the result of a program execution. These will all be discussed in detail. 

 

The VM Framework proposed in this section is described in detail in Section 5.1 through to 

Section 5.4. Section 5.1 explains the use of parsing DSL-compiled programs at a textual level, 

and not a binary level, i.e. having the DSL-compiled programs human readable. Section 5.2 

provides a brief overview of the instruction classes, and configuring the VM instance with each 

instruction class, and an environment. Section 5.3 describes the internal control loop 

responsible for executing each instruction of a loaded DSL-compiled program and Section 5.4 

describes how a result of a computation can be retrieved after a loaded program has finished 

executing. Section 5.5 provides a view of the VM Framework as the core mechanics providing 

the semantics for the DSL, and Section 5.6 provides a more detailed design description. 
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5.1 Instruction Set and Environment Configuration 

Environments and instructions and their respective classes are discussed in Sections 5.7 and 

5.8 respectively, followed by a summary of the chapter. 

 

5.1 Compiled Program Parsing and Loading 

 

Section 4.4 gave a high-level description of the instructions and the grammar for parsing the 

different instructions. In this chapter, each instruction has been classified according to one of 

five categories and each category is so defined by the type of operand following the 

instruction. These categories will be fully fleshed out in Section 5.8. The VM program loader 

has a parser that will match on the appropriate instruction as it loads a DSL-compiled program 

and hence it will be able to identify to which category it belongs. Extending the Framework to 

support an instruction set will not require any modification to the program loader’s grammar, 

but only the creation of specific instructions from one of the five categories. Each category of 

instruction is represented in code by an abstract class that is subtyped into a concrete 

subclass, representing an actual user-defined instruction. This means after a user-defined 

instruction class has been created and registered with the VM instance using the configuration 

file, the VM’s loader will automatically be able to parse an occurrence of the specified 

instruction during program load time. 

 

5.2 Instruction Set and Environment Configuration 

 

To use the VM Framework, classes have to be created that extend the instruction classes and 

environment classes. This means that each user-defined instruction class must extend one of 

the five abstract instruction classes, and there must be at least one user-defined environment 

class extending the abstract environment class. Such a collection of classes defines a 

configuration to support a given DSL. It is possible to have multiple configurations by setting 

up various configuration files for different types of DSLs. In this way an instantiated VM can be 

used as part of a DSL prototyping environment. Each time a different language needs to be 

prototyped a new configuration file is loaded by calling the appropriate method on the 

instantiated VM object, and in turn, the VM will create a new pool of instruction classes (the 

user-defined classes, specified by the configuration file). Each user-defined instruction class 

from this pool will be instantiated once a specific occurrence of an instruction is loaded during 

the loading of a DSL-compiled program, i.e. an instruction object instance of one of these 

instruction classes encapsulates the instruction’s operand, if any. An array of instruction 

instances thus represents a loaded program. There is no pool of environment classes, simply a 

pool of instances of the user-defined environments and as such the environments are simply 

instantiated during the loading of the configuration file. 
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5.3 Program Execution 

 

Once the sequence of instructions defined in the DSL-compiled program have been parsed and 

loaded into memory as described in the previous section, they can be executed. The main loop 

that is responsible for the execution of the loaded program is shown in Figure 26. This shows 

how execution of an instruction is handled according to its class. Using simple reflection (i.e. 

using the C# boolean operator, is) it is possible to identify the class of the current instruction 

before it is executed. 

 

Before entering the loop, the first instruction is fetched from the memory. This simply amounts 

to retrieving the first instruction in an array of instructions that represents a loaded DSL-

compiled program. Once in the loop, a check is done to determine if the instruction is of a type 

that has an ID operand. These instructions will be described later in Section 5.8, however for 

the sake of explanation an instruction with an ID operand is simply an instruction that 

references one of the VM’s internal temporaries. The reference is simply an index value. These 

temporaries can be an object of any user-defined type. They can be instantiated by the 

instruction and later retrieved again. The first block in Figure 26 handles these types of 

instructions. It retrieves the appropriate temporary from the temps[] array and supplies it to 

the instruction before it is executed, if such a temporary exists. 

 

If the instruction is one of the four remaining instruction types, the instruction is executed 

immediately, however, a further nested check is performed to determine if a branch instruction 

is being executed at the current point of execution or if a previous point of execution should 

resume. These types of instructions may be used, for example, to jump to a subroutine and 

return from a subroutine. 

 

 61 



5.4 Output Results 

if (loader.hasProgram ()) { 
 // Grab the first instruction for execution. 
 current_ins = loader.FetchNext (); 
 
 // Keep executing until there are no more instructions to execute. 
 while (current_ins != null) { 
  if (current_ins is Instruction_OpCode_IDOperand) { 
   id_ins = (Instruction_OpCode_IDOperand) current_ins; 
 
   // Get temp value and supply it to the instruction. 
   if (temps [id_ins.ID] == null) { 
    // Doesn't exist in list, initialize it to 0. 
    id_ins.temp = new object (); 
    temps.Add (id_ins.ID, id_ins.temp); 
   } 
   else { 
    id_ins.temp = temps [id_ins.ID]; 
   } 
 
   // Execute the instruction with latest temp value. 
   current_ins.Execute (); 
 
   // Store the temp value back into the local list. 
   temps [id_ins.ID] = id_ins.temp; 
  } 
  else { 
   current_ins.Execute (); 
 
   if (current_ins is Instruction_OpCode_BrOperand) { 
    br_ins = (Instruction_OpCode_BrOperand) current_ins; 
 
    // If we must save the program counter, we must do 
    // it before we branch to another point of execution. 
    if (br_ins.SaveProgramCounter) { 
     loader.SavePC (); 
    } 
 
    // OK, now its safe to branch. 
    if (br_ins.BranchCond) { 
     loader.Branch (br_ins.label); 
    } 
   } 
   else if (current_ins is Instruction_OpCode) { 
    ins = (Instruction_OpCode) current_ins; 
    if (ins.LoadProgramCounter) { 
     loader.RecallPC (); 
    } 
   } 
  } 
 
  // After updating the program counter, grab the next instruction. 
  current_ins = loader.FetchNext (); 
 } 
} 

 

Figure 26. Main loop for executing loaded instructions. 

 

5.4 Output Results 

 

Figure 27 shows the GetResult() method that is to be found in the EVM class (Section 5.6.1). 

It uses a string parameter that is the name of an environment that was registered with the VM 

instance. One of the encapsulated objects of the EVM class is the config object of type Config, 

which simply manages the pool of instruction classes and environment instances, as well as 

the mapping that links an environment to an appropriate instruction class. The Config class 

encapsulates an array environments[] that is the pool of instantiated environments for the 
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current VM configuration. The string parameter of GetResult() simply uses the string name of 

a registered environment as the index to the array environments[]. Indexing arrays with a 

string is an elegant feature of C#. This retrieves a specific environment instance, env, and in 

turn the function GetResult(), in this case, now a member function of Env, is then called on 

the object env. The function GetResult() is abstractly declared in Env and it is the obligation 

of the implementer of a subclass of Env to decide what should be returned as a result. More 

about this inner call to GetResult() will be given in Section 5.6.5 and an example will be 

presented in later sections. The method GetResult() is called after the VM instance has 

completed execution of a loaded program to retrieve any result of a computation performed by 

the execution of the loaded program. If no such result is expected, the function needn’t be 

called. 

 

While the result is returned generically as an object, its actual data type forms part of the 

namespace and essentially describes an object that makes sense as a result of executing the 

loaded program. For example, in a simple real-valued expression DSL, the results can be a 

simple C# float data type, while an RT DSL may return a System.Drawing.Bitmap instance 

as a result of rendering object primitives within a scene. The VM Framework needn’t have any 

knowledge of this data type and hence it does not form part of the configuration in any way. 

 

public object GetResult (string Environ) 
{ 
 Env env; 
 
 env = (Env) config.environments [Environ]; 
 return env.GetResult (); 
} 

 

Figure 27. The GetResult() method of the EVM class. 

 

It is possible to switch between different environments and instructions at runtime. This makes 

the VM well suited in a language prototyping application, where the same VM can be reused, 

and there is no need to recompile a specification to generate a new machine for a new 

language. 

5.5 View of the Virtual Machine Framework Approach 

 

The raw execution rationale of an instantiated VM of the VM Framework is similar to that of the 

VM approach discussed in Chapter 4, in that an compiled program is first loaded and then each 

instruction is executed in sequence. However, there is an initial phase to set up the VM 

Framework for a particular DSL. This is done via the configuration file. An instantiated VM 

reads the configuration file, as depicted in Figure 28, and creates the necessary instructions 

and environment instances accordingly. As in the VM approach, the source DSL-program is still 

compiled. However in the VM Framework approach the semantics of the target language is 
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encapsulated in instruction classes that are subtypes of abstract instruction classes, which are 

part of the VM Framework. Also, in the VM Framework approach, a result data type can be 

setup by the user. After the instantiated VM has executed a sequence of instructions defined in 

the loaded program, then the user of the VM can retrieve the instance of the result data type. 

 

environment EnvRT

SetWindow using EnvRT
Light     using EnvRT
COP       using EnvRT
LookAt    using EnvRT
...

Compile

CLR

DSL
Compiler

DVM.DLL

Dynamically
Interpret IS

Execute on CLR

scene
{
   sphere 0.5
   {
      translate 3 3 0
      specular 0 0 1
   }
}

Push 3
Push 3
Push 0
Translate
Push 0
Push 0
Push 1
Specular

Source DSL Instruction
Sequence

Configuration

Extension

Result

 

Figure 28. Conceptual view of the VM Framework Approach. 

 

5.6 Virtual Machine Framework Detailed Design Description 

 

The VM Framework provides the basic functionality of a typical VM, including a DSL-compiled 

program loader, a program counter, internal temporary values, and conditions on which to 

build branching instructions. A top-level class (the EVM class) is provided through which to start 

up and configure an instance of a VM. It also provides the interface for the loading and running 

of a program. The actual configuration of the instantiated VM, i.e. the environment and 

instruction set setup, is done through the configuration file discussed in Section 5.6.2. Thus no 

modification to the VM Framework itself is required and its component classes can 

consequently be compiled and saved as a library. The VM Framework consists of five main 

classes, (excluding the .NET Type class) each discussed in the following sections. They are the 

EVM class discussed in Section 5.6.1, the Config class discussed in Section 5.6.2, the Loader 
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class discussed in Section 5.6.3, the Inst abstract instruction class discussed in Section 5.6.4 

and the Env abstract environment class discussed in Section 5.6.5. They all belong to the DVM 

(Dynamic VM) namespace, and their inter-relationship is depicted in Figure 29. The VM 

Framework, in its compiled form, amounts to a single .NET DVM.DLL file. One of the classes, 

the Inst class, has five abstract instruction subclasses. They are not shown in Figure 29, but 

they will be discussed later in Section 5.8. 
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Figure 29. Information Model of the VM Framework namespace. 

 

5.6.1 The EVM Class 

 

The EVM class (Extendable Virtual Machine) is the top-level class of the VM Framework. An 

instance of this class is a reference to an instantiated VM object. Configuration of the 

instantiated VM, loading of DSL-compiled programs, execution of loaded programs etc., is 

performed on this object. Once instantiated, the object represents an instance of a 

configurable VM, with an empty instruction set and no environment, i.e. an instance of this 

object represents the VM itself. As such, this implies that an instance of the EVM, once 

configured, is in fact a DSL VM, providing some DSL ISA as laid out in the configuration file. 

 

A specific configuration can then be assigned to the VM instance, and a program can be loaded 

and executed. When a program is executed, then the VM, through the use of dynamic binding, 
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will invoke the correct instruction instance. These instruction instances are created at program 

load time and their corresponding classes (all subclasses of Inst) are defined in the 

configuration file. 

 

The EVM class also encapsulates the internal temporary values in the temps hashtable. As 

mentioned in Section 5.3, temporaries are simply any type of object that the user may wish to 

instantiate. Having access to temporaries, referenced with an ID, is a feature of the VM 

Framework that is provided for convenience. One instruction may create a value, while another 

may make use of the value as it was created by an earlier instruction. They are useful in 

representing variables of some DSL (such as variables of an integer or double type), though 

the EVM allows them to be of any type. It is up the compiler to make sure the temporaries are 

accessed correctly by the respective instructions. Each internal temporary value has a unique 

ID, and instructions with ID operands can gain read and write access to them. The temporary 

values have an object type, so they can be assigned values most convenient to the DSL being 

constructed. 

 

Internally, the EVM class contains a loop in its Execute() method (Figure 26), that iterates 

through each instruction stored by the Loader class. The very next instruction to be executed 

is first fetched, and then the Execute() method of its class is invoked. This Execute() method 

will vary according to which of the five instructions discussed in Section 5 has been fetched. 

This may entail accessing an internal temporary value or handling a branch instruction and 

saving the current program counter value, if need be. Some branch instructions do not require 

the program counter to be saved. 

 

5.6.2 The Config Class 

 

The Config class is responsible for the configuration setup of an instantiated VM. The Config 

class encapsulates three mappings: instructions, environments and ins_env. They are 

hashtables, and their respective mappings are shown in Figure 30 below. 

 

instructions : string  Inst Type 
environments : string  Env 
ins_env      : string  string 

 

Figure 30. Configuration mappings. 

 

The instructions mapping maps the string name of an instruction to an Inst type. Note 

carefully that the mapping is not from the string name to an Inst instance. Instead it is from 
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the name to one of the five Inst classes defined in Section 5. Instances of the Inst class are 

only created upon program loading. 

 

The environments mapping, maps the string name of an environment, to an actual instance of 

Env. This is in contrast to the instructions mapping, which does not map to instances, but 

rather to classes (subclasses of Inst) that are yet to be instantiated. As indicated below in 

Section 5.6.5, an Env instance will typically encapsulate some Abstract Data Type (ADT) such 

as a runtime stack, or any other data structure that proves to be sufficiently useful for 

facilitating the language of the DSL that will ultimately make use of the VM instance. 

 

The last mapping, ins_env, maps the string name of an instruction to the string name of the 

environment that the instruction is to use. This ins_env mapping is an associative mapping 

since more than one instruction can use a singe environment. This will be the environment 

that the instruction will access and update during the execution of the loaded program. It is 

noted at this point that the Config class is a not an associative object that maps a single string 

name (of an instruction, or environment) to its respective class, or instance. It is a class that 

encapsulates the mappings themselves, using hashtables. Thus there is only one instance of 

the Config class and it is instantiated once the EVM class has been instantiated. The hashtables 

are populated after the VM instance (an instance of the EVM class) has been configured with an 

appropriate ISA using the configuration file. 

 

5.6.3 The Loader Class 

 

The Loader class encapsulates a loaded program and the program counter. The loaded DSL-

compiled program is an array of instruction instances, each a subclass of Inst. The Loader 

class also maintains a hashtable that maps labels of any labeled instructions encountered 

during the loading of a DSL-compiled program to that instruction’s index in the array 

representing the loaded program. Instructions that have labels are usually the target of a 

branching instruction. It is convenient to view a DSL-compiled program in human readable 

form and thus each label is simply an integer number preceded by the symbol @, and is placed 

before the instruction being labeled. Upon loading the DSL-compiled program, the mapping is 

updated with a valid index entry for each label. 

 

When a program is loaded, an instance of each instruction is created for each instruction in the 

program. The parser of the instructions in the VM only has the string name of instructions. It 

uses the instructions mapping defined in the Config class to retrieve the actual class that is 

used to create the instruction instance. Thus when a program is fully loaded, the array will 

contain instances of instruction classes, each a subclass of Inst, and each instruction 
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encapsulating its own operand ready for execution. The program counter is reset to the 

beginning of the array. 

 

5.6.4 The Inst Abstract Class 

 

The abstract Inst class encapsulates a reference to an instance of a subclass of the Env class, 

discussed in Section 5.6.5. This will be an environment object that is updated by each 

instruction during the execution of the loaded program. Thus all instructions in a loaded 

program will have a reference to the same Env instance because all instructions in the ISA 

defined by the configuration file are subclasses of Inst. 

 

The Inst class does not define how the updates to the environment object are to be performed 

by a given instruction. Instead the Inst class provides an abstract Execute() method, that 

concrete subclasses are obligated to override. The Inst class is subtyped by a further five 

abstract classes, one class for each type of instruction supported by the VM Framework. 

Concrete instruction classes are classes that are subclasses from one of these five abstract 

classes, and should not be subtyped from Inst directly. Each of these five abstract classes will 

be discussed in Section 5.8. 

 

Execution of a program implies an invocation of the Execute() method on each instruction 

instance that is referenced by the program counter, while there are still instructions to be 

executed by the loaded program. When the program counter has run through each instruction 

instance, the program has completed execution and the result of the execution can be 

retrieved. When a program is loaded by the program loader (an instance of the Loader class) 

the program counter is set to index 0 which is the first instruction in the program. As each 

instruction is executed the program counter is incremented by 1. Thus, the Execute() method 

of a given instruction instance can be viewed as encapsulating the semantics of the associated 

instruction. The sequence of Execute() methods performed in running a program then provides 

the semantics of the program as a whole. 

 

5.6.5 The Env Abstract Class 

 

The abstract Env class encapsulates some ADT or even a number of ADTs that form the central 

data storage mechanism for the DSL. The abstract Env class does not dictate the type of ADT 

that is encapsulated, and thus does not define any member ADT. It merely provides an 

abstract GetResult() method that subclasses of Env are obligated to override. In Figure 27 

above, the call to env.GetResult() whose outcome is returned to the outer GetResult() 
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method, itself a method of the EVM class, illustrates where the GetResult() method of Env is 

actually used. 

 

The GetResult() method of a subclass of Env should return the result of a computation, if the 

DSL-program was indeed written to perform some computation. This is especially the case in 

functional language DSLs where the result of a computation can be retrieved after the program 

has completed execution, i.e. after a call to Execute() on the instantiated VM. It may also be 

the case that a final result is not necessarily expected. Such may be the case if the user-

defined instructions are printing intermediate values to calculations onto a console or window 

at the time they are being executed. In this case GetResults() still needs to be implemented 

so as to yield a concrete class, however it simply needs to return null. 

 

5.7 Environments 

 

The purpose of the abstract Env class is to have an ADT that is updated during runtime. It is 

intended to aid in the processing of the semantics of the DSL in an appropriate or convenient 

manner. For example, in a simple real-valued expression language, a runtime stack can be 

used as an environment, where operands are first loaded onto the stack and then an 

arithmetic operation is performed on the most recently pushed values, depending on the 

number of operands for a given operation. In a ray-tracer [Wat00a] scene description 

language, the main data structure may be a runtime stack, for any arithmetic calculations, and 

a bitmap image data type that is incrementally updated as the image information is processed. 

Thus it is possible to extend the environment built for an expression language, into one that is 

suitable for a ray-tracer language. 

 

Classes that extend the abstract Env class, are obligated to override the method GetResult(). 

The method GetResult() returns an instance of an object. When an instance of a VM has 

completed execution, the user can call GetResult() to retrieve  the result of the execution. In 

the example of an expression language, this would typically be a double value, while for a ray-

tracer language this result would be an instance of a System.Drawing.Bitmap image type. 

Since VM Framework users will be aware of the data type that they are using for the result, a 

simple type cast to narrow the returned instance to the user’s own result type is sufficient. 

 

An example of EnvExp, a concrete extension to Env for an expression language, is provided in 

Figure 31. It encapsulates a real-valued stack, and its GetResult() method returns the last 

entry on the stack or –1 if the stack is empty. If all operations on the stack are consistent, 

there should be only one remaining value on the stack, which will be the result of evaluating 

some expression. The stack object itself can be declared as public or protected allowing 
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subclasses access to it for any environments that may later subtype EnvExp and still need a 

stack. New methods can also be added to the subclass. In this example the method 

GetStack() is added so instructions that have a reference to an object of type EnvExp can get 

a reference to the stack itself. Another alternative would be to expose all the methods of the 

Stack class in the EnvExp class. 

 

class EnvExp : Env 
{ 
   public EnvExp () { 
      stack = new Stack (100); 
   } 
   public override object GetResult () { 
      object result; 
      if (stack.isEmpty ()) { 
         result = -1.0; 
      } 
      else { 
         result = stack.peek (); 
      } 
      return result; 
   } 
   public Stack GetStack(){return stack;} 
   protected Stack stack; 
} 

 

Figure 31. Example EnvExp class. 

 

5.8 Instructions 

 

The instructions form the basic operational building blocks to a DSL-compiled program. There 

are five classes of instructions, each represented by an abstract class extending the abstract 

class Inst. The user creates their own instruction by extending one of the classes of the five 

abstract instructions provided, depending on the required operand of the instruction. 

 

In the current implementation of the VM Framework, each instruction is allowed to take at 

most one operand. This design decision was taken to keep the VM Framework relatively 

simple. However, there is no inherent reason for not allowing more than one operand per 

instruction. The implications of accomplishing it are beyond the scope of this dissertation. 

 

Being limited to one operand per instruction directly influences the flexibility of the instruction 

set, as well as its use in combination with an appropriate environment. The five abstract 

classes of instructions are defined in terms of their operand types. They are Inst_OpCode, 

Inst_OpCode_BrOperand, Inst_OpCode_IDOperand, Inst_OpCode_StrOperand and 

Inst_OpCode_NumOperand, and they form part of the VM Framework namespace, DVM. Each of 

the five abstract classes of instructions will be explained in Sections 5.8.1 to 5.8.5. Any of the 
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five instructions can be labeled, if they are targeted by any branching instructions. The token 

and grammar definition for parsing a DSL-compiled program code is shown in Figure 32. 

 

 LABEL    : [lL][aA][bB][eE][lL] 
INS      : [_a-zA-Z][_a-zA-Z0-9]* 
BRANCH   : @[1-9][0-9]* 
TEMP     : $[1-9][0-9]* 
DOUBLE   : [-+]?[0-9]+(\.[0-9]+)? 
STR      : \".*\" 
 
ir_list  : 
ir_list  : ir_list ir_instr 
 
ir_instr : ir_label INS 
ir_instr : ir_label INS STR 
ir_instr : ir_label INS TEMP 
ir_instr : ir_label INS DOUBLE 
ir_instr : ir_label INS LABEL BRANCH 
 
ir_label : 
ir_label : BRANCH 

 

Figure 32. Token definitions and grammar for the instructions. 

 

5.8.1 Instructions with No Operands 

 

An instruction with no operands is created by subtyping the abstract class Inst_OpCode and 

must have a constructor with the signature, public UserDefinedInst (UserDefinedEnv 

env). This new concrete instruction class still has to provide an Execute() method, which is 

inherited as an abstract method from Inst. It also inherits a boolean property from the 

immediate parent abstract class Inst_OpCode. This boolean property, LoadProgramCounter, in 

Figure 33, is used to determine whether or not to recall the last saved program counter. This 

allows the creation of instructions that return from a branch into a subroutine, provided that 

the last branch instruction did indeed save the program counter. The Execute() method for 

such an instruction will then simply test the LoadProgramCounter property and change the 

program counter if necessary. 

 

 abstract class Inst_OpCode : Inst 
{ 
   protected bool 
   LoadProgramCounter = false; 
} 

 

Figure 33. The Inst_OpCode abstract class. 

 

As a further example of an instruction without an operand, consider the Add instruction 

presented in Figure 34. It could typically be used in a simple expression language. The 

instruction Add simply pops the two topmost operands off a stack and pushes the sum back on. 

 71 



5.8 Instructions 

Again, these stack operations and the addition operation would be invoked in the Execute() 

method of the Add instruction. 

 

class Add : Inst_OpCode
{
   public Add (EnvExp env)
   {
      this.env = env;
   }

   public override void Execute ()
   {
      double d1, d2, r;

      d2 = (double)
          ((EnvExp)env).GetStack().pop();

      d1 = (double)
          ((EnvExp)env).GetStack().pop();

      r = d1 + d2;

      ((EnvExp)env).GetStack().push(r);
   }
}

 

Figure 34. The Add instruction. 

 

5.8.2 Instructions with a Branch Label 

 

An instruction with a branch label operand is created by subtyping the abstract class 

Inst_OpCode_Br and must have a constructor with the signature, public UserDefinedInst 

(UserDefinedEnv env, string label). Instructions with a branch label are used for 

conditional or unconditional branching. Two properties are used to implement branching 

semantics depending on the requirement of the branch condition. The first property, 

BranchCond, is the actual condition for branching. This property should be assigned to true in 

the overridden Execute() method for unconditional branching. For conditional branching it is 

assigned according to the evaluation of a boolean expression inside the body of the Execute() 

method as per the required semantics of the condition. The second property, 

SaveProgramCounter, dictates whether the program counter should be saved for a 

corresponding return call into a subroutine. The branch label is supplied as a string parameter 

by the loader to the constructor of the instruction when it is instantiated. It is used internally 

by the EVM instance when the instruction is executed. The class is shown in Figure 35. 
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 abstract class Inst_OpCode_Br : Inst 
{ 
   protected string label; 
 
   protected bool 
   BranchCond = false; 
 
   protected bool 
   SaveProgramCounter = false; 
} 

 

Figure 35. The Inst_OpCode_Br abstract class. 

 

5.8.3 Instructions with a Temporary 

 

An instruction with a temporary ID operand is created by subtyping the abstract class 

Inst_OpCode_ID and must have a constructor with the signature, public UserDefinedInst 

(UserDefinedEnv env, string label). Internally, so-called temporaries are stored in a 

hashtable that maps temporary names (IDs) to object references. They are akin to 

conventional microprocessor registers, but a temporary can be treated as any object type as 

illustrated in Figure 36. Instructions have full access to a temporary, so it is the obligation of 

the EVM instance to supply the necessary temporary object value to the current instruction 

before it is executed. Thereafter, the instruction can modify the temporary by typecasting the 

object to the required usable type. The temporary ID is supplied as a string parameter by the 

loader to the constructor of the instruction when it is instantiated. It is used internally by the 

EVM instance when the instruction is executed. In the EXP and LQ examples shown later in the 

next chapter, both use temporaries as temporary storage for variables. EXP uses temporaries 

for real-valued variables, and LQ uses temporaries for Quilt objects. 

 

 abstract class Inst_OpCode_ID : Inst 
{ 
   protected string ID; 
   protected object temp; 
} 

 

Figure 36. The Inst_OpCode_ID abstract class. 

 

5.8.4 Instructions with a String Parameter 

 

An instruction with a string operand is created by subtyping the abstract class 

Inst_OpCode_Str and must have a constructor with the signature, public UserDefinedInst 

(UserDefinedEnv env, string str). Instructions with string parameters are useful in string 

processing applications such as those that deal with regular expressions. Alternatively, if 

variables are declared in the DSL, the string parameter can be used as a reference to a 
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variable name. The class is shown in Figure 37. The string value is supplied as a string 

parameter by the loader to the constructor of the instruction when it is instantiated and stored 

in the variable str. 

 

 abstract class Inst_OpCode_Str : Inst 
{ 
   protected string str; 
} 

 

Figure 37. The Inst_OpCode_Str abstract class. 

 

5.8.5 Instructions with a Number Parameter 

 

An instruction with a number operand is created by subtyping the abstract class 

Inst_OpCode_Num and must have a constructor with the signature, public UserDefinedInst 

(UserDefinedEnv env, double num). Similarly to the above string parameter, the number 

value is supplied as a parameter by the loader to the constructor of the instruction when it is 

instantiated. The class facilitates instructions that provide any intermediate arithmetic 

calculation. Real or integer numbers can be parsed and stored. However, internally they are 

treated as C# double values, and once parsed, the double parameter is stored in the variable 

num, shown in Figure 38. 

 

 abstract class Inst_OpCode_Num : Inst 
{ 
   protected double num; 
} 

 

Figure 38. The Inst_OpCode_Num abstract class. 

 

5.9 Summary 

 

In this chapter the VM Framework is first presented and some of the details of its design are 

outlined further. The VM Framework provides a top-level class from which a VM is instantiated. 

The five instruction classes are all abstract, so any instantiated VM has an empty instruction 

set. Instructions and environments are created and compiled separate from the VM Framework 

and are a set of user-defined classes that can be compiled as DLLs. Instructions perform some 

operation based on a given environment and may or may not alter an environment’s state. 

 

The VM Framework provides a mechanism to parse instructions of a DSL-compiled program. 

The compiled program contains an ordered list of instructions and is human readable. The 
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parsed instructions are automatically classified as one of the five instructions supported by the 

VM Framework, based on the type of operand of the instruction in the compiled program. 

Environments also form extensions to the VM Framework and are also created and compiled 

separately as DLLs. The instantiated VM is configured via a configuration file that links the 

instructions and environments together. Initially the instantiated VM reads the configuration 

file and after initialization the VM is ready to execute instructions of a loaded program. 
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6 Extending the Virtual Machine Framework  

 

 

 

 

 

 

 

Using the VM Framework entails designing a set of instructions and environments, without 

modifying the VM Framework itself in any way. This design is then implemented as a set of 

classes that subtype the classes that constitute the DVM namespace. This chapter is intended to 

point to the overall activity of defining a set of classes tailored toward some particular DSL. 

 

The collection of user-defined classes constitutes an architectural layer of software. This layer 

encompasses the set of concrete instructions that can be instantiated at program load time, as 

well as an environment on which these instructions will operate. The configuration file is 

responsible for connecting the VM Framework to the user-defined layer. 

 

This chapter provides an example of extending the RT DSL using the VM Framework approach. 

Also, two smaller DSLs are examined to see how different languages, with vastly differing 

uses, can be built. These two languages are a simple expression language (EXP), and a tile 

manipulation language called Little Quilt (LQ). The environments of EXP and RT are very 

similar and hence these two languages provide a simple and elegant illustration of how the 

basis for one DSL can be extended, or scaled up further to provide enough functionality to 

cater for the semantics of another language. It suffices to incorporate EXP’s runtime stack to 

aid in any arithmetic operations that may be needed in performing calculations during the 

setting up of quadric equations in RT. 

 

Section 6.1 starts the chapter by describing the configuration file, and Sections 6.2 and 6.3 

continue by describing the use of the file to extend the instruction sets and the environments, 

respectively, for a particular VM configuration. Section 6.4 lists the three main ways to extend 

a VM in terms of the VM definition described in Chapter 4. Section 6.5 provides some example 

DSLs, and illustrates how these DSLs are built using the VM Framework, and Section 6.6 
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continues by providing an example of scaling up the RT language described in Chapter 3. 

Finally, modularity is discussed in Section 6.7, before providing a chapter summary. 

 

6.1 The Configuration File 

 

Before an instantiated VM can execute instructions in a loaded compiled program, the VM 

needs to be configured as a specific VM type. This is achieved through a configuration file that 

is initially loaded (or read) by the VM instance. Once the VM has been configured, a compiled 

program can be loaded and executed. 

 

The configuration file defines an ISA for a particular VM instance and an environment used by 

the specified instructions themselves. More accurately, the file specifies the name of each 

user-defined instruction class together with the name of the user-defined environment class 

that each instruction will use during program execution. Thus the configuration file should 

enumerate the names of the complete instruction set for a particular VM. Figure 39 gives an 

example configuration file for the EXP DSL.  

 

 (* Create an instance of the *) 
(* expression environment. *) 
environment EnvExp 
 
(* Register the following expression 
(* instructions with the DVM. *) 
Push  using EnvExp 
Store using EnvExp 
Load  using EnvExp 
Sub   using EnvExp 
Add   using EnvExp 
Mul   using EnvExp 
Br    using EnvExp 
Brgz  using EnvExp 
Nop   using EnvExp 
Div   using EnvExp 
 
(* Some generic instructions *) 
Call  using EnvExp 
Ret   using EnvExp 
Print using EnvExp 

 

Figure 39. Example configuration file for EXP. 

 

The keyword environment is followed by the name of a class that subtypes Env, and one 

environment instance will be instantiated for that class. Thereafter, a list of clauses defines the 

actual instructions to be used in the current VM configuration, by the using keyword. The 

environment class name following the using keyword refers to the singleton environment 

instance whose creation was specified near the top of the configuration file after the 

environment keyword. The VM instance creates that environment instance as part of the 

configuration process, or simply put, when the configuration file loaded. Later, when the 
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program is read by the VM instance, then the environment instance will be used as the 

parameter to the various instruction constructors. 

 

The user-defined environment class and the instruction classes are all compiled separately as 

DLLs, thus each DLL library file will be home to a single class. DLLs are loaded by the CLR 

dynamically, or at runtime. The advantage here is that the classes are not statically compiled 

in along with the VM Framework when a new VM is being built or prototyped. So there is no 

need for a complete recompile of the VM Framework. Rather, the VM Framework is compiled 

once, and only user-defined classes are compiled as separate DLLs and are loaded on demand 

by the CLR. The configuration file specifies the names of these DLLs, which is the same name 

of the class that each DLL contains. The configuration file thus uses the class names to load a 

specific DLL from disk. 

 

6.2 Extending the Environments 

 

Suppose a new language is required, be it similar to an existing language or one that features 

an entirely new syntax. If an existing language uses an environment with an appropriate data 

structure, then the new language can extend the existing environment to suite its own needs. 

An RT language needs to render a scene comprising geometric objects onto some canvas, but 

may also require a means to perform numeric calculations for setting up quadric objects. Thus 

the EnvExp environment of EXP can be extended with two extra data structures; a scene and a 

bitmap, giving rise to an EnvRT environment suitable for a ray-tracer, shown in Figure 40. 

 

6.3 Extending the Instruction Sets 

 

Instructions are extended from one of the five instruction classes mentioned in the previous 

chapter, to a set of concrete instruction classes instantiated whenever a program is read. It 

should be noted that these five instructions provide enough complexity to build a fairly 

versatile VM. As previously discussed, the VM Framework makes provision for instructions for 

branching; for accessing of primitive data types that can be written in text, namely numbers 

and strings; and for internal storage in the form of temporaries. If more complex data types 

such as classes or arrays are needed as part of the DSL, then it is the obligation of the DSL-

compiler to provide a mapping of such complex data types and their associated operations 

onto the primitive date types and the set of instructions that use these primitive data types. 

Depending on how the DSL semantics are to be implemented, the user of the VM Framework 

can choose to create instructions specifically for the task of handling complex data types. For 

example, it should be possible to handle array indexing by defining a set of instructions for 
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handling arrays. An array construct defined as part of the DSL, will then be translated into a 

sequence of these instructions by the DSL-compiler. 

 

While it is possible to subtype individual instructions further, it is not always necessary. 

However, it useful to extend instruction sets, and have environments that are subclasses of 

previously defined environment classes. This allows the VM Framework to be scalable, and aids 

in tailoring a VM for a particular DSL. The RT DSL serves as an example. The EnvRT 

environment was defined as a subclass of EnvExp in Figure 40. This means that any one of the 

instructions operating on an EnvExp, can also operate on an EnvRT. The configuration file for 

the RT DSL, depicted in Figure 41 shows this to be the case. 

 

 class EnvRT : EnvExp 
{ 
   public EnvRT () : base () 
   { 
      scene = new Scene (); 
   } 
 
   public override object GetResult () 
   { 
      scene.render (4); 
      return scene.GetBitmap (); 
   } 
 
   protected Scene scene; 
   protected Bitmap bitmap; 
} 

 

Figure 40. The EnvRT class. 

 

The configuration file for the RT DSL is shown below in Figure 41. Note that some instructions 

are borrowed from the EXP DSL. It enumerates not only RT related instructions such as Light, 

COP, etc, whose class definitions are specifically associated with ray tracing; it also enumerates 

a number of the instructions such as Push, Pop, etc. that are related to EXP. 
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(* Create an instance of the *)
(* ray-tracer environment.   *)
environment EnvRT

(* These instructions were part of    *)
(* the EnvExp environment.            *)
Push      using EnvRT
Add       using EnvRT
Sub       using EnvRT
Mul       using EnvRT
Div       using EnvRT

(* Ray-tracer specific instructions. *)
SetWindow using EnvRT
Light     using EnvRT
COP       using EnvRT
LookAt    using EnvRT
VUP       using EnvRT
Geometry  using EnvRT
Specular  using EnvRT
Diffuse   using EnvRT
Reflect   using EnvRT
Translate using EnvRT
Axes      using EnvRT
Coeff     using EnvRT
Quad      using EnvRT

 

Figure 41. Configuration file to setup RT, borrowing instructions from EXP. 

 

6.4 The extended DSL VM 

 

As one extends the environments and instruction sets, essentially one is creating new versions 

of ISAs, either for different DSLs with similar or same environments or with different 

environments and instructions altogether (ergo, different semantics entirely). It is obvious that 

the designer has the freedom to extend existing ISAs by extending the number of instructions 

with new instruction classes, and extending the environments using subtypes of existing 

environments. In the discussion below, subscripts will be used to identify the environment, VM, 

etc that is associated with a given DSL. Thus ISAEXP represents an ISA associated with EXP, 

and VMEXP is the VM associated with EXP, etc. 

 

In Figure 42, the configuration file shown on the right defines the DSL VM. Thus an 

environment, along with a corresponding instruction set classes defines that DSL VM. The 

instructions listed in the configuration file, naturally define ISAEXP in this case. 
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ISAEXP

HLL VM

Execute on CLR

environment EnvExp

Push using EnvExp
Add  using EnvExp
Mul  using EnvExp
Ret  using EnvExp
...

Configuration

Dynamically
Interpret IS

VMEXP

 

Figure 42. Defining an environment and instruction set for a DSL VM. 

 

Figure 43 depicts the same environment for VMLQ as that used for VMEXP, by placing the two 

VMs at the same level, but the instructions sets differ slightly. In fact, there is an overlap as 

the instructions Store, Load, Br, Call and Ret are all used as they are defined in their 

respective classes, i.e. no modifications are required for them and they can be used as is in the 

context of VMLQ. Four new instructions are added, namely QuiltA, QuiltB, Turn and Sew, and 

they continue to rely on EXP’s existing environment class, EnvExp. The darker shade of the 

VMEXP simply indicates that VMEXP is the not the current VM in question. The overlap signifies 

the subset of EXP’s instructions that are to be used by VMLQ. 

 

ISALQ

HLL VM

Execute on CLR

environment EnvExp

QuiltA using EnvExp
QuiltB using EnvExp
Turn   using EnvExp
Ret    using EnvExp
...

Configuration

Dynamically
Interpret IS

VMLQVMEXP

 

Figure 43. ISALQ is a subset of ISAEXP, with new instructions. 
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Figure 44 depicts the environment of the VMRT as a subclass of the one used for VMEXP, by 

placing VMRT at a higher level to indicate this intent. The instruction sets again differ slightly, 

as there is still an overlap with the real-valued expression instructions Sub, Add, Mul, Div, and 

the Push instruction, that work with the EnvExp. However, there is additional RT specific 

instructions, indicated by the portion of the ISA above VMRT in Figure 44. This set of 

instructions, along with the real-valued expression instructions together form ISART. Those RT 

specific instructions, such as COP, LookAt, VUP, Specular and so forth (as listed in the RT 

configuration file shown in Figure 41), work with RT’s environment class, EnvRT. The darker 

shade of VMEXP again gives a clue that a certain subset of instructions that was used with VMEXP 

is no longer needed for VMRT, except for those instructions indicated by the overlapping shade 

on the right hand side. There is no notion of a VMEXP being executed by the underlying HLL VM, 

hence the linking arrow between only VMRT and the HLL VM. 

 

ISART

HLL VM

Execute on CLR

environment EnvRT

COP      using EnvRT
LookAt   using EnvRT
VUP      using EnvRT
Specular using EnvRT
...
Add      using EnvRT
Mul      using EnvRT
...

Configuration

Dynamically
Interpret IS

VMRT

VMEXP

 

Figure 44. ISART is a subset of ISAEXP, with new instructions as before. 

 

6.5 Building a DSL 

nce a defined environment and instruction set are in place, a front-end for the DSL needs to 

 

O

be developed. Essentially this is the task of writing a simple compiler for the DSL. This entails 

designing syntax for the language using compiler tools. Translation rules are also needed to 

map syntactically correct statements onto a sequence of instructions that can be executed by 
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the VM. It is beyond the scope of this text to discuss how each of these tasks is performed, but 

some of the translations from DSL-program source code segments to DSL-compiled code are 

shown (refer to Figures 47 and 48, and 53 and 54) to illustrate the simplicity of some of the 

translation for small languages. The example DSLs in this section were built using the compiler 

tools LG and PG. PG allows the translation rules to be defined as part of the grammar. Both 

tools have a familiar syntax to most commonly used industry compiler tools. The complexity of 

the required DSL will influence the complexity of the compiler needed to parse the DSL-

program source and to generate the target DSL-compiled program code. Keeping the language 

simple and intuitive keeps the translations simple. 

 

6.5.1 The EXP DSL 

he EXP DSL is an intuitive, real-valued expression evaluation language that includes typical 

6.5.1.1 The EXP Domain 

 the case of the RT DSL, the RT domain was a fairly fleshed-out namespace (recall the C# 

6.5.1.2 The EXP Language 

he EXP language is a simple, intuitive, functional language, with much resemblance to the 

 

T

real-valued constructs for addition, subtraction, multiplication and division. The language is 

functional, and such a language suggests that a runtime stack should be used as the 

underlying data structure when evaluating an expression. The runtime stack will be 

encapsulated in the environment. Also, local variables can be assigned and scoping rules are 

applied in a strict, functional form. Having real-valued addition as part of the EXP language 

almost persuades inclusion of a construct like summation to be incorporated into the EXP DSL 

as well. Summation simply makes use of repeated addition of an expression as shown in 

equation (1). Summation is part of the EXP language syntax, and thus in this example DSL 

there is indeed a construct for summation. 

 

 

In

namespace construct, Sections 1.2.1, 1.3.3 and 3.1) with classes that encapsulate scenes, 

rays, and object primitives and so on. However, for a DSL as simple as EXP, no namespace 

needs to exist as all the semantics for EXP are provided by the real-valued operators of the C# 

language, namely +, -, * and /, and these operators essentially define the EXP domain. 

 

 

T

functional language ML [Mil84, Ull94]. Expressions can be written verbatim, forming the DSL-

program to be compiled. Because of its usefulness, EXP also borrows ML’s let-in-end 
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construct for declaring variables, and for assigning values to variables before their use in 

evaluating an expression. The language is simple and nowhere does the user need to make 

use of cumbersome for-loops for summation. Neither does the user need to worry about 

variable types, as the language always treats variables as a C# double type. The lexer’s 

regular expression definition is illustrated next, with Pascal-like comments defined.  

 

 %lexer 
%namespace ExpcLexer 
 
%token                   DOUBLE {public double val;} 
 
"let"                    %LET 
"in"                     %IN 
"end"                    %END 
"sum"                    %SUM 
".."                     %DOTDOT 
"="                      %EQU 
"+"                      %PLUS 
"-"                      %MINUS 
"*"                      %TIMES 
"/"                      %DIV 
"("                      %LBRACKET 
")"                      %RBRACKET 
[_a-zA-Z][_a-zA-Z0-9]*   %ID 
[-+]?[0-9]+(\.[0-9]+)?   %DOUBLE {val = Double.Parse (yytext);} 
[ \n\r\f\t]              ; 
"(*"                     {yybegin ("COMMENT");} 
<COMMENT>"*)"            {yybegin ("YYINITIAL");} 
<COMMENT>.               ; 
<COMMENT>\n              ; 

 

Figure 45. Lexer definition of EXP. 

 

he grammar definition is shown, again with integer and doubles combined into a single T

DOUBLE token that matches any signed or unsigned integer or double. 

 

 FExp     : LetExp 
 
LetExp   : LET var_list IN exp END    
 
var_list : 
var_list : var_list var 
 
var      : ID EQU DOUBLE 
 
exp      : exp PLUS term 
exp      : exp MINUS term 
exp      : term                          
 
term     : term TIMES fact 
term     : term DIV fact 
term     : fact                          
 
fact     : LetExp                  
fact     : ID                           
fact     : DOUBLE 
fact     : LBRACKET exp RBRACKET    
fact     : SUM LBRACKET ID RBRACKET DOUBLE DOTDOT ID LBRACKET exp RBRACKET 

 

Figure 46. Parser definition of EXP. 
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The translation rules of the small, functional expression language, EXP, can be intuitively 

understood by the following illustrative example. For a more detailed description on functional 

language compilers see [App98]. The program in Figure 47 evaluates the expression, 

 

5,29
1

=+∑
=

nwherei
n

i
                                        …(1) 

 

in a functional manner. Section 5.8 gives the token and grammar definitions for each of the 

five instruction types. The translated compiled code for this program is shown in Figure 48. It 

is a concrete example that demonstrates the use of temporaries (as storage for variables n and 

i) and also branching instructions for the actual implementation of the summation construct. 

 

 let 
   n = 5 
in 
   9 + sum (i) 1..n (2 * i) 
end 

 

Figure 47. Programmatic representation of summation expression (1). 

 

The generated instructions perform operations on a runtime stack, which is part of EnvExp 

discussed earlier. The result of the expression will be the only remaining value on the stack. 

 

      Push 5 
     Store $1 
     Push 9 
     Push 1 
     Store $2 
     Push 0 
@100 Load $2 
     Load $1 
     Sub 
     Brgz label @200 
     Push 2 
     Load $2 
     Mul 
     Add 
     Load $2 
     Push 1 
     Add 
     Store $2 
     Br label @100 
@200 Nop 
     Add 

 

Figure 48. Compiled program of the summation expression (1). 
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6.5.2 The Little Quilt DSL 

 

The Little Quilt language (LQ) [Set97] is a functional language, where the primitive types are 

that of quilts. Two primitive quilts are defined, A and B, and are illustrated later in the 

following section. All quilts are constructed from only these two primitive quilts. The idea is 

that there are two primitive operations that can be applied to quilts to yield a new quilt. Either 

a quilt can be turned 90 degrees clockwise (using the turn operator) or it can be sewn 

horizontally together with another quilt (using the sew operator). Using this small set of 

primitives, it is possible to derive more complex functions and thus the DSL can generate 

patterns of various complexities. Since the language is functional, it suffices to make use of 

the EXP language environment, i.e. the runtime stack to express its semantics. 

 

6.5.2.1 The LQ Domain 

 

The LQ namespace consists of a single class Quilt (or more precisely LittleQuilt.Quilt in 

its fully qualified form as LittleQuilt is the namespace to which it belongs). Instances of 

Quilt represent an immutable quilt of arbitrary dimension. Internally, a quilt is simply 

represented as two matrices called symbols, of enumerator type Symbol, and quilt, of 

enumerator type Orientation shown in Figure 49. The symbols matrix simply represents the 

primitive pieces that make up an instance of Quilt. As suggested in Figure 49, a single 

elementary quilt piece is either one of Symbol.A or Symbol.B of the Symbol enumerator type. 

When a Quilt instance is rendered onto a canvas, the appropriate glyph for each of the two 

symbols is used. They are respectively shown alongside the namespace as glyphs A and B. The 

Orientation matrix, quilt, represents the orientation of each single elementary quilt piece, the 

orientation being indicated by an element Orientation.N, Orientation.S, Orientation.E, or 

Orientation.W of the Orientation enumerator type. The resultant data structure returned by 

the GetResult() method of the LQ environment is an instance of Quilt. It can then be 

rendered onto a canvas by iterating though the quilt and orientation matrices, and 

rendering the appropriate glyph, A or B, at the appropriate orientation. 

 

The domain is somewhat simplistic. It is only necessary to think about the representation of a 

quilt, and the result of either the turn or the sew operation on a quilt to derive a new quilt. 

The flexibility of manipulating quilts will become apparent later when an instruction set is 

designed exposing the namespace, and the compiler generates the proper sequence of 

instructions to allow a VM instance of the VM Framework to perform the manipulations on the 

quilts. 
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 LittleQuilt 

Quilt 
 
NumRows:uint 
NumCols:uint 
quilt:Orientation [,]
symbols:Symbol [,] 
 
Right():Quilt 
Sew():Quilt 

enum Symbol 

A =

enum Orientation 

    N, 
    E, 
    S, 
  W 

{ 

  
} 

B =

{ 

  
} 

    A, 
  B 

 

Figure 49. The namespace of the LQ. 

 

6.5.2.2 The LQ Language 

 

Since the LQ language is centered around operations on quilts to build more complex quilts, 

the language has a functional nature, and as such can use the same runtime stack as that 

used in EXP. However, this time it is Quilt instances that are pushed on and popped off the 

stack, instead of double values as was the case in EXP. Thus the environment ExpEnv can be 

used for LQ. The instructions will differ, however, in that they will perform operations on 

Quilts. The configuration file for LQ is shown in Figure 50. 

 

 environment EnvExp 
 
QuiltA using EnvExp 
QuiltB using EnvExp 
Load   using EnvExp 
Store  using EnvExp 
Turn   using EnvExp 
Sew    using EnvExp 
Call   using EnvExp 
Ret    using EnvExp 
Br     using EnvExp 

 

Figure 50. The configuration file for LQ. 

 

The lexer definition for LQ is shown in Figure 51. Two keywords turn and sew expose the 

operations defined in the Quilt class, namely the two methods Right() and Sew() 

respectively.  
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 %lexer 
%namespace LqcLexer 
 
"let"                    %LET 
"in"                     %IN 
"end"                    %END 
"turn"                   %TURN 
"sew"                    %SEW 
"fun"                    %FUN 
"val"                    %VAL 
"a"                      %A 
"b"                      %B 
"="                      %EQU 
","                      %COMMA 
"("                      %LBRACKET 
")"                      %RBRACKET 
[_a-zA-Z][_a-zA-Z0-9]*   %ID 
[ \n\r\f\t]              ; 
"(*"                     {yybegin ("COMMENT");} 
<COMMENT>"*)"            {yybegin ("YYINITIAL");} 
<COMMENT>.               ; 
<COMMENT>\n              ; 

 

Figure 51. The lexer definition of LQ. 

 

LQ also includes a let-in-end construct, shown in Figure 52, to allow the definition of local 

variables (in this case, variables of type Quilt), as well as functions, parameterized by local 

variables. 

 

 LQExp    : exp 
 
exp      : A 
exp      : B 
exp      : TURN LBRACKET exp RBRACKET 
exp      : SEW LBRACKET exp COMMA exp RBRACKET 
exp      : LET decls IN exp END 
exp      : ID LBRACKET exp RBRACKET 
exp      : ID LBRACKET exp COMMA exp RBRACKET 
exp      : ID 
 
decls    : decl 
decls    : decl decls 
 
decl     : FUN ID LBRACKET ID RBRACKET EQU exp 
decl     : FUN ID LBRACKET ID COMMA ID RBRACKET EQU exp 
decl     : VAL ID EQU exp 

 

Figure 52. The grammar definition for LQ. 

 

Figures 53 and 54 below show a simple LQ program and the corresponding compiled program. 

The translation of the functions turn() and sew(), and the user-defined functions unturn() 

and pile() can be seen. It illustrates the use of branching instructions to implement function 

calls, with all necessary quilt parameters loaded into temporaries before a function call. Note in 

Figure 54 the very first instruction is a branch instruction, Br label @199, that skips the first 

user-defined function, unturn(). Following the first user-defined function is yet another branch 

instruction, Br label @299, forcing program flow to skip the second user-defined function, 

pile(), as well. Those functions are only to be executed via the Call instructions. Each of 
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these two functions has a Ret instruction that will return program flow to the instruction just 

after the corresponding Call instruction that invoked the function. 

 

 let 
    fun unturn(x)=turn(turn(turn(x))) 
    fun pile(x,y)=unturn(sew(turn(y),turn (x))) 
in 
    pile(unturn(a),turn(a)) 
end 

 

Figure 53. A function defined in LQ. 

 

The Load $n instruction pushes temporary number n onto the stack. This is in contrast to the 

Store $n instruction that pops the top Quilt instance off the stack and saves it in temporary 

number n. The temporaries used in this example are used to pass local parameters (quilts) to 

functions. The instructions QuiltA and QuiltB simply push one of either of the elementary 

quilts A or B onto the stack. The instructions Turn and Sew pop the top quilt off the stack, 

perform a turn or sew operation, and push the resultant quilt back on. 

 

      Br label @199 
 
    (* unturn($1) *) 
@100 
     Load $1 
     Turn 
     Turn 
     Turn 
     Ret 
@199 
     Br label @299 
 
     (* pile($1,$2) *) 
@200 
     Load $2 
     Turn 
     Load $1 
     Turn 
     Sew 
     Store $1 
     Call label @100 
     Ret 
 
     (* program start *) 
@299 
     QuiltA 
     Store $1 
     Call label @100 
     QuiltA 
     Turn 
     Store $2 
     Store $1 
     Call label @200 

 

Figure 54. Translation of a function defined in LQ. 

 

Example software for LQ, developed as part of this study, is illustrated in Figure 55. The 

software makes use of a canvas to render the desired quilt onto a canvas, and features a text 

editor alongside to define the pattern. The menu option Compile will perform a compile of the 
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displayed LQ program and then execute the compiled program in one step, without any further 

user intervention. As a result, a quilt will be rendered on the canvas alongside. 

 

 

Figure 55. LQ using the VM Framework in the context of a GUI. 

 

6.6 Scaling up the RT DSL for the VM Framework Approach 

 

Again the RT DSL is scaled up by adding an ambient construct. As in the hard-coded VM 

approach, modifications are required in both the VM and the compiler. The compiler’s lexer will 

need to incorporate a new keyword ambient and the grammar for the compiler’s parser needs 

to be altered to match on this new keyword and produce a node on the AST representing the 

ambient construct. 

 

This additional AST node of the ambient construct will be handled in the same way as it was 

handled in the modification to the DSL-compiler described in Chapter 4, Section 4.5, as it 

amounts to generating the same sequence of instructions that alter the ambient lighting of the 

scene. 

 

A new instruction needs to be added to the instruction set, as was the case in Section 4.5, but 

this time no risky modification is needed for the VM. Nor does the lexer and parser for the VM 

need to be modified in any way to support this new instruction. Adding this new instruction 

simply entails creating an instruction class, Ambient, which subtypes one of the five abstract 

instruction classes. The Ambient instruction has no operands, and thus subtypes Inst_OpCode 

and is shown in Figure 58. Once this class is compiled to a DLL, it can be added to the 
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instruction set by adding it to the list of instructions specified in the configuration file. This is 

shown in Figure 59. 

  

6.6.1 Extending EXP to suite the RT language 

 

The environment EnvExp features a runtime stack, of C# object instances. For its use in the 

EXP environment, the object instances will be of type double. A quadric is defined by the 

equation q(x,y,z) in Figure 4. By supplying the appropriate set of coefficients, namely a11, a22, 

a33, a23, a13, a12, b1, b2, b3 and c, any quadric can be represented. However, consider for 

example the definition of a sphere, where the coefficients; a23, a13, a12, b1, b2, b3 and c, are all 

0. Then the definition for a sphere simply amounts to 

 

2
33

2
22

2
11),,( zayaxazyxq ++=                                 …(2) 

 

Typically, a radius parameterizes a sphere, so the coefficients in the above case would be 

defined as 

 

2332211
1
r

aaa ===                                          …(3) 

 

Thus it is certainly helpful, in setting up a quadric, to have some arithmetic operations in 

assigning values to the necessary coefficients. In the above case, equation (3) prompts for a 

multiplication, and a division of real values. Figure 56 and 57 shows the environment EnvExp, 

and the environment EnvRT as a subclass of EnvExp, which includes the runtime stack. 

 

 

EnvExp 
 
 
GetResult():object

Env 
 
 
GetResult():object

run-time stack Stack 
 
stack:object[] 
 
push() 
pop():object 
peek():object 
isEmpty:bool 

 

Figure 56. The EnvExp environment. 
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EnvExp 
 
 
GetResult():object

Env 
 
 
GetResult():object

run-time stack Stack 
 
stack:object[] 
 
push() 
pop():object 
peek():object 
isEmpty:bool 

EnvRT 
 
 
GetResult():object

Bitmap

Scene 
 
 
render() 
ShootRay() 

objects in scene

result canvas

 

Figure 57. The EnvRT environment as an extension to EnvExp. 

 

6.6.2 Adding a Construct 

 

Recall the discussion in Chapter 3, Section 3.7, which illustrated the requirements for adding a 

construct in the hard-coded VM approach. For comparative purposes, the implications of 

adding the same ambient construct to the RT DSL in the context of the VM Framework will be 

discussed. The changes made to the RT DSL-compiler are identical, as the same sequence of 

instructions is to be produced for the compiled program. However it will be shown in the 

following section that the changes made on the VM side are far simpler. Because of this 

simplicity, there is a low risk of error when adding a new instruction to the instruction set. It is 

simply a matter of coding a new instruction as a class, and registering it as an instruction via 

the configuration file. 

 

6.6.3 Components Requiring Alteration 

 

The compiler is modified as outlined in Section 4.5.2, the lexer and grammar are modified to 

accept the new keyword ambient, and translation of the ambient construct involves the 

generation of the same sequence of instructions. On the VM side, no alteration to the VM’s 

lexer or parser is necessary.  An appropriate instruction class simply subtypes the abstract 

instruction class Inst, and the new instruction is registered with the instruction set via the 

configuration file. Parsing this new instruction from the DSL-compiled program is performed 
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automatically according to the name of the instruction given in the configuration file, and the 

appropriate operands being inferred from the type of instruction that the new class subtypes. 

In the example Ambient instruction, the instruction class Ambient extends class Inst_OpCode, 

and hence no opcode will be expected by the parser when the DSL-compiled program is read 

by the VM’s loader. The Ambient instruction itself will be parsed as such, since it has been 

included in the instruction set defined by the configuration file. The Ambient instruction is 

shown below in Figure 58. Note its similarity and differences in expressing the semantics to the 

hard-coded VM discussed in Chapter 4.  

 

 public class Ambient : Inst_OpCode 
{ 
 public Ambient (EnvRT env) 
 { 
  this.env = env; 
 } 
 
 public override void Execute () 
 { 
  double amz = (double) ((EnvRT) env).stack.pop (); 
  double amy = (double) ((EnvRT) env).stack.pop (); 
  double amx = (double) ((EnvRT) env).stack.pop (); 
  ((EnvRT) env).scene.alterAmbient (amx, amy, amz); 
 } 
} 

 

Figure 58. The Ambient instruction extends Inst_OpCode (no operands.) 

 

The last change required is to the configuration file, adding the instruction Ambient using the 

environment class EnvRT. 

 

 (* Create an instance of the ray-tracer environment. *) 
environment EnvRT 
 
... 
COP       using EnvRT 
LookAt    using EnvRT 
VUP       using EnvRT 
Ambient   using EnvRT 
Geometry  using EnvRT 
Specular  using EnvRT 
Diffuse   using EnvRT 
... 

 

Figure 59. Adding the Ambient instruction to the instruction set. 

 

6.7 Modularity 

 

The VM Framework is shown to be highly modular, in that the work required to scale up or 

alter a language, is encapsulated in either an environment or a set of instructions. The 

environments and instructions needn’t warrant any amendment at all. They simply comply to 

the rules of the VM Framework, i.e. certain instructions need to be subtypes of the appropriate 
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instruction classes of the VM Framework and the environments need to be subtypes of the 

environment class of the VM Framework and override its abstract method GetResult(). Only 

the translation rules of the compiler will need attention. 

 

6.8 Summary 

 

This chapter has provided a detailed description of the process involved for building or 

customizing a DSL for a particular use. This entails thinking about the instructions that are 

necessary to facilitate the semantics of the DSL constructs, though as described, the VM 

Framework allows easy adaptation for instructions that require alteration at a later stage and 

also allow for increasing the size of the instruction set itself. Once a set of instructions is in 

place, a simple translator is required to map the DSL syntax, into sequences of instructions 

that execute on the VM instance. The instruction set is configured for the VM via a 

configuration file. This process was demonstrated using two example languages – EXP, a 

simple real-valued expression language, and Little Quilt or LQ, a small language for 

manipulating and compounding patterns. Both use a runtime stack to perform operations on 

their respective primitives (numbers or quilts respectively) and both illustrate the use of the 

VM in its intended context; that of streamlining the development of a DSL for a particular end-

user, and leaving the DSL open for future enhancements and even allowing the DSL to grow 

into another useful language, if they are based on the same environments and similar 

instructions. 

 

6.8.1 What the VM Framework is Not Intended to Provide 

 

This section reaffirms what the VM Framework is not; or rather it serves to warn the user of 

the VM Framework of how not to approach the use of it. The following list itemizes 

preconceptions of how a developer might potentially perceive the VM Framework to be: 

 

1. It should not be treated as a precompiled, standalone VM of some predefined 

instruction set. 

 

2. It should not be treated as a system that provides an automated process for the 

creation of a language or a standalone VM. 

 

3. The VM Framework is intentionally not a code generation tool and does not provide any 

functions to process archetypes that define code translation rules. However, there is no 

reason why a translation DSL cannot be created using the Framework, and as such, the 
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instructions provided by the user could potentially be used as functions to emit 

sequences of translated code to a file. 

 

4. Regarding the VM Framework as a mechanism for building DSLs, it does not facilitate 

solely the creation of functional languages as prescribed, though functional languages 

tend to be easier to get up and running, and serve as intuitive examples. 

 

5. Once a VM has been created that sufficiently implements the semantics of a DSL, and 

prototyping of the DSL is at its completion, then it is not necessary to make use of the 

configured VM as the target runtime system if a higher degree of performance is 

required. It may be useful to use a second software engineering step to hard-code the 

instruction set, and the environment, into a more compact module that executes the 

compiled program at a more native level. 

 

6.8.2 What the VM Framework Does Provide 

 

It is necessary at this point to highlight what the VM Framework provides to the developer 

intending to extend it or put another way, to indicate how it differs from a traditional VM that 

is not extendable and has a hard-coded instruction set. The following is a list, itemizing the 

roles of the VM Framework for a developer: 

 

1. It provides a means to take an existing domain or namespace, and expose that 

namespace in such a way that it appears to an end-user as a DSL, simplifying the task 

of reusing operations and data structures within the namespace. 

 

2. It provides the opportunity to design readable, and intuitive DSL syntax, and implement 

DSL translators to invoke the reusable operations and data structures within the 

namespace. 

 

3. The VM Framework includes a top-level class, EVM, which is essentially representative of 

a VM with an empty instruction set. 

 

4. It provides a single interface, in terms of an abstract environment class, for any data 

structure or environment that is suitable for facilitating the semantics of the DSL, and 

that is updated during DSL-program execution. 

 

5. It provides five interfaces, in terms of abstract instruction classes, for any operations 

that are suitable for updating the environment during program execution, leaving the 
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environment in a consistent state, i.e. the semantics can be specified in terms of pre- 

and post-conditions on the operations. 

 

6. It provides a mechanism to configure an instance of a VM, using a configuration file, to 

register instructions and environments for a VM instance of a particular DSL. This 

implies the existence of a pool of instructions and environments, that through careful 

selection of instructions and environments from this pool, a developer can easily create 

an efficient and effective VM for a DSL. 

 

7. It provides a parser for loading program source files of a DSL-compiled program, whose 

instructions are defined within the configuration file, and it also provides the parser to 

parse the configuration file. 

 

8. The VM Framework, being of an object-oriented nature, allows environments to subtype 

existing environments that already provide partial functionality that is likely to be 

suitable for a particular DSL being developed. 
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7 Comparative Results 

 

 

 

 

 

 

 

This chapter provides a summary of the performance of the execution of a DSL-compiled 

program. The performance test is done for each of the three DSL development techniques 

described in the dissertation, namely the interpreter, the hard-coded VM, and a VM instance 

built using the VM Framework. To measure the performance of DSL-compiled program 

execution, a simple time measurement is taken. There are two time intervals that are 

measured between three different types of information. The machine used for the performance 

test features a Pentium III, 450 MHz processor, with 128 Mbytes of RAM, running the Windows 

2000 OS. The time measurements are consistent over numerous runs. The three types of 

information are named, and described next. 

 

SRC: 

This refers to an example DSL-program containing the source code of a program written in the 

language of the DSL. 

 

IS: 

This is the instruction sequence that is the output of the compiler’s effort to translate the 

source DSL-program into the instructions ready to be executed by the VM. 

 

SEM: 

This refers to a complete piece of information or a populated data structure or some form of 

observable output, which is the result of executing the instruction sequence. Thus SEM is will 

be an instance of a data structure holding the result of a computation. 
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The two time intervals measured are the time taken to generate an instruction sequence from 

a given source file (SRC  IS) and the time taken to compute the final results of a DSL-

compiled program execution (IS  SEM). 

 

SRC  IS: 

This is the time taken to parse a program written in the language of the DSL, to build an AST, 

and further translate the nodes of the AST into executable instructions. The example DSL used 

for the experiment is the RT DSL, and the example program used is shown in Figure 9, named 

test1.scene and is also found on the accompanying CD. 

 

IS  SEM: 

This refers to the time taken to parse and load the instructions of a DSL-compiled program, 

and further generate a data structure, which is the result of the execution of the compiled 

program. For the RT DSL, the result returned by the GetResult() method on the environment 

will be an instance of a System.Drawing.Bitmap. Execution of the instructions incrementally 

builds an RT data structure, composed of quadrics and will only be rasterized once a call to the 

GetResult() method is made. Thus the rasterization process of the image is not part of the 

time measurement, only the creation of the RT data structure. The image is saved as a file 

after the time measurement is taken.  

 

Clearly, in the interpretation approach, there is no intermediately generated instruction 

sequence. However, there is nonetheless a flow of information between SRC and SEM, and 

thus only the time between SRC and SEM will be noted. 

 

Comparative performance results were done for the three different DSL implementations 

described in the dissertation: an interpreter, a hard-coded VM and the VM Framework. Two 

time intervals are compared for each implementation: compiling DSL-program source code to 

an instruction sequence (SRC IS); and executing the instructions to observe the semantics 

(IS SEM). The total time (SRC SEM) is also calculated. The resolution of the timing 

mechanism is 100 nanoseconds, as this is the default resolution offered by the Windows 2000 

operation system. Under the .NET environment, each 100-nanosecond time interval is called a 

tick. The interpreter does not generate any intermediate instruction sequence, as the 

semantics are interpreted directly from the AST, and thus only the total time (SRC SEM) is 

relevant for the interpreter. The hard-coded VM has a predefined set of instructions and the 

VM Framework is similarly configured with the same set of instructions. For the purpose of the 

experiment, the same DSL was used for each implementation. 

 

From the performance results in Figure 60, it can be seen that using some of the reflection 

properties of .NET does not necessarily impede the compiled program’s execution speed, and 

in this case it is actually shown to perform better than its hard-coded counterpart. Naturally, 
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the interpreter is quickest to deliver observable results. However, it suffers from a lack of 

scalability, and modifying the interpreter to fit above an existing namespace is a cumbersome 

task. The hard-coded VM suffers less from scalability problems, as it is easier to add new 

instructions as part of the VM core, and amend the grammar to accept a wider range of 

instructions. But instructions are not reusable by another DSL, as they are executed as 

functions with parameters from within the VM core. The VM Framework treats environments 

and instructions that access these environments as separate external libraries or DLLs and 

they do not form part of the VM Framework’s namespace. Rather, these DLLs are configured 

together as a set of building blocks to yield a customized VM instance for a particular DSL. 

Furthermore, the VM Framework easily accommodates the scaling up of the DSL with new 

constructs as the need arises.  
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Figure 60. Comparative performance results of the DSL implementations. 

 

The illustrating software in this dissertation was developed in C# which naturally prompts for 

further investigation of DSL VMs in languages other than those that execute on top of the .NET 

CLR. That in itself lends to the scalability nature of the VM Framework, as different instructions 

can be implemented in different languages, provided those languages have compilers that 

generate code that runs on the .NET CLR. 

 

A summary of the different criteria used to evaluate the 3 types of semantic techniques is 

shown below. For simplicity, 3 degrees of indication are depicted and are briefly described in 

the legend. 

 

 

 

 

 99 



7.1 Summary 

Legend: 

 : Good 

 : Average 

 : Poor 

 Scalability Performance Modularity 

Interpreter  
Difficult and 

cumbersome to modify 

a language and alter 

semantics. 

 
Interpretation of AST 

done in same program, 

and there’s no IS. 

 
Syntax and semantics 

issues are fairly 

dependant on one 

another. 

Hard-coded 

VM 
 

Instructions are still 

required to be hard-

coded as part of the 

core. 

 
Compiled program 

needs to be parsed 

before it can be 

executed. 

 
Minimal effort required 

adding new instructions 

to the VM core. 

VM 

Framework 
 

Easily add new 

instructions and 

environments as the 

language grows. 

 
Comparable 

performance to the 

hard-coded VM, but 

slightly faster for 

compiled program 

execution. 

 
Instructions and 

environments form the 

link between the VM 

and the underlying 

namespace, and are 

easily modified as the 

namespace expands. 

Table 4. Summary of criteria. 

 

7.1 Summary 

 

This section compares the relative performance of the three different types of ways to process 

a DSL-program. This section does not aim to promote any particular means over the other, as 

it is noted in the above table that all three cases have valid arguments in their favour. Rather, 

it was necessary to show how a VM developed for a particular DSL, using the VM Framework, 

compares relative to other means of DSL-program execution. The performance criteria used 

were scalability, performance and modularity. Scalability concerns measuring just how easy a 

language can be extended to include new constructs, and concepts in the underlying 

namespace. Performance concerns the actual time taken to execute a DSL-program using one 

of the aforementioned VMs and measurement was taken in 100-nanosecond ticks. Lastly, 
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modularity relates more to the risk of making a modification to the DSL software, i.e. it 

addresses questions such as how well compartmentalized is the software? To add a construct, 

does a change need to be made somewhere deep in the code or can a new class simply be 

extended or added? 
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8 Future Work 

 

 

 

 

 

 

 

The VM Framework is used for building DSL VMs to execute on a HLL VM. In this study, the 

HLL VM used was the .NET CLR. This idea naturally prompts for further investigation of DSL 

VMs written in languages other than those that execute on an HLL VM such as the .NET CLR. 

This requires isolating the essential components that were used in this study, such as dynamic 

loading of classes, and examining how these features are used in other languages. Embedded 

systems, for example, would not typically be written in a .NET CLR language such as C#, but 

are more likely to be built using C/C++ or an assembler to generate native machine code with 

much smaller footprints as storage is often a limitation in such systems. However, DSLs may 

still be useful in that area if embedded system software designers can isolate separate aspects 

of the software. 

 

Other future works might include focusing on the usability aspects of creating DSLs, such as 

GUIs or an interactive DSL development environment. Some obvious next steps are listed 

below and further elaborated upon, and may prove to be useful investigations. Section 8.1 

proposes a GUI for the VM Framework, Section 8.2 proposes multiple environment and 

namespaces, and lastly Section 8.3 discusses architectural DSLs. 

 

8.1 Graphical User Interface for the Virtual Machine Framework 

 

Currently the VM Framework is purely a set of classes written in C#, the rationale behind 

which is to allow for rapid prototyping of new languages as specified by an end-user. End-

users and experts alike expect a DSL to streamline their daily routines, and so one can also 

envision streamlining the actual task of developing the DSL itself in a RAD environment. This 

would entail the design of an IDE. The necessary tools for creating the DSL would all be 
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combined into one development environment. The system should feature a text editor for 

defining the syntax of a DSL, the operational semantics of the DSL VM and test programs to be 

executed by the defined DSL VM. The system’s output should feature an open interface so as 

to allow a developer to plug-in a component, such as a separate console for textual outputs or 

even a canvas to display any graphs or images that are part of the test program’s output. The 

system should also have a scratchpad environment for any VM currently under test. A system 

using some of the reflection features of .NET can generate a VM as a DLL. A similar application 

is outlined in Klint’s ASD MetaEnvironment and allows the user to build syntax and semantics 

for a particular DSL [vdBra01]. 

 

8.2 Multiple Environments and Namespaces 

 

It has been shown that the VM Framework is modular and treated as an object once the top-

level EVM class is instantiated, and thus no assumption is made regarding its context of 

execution. Expanding on this idea, it may be interesting to examine how efficient the 

development process can be made by allowing many different VM instances to interact with 

one another, and hence allowing each VM instance to be responsible for the execution of a 

different DSL-program. The interaction of the constituting VMs can be controlled via a common 

interface as shown in Figure 61. The DSLs should all feature a syntax (either static such as 

having predefined types or keywords, or dynamic such as the ability to create user-defined 

types) that facilitates this communication in a meaningful way. 

 

 

Common Communication 
Architecture 

DSL VMA DSL VMB DSL VMC 

HLL VM 

DSLA DSLB DSLC 

 

Figure 61. Communicating DSL infrastructure. 

 

Each DSL will configure a separate concern of the system. This is similar to Aspect Oriented 

Programming (AOP) [Kic96]. AOP makes use of an Aspect Weaver to fuse each program 
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together at certain points called joins, to yield a single program, be it in Java, C# or C++. 

Using VMs there will be no generated code that needs compiling, but instead there will be code 

that can be reinserted back into a system at runtime. Again, this is useful in prototyping 

environments as mentioned above, but this time more than one language is considered. Thus 

it should be possible to have a prototyping environment with a language to control a set of test 

cases, another language to control concurrent processes or temporal logic, and perhaps a 

further language to reconfigure the GUI for a particular end-user requirement. 

 

8.3 Architectural DSLs 

 

Earlier in the dissertation it was mentioned that the DSL design and development should not 

be restricted to a particular end-user, but rather that seasoned software practitioners should 

also design their own DSL suited for their own needs. This is all very well if the practitioner can 

identify a layer of software that exhibits a set of rules or is somehow exposed as an API, and 

no further modification will be done to that software layer. The example used earlier was the 

OpenGL API, which is exposed as a graphical library accessible through most platforms 

supporting C/C++, Delphi, Visual Basic and the like. It is possible to treat OpenGL as a 

namespace in itself and provide some wrapper classes to aid in further building a complete 

configurable namespace. Other layers of software suitable for DSLs include ports and sockets, 

databases and GUIs. However, the problem arises when the developer also wishes to consider 

non-standardized software layers or their own in-house software layers, where modifications 

are done on a regular basis. In that case, the developer does not want to be restricted to 

constructs defined by a high-level DSL, and it would be far more practical for the developer to 

use a low-level language like Java or C++ for greater flexibility. 

 

That said, suppose the developer would, nonetheless, still like to take advantage of a 

language, tailored to his or her needs, yet still have a high degree of flexibility like typical 

object-oriented languages. In this case it is worth considering the actual architecture of the 

software. Architecture can usually be narrowed down to a set of rules or even standards that 

are decided upon before further software design commences. Software design is then based on 

the decided architecture. It may be feasible to encapsulate the architecture, and expose some 

of the architecture as constructs, as well as the relevant object-oriented constructs. The 

language itself, though, will be far less concise than the likes of RT and others mentioned, but 

it serves a more industrial purpose. It is clear that this is a more daunting task for DSL 

designers. A good example of a software architecture is the architecture of Shlaer-Mellor based 

systems. These systems are designed around an event kernel, which facilitates instantiation of 

objects, polymorphism and message passing for active (state machine driven) objects and so 

on. The event kernel is written in the language of the domains, such as C, and using it in 

practice is cumbersome. Clearly, building a language to expose some of the event kernel 
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functionality in a syntactically elegant manner, while still leaving the relevant C language 

constructs, such as loops and arrays, will make for improved efficiency. Thus it will be 

beneficial to examine more closely these architectural aspects as extensions to DSL design. 
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Conclusion 

 

 

 

 

 

 

 

The focus of this research has been to develop a framework in which to easily and cost 

effectively build DSLs on behalf of an expert who has domain knowledge, and who requires a 

textual, programmatic means to represent solutions to problems inherent within their domain 

of expertise. The intuitiveness of a language in this case is paramount, as it is not the job of 

the expert to apply, nor understand an industrialized approach to software development. This 

task consumes valuable time and it is more to an expert’s advantage if she had a computer 

language that captures the fundamentals of her domain knowledge. The aim of this 

dissertation is to provide a VM Framework that allows rapid development of such DSLs, with 

emphasis on language scalability. Scalability often comes at a performance cost, but it is 

shown in this study that performance results are less of a concern, in that the VM Framework’s 

performance is comparable to similar hard-coded VM variants. The VM Framework also relies 

on certain features offered by .NET platform to configure an instantiated VM at runtime, and 

.NET DLLs are used extensively to aid in flexibility and modularity. For the VM Framework to 

serve any use it must be extended by a set of concrete classes that form the instruction set 

and environments suitable for a particular DSL. Typically, a domain expert will work alongside 

a software practitioner to collaboratively tailor a DSL to the expert’s or end-user’s needs. Thus 

the syntax of constructs needs to be refined to be as intuitive as possible, while the 

practitioner needs to decide what type of instructions are necessary to facilitate the semantics 

of the constructs.  This may involve a few iterations but a flexible VM Framework will aid in the 

development lifecycle of the DSL. 

 106 



 

Appendix 

 

 

The following listings are the complete LG and PG (lexer and parser) definitions for each of the 

languages mentioned in the dissertation; the Ray-Tracer language (RT), the real-valued 

expression language (EXP) and the Little Quilt Language (LQ), including an example DSL-

program of each language. The listing titles are positioned above the listing for legibility. The 

complete source code of the VM Framework, and all example programs are on the 

accompanying CD. 

 

Listing 1. RT DSL complete lexer definition. 

%lexer 
%token                   DOUBLE {public double val;} 
"{"                      %LBRACE 
"}"                      %RBRACE 
"scene"                  %SCENE 
"window"                 %WINDOW 
"light"                  %LIGHT 
"cop"                    %COP 
"lookat"                 %LOOKAT 
"viewup"                 %VIEWUP 
"ambient"                %AMBIENT 
"geometry"               %GEOM 
"specular"               %SPECULAR 
"diffuse"                %DIFFUSE 
"reflective"             %REFLECTIVE 
"refractive"             %REFRACTIVE 
"sphere"                 %SPHERE 
"plane"                  %PLANE 
"translate"              %TRANSLATE 
[-+]?[0-9]+(\.[0-9]+)?   %DOUBLE {val = Double.Parse (yytext);} 
[ \n\r\f\t]              ; 
"(*"                     {yybegin ("COMMENT");} 
<COMMENT>"*)"            {yybegin ("YYINITIAL");} 
<COMMENT>.               ; 
<COMMENT>\n              ; 
 

 

Listing 2. RT DSL complete grammar definition. 

%parser rtc.lexer 
 
%{ 
using System.IO; 
%} 
 
%symbol scene_desc 
{ 
 public virtual void translate (StreamWriter asmFile) {} 
} 
 
%symbol element_list 
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{ 
 public virtual void translate (StreamWriter asmFile) {} 
} 
 
%symbol element 
{ 
 public virtual void translate (StreamWriter asmFile) {} 
} 
 
%symbol scene_prop 
{ 
 public virtual void translate (StreamWriter asmFile) {} 
} 
 
%symbol prim_prop_list 
{ 
 public virtual void translate (StreamWriter asmFile) {} 
} 
 
%symbol prim_prop 
{ 
 public virtual void translate (StreamWriter asmFile) {} 
} 
 
%symbol prim 
{ 
 public virtual void translate (StreamWriter asmFile) {} 
} 
 
 
 
%node scene_desc1 : scene_desc 
{ 
 public element_list el; 
 public scene_desc1 (element_list el) {this.el = el;} 
 public override void translate (StreamWriter asmFile) 
 { 
  el.translate (asmFile); 
 } 
} 
 
%node element_list1 : element_list 
{ 
 public element_list el; 
 public element e; 
 public element_list1 (element_list el, element e) {this.el = el; this.e = 
e;} 
 public override void translate (StreamWriter asmFile) 
 { 
  if (el != null) el.translate (asmFile); 
  if (e != null) e.translate (asmFile); 
 } 
} 
 
%node element1 : element 
{ 
 public scene_prop sp; 
 public element1 (scene_prop sp) {this.sp = sp;} 
 public override void translate (StreamWriter asmFile) 
 { 
  sp.translate (asmFile); 
 } 
} 
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%node element2 : element 
{ 
 public prim p; 
 public prim_prop_list ppl; 
 public element2 (prim p, prim_prop_list ppl) {this.p = p; this.ppl = ppl;} 
 public override void translate (StreamWriter asmFile) 
 { 
  p.translate (asmFile); 
  ppl.translate (asmFile); 
 } 
}  
 
%node scene_prop1 : scene_prop 
{ 
 public double d1, d2; 
 public scene_prop1 (double d1,double d2) {this.d1=d1;this.d2=d2;} 
 public override void translate (StreamWriter asmFile) 
 { 
  asmFile.WriteLine ("     Push {0}", d1); 
  asmFile.WriteLine ("     Push {0}", d2);   
  asmFile.WriteLine ("     SetWindow"); 
  asmFile.WriteLine ("     Axes\n"); 
 } 
} 
 
%node scene_prop2 : scene_prop 
{ 
 public double d1, d2, d3; 
 public scene_prop2 (double d1,double d2,double d3) 
{this.d1=d1;this.d2=d2;this.d3=d3;} 
 public override void translate (StreamWriter asmFile) 
 { 
  asmFile.WriteLine ("     Push {0}", d1); 
  asmFile.WriteLine ("     Push {0}", d2); 
  asmFile.WriteLine ("     Push {0}", d3); 
  asmFile.WriteLine ("     Light"); 
  asmFile.WriteLine ("     Axes\n");   
 } 
} 
 
%node scene_prop3 : scene_prop 
{ 
 public double d1, d2, d3; 
 public scene_prop3 (double d1,double d2,double d3) 
{this.d1=d1;this.d2=d2;this.d3=d3;} 
 public override void translate (StreamWriter asmFile) 
 { 
  asmFile.WriteLine ("     Push {0}", d1); 
  asmFile.WriteLine ("     Push {0}", d2); 
  asmFile.WriteLine ("     Push {0}", d3); 
  asmFile.WriteLine ("     COP"); 
  asmFile.WriteLine ("     Axes\n");   
 } 
} 
 
%node scene_prop4 : scene_prop 
{ 
 public double d1, d2, d3; 
 public scene_prop4 (double d1,double d2,double d3) 
{this.d1=d1;this.d2=d2;this.d3=d3;} 
 public override void translate (StreamWriter asmFile) 
 { 
  asmFile.WriteLine ("     Push {0}", d1); 
  asmFile.WriteLine ("     Push {0}", d2); 
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  asmFile.WriteLine ("     Push {0}", d3); 
  asmFile.WriteLine ("     LookAt"); 
  asmFile.WriteLine ("     Axes\n");   
 } 
} 
 
%node scene_prop5 : scene_prop 
{ 
 public double d1, d2, d3; 
 public scene_prop5 (double d1,double d2,double d3) 
{this.d1=d1;this.d2=d2;this.d3=d3;} 
 public override void translate (StreamWriter asmFile) 
 { 
  asmFile.WriteLine ("     Push {0}", d1); 
  asmFile.WriteLine ("     Push {0}", d2); 
  asmFile.WriteLine ("     Push {0}", d3); 
  asmFile.WriteLine ("     VUP"); 
  asmFile.WriteLine ("     Axes\n");   
 } 
} 
 
%node scene_prop6 : scene_prop 
{ 
 public double d1, d2, d3; 
 public scene_prop6 (double d1,double d2,double d3) 
{this.d1=d1;this.d2=d2;this.d3=d3;} 
 public override void translate (StreamWriter asmFile) 
 { 
  asmFile.WriteLine ("     Push {0}", d1); 
  asmFile.WriteLine ("     Push {0}", d2); 
  asmFile.WriteLine ("     Push {0}", d3); 
  asmFile.WriteLine ("     Ambient"); 
  asmFile.WriteLine ("     Axes\n");   
 } 
} 
 
%node prim_prop_list1 : prim_prop_list 
{ 
 public prim_prop_list ppl; 
 public prim_prop pp; 
 public prim_prop_list1 (prim_prop_list ppl, prim_prop pp) {this.ppl = ppl; 
this.pp = pp;} 
 public override void translate (StreamWriter asmFile) 
 { 
  if (ppl != null) ppl.translate (asmFile); 
  if (pp != null) pp.translate (asmFile); 
 } 
} 
 
%node prim_prop1 : prim_prop 
{ 
 public double d1, d2, d3, d4; 
 public prim_prop1 (double d1,double d2,double d3,double d4) 
{this.d1=d1;this.d2=d2;this.d3=d3;this.d4=d4;} 
 public override void translate (StreamWriter asmFile) 
 { 
  asmFile.WriteLine ("     Push {0}", d1); 
  asmFile.WriteLine ("     Push {0}", d2); 
  asmFile.WriteLine ("     Push {0}", d3); 
  asmFile.WriteLine ("     Push {0}", d4); 
  asmFile.WriteLine ("     Geometry\n"); 
 } 
} 
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%node prim_prop2 : prim_prop 
{ 
 public double d1, d2, d3; 
 public prim_prop2 (double d1,double d2,double d3) 
{this.d1=d1;this.d2=d2;this.d3=d3;} 
 public override void translate (StreamWriter asmFile) 
 { 
  asmFile.WriteLine ("     Push {0}", d1); 
  asmFile.WriteLine ("     Push {0}", d2); 
  asmFile.WriteLine ("     Push {0}", d3); 
  asmFile.WriteLine ("     Specular\n"); 
 } 
} 
 
%node prim_prop3 : prim_prop 
{ 
 public double d1, d2, d3; 
 public prim_prop3 (double d1,double d2,double d3) 
{this.d1=d1;this.d2=d2;this.d3=d3;} 
 public override void translate (StreamWriter asmFile) 
 { 
  asmFile.WriteLine ("     Push {0}", d1); 
  asmFile.WriteLine ("     Push {0}", d2); 
  asmFile.WriteLine ("     Push {0}", d3); 
  asmFile.WriteLine ("     Diffuse\n"); 
 } 
} 
 
%node prim_prop4 : prim_prop 
{ 
 public double d1, d2, d3; 
 public prim_prop4 (double d1,double d2,double d3) 
{this.d1=d1;this.d2=d2;this.d3=d3;} 
 public override void translate (StreamWriter asmFile) 
 { 
  asmFile.WriteLine ("     Push {0}", d1); 
  asmFile.WriteLine ("     Push {0}", d2); 
  asmFile.WriteLine ("     Push {0}", d3); 
  asmFile.WriteLine ("     Reflect\n"); 
 } 
} 
 
%node prim_prop5 : prim_prop 
{ 
 public double d1, d2, d3; 
 public prim_prop5 (double d1,double d2,double d3) 
{this.d1=d1;this.d2=d2;this.d3=d3;} 
 public override void translate (StreamWriter asmFile) 
 { 
  asmFile.WriteLine ("     Push {0}", d1); 
  asmFile.WriteLine ("     Push {0}", d2); 
  asmFile.WriteLine ("     Push {0}", d3); 
  asmFile.WriteLine ("     Refract\n"); 
 } 
} 
 
%node prim_prop6 : prim_prop 
{ 
 public double d1, d2, d3; 
 public prim_prop6 (double d1,double d2,double d3) 
{this.d1=d1;this.d2=d2;this.d3=d3;} 
 public override void translate (StreamWriter asmFile) 
 { 
  asmFile.WriteLine ("     Push {0}", d1); 
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  asmFile.WriteLine ("     Push {0}", d2); 
  asmFile.WriteLine ("     Push {0}", d3); 
  asmFile.WriteLine ("     Translate\n"); 
 } 
} 
 
%node prim1 : prim 
{ 
 public double d1; 
 public prim1 (double d1) {this.d1=d1;} 
 public override void translate (StreamWriter asmFile) 
 { 
  // Generate Sphere code. 
  asmFile.WriteLine ("(* Build a sphere. *)"); 
  asmFile.WriteLine ("     Quad");   
  asmFile.WriteLine ("     Push 1"); 
  asmFile.WriteLine ("     Push {0}", d1); 
  asmFile.WriteLine ("     Push {0}", d1); 
  asmFile.WriteLine ("     Mul"); 
  asmFile.WriteLine ("     Div"); 
  asmFile.WriteLine (@"     Coeff ""a11"""); 
  asmFile.WriteLine ("     Push 1"); 
  asmFile.WriteLine ("     Push {0}", d1); 
  asmFile.WriteLine ("     Push {0}", d1); 
  asmFile.WriteLine ("     Mul"); 
  asmFile.WriteLine ("     Div"); 
  asmFile.WriteLine (@"     Coeff ""a22"""); 
  asmFile.WriteLine ("     Push 1"); 
  asmFile.WriteLine ("     Push {0}", d1); 
  asmFile.WriteLine ("     Push {0}", d1); 
  asmFile.WriteLine ("     Mul"); 
  asmFile.WriteLine ("     Div"); 
  asmFile.WriteLine (@"     Coeff ""a33"""); 
  asmFile.WriteLine ("     Push -1"); 
  asmFile.WriteLine (@"     Coeff ""c"""); 
  asmFile.WriteLine (); 
 } 
} 
 
%node prim2 : prim 
{ 
 public double d1, d2, d3, d4; 
 public prim2 (double d1,double d2,double d3,double d4) 
{this.d1=d1;this.d2=d2;this.d3=d3;this.d4=d4;} 
 public override void translate (StreamWriter asmFile) 
 {   
  // Generate Plane code. 
  asmFile.WriteLine ("(* Build a plane. *)"); 
  asmFile.WriteLine ("     Quad"); 
  asmFile.WriteLine ("     Push {0}", d1); 
  asmFile.WriteLine (@"     Coeff ""b1"""); 
  asmFile.WriteLine ("     Push {0}", d2); 
  asmFile.WriteLine (@"     Coeff ""b2"""); 
  asmFile.WriteLine ("     Push {0}", d3); 
  asmFile.WriteLine (@"     Coeff ""b3"""); 
  asmFile.WriteLine ("     Push {0}", d4); 
  asmFile.WriteLine (@"     Coeff ""c"""); 
  asmFile.WriteLine (); 
 } 
} 
 
 
 
scene_desc : SCENE LBRACE element_list:el RBRACE           %scene_desc1 (el); 
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element_list :                                             %element_list1 (null, 
null); 
element_list : element_list:el element:e                   %element_list1 (el, 
e); 
 
element : scene_prop:sp                                    %element1 (sp); 
element : prim:p LBRACE prim_prop_list:ppl RBRACE          %element2 (p, ppl); 
 
scene_prop : WINDOW DOUBLE:d1 DOUBLE:d2                    %scene_prop1 
(d1.val,d2.val); 
scene_prop : LIGHT DOUBLE:d1 DOUBLE:d2 DOUBLE:d3           %scene_prop2 
(d1.val,d2.val,d3.val); 
scene_prop : COP DOUBLE:d1 DOUBLE:d2 DOUBLE:d3             %scene_prop3 
(d1.val,d2.val,d3.val); 
scene_prop : LOOKAT DOUBLE:d1 DOUBLE:d2 DOUBLE:d3          %scene_prop4 
(d1.val,d2.val,d3.val); 
scene_prop : VIEWUP DOUBLE:d1 DOUBLE:d2 DOUBLE:d3          %scene_prop5 
(d1.val,d2.val,d3.val); 
scene_prop : AMBIENT DOUBLE:d1 DOUBLE:d2 DOUBLE:d3         %scene_prop6 
(d1.val,d2.val,d3.val); 
 
prim_prop_list :                                           %prim_prop_list1 
(null, null); 
prim_prop_list : prim_prop_list:ppl prim_prop:pp           %prim_prop_list1 
(ppl, pp); 
 
prim_prop : GEOM DOUBLE:d1 DOUBLE:d2 DOUBLE:d3 DOUBLE:d4   %prim_prop1 
(d1.val,d2.val,d3.val,d4.val); 
prim_prop : SPECULAR DOUBLE:d1 DOUBLE:d2 DOUBLE:d3         %prim_prop2 
(d1.val,d2.val,d3.val); 
prim_prop : DIFFUSE DOUBLE:d1 DOUBLE:d2 DOUBLE:d3          %prim_prop3 
(d1.val,d2.val,d3.val); 
prim_prop : REFLECTIVE DOUBLE:d1 DOUBLE:d2 DOUBLE:d3       %prim_prop4 
(d1.val,d2.val,d3.val); 
prim_prop : REFRACTIVE DOUBLE:d1 DOUBLE:d2 DOUBLE:d3       %prim_prop5 
(d1.val,d2.val,d3.val); 
prim_prop : TRANSLATE DOUBLE:d1 DOUBLE:d2 DOUBLE:d3        %prim_prop6 
(d1.val,d2.val,d3.val); 
 
prim : SPHERE DOUBLE:d1                                    %prim1 (d1.val); 
prim : PLANE DOUBLE:d1 DOUBLE:d2 DOUBLE:d3 DOUBLE:d4       %prim2 
(d1.val,d2.val,d3.val,d4.val); 
 
 

Listing 3. RT example. 

(* Program to render 3 spheres floating above a plane. *) 
scene 
{  
 (* Define the settings for the scene. *) 
 window 300.0 200.0  
 light -3.5 0.5 2.0  
 cop 0.0 4.0 1.0  
 lookat 0.0 0.0 0.0  
 viewup 0.0 0.0 1.0  
 ambient 0.3 0.3 0.3  
  
 (* Define a bunch of spheres and a plane. *) 
 sphere 0.5 
 { 
  translate 1.0 0.0 0.0 
  specular 0.7 0.0 0.0 
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  diffuse 0.7 0.0 0.0 
  reflective 0.1 0.1 0.1   
 }  
 
 sphere 0.5 
 { 
  translate 0.0 -1.0 0.2 
  specular 0.0 0.7 0.0 
  diffuse 0.0 0.7 0.0 
  reflective 0.2 0.3 0.2   
 } 
  
 sphere 0.5 
 { 
  translate -1.0 -0.5 0.0 
  specular 0.0 0.0 0.7 
  diffuse 0.0 0.0 0.7 
  reflective 0.1 0.1 0.1   
 } 
  
 plane -0.1 0.0 1.0 1.0 
 { 
  specular 0.0 0.0 0.0 
  diffuse 1.0 0.5 0.0 
  reflective 0.25 0.25 0.25   
 } 
} 
 
 

Listing 4. EXP DSL complete lexer definition. 

%lexer 
%namespace ExpcLexer 
 
%token                   DOUBLE {public double val;} 
 
"let"                    %LET 
"in"                     %IN 
"end"                    %END 
"sum"                    %SUM 
".."                     %DOTDOT 
"="                      %EQU 
"+"                      %PLUS 
"-"                      %MINUS 
"*"                      %TIMES 
"/"                      %DIV 
"("                      %LBRACKET 
")"                      %RBRACKET 
[_a-zA-Z][_a-zA-Z0-9]*   %ID 
[-+]?[0-9]+(\.[0-9]+)?   %DOUBLE {val = Double.Parse (yytext);} 
[ \n\r\f\t]              ; 
"(*"                     {yybegin ("COMMENT");} 
<COMMENT>"*)"            {yybegin ("YYINITIAL");} 
<COMMENT>.               ; 
<COMMENT>\n              ; 
 
 

Listing 5. EXP DSL complete grammar definition. 

%parser expc.lexer 
%namespace ExpcParser 
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%{ 
using ExpcLexer; 
%} 
 
 
 
%symbol FExp; 
%symbol LetExp; 
%symbol var_list; 
%symbol var; 
%symbol exp; 
%symbol term; 
%symbol fact; 
 
 
 
%node FExp1 : FExp 
{ 
 public LetExp le; 
 public FExp1 (LetExp le) {this.le=le;} 
} 
 
%node LetExp1 : LetExp 
{ 
 public var_list vl; 
 public exp e1; 
 public LetExp1 (var_list vl, exp e1) {this.vl=vl;this.e1=e1;} 
} 
 
%node var_list1 : var_list 
{ 
 public var_list vl; 
 public var v; 
 public var_list1 (var_list vl, var v) {this.vl=vl;this.v=v;} 
} 
 
%node var1 : var 
{ 
 public string n; 
 public double d; 
 public var1 (string n, double d) {this.n=n;this.d=d;} 
} 
 
%node exp1 : exp 
{ 
 public exp e1; 
 public term t1; 
 public exp1 (exp e1,term t1) {this.e1=e1;this.t1=t1;} 
} 
 
%node exp2 : exp 
{ 
 public exp e1; 
 public term t1; 
 public exp2 (exp e1,term t1) {this.e1=e1;this.t1=t1;} 
} 
 
%node exp3 : exp 
{ 
 public term t1; 
 public exp3 (term t1) {this.t1=t1;} 
} 
 
%node term1 : term 
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{ 
 public term t1; 
 public fact f1; 
 public term1 (term t1,fact f1) {this.t1=t1;this.f1=f1;} 
} 
 
%node term2 : term 
{ 
 public term t1; 
 public fact f1; 
 public term2 (term t1,fact f1) {this.t1=t1;this.f1=f1;} 
} 
 
%node term3 : term 
{ 
 public fact f1; 
 public term3 (fact f1) {this.f1=f1;} 
} 
 
%node fact1 : fact 
{ 
 public LetExp le; 
 public fact1 (LetExp le) {this.le=le;} 
} 
 
%node fact2 : fact 
{ 
 public string n; 
 public fact2 (string n) {this.n=n;} 
} 
 
%node fact3 : fact 
{ 
 public double d; 
 public fact3 (double d) {this.d=d;} 
} 
 
%node fact4 : fact 
{ 
 public exp e1; 
 public fact4 (exp e1) {this.e1=e1;} 
} 
 
%node fact5 : fact 
{ 
 public string n1; 
 public double d; 
 public string n2; 
 public exp e1; 
 public fact5 (string n1,double d,string n2,exp e1) 
 { 
  this.n1=n1; 
  this.d=d; 
  this.n2=n2; 
  this.e1=e1; 
 }  
} 
 
 
 
FExp     : LetExp:le                       %FExp1 (le); 
 
LetExp   : LET var_list:vl IN exp:e1 END   %LetExp1 (vl, e1); 
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var_list :                                 %var_list1 (null, null); 
var_list : var_list:vl var:v               %var_list1 (vl, v); 
 
var      : ID:n EQU DOUBLE:d               %var1 (n.yytext, d.val); 
 
exp      : exp:e1 PLUS term:t1             %exp1 (e1, t1); 
exp      : exp:e1 MINUS term:t1            %exp2 (e1, t1); 
exp      : term:t1                         %exp3 (t1); 
 
term     : term:t1 TIMES fact:f1           %term1 (t1, f1); 
term     : term:t1 DIV fact:f1             %term2 (t1, f1); 
term     : fact:f1                         %term3 (f1); 
 
fact     : LetExp:le                       %fact1 (le); 
fact     : ID:n                            %fact2 (n.yytext); 
fact     : DOUBLE:d                        %fact3 (d.val); 
fact     : LBRACKET exp:e1 RBRACKET        %fact4 (e1); 
fact     : SUM LBRACKET ID:n1 RBRACKET DOUBLE:d DOTDOT ID:n2 LBRACKET exp:e1 
RBRACKET   %fact5 (n1.yytext, d.val, n2.yytext, e1); 
 

 

Listing 6. EXP example. 

let 
    n = 5 
in 
    9 + sum (i) 1..n (2 * i) 
end 
 
 

Listing 7. LQ DSL complete lexer definition. 

%lexer 
%namespace LqcLexer 
 
"let"                    %LET 
"in"                     %IN 
"end"                    %END 
"turn"                   %TURN 
"sew"                    %SEW 
"fun"                    %FUN 
"val"                    %VAL 
"a"                      %A 
"b"                      %B 
"="                      %EQU 
","                      %COMMA 
"("                      %LBRACKET 
")"                      %RBRACKET 
[_a-zA-Z][_a-zA-Z0-9]*   %ID 
[ \n\r\f\t]              ; 
"(*"                     {yybegin ("COMMENT");} 
<COMMENT>"*)"            {yybegin ("YYINITIAL");} 
<COMMENT>.               ; 
<COMMENT>\n              ; 
 
 

Listing 8. LQ DSL complete grammar definition. 

%parser lqc.lexer 
%namespace LqcParser 
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%{ 
using LqcLexer; 
%} 
 
 
 
%symbol LQExp; 
%symbol exp; 
%symbol decls; 
%symbol decl; 
 
 
 
%node LQExp1 : LQExp 
{ 
 public exp e1; 
 public LQExp1 (exp e1) {this.e1=e1;} 
} 
 
%node exp1 : exp 
{ 
 public exp1 () {} 
} 
 
%node exp2 : exp 
{ 
 public exp2 () {} 
} 
 
%node exp3 : exp 
{ 
 public exp e1; 
 public exp3 (exp e1) {this.e1=e1;} 
} 
 
%node exp4 : exp 
{ 
 public exp e1; 
 public exp e2; 
 public exp4 (exp e1,exp e2) {this.e1=e1;this.e2=e2;} 
} 
 
%node exp5 : exp 
{ 
 public decls dl; 
 public exp e1; 
 public exp5 (decls dl,exp e1) {this.dl=dl;this.e1=e1;} 
} 
 
%node exp6 : exp 
{ 
 public string n; 
 public exp e1; 
 public exp6 (string n,exp e1) {this.n=n;this.e1=e1;} 
} 
 
%node exp7 : exp 
{ 
 public string n; 
 public exp e1; 
 public exp e2; 
 public exp7 (string n,exp e1,exp e2) {this.n=n;this.e1=e1;this.e2=e2;} 
} 
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%node exp8 : exp 
{ 
 public string n; 
 public exp8 (string n) {this.n=n;} 
} 
 
%node decls1 : decls 
{ 
 public decl d; 
 public decls1 (decl d) {this.d=d;} 
} 
 
%node decls2 : decls 
{ 
 public decl d; 
 public decls dl; 
 public decls2 (decl d,decls dl) {this.d=d;this.dl=dl;} 
} 
 
%node decl1 : decl 
{ 
 public string n1; 
 public string n2; 
 public exp e1; 
 public decl1 (string n1,string n2,exp e1) 
{this.n1=n1;this.n2=n2;this.e1=e1;} 
} 
 
%node decl2 : decl 
{ 
 public string n1; 
 public string n2; 
 public string n3; 
 public exp e1; 
 public decl2 (string n1,string n2,string n3,exp e1) 
{this.n1=n1;this.n2=n2;this.n3=n3;this.e1=e1;} 
} 
 
%node decl3 : decl 
{ 
 public string n1; 
 public exp e1; 
 public decl3 (string n1,exp e1) {this.n1=n1;this.e1=e1;} 
} 
 
 
 
LQExp    : exp:e1                                                     %LQExp1 
(e1); 
 
exp      : A                                                          %exp1 (); 
exp      : B                                                          %exp2 (); 
exp      : TURN LBRACKET exp:e1 RBRACKET                              %exp3 
(e1); 
exp      : SEW LBRACKET exp:e1 COMMA exp:e2 RBRACKET                  %exp4 
(e1,e2); 
exp      : LET decls:dl IN exp:e1 END                                 %exp5 
(dl,e1); 
exp      : ID:n LBRACKET exp:e1 RBRACKET                              %exp6 
(n.yytext,e1); 
exp      : ID:n LBRACKET exp:e1 COMMA exp:e2 RBRACKET                 %exp7 
(n.yytext,e1,e2); 
exp      : ID:n                                                       %exp8 
(n.yytext); 
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decls    : decl:d                                                     %decls1 
(d); 
decls    : decl:d decls:dl                                            %decls2 
(d, dl); 
 
decl     : FUN ID:n1 LBRACKET ID:n2 RBRACKET EQU exp:e1               %decl1 
(n1.yytext,n2.yytext,e1); 
decl     : FUN ID:n1 LBRACKET ID:n2 COMMA ID:n3 RBRACKET EQU exp:e1   %decl2 
(n1.yytext,n2.yytext,n3.yytext,e1); 
decl     : VAL ID:n1 EQU exp:e1                                       %decl3 
(n1.yytext,e1); 
 
 

Listing 9. LQ example. 

let 
    fun unturn (x)  = turn (turn (turn (x))) 
    fun pile (x, y) = unturn (sew (turn (y), turn (x))) 
    val s = turn (sew (unturn (unturn (a)), b))     
    val t = pile (turn (b), unturn (b)) 
    val u =  turn (turn (sew (s, t))) 
    val m = sew (turn (a), turn (turn (a))) 
    val n = sew (unturn (a), a)     
    val p = pile (m, n) 
    val q =  sew (sew (u, p),  turn (u)) 
in 
    pile (q, turn (turn (q))) 
end 
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Experts in a field regularly apply a defined set of rules or procedures to carry out a problem-solving task or analysis on a given problem. Often the problem can be represented as a computer model, be it mathematical, chemical, or physics based, and so on. It would certainly be advantageous for a domain expert who is not proficient in software development to express solutions to problems in a domain-specific notation that can be executed as a program. Many new ideas aim to make software development easier and shift the development role closer to the end-user. One such means of development is the use of a small, intuitive programming language called a Domain-Specific Language (DSL.)


This dissertation examines a generic approach to constructing a Virtual Machine (VM) to provide the runtime semantics for a particular DSL. It proposes a generic, object-oriented framework, called a VM Framework, in which to build a VM by subtyping abstract instruction and environment classes that are part of the VM Framework. The subtyped classes constitute an environment and an interface called an instruction set architecture and the instructions can access and operate on the environment in a deterministic way to provide the runtime semantics of a DSL program. Both instruction classes and environment classes encapsulate functionality of an existing domain, represented programmatically as a namespace construct. The namespace is home to related classes that provide the various concepts inherent of a domain. These are concepts understood by a domain expert and in this dissertation it is shown how they are exposed as DSL constructs.


With the use of compiler writing tools, a compiler can be created for a DSL that generates an appropriate instruction sequence that can be executed by the VM. The grammar of the DSL is shown to feature constructs that allow a domain expert to express concepts of the underlying domain in an intuitive manner. The dissertation details how a VM is configured for a specific set of instructions and an environment. Instruction sets and environments can be extended creating VMs with additional semantics for DSLs that are similar, or contain subsets of semantics of other DSLs. The languages are intended to be intuitive and it is shown using examples how a specific DSL program is mapped to an instruction sequence with the instruction set architecture and environment in mind. Comparative performance in relation to other DSL implementations, including a hard-coded approach of a VM and an interpreted approach are also provided. The VM Framework is proven to be most effective in rapidly prototyping a DSL for a particular problem domain. The dissertation also provides examples of DSLs such as a real-valued expression language and a scene description language that uses a ray-tracer for rendering geometric objects onto a canvas. It is shown how the scene description language is an extension to the real-valued expression language in terms of their underlying VMs. All DSL grammars are provided.


Keyterms: domain expert, domain-specific language, virtual machine, instruction set architecture, environment, language prototyping, generic framework, syntax, semantics, comparative performance.


Abstract


Software engineering professionals are frequently faced with the challenges of applying good design principles in an environment that is often lacking in consistency and discipline. Those experienced in industry will argue that it is mostly due to processes that are not always followed and problems that are rather demanding on the developer’s knowledge gained from experience and general expertise. Also, developers with a lesser degree of experience who are required to improve upon, or implement a new set of requirements specified by system level designers are faced with steep learning curves. While system designers play very little role in the actual implementation of systems, it is up to the developers to wade through copious amounts of source code and documentation, first understanding a system’s behaviour, before any further coding can commence.


It is not just software practitioners, but also end-users like experts in a particular scientific or engineering domain who experience similar problems. These experts are not necessarily versed in software design, yet may still require a scientific means to express solutions in a particular problem domain, and it would certainly be to their advantage if they did not concern themselves with the seemingly limitless amount of complexities in software.


Many new ideas aim to make software development easier and shift the development role closer to the end-user. This dissertation investigates a software development strategy, which entails the design of a Domain-Specific Language (DSL) that is tailored towards a particular problem domain, and a Virtual Machine (VM) to support execution of a program written in the DSL. Since DSLs have the characteristic of being highly end-user oriented, they are favourable to experts who have a thorough understanding of their problem domain since they provide an elegant means to express their solutions easily. Different techniques to support DSLs are examined, namely an interpreter, a hard-coded VM, and a VM Framework. The VM Framework is proven to be most effective in rapidly prototyping a DSL for a particular problem domain.


Throughout this dissertation, example DSLs are used to illustrate some of the concepts that are discussed. For each DSL example some details are shown, such as their grammars and results of executing a program written in the DSL. The DSL grammars and example programs are all included in the appendix. The implementation of the interpreters, hard-coded VMs and VMs based on the VM Framework for each DSL are all included on the accompanying CD.


Acknowledgements


My sincere thanks to:


· My parents who believed in me, and made me believe in myself.


· All my friends and family for their support and encouragement.


· My supervisor, Prof. B. W. Watson, for sharing his tremendous technical wisdom, and his enthusiasm in assisting me.


· My co-supervisor, Prof. D. G. Kourie, for all his time spent correcting my grammar and providing me with invaluable criticisms, advice and support.


Introductory artwork by M. C. Escher.


Table of Contents


121 Introduction


1.1 Development Language
13

1.2 A Look at Domain-Specific Languages
14

1.2.1 The Concept of a Domain in a DSL Context
14

1.2.2 The Concept of a Language in a DSL Context
15

1.2.3 The Language Syntax
16

1.2.4 The Language Semantics
17

1.3 Criteria for Evaluation
18

1.3.1 Scalability
18

1.3.2 Performance
18

1.3.3 Modularity
19

1.4 Related Work
19

1.5 Summary
20

2 Development Environments for Domains
21

2.1 CASE Tools of Today
22

2.2 A VM as Part of the CASE Software
22

2.2.1 Languages in a DSL-Supporting IDE
23

2.2.2 A DSL Development IDE
26

2.3 Summary
30

3 Domain-Specific Languages and Interpretation
31

3.1 DSL Translation
32

3.2 DSL Interpretation
32

3.3 Shlaer-Mellor Domains
33

3.4 Configuring Shlaer-Mellor Domains with Bridges
33

3.5 View of the Interpretation Approach
34

3.6 The Ray-Tracer DSL
35

3.6.1 The RT Namespace
36

3.6.2 The RT Language
39

3.7 Scaling up the RT DSL for the Interpreter Approach
42

3.7.1 Adding a Construct to an Interpreter
42

3.7.2 Components Requiring Alteration
43

3.8 Modularity
44

3.9 Summary
45

4 Domain-Specific Virtual Machines
46

4.1 VM vs. Code Generator
46

4.2 Virtual Machine Instruction Set Architecture
47

4.3 System Virtual Machines versus Process Virtual Machines
48

4.4 View of the Virtual Machine Approach
50

4.5 Scaling up the RT DSL for the VM Approach
53

4.5.1 Adding a Construct to a VM
54

4.5.2 Components Requiring Alteration
54

4.6 Modularity
57

4.7 Summary
57

5 Domain-Specific Virtual Machines: A More General Approach
59

5.1 Compiled Program Parsing and Loading
60

5.2 Instruction Set and Environment Configuration
60

5.3 Program Execution
61

5.4 Output Results
62

5.5 View of the Virtual Machine Framework Approach
63

5.6 Virtual Machine Framework Detailed Design Description
64

5.6.1 The EVM Class
65

5.6.2 The Config Class
66

5.6.3 The Loader Class
67

5.6.4 The Inst Abstract Class
68

5.6.5 The Env Abstract Class
68

5.7 Environments
69

5.8 Instructions
70

5.8.1 Instructions with No Operands
71

5.8.2 Instructions with a Branch Label
72

5.8.3 Instructions with a Temporary
73

5.8.4 Instructions with a String Parameter
73

5.8.5 Instructions with a Number Parameter
74

5.9 Summary
74

6 Extending the Virtual Machine Framework
76

6.1 The Configuration File
77

6.2 Extending the Environments
78

6.3 Extending the Instruction Sets
78

6.4 The extended DSL VM
80

6.5 Building a DSL
82

6.5.1 The EXP DSL
83

6.5.1.1 The EXP Domain
83

6.5.1.2 The EXP Language
83

6.5.2 The Little Quilt DSL
86

6.5.2.1 The LQ Domain
86

6.5.2.2 The LQ Language
87

6.6 Scaling up the RT DSL for the VM Framework Approach
90

6.6.1 Extending EXP to suite the RT language
91

6.6.2 Adding a Construct
92

6.6.3 Components Requiring Alteration
92

6.7 Modularity
93

6.8 Summary
94

6.8.1 What the VM Framework is Not Intended to Provide
94

6.8.2 What the VM Framework Does Provide
95

7 Comparative Results
97

7.1 Summary
100

8 Future Work
102

8.1 Graphical User Interface for the Virtual Machine Framework
102

8.2 Multiple Environments and Namespaces
103

8.3 Architectural DSLs
104

Conclusion
106

Appendix
107

References
121




Figures


24Figure 1. High-level view of a DSL-supported IDE.


Figure 2. Generic VM used in the context of a DSL IDE.
28

Figure 3. Conceptual view of the Interpretation Approach.
35

Figure 4. Information Model of the RT namespace.
36

Figure 5. Determining the type associated with an AST node.
38

Figure 6. Actual interpretations of the AST nodes.
39

Figure 7. Lexer input for RT.
40

Figure 8. Parser input for RT.
40

Figure 9. Example scene described in RT.
41

Figure 10. Result of rendering the scene defined in RT.
42

Figure 11. Appending the lexer definition for keyword ambient.
43

Figure 12. Altering the grammar definition for the new ambient construct.
43

Figure 13. Altering the functions for the new ambient construct.
44

Figure 14. Instruction Set Architectures – System ISA and User ISA.
48

Figure 15. A System VM. Virtualizing software between hardware and OS.
49

Figure 16. A Process VM. Virtualizing software supports an individual process.
50

Figure 17. Broad classification of VMs.
50

Figure 18. The DSL VM relative to the HLL VM on which it was written.
51

Figure 19. Conceptual view of the VM Approach.
52

Figure 20. Lexer definition for the RT VM.
52

Figure 21. Parser definition for the RT VM.
53

Figure 22. Altering the grammar for the new ambient construct.
55

Figure 23. Adding the Ambient instruction to the VM’s lexer definition.
55

Figure 24. Parsing the new Ambient instruction.
56

Figure 25. The semantics for the new Ambient instruction in function RT_AMB().
56

Figure 26. Main loop for executing loaded instructions.
62

Figure 27. The GetResult() method of the EVM class.
63

Figure 28. Conceptual view of the VM Framework Approach.
64

Figure 29. Information Model of the VM Framework namespace.
65

Figure 30. Configuration mappings.
66

Figure 31. Example EnvExp class.
70

Figure 32. Token definitions and grammar for the instructions.
71

Figure 33. The Inst_OpCode abstract class.
71

Figure 34. The Add instruction.
72

Figure 35. The Inst_OpCode_Br abstract class.
73

Figure 36. The Inst_OpCode_ID abstract class.
73

Figure 37. The Inst_OpCode_Str abstract class.
74

Figure 38. The Inst_OpCode_Num abstract class.
74

Figure 39. Example configuration file for EXP.
77

Figure 40. The EnvRT class.
79

Figure 41. Configuration file to setup RT, borrowing instructions from EXP.
80

Figure 42. Defining an environment and instruction set for a DSL VM.
81

Figure 43. ISALQ is a subset of ISAEXP, with new instructions.
81

Figure 44. ISART is a subset of ISAEXP, with new instructions as before.
82

Figure 45. Lexer definition of EXP.
84

Figure 46. Parser definition of EXP.
84

Figure 47. Programmatic representation of summation expression (1).
85

Figure 48. Compiled program of the summation expression (1).
85

Figure 49. The namespace of the LQ.
87

Figure 50. The configuration file for LQ.
87

Figure 51. The lexer definition of LQ.
88

Figure 52. The grammar definition for LQ.
88

Figure 53. A function defined in LQ.
89

Figure 54. Translation of a function defined in LQ.
89

Figure 55. LQ using the VM Framework in the context of a GUI.
90

Figure 56. The EnvExp environment.
91

Figure 57. The EnvRT environment as an extension to EnvExp.
92

Figure 58. The Ambient instruction extends Inst_OpCode (no operands.)
93

Figure 59. Adding the Ambient instruction to the instruction set.
93

Figure 60. Comparative performance results of the DSL implementations.
99

Figure 61. Communicating DSL infrastructure.
103




Tables


27Table 1. Comparing IDEs and their use of language types.


Table 2. Components for the Ray-Tracer Interpreter.
35

Table 3. Source files for the RT namespace.
37

Table 4. Summary of criteria.
100




Source Listings


107Listing 1. RT DSL complete lexer definition.


Listing 2. RT DSL complete grammar definition.
107

Listing 3. RT example.
113

Listing 4. EXP DSL complete lexer definition.
114

Listing 5. EXP DSL complete grammar definition.
114

Listing 6. EXP example.
117

Listing 7. LQ DSL complete lexer definition.
117

Listing 8. LQ DSL complete grammar definition.
117

Listing 9. LQ example.
120




1 Introduction
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Programming languages were invented to make machines easier to use [Set97], but the word invented should perhaps be elaborated on slightly. Scientists and others regularly reuse sound pieces of functionality in defining a concept or a solution to a problem, whether it is an iterative algorithm, an inductive proof or a mathematical formula. One of the first industrially accepted programming languages was Fortran [Bac81, Wex81], widely embraced by the scientific and engineering community since it allowed formulas to be written in the traditional mathematical sense, instead of coding them directly at the machine level. These formula expressions were automatically translated into machine level instructions. Over the years, other recurring concepts have been encapsulated, either in the form of a library or a language, producing languages aimed at the next generation of developers. Good examples of both include the OpenGL API, a graphical library that is highly portable and available for most Windows and UNIX platforms, and the Prolog language, which does a successful job of encapsulating first-order predicate logic into concise formalisms that support logical inference.


The most logical next step would be a software development process that facilitates or aids encapsulating commonly recurring functionality into a language, and, over time, lets the language evolve toward a more mature state. This is essentially what this dissertation is all about: the provision of a platform or framework, that will support the development of Domain-Specific Languages (DSLs) and that will easily accommodate the natural tendency for them to evolve over time.


This chapter begins by identifying the programming language and development environment used for the experimentation of DSL development. The notion of a DSL is examined in some detail in Section 1.2, while Section 1.3 proposes the criteria that will be used in this study for evaluating DSL development methods. Related work is mentioned in Section 1.4, and the matters are summarized in Section 1.5. Chapter 2 illustrates DSLs in the context of some development environments. Chapters 3 to 6 examine the different techniques to provide runtime semantics of a DSL-program: Chapter 3 looks at interpreters, Chapter 4 looks at hard-coded Virtual Machines (VMs) and Chapters 5 and 6 present a framework-oriented approach. The framework, referred to as the VM Framework, provides ease of creation and modification of various software building blocks for the semantics of some DSL definition. It also allows for the creation of a compiler for a defined DSL that is targeted towards these semantics. Chapter 7 provides some comparative results between DSL development techniques, i.e. interpreters, hard-coded VMs and the VM Framework. Chapter 8 provides some work yet to be explored and follows with a conclusion to this dissertation.


1.1 Development Language


This study is centered not merely on the design of DSLs. It also represents a quest for an effective approach to support DSL development and DSL modifications in a particular software environment. Of course, any existing imperative programming language can be used for DSL development, but to further justify the usefulness of DSLs, the illustrating language should also be mature enough to allow a developer to build language constructs quickly and easily. Constructs simply refer to any syntactical features offered by the language itself, such as loops or use-defined declarations of functions or types, and are often identified by the occurrence of keywords of the language. To that end, the illustrating platform chosen is the Microsoft .NET platform, and the illustrating language used is the C# language. An excellent introduction to C# is provided in [Lib02]. This is not to say that other platforms could have been used with equal success in this study. A somewhat desirable characteristic of the .NET platform is the exposure of the language compiler itself in the form of an Application Programming Interface (API). This makes language and compiler development a fairly streamlined task.


Central to the .NET platform is the Common Language Runtime (CLR) system. Any language compiling to the CLR can invoke other modules compiled with a different programming language. Thus, later chapters that discuss building software for instruction extensions, and environment extensions are not necessarily restricted to C#, but may also include Visual Basic .NET, C++ .NET, and more domain oriented languages such as the .NET variant of COBOL.


1.2 A Look at Domain-Specific Languages


Before attempting to justify what is meant by language in DSLs, a justification on what is meant by domains should be fairly appropriate at this stage, since the DSL designer needs to keep a clear picture of the domain in mind, before attempting to expose it as a language. The DSL designer also needs to perform a thorough analysis of the domain to identify the features of the domain, and the dependencies among them [vDeu01a]. While it is also possible to describe the definition of a domain both pragmatically and scientifically, the DSL designer is more interested in defining domain concepts that map to sequences of instructions in a conventional programming language. Ultimately, the DSL designer would like to quickly and easily build up a prototypical language for end-users, just as much as end-users would like to quickly and easily get started using a DSL to solve their problems in their respective domain. In this dissertation, the actual DSL-program source code, written in the language of the DSL, is referred to as the DSL-program. The definition of a DSL that follows is taken from [vDeu98c].
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-


Specific Language (DSL) is a programming 


language or executable specification language that offers, through 


appropriate notations and abstractions, expressive power focused 


on, and usually restricted to a particular domain.


 


 


DSL


-


program


 


: A program, written in the language of the DSL, 


i.e.  the actual DSL program 


source code


.


 




There is a natural choice between using an industrial language, and resorting to using a DSL. In this dissertation, through some examples and empirical experimentation with DSLs and the design of the underlying execution mechanisms, the text will attempt to expose their usefulness in a scientific context, as well as their use as a software-engineering tool. While industry always has a myriad of complexities in software design and maintenance, industrial strength languages will always be part of the software engineering process. There is no reason why the two disciplines cannot be merged together and used in harmony to form a more effective means of software design.


1.2.1 The Concept of a Domain in a DSL Context


Simply put, a domain is characterized by a set of related concepts, which need to be understood, before they can be applied to real world problems. For example, Chemistry is a domain in which the concepts of elements, compounds, and their respective reactions, are among those that are to be understood by chemists if they are to be considered experts in the domain. An example of a DSL for dealing with financial concepts, specifically financial products, is the DSL RISLA, described in [Arn95, vDeu97]. This notion of a domain is reflected in the Shlaer-Mellor design methodology [Mon95, Shl92, Shl96]. In keeping with a more pragmatic mindset, developers who regularly exercise the UML [Ale01, Bjö02, Gur03], would normally group related classes in packages, and again in [vDeu97] a discussion on an object-oriented frameworks is provided, which is analogous to this concept of a domain. Developers who are more favorable to the Shlaer-Mellor design methodology, group all related classes within an explicit domain. The Shlaer-Mellor design approach evolved out of UML in an attempt to solidify some of the rules or policies of UML, which either didn’t exist or were still not well understood by many developers. It can be said that Shlaer-Mellor is a summarized variant of UML, that boasts a fair amount more user friendliness than UML and that is well suited for asynchronous systems. While asynchronous systems are beyond the scope of this dissertation, what will be of use is Shlaer-Mellor’s definition of a domain.
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Domain


 : A domain is a set of classes, all connected via 


relationships of some multiplicity. No two domains use the 


same classes, ie. Classes do not overlap between domains. A 


domain can be dependant on, or make use of services of 


other domains.


 




In essence then, a domain, from a developer’s perspective, is simply a home where related concepts can live happily together. The C# namespace construct groups together related classes, interfaces and enumerations. The C# namespace is well aligned to the concept of a Shlaer-Mellor domain. Later in this dissertation, when the possibility of constructing DSLs for various domains will be explored, each domain will be associated programmatically with a C# namespace and thus will represent the domain of the DSL.


1.2.2 The Concept of a Language in a DSL Context


Delving into the language side of DSLs, this is where the end-user requirements start to play a role. Before embarking on designing a DSL it is important to first note, and understand, two separate concerns centered on the design of a DSL. They are the syntax, and the semantics of the language. One obvious requirement of a DSL is that the syntax of such a language should be simple and intuitive. The main driving point behind end-user software is to relieve a developer or expert from the burden of developing around existing software that either he or she has little knowledge about or is cumbersome and shouldn’t concern the individual at all [vDeu98a, vDeu98c]. Very often a DSL’s simple constructs map to a large amount of underlying processing. This mapping determines the meaning or semantics of the DSL’s constructs. Many DSL-compilers merely generate code and therefore provide the semantics in a high-level language. In such instances, the intention is that the generated code again be compiled along with other existing code, a library, or a software framework, for a complete application to be produced [Cza99, vDeu01b].


In contrast, in the current work, a VM was incorporated as a means of executing a variety of DSL-programs. The VM exposes an existing namespace as a set of instructions and an environment, and once a particular DSL has been defined along with a corresponding compiler, then a program written in that DSL can be translated into a sequence of instructions that the VM can execute. For this dissertation, any reference of a VM created using the VM Framework shall be called a VM instance since it amounts to an object instance from a programmatic viewpoint. A more detailed description of how this is accomplished, as well as the finer details of VMs, will be discussed in Chapters 4 to 6. It will be seen that this will support solutions to the problem of effectively designing and implementing DSLs in such a way that an expert can later reconfigure them. Effective DSL design is therefore not seen as a once-off activity. Instead two distinct development roles are investigated: that of designing the original form of the DSL; and later, the domain expert role of redefining the language.


1.2.3 The Language Syntax


As mentioned before, the syntax needs to be intuitive. Syntax design should take place in the context of a few consultations with an expert, because the design shouldn’t be taken for granted. Though the use of a specific construct might seem fairly obvious to a DSL designer, it may be too cumbersome or verbose for the expert. Language syntax should also be designed with the aim of reducing programmatic errors and to have increased programmatic error detection. This implies keeping the syntax concise and doing away with elements of syntax that cause unnecessary confusion in the readability of a program. Thus syntax design needs to be loosely coupled from the semantics and may well be reworked a few times before the end-user is wholly satisfied. The syntax design of the DSL, in this dissertation, is kept simple, and, in fact, doesn’t need to be anymore complicated. The requirement here is to derive a very simplistic compiler capable of translating a DSL source into a target machine language. A lexer generator, and parser generator are needed that are able to generate C# code. The two tools, which can provide this functionality, were chosen for the .NET environment. They are aptly named LexerGenerator (LG) and ParserGenerator (PG) [Cro03]. It is important also to note that static semantic checks, such as static type checking, are a concern of the compiler and any static semantic checking routines would need to be implemented in the compiler.


1.2.4 The Language Semantics


Runtime semantics, as opposed to static semantics, refer to the noticeable effect of executing a DSL-program. At the formal level there are different methods to specify the language semantics. They include informal semantics, attribute grammars, operational semantics, denotational semantics and natural semantics [Set97].


For the VM Framework described later in Chapters 5 and 6, specification of the semantics is a combination of informal semantics and operational semantics. Since the VM Framework already deals with compiled C# code, the semantics are more illustrative at the operational level. All semantics is encapsulated in instructions and executed by the VM instance.


Instructions that are executed can update an environment that is registered with the VM instance. The environment referred to here is not the conventional environment that contains a mapping of variables to values. Rather it is a custom data structure whose internals are known only by the instructions themselves, and not to the VM instance itself. However, it is also possible to include a separate environment in the compiler if the language is to cater for local variables.


As will be seen, it is the obligation of the DSL designer to extend the VM Framework with an instruction set and a related environment, and to further configure the VM instance using a separate configuration file that links each instruction to the environment. The configuration allows the DSL designer to reuse instructions with different environments, and to extend environments to have additional functionality. Each instruction and environment is stored as a .NET Dynamically Linked Library (DLL) on disk. The instruction DLLs and environments are loaded at runtime depending on the VM instance’s configuration.


Tying the two concepts of syntax and semantics together is the challenge behind rapidly prototyping DSLs, and it is in the VM Framework presented in this dissertation that the approach is simplified. The internal structure of the VM Framework shall unfold in later chapters.


To place DSLs in their context, this dissertation shall assume the design and implementation of DSLs in a software-engineering context. The terms developer, practitioner or domain expert will sometimes be used interchangeably, but they simply refer to the end-user of the DSL who is eager to make use of the resultant DSL built by the DSL designer. Thus development moves away from programming in the small, to programming in the large. The aim is not to restrict a detailed discussion on DSL design purely for a single use, i.e. building a product for an end-user [Arn95], but also to allow developers in industry to embrace some of the techniques discussed and apply them to real world software engineering practices. In the latter case, the DSL that results is not targeted to a specific end-user, but also to be reapplied back into a developer’s own working environment, whether they be designing software for embedded systems, databases, visual applications, mathematical modeling applications, and any other domain inherent in a particular field. Most of these applications are based on well-defined concepts, and so they can indeed benefit from DSLs, and in so doing improve the developer’s software development practice.


1.3 Criteria for Evaluation


To make any significant comparison between the various DSL development techniques, a certain set of criteria is needed. Three useful criteria are identified and defined in this section; they are scalability, performance and modularity. They correspond to important properties that go hand in hand with good software design. Another somewhat important property associated with languages is portability. However this dissertation assumes a .NET development context, and therefore it only makes sense to consider all platforms that support the .NET environment. The three previously mentioned properties are studied further at the DSL level.


1.3.1 Scalability


Scalability describes the readiness for a system to grow, without significant loss in efficiency and effectiveness. In the context of DSL design, such growth could include new constructs that are added to the language itself, as well as new functional code that is added to the underlying namespace, such as new functions, classes etc. It is often difficult to focus on building scalable software in the time allocated to a given project. Even when developers do manage to build scalable software, it is often at a performance cost, so there tends to be a tradeoff between scalability and performance.


1.3.2 Performance


Performance can either refer to the formally derived polynomial or non-polynomial complexity of a computation or algorithm or simply the time elapsed for a computation or algorithm to complete. Throughout the dissertation, when a measure for performance is required, a simple time elapsed will be checked at corresponding points of execution.


1.3.3 Modularity


Modularity will be described in terms of the DSL itself. This refers to the interpreter, the hard-coded VM and a VM instance created from within the context of the VM Framework. One can ask how reusable is the interpreter or the VM? Supposing a DSL is developed, and the environment defined for the DSL has a certain set of inputs and outputs. It may be a desirable property to be able to treat the VM as a component, just like a UML object, and to allow it to interact with other components of a bigger system.


Quite often, in object-oriented languages, it is considered good practice to design and to build classes as reusable entities. Thus in object-oriented languages, use of constructs such as abstract classes and polymorphism are encouraged to add extra degrees of reusability. Many times though, it is not easy or even possible for that matter to design all classes to be reusable, because many class have very specific functionality or behaviour and are perhaps only suited in a single context.


In the Shlaer-Mellor context it is the namespaces, and not the classes within the namespaces, that are considered the reusable entities. Ideally, a domain can be used over and again in various contexts without changing the code or classes found inside the namespace, but only making alterations to the namespace’s so-called bridge, discussed in more detail on Chapter 3.


1.4 Related Work


There is an interest in building languages rapidly, and consequently there is a need for rapid prototyping of language syntax and semantics, and more so, the ease and efficiency at which this can be achieved in an industrial environment. High-level languages such as C#, C++ or Java have a standard syntax, and are not prototypical languages as such. Though powerful in their nature, the need to build DSLs is driven by a necessity to have smaller languages that are more expressive. Environments such as the ASF+SDF MetaEnvironment [vdBra01] allow a user to freely alter a prototypical language’s syntax, and provide semantic rules for the language, and in so doing allow a rapid form of language prototyping, well suited for building DSLs. However, the mapping from syntax to semantics in the case of the MetaEnvironment is at a more formal level, and equations are used to define the mapping. The usefulness of DSLs is further explored in Aspect Oriented Programming (AOP) [Irw97, Kic96], and consequentially, their affiliation to aspect weavers. They don’t rely on a VM. Rather, they fuse a set of DSL-programs together and generate code in a target language, such as Java.


1.5 Summary


This chapter provided an overview of DSLs and briefly discussed the Shlaer-Mellor programming methodology, since it forms a good basis onto which DSLs can be conceptualized, i.e. a custom DSL built on top of an existing domain or a domain that is yet to be designed. The domain in the context of an expert is analogous to the knowledge in which he or she is proficient, and which he or she wishes to describe in a syntactic, communicative manner. Used in the context of a DSL, the domain is associated programmatically to a namespace where all the concepts, in the form of modules (functions, classes etc) are housed. Also, DSLs were discussed in terms of their syntax, and in terms of the semantics. The semantics forms the link between the syntax and the underlying namespace. Three criteria for evaluating a DSL were described and will be used throughout this dissertation; they are scalability, performance and modularity. Later, in Chapters 3, 4 and 5, as three different types of DSL techniques are described, these criteria will provide us with some measure of how suitable each of the different types of techniques are, especially when a DSL is required to be altered to suite new requirements.


2 Development Environments for Domains
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Most state-of-the-art software development suites that are available at present enable a fairly streamlined means in which to develop software, especially in a Windows environment, using Rapid Application Development (RAD) techniques. Aspects of these RAD techniques have been encapsulated and made available to developers in specialized software known as Computer-Aided Software Engineering (CASE) tools [Pre97, Whi98]. A concept associated with the notion of CASE tools is that of Integrated Development Environments (IDEs). This refers to the visual appearance or layout of the CASE tool. The layout impacts the usability of the CASE tool, as well as the tool’s ability to expose its intended software engineering features in a practical manner that simplify software development further. CASE tools have been used with great success in industry. These tools have also been widely adopted because of the ease that they offer in building subcomponents of applications. The IDE of a tool, however, refers more to the development environment exposed to the developer, as opposed to other aspects of a CASE tool that support aspects such as design, documentation etc. IDEs are usually unique to CASE tools. They offer a variety of features, mainly visual in nature, to build parts of a system that seem to warrant a more interactive approach to its construction. The rest of the chapter touches on CASE tools, as there is much room for incorporating the forthcoming concepts, particularly DSLs and VMs, into CASE tools to further improve their interactive approach to software development. The chapter starts by briefly introducing some existing CASE software, and Section 2.2 identifies some key areas as suitable candidates for incorporating DSLs and VMs. Section 2.3 provides the summary.


2.1 CASE Tools of Today


It is important to note that CASE is not necessarily a systems engineering methodology. Rather it is the application of software technology to support the inner processes, strategies and disciplines of various such methodologies. The definition of CASE, adopted from [Whi98], is provided below. The use of a VM in the context of such technologies is provided in the next section.
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Most CASE tools enable rapid ways to build visual components such as Windows Frames or database table layouts. Some go so far as to visualize the design-time structure of a program or application. Development environments such as BridgePoint and Artisan allow a high-level view of an application under development using Shlaer-Mellor or UML diagrams. For example, they might represent graphically an active object’s state machine using appropriate UML symbols instead of the corresponding source code for that object, though it is natural to enquire how the programmatic representation appears. Once a program has been developed fully, or perhaps even at early stages of development, it is possible to run the program within a simulated context with a fixed set of inputs and verify the correctness of the program’s logic through repeated testing using a predefined set of test cases. It is mainly the industrial strength languages, such as Delphi, C++ and Java, that have had vendors create IDEs that expose the language in a RAD fashion, resulting in CASE tools such Borland Delphi, Borland C++Builder, Borland JBuilder, and Microsoft’s Visual C++.


2.2 A VM as Part of the CASE Software


Presented in this chapter is the concept of a CASE tool into which a VM can be used. The chapter illustrates the conceptual use of a VM to build an IDE. Such an IDE is generic with regard to the type of DSL required by an end-user, and the semantics of the DSL. Thus, it is a CASE tool that provides an IDE having the following property: the IDE allows one to invoke a VM that will run a DSL-program, where the DSL’s syntax and semantics have also been provided by facilities within the IDE. Indeed, the facilities for writing the DSL-program are also part of the IDE. In this sense, (i.e. of being able to define and support many DSLs) the IDE is generic, and in the same sense, the associated VM is generic. This implies that the tool itself will be in two separate instances or parts, each part being used at different stages of software development.


The first part will allow a developer to custom build a DSL, with syntax and semantics, and allow linking into a namespace written in a platform such as the .NET CLR. The second part will allow the developer to write programs using the DSL that has been specifically customized for his or her particular need.


The VM Framework presented in this dissertation will not cater for every feature mentioned above, such as visualizing components in design-time or runtime or translation of a high-level language to a low-level language such as C or assembler. A VM instance of the VM Framework will instead, form the core component responsible for executing a DSL-program within a simulated environment. The VM is generic, as will be discussed in Chapter 5, in that the language is customizable to suite a wide range of end-user domains.


2.2.1 Languages in a DSL-Supporting IDE


Figure 1 demonstrates a hypothetical IDE that does not feature any specific development language of a software application, but rather illustrates five key areas where a particular language can be a used. Such an IDE does not exist in industry, though certain IDEs that are in existence today do expose one or more of the mentioned areas with a language of some kind, and examples are mentioned in this and the next section. To simplify the illustration, the notion of having a real-valued functional expression language as a development language is shown. One of the areas is indeed the syntax definition (grammar) of the development language, and thus the grammar definition in Figure 1 is the grammar of such a functional language. Furthermore, it should be understood that not all of these five languages are used at the same instance, but instead some are used before the design of an application, some are used during the design of an application, and some are used for testing and post-development. The way to understand this hypothetical IDE would be to ask what five key areas of building a software application could be useful if they were to be exposed as a language. In so doing, could they provide a means to configure the IDE to develop the required software application in an optimal fashion, depending on the type of application to be built? Naturally, at least one language is required – the development language itself, but the aim is to be able to configure more of the IDE’s development facilities. The five key areas are described in more detail below.
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Figure 1. High-level view of a DSL-supported IDE.


The grammar describes the syntax of the language, usually in a standard form such as Backus-Naur Form (BNF). In Figure 1 above, the top left-hand box illustrates the first language of a DSL-supporting IDE: the language indicating the BNF which defines the syntax of some DSL – in this case, a DSL that has arithmetic operators as part of its syntax. Grammar is typically not changeable by a user, especially in industrial strength languages, like C++, as it would be senseless to allow the actual syntax to be altered. However, in such environments as in the ASF+SDF MetaEnvironment, in addition to the target application currently under development, it is also the language that is a concern to the developer. Thus the DSL is rapidly prototyped. In the case of the MetaEnvironment, it is necessary to provide a means for a language designer to let language syntax evolve until it suites a particular need, as is the intention with prototyping a DSL. The present study has a similar objective.


The semantics of a particular development language is usually encapsulated in the compiler provided by a traditional IDE. The sequence of machine code instructions generated by the compiler represents the semantics of the program written in the development language. The sequence of instructions generated by the compiler is also not changeable in standard compilers since it is implemented as part of the compiler’s internal translation pipeline. The compiler is responsible for generating machine code instructions for a target machine type, such as a Pentium processor. Without making too many direct low-level references to the actual instruction set of the target machine at the hardware level, it is sufficient to state more simply that the semantics of a program amounts to the actual observable behaviour of an executing program. This does not necessarily mean that one can observe the behaviour as the program is being executed. Rather it means one expects some useable result from executing the program, be it a once off execution, or execution that is continuous until some condition is met. Moving away from a traditional IDE towards its hypothetical counterpart, the semantics for the development language is allowed to be configurable. It is possible to use any existing development language to build a set of semantics for a particular DSL development language, and in Figure 1 above C# is used. The top middle box in Figure 1 shows how the semantics of real-valued addition is encapsulated in an external C# library class called Add. The Add class will form an instruction of the instruction set that a VM instance will ultimately be able to interpret, and thus defines runtime behaviour for the developing DSL. Having a set of classes in this way and having them supported by the IDE means they need to comply to some specific interface and this interface is indeed what is prescribed by the VM Framework discussed later.


The development language itself, briefly mentioned before, is the language exposed to the end-user – i.e. in the present study, it is the DSL exposed to the domain expert. This is typically the primary tool of the application developer, and is what the designer will make use of to develop the required application. As mentioned, even in the case where there are features of an IDE that allow a user to develop interactively (such as a feature for designing GUIs, or features such as those found in BridgePoint that provide a notation to describe state machines for active objects) there will still be a fair amount of underlying code that is generated automatically by these features, targeted to the development language. Some well known such examples of development languages (including any generated code from the abovementioned features) are C#, C++, Java, Delphi. In Figure 1, the top right-hand box illustrates some functional language that is being used as a development language.


Some environments include some kind of test scenario language that is used to simulate various conditions on an application. This enables earlier testing of the application being developed. An example of such testing on embedded devices is given in [Oli95]. Essentially the language allows the definition of a sequence of inputs or events to occur within a simulated context. These inputs may either occur in some predefined order or as a random sequence of events. Such events include interrupts, messages that are generated from external devices, data from a LAN or other communication mechanism or information from sensors attached to the device being programmed with the software. These types of inputs are especially useful in embedded systems, where it may not necessarily be practical to test the software on a target platform. An example of such an environment is the BridgePoint IDE that allows an application to be isolated and executed in a simulated context, and responds to inputs described by a particular type of test case scenario. These inputs can be programmed to occur at certain times or to occur in some sequence inside a loop. This allows for rapid testing of an application. Though this allows for rapid elimination of logic errors in the application, it will not expose any errors that are ascribable to some specific characteristic of the target embedded platform. Such a scenario language is represented as input to the IDE in Figure 1 in the middle left-hand side.


The last language that warrants elaboration describes the translation of a program written in the development language (a DSL-program) into some other target representation, such as an imperative language like C. Such a translation language is merely a set of textual rules that specify how one construct represented in the development language manifests as a corresponding construct for some other target language. The actual semantics of the original DSL-program source needs to be retained after it has been translated into the target representation, thus the mapping between the two different representations need to be clearly understood, so the translation rules can be specified without any ambiguity. For example, a summation construct in a real-valued expression language would ideally translate to a for-loop of some segment of code that represents the expression being summed. In the above example in Figure 1, the translation rules are described in the form of an archetype, which is essentially a representation of a textual source code target, in this case, a straightforward C function, with placeholders for names of functions, parameter lists, locals, etc. This is an approach taken by the BridgePoint CASE tool. When the translation occurs, the placeholders are replaced with names defined within the DSL-program source code. In the above example, when a C-function is to be produced, the name of the C-function is derived from the name of a function declared within the DSL-program, and is queried by the occurrence of %fun.name%, and is valid for whatever function is currently under translation. Any occurrence of %fun.exp% will generate the translated form of the expression defined by function (declared using the fun keyword) in the DSL-program. This will in turn invoke other specified rules for translating real-valued expressions such as addition, multiplication, summation and so on.


2.2.2 A DSL Development IDE


As mentioned, not all IDEs make use of each of the languages described above. Some may not be relevant to the particular IDE or they might simply not be provided as a feature of the IDE. The table below relates a few language IDEs, and includes the VM framework proposed in this dissertation. Though the VM Framework is not an IDE in itself, it has a vital role in the design of a VM (resulting in a VM instance) that can be used in some DSL-supported IDE. This role of the VM Framework in such a context will be discussed shortly in this section, and it is this idea of a DSL-supported IDE to which the remaining three IDEs are compared. The table indicates whether the IDE or DSL-supported IDE (based on the VM Framework) facilitates the particular language in any way, as far as the developer’s point of view is concerned.
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Table 1. Comparing IDEs and their use of language types.


Borland’s Delphi and C++Builder are fundamentally identical in terms of features provided by the tool, the development language is really the only difference. In both cases, the development language is the only means to build an application, with a few visual tools to aid in designing GUIs and database sources. The ASF+SDF MetaEnvironment additionally allows the formal definition of a development language’s grammar, as well as semantic rule mappings from a provided grammar. The semantics, however, is not checked on the table. The reason is that the semantics in the context of the table refers to observable behaviour, rather than formal denotational semantics specified by the ASF+SDF MetaEnvironment compilation equations. This is where the power of the VM Framework will become apparent. It has a more practical application of specifying semantics in that it will allow the use of externally defined library classes to provide a rich set of functional runtime behaviour. A grammar definition will make the invocation of these semantics a simple matter of mapping a construct into a sequence of instructions. This will be discussed with reference to Figure 2 shortly. BridgePoint supports the specification of translation rules from its development language (an intuitive query-like language) to a target language. Often C is used as the target language as BridgePoint is well suited to embedded hardware systems. Building a scenario language into a DSL-supported IDE will not be difficult. The task would entail the execution of a DSL-program, having the VM instance execute the sequence of instructions. Invocation of the DSL-program can be done with some specific parameters that are used for testing purposes, and also, it may even be useful to build debug instructions as part of the instruction set. Such instructions could print values to a console, or provide immediate program termination. To simplify the intention of this section, it is worth mentioning that the generation of the VM and DSL-compiler together (shown as two blue opaque boxes in Figure 2) is intended to be an automated process. This automation is still speculative at this point, however the VM Framework that has been written for this dissertation enables a user of the VM Framework to manually craft such a VM component, while using suitable compiler writing tools to (almost completely) automate the task of building a DSL-compiler. Such tools will automate the generation of the front-end processes, such as the lexer and parser, but the user still needs to supply the correct logic for translation of a DSL-program into a sequence of instructions. This translation specification forms part this example.
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Figure 2. Generic VM used in the context of a DSL IDE.


This dissertation is centered on a framework that aids in developing DSLs. It is aimed at producing a software system by means of which the syntax and semantics of some DSL can be defined. The software should then generate a compiler that translates this DSL code to an executable Instruction Sequence (IS in Figure 2). The software should also be capable of producing a VM that can read in this sequence of instructions, and then translate them into some low-level language that can be executed on the platform on which the overall system is running. Here, the overall flow of activity in developing and running DSL code in such an environment is discussed with reference to Figure 2 above.


A VM Framework has been built and will more formally be described in later chapters. A product of this Framework will be a VM instance and will serve as the underlying execution mechanism of a CASE tool. A VM instance will be based on some custom built namespace during the design of a DSL. Figure 2 illustrates the two views of such a CASE tool, and the flow of information to arrive at the resultant application under development.


The first view in the upper half of the Figure 2, illustrates how the VM Framework supports the design of a particular DSL. From this perspective, the software constitutes a DSL design IDE. The upper left-hand box shows that the VM Framework relies on a language to build a DSL grammar. This language can also specify translation rules to generate sequences of instructions from syntactically correct DSL constructs, and consequently it defines the rules to produce a sequence of instructions for some complete DSL-program. The box on the top right of Figure 2 indicates that the DSL-Design IDE also requires instructions, environments and domains. These are third-party components or libraries written in any conventional development language and are imported into the DSL-Design IDE. The domains are simply namespaces that exist as legacy code, or are written specifically for some DSL. The ray-tracer namespace, described in Chapter 3, is one such example of a domain that will be exposed as a DSL. The DSL-Design IDE will then generate a DSL-compiler and a VM from the provided specification.


The second view below the dotted line in Figure 2 is of the Development IDE, so-called because it is used to support the design and implementation of systems to be written in the DSL defined in the first view. It imports the DSL-compiler generated in the first view into the Design-time IDE, to allow the developer to freely design software in the specified DSL. Any time that the program is to be executed within the Design-time IDE, the DSL-compiler is invoked to generate a compiled sequence of instructions, which is then executed by the VM instance that had been generated for this DSL.


To have the compiled program execute outside of the Design-time IDE, either the VM instance can be packaged and provided as a library that is invoked when the program is executed, or a platform specific executable can be generated, that inherently embeds the program along with the VM instance required to execute the instructions, into the executable. It is more favourable to have the VM instance packaged as a separate library, as it may be invoked programmatically as part of a larger piece of software.


2.3 Summary


This chapter identified five different languages used either in the development of a language, or in the configuration of an IDE. It includes the actual language used by a developer. The five languages are supportive of each the following: the syntax, underlying semantics, end-user development, test scenarios, and translations to target languages. The syntax of a DSL is usually coded in a format similar to BNF, and in the context of an IDE that supports DSL design, it can allow for the translation of certain constructs to a sequence of instructions. The underlying semantics refers to the implementation of behaviour that is representative of the constructs expressed in the DSL. The VM Framework allows a set of instructions and environments to be subclasses of certain classes of the VM Framework. These subclasses embody (encapsulate) the semantics of the DSL that has been defined.


The DSL will ultimately be used by the end-user of the DSL to express solutions elegantly and concisely within their problem domain. Test scenarios define external behaviour, that essentially run an instance of the end-user’s program. Such a test scenario provides parameterized data to the executing instance for testing purposes. Asynchronous systems can often be in one of a large number of states. Having these scenarios to generate events into the executing instance can greatly aid in verifying the correctness of such systems and eliminate any unforeseen deadlock or starvation situations which are prone to arise in asynchronous systems. Finally, translations simply map the DSL-program into a target language such as C or Java.


The chapter also suggests an idea in which a VM Framework will be of particular use, that is, to fit within the context of an IDE featuring two views of a developer’s interests – that of the design issues of a DSL, and an end-user view that makes use of the DSL.


The dissertation does not take the notion of embedding the VM framework within an IDE any further. Rather, it focuses on describing the design and implementation of a VM Framework for DSLs. This framework has been developed in C#. It facilitates the construction of a VM and a compiler from the given syntax specification, which can then be packaged and exported to provide the runtime behaviour of a program written in the DSL. 


It should be noted that the notion of developing a VM Framework evolved out of a number of preliminary experiments aimed at providing an environment to support the use of DSLs. It will be of interest to discuss the most important of these experiments and to indicate how and why, in each case, an alternative suggested itself. The next chapter discusses the first of these experiments.


3 Domain-Specific Languages and Interpretation
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This chapter begins the historical account of an investigation into various ways of supporting DSL development. The first DSL development approach to consider is that of using an interpreter. Two questions can be asked in regard to this interpreter-based technique. First, how much effort is involved in building an interpreter for a particular DSL, in the event that the DSL has some formal specification in terms of syntax and the required functionality to be exposed to the expert? Second, is the development process for designing an interpreter streamlined enough to scale up the DSL in the event of an ever-growing domain? Later, similar questions will be raised in having a VM as the mechanism responsible for providing observable semantics from a DSL-program being executed.


It will be shown that difficulties arise when scalability starts to become an issue. It is likely to be the case that at some future stage, an end-user needs further amendments to a DSL that has already been provided. Scalability is a very real part of software design, and it should be incorporated into the design process. On the negative side, scalability often comes at a performance cost, but in a prototyping environment, developers and designers alike are willing to make that sacrifice. Because scalability was perceived from the outset as an important matter, it was decided to rely on the Shlaer-Mellor software development methodology, which is well suited to support the development of scalable systems.


Sections 3.1 and 3.2 make the distinction between translation and interpretation, and sections 3.3 and 3.4 provide more information of the Shlaer-Mellor methodology, and relate it to the DSL problem domain. Sections 3.5 and 3.6 provide an overview of the interpreter approach, and rely on a ray-tracer DSL for rendering geometric shapes as an illustrative DSL example. Section 3.7 demonstrates the scaling up of the DSL in terms of syntax and semantics. Finally Section 3.8 briefly discusses modularity of the DSL and Section 3.9 provides the summary.


3.1 DSL Translation


Most industrial strength DSLs currently available, use (source) code generation techniques [Cza99, vDeu01b, Kic96]. Certain areas of concern can be isolated, for example, concurrency, and appropriate DSLs can be designed for expressing concurrency-related issues with primitive concurrency constructs. A process could, for example, be one such construct expressed in terms of its constituent states as well as constructs that enquire on the correctness of such declared processes [Mag99]. After expressing a set of concurrent processes along with a set of formal verification tests in a DSL-program, the user can execute the DSL-program with an interpreter to determine the correctness of the concurrent system. The output of executing this type of DSL-program on an interpreter will simply be a set of possible state transitions that lead to incorrect behaviour or deadlock situations, if at all. This feedback on the correctness of the prototyped concurrent system might prompt for the design of the system to be revisited. Once the logic of the system has been determined to be suitably correct, then conventional programming language source code can be generated using a separate tool to perform the translation of the DSL-program, or this may be a feature of the interpreter itself. The generated source code can either be in the form of a skeleton framework where further functional code can be added or as a separate component (namespace, package or class, depending on the target language) that is generated and compiled in alongside existing functional code. Essentially the tool translates the DSL-program into a language, such as C, which can further be compiled and ready to run on a native processor, such as an embedded system. In this way it is easier to verify the concurrency of the system before it gets further engineered with functional code and debugged on the target system as a C program.


3.2 DSL Interpretation


In contrast to DSL translation, DSLs can also be interpreted. In this case, the DSL is a directly executable programming language, and in this context the DSL forms a scientific tool for a domain expert. Often with interpretation, the semantic analysis forms part of the same code that is already responsible for parsing the actual DSL source. When a certain construct is being parsed and ready to be reduced, there is enough information gathered by the parser at that point to make a function call, and that is the very function that interprets the currently parsed construct.


3.3 Shlaer-Mellor Domains


When discussing software construction at the language or compiler level, there is an obvious assumption that there is some core-underlying principle, which does not change throughout the development life cycle. This is the rationale of the language. Modules that do not change are readily reusable, and for the most part, it is often the class that forms a piece of reusable code. To drive the idea of a reusable rationale, that is configurable at the language level, the Shlaer-Mellor software construction method has been adopted as it serves as a good base onto which to build DSLs. Like most object oriented analysis methods, Shlaer-Mellor encourages the formation of information models to depict static relationships between classes, as well as to depict any dynamic behaviour associated with relevant classes. A fundamental difference between Shlaer-Mellor and other methods is the separation of subject matters into separate domains as was discussed in Section 1.2.1.


Most systems are the result of a collaboration to address overlapping concerns. The concerns could relate to, for example, graphical user interfaces (GUIs), databases, concurrency, mathematical models and so on. Building a domain for each area of concern allows developers to specialize, in parallel, on each different subject matter. This is called horizontal partitioning. This opposes vertical partitioning where a developer needs to understand most of the concerns, as the design is decomposed recursively.


3.4 Configuring Shlaer-Mellor Domains with Bridges


Domains exist as separate reusable frameworks available to project teams that have similar requirements. Thus it is the domain itself that is the main reusable component, and not the classes within the domains. Although classes that have been designed with reusability in mind, and can quite freely be used in more than one domain, classes are usually very specific to its particular domain, and thus limited to one domain. Often it is not possible to build a domain that’s absolutely cast in stone and reuse it amongst other systems and so some level of configurability is required for each domain.


In Shlaer-Mellor, configuring domains is done via bridges. Bridges form the links between domains. They connect the domains in a logical network resulting in the final system. They contain any glue code necessary for the communication between domains to be possible. Bridges do not normally consist of object-oriented code, rather it is mainly procedural function calls. Domains can be reused in different systems with different contexts and the intention is to alter the bridge to allow the domain to fit within the context of a different system.


The configuration language of a bridge is the same language used to build the domains themselves. Pursuing the Shlaer-Mellor idea further, this dissertation involves using C# as the development language for the domains, and then exposing any configurable functionality, as was done with Shlaer-Mellor bridges, as a DSL. This invariably makes configuring a domain much easier if a suitable DSL does exist. It may still be necessary though, to apply an intermediate step to renovate the domain to improve efficiency and reuse of the existing code [vDeu98b]. Another intermediate step may require the rewriting of a large number of procedural legacy methods or functions, into suitable classes for an object-oriented language [vDeu99]. This idea of configuring a domain has proved to form a useful basis for the design and construction of DSLs for domain experts.


3.5 View of the Interpretation Approach


In the view of the interpretation approach, no compilation or translation to an intermediate language is performed and therefore no executable file is generated. A simple illustration of such a view is shown Figure 3. In most interpreted languages it is possible to encounter a syntax error midway through program execution.


In the illustrating software for this chapter, a syntax error will be caught before any interpretation takes place because the parser generator used, PG (see Section 1.2.3), generates code that always builds an Abstract Syntax Tree (AST) from all of the code, before the AST is traversed and interpreted. An AST is a tree data structure representing a program that has been parsed. This representation is irrespective of such parts of the grammar like semicolons and braces (the concrete syntax), and is simply an abstract representation linking all the constituent constructs that make up the program. Since nodes in an AST represent constructs they may contain additional information pertinent to that construct. For example, a node may represent a while-loop construct and contain information as to the condition upon which to exit the while-loop. This information could indeed be a node representing another construct, such as a boolean expression.
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Figure 3. Conceptual view of the Interpretation Approach.


Apart from the actual underlying ray-tracer domain that will be used to illustrate the interpretation approach below, there are only three user-defined components, namely the program’s main entry point, a grammar definition for the parser’s input and a keyword definition for the lexer’s input. The three components are listed in the following table. They are all found on the accompanying CD.


Source File

Description



rtc.lexer

The keyword definition for the ray-tracer lexer’s input, used by LG



rtc.parser

The grammar definition for the ray-tracer parser’s input, used by PG



rt.cs

File containing the program entry point for the interpreter. Home to functions that translate nodes of the AST after the DSL-program has been parsed.



Table 2. Components for the Ray-Tracer Interpreter.


3.6 The Ray-Tracer DSL


One of the DSL examples used throughout this dissertation to illustrate some of the concepts is a simple graphical scene description language, called Ray-Tracer, otherwise referred to as the RT DSL. The language has been devised, and the ray-tracing software upon which it relies has been written, specifically for the purpose of this present study. The underlying mechanism uses a recursive ray-tracer to render scenes of geometric objects with various forms of lighting. Later, when scalability and modularity are improved in the DSL design, other example languages, with their corresponding namespaces will be shown.


The RT language serves as a good example since it is fairly illustrative in more than one sense. Also, ray tracing in general is a fairly well understood technique, and its domain is well defined and almost obligates a DSL to be wrapped around it. The primitive objects used in ray-tracers are usually defined by mathematical equations, like spheres, planes, and cones, so ray interceptions can be calculated on the objects. By adjusting some of the coefficients of the equations, the size and shape of the primitive objects can be altered. Already, it is easy to start realizing some of the concepts that form part of the ray-tracer namespace: rays, vectors, geometric objects and scenes etc. For a more detailed and mathematical account of ray-tracers and ray casting equations see [Wat00].


3.6.1 The RT Namespace


At this point it is appropriate to start fleshing out a real instance of a domain, or rather from a programmatic viewpoint, a namespace. As mentioned above some of the concepts that developers encounter in a ray-tracer are realized as classes within the RT namespace and shown in Figure 4.
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Figure 4. Information Model of the RT namespace.


The following list of source files is given along with a brief description of each file and its purpose. Later extensions to the language can be compared with this list to show fewer files being modified and correspondingly, less coding needed.


Source File

Description



vector3.cs

A simple 3-space vector including typical vector operators like cross products, dot products and some primitive reflection operators. Also includes functions to normalize and calculate the magnitude.



Ray.cs

A higher level to the vector class describing a single ray in space. Includes functionality to generate reflected rays, refracted rays and pass-through rays. Also include functionality to mitigate rounding errors.



RGBStruct.cs

Structure representing the red, green and blue components of a single pixel colour.



RObject.cs

An abstract class forming the base class of ray-tracer primitive object. Thus there can be a generic list of RObjects and the intersection test is dynamically bound depending on the type of object intersected by a ray.



Scene.cs

Simple scene class encapsulating all the described objects. Includes a list of RObject instances that form the scene to be rendered. Once all the objects are in place, then a scene can be rendered to a bitmap image file.



Quadric.cs

Class encapsulating the mathematics for the intersection of a ray on a generic quadric object (sphere, cone, plane) and its coefficients, and is defined by the following equation:


q(x,y,z) = a11x2 + a22y2 + a33z2 +


2a23yz + 2a13xz +2a12xy +


b1x + b2y + b3z + c = 0



Table 3. Source files for the RT namespace.


A primitive declaration in the RT DSL implies that a primitive geometric object is being declared (a quadric, such as a sphere, a cone or a plane). As shown in Figure 8, element2 is the name of the node on the AST representing a primitive declaration, and as such will be representing internally by a class called element2 that lives in the parser’s namespace since it is auto-generated code from PG. Note that in the figure, element2 refers to the second element node. The name of the node, element2 in this case, is not shown alongside the second occurrence of element to due space constraints, however the complete grammars are all found on the CD. Figures 5 and 6 shows example code that performs the interpretation of an element2 node on the AST. The first block shows the code responsible for determining the types associated with each node, while the second block shows the code performing actual interpretation of an identified node. Translating this primitive declaration implies first translating the primitive itself by calling trans_prim(). This function determines the type associated with the prim node, as it could be a prim1 node representing a sphere or a prim2 node representing a plane, and translates the primitive accordingly by creating a quadric object, and adjusts the necessary coefficients for the quadric. Then the primitive’s list of properties is translated in a similar fashion, by first calling trans_prim_prop_list() which translates each property in the list, determining the type associated with each property. In Figure 6 only translation of the specular property of a primitive object is shown. Finally the primitive object is added to the scene’s objects list.
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public static void trans_element2 (RtcParser.element2 node)


 


{


 


  trans_prim (node.p);


 


  trans_prim_prop_list (node.ppl);


 


  scene.addObject (robject);


 


}


 


 


 


public static void trans_prim (RtcParser.prim node)


 


{


 


  if (node is RtcParser.prim1)


 


  {


 


    trans_p


rim1 ((RtcParser.prim1) node);


 


  }


 


  else if (node is RtcParser.prim2)


 


  {


 


    trans_prim2 ((RtcParser.prim2) node);


 


  }


 


}


 


 


 


 


public static void trans_prim_prop_list (RtcParser.prim_prop_list node)


 


{


 


  if (node is RtcParser.prim_prop_list1)


 


  {


 


    trans_p


rim_prop_list1 ((RtcParser.prim_prop_list1) node);


 


  }


 


}


 


 


 


public static void trans_prim_prop_list1 (RtcParser.prim_prop_list1 node)


 


{


 


  if (node.ppl != null) trans_prim_prop_list (node.ppl);


 


  if (node.pp != null) trans_prim_prop (node.pp);


 


}


 


 


 


public sta


tic void trans_prim_prop (RtcParser.prim_prop node)


 


{


 


  if (node is RtcParser.prim_prop1)


 


  {


 


    trans_prim_prop1 ((RtcParser.prim_prop1) node);


 


  }


 


  else if (node is RtcParser.prim_prop2)


 


  {


 


    trans_prim_prop2 ((RtcParser.prim_prop2) node);


 


  }


 


 


  ..


.  


 


  else if (node is RtcParser.prim_prop6)


 


  {


 


    trans_prim_prop6 ((RtcParser.prim_prop6) node);


 


  }


 


}


 




Figure 5. Determining the type associated with an AST node.
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public static void trans_prim1 (RtcParser.prim1 node)


 


{


 


  robject = new Quadric ();


 


  robject.alterCoeff_a11 (1.0 / (node.d1 * node.d1));


 


  robject.alterCoeff_a22 (1.0 / (node.d1 * node.d1));


 


  robject.alterCoeff_a33 (1.0 / (node.d1 * node.d1));


 


  robjec


t.alterCoeff_c (


-


1.0);


 


}


 


 


public static void trans_prim2 (RtcParser.prim2 node)


 


{


 


  robject = new Quadric ();


 


  robject.alterCoeff_b1 (node.d1);


 


  robject.alterCoeff_b2 (node.d2);


 


  robject.alterCoeff_b3 (node.d3);


 


  robject.alterCoeff_c (node.d4);


 


}


 


 


 


pub


lic static void trans_prim_prop2 (RtcParser.prim_prop2 node)


 


{


 


  robject.alterSpecular (node.d1, node.d2, node.d3);


 


}


 


 




Figure 6. Actual interpretations of the AST nodes.


3.6.2 The RT Language


The RT scene description DSL is a simple declarative language. Once a primitive object is declared, for example, a sphere, it is automatically allocated in memory. Once all primitives have been declared, the ray-tracer will render the scene as a bitmap. The object used for the bitmap is the .NET class System.Drawing.Bitmap, which, once instantiated can be either rendered onto a canvas or saved to disk.


Primitives are defined by specifying their geometry and chromatic characteristics. All primitives reside in a scene declaration. A scene is defined to have a window width and height, and a set of other characteristics, such as the camera position, light position and so on. The lexer’s input consists of regular expression definitions that are given in a format supported by LG, and the parser’s input are grammar definitions in a variation of Backus-Naur Form (BNF) that is supported by PG.
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%lexer


 


%token                   DOUBLE {public double val;}


 


"{"                      %LBRACE


 


"}"                      %RBRACE


 


"scene"                  %SCENE


 


"window"                 %WINDOW


 


"light"                  %LIGHT
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"specular"               %SPECULAR
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        %SPHERE


 


"plane"                  %PLANE


 


"translate"              %TRANSLATE
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9]+)?   %DOUBLE {val = Double.Parse (yytext);}
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"(*"                     {yybegin ("COMMENT");}


 


<COMMENT>"*)"            {yybegin


 ("YYINITIAL");}
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<COMMENT>


\
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Figure 7. Lexer input for RT.


Integer and double tokens have been combined into a single DOUBLE token that matches any signed or unsigned integer or double. Internally it is represented as a double C# primitive type. Also, the regular expressions recognized by the lexer provide for Pascal-like comments in the DSL.
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scene_desc : SCENE LBRACE element_list RBRACE


 


 


 


element_list :


 


element_list : element_list element


 


 


element : scene_prop


 


element : prim LBRACE prim_prop_list RBRACE


 


 


scene_prop : WINDOW DOUBLE DOUBLE


 


scene_prop : LIGHT DOUBLE DOUBLE DOUBLE


 


scene_prop : C


OP DOUBLE DOUBLE DOUBLE


 


scene_prop : LOOKAT DOUBLE DOUBLE DOUBLE


 


scene_prop : VIEWUP DOUBLE DOUBLE DOUBLE


 


scene_prop : AMBIENT DOUBLE DOUBLE DOUBLE


 


 


prim_prop_list :


 


prim_prop_list : prim_prop_list prim_prop


 


 


prim_prop : GEOM DOUBLE DOUBLE DOUBLE DOUBLE


 


pr


im_prop : SPECULAR DOUBLE DOUBLE DOUBLE


 


prim_prop : DIFFUSE DOUBLE DOUBLE DOUBLE


 


prim_prop : REFLECTIVE DOUBLE DOUBLE DOUBLE


 


prim_prop : REFRACTIVE DOUBLE DOUBLE DOUBLE


 


prim_prop : TRANSLATE DOUBLE DOUBLE DOUBLE


 


 


prim : SPHERE DOUBLE


 




Figure 8. Parser input for RT.


Figure 9 is an example of how the RT DSL can be used to describe a scene. This will be the running example used throughout the dissertation in reference to using RT as a DSL. The example will also be used for the performance measurements.
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(* Render a red, a blue and a green sphere, and an orange plane. *)


 


scene


 


{


 


 


 


(* Define the settings for the scene. *)


 


 


window 300.0 200.0


 


 


 


light 


-


3.5 0.5 2.0


 


 


 


cop 0.0 2.5 1.0


 


 


 


lookat 0.0 0.0 0.0


 


 


 


viewup 0.0 0.0 1.0


 


 


 


 


 


 


sphere 0.5


 


 


{


 


 


 


translate 1.0


 0.0 0.0


 


 


 


specular 0.7 0.0 0.0


 


 


 


diffuse 0.7 0.0 0.0


 


 


 


reflective 0.1 0.1 0.1


 


 


 


 


}


 


 


 


 


sphere 0.5


 


 


{


 


 


 


translate 0.0 


-


1.0 0.2


 


 


 


specular 0.0 0.7 0.0


 


 


 


diffuse 0.0 0.7 0.0


 


 


 


reflective 0.2 0.3 0.2


 


 


 


 


}


 


 


 


 


sphere 0.5


 


 


{


 


 


 


translate 


-


1.0 


-


0.5 0.0


 


 


 


specular 0


.0 0.0 0.7


 


 


 


diffuse 0.0 0.0 0.7


 


 


 


reflective 0.1 0.1 0.1


 


 


 


 


}


 


 


 


 


plane 


-


0.1 0.0 1.0 1.0


 


 


{


 


 


 


specular 0.0 0.0 0.0


 


 


 


diffuse 1.0 0.5 0.0


 


 


 


reflective 0.25 0.25 0.25


 


 


 


 


}


 


}


 




Figure 9. Example scene described in RT.


The language is fairly intuitive, and nowhere does the end-user of the language require any knowledge of the underlying mechanics of ray-tracers, neither at the implementation level nor at the mathematical level. The end-user’s only concern is modeling a scene, and this end-user requirement is what the RT DSL has exposed.
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Figure 10. Result of rendering the scene defined in RT.


The end result of interpreting the example RT program is a bitmap image on disk of the described model, shown in Figure 10.


3.7 Scaling up the RT DSL for the Interpreter Approach


This section explores the implications of scaling up the RT DSL. Suppose that the user of the DSL would like to be able to alter the ambient light within the scene being rendered. The user would like the ability to adjust the red, green and blue colour components of the scene. A new ambient construct needs to be added to the language syntax. The Scene class within the RT domain already provides this functionality, so no additional code is needed in the namespace to facilitate the semantics of ambient light. The difficulty will come in the interpretation of the AST node representing the ambient component once the construct has been parsed.


3.7.1 Adding a Construct to an Interpreter


Adding an ambient construct to an interpreter implies modifying the way the interpreter translates nodes on the AST. It is desirable to devise a means to retain such modifications in a small, isolated region throughout the DSL pipeline, thus minimizing chances of introducing new bugs into the software that ultimately processes the DSL-program. First off, the grammar needs altering to add the ambient construct to the language itself, and hence the lexer also needs a minor modification to accept a new keyword ambient. The code that performs the translations of the AST nodes also need to be modified and here one needs to add the necessary code to provide the correct interpretation of such a construct.


3.7.2 Components Requiring Alteration


It is trivial to amend the new keyword ambient to the existing keyword set. It is simply a matter of appending its regular expression to the RT DSL’s lexer definition as highlighted in the Figure 11.
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%lexer


 


%namespace RtcLexer


 


 


%token                   DOUBLE {public double val;}


 


"{"                      %LBRACE


 


"}"                      %RBRACE


 


"scene"                  %SCENE


 


...


 


"viewup"                 %VIEWUP


 


"ambient"                %AMBIENT


 


"ge


ometry"               %GEOM


 


...


 




Figure 11. Appending the lexer definition for keyword ambient.


The grammar should now support the addition of the ambient construct itself, highlighted in bold below, as well as the AST representation structure of the ambient node after it has been parsed, also highlighted in bold below. The new node is called scene_prop6().
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...


 


%node scene_prop6 : scene_prop


 


{


 


 


public double d1, d2, d3;


 


 


public scene_prop6 (double d1,double d2,double d3)


 


              {this.d1=d1;this.d2=d2;this.d3=d3;}


 


}


 


...


 


 


element : scene_prop


 


element : prim:p LBRACE prim_prop_list:ppl RBRACE


 


 


scene_pro


p : WINDOW DOUBLE:d1 DOUBLE:d2


 


scene_prop : LIGHT DOUBLE:d1 DOUBLE:d2 DOUBLE:d3


 


scene_prop : COP DOUBLE:d1 DOUBLE:d2 DOUBLE:d3


 


scene_prop : LOOKAT DOUBLE:d1 DOUBLE:d2 DOUBLE:d3


 


scene_prop : VIEWUP DOUBLE:d1 DOUBLE:d2 DOUBLE:d3


 


scene_prop : AMBIENT DOUBLE:d


1 DOUBLE:d2 DOUBLE:d3


 


             %scene_prop6 (d1.val,d2.val,d3.val);


 


 


prim_prop_list :


 


prim_prop_list : prim_prop_list:ppl prim_prop:pp


 


...


 


 


 




Figure 12. Altering the grammar definition for the new ambient construct.


The modification to the code that traverses the AST and performs the interpretation does have a certain degree of risk, as these modifications need to be carefully integrated so as not to alter the semantics of any existing constructs. In the listing shown below, the translation of a scene property, trans_scene_prop() needs adjustment to call the translation of  the ambient property by invoking trans_scene_prop6(), and in so doing providing the necessary interpretation of adjusting the ambience of the scene.
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public class rtc


 


{


 


   public static void Main (string [] argv)


 


   {


 


      ...


 


 


   }


 


 


   ...


 


 


   public static void trans_scene_prop (RtcParser.scene_prop node)


 


   {


 


      if (node is RtcParser.scene_prop1)


 


      {


 


         trans_scene_prop1 ((RtcParser.s


cene_prop1) node);


 


      }


 


      ...


 


      


else if (node is RtcParser.scene_prop6)


 


      {


 


         trans_scene_prop6 ((RtcParser.scene_prop6) node);


 


      }


 


   }


 


 


   ...


 


   


public static void trans_scene_prop6 (RtcParser.scene_prop6 node)


 


   {


 


      scene


.alterAmbient (node.d1, node.d2, node.d3);  // ambient


 


      scene.setupAxes ();


 


   }


 


 


   ...


 


   public static Scene scene;


 


   public static RObject robject;


 


   public static Bitmap bitmap;


 


   public static string filename;


 


}


 




Figure 13. Altering the functions for the new ambient construct.


3.8 Modularity


In the interpretation approach to DSLs, issues of parsing and issues of semantics form part of the same piece of software. Thus it is not easy to reuse, say, just the semantic component of the language, for example, if no syntax is required for a particular solution. Ideally, one would like to approach the Shlaer-Mellor route, in that there be a clear separation between the issues of the semantics for the namespaces rationale or the functionality that the namespace provides, and the issues of allowing an end-user the ability of configuring the components (or classes) of the namespace to provide a resultant system that is better suited to their requirement. It is not necessarily the case that the configurable portion of the system be in the form of a DSL, though that is the main focus of this dissertation, and as mentioned above, in the case of a developer using a Shlaer-Mellor architecture, the configuration language is usually the same language used to build the components or classes of the namespace itself.


3.9 Summary


In this chapter an interpreter for a ray-tracer DSL is examined. Interpreters are easy to build and if the required DSL is small enough, and if the end-user foresees minimal modifications to the DSL’s construct or underlying namespace, then the DSL interpreter is a simple enough solution. However as far as the language scalability is concerned, an interpreter poses problems. This was illustrated in this chapter by showing the required modifications to add an ambient construct to the RT DSL.


Since the semantics are interpreted directly from the nodes of the AST, it was not an easy task to alter the code that traverses the AST. Though the generation of a parser is automated, the code that forms the translation rules of each node is not, and regeneration of a parser potentially requires rearranging segments of code.


In this chapter the RT DSL was introduced. It shall serve as the example language throughout the dissertation, and is further used to illustrate how it forms an extension to a much simpler expression language later in Chapter 5. The RT namespace has a well-defined set of classes, including a Quadric class, with the responsibility of providing the mathematics to render any quadric (a sphere, a plane or a cone) onto a canvas.


4 Domain-Specific Virtual Machines
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This chapter heads into the realm of VMs as the core mechanism responsible for providing the runtime execution of a DSL-program. It should be noted here that it is possible to build a complete taxonomy of VMs, each with varying objectives and implementations and differing contextual uses. The idea of a VM is not new, and conceptually rather simple. Interests in VMs are mainly invested in their ability to offer a high degree of flexibility in larger systems. This flexibility characteristic will be important later when portability of DSLs is discussed.


Virtual Machines are used often in computing to solve problems, but they are usually transparent to an end-user because they essentially consist of software running inside other programs or other operating systems. The concept of VMs has proven to be a powerful tool in shaping computations, and due to their popularity they provide another option from which to investigate the prototyping of DSLs.


Section 4.1 discusses some of the reasons for using VMs instead of code generation techniques to provide the semantics. Section 4.2 and 4.3 describe VMs from two different perspectives, and Section 4.4 describes the VM approach when applied to a DSL. Section 4.5 provides the details on scaling up a VM in the face of a new instruction and it’s corresponding modularity is discussed in Section 4.6. This chapter concludes with a summary.


4.1 VM vs. Code Generator


There are two paths that a language designer can follow in building the software that processes a source program written in the designed source language. In the first case, a translator can be designed that will translate the source program directly into a program in some target language. This is the code generation approach, and it essentially comes down to representing source programs in a different language. In the second case, a compiler can be designed that translates the source program into an instruction sequence, where the instructions are part of some instruction set. In some instances the instructions can only be natively executed on the platform. However in other instances the instructions are platform-independent. In the platform-independent case, a VM is used to interpret each instruction in the instruction sequence that the compiler generated on the platform on which the VM is running. The compiler in this case is platform independent, but a platform dependent VM is needed to execute the instructions that the compiler generates. The advantage of this is that multiple compilers can generate instructions for the same VM.


Why would a language designer opt to use a VM at all? Although code generation is certainly useful [vDeu01b, Cza99a], a more modular and more flexible means to create the software responsible for executing a DSL-program is sought. Allowing a user to build a language that requires additional work to target another language (or perhaps even to target a specific architecture built in that language) further complicates the software engineering process, as the user needs to think about the DSL, and the target language, and the complexities of matching the two together. A VM in this regard is thus more suitable because the user needs to only be concerned with the DSL, its syntax and semantics, and the raw execution of its constructs in the form of an instruction sequence that execute.


When scalability of DSLs is a concern, designing a suitable set of instructions may prove to be a more modular approach than designing a translator, since designing a finite set of instructions and any data structures that these instructions may modify, could lend itself to a more modular design. This current study aims to pursue this approach in building the software that will be responsible for providing the runtime semantics of DSLs. Language designers could potentially ask how easy it is for them to build or scale up a VM for a particular DSL. Will it be a simple case of adding constructs to the language that translate to instructions that already exist as part of the VM’s instruction set, or will new instructions need to be added? How easy will is the task of adding new instructions to an existing VM?


4.2 Virtual Machine Instruction Set Architecture


The VM executes a sequence of instructions (i.e. a compiled program) and each instruction, as it is executed, performs some atomic operation. The word atomic simply means that the instruction represents an elementary operation that cannot be broken down any further in terms of the instruction set. As instructions are executed, the VM’s internal data structures are continuously modified according to these operations, for example, one instruction may push a real value onto a stack, while another may pop off the top two values and push their sum back on. The instructions thus access the VM’s internal data structures in different ways. Naturally, a correct sequence of these instructions will leave the VM’s data structures in predictable, consistent states and it is possible to verify the correctness of a sequence of instructions if the behaviour of each instruction is understood. This notion of executing the sequence of instructions is called a process, and there is a notion that the VM performing the execution of the instructions can understand or identify these instructions. In other words, the VM supports the instruction specification or the Instruction Set Architecture (ISA). Attempting to execute an instruction that is not part of the ISA will result in an error condition or graceful program termination if the VM is able to trap unrecognizable instructions. Figure 14 below is a simple illustration of this concept. It is also shown that part of the ISA contains a more privileged set of instructions that are used by an operating system while user instructions are used by typical application software.
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Figure 14. Instruction Set Architectures – System ISA and User ISA.


4.3 System Virtual Machines versus Process Virtual Machines


As mentioned before, though there exists a detailed hierarchy of VMs, it suffices at this point to classify two broad types of VMs at the top of this hierarchy: process VMs, and system VMs, [Smi05], each offering two different levels of support to the software running on top of them. As will later be seen, a software program created by a DSL will be regarded as a process and will slot comfortably into a process VM type of architecture. Here, both process- and system-VMs will briefly be discussed to understand the differences.


System VMs, simply put, exist to support Operating Systems (OSs), and hence are required to provide a full system environment for a particular OS to run on, that is, an environment with hardware resources, networking IO, and related subcomponents. Virtualizing software, by which is meant the software that constitutes the system VM itself, sits between an existing machine (machine, in an abstract sense, since the machine itself can be virtualized), and an OS, as depicted in Figure 15. In a hosted system VM, the virtualizing software is installed as a typical application running on an OS. VMware is one well-known example, and it provides an ISA that is identical to the one of the system onto which it was installed. In contrast, in a codesigned system VM the ISA differs from that of the underlying system, in essence providing such flexibility to run, for example, a Windows OS on a non IA-32 machine.
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Figure 15. A System VM. Virtualizing software between hardware and OS.


Process VMs are of more interest to language designers because a process VM hides even system calls into the OS. It thus relieves the programmer from even thinking about the details of a specific OS. Instead, it allows the programmer to just be aware that one does indeed exist, and that it has features typical of an OS, such as GUIs and threads.


Emulation is one use of process VMs. In this case, the virtualizing software allows a program that has been compiled for some ISA to run on another ISA – i.e. the virtualizing software emulates the second ISA. Internally, the process VM performs per-instruction translation of the original sequence of instructions so that the process results in the same intended behaviour. An example is the Digital FX!32 system. Windows programs are intended to run on PCs based on 32 bit Intel Architecture (x86 or IA32) microprocessors, such as a Pentium processor. Using the Digital FX!32 system these programs are able to run on PCs featuring Alpha microprocessors which are a non-Intel based platforms. Furthermore, it is not uncommon to have profiling software embedded in process VMs, collecting statistical information about a program’s runtime behaviour, and thereby allowing a programmer to identify sections of code that are called frequently and perhaps warrant an optimization effort.


For a developer though, portability is still a major concern, and so it is useful to have a process VM that does not necessarily reflect a real platform as such, but rather reflects the features of a high-level language. In particular, having a VM that reflects features of a DSL would be useful, and even more so a process VM that takes on a more active approach and allows these features to be scalable and configurable by a language designer. These types of process VMs are known as high-level language VMs (HLL VMs), illustrated in Figure 16. The .NET CLR and the Java VM are both examples of such HLL VMs and, incidentally, both use a stack based ISA. Operands, of whatever type they may be, are implied by their position in the stack, thus resulting in executable binaries of a much smaller footprint.
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Figure 16. A Process VM. Virtualizing software supports an individual process.


For completeness sake, the summarized VM hierarchy of the afore-mentioned VM types is shown in Figure 17 below. The classification is taken from [Smi05]. Also, it will be the assumption that some form of hardware does indeed exist lower down the various layers of abstraction, so it is not important to stress that part of the system. The interest is at the level of the HLL VM’s ISA, and more to the point, that there will be some kind of useful ISA for the designer of the DSL VM. The terminology will change slightly as the view of the different approaches change, but will be clearly defined as the approaches are discussed.




[image: image24.wmf] 


Process VMs


 


System VMs


 


Same ISA


 


Different ISA


 


Same ISA


 


Emulators


 


HLL VMs


 


Hosted VMs


 


Codesigned  VMs


 


Different ISA


 




Figure 17. Broad classification of VMs.


4.4 View of the Virtual Machine Approach


In the proceeding sections the discussion centered around VMs that facilitate an ISA for a DSL. This type of HLL VM shall be named a DSL VM. Such a process VM runs as a program written in a high-level object oriented language, in this case C# on the .NET platform. The ISA provided by the DSL VM will undoubtedly be much smaller than that of the underlying HLL VM in which it was written, in terms of the sheer number of instructions, though this does not necessarily have to be the case, depending on the level of complexity or flexibility that the DSL provides (or will provide in future iterations).
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As defined in Chapter 1, a DSL-program is simply the source code of a program written in the language of the DSL. To take that definition a step further, it is necessary here to define the compiled state of that program, referred to as the DSL-compiled program, The DSL-compiled program will be executed by the DSL VM.
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The position of the DSL VM relative to the all-important HLL VM on which it itself executes, and of course the DSL-programs written by the domain expert, is clearly shown in Figure 18.
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Figure 18. The DSL VM relative to the HLL VM on which it was written.


The same RT DSL previously introduced will be used to illustrate aspects of the design of the VM approach. In this approach, a set of instructions has been hard coded in the VM. A DSL-compiler first translates the RT DSL-program (a scene description) into an ordered list of instructions that is understood by the RT VM, shown in Figure 19. It is relevant to note at this point that a DSL-compiler is required for each DSL. There will be a DSL-compiler that will translate a program written in RT into a sequence of instructions that will be executed by the RT VM. Similarly there will be a DSL-compiler that will translate each of the other example DSL-programs into a sequence of instructions targeted to the relevant DSL VM. The theme of the next section will make note of some pitfalls in using this typical VM approach, with particular attention to making further additions to the RT DSL.
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Figure 19. Conceptual view of the VM Approach.


Since the VM needs to interpret instruction sequence opcodes and operands, a separate parser and lexer is needed in the VM itself to read the DSL-compiled program. Figures 20 and 21 give the regular expression definition and grammar definition of the lexer and parser.
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Figure 20. Lexer definition for the RT VM.


At the outset, it can be seen that the grammar for the parser is very basic, as it simply matches any one of a set of predefined opcodes defined as keywords in the lexer definition. In the next chapter this grammar will be revisited, as this basic grammar will not be sufficient. It does not make provision for labels or for branching instructions, and only the Push instruction supports an operand.
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Figure 21. Parser definition for the RT VM.


4.5 Scaling up the RT DSL for the VM Approach


As before, an attempt is made to scale up the RT DSL by adding an ambient construct. Because the process that parses the DSL-program (the DSL-compiler) is now separate from the process performing the logic to provide the semantics (the RT VM), the modifications are needed in both the VM and the compiler. The compiler’s lexer will need to incorporate a new keyword ambient as before, and the grammar for the compiler’s parser needs to be altered to produce a valid node on the AST. This amounts to the same difficulty as that involved in amending the interpreter described in Chapter 3.


However, this additional AST node will be handled differently by the DSL-compiler. Instead of providing new functions to be called by an interpreter and changing the main program of the interpreter to make these function calls (as was illustrated in Section 3.7.2), the DSL-compiler now has to generate a sequence of instructions that alter the ambient lighting of the scene. The VM will thereafter execute these instructions to adjust the ambient lighting in the scene.


A new instruction needs to be added to the instruction set, so a modification is needed to the VM. The lexer and parser for the VM needs to match on the new instruction, and the VM needs to have a function that provides the implementation for executing the new instruction. These modifications will be shown in the next section. In Chapter 6, a more efficient means of appending a new instruction to the VM will be discussed and compared to the one mentioned shortly.


4.5.1 Adding a Construct to a VM


The changes to be made to the DSL-compiler that has just been mentioned are fairly trivial: one merely has to ensure that the lexer and grammar cater for the new ambient construct. Given the set of instructions, it is necessary also to modify the VM to include a new instruction, Ambient, with no operands. There is less risk in modifying the VM, than modifying the DSL-compiler, as the VM only requires one additional function to interpret the new instruction, whereas the interpreter approach needs an additional function that will be called during the traversal of the AST. Adding these functions is a less trivial task in the case of the interpreter approach, as it involves changes to the logic of the interpreter code itself.


4.5.2 Components Requiring Alteration


The alterations to the RT-compiler are similar to the alterations made to the interpreter front-end outlined in Section 3.7.2, insofar as the lexer is concerned. The RT-compiler’s parser though, needs to handle the ambient node on the AST differently. The translation of the ambient node on the AST is required to generate a sequence of instructions that will alter the ambient light within the scene that is to be rendered. The translation of this node is handled by a new the function scene_prop6(), shown in bold in Figure 22. The sequence of instructions that are generated for the ambient construct is shown in the body of this function.
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Figure 22. Altering the grammar for the new ambient construct.


One of the instructions to be emitted by the compiler is the Ambient instruction which is to be newly defined in the VM as a function call. The red, green and blue component operands to the Ambient opcode are pushed on the stack prior to its execution. The Push instruction already exists as part of the RT VM’s instruction set. Furthermore, the VM’s lexer and parser need to match on the new Ambient instruction. The modifications are highlighted in bold in Figures 23 and 24 below.
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Figure 23. Adding the Ambient instruction to the VM’s lexer definition.


The parser definition simply matches on the keyword Ambient, and calls the appropriate translation rule. In this case it calls the function RT_AMB(), defined in the RTMachine class in the RTVM namespace.
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Figure 24. Parsing the new Ambient instruction.


The definition for RT_AMB() is to simply pop the three red, green and blue component operands off the stack in reverse order, and apply them to the scene, as shown in Figure 25.
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Figure 25. The semantics for the new Ambient instruction in function RT_AMB().


4.6 Modularity


The VM approach makes far better use of modularity. The VM is not a compiler but simply interprets instructions, so issues of syntax are handled by separate compiler software. The VM approach is closer to that of the Shlaer-Mellor method in that issues of semantics are exposed in the form of an instruction set. A sequence of instructions or a DSL-compiled program thus dictates a specific runtime execution of the domain, and these instructions are simply executed by the VM itself.


However, a developer would still like to be able to use the VM as a reusable component of a much larger system, but the VM has shortfalls for being used in this context. For example, suppose the images generated by the RT DSL are to be rendered immediately onto a visible canvas, instead of writing the images out to a file. Though possible, it is cumbersome to integrate this type of modification into the instruction set.


4.7 Summary


In this chapter, VMs are examined as the core functional mechanics used to provide the operational semantics of a DSL-program, or more specifically, of the DSL-compiled program produced by the DSL-compiler. A VM hierarchy was discussed in this chapter, with descriptions of the two main classes of VMs, namely process VMs and system VMs. One of the classes, namely the class of HLL VMs, was identified as being particularly relevant in the context of this study. This class of VM includes what has been termed the DSL VM, which runs as a single process program on another underlying HLL VM. (It may be noted that multi-process DSL VMs are indeed a possibility but the complexity of concurrent processes are beyond the scope of this dissertation.) The underlying HLL VM may be a Java VM or in this case, the .NET CLR.


The DSL-compiled program is in the form of a sequence of instructions and their operands. The VM loads the compiled program and begins execution from the first instruction. The implementation of the VM is built on top of the existing namespace (the domain) and the namespace is exposed via the instruction set. Thus, execution of these instructions implies some calls into the namespace. Logical interpretation of a DSL-program is done in two steps – first the DSL source needs to be compiled into a DSL-compiled program. For this a compiler is needed and a set of translation rules that map the DSL syntax into segments of instruction sequences. Then the instructions are then executed by the VM. A separate parser is needed to load the compiled program into memory before execution.


Scaling up the DSL, as in the case of adding an ambient construct to the RT DSL, requires modification on both the compiler and the VM. The VM needs to be modified to support a new instruction to change ambient values; the compiler needs to be modified to parse the new ambient construct, and to generate the necessary sequence of instructions, including the generation of the Ambient instruction as part of the sequence.


5 Domain-Specific Virtual Machines: A More General Approach
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This chapter introduces the abstract VM architecture into the design of DSLs. It is abstract, in the sense that there are no instructions, and a VM instance cannot execute any given DSL-compiled program until it has been configured. It will appear to a developer as a VM with an empty instruction set and no environment. This will give the developer complete freedom in designing an instruction set and an environment appropriate for a particular namespace. For further VM design architectures, see [Jac96, Rie01].


Once a computation or program execution has completed, an instance of a result data type can be retrieved if necessary. This retrieval of a result makes the VM Framework versatile from a modularity perspective, as the result type can be user-defined. The instantiated VM object will feature methods that allow configuration of the VM itself. It will also feature appropriate methods to parse and load a DSL-compiled program, to execute a loaded program and to retrieve the result of a program execution. These will all be discussed in detail.


The VM Framework proposed in this section is described in detail in Section 5.1 through to Section 5.4. Section 5.1 explains the use of parsing DSL-compiled programs at a textual level, and not a binary level, i.e. having the DSL-compiled programs human readable. Section 5.2 provides a brief overview of the instruction classes, and configuring the VM instance with each instruction class, and an environment. Section 5.3 describes the internal control loop responsible for executing each instruction of a loaded DSL-compiled program and Section 5.4 describes how a result of a computation can be retrieved after a loaded program has finished executing. Section 5.5 provides a view of the VM Framework as the core mechanics providing the semantics for the DSL, and Section 5.6 provides a more detailed design description. Environments and instructions and their respective classes are discussed in Sections 5.7 and 5.8 respectively, followed by a summary of the chapter.


5.1 Compiled Program Parsing and Loading


Section 4.4 gave a high-level description of the instructions and the grammar for parsing the different instructions. In this chapter, each instruction has been classified according to one of five categories and each category is so defined by the type of operand following the instruction. These categories will be fully fleshed out in Section 5.8. The VM program loader has a parser that will match on the appropriate instruction as it loads a DSL-compiled program and hence it will be able to identify to which category it belongs. Extending the Framework to support an instruction set will not require any modification to the program loader’s grammar, but only the creation of specific instructions from one of the five categories. Each category of instruction is represented in code by an abstract class that is subtyped into a concrete subclass, representing an actual user-defined instruction. This means after a user-defined instruction class has been created and registered with the VM instance using the configuration file, the VM’s loader will automatically be able to parse an occurrence of the specified instruction during program load time.


5.2 Instruction Set and Environment Configuration


To use the VM Framework, classes have to be created that extend the instruction classes and environment classes. This means that each user-defined instruction class must extend one of the five abstract instruction classes, and there must be at least one user-defined environment class extending the abstract environment class. Such a collection of classes defines a configuration to support a given DSL. It is possible to have multiple configurations by setting up various configuration files for different types of DSLs. In this way an instantiated VM can be used as part of a DSL prototyping environment. Each time a different language needs to be prototyped a new configuration file is loaded by calling the appropriate method on the instantiated VM object, and in turn, the VM will create a new pool of instruction classes (the user-defined classes, specified by the configuration file). Each user-defined instruction class from this pool will be instantiated once a specific occurrence of an instruction is loaded during the loading of a DSL-compiled program, i.e. an instruction object instance of one of these instruction classes encapsulates the instruction’s operand, if any. An array of instruction instances thus represents a loaded program. There is no pool of environment classes, simply a pool of instances of the user-defined environments and as such the environments are simply instantiated during the loading of the configuration file.


5.3 Program Execution


Once the sequence of instructions defined in the DSL-compiled program have been parsed and loaded into memory as described in the previous section, they can be executed. The main loop that is responsible for the execution of the loaded program is shown in Figure 26. This shows how execution of an instruction is handled according to its class. Using simple reflection (i.e. using the C# boolean operator, is) it is possible to identify the class of the current instruction before it is executed.


Before entering the loop, the first instruction is fetched from the memory. This simply amounts to retrieving the first instruction in an array of instructions that represents a loaded DSL-compiled program. Once in the loop, a check is done to determine if the instruction is of a type that has an ID operand. These instructions will be described later in Section 5.8, however for the sake of explanation an instruction with an ID operand is simply an instruction that references one of the VM’s internal temporaries. The reference is simply an index value. These temporaries can be an object of any user-defined type. They can be instantiated by the instruction and later retrieved again. The first block in Figure 26 handles these types of instructions. It retrieves the appropriate temporary from the temps[] array and supplies it to the instruction before it is executed, if such a temporary exists.


If the instruction is one of the four remaining instruction types, the instruction is executed immediately, however, a further nested check is performed to determine if a branch instruction is being executed at the current point of execution or if a previous point of execution should resume. These types of instructions may be used, for example, to jump to a subroutine and return from a subroutine.
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}


 


 


 


 


}


 


 


 


 


else if (current_ins is Instruction_OpCode) {


 


 


 


 


 


ins = (Instruction_


OpCode) current_ins;


 


 


 


 


 


if (ins.LoadProgramCounter) {


 


 


 


 


 


 


loader.RecallPC ();


 


 


 


 


 


}


 


 


 


 


}


 


 


 


}


 


 


 


 


// After updating the program counter, grab the next instruction.
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Figure 26. Main loop for executing loaded instructions.


5.4 Output Results


Figure 27 shows the GetResult() method that is to be found in the EVM class (Section 5.6.1). It uses a string parameter that is the name of an environment that was registered with the VM instance. One of the encapsulated objects of the EVM class is the config object of type Config, which simply manages the pool of instruction classes and environment instances, as well as the mapping that links an environment to an appropriate instruction class. The Config class encapsulates an array environments[] that is the pool of instantiated environments for the current VM configuration. The string parameter of GetResult() simply uses the string name of a registered environment as the index to the array environments[]. Indexing arrays with a string is an elegant feature of C#. This retrieves a specific environment instance, env, and in turn the function GetResult(), in this case, now a member function of Env, is then called on the object env. The function GetResult() is abstractly declared in Env and it is the obligation of the implementer of a subclass of Env to decide what should be returned as a result. More about this inner call to GetResult() will be given in Section 5.6.5 and an example will be presented in later sections. The method GetResult() is called after the VM instance has completed execution of a loaded program to retrieve any result of a computation performed by the execution of the loaded program. If no such result is expected, the function needn’t be called.


While the result is returned generically as an object, its actual data type forms part of the namespace and essentially describes an object that makes sense as a result of executing the loaded program. For example, in a simple real-valued expression DSL, the results can be a simple C# float data type, while an RT DSL may return a System.Drawing.Bitmap instance as a result of rendering object primitives within a scene. The VM Framework needn’t have any knowledge of this data type and hence it does not form part of the configuration in any way.
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public object GetResult (string Environ)


 


{


 


 


Env env;


 


 


 


env = (Env) config.environments [Environ];


 


 


return env.GetResult ();


 


}


 




Figure 27. The GetResult() method of the EVM class.


It is possible to switch between different environments and instructions at runtime. This makes the VM well suited in a language prototyping application, where the same VM can be reused, and there is no need to recompile a specification to generate a new machine for a new language.


5.5 View of the Virtual Machine Framework Approach


The raw execution rationale of an instantiated VM of the VM Framework is similar to that of the VM approach discussed in Chapter 4, in that an compiled program is first loaded and then each instruction is executed in sequence. However, there is an initial phase to set up the VM Framework for a particular DSL. This is done via the configuration file. An instantiated VM reads the configuration file, as depicted in Figure 28, and creates the necessary instructions and environment instances accordingly. As in the VM approach, the source DSL-program is still compiled. However in the VM Framework approach the semantics of the target language is encapsulated in instruction classes that are subtypes of abstract instruction classes, which are part of the VM Framework. Also, in the VM Framework approach, a result data type can be setup by the user. After the instantiated VM has executed a sequence of instructions defined in the loaded program, then the user of the VM can retrieve the instance of the result data type.
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Figure 28. Conceptual view of the VM Framework Approach.


5.6 Virtual Machine Framework Detailed Design Description


The VM Framework provides the basic functionality of a typical VM, including a DSL-compiled program loader, a program counter, internal temporary values, and conditions on which to build branching instructions. A top-level class (the EVM class) is provided through which to start up and configure an instance of a VM. It also provides the interface for the loading and running of a program. The actual configuration of the instantiated VM, i.e. the environment and instruction set setup, is done through the configuration file discussed in Section 5.6.2. Thus no modification to the VM Framework itself is required and its component classes can consequently be compiled and saved as a library. The VM Framework consists of five main classes, (excluding the .NET Type class) each discussed in the following sections. They are the EVM class discussed in Section 5.6.1, the Config class discussed in Section 5.6.2, the Loader class discussed in Section 5.6.3, the Inst abstract instruction class discussed in Section 5.6.4 and the Env abstract environment class discussed in Section 5.6.5. They all belong to the DVM (Dynamic VM) namespace, and their inter-relationship is depicted in Figure 29. The VM Framework, in its compiled form, amounts to a single .NET DVM.DLL file. One of the classes, the Inst class, has five abstract instruction subclasses. They are not shown in Figure 29, but they will be discussed later in Section 5.8.
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Figure 29. Information Model of the VM Framework namespace.


5.6.1 The EVM Class


The EVM class (Extendable Virtual Machine) is the top-level class of the VM Framework. An instance of this class is a reference to an instantiated VM object. Configuration of the instantiated VM, loading of DSL-compiled programs, execution of loaded programs etc., is performed on this object. Once instantiated, the object represents an instance of a configurable VM, with an empty instruction set and no environment, i.e. an instance of this object represents the VM itself. As such, this implies that an instance of the EVM, once configured, is in fact a DSL VM, providing some DSL ISA as laid out in the configuration file.


A specific configuration can then be assigned to the VM instance, and a program can be loaded and executed. When a program is executed, then the VM, through the use of dynamic binding, will invoke the correct instruction instance. These instruction instances are created at program load time and their corresponding classes (all subclasses of Inst) are defined in the configuration file.


The EVM class also encapsulates the internal temporary values in the temps hashtable. As mentioned in Section 5.3, temporaries are simply any type of object that the user may wish to instantiate. Having access to temporaries, referenced with an ID, is a feature of the VM Framework that is provided for convenience. One instruction may create a value, while another may make use of the value as it was created by an earlier instruction. They are useful in representing variables of some DSL (such as variables of an integer or double type), though the EVM allows them to be of any type. It is up the compiler to make sure the temporaries are accessed correctly by the respective instructions. Each internal temporary value has a unique ID, and instructions with ID operands can gain read and write access to them. The temporary values have an object type, so they can be assigned values most convenient to the DSL being constructed.


Internally, the EVM class contains a loop in its Execute() method (Figure 26), that iterates through each instruction stored by the Loader class. The very next instruction to be executed is first fetched, and then the Execute() method of its class is invoked. This Execute() method will vary according to which of the five instructions discussed in Section 5 has been fetched. This may entail accessing an internal temporary value or handling a branch instruction and saving the current program counter value, if need be. Some branch instructions do not require the program counter to be saved.


5.6.2 The Config Class


The Config class is responsible for the configuration setup of an instantiated VM. The Config class encapsulates three mappings: instructions, environments and ins_env. They are hashtables, and their respective mappings are shown in Figure 30 below.
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Figure 30. Configuration mappings.


The instructions mapping maps the string name of an instruction to an Inst type. Note carefully that the mapping is not from the string name to an Inst instance. Instead it is from the name to one of the five Inst classes defined in Section 5. Instances of the Inst class are only created upon program loading.


The environments mapping, maps the string name of an environment, to an actual instance of Env. This is in contrast to the instructions mapping, which does not map to instances, but rather to classes (subclasses of Inst) that are yet to be instantiated. As indicated below in Section 5.6.5, an Env instance will typically encapsulate some Abstract Data Type (ADT) such as a runtime stack, or any other data structure that proves to be sufficiently useful for facilitating the language of the DSL that will ultimately make use of the VM instance.


The last mapping, ins_env, maps the string name of an instruction to the string name of the environment that the instruction is to use. This ins_env mapping is an associative mapping since more than one instruction can use a singe environment. This will be the environment that the instruction will access and update during the execution of the loaded program. It is noted at this point that the Config class is a not an associative object that maps a single string name (of an instruction, or environment) to its respective class, or instance. It is a class that encapsulates the mappings themselves, using hashtables. Thus there is only one instance of the Config class and it is instantiated once the EVM class has been instantiated. The hashtables are populated after the VM instance (an instance of the EVM class) has been configured with an appropriate ISA using the configuration file.


5.6.3 The Loader Class


The Loader class encapsulates a loaded program and the program counter. The loaded DSL-compiled program is an array of instruction instances, each a subclass of Inst. The Loader class also maintains a hashtable that maps labels of any labeled instructions encountered during the loading of a DSL-compiled program to that instruction’s index in the array representing the loaded program. Instructions that have labels are usually the target of a branching instruction. It is convenient to view a DSL-compiled program in human readable form and thus each label is simply an integer number preceded by the symbol @, and is placed before the instruction being labeled. Upon loading the DSL-compiled program, the mapping is updated with a valid index entry for each label.


When a program is loaded, an instance of each instruction is created for each instruction in the program. The parser of the instructions in the VM only has the string name of instructions. It uses the instructions mapping defined in the Config class to retrieve the actual class that is used to create the instruction instance. Thus when a program is fully loaded, the array will contain instances of instruction classes, each a subclass of Inst, and each instruction encapsulating its own operand ready for execution. The program counter is reset to the beginning of the array.


5.6.4 The Inst Abstract Class


The abstract Inst class encapsulates a reference to an instance of a subclass of the Env class, discussed in Section 5.6.5. This will be an environment object that is updated by each instruction during the execution of the loaded program. Thus all instructions in a loaded program will have a reference to the same Env instance because all instructions in the ISA defined by the configuration file are subclasses of Inst.


The Inst class does not define how the updates to the environment object are to be performed by a given instruction. Instead the Inst class provides an abstract Execute() method, that concrete subclasses are obligated to override. The Inst class is subtyped by a further five abstract classes, one class for each type of instruction supported by the VM Framework. Concrete instruction classes are classes that are subclasses from one of these five abstract classes, and should not be subtyped from Inst directly. Each of these five abstract classes will be discussed in Section 5.8.


Execution of a program implies an invocation of the Execute() method on each instruction instance that is referenced by the program counter, while there are still instructions to be executed by the loaded program. When the program counter has run through each instruction instance, the program has completed execution and the result of the execution can be retrieved. When a program is loaded by the program loader (an instance of the Loader class) the program counter is set to index 0 which is the first instruction in the program. As each instruction is executed the program counter is incremented by 1. Thus, the Execute() method of a given instruction instance can be viewed as encapsulating the semantics of the associated instruction. The sequence of Execute() methods performed in running a program then provides the semantics of the program as a whole.


5.6.5 The Env Abstract Class


The abstract Env class encapsulates some ADT or even a number of ADTs that form the central data storage mechanism for the DSL. The abstract Env class does not dictate the type of ADT that is encapsulated, and thus does not define any member ADT. It merely provides an abstract GetResult() method that subclasses of Env are obligated to override. In Figure 27 above, the call to env.GetResult() whose outcome is returned to the outer GetResult() method, itself a method of the EVM class, illustrates where the GetResult() method of Env is actually used.


The GetResult() method of a subclass of Env should return the result of a computation, if the DSL-program was indeed written to perform some computation. This is especially the case in functional language DSLs where the result of a computation can be retrieved after the program has completed execution, i.e. after a call to Execute() on the instantiated VM. It may also be the case that a final result is not necessarily expected. Such may be the case if the user-defined instructions are printing intermediate values to calculations onto a console or window at the time they are being executed. In this case GetResults() still needs to be implemented so as to yield a concrete class, however it simply needs to return null.


5.7 Environments


The purpose of the abstract Env class is to have an ADT that is updated during runtime. It is intended to aid in the processing of the semantics of the DSL in an appropriate or convenient manner. For example, in a simple real-valued expression language, a runtime stack can be used as an environment, where operands are first loaded onto the stack and then an arithmetic operation is performed on the most recently pushed values, depending on the number of operands for a given operation. In a ray-tracer [Wat00a] scene description language, the main data structure may be a runtime stack, for any arithmetic calculations, and a bitmap image data type that is incrementally updated as the image information is processed. Thus it is possible to extend the environment built for an expression language, into one that is suitable for a ray-tracer language.


Classes that extend the abstract Env class, are obligated to override the method GetResult(). The method GetResult() returns an instance of an object. When an instance of a VM has completed execution, the user can call GetResult() to retrieve  the result of the execution. In the example of an expression language, this would typically be a double value, while for a ray-tracer language this result would be an instance of a System.Drawing.Bitmap image type. Since VM Framework users will be aware of the data type that they are using for the result, a simple type cast to narrow the returned instance to the user’s own result type is sufficient.


An example of EnvExp, a concrete extension to Env for an expression language, is provided in Figure 31. It encapsulates a real-valued stack, and its GetResult() method returns the last entry on the stack or –1 if the stack is empty. If all operations on the stack are consistent, there should be only one remaining value on the stack, which will be the result of evaluating some expression. The stack object itself can be declared as public or protected allowing subclasses access to it for any environments that may later subtype EnvExp and still need a stack. New methods can also be added to the subclass. In this example the method GetStack() is added so instructions that have a reference to an object of type EnvExp can get a reference to the stack itself. Another alternative would be to expose all the methods of the Stack class in the EnvExp class.
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class EnvExp : Env


 


{


 


   public EnvExp () {


 


      stack = new Stack (100);


 


   }


 


   public override object GetResult () {


 


      object result;


 


      if (stack.isEmpty ()) {


 


         result = 


-


1.0;


 


      }


 


      else {


 


         result = stack.peek ();


 


     


 }


 


      return result;


 


   }


 


   public Stack GetStack(){return stack;}


 


   protected Stack stack;


 


}


 




Figure 31. Example EnvExp class.


5.8 Instructions


The instructions form the basic operational building blocks to a DSL-compiled program. There are five classes of instructions, each represented by an abstract class extending the abstract class Inst. The user creates their own instruction by extending one of the classes of the five abstract instructions provided, depending on the required operand of the instruction.


In the current implementation of the VM Framework, each instruction is allowed to take at most one operand. This design decision was taken to keep the VM Framework relatively simple. However, there is no inherent reason for not allowing more than one operand per instruction. The implications of accomplishing it are beyond the scope of this dissertation.


Being limited to one operand per instruction directly influences the flexibility of the instruction set, as well as its use in combination with an appropriate environment. The five abstract classes of instructions are defined in terms of their operand types. They are Inst_OpCode, Inst_OpCode_BrOperand, Inst_OpCode_IDOperand, Inst_OpCode_StrOperand and Inst_OpCode_NumOperand, and they form part of the VM Framework namespace, DVM. Each of the five abstract classes of instructions will be explained in Sections 5.8.1 to 5.8.5. Any of the five instructions can be labeled, if they are targeted by any branching instructions. The token and grammar definition for parsing a DSL-compiled program code is shown in Figure 32.
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Figure 32. Token definitions and grammar for the instructions.


5.8.1 Instructions with No Operands


An instruction with no operands is created by subtyping the abstract class Inst_OpCode and must have a constructor with the signature, public UserDefinedInst (UserDefinedEnv env). This new concrete instruction class still has to provide an Execute() method, which is inherited as an abstract method from Inst. It also inherits a boolean property from the immediate parent abstract class Inst_OpCode. This boolean property, LoadProgramCounter, in Figure 33, is used to determine whether or not to recall the last saved program counter. This allows the creation of instructions that return from a branch into a subroutine, provided that the last branch instruction did indeed save the program counter. The Execute() method for such an instruction will then simply test the LoadProgramCounter property and change the program counter if necessary.
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abstract class Inst_OpCode : Inst


 


{


 


   protected bool


 


   LoadProgramCounter = false;


 


}


 




Figure 33. The Inst_OpCode abstract class.


As a further example of an instruction without an operand, consider the Add instruction presented in Figure 34. It could typically be used in a simple expression language. The instruction Add simply pops the two topmost operands off a stack and pushes the sum back on. Again, these stack operations and the addition operation would be invoked in the Execute() method of the Add instruction.
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Figure 34. The Add instruction.


5.8.2 Instructions with a Branch Label


An instruction with a branch label operand is created by subtyping the abstract class Inst_OpCode_Br and must have a constructor with the signature, public UserDefinedInst (UserDefinedEnv env, string label). Instructions with a branch label are used for conditional or unconditional branching. Two properties are used to implement branching semantics depending on the requirement of the branch condition. The first property, BranchCond, is the actual condition for branching. This property should be assigned to true in the overridden Execute() method for unconditional branching. For conditional branching it is assigned according to the evaluation of a boolean expression inside the body of the Execute() method as per the required semantics of the condition. The second property, SaveProgramCounter, dictates whether the program counter should be saved for a corresponding return call into a subroutine. The branch label is supplied as a string parameter by the loader to the constructor of the instruction when it is instantiated. It is used internally by the EVM instance when the instruction is executed. The class is shown in Figure 35.
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abstract class Inst_OpCode_Br : Inst
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   protected string label;


 


 


   protected bool


 


   BranchCond = false;


 


 


   protected bool


 


   SaveProgramCounter = false;


 


}


 




Figure 35. The Inst_OpCode_Br abstract class.


5.8.3 Instructions with a Temporary


An instruction with a temporary ID operand is created by subtyping the abstract class Inst_OpCode_ID and must have a constructor with the signature, public UserDefinedInst (UserDefinedEnv env, string label). Internally, so-called temporaries are stored in a hashtable that maps temporary names (IDs) to object references. They are akin to conventional microprocessor registers, but a temporary can be treated as any object type as illustrated in Figure 36. Instructions have full access to a temporary, so it is the obligation of the EVM instance to supply the necessary temporary object value to the current instruction before it is executed. Thereafter, the instruction can modify the temporary by typecasting the object to the required usable type. The temporary ID is supplied as a string parameter by the loader to the constructor of the instruction when it is instantiated. It is used internally by the EVM instance when the instruction is executed. In the EXP and LQ examples shown later in the next chapter, both use temporaries as temporary storage for variables. EXP uses temporaries for real-valued variables, and LQ uses temporaries for Quilt objects.




[image: image46.wmf] 


abstract class Inst_OpCode_ID : Inst


 


{


 


   protected string ID;


 


   protected object temp;


 


}


 




Figure 36. The Inst_OpCode_ID abstract class.


5.8.4 Instructions with a String Parameter


An instruction with a string operand is created by subtyping the abstract class Inst_OpCode_Str and must have a constructor with the signature, public UserDefinedInst (UserDefinedEnv env, string str). Instructions with string parameters are useful in string processing applications such as those that deal with regular expressions. Alternatively, if variables are declared in the DSL, the string parameter can be used as a reference to a variable name. The class is shown in Figure 37. The string value is supplied as a string parameter by the loader to the constructor of the instruction when it is instantiated and stored in the variable str.
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abstract class Inst_OpCode_Str : Inst


 


{


 


   protected string str;


 


}


 




Figure 37. The Inst_OpCode_Str abstract class.


5.8.5 Instructions with a Number Parameter


An instruction with a number operand is created by subtyping the abstract class Inst_OpCode_Num and must have a constructor with the signature, public UserDefinedInst (UserDefinedEnv env, double num). Similarly to the above string parameter, the number value is supplied as a parameter by the loader to the constructor of the instruction when it is instantiated. The class facilitates instructions that provide any intermediate arithmetic calculation. Real or integer numbers can be parsed and stored. However, internally they are treated as C# double values, and once parsed, the double parameter is stored in the variable num, shown in Figure 38.
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abstract class Inst_OpCode_Num : Inst


 


{


 


   protected double num;


 


}


 




Figure 38. The Inst_OpCode_Num abstract class.


5.9 Summary


In this chapter the VM Framework is first presented and some of the details of its design are outlined further. The VM Framework provides a top-level class from which a VM is instantiated. The five instruction classes are all abstract, so any instantiated VM has an empty instruction set. Instructions and environments are created and compiled separate from the VM Framework and are a set of user-defined classes that can be compiled as DLLs. Instructions perform some operation based on a given environment and may or may not alter an environment’s state.


The VM Framework provides a mechanism to parse instructions of a DSL-compiled program. The compiled program contains an ordered list of instructions and is human readable. The parsed instructions are automatically classified as one of the five instructions supported by the VM Framework, based on the type of operand of the instruction in the compiled program. Environments also form extensions to the VM Framework and are also created and compiled separately as DLLs. The instantiated VM is configured via a configuration file that links the instructions and environments together. Initially the instantiated VM reads the configuration file and after initialization the VM is ready to execute instructions of a loaded program.


6 Extending the Virtual Machine Framework 
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Using the VM Framework entails designing a set of instructions and environments, without modifying the VM Framework itself in any way. This design is then implemented as a set of classes that subtype the classes that constitute the DVM namespace. This chapter is intended to point to the overall activity of defining a set of classes tailored toward some particular DSL.


The collection of user-defined classes constitutes an architectural layer of software. This layer encompasses the set of concrete instructions that can be instantiated at program load time, as well as an environment on which these instructions will operate. The configuration file is responsible for connecting the VM Framework to the user-defined layer.


This chapter provides an example of extending the RT DSL using the VM Framework approach. Also, two smaller DSLs are examined to see how different languages, with vastly differing uses, can be built. These two languages are a simple expression language (EXP), and a tile manipulation language called Little Quilt (LQ). The environments of EXP and RT are very similar and hence these two languages provide a simple and elegant illustration of how the basis for one DSL can be extended, or scaled up further to provide enough functionality to cater for the semantics of another language. It suffices to incorporate EXP’s runtime stack to aid in any arithmetic operations that may be needed in performing calculations during the setting up of quadric equations in RT.


Section 6.1 starts the chapter by describing the configuration file, and Sections 6.2 and 6.3 continue by describing the use of the file to extend the instruction sets and the environments, respectively, for a particular VM configuration. Section 6.4 lists the three main ways to extend a VM in terms of the VM definition described in Chapter 4. Section 6.5 provides some example DSLs, and illustrates how these DSLs are built using the VM Framework, and Section 6.6 continues by providing an example of scaling up the RT language described in Chapter 3. Finally, modularity is discussed in Section 6.7, before providing a chapter summary.


6.1 The Configuration File


Before an instantiated VM can execute instructions in a loaded compiled program, the VM needs to be configured as a specific VM type. This is achieved through a configuration file that is initially loaded (or read) by the VM instance. Once the VM has been configured, a compiled program can be loaded and executed.


The configuration file defines an ISA for a particular VM instance and an environment used by the specified instructions themselves. More accurately, the file specifies the name of each user-defined instruction class together with the name of the user-defined environment class that each instruction will use during program execution. Thus the configuration file should enumerate the names of the complete instruction set for a particular VM. Figure 39 gives an example configuration file for the EXP DSL. 
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(* Create an instance of the *)


 


(* expression environment. *)


 


environment EnvExp


 


 


(* Register the following expression


 


(* instructions with the DVM. *)


 


Push  using EnvExp


 


Store using EnvExp


 


Load  using EnvExp


 


Sub   using EnvExp


 


Add   using EnvExp


 


Mul   u


sing EnvExp


 


Br    using EnvExp


 


Brgz  using EnvExp


 


Nop   using EnvExp


 


Div   using EnvExp


 


 


(* Some generic instructions *)


 


Call  using EnvExp


 


Ret   using EnvExp


 


Print using EnvExp


 




Figure 39. Example configuration file for EXP.


The keyword environment is followed by the name of a class that subtypes Env, and one environment instance will be instantiated for that class. Thereafter, a list of clauses defines the actual instructions to be used in the current VM configuration, by the using keyword. The environment class name following the using keyword refers to the singleton environment instance whose creation was specified near the top of the configuration file after the environment keyword. The VM instance creates that environment instance as part of the configuration process, or simply put, when the configuration file loaded. Later, when the program is read by the VM instance, then the environment instance will be used as the parameter to the various instruction constructors.


The user-defined environment class and the instruction classes are all compiled separately as DLLs, thus each DLL library file will be home to a single class. DLLs are loaded by the CLR dynamically, or at runtime. The advantage here is that the classes are not statically compiled in along with the VM Framework when a new VM is being built or prototyped. So there is no need for a complete recompile of the VM Framework. Rather, the VM Framework is compiled once, and only user-defined classes are compiled as separate DLLs and are loaded on demand by the CLR. The configuration file specifies the names of these DLLs, which is the same name of the class that each DLL contains. The configuration file thus uses the class names to load a specific DLL from disk.


6.2 Extending the Environments


Suppose a new language is required, be it similar to an existing language or one that features an entirely new syntax. If an existing language uses an environment with an appropriate data structure, then the new language can extend the existing environment to suite its own needs. An RT language needs to render a scene comprising geometric objects onto some canvas, but may also require a means to perform numeric calculations for setting up quadric objects. Thus the EnvExp environment of EXP can be extended with two extra data structures; a scene and a bitmap, giving rise to an EnvRT environment suitable for a ray-tracer, shown in Figure 40.


6.3 Extending the Instruction Sets


Instructions are extended from one of the five instruction classes mentioned in the previous chapter, to a set of concrete instruction classes instantiated whenever a program is read. It should be noted that these five instructions provide enough complexity to build a fairly versatile VM. As previously discussed, the VM Framework makes provision for instructions for branching; for accessing of primitive data types that can be written in text, namely numbers and strings; and for internal storage in the form of temporaries. If more complex data types such as classes or arrays are needed as part of the DSL, then it is the obligation of the DSL-compiler to provide a mapping of such complex data types and their associated operations onto the primitive date types and the set of instructions that use these primitive data types. Depending on how the DSL semantics are to be implemented, the user of the VM Framework can choose to create instructions specifically for the task of handling complex data types. For example, it should be possible to handle array indexing by defining a set of instructions for handling arrays. An array construct defined as part of the DSL, will then be translated into a sequence of these instructions by the DSL-compiler.


While it is possible to subtype individual instructions further, it is not always necessary. However, it useful to extend instruction sets, and have environments that are subclasses of previously defined environment classes. This allows the VM Framework to be scalable, and aids in tailoring a VM for a particular DSL. The RT DSL serves as an example. The EnvRT environment was defined as a subclass of EnvExp in Figure 40. This means that any one of the instructions operating on an EnvExp, can also operate on an EnvRT. The configuration file for the RT DSL, depicted in Figure 41 shows this to be the case.
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class EnvRT : EnvExp


 


{


 


   public EnvRT () : base ()


 


   {


 


      scene = new Scene ();


 


   }


 


 


   public override object GetResult ()


 


   {


 


      scene.render (4);


 


      return scene.GetBitmap ();


 


   }


 


 


   protected Scene scene;


 


   protected Bitmap bitmap;


 


}


 




Figure 40. The EnvRT class.


The configuration file for the RT DSL is shown below in Figure 41. Note that some instructions are borrowed from the EXP DSL. It enumerates not only RT related instructions such as Light, COP, etc, whose class definitions are specifically associated with ray tracing; it also enumerates a number of the instructions such as Push, Pop, etc. that are related to EXP.
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(* 


ray-tracer environment.   *)


environment 


EnvRT


(* These instructions were part of    *)


(* 


the 


EnvExp environment.            *)


Push      using 


EnvRT


Add       using 


EnvRT


Sub       using 


EnvRT


Mul       using 


EnvRT


Div       using 


EnvRT


(* Ray-tracer specific instructions. *)


SetWindow using 


EnvRT


Light     using 


EnvRT


COP       using 


EnvRT


LookAt    using 


EnvRT


VUP       using 


EnvRT


Geometry  using 


EnvRT


Specular


  using 


EnvRT


Diffuse   using 


EnvRT


Reflect   using 


EnvRT


Translate using 


EnvRT


Axes      using 


EnvRT


Coeff     using 


EnvRT


Quad      using 


EnvRT




Figure 41. Configuration file to setup RT, borrowing instructions from EXP.


6.4 The extended DSL VM


As one extends the environments and instruction sets, essentially one is creating new versions of ISAs, either for different DSLs with similar or same environments or with different environments and instructions altogether (ergo, different semantics entirely). It is obvious that the designer has the freedom to extend existing ISAs by extending the number of instructions with new instruction classes, and extending the environments using subtypes of existing environments. In the discussion below, subscripts will be used to identify the environment, VM, etc that is associated with a given DSL. Thus ISAEXP represents an ISA associated with EXP, and VMEXP is the VM associated with EXP, etc.


In Figure 42, the configuration file shown on the right defines the DSL VM. Thus an environment, along with a corresponding instruction set classes defines that DSL VM. The instructions listed in the configuration file, naturally define ISAEXP in this case.
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Figure 42. Defining an environment and instruction set for a DSL VM.


Figure 43 depicts the same environment for VMLQ as that used for VMEXP, by placing the two VMs at the same level, but the instructions sets differ slightly. In fact, there is an overlap as the instructions Store, Load, Br, Call and Ret are all used as they are defined in their respective classes, i.e. no modifications are required for them and they can be used as is in the context of VMLQ. Four new instructions are added, namely QuiltA, QuiltB, Turn and Sew, and they continue to rely on EXP’s existing environment class, EnvExp. The darker shade of the VMEXP simply indicates that VMEXP is the not the current VM in question. The overlap signifies the subset of EXP’s instructions that are to be used by VMLQ.




[image: image54.wmf]ISA


LQ


HLL VM


Execute on CLR


environment 


EnvExp


QuiltA using 


EnvExp


QuiltB using 


EnvExp


Turn   using 


EnvExp


Ret    using 


EnvExp


...


Configuration


Dynamically


Interpret IS


VM


LQ


VM


EXP




Figure 43. ISALQ is a subset of ISAEXP, with new instructions.


Figure 44 depicts the environment of the VMRT as a subclass of the one used for VMEXP, by placing VMRT at a higher level to indicate this intent. The instruction sets again differ slightly, as there is still an overlap with the real-valued expression instructions Sub, Add, Mul, Div, and the Push instruction, that work with the EnvExp. However, there is additional RT specific instructions, indicated by the portion of the ISA above VMRT in Figure 44. This set of instructions, along with the real-valued expression instructions together form ISART. Those RT specific instructions, such as COP, LookAt, VUP, Specular and so forth (as listed in the RT configuration file shown in Figure 41), work with RT’s environment class, EnvRT. The darker shade of VMEXP again gives a clue that a certain subset of instructions that was used with VMEXP is no longer needed for VMRT, except for those instructions indicated by the overlapping shade on the right hand side. There is no notion of a VMEXP being executed by the underlying HLL VM, hence the linking arrow between only VMRT and the HLL VM.
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Figure 44. ISART is a subset of ISAEXP, with new instructions as before.


6.5 Building a DSL


Once a defined environment and instruction set are in place, a front-end for the DSL needs to be developed. Essentially this is the task of writing a simple compiler for the DSL. This entails designing syntax for the language using compiler tools. Translation rules are also needed to map syntactically correct statements onto a sequence of instructions that can be executed by the VM. It is beyond the scope of this text to discuss how each of these tasks is performed, but some of the translations from DSL-program source code segments to DSL-compiled code are shown (refer to Figures 47 and 48, and 53 and 54) to illustrate the simplicity of some of the translation for small languages. The example DSLs in this section were built using the compiler tools LG and PG. PG allows the translation rules to be defined as part of the grammar. Both tools have a familiar syntax to most commonly used industry compiler tools. The complexity of the required DSL will influence the complexity of the compiler needed to parse the DSL-program source and to generate the target DSL-compiled program code. Keeping the language simple and intuitive keeps the translations simple.


6.5.1 The EXP DSL


The EXP DSL is an intuitive, real-valued expression evaluation language that includes typical real-valued constructs for addition, subtraction, multiplication and division. The language is functional, and such a language suggests that a runtime stack should be used as the underlying data structure when evaluating an expression. The runtime stack will be encapsulated in the environment. Also, local variables can be assigned and scoping rules are applied in a strict, functional form. Having real-valued addition as part of the EXP language almost persuades inclusion of a construct like summation to be incorporated into the EXP DSL as well. Summation simply makes use of repeated addition of an expression as shown in equation (1). Summation is part of the EXP language syntax, and thus in this example DSL there is indeed a construct for summation.


6.5.1.1 The EXP Domain


In the case of the RT DSL, the RT domain was a fairly fleshed-out namespace (recall the C# namespace construct, Sections 1.2.1, 1.3.3 and 3.1) with classes that encapsulate scenes, rays, and object primitives and so on. However, for a DSL as simple as EXP, no namespace needs to exist as all the semantics for EXP are provided by the real-valued operators of the C# language, namely +, -, * and /, and these operators essentially define the EXP domain.


6.5.1.2 The EXP Language


The EXP language is a simple, intuitive, functional language, with much resemblance to the functional language ML [Mil84, Ull94]. Expressions can be written verbatim, forming the DSL-program to be compiled. Because of its usefulness, EXP also borrows ML’s let-in-end construct for declaring variables, and for assigning values to variables before their use in evaluating an expression. The language is simple and nowhere does the user need to make use of cumbersome for-loops for summation. Neither does the user need to worry about variable types, as the language always treats variables as a C# double type. The lexer’s regular expression definition is illustrated next, with Pascal-like comments defined. 
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Figure 45. Lexer definition of EXP.


The grammar definition is shown, again with integer and doubles combined into a single DOUBLE token that matches any signed or unsigned integer or double.
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Figure 46. Parser definition of EXP.


The translation rules of the small, functional expression language, EXP, can be intuitively understood by the following illustrative example. For a more detailed description on functional language compilers see [App98]. The program in Figure 47 evaluates the expression,
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in a functional manner. Section 5.8 gives the token and grammar definitions for each of the five instruction types. The translated compiled code for this program is shown in Figure 48. It is a concrete example that demonstrates the use of temporaries (as storage for variables n and i) and also branching instructions for the actual implementation of the summation construct.
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let


 


   n = 5


 


in


 


   9 + sum (i) 1..n (2 * i)


 


end


 




Figure 47. Programmatic representation of summation expression (1).


The generated instructions perform operations on a runtime stack, which is part of EnvExp discussed earlier. The result of the expression will be the only remaining value on the stack.
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Figure 48. Compiled program of the summation expression (1).


6.5.2 The Little Quilt DSL


The Little Quilt language (LQ) [Set97] is a functional language, where the primitive types are that of quilts. Two primitive quilts are defined, A and B, and are illustrated later in the following section. All quilts are constructed from only these two primitive quilts. The idea is that there are two primitive operations that can be applied to quilts to yield a new quilt. Either a quilt can be turned 90 degrees clockwise (using the turn operator) or it can be sewn horizontally together with another quilt (using the sew operator). Using this small set of primitives, it is possible to derive more complex functions and thus the DSL can generate patterns of various complexities. Since the language is functional, it suffices to make use of the EXP language environment, i.e. the runtime stack to express its semantics.


6.5.2.1 The LQ Domain


The LQ namespace consists of a single class Quilt (or more precisely LittleQuilt.Quilt in its fully qualified form as LittleQuilt is the namespace to which it belongs). Instances of Quilt represent an immutable quilt of arbitrary dimension. Internally, a quilt is simply represented as two matrices called symbols, of enumerator type Symbol, and quilt, of enumerator type Orientation shown in Figure 49. The symbols matrix simply represents the primitive pieces that make up an instance of Quilt. As suggested in Figure 49, a single elementary quilt piece is either one of Symbol.A or Symbol.B of the Symbol enumerator type. When a Quilt instance is rendered onto a canvas, the appropriate glyph for each of the two symbols is used. They are respectively shown alongside the namespace as glyphs A and B. The Orientation matrix, quilt, represents the orientation of each single elementary quilt piece, the orientation being indicated by an element Orientation.N, Orientation.S, Orientation.E, or Orientation.W of the Orientation enumerator type. The resultant data structure returned by the GetResult() method of the LQ environment is an instance of Quilt. It can then be rendered onto a canvas by iterating though the quilt and orientation matrices, and rendering the appropriate glyph, A or B, at the appropriate orientation.


The domain is somewhat simplistic. It is only necessary to think about the representation of a quilt, and the result of either the turn or the sew operation on a quilt to derive a new quilt. The flexibility of manipulating quilts will become apparent later when an instruction set is designed exposing the namespace, and the compiler generates the proper sequence of instructions to allow a VM instance of the VM Framework to perform the manipulations on the quilts.
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Figure 49. The namespace of the LQ.


6.5.2.2 The LQ Language


Since the LQ language is centered around operations on quilts to build more complex quilts, the language has a functional nature, and as such can use the same runtime stack as that used in EXP. However, this time it is Quilt instances that are pushed on and popped off the stack, instead of double values as was the case in EXP. Thus the environment ExpEnv can be used for LQ. The instructions will differ, however, in that they will perform operations on Quilts. The configuration file for LQ is shown in Figure 50.
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environment EnvExp


 


 


QuiltA using EnvExp


 


QuiltB using EnvExp
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Store  using EnvExp
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Ret    using EnvExp


 


Br     using EnvExp


 




Figure 50. The configuration file for LQ.


The lexer definition for LQ is shown in Figure 51. Two keywords turn and sew expose the operations defined in the Quilt class, namely the two methods Right() and Sew() respectively. 
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Figure 51. The lexer definition of LQ.


LQ also includes a let-in-end construct, shown in Figure 52, to allow the definition of local variables (in this case, variables of type Quilt), as well as functions, parameterized by local variables.
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Figure 52. The grammar definition for LQ.


Figures 53 and 54 below show a simple LQ program and the corresponding compiled program. The translation of the functions turn() and sew(), and the user-defined functions unturn() and pile() can be seen. It illustrates the use of branching instructions to implement function calls, with all necessary quilt parameters loaded into temporaries before a function call. Note in Figure 54 the very first instruction is a branch instruction, Br label @199, that skips the first user-defined function, unturn(). Following the first user-defined function is yet another branch instruction, Br label @299, forcing program flow to skip the second user-defined function, pile(), as well. Those functions are only to be executed via the Call instructions. Each of these two functions has a Ret instruction that will return program flow to the instruction just after the corresponding Call instruction that invoked the function.
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let


 


    fun unturn(x)=turn(turn(turn(x)))


 


    fun pile(x,y)=unturn(sew(turn(y),turn (x)))


 


in


 


    pile(unturn(a),turn(a))


 


end


 




Figure 53. A function defined in LQ.


The Load $n instruction pushes temporary number n onto the stack. This is in contrast to the Store $n instruction that pops the top Quilt instance off the stack and saves it in temporary number n. The temporaries used in this example are used to pass local parameters (quilts) to functions. The instructions QuiltA and QuiltB simply push one of either of the elementary quilts A or B onto the stack. The instructions Turn and Sew pop the top quilt off the stack, perform a turn or sew operation, and push the resultant quilt back on.
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Figure 54. Translation of a function defined in LQ.


Example software for LQ, developed as part of this study, is illustrated in Figure 55. The software makes use of a canvas to render the desired quilt onto a canvas, and features a text editor alongside to define the pattern. The menu option Compile will perform a compile of the displayed LQ program and then execute the compiled program in one step, without any further user intervention. As a result, a quilt will be rendered on the canvas alongside.
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Figure 55. LQ using the VM Framework in the context of a GUI.


6.6 Scaling up the RT DSL for the VM Framework Approach


Again the RT DSL is scaled up by adding an ambient construct. As in the hard-coded VM approach, modifications are required in both the VM and the compiler. The compiler’s lexer will need to incorporate a new keyword ambient and the grammar for the compiler’s parser needs to be altered to match on this new keyword and produce a node on the AST representing the ambient construct.


This additional AST node of the ambient construct will be handled in the same way as it was handled in the modification to the DSL-compiler described in Chapter 4, Section 4.5, as it amounts to generating the same sequence of instructions that alter the ambient lighting of the scene.


A new instruction needs to be added to the instruction set, as was the case in Section 4.5, but this time no risky modification is needed for the VM. Nor does the lexer and parser for the VM need to be modified in any way to support this new instruction. Adding this new instruction simply entails creating an instruction class, Ambient, which subtypes one of the five abstract instruction classes. The Ambient instruction has no operands, and thus subtypes Inst_OpCode and is shown in Figure 58. Once this class is compiled to a DLL, it can be added to the instruction set by adding it to the list of instructions specified in the configuration file. This is shown in Figure 59.


6.6.1 Extending EXP to suite the RT language


The environment EnvExp features a runtime stack, of C# object instances. For its use in the EXP environment, the object instances will be of type double. A quadric is defined by the equation q(x,y,z) in Figure 4. By supplying the appropriate set of coefficients, namely a11, a22, a33, a23, a13, a12, b1, b2, b3 and c, any quadric can be represented. However, consider for example the definition of a sphere, where the coefficients; a23, a13, a12, b1, b2, b3 and c, are all 0. Then the definition for a sphere simply amounts to
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Typically, a radius parameterizes a sphere, so the coefficients in the above case would be defined as
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Thus it is certainly helpful, in setting up a quadric, to have some arithmetic operations in assigning values to the necessary coefficients. In the above case, equation (3) prompts for a multiplication, and a division of real values. Figure 56 and 57 shows the environment EnvExp, and the environment EnvRT as a subclass of EnvExp, which includes the runtime stack.
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Figure 56. The EnvExp environment.
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Figure 57. The EnvRT environment as an extension to EnvExp.


6.6.2 Adding a Construct


Recall the discussion in Chapter 3, Section 3.7, which illustrated the requirements for adding a construct in the hard-coded VM approach. For comparative purposes, the implications of adding the same ambient construct to the RT DSL in the context of the VM Framework will be discussed. The changes made to the RT DSL-compiler are identical, as the same sequence of instructions is to be produced for the compiled program. However it will be shown in the following section that the changes made on the VM side are far simpler. Because of this simplicity, there is a low risk of error when adding a new instruction to the instruction set. It is simply a matter of coding a new instruction as a class, and registering it as an instruction via the configuration file.


6.6.3 Components Requiring Alteration


The compiler is modified as outlined in Section 4.5.2, the lexer and grammar are modified to accept the new keyword ambient, and translation of the ambient construct involves the generation of the same sequence of instructions. On the VM side, no alteration to the VM’s lexer or parser is necessary.  An appropriate instruction class simply subtypes the abstract instruction class Inst, and the new instruction is registered with the instruction set via the configuration file. Parsing this new instruction from the DSL-compiled program is performed automatically according to the name of the instruction given in the configuration file, and the appropriate operands being inferred from the type of instruction that the new class subtypes. In the example Ambient instruction, the instruction class Ambient extends class Inst_OpCode, and hence no opcode will be expected by the parser when the DSL-compiled program is read by the VM’s loader. The Ambient instruction itself will be parsed as such, since it has been included in the instruction set defined by the configuration file. The Ambient instruction is shown below in Figure 58. Note its similarity and differences in expressing the semantics to the hard-coded VM discussed in Chapter 4. 
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Figure 58. The Ambient instruction extends Inst_OpCode (no operands.)


The last change required is to the configuration file, adding the instruction Ambient using the environment class EnvRT.
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Figure 59. Adding the Ambient instruction to the instruction set.


6.7 Modularity


The VM Framework is shown to be highly modular, in that the work required to scale up or alter a language, is encapsulated in either an environment or a set of instructions. The environments and instructions needn’t warrant any amendment at all. They simply comply to the rules of the VM Framework, i.e. certain instructions need to be subtypes of the appropriate instruction classes of the VM Framework and the environments need to be subtypes of the environment class of the VM Framework and override its abstract method GetResult(). Only the translation rules of the compiler will need attention.


6.8 Summary


This chapter has provided a detailed description of the process involved for building or customizing a DSL for a particular use. This entails thinking about the instructions that are necessary to facilitate the semantics of the DSL constructs, though as described, the VM Framework allows easy adaptation for instructions that require alteration at a later stage and also allow for increasing the size of the instruction set itself. Once a set of instructions is in place, a simple translator is required to map the DSL syntax, into sequences of instructions that execute on the VM instance. The instruction set is configured for the VM via a configuration file. This process was demonstrated using two example languages – EXP, a simple real-valued expression language, and Little Quilt or LQ, a small language for manipulating and compounding patterns. Both use a runtime stack to perform operations on their respective primitives (numbers or quilts respectively) and both illustrate the use of the VM in its intended context; that of streamlining the development of a DSL for a particular end-user, and leaving the DSL open for future enhancements and even allowing the DSL to grow into another useful language, if they are based on the same environments and similar instructions.


6.8.1 What the VM Framework is Not Intended to Provide


This section reaffirms what the VM Framework is not; or rather it serves to warn the user of the VM Framework of how not to approach the use of it. The following list itemizes preconceptions of how a developer might potentially perceive the VM Framework to be:


1. It should not be treated as a precompiled, standalone VM of some predefined instruction set.


2. It should not be treated as a system that provides an automated process for the creation of a language or a standalone VM.


3. The VM Framework is intentionally not a code generation tool and does not provide any functions to process archetypes that define code translation rules. However, there is no reason why a translation DSL cannot be created using the Framework, and as such, the instructions provided by the user could potentially be used as functions to emit sequences of translated code to a file.


4. Regarding the VM Framework as a mechanism for building DSLs, it does not facilitate solely the creation of functional languages as prescribed, though functional languages tend to be easier to get up and running, and serve as intuitive examples.


5. Once a VM has been created that sufficiently implements the semantics of a DSL, and prototyping of the DSL is at its completion, then it is not necessary to make use of the configured VM as the target runtime system if a higher degree of performance is required. It may be useful to use a second software engineering step to hard-code the instruction set, and the environment, into a more compact module that executes the compiled program at a more native level.


6.8.2 What the VM Framework Does Provide


It is necessary at this point to highlight what the VM Framework provides to the developer intending to extend it or put another way, to indicate how it differs from a traditional VM that is not extendable and has a hard-coded instruction set. The following is a list, itemizing the roles of the VM Framework for a developer:


1. It provides a means to take an existing domain or namespace, and expose that namespace in such a way that it appears to an end-user as a DSL, simplifying the task of reusing operations and data structures within the namespace.


2. It provides the opportunity to design readable, and intuitive DSL syntax, and implement DSL translators to invoke the reusable operations and data structures within the namespace.


3. The VM Framework includes a top-level class, EVM, which is essentially representative of a VM with an empty instruction set.


4. It provides a single interface, in terms of an abstract environment class, for any data structure or environment that is suitable for facilitating the semantics of the DSL, and that is updated during DSL-program execution.


5. It provides five interfaces, in terms of abstract instruction classes, for any operations that are suitable for updating the environment during program execution, leaving the environment in a consistent state, i.e. the semantics can be specified in terms of pre- and post-conditions on the operations.


6. It provides a mechanism to configure an instance of a VM, using a configuration file, to register instructions and environments for a VM instance of a particular DSL. This implies the existence of a pool of instructions and environments, that through careful selection of instructions and environments from this pool, a developer can easily create an efficient and effective VM for a DSL.


7. It provides a parser for loading program source files of a DSL-compiled program, whose instructions are defined within the configuration file, and it also provides the parser to parse the configuration file.


8. The VM Framework, being of an object-oriented nature, allows environments to subtype existing environments that already provide partial functionality that is likely to be suitable for a particular DSL being developed.


7 Comparative Results
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This chapter provides a summary of the performance of the execution of a DSL-compiled program. The performance test is done for each of the three DSL development techniques described in the dissertation, namely the interpreter, the hard-coded VM, and a VM instance built using the VM Framework. To measure the performance of DSL-compiled program execution, a simple time measurement is taken. There are two time intervals that are measured between three different types of information. The machine used for the performance test features a Pentium III, 450 MHz processor, with 128 Mbytes of RAM, running the Windows 2000 OS. The time measurements are consistent over numerous runs. The three types of information are named, and described next.


SRC:


This refers to an example DSL-program containing the source code of a program written in the language of the DSL.


IS:


This is the instruction sequence that is the output of the compiler’s effort to translate the source DSL-program into the instructions ready to be executed by the VM.


SEM:


This refers to a complete piece of information or a populated data structure or some form of observable output, which is the result of executing the instruction sequence. Thus SEM is will be an instance of a data structure holding the result of a computation.


The two time intervals measured are the time taken to generate an instruction sequence from a given source file (SRC ( IS) and the time taken to compute the final results of a DSL-compiled program execution (IS ( SEM).


SRC ( IS:


This is the time taken to parse a program written in the language of the DSL, to build an AST, and further translate the nodes of the AST into executable instructions. The example DSL used for the experiment is the RT DSL, and the example program used is shown in Figure 9, named test1.scene and is also found on the accompanying CD.


IS ( SEM:


This refers to the time taken to parse and load the instructions of a DSL-compiled program, and further generate a data structure, which is the result of the execution of the compiled program. For the RT DSL, the result returned by the GetResult() method on the environment will be an instance of a System.Drawing.Bitmap. Execution of the instructions incrementally builds an RT data structure, composed of quadrics and will only be rasterized once a call to the GetResult() method is made. Thus the rasterization process of the image is not part of the time measurement, only the creation of the RT data structure. The image is saved as a file after the time measurement is taken. 


Clearly, in the interpretation approach, there is no intermediately generated instruction sequence. However, there is nonetheless a flow of information between SRC and SEM, and thus only the time between SRC and SEM will be noted.


Comparative performance results were done for the three different DSL implementations described in the dissertation: an interpreter, a hard-coded VM and the VM Framework. Two time intervals are compared for each implementation: compiling DSL-program source code to an instruction sequence (SRC(IS); and executing the instructions to observe the semantics (IS(SEM). The total time (SRC(SEM) is also calculated. The resolution of the timing mechanism is 100 nanoseconds, as this is the default resolution offered by the Windows 2000 operation system. Under the .NET environment, each 100-nanosecond time interval is called a tick. The interpreter does not generate any intermediate instruction sequence, as the semantics are interpreted directly from the AST, and thus only the total time (SRC(SEM) is relevant for the interpreter. The hard-coded VM has a predefined set of instructions and the VM Framework is similarly configured with the same set of instructions. For the purpose of the experiment, the same DSL was used for each implementation.


From the performance results in Figure 60, it can be seen that using some of the reflection properties of .NET does not necessarily impede the compiled program’s execution speed, and in this case it is actually shown to perform better than its hard-coded counterpart. Naturally, the interpreter is quickest to deliver observable results. However, it suffers from a lack of scalability, and modifying the interpreter to fit above an existing namespace is a cumbersome task. The hard-coded VM suffers less from scalability problems, as it is easier to add new instructions as part of the VM core, and amend the grammar to accept a wider range of instructions. But instructions are not reusable by another DSL, as they are executed as functions with parameters from within the VM core. The VM Framework treats environments and instructions that access these environments as separate external libraries or DLLs and they do not form part of the VM Framework’s namespace. Rather, these DLLs are configured together as a set of building blocks to yield a customized VM instance for a particular DSL. Furthermore, the VM Framework easily accommodates the scaling up of the DSL with new constructs as the need arises. 
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Figure 60. Comparative performance results of the DSL implementations.


The illustrating software in this dissertation was developed in C# which naturally prompts for further investigation of DSL VMs in languages other than those that execute on top of the .NET CLR. That in itself lends to the scalability nature of the VM Framework, as different instructions can be implemented in different languages, provided those languages have compilers that generate code that runs on the .NET CLR.


A summary of the different criteria used to evaluate the 3 types of semantic techniques is shown below. For simplicity, 3 degrees of indication are depicted and are briefly described in the legend.


Legend:


 : Good


 : Average


 : Poor




Scalability

Performance

Modularity



Interpreter



Difficult and cumbersome to modify a language and alter semantics.



Interpretation of AST done in same program, and there’s no IS.



Syntax and semantics issues are fairly dependant on one another.



Hard-coded VM



Instructions are still required to be hard-coded as part of the core.



Compiled program needs to be parsed before it can be executed.



Minimal effort required adding new instructions to the VM core.



VM Framework



Easily add new instructions and environments as the language grows.



Comparable performance to the hard-coded VM, but slightly faster for compiled program execution.



Instructions and environments form the link between the VM and the underlying namespace, and are easily modified as the namespace expands.



Table 4. Summary of criteria.


7.1 Summary


This section compares the relative performance of the three different types of ways to process a DSL-program. This section does not aim to promote any particular means over the other, as it is noted in the above table that all three cases have valid arguments in their favour. Rather, it was necessary to show how a VM developed for a particular DSL, using the VM Framework, compares relative to other means of DSL-program execution. The performance criteria used were scalability, performance and modularity. Scalability concerns measuring just how easy a language can be extended to include new constructs, and concepts in the underlying namespace. Performance concerns the actual time taken to execute a DSL-program using one of the aforementioned VMs and measurement was taken in 100-nanosecond ticks. Lastly, modularity relates more to the risk of making a modification to the DSL software, i.e. it addresses questions such as how well compartmentalized is the software? To add a construct, does a change need to be made somewhere deep in the code or can a new class simply be extended or added?


8 Future Work
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The VM Framework is used for building DSL VMs to execute on a HLL VM. In this study, the HLL VM used was the .NET CLR. This idea naturally prompts for further investigation of DSL VMs written in languages other than those that execute on an HLL VM such as the .NET CLR. This requires isolating the essential components that were used in this study, such as dynamic loading of classes, and examining how these features are used in other languages. Embedded systems, for example, would not typically be written in a .NET CLR language such as C#, but are more likely to be built using C/C++ or an assembler to generate native machine code with much smaller footprints as storage is often a limitation in such systems. However, DSLs may still be useful in that area if embedded system software designers can isolate separate aspects of the software.


Other future works might include focusing on the usability aspects of creating DSLs, such as GUIs or an interactive DSL development environment. Some obvious next steps are listed below and further elaborated upon, and may prove to be useful investigations. Section 8.1 proposes a GUI for the VM Framework, Section 8.2 proposes multiple environment and namespaces, and lastly Section 8.3 discusses architectural DSLs.


8.1 Graphical User Interface for the Virtual Machine Framework


Currently the VM Framework is purely a set of classes written in C#, the rationale behind which is to allow for rapid prototyping of new languages as specified by an end-user. End-users and experts alike expect a DSL to streamline their daily routines, and so one can also envision streamlining the actual task of developing the DSL itself in a RAD environment. This would entail the design of an IDE. The necessary tools for creating the DSL would all be combined into one development environment. The system should feature a text editor for defining the syntax of a DSL, the operational semantics of the DSL VM and test programs to be executed by the defined DSL VM. The system’s output should feature an open interface so as to allow a developer to plug-in a component, such as a separate console for textual outputs or even a canvas to display any graphs or images that are part of the test program’s output. The system should also have a scratchpad environment for any VM currently under test. A system using some of the reflection features of .NET can generate a VM as a DLL. A similar application is outlined in Klint’s ASD MetaEnvironment and allows the user to build syntax and semantics for a particular DSL [vdBra01].


8.2 Multiple Environments and Namespaces


It has been shown that the VM Framework is modular and treated as an object once the top-level EVM class is instantiated, and thus no assumption is made regarding its context of execution. Expanding on this idea, it may be interesting to examine how efficient the development process can be made by allowing many different VM instances to interact with one another, and hence allowing each VM instance to be responsible for the execution of a different DSL-program. The interaction of the constituting VMs can be controlled via a common interface as shown in Figure 61. The DSLs should all feature a syntax (either static such as having predefined types or keywords, or dynamic such as the ability to create user-defined types) that facilitates this communication in a meaningful way.
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Figure 61. Communicating DSL infrastructure.


Each DSL will configure a separate concern of the system. This is similar to Aspect Oriented Programming (AOP) [Kic96]. AOP makes use of an Aspect Weaver to fuse each program together at certain points called joins, to yield a single program, be it in Java, C# or C++. Using VMs there will be no generated code that needs compiling, but instead there will be code that can be reinserted back into a system at runtime. Again, this is useful in prototyping environments as mentioned above, but this time more than one language is considered. Thus it should be possible to have a prototyping environment with a language to control a set of test cases, another language to control concurrent processes or temporal logic, and perhaps a further language to reconfigure the GUI for a particular end-user requirement.


8.3 Architectural DSLs


Earlier in the dissertation it was mentioned that the DSL design and development should not be restricted to a particular end-user, but rather that seasoned software practitioners should also design their own DSL suited for their own needs. This is all very well if the practitioner can identify a layer of software that exhibits a set of rules or is somehow exposed as an API, and no further modification will be done to that software layer. The example used earlier was the OpenGL API, which is exposed as a graphical library accessible through most platforms supporting C/C++, Delphi, Visual Basic and the like. It is possible to treat OpenGL as a namespace in itself and provide some wrapper classes to aid in further building a complete configurable namespace. Other layers of software suitable for DSLs include ports and sockets, databases and GUIs. However, the problem arises when the developer also wishes to consider non-standardized software layers or their own in-house software layers, where modifications are done on a regular basis. In that case, the developer does not want to be restricted to constructs defined by a high-level DSL, and it would be far more practical for the developer to use a low-level language like Java or C++ for greater flexibility.


That said, suppose the developer would, nonetheless, still like to take advantage of a language, tailored to his or her needs, yet still have a high degree of flexibility like typical object-oriented languages. In this case it is worth considering the actual architecture of the software. Architecture can usually be narrowed down to a set of rules or even standards that are decided upon before further software design commences. Software design is then based on the decided architecture. It may be feasible to encapsulate the architecture, and expose some of the architecture as constructs, as well as the relevant object-oriented constructs. The language itself, though, will be far less concise than the likes of RT and others mentioned, but it serves a more industrial purpose. It is clear that this is a more daunting task for DSL designers. A good example of a software architecture is the architecture of Shlaer-Mellor based systems. These systems are designed around an event kernel, which facilitates instantiation of objects, polymorphism and message passing for active (state machine driven) objects and so on. The event kernel is written in the language of the domains, such as C, and using it in practice is cumbersome. Clearly, building a language to expose some of the event kernel functionality in a syntactically elegant manner, while still leaving the relevant C language constructs, such as loops and arrays, will make for improved efficiency. Thus it will be beneficial to examine more closely these architectural aspects as extensions to DSL design.


Conclusion
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The focus of this research has been to develop a framework in which to easily and cost effectively build DSLs on behalf of an expert who has domain knowledge, and who requires a textual, programmatic means to represent solutions to problems inherent within their domain of expertise. The intuitiveness of a language in this case is paramount, as it is not the job of the expert to apply, nor understand an industrialized approach to software development. This task consumes valuable time and it is more to an expert’s advantage if she had a computer language that captures the fundamentals of her domain knowledge. The aim of this dissertation is to provide a VM Framework that allows rapid development of such DSLs, with emphasis on language scalability. Scalability often comes at a performance cost, but it is shown in this study that performance results are less of a concern, in that the VM Framework’s performance is comparable to similar hard-coded VM variants. The VM Framework also relies on certain features offered by .NET platform to configure an instantiated VM at runtime, and .NET DLLs are used extensively to aid in flexibility and modularity. For the VM Framework to serve any use it must be extended by a set of concrete classes that form the instruction set and environments suitable for a particular DSL. Typically, a domain expert will work alongside a software practitioner to collaboratively tailor a DSL to the expert’s or end-user’s needs. Thus the syntax of constructs needs to be refined to be as intuitive as possible, while the practitioner needs to decide what type of instructions are necessary to facilitate the semantics of the constructs.  This may involve a few iterations but a flexible VM Framework will aid in the development lifecycle of the DSL.


Appendix


The following listings are the complete LG and PG (lexer and parser) definitions for each of the languages mentioned in the dissertation; the Ray-Tracer language (RT), the real-valued expression language (EXP) and the Little Quilt Language (LQ), including an example DSL-program of each language. The listing titles are positioned above the listing for legibility. The complete source code of the VM Framework, and all example programs are on the accompanying CD.


Listing 1. RT DSL complete lexer definition.


%lexer


%token                   DOUBLE {public double val;}


"{"                      %LBRACE


"}"                      %RBRACE


"scene"                  %SCENE


"window"                 %WINDOW


"light"                  %LIGHT


"cop"                    %COP


"lookat"                 %LOOKAT


"viewup"                 %VIEWUP


"ambient"                %AMBIENT


"geometry"               %GEOM


"specular"               %SPECULAR


"diffuse"                %DIFFUSE


"reflective"             %REFLECTIVE


"refractive"             %REFRACTIVE


"sphere"                 %SPHERE


"plane"                  %PLANE


"translate"              %TRANSLATE


[-+]?[0-9]+(\.[0-9]+)?   %DOUBLE {val = Double.Parse (yytext);}


[ \n\r\f\t]              ;


"(*"                     {yybegin ("COMMENT");}


<COMMENT>"*)"            {yybegin ("YYINITIAL");}


<COMMENT>.               ;


<COMMENT>\n              ;


Listing 2. RT DSL complete grammar definition.


%parser rtc.lexer


%{


using System.IO;


%}


%symbol scene_desc


{



public virtual void translate (StreamWriter asmFile) {}


}


%symbol element_list


{



public virtual void translate (StreamWriter asmFile) {}


}


%symbol element


{



public virtual void translate (StreamWriter asmFile) {}


}


%symbol scene_prop


{



public virtual void translate (StreamWriter asmFile) {}


}


%symbol prim_prop_list


{



public virtual void translate (StreamWriter asmFile) {}


}


%symbol prim_prop


{



public virtual void translate (StreamWriter asmFile) {}


}


%symbol prim


{



public virtual void translate (StreamWriter asmFile) {}


}


%node scene_desc1 : scene_desc


{



public element_list el;



public scene_desc1 (element_list el) {this.el = el;}



public override void translate (StreamWriter asmFile)



{




el.translate (asmFile);



}


}


%node element_list1 : element_list


{



public element_list el;



public element e;



public element_list1 (element_list el, element e) {this.el = el; this.e = e;}



public override void translate (StreamWriter asmFile)



{




if (el != null) el.translate (asmFile);




if (e != null) e.translate (asmFile);



}


}


%node element1 : element


{



public scene_prop sp;



public element1 (scene_prop sp) {this.sp = sp;}



public override void translate (StreamWriter asmFile)



{




sp.translate (asmFile);



}


}


%node element2 : element


{



public prim p;



public prim_prop_list ppl;



public element2 (prim p, prim_prop_list ppl) {this.p = p; this.ppl = ppl;}



public override void translate (StreamWriter asmFile)



{




p.translate (asmFile);




ppl.translate (asmFile);



}


}



%node scene_prop1 : scene_prop


{



public double d1, d2;



public scene_prop1 (double d1,double d2) {this.d1=d1;this.d2=d2;}



public override void translate (StreamWriter asmFile)



{




asmFile.WriteLine ("     Push {0}", d1);




asmFile.WriteLine ("     Push {0}", d2);






asmFile.WriteLine ("     SetWindow");




asmFile.WriteLine ("     Axes\n");



}


}


%node scene_prop2 : scene_prop


{



public double d1, d2, d3;



public scene_prop2 (double d1,double d2,double d3) {this.d1=d1;this.d2=d2;this.d3=d3;}



public override void translate (StreamWriter asmFile)



{




asmFile.WriteLine ("     Push {0}", d1);




asmFile.WriteLine ("     Push {0}", d2);




asmFile.WriteLine ("     Push {0}", d3);




asmFile.WriteLine ("     Light");




asmFile.WriteLine ("     Axes\n");





}


}


%node scene_prop3 : scene_prop


{



public double d1, d2, d3;



public scene_prop3 (double d1,double d2,double d3) {this.d1=d1;this.d2=d2;this.d3=d3;}



public override void translate (StreamWriter asmFile)



{




asmFile.WriteLine ("     Push {0}", d1);




asmFile.WriteLine ("     Push {0}", d2);




asmFile.WriteLine ("     Push {0}", d3);




asmFile.WriteLine ("     COP");




asmFile.WriteLine ("     Axes\n");





}


}


%node scene_prop4 : scene_prop


{



public double d1, d2, d3;



public scene_prop4 (double d1,double d2,double d3) {this.d1=d1;this.d2=d2;this.d3=d3;}



public override void translate (StreamWriter asmFile)



{




asmFile.WriteLine ("     Push {0}", d1);




asmFile.WriteLine ("     Push {0}", d2);




asmFile.WriteLine ("     Push {0}", d3);




asmFile.WriteLine ("     LookAt");




asmFile.WriteLine ("     Axes\n");





}


}


%node scene_prop5 : scene_prop


{



public double d1, d2, d3;



public scene_prop5 (double d1,double d2,double d3) {this.d1=d1;this.d2=d2;this.d3=d3;}



public override void translate (StreamWriter asmFile)



{




asmFile.WriteLine ("     Push {0}", d1);




asmFile.WriteLine ("     Push {0}", d2);




asmFile.WriteLine ("     Push {0}", d3);




asmFile.WriteLine ("     VUP");




asmFile.WriteLine ("     Axes\n");





}


}


%node scene_prop6 : scene_prop


{



public double d1, d2, d3;



public scene_prop6 (double d1,double d2,double d3) {this.d1=d1;this.d2=d2;this.d3=d3;}



public override void translate (StreamWriter asmFile)



{




asmFile.WriteLine ("     Push {0}", d1);




asmFile.WriteLine ("     Push {0}", d2);




asmFile.WriteLine ("     Push {0}", d3);




asmFile.WriteLine ("     Ambient");




asmFile.WriteLine ("     Axes\n");





}


}


%node prim_prop_list1 : prim_prop_list


{



public prim_prop_list ppl;



public prim_prop pp;



public prim_prop_list1 (prim_prop_list ppl, prim_prop pp) {this.ppl = ppl; this.pp = pp;}



public override void translate (StreamWriter asmFile)



{




if (ppl != null) ppl.translate (asmFile);




if (pp != null) pp.translate (asmFile);



}


}


%node prim_prop1 : prim_prop


{



public double d1, d2, d3, d4;



public prim_prop1 (double d1,double d2,double d3,double d4) {this.d1=d1;this.d2=d2;this.d3=d3;this.d4=d4;}



public override void translate (StreamWriter asmFile)



{




asmFile.WriteLine ("     Push {0}", d1);




asmFile.WriteLine ("     Push {0}", d2);




asmFile.WriteLine ("     Push {0}", d3);




asmFile.WriteLine ("     Push {0}", d4);




asmFile.WriteLine ("     Geometry\n");



}


}


%node prim_prop2 : prim_prop


{



public double d1, d2, d3;



public prim_prop2 (double d1,double d2,double d3) {this.d1=d1;this.d2=d2;this.d3=d3;}



public override void translate (StreamWriter asmFile)



{




asmFile.WriteLine ("     Push {0}", d1);




asmFile.WriteLine ("     Push {0}", d2);




asmFile.WriteLine ("     Push {0}", d3);




asmFile.WriteLine ("     Specular\n");



}


}


%node prim_prop3 : prim_prop


{



public double d1, d2, d3;



public prim_prop3 (double d1,double d2,double d3) {this.d1=d1;this.d2=d2;this.d3=d3;}



public override void translate (StreamWriter asmFile)



{




asmFile.WriteLine ("     Push {0}", d1);




asmFile.WriteLine ("     Push {0}", d2);




asmFile.WriteLine ("     Push {0}", d3);




asmFile.WriteLine ("     Diffuse\n");



}


}


%node prim_prop4 : prim_prop


{



public double d1, d2, d3;



public prim_prop4 (double d1,double d2,double d3) {this.d1=d1;this.d2=d2;this.d3=d3;}



public override void translate (StreamWriter asmFile)



{




asmFile.WriteLine ("     Push {0}", d1);




asmFile.WriteLine ("     Push {0}", d2);




asmFile.WriteLine ("     Push {0}", d3);




asmFile.WriteLine ("     Reflect\n");



}


}


%node prim_prop5 : prim_prop


{



public double d1, d2, d3;



public prim_prop5 (double d1,double d2,double d3) {this.d1=d1;this.d2=d2;this.d3=d3;}



public override void translate (StreamWriter asmFile)



{




asmFile.WriteLine ("     Push {0}", d1);




asmFile.WriteLine ("     Push {0}", d2);




asmFile.WriteLine ("     Push {0}", d3);




asmFile.WriteLine ("     Refract\n");



}


}


%node prim_prop6 : prim_prop


{



public double d1, d2, d3;



public prim_prop6 (double d1,double d2,double d3) {this.d1=d1;this.d2=d2;this.d3=d3;}



public override void translate (StreamWriter asmFile)



{




asmFile.WriteLine ("     Push {0}", d1);




asmFile.WriteLine ("     Push {0}", d2);




asmFile.WriteLine ("     Push {0}", d3);




asmFile.WriteLine ("     Translate\n");



}


}


%node prim1 : prim


{



public double d1;



public prim1 (double d1) {this.d1=d1;}



public override void translate (StreamWriter asmFile)



{




// Generate Sphere code.




asmFile.WriteLine ("(* Build a sphere. *)");




asmFile.WriteLine ("     Quad");






asmFile.WriteLine ("     Push 1");




asmFile.WriteLine ("     Push {0}", d1);




asmFile.WriteLine ("     Push {0}", d1);




asmFile.WriteLine ("     Mul");




asmFile.WriteLine ("     Div");




asmFile.WriteLine (@"     Coeff ""a11""");




asmFile.WriteLine ("     Push 1");




asmFile.WriteLine ("     Push {0}", d1);




asmFile.WriteLine ("     Push {0}", d1);




asmFile.WriteLine ("     Mul");




asmFile.WriteLine ("     Div");




asmFile.WriteLine (@"     Coeff ""a22""");




asmFile.WriteLine ("     Push 1");




asmFile.WriteLine ("     Push {0}", d1);




asmFile.WriteLine ("     Push {0}", d1);




asmFile.WriteLine ("     Mul");




asmFile.WriteLine ("     Div");




asmFile.WriteLine (@"     Coeff ""a33""");




asmFile.WriteLine ("     Push -1");




asmFile.WriteLine (@"     Coeff ""c""");




asmFile.WriteLine ();



}


}


%node prim2 : prim


{



public double d1, d2, d3, d4;



public prim2 (double d1,double d2,double d3,double d4) {this.d1=d1;this.d2=d2;this.d3=d3;this.d4=d4;}



public override void translate (StreamWriter asmFile)



{






// Generate Plane code.




asmFile.WriteLine ("(* Build a plane. *)");




asmFile.WriteLine ("     Quad");




asmFile.WriteLine ("     Push {0}", d1);




asmFile.WriteLine (@"     Coeff ""b1""");




asmFile.WriteLine ("     Push {0}", d2);




asmFile.WriteLine (@"     Coeff ""b2""");




asmFile.WriteLine ("     Push {0}", d3);




asmFile.WriteLine (@"     Coeff ""b3""");




asmFile.WriteLine ("     Push {0}", d4);




asmFile.WriteLine (@"     Coeff ""c""");




asmFile.WriteLine ();



}


}


scene_desc : SCENE LBRACE element_list:el RBRACE           %scene_desc1 (el);


element_list :                                             %element_list1 (null, null);


element_list : element_list:el element:e                   %element_list1 (el, e);


element : scene_prop:sp                                    %element1 (sp);


element : prim:p LBRACE prim_prop_list:ppl RBRACE          %element2 (p, ppl);


scene_prop : WINDOW DOUBLE:d1 DOUBLE:d2                    %scene_prop1 (d1.val,d2.val);


scene_prop : LIGHT DOUBLE:d1 DOUBLE:d2 DOUBLE:d3           %scene_prop2 (d1.val,d2.val,d3.val);


scene_prop : COP DOUBLE:d1 DOUBLE:d2 DOUBLE:d3             %scene_prop3 (d1.val,d2.val,d3.val);


scene_prop : LOOKAT DOUBLE:d1 DOUBLE:d2 DOUBLE:d3          %scene_prop4 (d1.val,d2.val,d3.val);


scene_prop : VIEWUP DOUBLE:d1 DOUBLE:d2 DOUBLE:d3          %scene_prop5 (d1.val,d2.val,d3.val);


scene_prop : AMBIENT DOUBLE:d1 DOUBLE:d2 DOUBLE:d3         %scene_prop6 (d1.val,d2.val,d3.val);


prim_prop_list :                                           %prim_prop_list1 (null, null);


prim_prop_list : prim_prop_list:ppl prim_prop:pp           %prim_prop_list1 (ppl, pp);


prim_prop : GEOM DOUBLE:d1 DOUBLE:d2 DOUBLE:d3 DOUBLE:d4   %prim_prop1 (d1.val,d2.val,d3.val,d4.val);


prim_prop : SPECULAR DOUBLE:d1 DOUBLE:d2 DOUBLE:d3         %prim_prop2 (d1.val,d2.val,d3.val);


prim_prop : DIFFUSE DOUBLE:d1 DOUBLE:d2 DOUBLE:d3          %prim_prop3 (d1.val,d2.val,d3.val);


prim_prop : REFLECTIVE DOUBLE:d1 DOUBLE:d2 DOUBLE:d3       %prim_prop4 (d1.val,d2.val,d3.val);


prim_prop : REFRACTIVE DOUBLE:d1 DOUBLE:d2 DOUBLE:d3       %prim_prop5 (d1.val,d2.val,d3.val);


prim_prop : TRANSLATE DOUBLE:d1 DOUBLE:d2 DOUBLE:d3        %prim_prop6 (d1.val,d2.val,d3.val);


prim : SPHERE DOUBLE:d1                                    %prim1 (d1.val);


prim : PLANE DOUBLE:d1 DOUBLE:d2 DOUBLE:d3 DOUBLE:d4       %prim2 (d1.val,d2.val,d3.val,d4.val);


Listing 3. RT example.


(* Program to render 3 spheres floating above a plane. *)


scene


{




(* Define the settings for the scene. *)



window 300.0 200.0




light -3.5 0.5 2.0




cop 0.0 4.0 1.0




lookat 0.0 0.0 0.0




viewup 0.0 0.0 1.0




ambient 0.3 0.3 0.3




(* Define a bunch of spheres and a plane. *)



sphere 0.5



{




translate 1.0 0.0 0.0




specular 0.7 0.0 0.0




diffuse 0.7 0.0 0.0




reflective 0.1 0.1 0.1





}




sphere 0.5



{




translate 0.0 -1.0 0.2




specular 0.0 0.7 0.0




diffuse 0.0 0.7 0.0




reflective 0.2 0.3 0.2





}



sphere 0.5



{




translate -1.0 -0.5 0.0




specular 0.0 0.0 0.7




diffuse 0.0 0.0 0.7




reflective 0.1 0.1 0.1





}



plane -0.1 0.0 1.0 1.0



{




specular 0.0 0.0 0.0




diffuse 1.0 0.5 0.0




reflective 0.25 0.25 0.25





}


}


Listing 4. EXP DSL complete lexer definition.


%lexer


%namespace ExpcLexer


%token                   DOUBLE {public double val;}


"let"                    %LET


"in"                     %IN


"end"                    %END


"sum"                    %SUM


".."                     %DOTDOT


"="                      %EQU


"+"                      %PLUS


"-"                      %MINUS


"*"                      %TIMES


"/"                      %DIV


"("                      %LBRACKET


")"                      %RBRACKET


[_a-zA-Z][_a-zA-Z0-9]*   %ID


[-+]?[0-9]+(\.[0-9]+)?   %DOUBLE {val = Double.Parse (yytext);}


[ \n\r\f\t]              ;


"(*"                     {yybegin ("COMMENT");}


<COMMENT>"*)"            {yybegin ("YYINITIAL");}


<COMMENT>.               ;


<COMMENT>\n              ;


Listing 5. EXP DSL complete grammar definition.


%parser expc.lexer


%namespace ExpcParser


%{


using ExpcLexer;


%}


%symbol FExp;


%symbol LetExp;


%symbol var_list;


%symbol var;


%symbol exp;


%symbol term;


%symbol fact;


%node FExp1 : FExp


{



public LetExp le;



public FExp1 (LetExp le) {this.le=le;}


}


%node LetExp1 : LetExp


{



public var_list vl;



public exp e1;



public LetExp1 (var_list vl, exp e1) {this.vl=vl;this.e1=e1;}


}


%node var_list1 : var_list


{



public var_list vl;



public var v;



public var_list1 (var_list vl, var v) {this.vl=vl;this.v=v;}


}


%node var1 : var


{



public string n;



public double d;



public var1 (string n, double d) {this.n=n;this.d=d;}


}


%node exp1 : exp


{



public exp e1;



public term t1;



public exp1 (exp e1,term t1) {this.e1=e1;this.t1=t1;}


}


%node exp2 : exp


{



public exp e1;



public term t1;



public exp2 (exp e1,term t1) {this.e1=e1;this.t1=t1;}


}


%node exp3 : exp


{



public term t1;



public exp3 (term t1) {this.t1=t1;}


}


%node term1 : term


{



public term t1;



public fact f1;



public term1 (term t1,fact f1) {this.t1=t1;this.f1=f1;}


}


%node term2 : term


{



public term t1;



public fact f1;



public term2 (term t1,fact f1) {this.t1=t1;this.f1=f1;}


}


%node term3 : term


{



public fact f1;



public term3 (fact f1) {this.f1=f1;}


}


%node fact1 : fact


{



public LetExp le;



public fact1 (LetExp le) {this.le=le;}


}


%node fact2 : fact


{



public string n;



public fact2 (string n) {this.n=n;}


}


%node fact3 : fact


{



public double d;



public fact3 (double d) {this.d=d;}


}


%node fact4 : fact


{



public exp e1;



public fact4 (exp e1) {this.e1=e1;}


}


%node fact5 : fact


{



public string n1;



public double d;



public string n2;



public exp e1;



public fact5 (string n1,double d,string n2,exp e1)



{




this.n1=n1;




this.d=d;




this.n2=n2;




this.e1=e1;



}



}


FExp     : LetExp:le                       %FExp1 (le);


LetExp   : LET var_list:vl IN exp:e1 END   %LetExp1 (vl, e1);


var_list :                                 %var_list1 (null, null);


var_list : var_list:vl var:v               %var_list1 (vl, v);


var      : ID:n EQU DOUBLE:d               %var1 (n.yytext, d.val);


exp      : exp:e1 PLUS term:t1             %exp1 (e1, t1);


exp      : exp:e1 MINUS term:t1            %exp2 (e1, t1);


exp      : term:t1                         %exp3 (t1);


term     : term:t1 TIMES fact:f1           %term1 (t1, f1);


term     : term:t1 DIV fact:f1             %term2 (t1, f1);


term     : fact:f1                         %term3 (f1);


fact     : LetExp:le                       %fact1 (le);


fact     : ID:n                            %fact2 (n.yytext);


fact     : DOUBLE:d                        %fact3 (d.val);


fact     : LBRACKET exp:e1 RBRACKET        %fact4 (e1);


fact     : SUM LBRACKET ID:n1 RBRACKET DOUBLE:d DOTDOT ID:n2 LBRACKET exp:e1 RBRACKET   %fact5 (n1.yytext, d.val, n2.yytext, e1);


Listing 6. EXP example.


let


    n = 5


in


    9 + sum (i) 1..n (2 * i)


end


Listing 7. LQ DSL complete lexer definition.


%lexer


%namespace LqcLexer


"let"                    %LET


"in"                     %IN


"end"                    %END


"turn"                   %TURN


"sew"                    %SEW


"fun"                    %FUN


"val"                    %VAL


"a"                      %A


"b"                      %B


"="                      %EQU


","                      %COMMA


"("                      %LBRACKET


")"                      %RBRACKET


[_a-zA-Z][_a-zA-Z0-9]*   %ID


[ \n\r\f\t]              ;


"(*"                     {yybegin ("COMMENT");}


<COMMENT>"*)"            {yybegin ("YYINITIAL");}


<COMMENT>.               ;


<COMMENT>\n              ;


Listing 8. LQ DSL complete grammar definition.


%parser lqc.lexer


%namespace LqcParser


%{


using LqcLexer;


%}


%symbol LQExp;


%symbol exp;


%symbol decls;


%symbol decl;


%node LQExp1 : LQExp


{



public exp e1;



public LQExp1 (exp e1) {this.e1=e1;}


}


%node exp1 : exp


{



public exp1 () {}


}


%node exp2 : exp


{



public exp2 () {}


}


%node exp3 : exp


{



public exp e1;



public exp3 (exp e1) {this.e1=e1;}


}


%node exp4 : exp


{



public exp e1;



public exp e2;



public exp4 (exp e1,exp e2) {this.e1=e1;this.e2=e2;}


}


%node exp5 : exp


{



public decls dl;



public exp e1;



public exp5 (decls dl,exp e1) {this.dl=dl;this.e1=e1;}


}


%node exp6 : exp


{



public string n;



public exp e1;



public exp6 (string n,exp e1) {this.n=n;this.e1=e1;}


}


%node exp7 : exp


{



public string n;



public exp e1;



public exp e2;



public exp7 (string n,exp e1,exp e2) {this.n=n;this.e1=e1;this.e2=e2;}


}


%node exp8 : exp


{



public string n;



public exp8 (string n) {this.n=n;}


}


%node decls1 : decls


{



public decl d;



public decls1 (decl d) {this.d=d;}


}


%node decls2 : decls


{



public decl d;



public decls dl;



public decls2 (decl d,decls dl) {this.d=d;this.dl=dl;}


}


%node decl1 : decl


{



public string n1;



public string n2;



public exp e1;



public decl1 (string n1,string n2,exp e1) {this.n1=n1;this.n2=n2;this.e1=e1;}


}


%node decl2 : decl


{



public string n1;



public string n2;



public string n3;



public exp e1;



public decl2 (string n1,string n2,string n3,exp e1) {this.n1=n1;this.n2=n2;this.n3=n3;this.e1=e1;}


}


%node decl3 : decl


{



public string n1;



public exp e1;



public decl3 (string n1,exp e1) {this.n1=n1;this.e1=e1;}


}


LQExp    : exp:e1                                                     %LQExp1 (e1);


exp      : A                                                          %exp1 ();


exp      : B                                                          %exp2 ();


exp      : TURN LBRACKET exp:e1 RBRACKET                              %exp3 (e1);


exp      : SEW LBRACKET exp:e1 COMMA exp:e2 RBRACKET                  %exp4 (e1,e2);


exp      : LET decls:dl IN exp:e1 END                                 %exp5 (dl,e1);


exp      : ID:n LBRACKET exp:e1 RBRACKET                              %exp6 (n.yytext,e1);


exp      : ID:n LBRACKET exp:e1 COMMA exp:e2 RBRACKET                 %exp7 (n.yytext,e1,e2);


exp      : ID:n                                                       %exp8 (n.yytext);


decls    : decl:d                                                     %decls1 (d);


decls    : decl:d decls:dl                                            %decls2 (d, dl);


decl     : FUN ID:n1 LBRACKET ID:n2 RBRACKET EQU exp:e1               %decl1 (n1.yytext,n2.yytext,e1);


decl     : FUN ID:n1 LBRACKET ID:n2 COMMA ID:n3 RBRACKET EQU exp:e1   %decl2 (n1.yytext,n2.yytext,n3.yytext,e1);


decl     : VAL ID:n1 EQU exp:e1                                       %decl3 (n1.yytext,e1);


Listing 9. LQ example.


let


    fun unturn (x)  = turn (turn (turn (x)))


    fun pile (x, y) = unturn (sew (turn (y), turn (x)))


    val s = turn (sew (unturn (unturn (a)), b))    


    val t = pile (turn (b), unturn (b))


    val u =  turn (turn (sew (s, t)))


    val m = sew (turn (a), turn (turn (a)))


    val n = sew (unturn (a), a)    


    val p = pile (m, n)


    val q =  sew (sew (u, p),  turn (u))


in


    pile (q, turn (turn (q)))


end
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...




%node scene_prop6 : scene_prop




{




	public double d1, d2, d3;




	public scene_prop6 (double d1,double d2,double d3)




              {this.d1=d1;this.d2=d2;this.d3=d3;}




}




...









element : scene_prop




element : prim:p LBRACE prim_prop_list:ppl RBRACE









scene_prop : WINDOW DOUBLE:d1 DOUBLE:d2




scene_prop : LIGHT DOUBLE:d1 DOUBLE:d2 DOUBLE:d3




scene_prop : COP DOUBLE:d1 DOUBLE:d2 DOUBLE:d3




scene_prop : LOOKAT DOUBLE:d1 DOUBLE:d2 DOUBLE:d3




scene_prop : VIEWUP DOUBLE:d1 DOUBLE:d2 DOUBLE:d3




scene_prop : AMBIENT DOUBLE:d1 DOUBLE:d2 DOUBLE:d3




             %scene_prop6 (d1.val,d2.val,d3.val);









prim_prop_list :




prim_prop_list : prim_prop_list:ppl prim_prop:pp




...
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(* Create an instance of the *)




(* ray-tracer environment.   *)




environment EnvRT









(* These instructions were part of    *)




(* the EnvExp environment.            *)




Push      using EnvRT




Add       using EnvRT




Sub       using EnvRT




Mul       using EnvRT




Div       using EnvRT









(* Ray-tracer specific instructions. *)




SetWindow using EnvRT




Light     using EnvRT




COP       using EnvRT




LookAt    using EnvRT




VUP       using EnvRT




Geometry  using EnvRT




Specular  using EnvRT




Diffuse   using EnvRT




Reflect   using EnvRT




Translate using EnvRT




Axes      using EnvRT




Coeff     using EnvRT




Quad      using EnvRT
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DSL : A Domain-Specific Language (DSL) is a programming language or executable specification language that offers, through appropriate notations and abstractions, expressive power focused on, and usually restricted to a particular domain.









DSL-program : A program, written in the language of the DSL, i.e.  the actual DSL program source code.
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class Add : Inst_OpCode




{




   public Add (EnvExp env)




   {




      this.env = env;




   }









   public override void Execute ()




   {




      double d1, d2, r;









      d2 = (double)




          ((EnvExp)env).GetStack().pop();









      d1 = (double)




          ((EnvExp)env).GetStack().pop();









      r = d1 + d2;









      ((EnvExp)env).GetStack().push(r);




   }




}
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%token                   DOUBLE {public double val;}




...




"Window"                 %WIN




"Light"                  %LIGHT




"COP"                    %COP




"LookAt"                 %LOOK




"VUP"                    %VUP




"Ambient"                %AMB




...
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public class rtc




{




   public static void Main (string [] argv)




   {




      ...	




   }









   ...









   public static void trans_scene_prop (RtcParser.scene_prop node)




   {




      if (node is RtcParser.scene_prop1)




      {




         trans_scene_prop1 ((RtcParser.scene_prop1) node);




      }




      ...




      else if (node is RtcParser.scene_prop6)




      {




         trans_scene_prop6 ((RtcParser.scene_prop6) node);




      }




   }









   ...




   public static void trans_scene_prop6 (RtcParser.scene_prop6 node)




   {




      scene.alterAmbient (node.d1, node.d2, node.d3);  // ambient




      scene.setupAxes ();




   }









   ...




   public static Scene scene;




   public static RObject robject;




   public static Bitmap bitmap;




   public static string filename;




}
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...




%node scene_prop6 : scene_prop




{




	public double d1, d2, d3;




	public scene_prop6 (double d1,double d2,double d3)




              {this.d1=d1;this.d2=d2;this.d3=d3;}




	public override void translate (StreamWriter asmFile)




	{




		asmFile.WriteLine ("Push\t{0}", d1);




		asmFile.WriteLine ("Push\t{0}", d2);




		asmFile.WriteLine ("Push\t{0}", d3);




		asmFile.WriteLine ("Ambient");




		asmFile.WriteLine ("Axes\n");




}




}









...









element : scene_prop




element : prim:p LBRACE prim_prop_list:ppl RBRACE









scene_prop : WINDOW DOUBLE:d1 DOUBLE:d2




scene_prop : LIGHT DOUBLE:d1 DOUBLE:d2 DOUBLE:d3




scene_prop : COP DOUBLE:d1 DOUBLE:d2 DOUBLE:d3




scene_prop : LOOKAT DOUBLE:d1 DOUBLE:d2 DOUBLE:d3




scene_prop : VIEWUP DOUBLE:d1 DOUBLE:d2 DOUBLE:d3




scene_prop : AMBIENT DOUBLE:d1 DOUBLE:d2 DOUBLE:d3




             %scene_prop6 (d1.val,d2.val,d3.val);









prim_prop_list :




prim_prop_list : prim_prop_list:ppl prim_prop:pp




...
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LABEL    : [lL][aA][bB][eE][lL]




INS      : [_a-zA-Z][_a-zA-Z0-9]*




BRANCH   : @[1-9][0-9]*




TEMP     : $[1-9][0-9]*




DOUBLE   : [-+]?[0-9]+(\.[0-9]+)?




STR      : \".*\"









ir_list  :




ir_list  : ir_list ir_instr









ir_instr : ir_label INS




ir_instr : ir_label INS STR




ir_instr : ir_label INS TEMP




ir_instr : ir_label INS DOUBLE




ir_instr : ir_label INS LABEL BRANCH









ir_label :




ir_label : BRANCH
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Test scenarios or use cases









The actual software currently under development









Components, written in some language, eg C#, providing the language semantics









Grammar describing development language














let




   fun MyFunc (x) = 




   let




      n = x




   in




      9 + sum(i) 1..n (2*i)




   end




in




   MyFunc (10)




end









Translation rules to target language/binary














call MyFunc (30)














exp : exp PLUS term




exp : exp MINUS term




exp : term









term : term TIMES fact




term : term DIV fact




term : fact









fact : LPAR exp RPAR




fact : NUM
























class Add




{




   public Add (DExp env)




   {




      this.env = env;




   }









   public void Execute ()




   {




      double d1,d2;      




      d2 = env.stack.pop ();




      d1 = env.stack.pop ();      




      env.stack.push(d1+d2);




   }




}














double %fun.name% (double %params[0].name%\




                   %for i=1..params.count-1%




                   ,double %params[i].name%\




                   %next%)




{




   %for l in locals%




   double %l.name%;




   %next%




   return %fun.exp%;




}









DLL,




EXE,




Binary














Integrated




Development




Environment
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%lexer




%namespace RtcLexer









%token                   DOUBLE {public double val;}




"{"                      %LBRACE




"}"                      %RBRACE




"scene"                  %SCENE




...




"viewup"                 %VIEWUP




"ambient"                %AMBIENT




"geometry"               %GEOM




...
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DSL VMA









DSL VMB









DSL VMC














HLL VM









DSLA









DSLB









DSLC









Common Communication Architecture
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abstract class Inst_OpCode_Br : Inst




{




   protected string label;









   protected bool




   BranchCond = false;









   protected bool




   SaveProgramCounter = false;




}
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abstract class Inst_OpCode_Str : Inst




{




   protected string str;




}
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abstract class Inst_OpCode_Num : Inst




{




   protected double num;




}
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abstract class Inst_OpCode_ID : Inst




{




   protected string ID;




   protected object temp;




}
















_1165942422.doc









abstract class Inst_OpCode : Inst




{




   protected bool




   LoadProgramCounter = false;




}
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%lexer




%namespace LqcLexer









"let"                    %LET




"in"                     %IN




"end"                    %END




"turn"                   %TURN




"sew"                    %SEW




"fun"                    %FUN




"val"                    %VAL




"a"                      %A




"b"                      %B




"="                      %EQU




","                      %COMMA




"("                      %LBRACKET




")"                      %RBRACKET




[_a-zA-Z][_a-zA-Z0-9]*   %ID




[ \n\r\f\t]              ;




"(*"                     {yybegin ("COMMENT");}




<COMMENT>"*)"            {yybegin ("YYINITIAL");}




<COMMENT>.               ;




<COMMENT>\n              ;
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public static void trans_prim1 (RtcParser.prim1 node)




{




  robject = new Quadric ();




  robject.alterCoeff_a11 (1.0 / (node.d1 * node.d1));




  robject.alterCoeff_a22 (1.0 / (node.d1 * node.d1));




  robject.alterCoeff_a33 (1.0 / (node.d1 * node.d1));




  robject.alterCoeff_c (-1.0);




}









public static void trans_prim2 (RtcParser.prim2 node)




{




  robject = new Quadric ();




  robject.alterCoeff_b1 (node.d1);




  robject.alterCoeff_b2 (node.d2);




  robject.alterCoeff_b3 (node.d3);




  robject.alterCoeff_c (node.d4);




}




	




public static void trans_prim_prop2 (RtcParser.prim_prop2 node)




{




  robject.alterSpecular (node.d1, node.d2, node.d3);




}
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public static void trans_element2 (RtcParser.element2 node)




{




  trans_prim (node.p);




  trans_prim_prop_list (node.ppl);




  scene.addObject (robject);




}	









public static void trans_prim (RtcParser.prim node)




{




  if (node is RtcParser.prim1)




  {




    trans_prim1 ((RtcParser.prim1) node);




  }




  else if (node is RtcParser.prim2)




  {




    trans_prim2 ((RtcParser.prim2) node);




  }




}	




	




public static void trans_prim_prop_list (RtcParser.prim_prop_list node)




{




  if (node is RtcParser.prim_prop_list1)




  {




    trans_prim_prop_list1 ((RtcParser.prim_prop_list1) node);




  }




}




	




public static void trans_prim_prop_list1 (RtcParser.prim_prop_list1 node)




{




  if (node.ppl != null) trans_prim_prop_list (node.ppl);




  if (node.pp != null) trans_prim_prop (node.pp);




}




	




public static void trans_prim_prop (RtcParser.prim_prop node)




{




  if (node is RtcParser.prim_prop1)




  {




    trans_prim_prop1 ((RtcParser.prim_prop1) node);




  }




  else if (node is RtcParser.prim_prop2)




  {




    trans_prim_prop2 ((RtcParser.prim_prop2) node);




  }









  ...  




  else if (node is RtcParser.prim_prop6)




  {




    trans_prim_prop6 ((RtcParser.prim_prop6) node);




  }




}
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environment EnvExp









QuiltA using EnvExp




QuiltB using EnvExp




Load   using EnvExp




Store  using EnvExp




Turn   using EnvExp




Sew    using EnvExp




Call   using EnvExp




Ret    using EnvExp




Br     using EnvExp
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Process VMs









System VMs









Same ISA









Different ISA














Same ISA









Emulators









HLL VMs









Hosted VMs









Codesigned  VMs









Different ISA
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     Br label @199









    (* unturn($1) *)




@100




     Load $1




     Turn




     Turn




     Turn




     Ret




@199




     Br label @299









     (* pile($1,$2) *)




@200




     Load $2




     Turn




     Load $1




     Turn




     Sew




     Store $1




     Call label @100




     Ret









     (* program start *)




@299




     QuiltA




     Store $1




     Call label @100




     QuiltA




     Turn




     Store $2




     Store $1




     Call label @200
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LQExp    : exp









exp      : A




exp      : B




exp      : TURN LBRACKET exp RBRACKET




exp      : SEW LBRACKET exp COMMA exp RBRACKET




exp      : LET decls IN exp END




exp      : ID LBRACKET exp RBRACKET




exp      : ID LBRACKET exp COMMA exp RBRACKET




exp      : ID









decls    : decl




decls    : decl decls









decl     : FUN ID LBRACKET ID RBRACKET EQU exp




decl     : FUN ID LBRACKET ID COMMA ID RBRACKET EQU exp




decl     : VAL ID EQU exp
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ISA (provided by the HLL VM)









   HLL VM (Java/CLR)














DSL VM









ISA (provided by the DSL  VM)









DSL-compiled program














scene
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   sphere 0.5
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instructions : string ( Inst Type




environments : string ( Env




ins_env      : string ( string
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Packaged IS (EXE)



















DSL Design




IDE














Design-time




IDE









DSL




Compiler



















VM









Grammar describing DSL, and translation rules (compiler generator)














exp : exp:e1 PLUS term:t1,  exp1




exp : term:t1,              exp2









term : term:t1 TIMES fact:f1, term1




term : NUM:n,                 term2









translate exp1




{




    translate exp1.e1




    translate exp1.t1




    emit "Add"




}




...




translate term2




{




    emit “Push $0”, term2.n




}



















The actual software currently under development









Components, written in some language, eg C#, providing the language semantics














let




   fun MyFunc (x) = 




   let




      n = x




   in




      9 + sum(i) 1..n (2*i)




   end




in




   MyFunc (10)




end









Test scenarios or use cases














call MyFunc (30)
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Develop a DSL for a specific problem domain









Use the exported DSL compiler and VM to develop a solution expressed in the DSL
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q(x,y,z) = a11x2 + a22y2 + a33z2 +




                2a23yz + 2a13xz +2a12xy +




                b1x + b2y + b3z + c = 0









1









1









1









1









1









1..*









RT









renders onto




canvas









recursive




shoot ray









ambient









VUP









COP









renders














vector3









x,y,z:double









normalize()




cross()




dot()
























Quadric









a11,a12,a13:double




a22,a23,a33:double




b1,b2,b3:double




c:double




tx,ty,tz:double









Ray









x1,y1,z1:double
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reflect()




refract()
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enum Orientation




{




    N,




    E,




    S,




    W




}









enum Symbol




{




    A,




    B




}









Quilt









NumRows:uint




NumCols:uint




quilt:Orientation [,]




symbols:Symbol [,]









Right():Quilt




Sew():Quilt









LittleQuilt
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Domain : A domain is a set of classes, all connected via relationships of some multiplicity. No two domains use the same classes, ie. Classes do not overlap between domains. A domain can be dependant on, or make use of services of other domains.
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DSL VM : A concrete instance of a HLL VM, providing an ISA capable of supporting the semantics of some DSL, i.e. the semantics of a single instruction or combination of some sequence of instructions, will facilitate the semantics of the DSL, and thus will reflect the application domain for which the DSL was designed.
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let




    fun unturn(x)=turn(turn(turn(x)))




    fun pile(x,y)=unturn(sew(turn(y),turn (x)))




in




    pile(unturn(a),turn(a))




end
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...




%node asm9_amb : asm




{




	public override void interpret (RTVM.RTMachine rtm)




	{




		rtm.RT_AMB ();




	}




}









...









asm_list :                     %asm_list1 (null, null);




asm_list : asm_list:al asm:a   %asm_list1 (al, a);









asm : PUSH DOUBLE:d            %asm1_push (d.val);




asm : SPHERE                   %asm2_sphere ();




asm : PLANE                    %asm3_plane ();




asm : WIN                      %asm4_win ();




asm : LIGHT                    %asm5_light ();




asm : COP                      %asm6_cop ();




asm : LOOK                     %asm7_look ();




asm : VUP                      %asm8_vup ();




asm : AMB                      %asm9_amb ();




asm : GEOM                     %asm10_geom ();




...
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public class Ambient : Inst_OpCode




{




	public Ambient (EnvRT env)




	{




		this.env = env;




	}









	public override void Execute ()




	{




		double amz = (double) ((EnvRT) env).stack.pop ();




		double amy = (double) ((EnvRT) env).stack.pop ();




		double amx = (double) ((EnvRT) env).stack.pop ();




		((EnvRT) env).scene.alterAmbient (amx, amy, amz);




	}




}
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(* Create an instance of the ray-tracer environment. *)




environment EnvRT









...




COP       using EnvRT




LookAt    using EnvRT




VUP       using EnvRT




Ambient   using EnvRT




Geometry  using EnvRT




Specular  using EnvRT




Diffuse   using EnvRT




...
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%lexer




%namespace ExpcLexer









%token                   DOUBLE {public double val;}









"let"                    %LET




"in"                     %IN




"end"                    %END




"sum"                    %SUM




".."                     %DOTDOT




"="                      %EQU




"+"                      %PLUS




"-"                      %MINUS




"*"                      %TIMES




"/"                      %DIV




"("                      %LBRACKET




")"                      %RBRACKET




[_a-zA-Z][_a-zA-Z0-9]*   %ID




[-+]?[0-9]+(\.[0-9]+)?   %DOUBLE {val = Double.Parse (yytext);}




[ \n\r\f\t]              ;




"(*"                     {yybegin ("COMMENT");}




<COMMENT>"*)"            {yybegin ("YYINITIAL");}




<COMMENT>.               ;




<COMMENT>\n              ;
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let




   n = 5




in




   9 + sum (i) 1..n (2 * i)




end
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public class RTMachine




{




	public RTMachine (int rd, int stackSize)




	{




		rtstack = new RTStack (stackSize);




		scene = new Scene ();




		render_depth = rd;




	}




	




	...




	




	// Alter the current ambient colour vector.




	public void RT_AMB ()




	{




		double amb = (double) rtstack.pop ();




		double amg = (double) rtstack.pop ();




		double amr = (double) rtstack.pop ();




		scene.alterAmbient (amr, amg, amb);




	}




	




	...




	private asm_list ast;




	public RTStack rtstack;




	public Scene scene;




	public int render_depth;




}
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– SRC -> SEM (Interpreter)




– SRC -> IS




- IS -> SEM
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1 – Interpreter




2 – Hard-coded VM




3 - VM Framework
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FExp     : LetExp









LetExp   : LET var_list IN exp END   









var_list :




var_list : var_list var









var      : ID EQU DOUBLE









exp      : exp PLUS term




exp      : exp MINUS term




exp      : term                         









term     : term TIMES fact




term     : term DIV fact




term     : fact                         









fact     : LetExp                 




fact     : ID                          




fact     : DOUBLE




fact     : LBRACKET exp RBRACKET   




fact     : SUM LBRACKET ID RBRACKET DOUBLE DOTDOT ID LBRACKET exp RBRACKET
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(* Create an instance of the *)




(* expression environment. *)




environment EnvExp









(* Register the following expression




(* instructions with the DVM. *)




Push  using EnvExp




Store using EnvExp




Load  using EnvExp




Sub   using EnvExp




Add   using EnvExp




Mul   using EnvExp




Br    using EnvExp




Brgz  using EnvExp




Nop   using EnvExp




Div   using EnvExp









(* Some generic instructions *)




Call  using EnvExp




Ret   using EnvExp




Print using EnvExp
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class EnvRT : EnvExp




{




   public EnvRT () : base ()




   {




      scene = new Scene ();




   }









   public override object GetResult ()




   {




      scene.render (4);




      return scene.GetBitmap ();




   }









   protected Scene scene;




   protected Bitmap bitmap;




}
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class EnvExp : Env




{




   public EnvExp () {




      stack = new Stack (100);




   }




   public override object GetResult () {




      object result;




      if (stack.isEmpty ()) {




         result = -1.0;




      }




      else {




         result = stack.peek ();




      }




      return result;




   }




   public Stack GetStack(){return stack;}




   protected Stack stack;




}
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%lexer




%token                   DOUBLE {public double val;}




"{"                      %LBRACE




"}"                      %RBRACE




"scene"                  %SCENE




"window"                 %WINDOW




"light"                  %LIGHT




"cop"                    %COP




"lookat"                 %LOOKAT




"viewup"                 %VIEWUP




"geometry"               %GEOM




"specular"               %SPECULAR




"diffuse"                %DIFFUSE




"reflective"             %REFLECTIVE




"refractive"             %REFRACTIVE




"sphere"                 %SPHERE




"plane"                  %PLANE




"translate"              %TRANSLATE




[-+]?[0-9]+(\.[0-9]+)?   %DOUBLE {val = Double.Parse (yytext);}




[ \n\r\f\t]              ;




"(*"                     {yybegin ("COMMENT");}




<COMMENT>"*)"            {yybegin ("YYINITIAL");}




<COMMENT>.               ;




<COMMENT>\n              ;
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if (loader.hasProgram ()) {




	// Grab the first instruction for execution.




	current_ins = loader.FetchNext ();









	// Keep executing until there are no more instructions to execute.




	while (current_ins != null) {




		if (current_ins is Instruction_OpCode_IDOperand) {




			id_ins = (Instruction_OpCode_IDOperand) current_ins;









			// Get temp value and supply it to the instruction.




			if (temps [id_ins.ID] == null) {




				// Doesn't exist in list, initialize it to 0.




				id_ins.temp = new object ();




				temps.Add (id_ins.ID, id_ins.temp);




			}




			else {




				id_ins.temp = temps [id_ins.ID];




			}









			// Execute the instruction with latest temp value.




			current_ins.Execute ();









			// Store the temp value back into the local list.




			temps [id_ins.ID] = id_ins.temp;




		}




		else {




			current_ins.Execute ();









			if (current_ins is Instruction_OpCode_BrOperand) {




				br_ins = (Instruction_OpCode_BrOperand) current_ins;









				// If we must save the program counter, we must do




				// it before we branch to another point of execution.




				if (br_ins.SaveProgramCounter) {




					loader.SavePC ();




				}









				// OK, now its safe to branch.




				if (br_ins.BranchCond) {




					loader.Branch (br_ins.label);




				}




			}




			else if (current_ins is Instruction_OpCode) {




				ins = (Instruction_OpCode) current_ins;




				if (ins.LoadProgramCounter) {




					loader.RecallPC ();




				}




			}




		}









		// After updating the program counter, grab the next instruction.




		current_ins = loader.FetchNext ();




	}




}
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public object GetResult (string Environ)




{




	Env env;









	env = (Env) config.environments [Environ];




	return env.GetResult ();




}
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asm_list :




asm_list : asm_list asm









asm : PUSH DOUBLE




asm : SPHERE




asm : PLANE




asm : WIN




asm : LIGHT




asm : COP




asm : LOOK




asm : VUP




asm : AMB




asm : GEOM




asm : SPEC




asm : DIFF




asm : REFL




asm : REFR




asm : AXES




asm : REN
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scene_desc : SCENE LBRACE element_list RBRACE




	




element_list :




element_list : element_list element









element : scene_prop




element : prim LBRACE prim_prop_list RBRACE









scene_prop : WINDOW DOUBLE DOUBLE




scene_prop : LIGHT DOUBLE DOUBLE DOUBLE




scene_prop : COP DOUBLE DOUBLE DOUBLE




scene_prop : LOOKAT DOUBLE DOUBLE DOUBLE




scene_prop : VIEWUP DOUBLE DOUBLE DOUBLE




scene_prop : AMBIENT DOUBLE DOUBLE DOUBLE









prim_prop_list :




prim_prop_list : prim_prop_list prim_prop









prim_prop : GEOM DOUBLE DOUBLE DOUBLE DOUBLE




prim_prop : SPECULAR DOUBLE DOUBLE DOUBLE




prim_prop : DIFFUSE DOUBLE DOUBLE DOUBLE




prim_prop : REFLECTIVE DOUBLE DOUBLE DOUBLE




prim_prop : REFRACTIVE DOUBLE DOUBLE DOUBLE




prim_prop : TRANSLATE DOUBLE DOUBLE DOUBLE









prim : SPHERE DOUBLE
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(* Render a red, a blue and a green sphere, and an orange plane. *)




scene




{	




	(* Define the settings for the scene. *)




	window 300.0 200.0	




	light -3.5 0.5 2.0	




	cop 0.0 2.5 1.0	




	lookat 0.0 0.0 0.0	




	viewup 0.0 0.0 1.0		




	




	sphere 0.5




	{




		translate 1.0 0.0 0.0




		specular 0.7 0.0 0.0




		diffuse 0.7 0.0 0.0




		reflective 0.1 0.1 0.1		




	}




	




	sphere 0.5




	{




		translate 0.0 -1.0 0.2




		specular 0.0 0.7 0.0




		diffuse 0.0 0.7 0.0




		reflective 0.2 0.3 0.2		




	}




	




	sphere 0.5




	{




		translate -1.0 -0.5 0.0




		specular 0.0 0.0 0.7




		diffuse 0.0 0.0 0.7




		reflective 0.1 0.1 0.1		




	}




	




	plane -0.1 0.0 1.0 1.0




	{




		specular 0.0 0.0 0.0




		diffuse 1.0 0.5 0.0




		reflective 0.25 0.25 0.25		




	}




}
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%lexer




%token                   DOUBLE {public double val;}




"PUSH"                   %PUSH




"SPHERE"                 %SPHERE




"PLANE"                  %PLANE




"WIN"                    %WIN




"LIGHT"                  %LIGHT




"COP"                    %COP




"LOOK"                   %LOOK




"VUP"                    %VUP




"AMB"                    %AMB




"GEOM"                   %GEOM




"SPEC"                   %SPEC




"DIFF"                   %DIFF




"REFL"                   %REFL




"REFR"                   %REFR




"AXES"                   %AXES




"REN"                    %REN




[-+]?[0-9]+(\.[0-9]+)?   %DOUBLE {val = Double.Parse (yytext);}




[ \n\r\f\t]              ;
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CASE : CASE is the application of information technology to systems development activities, techniques and methodologies. CASE tools are programs that automate or support one or more phases of a system’s development life cycle. The technology is intended to accelerate the process of developing systems and to improve the quality of the resulting system.
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DSL-compiled program : The DSL-program, once it has been compiled into a suitable ordered sequence of instructions ready to be executed on a DSL VM.
















