The mechanisms regulating exocytosis of the salivary glands of the soft tick, *Ornithodoros savignyi*

by

Christine Maritz-Olivier

Submitted in partial fulfilment of the requirements for the degree

Philosophiae Doctor

in the

Faculty of Natural and Agricultural Science Department of Biochemistry University of Pretoria Pretoria

July 2005

CONTENTS

List of Abbreviations	vi
List of Figures	xi
List of Tables	xix
Acknowledgements	xxii

Chapter 1: Literature review

1.1.	Ticks: An overview	1
1.2.	Biogenesis of secretory granules	6
1.3.	The exocytotic pathways	13
1.4.	Protein-protein interactions: A target for therapy?	19
1.5.	Aims of this thesis	23
1.6.	References	24

Chapter 2: Signaling pathways regulating protein secretion from the salivary glands of unfed female *Ornithodoros savignyi*.

2.1.	Introduction	27
2.1.1.	General anatomy of tick salivary glands	27
2.1.2.	Extracellular stimuli	31
2.1.3.	Adenylyl cyclase and cAMP	35
2.1.4.	Prostanoids	38
2.1.5.	Phospholipase C and intracellular calcium	43
2.1.6.	Current model for the control and mechanism of secretion in	
	ixodid ticks	44
2.2.	Hypothesis	46
2.3.	Aims	46
2.4.	Materials	47
2.5.	Methods	47
2.5.1.	Tick salivary gland dissection	47
2.5.2.	Apyrase activity assay	47
2.5.3.	Agonist and antagonist treatment	49
2.5.4.	Phosphorylation assay	49
2.6.	Results and discussion	50

2.6.1.	Dopamine / Isoproterenol / Carbachol	50
2.6.2.	Intracellular calcium	52
2.6.3.	Prostaglandins	53
2.6.4.	сАМР	55
2.6.5.	Verapamil	57
2.6.6.	Ouabain	58
2.6.7.	Extracellular and intracellular conditions (Membrane potential)	60
2.6.8.	N-ethylmaleimide (NEM)	61
2.6.9.	GTPγS	62
2.6.10.	cAMP-Dependent phosphorylation	63
2.6.11.	PI-3-Kinase inhibitor (Wortmannin)	65
2.6.12.	Inositol (1, 4, 5) tri-phosphate (IP ₃)	68
2.6.13.	PLC Inhibitor (U73,122)	68
2.6.14.	Actin inhibitor (Cytochalasin D)	69
2.6.15.	Tubulin Inhibitor (Colchicine)	71
2.7.	Conclusion	73
2.8.	References	76

Chapter 3: Investigations into the conserved core machinery of regulated exocytosis in the salivary glands of *O. savignyi*

3.1.	Introduction	80
3.1.1.	Conserved core machinery for regulated exocytosis	81
3.2.	Hypothesis	98
3.3.	Aims	
3.4.	Materials	99
3.5.	Methods	99
3.5.1.	Salivary gland fractionation	99
3.5.2.	Protein gel electrophoresis	100
3.5.3.	Western blotting	100
3.5.4.	Immuno-fluorescent localization using confocal microscopy	100
3.5.5.	Degenerative primer design	101
3.5.6.	Total RNA isolation	101
3.5.7.	Conventional cDNA synthesis	102
3.5.8.	SUPER SMART™ cDNA synthesis	

3.5.9.	cDNA amplification by LD-PCR	104
3.5.10.	Random amplification of 3' cDNA ends (3'-RACE)	104
3.5.11.	DIG- labelling of probes using PCR	105
3.5.12.	DNA dot blotting	106
3.5.13.	Agarose gel electrophoresis	106
3.5.14.	PCR product purification	106
3.5.15.	Quantification of nucleic acids	107
3.5.16.	A/T cloning of PCR products into pGEM® T-Easy vector	107
3.5.17.	Preparation of electrocompetent cells	107
3.5.18.	Transformation by electroporation	108
3.5.19.	Miniprep plasmid isolation	108
3.5.20.	High pure plasmid isolation	108
3.5.21.	Automated DNA sequencing and data analysis	109
3.6.	Results and Discussion	110
3.6.1.	Western blotting of salivary glands with anti-SNARE and anti-	
	Rab3a antibodies	110
3.6.2.	Localization of SNAREs and cytoskeleton proteins using confocal	
	microscopy	111
3.6.3.	RNA isolation	115
3.6.4.	3'-RACE using ss cDNA	116
3.6.5.	3′-RACE using SUPER SMART™ ds cDNA	124
3.7.	Conclusion	131
3.8.	References	133
Chapter 4	: Investigation into protein-protein interactions between	
	rat brain secretory proteins and an <i>O. savignyi</i> cDNA	
	library by means of the GAL4 two-hybrid system	
4.1.	Introduction	136
4.1.1.	The yeast two hybrid system	136
4.1.2.	Using the two-hybrid system for the identification of binding	
	partners of SNAREs and secretory proteins	146
4.2.	Hypothesis	149
4.3.	Aims	149
4.4.	Materials	150

4.5.	Methods150
4.5.1.	Full-length GAL4 AD/ library construction150
4.5.2.	Truncated GAL4 AD/ library construction154
4.5.3.	Verification of yeast host strains and control vectors
4.5.4.	GAL4 DNA-BD/Bait construction156
4.5.5.	Small-scale yeast transformation159
4.5.6.	GAL4 DNA-BD/Bait test for autonomous reporter gene activation160
4.5.7.	Sequential library-scale transformation of AH109 yeast cells160
4.5.8.	Two-hybrid screening of reporter genes161
4.5.9.	Colony-lift β -galactosidase filter assay161
4.5.10.	Nested-PCR screening of positive clones162
4.5.11.	Plasmid isolation from yeast163
4.5.12.	AD/library plasmid rescue via transformation in KC8 E. coli
4.5.13.	Sequencing of AD/library inserts163
4.6.	Results and Discussion165
4.6.1.	Full-length cDNA GAL4 AD / Plasmid library construction
4.6.2.	Truncated GAL4 AD / Plasmid library construction168
4.6.3.	Bait construction170
4.6.4.	Transformation of bait/ GAL4 BD constructs into AH109175
4.6.5.	Library transformation and two-hybrid screening176
4.6.6.	Colony-lift β -galactosidase assay178
4.6.7.	Nested-PCR screening of β -galactosidase positive clones178
4.6.8.	Sequencing and analysis of positive AD/library inserts
4.7.	Conclusion
4.8	References
Chapter 5	: Investigating SNARE-interactions by functional
	complementation in Saccharomyces cerevisiae and pull-

down assays with α -SNAP

5.1.	Introduction	194
5.1.1.	S. cerevisiae: A model organism for studying protein transport	194
5.1.2.	Functional complementation	197
5.1.3.	Functional complementation of SNAREs and trafficking proteins in	
	yeast	200

5.1.4.	α -SNAP: Functional properties	
5.2.	Hypothesis	204
5.3.	Aims	204
5.4.	Materials	205
5.5.	Methods	205
5.5.1.	O. savignyi salivary gland cDNA library construction	205
5.5.2.	Growth and maintenance of SSO-mutated yeast cells	
5.5.3.	Transformation, selection and screening	
5.5.4.	Data analysis	206
5.5.5.	Expression of rat brain α -SNAP	
5.5.6.	Salivary gland homogenate preparation	207
5.5.7.	Affinity chromatography (Pull-down assays)	207
5.5.8.	ELISA	207
5.5.9.	SDS-PAGE	207
5.6.	Results and Discussion	209
5.6.1.	cDNA library construction	
5.6.2.	Growth and maintenance of syntaxin knockout yeast	211
5.6.3.	Transformation, selection and screening	211
5.6.4.	Data analysis	213
5.6.5.	Pull-down assays	218
5.7.	Conclusion	221
5.8.	References	223
Chapter 6: Concluding discussion		
Summary	/	230
Appendix	K	232

LIST OF ABBREVIATIONS

A	Adenosine / Alanine
AA	Arachidonic acid
AD	Activation domain
Ade	Adenine
AMP	Adenosine monophosphate
Amp	Ampicillin
αSNAP	α -Soluble NSF attachment protein
ATP	Adenosine triphosphate
BD	Binding domain
BLAST	Basic local alignment search tool
bp	Base pairs
°C	Degrees Celcius
С	Cytosine / Cysteine
cAMP	Cyclic adenosine monophosphate
CCV	Clathrin-coated vesicle
cDNA	Complementary DNA
cfu	Colony forming units
CgB	Chromogranin B
CHX	Cycloheximide
COX	Cyclooxygenase
C-terminal	Carboxy terminal
D	Aspartic acid
Da	Dalton
dA	Deoxy adenosine
DAG	Diacyl glycerol
dC	Deoxy cytosine
DDO	Double dropout
DEPC	Diethyl pyrocarbonate
dG	Deoxy guanosine

DIG	Digoxygenin
DNA	Deoxyribonucleic acid
DNA-BD	DNA-binding domain
DNAse	Deoxyribonuclease
dNTP	Deoxynucleotide triphosphate
DO	Dropout
ds	Double stranded
dT	Deoxy thymidine
DTT	Dithiothreitol
E	Glutamic acid
E. coli	Escherichia coli
EDTA	Ethylene diamine tetra acetic acid
EE	Early endosome
EGTA	Ethylene-bis (oxyethylene nitrilo) tetra acetic acid
ELISA	Enzyme linked immunosorbent assay
F	Phenylalanine
G	Guanidine / Glycine
GAL4	Galactose 4 regulatory protein
G _i	Inhibitory G-protein
Gs	Stimulatory G-protein
Н	Histidine
I	Inosine / Isoleucine
InsP	Inositol phosphate
IP ₃	Inositol 1,4,5-triphosphate
IPTG	Isopropyl- β -D-thiogalactopyranoside
ISG	Immature granule
К	Lysine
kDa	Kilo Dalton

L	Leucine
lacZ	β-Galactosidase gene
LB	Luria-Berthani
LDCV	Large dense core vesicle
LD-PCR	Long distance PCR
Μ	Methionine
MCS	Multiple cloning site
μΜ	Micromolar
µmol	Micromole
mg	Milligram
min	Minutes
mM	Millimolar
mRNA	Messenger RNA
MSG	Mature secretory granule
Ν	Asparagine
NCBI	National Centre for Biotechnology Information
ng	Nanogram
NLS	Nuclear localization signal
nmol	Nanomole
NSF	N-Ethylmaleimide sensitive factor
N-terminal	Amino terminal
ORF	Open reading frame
ori	Origin of replication
Р	Proline
PAGE	Polyacrylamide gel electrophoresis
PCR	Polymerase chain reaction
PEG	Poly-ethylene glycol
PG	Prostaglandin
PGE ₂	Prostaglandin E ₂

PIP ₂	Phosphatidyl inositol 4,5-bisphosphate
РКА	Protein kinase A
РКС	Protein kinase C
PLC	Phospho lipase C
pmol	Picomole
pS	picoSiemens
Q	Glutamine
QDO	Quadruple dropout
R	Arginine
RACE	Random amplification of cDNA ends
RNAse	Ribonuclease
RNA	Ribonucleic acid
RRP	Rapidly releasable pool
RSP	Regulated secretory protein
RT-PCR	Reverse transcription PCR
S	Serine
SAP	Shrimp alkaline phosphatase
SD	Standard dropout
SDS	Sodium dodecyl sulfate
SEM	Scanning electron microscopy
SG	Secretory granule
SNAP	Soluble NSF attachment protein
SNARE	SNAP receptor
SRP	Slowly releasable pool
SS	Single stranded
SSV	Small synaptic vesicle
syt	Synaptotagmin
Т	Thymidine / Threonine
TAE	Tris-acetate EDTA buffer
Tag	Thermus aquaticus

TBS	Tris buffered saline
TDO	Triple dropout
TEM	Transmission electron microscopy
TGN	<i>trans</i> -Golgi network
T _m	Melting temperature
Tris	Tris(hydroxymethyl) aminomethane
tRNA	Transfer RNA
U	Units
UAS	Upstream activating sequences
V	Valine
VAMP	Vesicle associated membrane protein
W	Tryptophan
WT	Wild type
X-gal	5-Bromo-4-chloro-3-indolyl-β-D-galactopyranoside
Y	Tyrosine

LIST OF FIGURES

Chapter 1:

Figure 1.1.	Diagram illustrating ixodid adult tick body structures	1
Figure 1.2.	Diagram illustrating the typical 3-host cycle characteristics of	
	most ixodid ticks	2
Figure 1.3.	Diagram illustrating argasid adult tick body structures	3
Figure 1.4.	Diagram illustrating the typical argasid multi-host life cycle with	
	multiple parasitic phases and repeated gonotrophic cycles	4
Figure 1.5.	External anatomy of a female <i>O. savignyi</i>	5
Figure 1.6.	Biogenesis of secretory granules in neuroendocrine cells	8
Figure 1.7.	Sorting of regulated secretory proteins (RSPs) in the trans-Golgi	
	network (TGN) by protein-lipid interactions	11
Figure 1.8.	Schematic representation of the steps leading to secretory	
	granule exocytosis	13
Figure 1.9.	LDCV exocytosis viewed as sequential stages of docking, priming	
	and fusion	15
Figure 1.10.	Comparison of kiss-and-run exocytosis and full fusion	18
Figure 1.11.	Structural model illustrating the putative binding site of peptides	
	SNAP25_N2 on the SNARE complex	21
Figure 1.12.	lpha-Helical models of peptides identified from an $lpha$ -helical	
	constrained combinatorial peptide library	22

Chapter 2:

Figure 2.1.	SEM analysis of salivary glands from <i>O. savignyi</i>	27
Figure 2.2.	TEM micrographs of the granules of type II granular alveoli	31
Figure 2.3.	Biosynthesis of the physiologically active amines dopamine,	
	epinephrine and norepinephrine	33
Figure 2.4.	A model to demonstrate the receptors involved in salivary fluid	
	secretion in ixodid ticks	35
Figure 2.5.	The mechanism of receptor-mediated activation / inhibition of	
	adenylyl cyclase	36
Figure 2.6.	Schematic representation of A. americanum cAPK-cDNAs and	
	proteins	

Figure 2.7.	Schematic representation of the prostanoid synthesis pathway	39
Figure 2.8.	A schematic representation of the activation of PLC and the role	
	of PIP ₂ in intracellular signaling	43
Figure 2.9.	Known and hypothesised factors and events controlling secretion	
	in ixodid female salivary glands	45
Figure 2.10.	The effect of dopamine and extracellular calcium on apyrase	
	secretion from the salivary glands of <i>O. savignyi</i>	50
Figure 2.11.	The effect of isoproterenol on apyrase secretion from the salivary	
	glands of <i>O. savignyi</i>	51
Figure 2.12.	The effect of carbachol on apyrase secretion from the salivary	
	glands of <i>O. savignyi</i>	52
Figure 2.13.	The effect of intracellular calcium on dopamine-stimulated	
	apyrase secretion from permeabilized salivary glands of O.	
	savignyi	52
Figure 2.14.	The effect of OPC on dopamine-stimulated apyrase secretion	
	from permeabilized salivary glands of <i>O. savignyi</i>	53
Figure 2.15.	PGE_2 stimulated apyrase secretion from intact salivary glands in	
	the presence of HBSS with calcium	54
Figure 2.16.	PGE_2 stimulated apyrase secretion from permeabilized salivary	
	glands in the presence of HBSS with calcium	55
Figure 2.17.	Rescue of OPC treated cells with PGE_2	55
Figure 2.18.	The effect of elevated extracellular cAMP levels on apyrase	
	secretion from intact salivary glands of <i>O. savignyi</i>	56
Figure 2.19.	The effect of elevated intracellular cAMP levels on apyrase	
	secretion from permeabilized salivary glands of O. savignyi	56
Figure 2.20.	The effect of elevated intracellular cAMP levels on dopamine-	
	stimulated apyrase secretion from permeabilized salivary glands	
	of <i>O. savignyi</i>	57
Figure 2.21.	The effect of verapamil on dopamine-stimulated apyrase	
	secretion from intact salivary glands	58
Figure 2.22.	The effect of Ouabain on dopamine-stimulated apyrase secretion	
	in HBSS with calcium	59
Figure 2.23.	The effect of dopamine and extracellular calcium on apyrase	
	secretion from the salivary glands of <i>O. savignyi</i> in HBSS	61

Figure 2.24.	The effect of dopamine and extracellular calcium on apyrase	
	secretion from the salivary glands of <i>O. savignyi</i> in AISS	61
Figure 2.25.	Effect of N-ethylmaleimide on dopamine-stimulated apyrase	
	secretion	62
Figure 2.26.	Effect of GTP γ S on apyrase secretion	63
Figure 2.27.	Western blotting of dopamine and cAMP treated salivary glands	
	using a monoclonal anti-phosphothreonine IgG	64
Figure 2.28.	A schematic presentation of the functions of the various	
	reactions catalyzed by cellular phosphoinositide kinase isozymes	66
Figure 2.29.	Effect of Wortmannin on dopamine-stimulated apyrase secretion	67
Figure 2.30.	Effect of IP_3 on apyrase secretion from permeabilized salivary	
	glands of <i>O. savignyi</i>	68
Figure 2.31.	Effect of U73,122 on dopamine-stimulated apyrase secretion	
	from permeabilized salivary glands of O. savignyi	69
Figure 2.32.	The effect of cytochalasin D on dopamine-stimulated apyrase	
	secretion	71
Figure 2.34.	The effect of colchicine on dopamine-stimulated apyrase	
	secretion	72
Figure 2.35.	Schematic representation of the proposed mechanisms	
	underlying regulated exocytosis of apyrase from LDCVs from the	
	salivary glands of <i>O. savignyi</i>	75

Chapter 3:

Figure 3.1.	Model of the ionic layer of the yeast post-Golgi SNARE complex	83
Figure 3.2.	Crystal structure of the neuronal Sec1/syntaxin 1a complex	84
Figure.3.3.	Protein structure of neuronal SNAP-25 and ubiquitously	
	expressed homologues	87
Figure 3.4.	A model for Rab recruitment	91
Figure 3.5.	Diagram of the domain structure of synaptotagmin I	94
Figure 3.6.	Flow chart of Super SMART™ cDNA synthesis	103
Figure 3.7.	Cloning strategy during 3'-RACE	105
Figure 3.8.	Identification of SNAREs and Rab3a using Western Blotting	110
Figure 3.9.	Identification of a high molecular mass core complex in the	
	salivary glands of <i>O. savignyi</i>	111

Figure 3.10.	Immuno-localization of syntaxin in the salivary glands of O.	
	savignyi using anti-rat brain syntaxin2 polyclonal antibodies	112
Figure 3.11.	Immuno-localization of VAMP in the acini of O. savignyi using	
	anti-rat brain VAMP2 polyclonal antibodies	112
Figure 3.12.	Immuno-localization of VAMP in granular cells of O. savignyi	
	salivary glands	113
Figure 3.13.	Immuno-localization of SNAP25 in acini of O. savignyi	113
Figure 3.14.	Immuno-localization of actin in acini of O. savignyi	114
Figure 3.15.	Immuno-localization of tubulin in the acini of O. savignyi	115
Figure 3.16.	Electrophoretic analysis of total RNA	115
Figure 3.17.	Agarose electrophoresis of the open reading frame amplified	
	from recombinant synaptotagmin I	116
Figure 3.18.	Amino acid similarity among five synaptotagmin isoforms	117
Figure 3.19.	3'-RACE with synaptotagmin primer 1 (SDPYVK) and cDNA	
	created from salivary glands of O. savignyi, whole O. savignyi	
	ticks and rat brain (positive control)	118
Figure 3.20.	3'-RACE with salivary gland RNA and the syt_2 primer	119
Figure 3.21.	Hybridisation of the putative synaptotagmin clones obtained with	
	the DIG-labelled sytI probe	119
Figure 3.22.	Amino acid sequence alignment of various syntaxins	120
Figure 3.23.	PCR amplification of syntaxin using the syn_1 degenerative	
	primer from <i>O. savignyi</i> salivary gland cDNA	121
Figure 3.24.	PCR amplification of syntaxin using the syn_1 degenerative	
	primer from Argas (P.) walkerae cDNA	121
Figure 3.25.	DNA nucleotide and amino acid sequence of A. walkerae clone	
	obtained with syn_1	122
Figure 3.26.	Taguchi-PCR with syn_2 using salivary gland cDNA from <i>O.</i>	
	savignyi	123
Figure 3.27.	High Pure isolation of the 500 bp band obtained with syn_2	123
Figure 3.28.	Nucleotide and amino acid sequence of the 500 bp band	
	obtained with syn_2 primer from salivary gland cDNA	123
Figure 3.29.	Schematic presentation of the suppression PCR effect	125
Figure 3.30.	Analysis of ds cDNA amplification by LD-PCR using Super	
	SMART™ technology	126

Figure 3.31.	Taguchi_PCR with the syn_1 primer using ds SMART DNA from	
	salivary glands of <i>O. savignyi</i>	127
Figure 3.32.	Agarose electrophoresis of the purified 450 bp product obtained	
	with syn_1 and SMART DNA	127
Figure 3.33.	Nucleotide and amino acid sequence of 450bp band obtained	
	with syn_1 primer from SMART salivary gland cDNA	127
Figure 3.34.	Amino acid sequence alignment of various syntaxin isoforms 2	
	and 3	128
Figure 3.35.	3'-RACE with the syn_2/3 primer using ds SMART DNA from	
	salivary glands of <i>O. savignyi</i>	129
Figure 3.36.	Localization of SNAREs and cytoskeletal proteins in the acini of O.	
	savignyi	131

Chapter 4:

Figure 4.1.	Schematic diagram of the GAL4-based two-hybrid system	138
Figure 4.2.	pAS2-1 map and MCS	139
Figure 4.3.	pACT2 map and MCS	142
Figure 4.4.	Schematic presentation of a yeast promoter	144
Figure 4.5.	Reporter gene constructs in the yeast strains AH109	145
Figure 4.6.	Schematic representation of directional cloning using Sfa	
	digestion	151
Figure 4.7.	Schematic representation of fragmenting the full-length SfA	
	library using random primers	155
Figure 4.8.	Schematic presentation of (A) native syntaxin 1 and (B)	
	truncated syntaxin 1 bait	157
Figure 4.9.	Schematic presentation of (A) native Rab3a and (B) mutated	
	Rab3a bait constructs	158
Figure 4.10.	Analysis of ds cDNA amplification by LD-PCR using Super	
	SMART™ technology	165
Figure 4.11.	Agarose gel electrophoresis of (1) polished ds cDNA and (2)	
	purified <i>Sfi</i> I digested ds SMART DNA	166
Figure 4.12.	Agarose gel electrophoresis of (1) <i>Sfi</i> digested pACT2, (2) <i>Sfi</i>	
	digested pACT2 treated with T4 Ligase and (3) untreated intact	
	pACT2	166

Figure 4.13.	Transformation of various insert: vector ratios into electro	
	competent BL21 E. coli cells	167
Figure 4.14.	Agarose gel electrophoresis of SfA digested plasmids isolated	
	from GAL4 AD/library transformed BL21 E. coli cells	167
Figure 4.15.	Agarose gel electrophoresis of the XhoI digested fragmented	
	dsDNA	168
Figure 4.16.	PCR screening of cloned inserts from transformed BL21 E. coli	
	cells	169
Figure 4.17.	DNA sequence of four similar molecular mass clones from the	
	fragmented <i>Sfi</i> I/ <i>Xho</i> I GAL4AD fusion library	169
Figure 4.18.	PCR amplification of syntaxin bait constructs	170
Figure 4.19.	Amino acid sequence alignment of the syntaxin baits	171
Figure 4.20.	ELISA of syntaxin transformed AH109 cells with polyconal anti-	
	syntaxin 2 IgG	171
Figure 4.21.	PCR amplification of the coding region of native mouse brain	
	Rab3a	172
Figure 4.22.	ELISA of Rab3a T36N transformed AH109 cells with polyconal	
	anti-Rab3a IgG	172
Figure 4.23.	DNA nucleotide sequence alignment of the various Rab3a bait	
	constructs	173
Figure 4.24.	PCR amplification of the coding region of native mouse brain $\alpha\text{-}$	
	SNAP	174
Figure 4.25.	DNA nucleotide sequence alignments of α -SNAP bait constructs	175
Figure 4.26.	AH109 yeast cells containing the pAs2_1 truncated syntaxin bait	
	construct	176
Figure 4.27.	AH109 yeast cells co-transformed with truncated syntaxin bait	
	and <i>Sfi</i> I/ <i>Xho</i> I truncated library	177
Figure 4.28.	AH109 yeast cells containing the pAs2_1 native Rab3a bait	
	construct	177
Figure 4.29.	A typical β -galactosidase colony lift assay of AH109 yeast cells	
	containing the pAS2_1 truncated syntaxin bait construct	178
Figure 4.30.	Partial sequence of the pACT2 plasmid	179
Figure 4.31.	Typical agarose electrophoresis pattern obtained after nested	
	PCR of QDO-positive clones containing truncated syntaxin as bait	179

Figure 4.32.	Agarose electrophoresis pattern obtained after BamHI and	
	HindIII digestion of nested PCR products obtained from QDO-	
	positive clones containing truncated syntaxin as bait	
Figure 4.33.	Agarose electrophoresis pattern obtained after BamHI and	
	HindIII digestion of nested PCR products obtained from QDO-	
	positive clones containing α -SNAP as bait	
Figure 4.34.	Homology between domain I and syntaphilin using PSI-BLAST	
Figure 4.35.	Homology between clone 10 and Casein kinase I epsilon isoform	
	using PSI-BLAST	
Figure 4.36.	Structure prediction of syntaxin interacting peptides	
Figure 4.37.	Crystal structure of syntaxin 1N	
Figure 4.38.	Secondary structure prediction of the α -SNAP interacting protein	
Figure 4.39.	Multiple sequence alignment of syntaxins and $lpha$ -SNAP interacting	
	protein	
Figure 4.40.	Modeled structure of the α -SNAP interacting protein	
Figure 4.41.	Schematic presentation of a possible model for fusion complex	
	formation in the salivary glands of <i>O. savignyi</i>	

Chapter 5:

Figure 5.1.	Interactions of v- and t-SNAREs in yeast	
Figure 5.2.	Plasmid map of the S. cerevisiae E. coli shuttle vector pRS 413	199
Figure 5.3.	Putative $\alpha\mbox{-SNAP}$ binding sites on the SNARE complex	202
Figure 5.4.	Proposed SNAP-SNARE binding model	203
Figure 5.5.	Agarose gel electrophoresis of (i) the ds SMART cDNA	
	synthesized using the BamH I SMART- and EcoR I CDS primers	
	and (ii) the SMART ds DNA after <i>Bam</i> H I and <i>Eco</i> R I digestion	210
Figure 5.6.	Agarose gel electrophoresis of the ds SMART cDNA synthesized	
	using the <i>Sac</i> I SMART- and CDS III primer	211
Figure 5.7.	Agarose electrophoresis of the nested PCR products from	
	suppressed H603 cells	212
Figure 5.8.	Agarose electrophoresis of the nested PCR products from KC8	
	cells	212
Figure 5.9.	Multiple sequence alignment of syntaxins and knockout	
	suppressor peptides	215

Figure 5.10.	Multiple sequence alignments of clone 20 (H603_20) and human	
	syntaxin 1 (1Dn1_B)	216
Figure 5.11.	Multiple sequence alignments of clone 27 (H603_27) and human	
	syntaxin 1 (1Dn1_B)	216
Figure 5.12.	Secondary structure prediction of the knockout suppressor	
	peptides	217
Figure 5.13.	Structure of the Complexin / SNARE Complex	217
Figure 5.14.	Modeled structure of the knockout fragment encoded by clone 27	218
Figure 5.15.	ELISA of pull-down eluates using polyclonal antibodies against	
	the various SNAREs and Rab3a	219
Figure 5.16.	SDS-PAGE of pull-down eluates	219
Figure 5.17.	Multiple sequence alignment of the putative syntaxins isolated	
	from <i>O. savignyi</i> salivary glands	221

LIST OF TABLES

Chapter 1:

Table 1.1.	Properties of the granule components secreted by argasid ticks	5
Table 1.2.	Effects of altered loop-regions in various proteins	9
Table 1.3.	Examples of RSPs associated with lipid microdomains	.11
Table 1.4.	Properties and binding partners of tethering proteins	14

Chapter 2:

Table 2.1.	General features of female ixodid tick salivary gland acini	28
Table 2.2.	General features of the cell types found in the type II acinus of	
	the ixodid tick, <i>R. appendiculatus</i>	29
Table 2.3.	General features of the cell types found in the type III acinus of	
	ixodid ticks	
Table 2.4.	Structural classification of dopamine receptors	32
Table 2.5.	Structural classification of Protein kinases A / cAMP-dependent	
	kinases	
Table 2.6.	Structural classification of the phospholipases A ₂	39
Table 2.7.	Structural classification of prostanoid receptors	40
Table 2.8.	Schematic presentation of the micro-titer plate setup in the	
	secretion assay	48
Table 2.9.	Molecular masses of proteins phosphorylated by a dopamine-	
	sensitive cAMP-kinase in the salivary glands of the ixodid tick A.	
	americanum and the argasid tick O. savignyi	64
Table 2.10.	Characteristics of Type 1A and 1B phophatidylinositol 3- kinases	
	sensitive to Wortmannin	66
Table 2.11.	Comparison between the signaling pathways regulating	
	exocytosis from the salivary glands of A. americanum (Ixodidae)	
	and <i>O. savignyi</i> (Argasidae)	73

Chapter 3:

Table 3.1.	Cells with secretory granules	30
Table 3.2.	Key proteins that function in exocytosis in neurons and in	
	secretory granule exocytosis	32

Table 3.3.	Cellular and functional information about mammalian syntaxins	85
Table 3.4.	Cellular and functional information of synaptobrevins	86
Table 3.5.	Localization, function and effectors of selected Rab GTPases	93
Table 3.6.	Properties of various synaptotagmin isoforms	95
Table 3.7.	Properties of the synaptotagmin degenerative primers	117
Table 3.8.	Properties of the syntaxin degenerative primers	120
Table 3.9.	Properties of the serine protease degenerative primer	124
Table 3.10.	Super SMART [™] primers used for cDNA synthesis and LD-PCR	125
Table 3.11.	Properties of the syn_2/3 degenerative primer	129
Table 3.12.	Amino acid sequence of the proteins encoded for in the 450 bp	
	and 300 bp bands amplified with the syn_2/3 primer	129

Chapter 4:

Table 4.1.	MATCHMAKER yeast strain genotypes and applications	145
Table 4.2.	The use of various SNAREs and secretory proteins in two-hybrid	
	assays	146
Table 4.3.	Primers used for synthesis and amplification of cDNA during	
	cDNA library construction	151
Table 4.4.	Ligation of the GAL4 AD / plasmid library using the pACT2 vector	
	(8100 bp)	152
Table 4.5.	MATCHMAKER yeast strain phenotypes	156
Table 4.6.	Primers used for the amplification of native bait constructs	157
Table 4.7.	Reverse primer used for the amplification of the syntaxin 1-265	
	construct	158
Table 4.8.	Primers used for the site-directed mutagenesis of Rab3a	159
Table 4.9.	Control vectors of the MATCHMAKER™ GAL4 two-hybrid system	
	2	161
Table 4.10.	Nested PCR primers	163
Table 4.11.	Prey molecules identified using truncated syntaxin and truncated	
	library	
Table 4.12.	Predict protein analysis of α -SNAP interacting protein	185

Chapter 5:

Table 5.1. Conserved sequence motifs in Ras proteins from different species	196
---	-----

Table 5.2.	Properties of the primers used for SMART cDNA synthesis of the	
	BamHI / EcoR I library	.209
Table 5.3.	Properties of the primers used for SMART cDNA synthesis of the	
	Sac I / Xba I library	.210
Table 5.4.	Properties of the SSO-mutated temperature sensitive yeast	
	strains	.211
Table 5.5.	Deduced amino acid sequence of inserts that suppressed the	
	SSO1 temperature sensitive phenotype of H603 cells	213
Table 5.6.	Calculated similarities and identities between identified protein	
	domains and various full-length syntaxin isoforms	.214

APPENDIX

Scheme 1:	Overview of performing a yeast two-hybrid screen	۱232
-----------	--	------

ACKNOWLEDGEMENTS

I am extremely grateful towards the following:

- Prof. A.W.H. Neitz, my supervisor at the Department of Biochemistry, University of Pretoria, whom inspired my love for biochemistry during the first lecture he presented on proteins during my 2nd year undergraduate studies; for opening numerous research opportunities, his continued support, interest and guidance during the duration of my post-graduate life.
- Prof. A.I.Louw, my co-supervisor at the Department of Biochemistry, University of Pretoria, for valuable advice, teaching me to write proper science, continued interest in this project and creating a passion for molecular biology.
- Prof. J.R. Sauer at the Department of Entomology, Oklahoma State University, USA for opening up his laboratory and home to me during my visit. Your Christian values and life will continue to be an inspiration throughout my life.
- Prof. H. Moolman-Smook at the Department of Medical Biochemistry, University of Stellenbosch, South Africa, for opening her laboratory to me, teaching me the art of the two-hybrid system and yeast, your support and valuable opinions.
- Dr. Fourie Joubert and Mr. Tjaart de Beer for their tireless advice on Bioinformatics, computational analyses of data and protein modeling.
- Dr. Ben Mans for the numerous discussions and philosophical talks on life. Your love for ticks inspired me to become a life-long tick person!
- Mrs. S. van Wyngaardt, for her support, advice, helping hands and guidance during this project.
- My fellow students and friends, for always inspiring me to do better!

- My parents, family and friends. Your love, motivation and prayer make life worth living.
- My husband, Nicholas Olivier, who supported me throughout my postgraduate studies. Your kindness, inspiration, guidance, prayer and love are the center of my being.
- The Andrew F. Mellon Foundation for the Mellon Foundation Postgraduate Mentoring Fellowship. This opportunity opened a tremendous amount of opportunities during this study. The scientific exposure I received shaped me into the scientist I am today.
- The National Research Foundation of South Africa for their financial assistance during this study.
- My heavenly Father, thanks for always being the same, unchangeable Rock of my life. Your presence kept me going throughout the good and bad times of this study. I admire your creation, in awe!